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0 Introduction: definitions

These notes are mostly based on the book Combinatorics of Permutations by Miklos Bona [Bon22];

mainly a sub-collection of topics/results found in the book, picked and occasionally rewritten ac-

cording to our taste. There is of course a small amount of additional material as well.

Definition 0.1. A linear ordering of the elements of the set [n] = {1, 2, 3, . . . , n} is called a per-

mutation.

We denote an n-permutation by p = p1p2 . . . pn with pi being the ith entry in the linear order

p. Well, the number on n-permutations is n!.

1 Breaking the order locally

1.1 Descents

Definition 1.1. Let p = p1p2 . . . pn be a permutations and i < n be a positive integer. We say that

i is a descent of p if pi > pi+1. Similarly, we say that i is an ascent of p if pi < pi+1.

Example 1.2. Let p = 351264. Then 2 and 5 are descents of p.

The immediate question for an enumerative combinatorist: What is the number A(n, k) of n-

permutations with k − 1 descents? Note that a permutation with k − 1 descents has k increasing

runs, hence the convention.

On the go. Write down the 3-permutations with one descent.

The numbers A(n, k) are called Eulerian numbers. We will see why so later on. Let’s first prove

a recurrence relation.

Theorem 1.3. For all positive integers k and n satisfying k < n, one has

A(n, k + 1) = (k + 1)A(n− 1, k + 1) + (n− k)A(n− 1, k) .

∗Université Paris-Saclay.
†Université Sorbonne Paris-Nord.
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Proof. Note that one can obtain an n-permutation p by inserting the entry n into an (n − 1)-

permutation p′ in n different positions. If p′ has k descents, k + 1 out of n positions will produce

an n-permutation with k descents again, in cases where we insert the entry n right after one of

the descents of p′ or at the end of p′, i.e. in k + 1 cases out of n. All other insertions give an

n-permutation with k + 1 descents.

Hence we can obtain an n-permutation with k descents in

1. (k+1) ways from each (n−1)-permutation with k descents, resulting in (k+1)A(n−1, k+1)

2. (n−k) ways from each (n−1)-permutation with k−1 descents, resulting in (n−k)A(n−1, k).

Note that A(n, k + 1) = A(n, n − k), i.e. the Eulerian numbers are symmetric. Indeed, if

p = p1p2 . . . pn has k descents, then its reverse pr = pnpn−1 . . . p1 has n− 1− k descents. Actually,

there exists a closed formula for A(n, k) (in the form of a sum, but ok...)!

Theorem 1.4. For all non-negative integers n and k such that k ≤ n, the following holds:

A(n, k) =

k∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)n .

Proof. Let k > 0 and let us place our n elements in k boxes (once you put them in the box, you can

order them in increasing order). We will draw this using k − 1 bars. There are kn ways to do this,

this is the first term in the sum, giving us the number of permutations with at most k− 1 descents.

The problem is, it also counts the ones like

2 3 | 1 4 | 5 | 6 or 2 3 | | 1 4 5 | 6 .

Let us call a bar a wall if it’s not followed by another bar. We call it an extra wall if after

removing it we still get a valid configuration, i.e. one with elements in increasing order in each box.

The permutations with no extra walls are exactly the ones that we want to count.

Let S ⊂ [n+1] be a subset of n+1 positions between the n entries (positions might hold multiple

bars). Let AS be the set of arrangements in which there is an extra wall at each position in S and

possibly elsewhere.

Note that we want the cardinality of A \

(
n+1⋃
i=1

A{i}

)
where A is the set of all configurations i.e.

|A| = kn. Noting that A{i,j} = A{i} ∩A{j} etc, inclusion/exclusion principle implies:

A \

n+1⋃
i=1

A{i}

 = |A| − |A{1}| − · · · − |A{n+1}|

+ |A{1,2}|+ |A{1,3}|+ · · ·+ |A{n,n+1}|

− |A{1,2,3}| − . . .

=
∑

S⊂{1,2,...,n+1}
|S|≤k−1

(−1)|S||AS | .
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Now we show that |AS | = (k − i)n where |S| = i. To see this, take a valid configuration with

k− i− 1 bars. There are (k− i)n such arrangements. Now insert a bar in every position in S (if the

position is occupied, we can still insert a bar to the right of it, creating an empty box). Inserting a

bar to each position in S now will give an element of AS . Conversely, one can start with an element

of AS and remove the bars in the positions belonging to S, leading to a valid configuration with

k − i boxes. Together with the fact that the i elements of S can be chosen in
(
n+1
i

)
ways, this

concludes the proof.

1.2 Generating functions & Eulerian numbers

Recall that A(0, 0) = 1 and A(n, 0) = 0 for n > 0.

Definition 1.5. For all non-negative integers n, the n’th Eulerian polynomial is given by

An(z) =

n∑
k=0

A(n, k)zk .

However, Euler first defined these polynomials in the following form.

Theorem 1.6. For all positive integers n, the n’th Eulerian polynomial can also be expressed as

An(z) = (1− z)n+1
∑
i≥0

inzi .

On the go. Write down A1(z) and A2(z).

Proof. By Theorem 1.4,

n∑
k=0

A(n, k)zk =
n∑

k=0

k∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)nzk

=
n∑

k=0

 k∑
i=0

(−1)k−i

(
n+ 1

k − i

)
in

 zk

=
∞∑
i=0

∞∑
k=i

(−1)k−i

(
n+ 1

k − i

)
zk−iinzi

=
∑
i≥0

inzi
∑
k≥i

(
n+ 1

k − i

)
(−z)k−i

= (1− z)n+1
∑
i≥0

inzi

where from second to third line we used that the expression in the parenthesis being equal to A(n, k)

vanishes for k > n.

We are now ready to write down the exponential generating function of Eulerian polynomials.

This has a nice, compact form.
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Theorem 1.7. Let

r(t, z) =
∑
n≥0

∑
k≥0

A(n, k)tk
zn

n!
.

Then the following holds:

r(t, z) =
1− t

1− tez(1−t)
.

Proof. By Theorem 1.6,

r(t, z) =
∑
n≥0

∑
k≥0

A(n, k)tk
zn

n!

=
∑
n≥0

(1− t)n+1
∑
i≥0

inti
zn

n!

= (1− t)
∑
i≥0

ti
∑
n≥0

(iz(1− t))n

n!

=
1− t

1− tez(1−t)
.

1.2.1 The other way around: Euler sums

This part is the other, historical way to discover Eulerian numbers.

Suppose you know nothing of the previous results, and you want to look at the power series

Sn(z) =
∑

i≥0 i
nzi for successive values of n, as a function of z ∈ C such that |z| < 1. When n = 0,

this is the well-known geometric series

S0(z) =
∑
i≥0

zi =
1

1− z
. (1.1)

Then, a classical trick allows us to compute S1(z) by differentiating:

S1(z) =
∑
i≥0

izi = z
∑
i≥1

izi−1 = zS′
0(z) =

z

(1− z)2
. (1.2)

This trick can in fact be iterated, and we get similarly, after some computations,

S2(z) =
∑
i≥0

i2zi = zS′
1(z) = · · · = z + z2

(1− z)3
. (1.3)

In general, we have Sn+1(z) = zS′
n(z), and after a straightforward iteration, Sn(z) can be written

as

Sn(z) =
Bn(z)

(1− z)n+1
(1.4)

where Bn(z) is a polynomial. The degree of Bn is n, and it must have a root at 0, except for n = 0.

Also, we can see in the iteration that its coefficients are integers. Therefore, let us write

Bn(z) =
n∑

k=0

B(n, k)zk (1.5)

and here, big surprise... The B(n, k) are indeed A(n, k), number of permutations with k−1 descents!
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Exercise 1.8. Show by induction (without making use of Theorem 1.6) that∑
i≥0

inzi =
An(z)

(1− z)n+1
.

Hint: Take the derivative of both sides and multiply by z, then compare the coefficients of zk of what

you get in the numerator and An+1(z) to conclude the proof. You might need Theorem 1.3.

1.3 Eulerian numbers and random variables

Let P be a random permutation taken uniformly among the n! possibilities. That is, for any fixed

permutation p, we have P(P = p) = 1
n! .

We are interested in the random variable counting the number of descents in P , which we denote

by Dn. In other words, it has the following distribution:

∀k ∈ [n],P(Dn = k − 1) =
A(n, k)

n!
. (1.6)

Theorem 1.9 (Tanny [Tan73]). The random variable Dn has the same distribution as ⌊U1 + · · ·+
Un⌋, where U1, . . . , Un are iid random variables uniform in [0, 1] (and ⌊·⌋ is the integer part).

Proof. Let us construct a random permutation using uniform random variables. Since U1, . . . , Un

are iid uniform, we can use them to produce a uniform permutation: they are almost surely all

different, so looking at their relative value produces a permutation (formally defined by σ(i) =

card{j | Uj ≤ Ui}, for instance, for n = 3, if U3 > U1 > U2 we get σ = (213)). Clearly, all

permutations are equally likely, so σ is uniformly distributed. That construction is interesting, but

it doesn’t give the theorem as such, we have to do this on another family of random variables instead

of the Ui. The following idea seems to be due to Stanley [Sta77].

Let Vi be the fractional part of U1 + · · ·+ Ui, that is,

Vi = U1 + · · ·+ Ui − ⌊U1 + · · ·+ Ui⌋.

We claim that V1, . . . , Vn are also iid uniform random variables in [0, 1]. Indeed, V1 = U1, and Vi+1

is the fractional part of Vi + Ui+1; but Ui+1 is independent from whatever happened before, and if

we condition on Vi, we are just adding a uniform random variable to a constant and reducing the

result modulo 1, which creates a new uniform random variable, no matter what the constant was.
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Therefore, we can use the Vi to create a random permutation as we did before, and it is again a

uniform permutation. But now, when does this permutation have a descent? It has a descent at i

iff Vi+1 < Vi, which is equivalent to the fact that Vi +Ui+1 ≥ 1 (we went overflow when adding the

uniform Ui+1). But this also means that ⌊U1 + · · ·+ Ui⌋ < ⌊U1 + · · ·+ Ui+1⌋. In other words, we

have a descent whenever the integer part ⌊U1 + · · ·+Ui⌋ increases by one. In total, the number of

descents is ⌊U1 + · · ·+ Un⌋.

Thus we get the interesting formula:

A(n, k) = n!P(U1 + · · ·+ Un ∈ [k − 1, k]). (1.7)

Exercise 1.10. Use the Central Limit Theorem and Slutsky’s lemma to prove

1√
n

(
⌊U1 + · · ·+ Un⌋ −

n

2

)
→d N

(
0,

1

12

)
.

Deduce an asymptotic statement about the numbers A(n, k) for n large, of the form

1

n!

n
2
+β

√
n∑

k=n
2
+α

√
n

A(n, k) ∼n→∞ · · · .

1.4 Sequences of Eulerian numbers

Definition 1.11. We say that the sequence a1, . . . , an of positive real numbers is log-concave if for

every indice k, ak−1ak+1 ≤ a2k.

Definition 1.12. We say that a sequence a1, . . . , an of positive real numbers has real roots only if

the polynomial
n∑

k=1

akx
k has real roots only.

We want to show that for any fixed n, the Eulerian numbers {A(n, k)}k are log-concave. For

this, we will pass by the following theorem of Newton.

Theorem 1.13. If a sequence of positive real numbers has real roots only, then it is log-concave.

Proof. Let a0, . . . , an be our real positive sequence and P (x) =
∑n

k=0 akx
k be the corresponding

polynomial having real roots only. We consider its homogenized polynomial:

Q(x, y) =
n∑

k=0

akx
kyn−k.

We say that Q has only real roots if for every (x, y) ∈ C2 \ {(0, 0)} that is a root of Q, we have
x
y ∈ R. Note that y cannot be zero, because Q(x, 0) = anx

n has no root, except for x = 0 which is

excluded in the definition. In fact, we would get an equivalent definition by requiring that y
x ∈ R:

the definition is symmetric in the two variables x and y.

Note also that if the sequence a0, . . . , an has real roots only, then Q has only real roots since

otherwise x
y would be a non-real root of P .

We claim that when a homogeneous polynomial of two variables has only real roots, then so

does ∂Q
∂x . Indeed, let y0 ∈ R be fixed. Then we see Q(x, y0) as a polynomial in x. It has degree
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n, so it has n complex roots with multiplicity, but by the assumption on Q they are all real (this

is true as well for y0 = 0, for which x = 0 is the only root and has multiplicity n). We can apply

Rolle’s theorem to this one-variable polynomial, which gives that its derivative has n− 1 real roots

(with multiplicity). Those are all the zeros of x 7→ ∂Q
∂x (x, y0) since its degree is n− 1. Therefore,

∂Q

∂x
(x, y0) = 0 =⇒ x

y0
∈ R.

Now, when y0 ∈ C, we write y0 = ρeiθ. If (x, y) is a root of ∂Q
∂x , by homogeneity, (e−iθx, e−iθy0) is

also a root. But this is also (e−iθx, ρ), and by the first case, e−iθx
ρ is real, but this is also x

y .

Similarly, by the aforementioned symmetry in x/y of the definition, ∂Q
∂y has real roots only. We

can iterate this argument and conclude that the polynomial ∂a+bQ/∂xa∂yb has real roots only for

all a, b such that a+ b < n. In particular this is true for a = j − 1 and b = n− j − 1, for some fixed

1 ≤ j ≤ n − 1. If (x, y), y ̸= 0 is a root of R(x, y) = ∂n−2Q/∂xj−1∂yn−j−1, so is x
y of R(x,y)

y2
seen

as a second degree polynomial in x
y . Since x

y is real, the latter has non-negative discriminant. We

can directly compute the non-zero terms of R(x, y) coming from k = {j − 1, j, j + 1} terms in the

summand, since all others vanish after derivation. Hence

R(x, y) = aj−1(j − 1)!
(n− j + 1)!

2
y2 + ajj!(n− j)!xy + aj+1

(j + 1)!

2
(n− j − 1)!x2 .

Its discriminant ∆ being ≥ 0 implies that

a2j ≥
j + 1

j

n− j + 1

n− j
aj−1aj+1 =⇒ a2j ≥ aj−1aj+1 .

We can now use this result to conclude from the following theorem that Eulerian numbers are

log-concave.

Theorem 1.14. For any fixed n, the sequence {A(n, k)}k of Eulerian numbers has real roots only.

In other words, all roots of the polynomial

An(z) =

n∑
k=1

A(n, k)zk

are real.

Proof. You have already shown in Exercise 1.8 that for n ≥ 1,

An(z) = z(1− z)A′
n−1(z) + nzAn−1(z)

= z(1− z)n+1 d

dz

(
An−1

(1− z)n

)
. (1.8)

The Eulerian polynomial A1 = z vanishes only at z = 0. Suppose that An−1 has n− 1 negative

roots with one at 0 (note that the roots cannot be positive since the coefficients of our polynomials

are positive). By Rolle’s theorem Eq. (1.8) implies that between any two distinct roots of An−1, An

will have a root. If An−1 has some root with multiplicity l > 1, An will have the same root with

multiplicity l − 1. Together with the root at 0 which can be seen from Eq. (1.8), this accounts for

n − 1 roots of An. The remaining root must also be real, since the complex roots of polynomials

with real coefficients come in conjugate pairs. This concludes the proof.
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1.5 Alternating permutations

In this course, we do not dive into the study of permutations through alternating runs. We refer

the curious reader to the Chapter 1.2 and 1.3 of the book. We will still conclude this chapter by a

nice result concerning the alternating permutations.

Definition 1.15. Given a permutation of length n, an alternating (resp. reverse alternating) sub-

sequence is a subsequence pi1 . . . pik s.t. pi1 > pi2 < pi3 > . . . (resp. pi1 < pi2 > pi3 < . . . ). We say

that p is (reverse) alternating if its longest (reverse) alternating subsequence is of length n.

The number of alternating n-permutations is called an Euler zigzag number and denoted by En.

On the go. Find out the first 4 Euler zigzag numbers (we set E0 = E1 = 1, skip them).

Theorem 1.16. The exponential generating function E(z) of Euler zigzag numbers En is given by

E(z) =
∑
n≥0

En
zn

n!
= sec z + tan z .

Proof. First, note that a permutation p is alternating if and only if its complement pc := (n+ 1−
p1) (n+1− p2) . . . is reverse alternating. This suggests that the number of alternating and reverse

alternating permutations are the same. We can now decompose each alternating permutation of

length n+ 1 into left L and right R permutations (possibly of 0 length) such that p = L(n+ 1)R.

Note that since n+1 is the maximal element of p, R and the reverse of L are both reverse alternating

permutations. Choosing the position k of (n+1) then concatenating it with two reverse alternating

permutations gives us all alternating and reverse alternating permutations of length n + 1, once

summed over k. Hence for n ≥ 1 we can write

2En+1 =
n∑

k=0

(
n

k

)
EkEn−k .

This is equivalent to (check it now by comparing the coefficients of zn

n! terms of both sides!)

2E′(z) = E2(z) + 1

with the initial condition E(0) = 1. This differential equation can be easily solved to obtain the

desired result.

The numbers En can be computed by an interesting algorithm, called the “boustrophedon”

algorithm, which proceeds in a way similar to an ox plowing a field. This description is better

followed by looking at Figure 1.1. We start on row 0, where we write a 1. Then on row 1, we write

down a 0 on the left, and we go towards the right by adding the number we see on top every time.

Then we proceed to row 2, by writing a 0 on the right and going right-to-left. In general, we go

left-to-right on odd rows, and right-to-left on even rows, adding the number on top of our step every

time.

Then, a remarkable thing happens: the last number computed on row n is exactly En. This is

a quick way to find the expansion of tan and sec in case you forget them!

To prove this, we generalize the Euler zigzag number by denoting Ek
n for the number of alter-

nating n-permutations such that p1 ≥ n− k + 1. Here 0 ≤ n, and clearly E0
n = 0 and En

n = En.
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Figure 1.1: The boustrophedon algorithm for the computation of Euler zigzag numbers

Proposition 1.17. For any 1 ≤ k ≤ n,

Ek
n = Ek−1

n + En−k
n−1

Proof. Consider an alternating n-permutation such that p1 ≥ n− k + 1. Two things can occur:

• either p1 > n− k + 1. There are Ek−1
n such permutations.

• either p1 = n−k+1. Then we remove the first entry and reduce by 1 all entries that are larger

than p1 to obtain a valid permutation of length n − 1. We hence get a reverse alternating

permutation of length n−1, whose first term is smaller than or equal to n−k. The complement

of this permutation is alternating and has first entry ≥ k. These are counted by En−k
n−1 , and

the transformation was clearly bijective.

Proposition 1.17 and careful index-checking should be enough to convince yourself that the

boustrophedon algorithm of Figure 1.1 produce the numbers Ek
n, on row n at position k in the

boustrophedon order. Therefore, at the end of each row computation, we have En.

1.6 Exercises

Exercise 1.18. We have n boxes numbered from 1 to n, and n balls numbered from 1 to n. We

drop the balls successively in order, starting from ball 1, with the constraint that for all i ∈ [n], the

ball i has to be dropped into a box with label ≤ i.

Let B(n, k) be the number of total choices for this procedure, such that at the end, k − 1 boxes

are left empty. Prove that B(n, k) = A(n, k).

Try to find a bijective proof of this formula.

Exercise 1.19. We consider the square grid Z2 as a graph, with edges between nearest-neighbours.

We put a weight on every edge: the edge {(i, j), (i+1, j)} gets weight j, and the edge {(i, j), (i, j+1)}
gets weight i.

Let s be a lattice path going from (1, 1) to (n − k + 1, k) by going every step to the east or to

the north (in particular it must have n − 1 steps). Define its weight Ps as the product of all edge

weights on s. Show that

A(n, k) =
∑
s

Ps.
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Exercise 1.20. A decreasing non-plane 1-2 tree is a rooted tree on vertex set [n] in which each non-

leaf vertex has at most two children, and the label of each vertex is smaller than that of its parent.

Let Tn denote the number of decreasing non-plane trees on vertex set [n]. Prove that Tn = En.

Try to find a bijective proof as well.

2 Inversions

In Section 1, we counted permutations through descents, which is a local move: an entry being

greater than the one following it. We shall now try to enumerate them by inversions, which is a

more global move: an entry being smaller than some entry(ies) following it.

Definition 2.1. Let p = p1 . . . pn be a permutation. We say that (pi, pj) is an inversion of p if

i < j and pi > pj.

On the go. List the inversions of 31425.

Let us denote the number of inversions of p by i(p). Clearly, p = 12 . . . n has no inversions, i.e.

i(p) = 0. What would be the obvious upper bound for i(p) and what permutation would realize it?

Theorem 2.2. For all n ≥ 2

In(z) :=
∑
p∈Sn

zi(p) = (1 + z)(1 + z + z2) . . . (1 + z + · · ·+ zn−1) .

Proof. Note that the right hand side has n! terms. We shall prove that each of these terms corre-

spond to a unique permutation in Sn where its contribution to the sum za1za2 . . . zan−1 is such that

for each i ∈ [n− 1], the entry i+ 1 is followed by exactly ai entries that are smaller than itself.

Check the statement for n = 2 and find I2(z). Suppose now, for induction, that the

statement is true for n − 1 and and let p be an (n − 1)-permutation represented by za1 . . . zan−2 .

Inserting n into p results in an (n)-permutation, name it q. If it is inserted so that it precedes i

entries, than q shall be represented by za1 . . . zan−2zi. Depending on where we insert n, q has 0 or

1 or . . . or n− 1 more inversions than p. Since p was arbitrary

In(z) = (1 + z + z2 + · · ·+ zn−1)In−1(z) = (1 + z)(1 + z + z2) . . . (1 + z + · · ·+ zn−1) .

Denoting the number of n-permutations with k inversions by b(n, k), we can write

In(z) =

(n2)∑
k=0

b(n, k)zk .

On the go. With Theorem 2.2, convince yourself that for any 0 ≤ k ≤
(
n
2

)
, b(n, k) ̸= 0.

It is possible to obtain a closed formula for b(n, k) when k ≤ n, but it is cumbersome. We

will not cover it in this course but refer the reader to [Bon22][Theorem 2.15] (and the machinery

developed therein from Lemma 2.5 on). We will be contented with a recursion relation.
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Proposition 2.3. Let n ≥ k. Then

b(n+ 1, k) = b(n+ 1, k − 1) + b(n, k) .

Proof. Start by an (n+1)-permutation p1 . . . pn+1 with k inversions. If n+1 is at the last position,

removing it results in a (n)-permutation with k inversions. If n+1 is at the i’th position with i ≤ n,

we can swap it with the entry following it and obtain an (n+ 1)-permutation with k − 1 descents,

where n+1 is not at the first position. Note that n+1 being at the first position results in at least

n descents, and since n > k − 1 by assumption, no (n + 1)-permutation with k − 1 descents can

have n+ 1 at the first position. This concludes the proof.

2.1 Some applications

2.1.1 Determinants

Everyone who had some undergraduate math courses is familiar with the following definition of the

determinant of an n× n matrix A = (aij):

detA =
n∑

j=1

(−1)j+1a1j detA1j

where A1j is the (n − 1) × (n − 1) matrix obtained by removing the first row and the jth column

of A. Here is another formula:

Theorem 2.4. Let A be an n× n matrix. Then

detA =
∑
p∈Sn

(−1)i(p)a1p1a2p2 . . . anpn . (2.1)

Proof. Check it for n = 2. We now proceed by induction. Assuming that the statement holds for

(n− 1)× (n− 1) matrices we have

detA1j =
∑
q

(−1)i(q)a2q2a3q3 . . . anqn

where q = q2q3 . . . qn is a permutation of the integers from 1 to n except j. Setting p1 = j we see

that p = jq2 . . . qn has exactly j − 1 more inversions than q, i.e. i(p) = i(q) + j − 1. This is true for

any j, hence inserting this last expression into Eq. (2.1), we obtain the desired result.

2.1.2 Perfect matchings of bipartite graphs

The previous expansion of determinants as a sum over permutations has another useful application.

Let G be a finite bipartite graph, that is, a graph whose vertex set is the disjoint union of two sets

X and Y , such that every edge joins a vertex in X and a vertex in Y . A perfect matching of G is a

subset M of edges such that every vertex of G belongs to exactly one edge in M .

Given a bipartite graph G, can we easily know if it admits at least one perfect matching?

Clearly, it is necessary that |X| = |Y |. When this is the case, we label the elements of X and Y :

X = {x1, . . . , xn} and Y = {y1, . . . , yn}. We consider the square matrix B(G), such that B(G)i,j = 1

when xi, yj are adjacent, and 0 otherwise. We call it the truncated adjacency matrix, as its size is

half that of the usual adjacency matrix.
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On the go. Write down the matrix B(G) for G a cycle graph of length 6, or hexagon.

The following statement gives a sufficient condition for G to have a perfect matching:

Theorem 2.5. Let G be a bipartite graph such that |X| = |Y |. If G does not have a perfect

matching, then detB(G) = 0.

By contrapositive, if detB(G) ̸= 0, then G has to admit a perfect matching. This is a simple,

polynomial-time computable sufficient condition for our initial question.

Proof. By (2.1),

detB(G) =
∑
p∈Sn

(−1)i(p)b1,p1 · · · bn,pn .

But the product of entries of B(G) is non-zero if, and only if, the set of edges {xi, ypi} is a perfect

matching (in that case, it is a product of 1’s, and in the other case, it is simply 0). Therefore, when

G has no perfect matching, the determinant must be 0.

Again, the fact that detB(G) ̸= 0 is only a sufficient condition for the existence of a perfect

matching. In fact:

On the go. Find a graph bipartite graphG that admits a perfect matching but such that detB(G) =

0.

Let us mention that the problem of knowing wether a generic bipartite graph has a perfect

matching or not can in fact be completely solved by a polynomial algorithm (more precisely, there

is a polynomial algorithm that outputs a matching of maximum cardinality). Much harder is the

question of counting how many perfect matchings G has. This problem can be proven to be harder

than NP-complete problems. In terms of the matrix B(G), it amounts to computing the permanent

perm B(G) :=
∑
p∈Sn

b1,p1 · · · bn,pn .

Despite its simpler expression, this quantity is significantly harder to compute than determinants.

There is, however, a polynomial-time algorithm restricted to the case of planar bipartite graphs.

This method is due to Kasteleyn, Temperley and Fisher, physicists who discovered it in the 70s. It

consists in choosing a specific orientation of the edges of G, such that every face has an odd number

of clockwise edges (as G is planar, it has well-defined faces). Then, one modifies the matrix B(G)

to take this orientation into account: B̃(G)ij is set to be +1 if the edge xi, yj is oriented in that

direction, to −1 if it is in the opposite direction, and 0 again if they are not linked. Then, one can

prove that the signs coming from the orientation exactly cancel the term (−1)i(p), which gives that

| det B̃(G)| is the number of perfect matchings of G.

2.2 Exercises

Exercise 2.6. Let n < k ≤
(
n
2

)
. Prove that

b(n+ 1, k) = b(n+ 1, k − 1) + b(n, k)− b(n, k − n− 1). (2.2)
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Exercise 2.7. Let p be a permutation on [n]. The inversion graph of p is the graph G with vertex

set [n], such that {i, j} is an edge of G if and only if (i, j) is an inversion of p. Find an example

of an unlabeled graph that is not the inversion graph of any permutation (for any labeling of its

vertices).

Exercise 2.8. Let T be a rooted tree with root 0 and non-root vertex set [n]. Define an inversion

of T to be a pair (i, j) of vertices so that i > j and i is an ancestor of j (that is, the unique path

from 0 to j goes through i). How many such trees have zero inversions?

3 In cycles

One can also see an n-permutation as a function f : [n] → [n] that is a bijection. We can then

define the product f · g of two permutations f, g as f · g(i) := f(g(i)). You can check that this is a

group and the set of all permutations Sn is called the symmetric group as well.

Another way of writing down a permutation p is through its decomposition into its cycles. For

instance, if f = 34152, we see that the consecutive applications of f will keep permuting 1 and 3

among each other, and 2,4 and 5 among themselves. We then write down f as (31)(524). Each

element in a parenthesis is mapped to the one on its right, and the last one goes to the first one.

On the go. Show that such a decomposition exists.

We start writing down each cycle by its largest element to have a canonical notation. The cycles

one obtains are obviously disjoint. Note also that the order in which we write down the cycles does

not matter, hence (31)(524) = (524)(31).

On the go. Show that this decomposition is unique.

3.1 Trees and transpositions

It is good to think of the consecutive parentheses as individual mappings leaving the numbers that

it does not contain invariant. We now relax the condition that each element should be in one cycle

only i.e. we allow cycles that are not disjoint. We can then write any permutation p as a product

of not necessarily disjoint 2-cycles that we call transpositions. For instance, 312 = (12)(23). The

order now matters and this decomposition is not unique: 312 = (23)(13).

On the go. Show (if you want, by induction) that such a decomposition exists for any n.

Exercise 3.1. Use now the previous result to show that any permutation can be written as a product

of adjacent transpositions i.e. transpositions interchanging two consecutive entries.

Lemma 3.2. Let s2, s3, . . . , sn be transpositions on [n]. Then snsn−1 . . . s2 is a cyclic permutation

if and only if the graph G with vertices on [n] and edges s2, s3, . . . , sn is a tree.

Proof. Suppose S := snsn−1 . . . s2 is a cyclic permutation. For any i ∈ [n] and m ∈ {2, . . . , n}, there
is a path between i and smsm−1 . . . s2(i) in G. Since S is cyclic, for all i, j ∈ [n], there exist k ≤ n

such that Sk(i) = j. Hence G is connected. Being a connected graph with n vertices and n − 1

edges implies that it is a tree (a connected graph with no cycles).

On the go. Show that a connected graph with n vertices and n− 1 edges is a tree.
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Suppose now that G is a tree with vertex set [n] and edges sn . . . s2. We shall proceed by

induction and assume that a tree on < n vertices gives a cyclic permutation. Removing the edge sn

gives us two trees that are cycles by the induction hypothesis. Calling these cycles that are disjoint

C1 and C2, we have

snsn−1 . . . s2 = (a1a2) · C1 · C2

where sn = (a1a2) with a2 ∈ C2 and a1 ∈ C1. This gives us a cycle on [n] and completes the

proof.
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