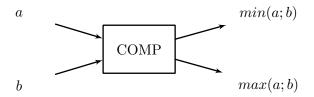
Réseaux de tri

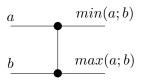
Paul Melotti

mai 2014

On dispose d'un composant comparateur-échangeur, qui permet d'obtenir le plus petit et le plus grand des deux nombres a et b donnés en entrée :

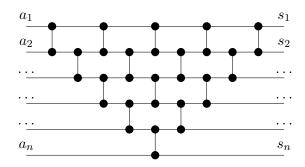


que l'on représentera plus simplement par :



Un réseau de comparateur est un ensemble de comparateurs connectés entre eux, sans cycle, comportant n entrées et n sorties. Une entrée (resp. une sortie) d'un réseau est une entrée (resp. une sortie) d'un comparateur non connectée. Un réseau de tri un réseau de comparateurs qui, étant donné une entrée a_1, \ldots, a_n quelconque, renvoie en sortie la liste triée $s_1 \leq \cdots \leq s_n$.

1. Montrer que le réseau suivant est un réseau de tri. Comment s'appelle ce tri?



- 2. Combien de portes possède ce réseau de tri ? Quel est l'intérêt par rapport à un tri logiciel qui effectue $O(n\log(n))$ comparaisons ?
- 3. Soit f une fonction croissante. Montrer que si un réseau de comparateurs sur les entrées a_1, \ldots, a_n renvoie b_1, \ldots, b_n alors ce même réseau lancé sur les entrées $f(a_1), \ldots, f(a_n)$ renvoie $f(b_1), \ldots, f(b_n)$.
- 4. $(Principe\ du\ 0-1)$ Montrer que si un réseau de comparateurs trie correctement les entrées telles que les a_i valent 0 ou 1, alors c'est un réseau de tri.

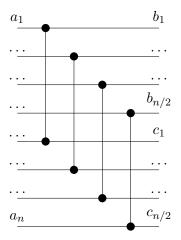
Tri de listes bitoniques

Une liste a_1, \ldots, a_n est dite bitonique si elle vérifie l'une des conditions suivantes :

- elle est croissante puis décroissante;
- elle est décroissante puis croissante;
- une permutation circulaire de la liste vérifie l'une des propriétés ci-dessus.
- 5. À quoi ressemble une liste bitonique composée de 0 et de 1?

Soit n un entier de la forme $n=2^p, p \in \mathbb{N}^*$. Notre objectif est maintenant de créer un réseau capable de trier les listes bitoniques a_1, \ldots, a_n composées de 0 et de 1.

- 6. Donner un tel réseau dans les cas p=1.
- 7. On considère le réseau suivant, noté Sep_p :



Montrer que les deux listes de sortie $b_1, \dots b_{n/2}$ et $c_1, \dots c_{n/2}$ sont bitoniques, et que tout b_i est inférieur ou égal à tout c_j .

8. En déduire un réseau $TriBit_p$ qui trie les listes bitoniques de taille 2^p composées de 0 et de 1. Quel est son nombre de portes? Sa profondeur (nombre maximal de portes traversées par un signal d'entrée)?

Tri-fusion

- 9. On se donne deux listes $tri\acute{e}es\ a=a_1,\ldots,a_{n/2}$ et $b=b_1,\ldots;b_{n/2}$ composées de 0 et de 1, où $n=2^p,\ p\in \mathbf{N}^*$. Déduire de la partie précédente un réseau qui renvoie la fusion des deux listes (comme dans l'algorithme de tri-fusion).
 - On appelle Fus_p ce réseau.
- 10. En déduire un réseau de tri pour des entrées de taille 2^p à valeurs quelconques. Quel est son nombre de portes? Sa profondeur?

Ajtai, Komlós, et Szemerédi ont publié en 1983 un réseau de tri comportant $O(n \log n)$ portes et de profondeur $O(\log n)$, et il est démontré que cette complexité est optimale. Toutefois, les constantes importantes devant ces ordres de grandeur rendent ce réseau inutile en pratique.