Mathematics in Lean
  • 1. Introduction
  • 2. Basics
  • 3. Logic
  • 4. Sets and Functions
  • 5. Number Theory
  • 6. Topology
  • Index
Mathematics in Lean
  • »
  • Index

Index

A | B | C | D | E | F | G | H | I | L | M | N | O | P | R | S | T | U

A

  • absolute value
  • absurd
  • anonyomous constructor
  • apply
  • assumption

B

  • bounded quantifiers
  • by_cases
  • by_contra
  • by_contradiction

C

  • calc
  • cases
  • change
  • check
  • command
    • open
  • commands
    • check
    • include
  • commutative ring
  • congr
  • contradiction
  • contrapose
  • convert

D

  • definitional equality
  • divisibility
  • dsimp

E

  • erw
  • exact
  • excluded middle
  • exfalso
  • exponential
  • ext
  • extentionality

F

  • filter
  • from

G

  • gcd
  • goal
  • group (algebraic structure)
    • (tactic)

H

  • have, [1]

I

  • implicit argument
  • include
  • inequalities
  • injective function
  • intros

L

  • lambda abstraction
  • lattice
  • lcm
  • left
  • let
  • linarith
  • local context
  • logarithm

M

  • max
  • metric space
  • min
  • monotone function

N

  • namespace
  • norm_num

O

  • open
  • order relation

P

  • partial order
  • proof state
  • push_neg

R

  • rcases
  • real numbers
  • reflexivity
  • repeat
  • rewrite
  • rfl
  • right
  • ring (algebraic structure)
    • (tactic)
  • rintros
  • rw, [1]
  • rwa

S

  • set operations
  • show
  • simp, [1]
  • split
  • surjective function

T

  • tactics
    • abel
    • apply
    • assumption
    • by_cases
    • by_contra and by_contradiction
    • calc
    • cases
    • change
    • congr
    • contradiction
    • contrapose
    • convert
    • dsimp
    • erw
    • exact
    • exfalso
    • ext
    • from
    • group
    • have, [1]
    • intros
    • left
    • let
    • linarith
    • noncomm_ring
    • norm_num
    • push_neg
    • rcases
    • refl and reflexivity
    • repeat
    • right
    • ring
    • rintros
    • rw and rewrite, [1]
    • rwa
    • show
    • simp, [1]
    • split
    • use
  • this
  • topology

U

  • use

© Copyright 2020, Jeremy Avigad, Kevin Buzzard, Robert Y. Lewis, Patrick Massot.

Built with Sphinx using a theme provided by Read the Docs.