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Chapter 1

Introduction

In this book, we study equidistribution and counting problems concerning locally geodesic arcs
in negatively curved spaces endowed with potentials, and we deduce, from the special case of
tree quotients, various arithmetic applications to equidistribution and counting problems in
non-Archimedean local fields.

For several decades, tools in ergodic theory and dynamical systems have been used to ob-
tain geometric equidistribution and counting results on manifolds, both inspired by and with
applications to arithmetic and number theoretic problems, in particular in Diophantine ap-
proximation. Especially pioneered by Margulis, this field has produced a huge corpus of works,
by Bowen, Cosentino, Clozel, Dani, Einseidler, Eskin, Gorodnik, Ghosh, Guivarc’h, Kim,
Kleinbock, Kontorovich, Lindenstraus, Margulis, McMullen, Michel, Mohammadi, Mozes,
Nevo, Oh, Pollicott, Roblin, Shah, Sharp, Sullivan, Ullmo, Weiss and the last two authors,
just to mention a few contributors. We refer for now to the surveys | , Oh, , |
and we will explain in more details in this introduction the relation of our work with previous
works.

In this text, we consider geometric equidistribution and counting problems weighted with
a potential function in quotient spaces of CAT(—1) spaces by discrete groups of isometries.
The CAT(—1) spaces form a huge class of metric spaces that contains (but is not restricted to)
metric trees, hyperbolic buildings and simply connected complete Riemannian manifolds with
sectional curvature bounded above by —1. In Chapter 2, we review some basic properties of
these spaces and we refer to | | for more details. Although some of the equidistribution
and counting results with potentials on negatively curved manifolds are known,' as well as
some of such results on CAT(—1) spaces without potential,” bringing together these two
aspects and producing new results and applications is one of the goals of this book.

We extend the theory of Patterson-Sullivan, Bowen-Margulis and skinning measures to
CAT(—1) spaces with potentials, with a special emphasis on trees endowed with a system of
conductances. We prove that under natural nondegeneracy, mixing and finiteness assump-
tions, the pushforward under the geodesic flow of the skinning measure of properly immersed
locally convex closed subsets of locally CAT(—1) spaces equidistributes to the Gibbs measure,
generalising the main result of | ].

We also prove that the (appropriate generalisations of) the initial and terminal tangent
vectors of the common perpendiculars to any two properly immersed locally convex closed

!See for instance [ |-
%See for instance [ |
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subsets jointly equidistribute to the skinning measures when the lengths of the common per-
pendiculars tend to +oo0. This result is then used to prove asymptotic results on weighted
counting functions of common perpendiculars whose lengths tend to +00. Common perpendic-
ulars have been studied, in various particular cases, sometimes not explicitly, by Basmajian,
Bridgeman, Bridgeman-Kahn, Eskin-McMullen, Herrmann, Huber, Kontorovich-Oh, Mar-
gulis, Martin-McKee-Wambach, Meyerhoff, Mirzakhani, Oh-Shah, Pollicott, Roblin, Shah,
the last two authors and many others. See the comments after Theorem 1.5 below, and the
survey | | for references.

In Part III of this book, we apply the geometric results obtained for trees to deduce arith-
metic applications in non-Archimedean local fields. In particular, we prove equidistribution
and counting results for rationals and quadratic irrationals in any completion of any function
field over a finite field.

Let us now describe more precisely the content of this book, restricted to special cases for
the sake of the exposition.

Geometric and dynamical tools

Let Y be a geodesically complete connected proper locally CAT(—1) space (or good orbispace),
which is nonelementary, that is, whose fundamental group is not virtually nilpotent. In this
introduction, we will mainly concentrate on the cases where Y is either a metric graph (or
graph of finite groups in the sense of Bass and Serre, see [Ser3]) or a Riemannian manifold (or
good orbifold) of dimension at least 2 with sectional curvature at most —1. Let ¥Y be the
space of locally geodesic lines of Y, on which the geodesic flow (g')scr acts by real translations
on the source. When Y is a simplicial® graph (of finite groups), we consider the discrete time
geodesic flow (gf)iez, see Section 2.6. If Y is a Riemannian manifold, then 4Y is naturally
identified with the unit tangent bundle 7'Y by the map that associates to a locally geodesic
line its tangent vector at time 0. In general, we define T'Y as the space of germs of locally
geodesic lines in Y, and ¢4Y maps onto T'Y with possibly uncountable fibers.

Let F : T'Y — R be a continuous map, called a potential, which plays the same role
in the construction of Gibbs measures/equilibrium states as the energy function in Bowen’s
treatment of the thermodynamic formalism of symbolic dynamical systems in | , Sect. 1].
We define in Section 3.3 the critical exponent §r associated with F', which describes the
logarithmic growth of an orbit of the fundamental group on the universal cover of Y weighted
by the (lifted) potential F', and which coincides with the classical critical exponent when
F = 0. When Y is a metric graph, we associate in Section 3.5 a potential F,. to a system
of conductances ¢ (that is, a map from the set of edges of Y to R), in such a way that the
correspondence ¢ — Fp is bijective at the level of cohomology classes, and we denote dr, by

de.

In this introduction, we assume that F' is bounded and that dr is finite and positive in
order to simplify the statements.

We say that the pair (Y, F') satisfies the HC-property if the integral of F' on compact locally
geodesic segments of Y varies in a Holder-continuous way on its extremities (see Definition
3.13). The pairs which have the HC-property include complete Riemannian manifolds with

3that is, if its edges all have lengths 1
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pinched sectional curvature at most —1 and Hoélder-continuous potentials, and metric graphs

with any potential. This HC-property is the new technical idea compared to | | which
allows the extensions to our very general framework. See also | |, under the very strong
assumption that Y is compact.

In Chapter 4, building on the works of | ]* when F' = 0 and of | ]° when Y is a

Riemannian manifold, we generalise, to locally CAT(—1) spaces Y endowed with a potential
F satisfying the HC-property, the construction and basic properties of the Patterson densities
at infinity of the universal cover of Y associated with F' and the Gibbs measure mp on 4Y
associated with F'.

Using the Patterson-Sullivan-Bowen-Margulis approach, the Patterson densities are limits
of renormalised measures on the orbit points of the fundamental group on the universal
cover of Y, weighted by the potential, and the Gibbs measures on 4Y are local products of
Patterson densities on the endpoints of the geodesic line, with the Lebesgue measure on the
time parameter, weighted by the Gibbs cocycle defined by the potential.

Generalising a result of | |, we prove in Section 6.2 that when Y is a regular simpli-
cial graph and c is an antireversible system of conductances, then the Patterson measures,
normalised to be probability measures, are harmonic measures (or hitting measures) on the
boundary at infinity of the universal cover of Y for a transient random walk on the vertices,
whose transition probabilities are constructed using the total mass of the Patterson measures.

Gibbs measures were first introduced in statistical mechanics, and are naturally associated
via the thermodynamic formalism® with symbolic dynamics. We prove in Section 4.2 that our
Gibbs measures satisfy a Gibbs property analogous to the one in symbolic dynamics. If F' = 0,
the Gibbs measure mg is the Bowen-Margulis measure mgy. If Y is a compact Riemannian
manifold and F' is the strong unstable Jacobian v — — $|t:0 In Jac (gt‘Wf(U))(v), then mp is
the Liouville measure and dp = 0 (see | , Chap. 7] for more general assumptions on Y').
Thus, one interesting aspect of Gibbs measure is that they form a natural family of measures
invariant under the geodesic flow that interpolates between the Liouville measure and the
Bowen-Margulis measure (which in variable curvature are in general not in the same measure
class). Another interesting point is that such measures are plentiful: a recent result of Belarif
[Bel] proves that when Y is a geometrically finite Riemannian manifold with pinched nega-
tive curvature and topologically mixing geodesic flow, the finite and mixing Gibbs measures
associated with bounded Hélder-continuous potentials are, once normalised, dense (for the
weak-star topology) in the whole space of probability measures invariant under the geodesic
flow.

The Gibbs measures are remarkable measures for CAT(—1) spaces endowed with poten-
tials due to their unique ergodic-theoretic properties. Let (Z, (¢¢)ier) be a topological space
endowed with a continuous one-parameter group of homeomorphisms and let ¢ : Z — R be
a bounded continuous map. Let .#Z be the set of Borel probability measures on Z invariant
under the flow (¢¢)cr. Let hp(¢!) be the (metric) entropy of the geodesic flow with respect to
m € # . The metric pressure for 1 of a measure m € .# and the pressure of 1 are respectively

Py(m) = hp(é1) + jz pdm and Py = su;/;/ Py(m) .
me.

An element m € . is an equilibrium state for 1) if the least upper bound defining Py is

4itself building on the works of Patterson, Sullivan, Coornaert, Burger-Mozes, ...
®itself building on the works of Ledrappier [Led], Hamenstédt, Coudéne, Mohsen
5See for instance | , , .
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attained on m.

Let F*: 4Y — R be the composition of the canonical map Y — T'Y with F, and note
that F¥ = F if Y is a Riemannian manifold. When F = 0 and Y is a Riemannian manifold,
whose sectional curvatures and their first derivatives are bounded, by | , Theo. 2|, the
pressure Pr coincides with the entropy of the geodesic flow, it is equal to the critical exponent
of the fundamental group of Y, and the Bowen-Margulis measure mrp = mpym, normalised
to be a probability measure, is the measure of maximal entropy. When Y is a Riemannian
manifold whose sectional curvatures and their first derivatives are bounded and F' is Holder-
continuous, by | , Theo. 6.1, we have Pp = 0p. If furthermore the Gibbs measure mp
is finite and normalised to be a probability measure, then mg is an equilibrium state for F'.

In Section 5.4, we prove an analog of these results for the potential F* when Y is a metric
graph of groups. The case when Y is a finite simplicial graph” is classical by the work of Bowen
| |, as it reduces to arguments of subshifts of finite type (see for instance | ). When
Y is a compact® locally CAT(—1)-space,” a complete statement about existence, uniqueness
and Gibbs property of equilibrium states for any Holder-continuous potential is given in

[ |

Theorem 1.1 (The variational principle for metric graphs of groups). Assume that 'Y is a
metric graph of finite groups, with a positive lower bound and finite upper bound on the lengths
of edges. If the critical exponent o is finite, if the Gibbs measure mp s finite, then Ppy = 0p
and the Gibbs measure normalised to be a probability measure is the unique equilibrium state

for F*.

The main tool is a natural coding of the discrete time geodesic flow by a topological Markov
shift (see Section 5.1). This coding is delicate when the vertex stabilisers are nontrivial, in
particular as it does not satisfy in general the Markovian property of dependence only on
the immediate past (see Section 5.2). We then apply results of Buzzi and Sarig in symbolic
dynamics over a countable alphabet (see Appendix A written by J. Buzzi), and suspension
techniques introduced in Section 5.3. See also | |.

Let Y be any geodesically complete connected proper locally CAT(—1) space, and let D
be any connected proper nonempty properly immersed'’ closed locally convex subset of Y.
In Chapter 7, we generalise for nonconstant potentials on Y the construction of the skinning
measures 025 and o, on the outer and inner unit normal bundles of D in Y. We refer to Section
2.4 for the appropriate definition of the outer and inner unit normal bundles of D when the
boundary of D is not smooth. We construct these measures UB and o, as pushforwards of
the Patterson densities associated with the potential F' to the outer and inner unit normal
bundles of the lift of D in the universal cover of Y. This construction generalises the one in
| | when F' = 0, which itself generalises the one in | , | when M has constant
curvature and D is a ball, a horoball or a totally geodesic submanifold.

In Section 10.1, we prove the following result on the equidistribution of equidistant hyper-
surfaces in CAT(—1) spaces. This result is a generalisation of | , Theo. 1] (valid in Rie-
mannian manifolds with zero potential) which itself generalised the ones in | ) , |

"that is, a finite graph of trivial groups with edge lengths 1

8a very strong assumption that we do not want to make in this text

9not in the orbifold sense, hence this excludes for instance the case of graphs of groups with some nontrivial
vertex stabiliser

0By definition, D is the image in Y, by the universal covering map, of a proper nonempty closed convex
subset of the universal cover of Y, whose family of images under the universal covering group is locally finite.
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when Y has constant curvature, F' = 0 and D is a ball, a horoball or a totally geodesic sub-
manifold. See also | | when Y is a CAT(—1) space, F' = 0 and D is a ball or a horoball.

Theorem 1.2. Let Y, D be as above, and let F' be a potential of Y satisfying the HC-property.
Assume that the Gibbs measure mp on 9Y is finite and mizing for the geodesic flow (gt)ser,
and that the skinning measure O'ZS is finite and nonzero. Then, ast tends to +00, the pushfor-
wards (gt)*ag of the skinning measure of D by the geodesic flow weak-star converge towards
the Gibbs measure mp (after normalisation as probability measures).

We prove in Theorem 10.4 an analog of Theorem 1.2 for the discrete time geodesic flow
on simplicial graphs and, more generally, simplicial graphs of groups. As a special case,
we recover known results on nonbacktracking simple random walks on regular graphs. The
equidistribution of the pushforward of the skinning measure of a subgraph is a weighted version
of the following classical result, see for instance | |, which under further assumptions
on the spectral properties on the graph gives precise rates of convergence.

Corollary 1.3. Let Y be a finite reqular graph which is not bipartite. Let Y' be a nonempty
connected subgraph. Then the n-th vertex of the nonbacktracking simple random walk on Y
starting transversally to Y' converges in distribution to the uniform distribution as n — +00.

See Chapter 10 for more details and for the extensions to nonzero potential and to graphs
of groups, as well as Section 10.4 for error terms.

The distribution of common perpendiculars

Let D~ and DT be connected proper nonempty properly immersed locally convex closed
subsets of Y. A common perpendicular from D~ to DV is a locally geodesic path in Y starting
perpendicularly from D~ and arriving perpendicularly to D*.'' We denote the length of a
common perpendicular a from D~ to Dt by A(a), and its initial and terminal unit tangent
vectors by v, and v}. In the general CAT(—1) case, v are two different parametrisations
(by F[0,A(@)]) of a, considered as elements of the space 9Y of generalised locally geodesic
lines in Y, see | | or Section 2.2. For all ¢ > 0, we denote by Perp(D~, D" t) the set of
common perpendiculars from D~ to Dt with length at most ¢ (considered with multiplicities),
and we define the counting function with weights by

Np- . p+ p(t) = Z o
aePerp(D—, Dt,t)

where {_ F = S(/)\(a) F(glvy) dt. We refer to Section 12.1 for the definition of the multiplicities
in the manifold case, which are equal to 1 if D~ and D" are embedded and disjoint. Higher
multiplicities for common perpendiculars « can occur for instance when D™ is a nonsimple
closed geodesic and the initial point of « is a multiple point of D~.

Let Perp(D~, D) be the set of all common perpendiculars from D~ to DT (considered
with multiplicities). The family (M(a))aeperp(p-, p+) 18 called the marked ortholength spec-
trum from D~ to DT. The set of lengths (with multiplicities) of elements of Perp(D~, D%)
is called the ortholength spectrum of D~, D*. This second set has been introduced by Bas-
majian | | (under the name “full orthogonal spectrum”) when M has constant curvature,

1Gee Section 2.5 for explanations when the boundary of D~ or DV is not smooth.
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and D~ and D™ are disjoint or equal embedded totally geodesic hypersurfaces or embedded

horospherical cusp neighbourhoods or embedded balls. We refer to the paper | | which
proves that the ortholength spectrum with D~ = D% = M determines the volume of a
compact hyperbolic manifold M with totally geodesic boundary (see also [Cal] and | D).

We prove in Chapter 12 that the critical exponent ér of F' is the exponential growth rate
of Ap- p+ r(t), and we give an asymptotic formula of the form Ap- p+ p(t) ~ cedrt as
t — 400, with error term estimates in appropriate situations. The constants ¢ that will appear
in such asymptotic formulas will be explicit, in terms of the measures naturally associated
with the (normalised) potential F': the Gibbs measure mp and the skinning measures of D~
and D,

When F =0 and Y is a Riemannian manifold with pinched sectional curvature and finite
and mixing Bowen-Margulis measure, the asymptotics of the counting function A5~ p+ ()
are described in | , Theo. 1]. The only restriction on the two convex sets D¥ is that
their skinning measures are finite. Here, we generalise that result by allowing for nonzero
potential and more general CAT(—1) spaces than just manifolds.

The counting function .#p- p+ ¢(t) has been studied in negatively curved manifolds since
the 1950’s and in a number of more recent works, sometimes in a different guise. A number

of special cases (all with F' = 0 and covered by the results of | |) were known:

e D~ and D% are reduced to points, by for instance | I, [ | and | ],

e D~ and D™ are horoballs, by | |, | |, [Cos] and | | without an explicit form
of the constant in the asymptotic expression,

e D™ is a point and D7 is a totally geodesic submanifold, by | |, [EM] and | | in
constant curvature,

e D™ is a point and D7 is a horoball, by [[<on| and | | in constant curvature, and [Kin]
in rank one symmetric spaces,

e D~ is a horoball and D7 is a totally geodesic submanifold, by | | and | | in

constant curvature, and
e D~ and D7 are (properly immersed) locally geodesic lines in constant curvature and
dimension 3, by [Pol2].

We refer to the survey | | for more details on the manifold case.

When X is a compact metric or simplicial graph and DT are points, the asymptotics of
Np- p+,o(t) as t — +00 is treated in [Cui], as well as | |. Under the same setting, see
also the work of Kiro-Smilansky-Smilansky announced in | | for a counting result of paths
(not assumed to be locally geodesic) in finite metric graphs with rationally independent edge
lengths and vanishing potential.

The proofs of the asymptotic results on the counting function A4~ p+ p are based on
the following simultaneous equidistribution result that shows that the initial and terminal
tangent vectors of the common perpendiculars equidistribute to the skinning measures of D~
and D". We denote the unit Dirac mass at a point z by A, and the total mass of any measure
m by ).

Theorem 1.4. Assume that Y is a nonelementary Riemannian manifold with pinched sec-
tional curvature at most —1 or a metric graph. Let F : T'Y — R be a potential, with finite
and positive critical exponent dp, which is bounded and Hélder-continuous when Y is a man-
ifold. Let DT be as above. Assume that the Gibbs measure mp is finite and mizing for the

12 13/02/2019



geodesic flow. For the weak-star convergence of measures on GY x GY , we have

: —6pt § F _ .+ -
tEI+nOO oF |mpl| e Z e A-®A+ =0, Qop, .
aePerp(D—, D+,t)

There is a similar statement for nonbipartite simplicial graphs and for more general graphs
of groups on which the discrete time geodesic flow is mixing for the Gibbs measure, see the
end of Chapter 11 and Section 12.4. Again, the results can then be interpreted in terms of
nonbacktracking random walks.

In Section 12.2, we deduce our counting results for common perpendiculars between the
subsets D~ and D" from the above simultaneous equidistribution theorem.

Theorem 1.5. (1) Let Y, F, D* be as in Theorem 1.). Assume that the Gibbs measure mp
is finite and mizing for the continuous time geodesic flow and that the skinning measures UB,
and o, are finite and nonzero. Then, as s — +0,

lop-llop | & ¢

Imp|| OF

Np-,p+, F(8) ~
(2) If Y is a finite nonbipartite simplicial graph, then

ol lopell 5pm
(eor = 1) [me]

Np- p+ p(n) ~

The above Assertion (1) is valid when Y is a good orbifold instead of a manifold or
a metric graph of finite groups instead of a metric graph (for the appropriate notion of
multiplicities), and when D~ and D* are replaced by locally finite families. See Section 12.4
for generalisations of Assertion (2) to (possibly infinite) simplicial graphs of finite groups and
Sections 12.3 and 12.6 for error terms.

We avoid any compactness assumption on Y, we only assume that the Gibbs measure mp
of F is finite and that it is mixing for the geodesic flow. By Babillot’s theorem | |, if
the length spectrum of Y is not contained in a discrete subgroup of R, then mpg is mixing if
finite. If Y is a Riemannian manifold, this condition is satisfied for instance if the limit set
of a fundamental group of Y is not totally disconnected, see for instance | , |. When
Y is a metric graph, Babillot’s mixing condition is in particular satisfied if the lengths of the
edges of Y are rationally independent.

As in | |, we have very weak finiteness and curvature assumptions on the space
and the convex subsets we consider. Furthermore, the space Y is no longer required to be a
manifold and we extend the theory to nonconstant weights using equilibrium states. Such a
weighted counting has only been used in the orbit-counting problem in manifolds with pinched
negative curvature in | |. The approach is based on ideas from Margulis’s thesis to use
the mixing of the geodesic flow. Our skinning measures are much more general than the
Patterson measures appearing in earlier works. As in | |, we push simultaneously the
unit normal vectors to the two convex sets D~ and D™ in opposite directions.

Classically, an important characterisation of the Bowen-Margulis measure on closed neg-
atively curved Riemannian manifolds (F' = 0) is that it coincides with the weak-star limit
of properly normalised sums of Lebesgue measures supported on periodic orbits. The result
was extended to CAT(—1) spaces with zero potential in | | and to Gibbs measures in
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the manifold case in [ , Theo. 9.11]. As a corollary of the simultaneous equidistribution
result Theorem 1.4, we obtain a weighted version for simplicial and metric graphs of groups.
The following is a simplified version of such a result for Gibbs measures of metric graphs.

Let Per’(t) be the set of prime periodic orbits of the geodesic flow on Y. Let A(g) denote
the length of a closed orbit g. Let %, be the Lebesgue measure along g and let £, (F) be the
period of g for the potential F.

Theorem 1.6. Assume thatY is a finite metric graph, that the critical exponent dp is positive
and that the Gibbs measure mp is mizing for the continuous time geodesic flow. Ast — +0,

the measures
op eOFt Z eZe(F) %

gePer’(t)
and
spteirt S ) Lo
: A9)
gePer’ (t)
converge to % for the weak-star convergence of measures.

See Section 13.2 for the proof of the full result and for a similar statement for (possibly
infinite) simplicial graphs of finite groups. As a corollary, we obtain counting results of simple
loops in metric and simplicial graphs, generalising results of | |, [Guil.

Corollary 1.7. Assume that Y is a finite metric graph whose vertices have degrees at least
3, such that the critical exponent dg is positive.

(1) If the Gibbs measure is mizing for the continuous time geodesic flow, then

€6Ft

T
gePer’ (t) Ort

ast — +o0.

(2) IfY is simplicial and if the Gibbs measure is mixing for the discrete time geodesic flow,

then
F  Ort

T H ert
eOF —1 ¢t
gePer’ (t)

ast — +o0.

In the cases when error bounds are known for the mixing property of the continuous time or
discrete time geodesic flow on ¥Y’, we obtain corresponding error terms in the equidistribution

result of Theorem 1.2 generalising | , Theo. 20| (where F' = 0) and in the approximation
of the counting function .4#p- p+ ¢ by the expression introduced in Theorem 1.5. In the
manifold case, see | |, [Clo], | |, [Sto], [Livel, | |, and Section 12.3 for definitions

and precise references. Here is an example of such a result in the manifold case.

Theorem 1.8. Assume that Y is a compact Riemannian manifold and mp is exponentially
mizing under the geodesic flow for the Hélder reqularity, or that Y is a locally symmetric
space, the boundary of DE is smooth, mp is finite, smooth, and exponentially mizing under
the geodesic flow for the Sobolev reqularity. Assume that the strong stable/unstable ball masses
by the conditionals of mp are Hélder-continuous in their radius.
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(1) As t tends to +oo, the pushforwards (gt)*azg_ of the skinning measure of D~ by the
geodesic flow equidistribute towards the Gibbs measure mp with exponential speed.

+

(2) If the skinning measures o, _

that, as t — 400,

and o, are finite and nonzero, there exists k > 0 such

B HU}H “UE)JrH Spt —kt
t/VD—’D+’F(t) = W e (1 + O(@ )) .

See Section 12.3 for a discussion of the assumptions and the dependence of O(-) on the
data. Similar (sometimes more precise) error estimates were known earlier for the counting
function in special cases of DT in constant curvature geometrically finite manifolds (often in
small dimension) through the work of Huber, Selberg, Patterson, Lax and Phillips | ],
Cosentino |[Cos|, Kontorovich and Oh | |, Lee and Oh [LcO)].

When Y is a finite volume hyperbolic manifold and the potential F' is constant 0, the Gibbs
measure is proportional to the Liouville measure and the skinning measures of totally geodesic
submanifolds, balls and horoballs are proportional to the induced Riemannian measures of
the unit normal bundles of their boundaries. In this situation, there are very explicit forms
of the counting results in finite-volume hyperbolic manifolds, see | , Cor.21|, | .
These results are extended to complex hyperbolic space in | |.

As an example of this result, if D~ and D™ are closed geodesics of Y of lengths /_ and
{4, respectively, then the number .4"(s) = Ap- p+ o(s) of common perpendiculars (counted
with multiplicity) from D~ to DT of length at most s satisfies, as s — +o0,

T o2 — Sr(g) Vol(Y) © ‘ (1.1)

Counting in weighted graphs of groups

From now on in this introduction, we only consider metric or simplicial graphs or graphs of
groups.

Let Y be a connected finite graph with set of vertices V'Y and set of edges EY (see [Ser3]
for the conventions). We assume that the degree of the graph at each vertex is at least 3. Let
A EY — ]0,+00] with A(€) = A(e) for every e € EY be an edge length map, let Y = |Y|y
be the geometric realisation of Y where the geometric realisation of every edge e € EY has
length A(e), and let ¢ : EY — R be a map, called a (logarithmic) system of conductances in
the analogy between graphs and electrical networks, see for instance | |

Let Y+ be proper nonempty subgraphs of Y. For every t > 0, we denote by Perp(Y~, Y ¢)
the set of edge paths a = (eq,...,e) in Y without backtracking, of length A(a) = Zle A(e;)
at most ¢, of conductance c(«) = Zle c(e;), starting from a vertex of Y~ but not by an edge
of Y™, ending at a vertex of Y* but not by an edge of Y*. Let

Ny y+(t) = > el
aePerp(Y—,Y+, ¢)

be the number of paths without backtracking from Y~ to Y™ of length at most ¢, counted
with weights defined by the system of conductances.
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Recall that a real number x is Diophantine if it is badly approximable by rational numbers,
that is, if there exist a,, 8 > 0 such that |x — §| > aq P for all p, g € Z with ¢ > 0. We obtain
the following result, which is a very simplified version of our results for the sake of this
introduction.

Theorem 1.9. (1) IfY has two cycles whose ratio of lengths is Diophantine, then there exists
C > 0 such that for every k€ N — {0}, as t — +o0,

M-y (t) = C e (1+0@)) .
(2) If X\ =1, then there exist C',k > 0 such that, as n € N tends to +o0,
Ng-y+(n) =C' 656”(1 +0(e™") .

Note that the Diophantine assumption on Y in Theorem 1.9 (1) is standard in the theory
of quantum graphs (see for instance | D).

The constants C' = Cy+ ., > 0 and C' = é{iﬂ; > ( in the above asymptotic formulas
are explicit. When ¢ = 0 and A = 1, the constants can often be determined concretely, as
indicated in the two examples below.'? Among the ingredients in these computations are
the explicit expressions of the total mass of many Bowen-Margulis measures and skinning
measures obtained in Chapter 8.

See Sections 12.4, 12.5 and 12.6 for generalisations of Theorem 1.9 when the graphs Y*
are not embedded in Y, and for versions in (possibly infinite) metric graphs of finite groups.
In particular, Assertion (2) remains valid if Y is the quotient of a uniform simplicial tree by a
geometrically finite lattice in the sense of | |, such as an arithmetic lattice in PGLy over a
non-Archimedian local field, see | |. Recall that a locally finite metric tree X is uniform
if it admits a discrete and cocompact group of isometries, and that a lattice I' of X is a
lattice in the locally compact group of isometries of X preserving without edge inversions the
simplicial structure. We refer for instance to | , | for uncountably many examples
of tree lattices.

Example 1.10. (1) When Y is a (¢ + 1)-regular finite graph with constant edge length map
A = 1 and vanishing system of conductances ¢ = 0, then d. = In g, and if furthermore Y* and
Y~ are vertices, then (see Equation (12.11))

qg+1

¢ = (¢ — 1) Card(VY)

(2) When Y is biregular of degrees p+ 1 and g + 1 with p,q > 2, when A =1 and ¢ = 0, then

Sc = In \/pq, and if furthermore the subgraphs Y+ are simple cycles of lengths L*, then (see
Equation (12.12)) the number of common perpendiculars of even length at most 2N from Y~
to Y* as N — 400 is asymptotic to

(p+q L LT
2(pqg — 1) Card(EY

N+1

] (rq)

The main tool in order to obtain the error terms in Theorem 1.9 and its more general
versions is to study the error terms in the mixing property of the geodesic flow. Using the

12See Section 12.4 for more examples.
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already mentioned coding (given in Section 5.2) of the discrete time geodesic flow by a two-
sided topological Markov shift, classical reduction to one-sided topological Markov shift, and
results of Young | | on the decay of correlations for Young towers with exponentially
small tails, we in particular obtain the following simple criteria for the exponential decay of
correlation of the discrete time geodesic flow, where we only assume Y to be locally finite
(and maybe not finite). See Theorem 9.1 for the complete result.

Theorem 1.11. Assume that the Gibbs measure mg is finite and mixing for the discrete time
geodesic flow on Y. Assume moreover that there exist a finite subset E of VY and C', k' >0
such that for all n € N, we have

mp({{e9Y : £(0)e EandV ke {l,...,n}, (k)¢ B}) <C' e ™.
Then the discrete time geodesic flow has exponential decay of Hélder correlations for mp.

The assumption of having exponentially small mass of geodesic lines which have a big
return time to a given finite subset of VY is in particular satisfied (see Section 9.2) if Y
is the quotient of a uniform simplicial tree by a geometrically finite lattice,'® such as an
arithmetic lattice in PGL2 over a non-Archimedian local field, see | |, but also by many
other examples of Y. This statement corrects the mistake in | |, as indicated in its erratum.

These results allow to prove in Section 9.3, under Diophantine assumptions, the rapid
mixing property for the continuous time geodesic flow, that leads to Assertion (1) of Theorem
1.9, see Section 12.6. The proof uses suspension techniques due to Dolgopyat | | when Y
is a compact metric tree, and to Melbourne | | otherwise.

As a corollary of the general version of the counting result Theorem 1.5, we have the
following asymptotic for the orbital counting function in conjugacy classes for groups acting
on trees. Given zg € X and a nontrivial conjugacy class K in a discrete group I' of isometries
of X, we consider the counting function

Nﬁvxo(t) = Card{7 ER: d($07’y$0) < t} )

introduced by Huber | | when X is replaced by the real hyperbolic plane and T is a
lattice. We refer to | | for many results on the asymptotic growth of such orbital counting
functions in conjugacy classes, when X is replaced by a finitely generated group with a word
metric, or a complete simply connected pinched negatively curved Riemannian manifold. See
also | , , ].

Theorem 1.12. Let X be a uniform metric tree with vertices of degree = 3, let & be the
Hausdorff dimension of its space of ends, let I' be a discrete group of isometries of X, let xg
be a vertex of X with trivial stabiliser in I', and let R be a lozodromic conjugacy class in T.

(1) If the metric graph T\X is compact and has two cycles whose ratio of lengths is Diophan-
tine, then there exists C > 0 such that for every k € N — {0}, as t — 400,

N o) = C 31 (1+0(7%)) .

(2) If X is simplicial and T is a geometrically finite lattice of X, then there exist C',k > 0
such that, as n € N tends to +00,

</Vﬁ,g;0 (n) =C' o9 [(n=X(7))/2] (1 n O(e’“”)) '

!33ee for instance | |.

17 13/02/2019




We refer to Theorem 13.1 for a more general version, including a version with a system
of conductances in the counting function, and when R is elliptic. When T'\X is compact
and T is torsion free,'* Assertion (1) of this result is due to Kenison and Sharp [[<¢S], who
proved it using transfer operator techniques for suspensions of subshifts of finite type. Up
to strengthening the Diophantine assumption, using work of Melbourne | | on the decay
of correlations of suspensions of Young towers, we are able to extend Assertion (1) to all
geometrically finite lattices I' of X in Section 13.1.

The constants C' = Cg 4, and C' = ;%,xo are explicit. For instance in Assertion (2), if X
is the geometric realisation of a regular simplicial tree X of degree ¢ + 1, if x¢ is a vertex of
X, if R is the conjugacy class of 7 with translation length A(vyp) on X, if

vy = Y o

[J:]GF\VX‘ z
is the volume'® of the quotient graph of groups I'\X , then

C' — A(70)
[Zr(0) 7] Vol(T\X)

where Zp(70) is the centraliser of vy in I'. When furthermore T is torsion free, 7 is not a
proper power and I'\X is finite, as 6 = In g, we get that there exists £ > 0 such that

A(70) — —
W7 — L(n=A(10))/2] L O (q(1=K) /2
as n € N tends to +00, thus recovering the result of | | who used the spectral theory of the
discrete Laplacian.

Selected arithmetic applications

We end this introduction by giving a sample of our arithmetic applications (see Part I11 of this
book) of the ergodic and dynamical results on the discrete time geodesic flow on simplicial
trees described in Part II of this book, as summarized above. Our equidistribution and
counting results of common perpendiculars between subtrees indeed produce equidistribution
and counting results of rationals and quadratic irrationals in non-Archimedean local fields.
We refer to | | for an announcement of the results of Part I11, with a presentation different
from the one in this introduction.

To motivate what follows, consider R = Z the ring of integers, K = Q its field of fractions,
K = R the completion of Q for the usual Archimedean absolute value |- |, and Haarp the
Lebesgue measure of R (which is the Haar measure of the additive group R normalised so
that Haarz([0,1]) = 1).

The following equidistribution result of rationals, due to Neville [Nev], is a quantitative
statement on the density of K in K: For the weak-star convergence of measures on K , as
s — +00, we have -

Sll)riloo 6 2 Z A% = Haary .
p,q€R : pR+gqR=R, |q|<s

Y1y particular, T then has the very restricted structure of a free group.
53ee for instance | ) ].
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Furthermore, there exists £ € N such that for every smooth function v : K — C with
compact support, there is an error term in the above equidistribution claim evaluated on
1, of the form O(s(lns)|v|¢) where |¢], is the Sobolev norm of 1. The following counting
result due to Mertens on the asymptotic behaviour of the average of Euler’s totient function
¢ : k— Card(R/kR)*, follows from the above equidistribution one:

n

Z o(k) = % n? + O(nlnn) .

k=1
See | | for an approach using methods similar to the ones in this text, and for instance
| , Theo. 330] for a more traditional proof, as well as | | for a better error term.

Let us now switch to a non-Archimedean setting, restricting to positive characteristic in
this introduction. See Part I1I for analogous applications in characteristic zero.

Let Fy be a finite field of order q. Let R = F,[Y] be the ring of polynomials in one
variable Y with coefficients in F,. Let K = F(Y") be the field of rational fractions in ¥ with
coefficients in [y, which is the field of fractions of R. Let K = F,((Y™1)) be the field of formal
Laurent series in the variable Y1 with coefficients in F,, which is the completion of K for
the (ultrametric) absolute value \g[ = gqleeP=dee @ Tt ¢ = F,[[Y!]] be the ring of formal

power series in Y ! with coefficients in F,, which is the ball of centre 0 and radius 1 in K for
this absolute value.

Note that K is locally compact, and we endow the additive group K with the Haar measure
Haar; normalised so that Haar f((ﬁ) = 1. The following results extend (with appropriate
constants) when K is replaced by any function field of a nonsingular projective curve over [,
and K any completion of K, see Part III.

The following equidistribution result'® of elements of K in K gives an analog of Neville’s
equidistribution result for function fields. Note that when G = GL2(R), we have (P, Q) €
G(1,0) if and only if (P,Q) = R. We denote by H, the stabiliser of any element x of any set

endowed with any action of any group H.

Theorem 1.13. Let G be any finite index subgroup of GLa(R). For the weak-star convergence
of measures on K, we have

' (g +1) [GL2(R) : G] —2¢
tkgloo (g—1) ¢? [GL2(R)(1,0) : G1,0)] ! 2 N

= Haarf( .

Qv

(P,Q)eG(1,0), deg Q<t

We emphazise the fact that we are not assuming G to be a congruence subgroup of GLa(R).
This is made possible by our geometric and ergodic methods.

The following variation of this result is more interesting when the class number of the
function field K is larger than 1 (see Corollary 16.7 in Chapter 16).

Theorem 1.14. Let m be a nonzero fractional ideal of R with norm N(m). For the weak-star
convergence of measures on K, we have

1
lim _a+2 572 Z A
(z,y)emxm
N(m)~!N(y)<s, Rx+Ry=m

= Ha,arf( .

<8

If o € K is quadratic irrational over K,'” let a° be the Galois conjugate of «,'® let

16See Theorem 16.4 in Chapter 16 for a more general version.
7that is, o does not belong to K and satisfies a quadratic equation with coefficients in K
8that is, the other root in K of the irreducible quadratic polynomial over K defining o
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tr(a) = a+ o and n(a) = aa?, and let

1
h(a) = o —ar”
This is an appropriate complexity for quadratic irrationals in a given orbit by homographies
under PGLy(R). See Section 17.2 and for instance | , §6] for motivations and results.
Note that although there are only finitely many orbits by homographies of PGL2(R) on K
(and exactly one in the particular case of this introduction), there are infinitely many orbits
of PGL2(R) in the set of quadratic irrationals in K over K. The following result gives in
particular that any orbit of quadratic irrationals under PGL2(R) equidistributes in K , when
the complexity tends to infinity. See Theorem 17.6 in Section 17.2 for a more general version.
We denote by - the action by homographies of GLQ(IA() on [Py (IA() —Ku {oo =[1:0]}.

Theorem 1.15. Let G be a finite index subgroup of GLa(R). Let ag € K be a quadratic
wrrational over K. For the weak-star convergence of measures on K, we have

(Ing) (¢ +1) mo [GL2(R) : G] _, 3

m A, = Haars
s>+ 2¢2 (g — 1) |In] trgol] . '

r -

aeG-ag, h(a)<s
where gy € G fizes ag with |tr go| > 1, and myg is the index of g&§ in Ga,.

Another equidistribution result of an orbit of quadratic irrationals under PGLa(R) is

obtained by taking another complexity, constructed using crossratios with a fixed quadratic
irrational. We denote by [a, b, c,d] = % the crossratio of four pairwise distinct elements

in K. If a, B € K are two quadratic irrationals over K such that a ¢ {3, 5}," let

hs() = max{|[a, 8,67, a7]|, |[a”, 8,87, a][} ,

which is also an appropriate complexity when « varies in a given orbit of quadratic irra-
tionals by homographies under PGL2(R). See Section 18.1 and for instance | , §4] for
motivations and results in the Archimedean case.

Theorem 1.16. Let G be a finite index subgroup of GLo(R). Let v, S € K be two quadratic
irrationals over K. For the weak-star convergence of measures on K — {3, 8%}, we have, with
go and mq as in the statement of Theorem 1.15,

1 (Ing) (¢ +1) my [GL2(R) : G] 1 Z
s>+ 2 g% (¢ — 1)% |8 — 5] | In | tr go|

_ dHaarp(2)

C le= Bl =Bl

Aq

aeG-ag, hg(a)<s

The fact that the measure towards which we have an equidistribution is only absolutely
continuous with respect to the Haar measure is explained by the invariance of a — hg(a)
under the (infinite) stabiliser of 5 in PGLy(R). See Theorem 18.4 in Section 18.1 for a more
general version.

19Gee Section 18.1 when this condition is not satisfied.
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The last statement of this introduction is an equidistribution result for the integral repre-
sentations of quadratic norm forms

(z,y) = n(z —yo)

on K x K, where o € Kisa quadratic irrational over K. See Theorem 19.1 in Section 19
for a more general version, and for instance | , §5.3] for motivations and results in the
Archimedean case.

There is an extensive bibliography on the integral representation of norm forms and more
generally decomposable forms over function fields, see for instance | , , , .
These references mostly consider higher degrees, with an algebraically closed ground field of
characteristic 0, instead of [F,.

Theorem 1.17. Let G be a finite index subgroup of GLo(R) and let RS K be a quadratic
irrational over K. For the weak-star convergence of measures on K — {3, 5%}, we have

- (q+1) [GLa(Ry) : G] 1
lim s Az
s—+0 ¢% (¢ —1)3 [GLa(Ry) 1,0y : G(1,0)] Z

(2,5)eG(1,0), !
|22 —zy tr(8)+y? n(B)|<s

_ dHaary(2)
~ le=Blle=po

Furthermore, we have error estimates in the arithmetic applications: There exists £ > 0
such that for every locally constant function with compact support ¢ : K — C in Theorems
1.13, 1.14 and 1.15, or ¥ : K- {8,B8°} — C in Theorems 1.16 and 1.17, there are error terms
in the above equidistribution claims evaluated on 1), of the form O(s™*) where s = ¢!
Theorem 1.13, with for each result an explicit control on the test function v involving only
some norm of 1, see in particular Section 15.4.

The link between the geometry described in the first part of this introduction and the
above arithmetic statements is provided by the Bruhat-Tits tree of (PGLg, K), see [Sc13] and
Section 15.1 for background. We refer to Part III for more general arithmetic applications.
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General notation

In this preamble, we introduce some general notation that will be used throughout the book.
We recommend the use of the List of symbols (mostly in alphabetical order by the first letter)
and of the Index for easy references to the definitions in the text.

Let A be a subset of a set E. We denote by 14 : E — {0,1} the characteristic (or indicator)
function of A: Tx(x) =1if z € A, and 14(x) = 0 otherwise. We denote by “A = F — A the
complementary subset of A in E.

We denote by |z] = sup{n € N : n < z} the lower integral part of any € R and by
[z] = inf{n € N : = < n} its upper integral part.

We denote by In the natural logarithm (with In(e) = 1).

We denote by Card(E) or by |E| the order of a finite set E.

We denote by ||i| the total mass of a finite positive measure pu.

If (X,4) and (Y, #) are measurable spaces, f : X — Y a measurable map, and p a measure
on X, we denote by f.u the image measure of p by f, with fou(B) = u(f~1(B)) for every
Be A.

If (X,d) is a metric space, then B(x,r) is the closed ball with centre x € X and radius r > 0.

For every subset A of a metric space and for every ¢ > 0, we denote by .4.A the closed
e-neighbourhood of A, and by convention 45A = A. We denote by ./ A the set of points of
A at distance at least € from the complement of A.

Given a topological space Z, we denote by %.(Z) the vector space of continuous maps from
Z to R with compact support.

Given a locally compact topological space Z, we denote by * the weak-star convergence of
(Borel, positive) measures on Z: We have p, — pu if and only if lim,_, o0 ptn(f) = p(f) for
every f € 6.(Z).

The negative part of a real-valued map f is [/~ = max{0, —f}.

We denote by A, the unit Dirac mass at a point x in any measurable space.

Finally, the symbol [] right at the end of a statement indicates that this statement will not
be given a proof, either since a reference is given or since it is an immediate consequence of
previous statements.
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Chapter 2

Negatively curved geometry

2.1 Background on CAT(—1) spaces

Let X be a geodesically complete proper CAT(—1) space, let g € X be an arbitrary basepoint,
and let I' be a nonelementary discrete group of isometries of X.

We refer for example to | | for the relevant terminology, proofs and complements
on these notions. In this Section, we recall some definitions and notation for the sake of
completeness.

A metric space is proper if its closed balls are compact. A geodesic in a metric space X’
is an isometric map ¢ from an interval I of R into X’.! A metric space X' is geodesic if for
all x,y € X', there exists a geodesic segment ¢ : [a,b] — X’ from x = ¢(a) to y = ¢(b). A
geodesic metric space X' is geodesically complete (or has extendible geodesics) if any isometric
map from an interval in R to X’ extends to at least one isometric map from R to X'. A
comparison triangle of a triple of points (z,y,z) in a metric space X’ is a (unique up to
isometry) triple of points (Z,7, %) in the real hyperbolic plane H% such that d(z,y) = d(Z,7),
d(y,z) =d(y,z) and d(z,x) = d(Z,7).

Y

X H2

A metric space X’ is CAT(—1) if it is geodesic and if for every triple of points (x,y, 2)
in X'/, for all geodesic segments a, b respectively from z to y and from z to z, and for all
points p, ¢ in the image of a,b respectively, if (Z,7,Z) is a comparison triangle of (x,y, z),
if p (resp. §) is the point on the geodesic segment from T to 7 (resp. Z) at distance d(z,p)
(resp. d(x,q)) from T, then d(p, q) < d(p,q).

We will put a special emphasis on the case when X is a (proper, geodesically complete)
R-tree, that is, a uniquely arcwise connected geodesic metric space. In the Introduction, we

"We say that ¢ is a geodesic segment if I is compact, a geodesic ray if I is a half-infinite interval, and a
geodesic line if I = R.
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have denoted by Y the geodesically complete proper locally CAT(—1) good orbispace I'\ X,
see for instance [(GH, Ch. 11] for the terminology.

Two geodesic rays p, p : [0, +00[ — X are asymptotic if their images are at finite Hausdorff
distance, or equivalently if there exists a € R such that lim;—, 1 d(p(t),p/(t + a)) = 0. We
denote by 0., X the space at infinity of X, which consists of the asymptotic classes of geodesic
rays in X, and we endow it with the quotient topology of the compact-open topology. It
coincides with the space of (Freudenthal’s) ends of X when X is an R-tree.

Let z,y € X and &,¢&' € 0,,X. We denote by [z, y] = [z, y] the unique image of a geodesic
segment from x to y. We denote by [z, £[ the image of the unique geodesic ray p : [0, +0[— X
in the asymptotic class £ with p(0) = z, and we say that p starts from x and ends at £&. We
denote by 1¢,&'[ = 1¢/,£[ the unique image of a geodesic line £ : R — X with ¢ — £(t) and
t — £(—t) in the asymptotic classes £ and £’ respectively, and we say that £ starts from &' and
ends at €.

We endow the disjoint union X U d» X with the unique metrisable compact topology
(independent of z() inducing the above topologies on X and 0, X, such that a sequence
(yi)ien in X converges to & € 0, X if and only if lim;, o d(zo,y;) = +00 and, with ¢; :
[0, d(zo,y;)] — X the geodesic segment from xy to y; and p : [0, +o0[— X the geodesic ray
from z¢ to &, we have lim;_, 4 d(c;(t), p(t)) = 0 for every t = 0.

We denote by Isom(X) the isometry group of X, and we endow it with the compact-open
topology. Its action on X uniquely extends to a continuous action on X U 0, X. We say that
a discrete subgroup I'" of Isom(X) is nonelementary if it does not fix a point or an unordered
pair of points in X Udw,X. We denote by AL the limit set of I', which is the set of accumulation
points in d X of any orbit of I in X. It is the smallest closed nonempty I'-invariant subset
of 0 X.

A subset D of X U 0, X is convex if for all u,v € D, the image of the unique geodesic
segment, ray or line from u to v is contained in D. We denote by €Al the convex hull in X of
AT, which is the intersection of the closed convex subsets of X U 05X containing AI'. When
X is an R-tree, then a subset D of X is convex if and only if it is connected, and we will call
it a subtree. In particular, if X is an R-tree, then €Al is equal to the union of the geodesic
lines between pairs of distinct points in AI', since this union is connected and contained in
EAT.

A point € € 0, X is called a conical limit point of T if there exists a sequence of orbit
points of xg under I' converging to £ while staying at bounded distance from a geodesic ray
ending at £. The set of conical limit points of I' is the conical limit set A.I" of T'.

A point p € AT is a bounded parabolic limit point of I' if its stabiliser I', in I' acts properly
discontinuously with compact quotient on AT' — {p}. The discrete nonelementary group of
isometries I' of X is said to be geometrically finite if every element of AT is either a conical
limit point or a bounded parabolic limit point of I. See for instance | |, as well as | |
when X is an R-tree, and | | for a very interesting study of equivalent conditions in an
even greater generality.

For all x € X U 0xX and A c X, the shadow of A seen from x is the subset &, A of 0 X
consisting of the endpoints towards 400 of the geodesic rays starting at x and meeting A if
x € X, and of the geodesic lines starting at x and meeting A if x € 0, X.

The translation length of an isometry v € Isom(X) is

A(y) = inf d(z,~vx).
reX
An element v € Isom(X) is elliptic if it fixes a point in X, and then A(7y) = 0. An element
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v € Isom(X) is parabolic if it is not elliptic and fixes a unique point in 0y, X, and then A(y) = 0.
An element v € Isom(X) is loxodromic if A(y) > 0, and then

Axy ={zre X : d(z,yvz) = A7)}

is (the image of) a geodesic line in X, called the translation azxis of v. In particular, the
restriction of 7 to Ax, is conjugated, by any isometry between Ax, and R, to a translation
of R of the form ¢ — ¢t £ A(v). For all 5 € Isom(X) and n € Z — {0}, we have

Axg g1 = BAxy, A(BYB7Y) = A(Y), Axyn =Axy, A(Y") = [n|A(y). (2.1)

A loxodromic element v € Isom(X) has exactly two fixed points v_,v4+ in X U 05X, with
Y_ € 0 X its repulsive fixed point? and v, € 0, X its attractive fixed point.>

We will need the following well-known lemma later on. An element of I' is primitive in
[ if there is no 79 € I" and k € N — {0, 1} such that v = 4%. Note that there might exist a
primitive loxodromic element ~ in I', whose translation length is not minimal amongst the
translation lengths of the loxodromic elements 7' € " with Ax, = AX,Y/.4

Lemma 2.1. (1) For every lozodromic element v € T, there exist k' € N—{0} and a primitive
loxodromic element v1 € I' such that v = 'yf/, and there exist k € N — {0}, a primitive
loxodromic element g € I whose translation length is minimal amongst the translation lengths
of the lozodromic elements v' € T' with Axy, = Ax, and an element v' € T' pointwise fizing
Ax, such that v = vk~

(2) For every compact subset K of X, for all A > 0 and r > 0, there exists L > 0 such
that for all loxodromic elements v, € I, if Axy meets K, if N(o) = AM(y) < A and if Ax, and
Ax, have segments of length at least L at Hausdorff distance at most r, then Ax, = Ax,.

(8) For every compact subset K of X and for every A > 0, there exists N € N such that
for every loxodromic element v € I' whose translation axis meets K, the cardinality of the set
of loxodromic elements a € T with Ax, = Axy and Ma) < A is at most N.

Proof. (1) If v € T is loxodromic, then the group of restrictions to Ax, of the elements of
I' preserving Ax, is conjugated, by any isometry between Ax, and R, to a discrete group
of isometries A of R. Since replacing v by an element of I' having a power at least 2 equal
to v strictly decreases the translation length and by Equation (2.1), the first claim of (1)
holds. The normal subgroup of A consisting of translations is isomorphic to Z, generated by
the conjugate of the restriction to Ax, of an element 79 € I'. Any such element has minimal
translation length, hence is primitive since if there exist 73 € I" and n € N — {0,1} with
Yo = 77, by Equation (2.1), we would have Ax,, = Axy, and A(y1) = £ A(v0) < A(70). There
exists k € Z — {0} such that the restrictions of v and 7§ to Ax, coincide. Hence 7/ = 70_]“7
pointwise fixes Ax, and up to replacing 7o by its inverse, Assertion (1) of Lemma 2.1 holds.

(2) Since the action of I' on X is properly discontinuous, there exists N = N(K, A,r) > 1
such that for every loxodromic element v € I" whose translation axis meets K and whose
translation length is at most A, for every x € Ax,, the cardinality of {3 eI : d(x,Bx) < 2r}

2For every £ € X U (00X — {7+}, we have lim, 1007 "% = ~_ .

3For every z € X U (05X — {7-}), we have limy,— 100 7 "¢ = 7, .

4For instance, if X is the real hyperbolic plane H2 and if ' contains an orientation preserving loxodromic
element 7 such that the stabiliser in I of Ax, is generated by « and by the symmetry o with respect to Ax-,
then 72"0 is primitive for all n € Z.
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is at most N. Let L = AN. For every loxodromic element o € I" with A(a) = A(y) < A,
assume that [z, y] and [2/,y'] are segments in Ax, and Ax, respectively, with length exactly
L such that d(z,2'),d(y,y") < r. We may assume, up to replacing ~ and « by their inverses,
that ~ translates from z towards y and « translates from z’ towards 3/. In particular for
k=0,...,N, we have d(a *v*z,2) < d(v*z,a*2") + d(2',x) < 2r since v¥z and oF2’ are
respectively the points at distance kA(y) < kA < L from z and 2’ on the segments [z, y]
and [2/,3]. Hence by the definition of N, there exists k # k' such that a %% = a=FF.
Therefore v¥=¥ = o#=¥  which implies by Equation (2.1) that Ax, = Ax,.

(3) Since the action of T" on X is properly discontinuous, there exists N’ € N such that
the cardinality of the stabiliser in I" of a point of K is at most N’, and there exists n > 0
such that A(y) = n for every loxodromic element v € I' whose translation axis meets K. Let
us fix such an element v € I'. We may assume that its translation length is minimal amongst
the translation lengths of the loxodromic elements 4" € I' with Ax, = Ax,/. Then as seen in
the proof of Assertion (1), for every loxodromic element « € I'" with Ax, = Ax,, there exist
k€ N— {0} and o € T pointwise fixing Ax., such that @ = v*a’. Thus if A(a) < A, then

|k| = % < %, and there are at most N = N’(Q[%] + 1) such elements «. O

For every x € X, recall that the Gromov-Bourdon wisual distance d, on 0 X seen from x
(see [Bou]) is defined by

dz(§,m) = hm 3 (A€, m)—d(x, &) —d(z, m)) (2.2)

—+00

where £, € 05, X and t — &,1; are any geodesic rays ending at &, n respectively. If X is an
R-tree, if £, € 0, X are distinct, if p € X is such that [z, p] = [z, &[ n [z, n[, then

dp(&,m) = e~ H®P) | (2.3)

For all z € X, &, € 0, X and ~ € Isom(X), we have

dyz (¥, ) = da(€,m)

By the triangle inequality, for all =,y € X and &, € 0, X, we have

—d(x,y) < Eg 773 e y) (2.4)

In particular, the identity map from (05X, d;) to (0 X, dy) is a bilipschitz homeomorphism.
Under our assumptions, (0xX,dz,) is hence a compact metric space, on which Isom(X) acts
by bilipschitz homeomorphisms. The following well-known result compares shadows of balls
to balls for the visual distance.

Lemma 2.2. For every geodesic ray p in X, starting from x € X and ending at £ € 0x X, for
all R=0 andt e |R,+x[, we have

By (6,Re™") < 0,B(p(t),R) c By, (€, efte™).

Proof. In order to prove the left inclusion, we adapt the proof of the left inclusion in |
Lem. 3.1] (which only uses the CAT(—1) property). Let £ € By, (£, Re™t) — {&}, let pf be
the geodesic ray from z to ¢ and let p be the closest point to w = p(t) on the image of p'.
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For every s > t, let y = p(s) and 2z = p/(s). Let (Z,%,%) be a comparison triangle in H% of
(x,y,2), and let 6 € [0, 7] be its angle at T. Let w be the point on [Z,7] at distance ¢ from Z,
and let P be its orthogonal projection on [Z,z]. By the CAT(—1) property, we have

d(w,p) < d(w,p) .

zZ=p/(s)

By the hyperbolic sine rule for right angled triangles in ]HI]%, we have

. sinh d(w, p) and sin ? _ sinh § d(7, %) _ sinh £ d(y, 2)
sinh ¢ 2 sinhd(7,7) sinhs
Hence _ -
d(w,p) < d(w,p) < ﬂ sinh d(w,p) = let sinf < e’ sin 0 .
’ ’ 2sinh d(7, W) ’ 2 2
Since

: 0 _ 1 Ld(y,z)—s _ / —t
SETOOSIH§_SEI-&I-10062 =d.(§,€) < Re ",

we hence have d(w,p) < R, so that ¢’ € 0,B(w, R), as wanted.
In order to prove the right inclusion in Lemma 2.2, let ¢’ € 0, B(p(t), R) and let p’ be the

geodesic ray from z to &’. The closest point p to p(t) on the image of p’ satisfies d(p, p(t)) < R,
hence d(z,p) =t — R. Therefore, for t’ large enough, d(p'(t'),p) <t — (t — R), and

do(€,€) < limsup et (40 pO)+do(0),p)+d(p, o (1)) )~
t'—+400

1 ’_ ’_ oy _
< lim 82((t t)+ RA(t'—t+R)) —t _ Rt
t/—+00

Therefore & € By, (€, efe™), as wanted. O
The Busemann cocycle of X is the map : 0 X x X x X — R defined by

(§7$>y> = /Bf(xvy) = tli)r—{loo d(gth) - d(ét,y) 5

where t — & is any geodesic ray ending at . If X is an R-tree, if p € X is such that
[x7£[ N [yag[ = [pag[v then

Be(z,y) = d(z, p) — d(y, p) - (2.5)
The triangle inequality gives immediately the upper bound
| Be(z,y) | < d(z,y) - (2.6)

The horosphere with centre £ € 0 X through z € X is {y € X : fe(x,y) = 0}, and
{y e X : Pe(x,y) < 0} is the (closed) horoball centred at & bounded by this horosphere.
Horoballs are nonempty proper closed (strictly) convex subsets of X. Given a horoball J#
and t > 0, we denote by 7[t] = {x € S : d(x,0¢) > t} the horoball contained in J#
(hence centred at the same point at infinity as #) whose boundary is at distance ¢ from the

boundary of 7.
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2.2 Generalised geodesic lines

Let 4 X be the space of 1-Lipschitz maps w : R — X which are isometric on a closed interval
and locally constant outside it.” This space has been introduced by Bartels and Liick in
| |, to which we refer for the following basic properties. The elements of G X are called
the generalised geodesic lines of X. Any geodesic segment or ray of X will be considered as
an element of 9X , by extending it continuously to R as locally constant outside its domain
of definition.

We endow 4 X with the distance d = d{? < defined by

Vww edX, dw,uw')= JHO d(w(t),w'(t)) e 2t dt . (2.7)

—00

The group Isom(X) acts isometrically on GX by postcomposition. The distance d induces
the topology of uniform convergence on compact subsets on GX , and gX is a proper metric
space.

The geodesic flow (g')cr on G X is the one-parameter group of homeomorphisms of the
space 9X defined by glw : s — w(s +t) for all w e 4X and t € R. It commutes with the
action of Isom(X). If w is isometric exactly on the interval I, then g~tw is isometric exactly
on the interval ¢ + I.

The footpoint projection is the Isom (X )-equivariant %—Hb’lder—continuous6 map 7 : GX —
X defined by 7w(w) = w(0) for all w € ¥X. The antipodal map of ¥X is the Isom(X)-
equivariant isometric map ¢ : X — 4X defined by ww : s — w(—s) for all w e 4 X, which
satisfies Logl =g o for every te R and mor = 7.

The positive and negative endpoint maps are the continuous maps from GX to X UdpX
defined by

W wy = tkrinoow(t) .

The space 4 X of geodesic lines in X is the Isom(X)-invariant closed metric subspace of
@ X consisting of the elements ¢ € ¥X with l/y € 05 X. Note that the distances on ¥X
considered in | | and | | are topologically equivalent to, although slightly different
from, the restriction to 4 X of the distance defined in Equation (2.7). The factor e~2/*l in this
equation, sufficient in order to deal with Holder-continuity issues, is replaced by et //7 in
[ | and by e~ lt/2 in | |.

Note that for all w € 9X and s € R, we have

d(w, g'w) < |s]. (2.8)

with equality if we ¥4 X.
We will also consider the Isom(X)-invariant closed subspaces

G X ={weGX :ws € 0X},

Sthat is, constant on each complementary component
5See Section 3.1 for the definition of the (locally uniform) Holder-continuity used in this book, and Propo-
sition 3.2 for a proof of this claim.
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and their Isom(X)-invariant closed subspaces ¢; (X consisting of the elements p € ¥+ X
which are isometric exactly on +[0, +o0[.

The subspaces ¢ X and %4 X satisfy ¥ X n ¥4, X = 4 X and they are invariant under the
geodesic flow. The antipodal map ¢ preserves ¢ X, and maps 4+ X to ¥+ X as well as %1 o X
to %+ 0X. We denote again by ¢ : T\ZX — I\ X and by (g'),cp with g : T\9X — I\ 9X
the quotient maps of ¢ and g', for every t € R.

Let w € ¢X be isometric exactly on an interval I of R. If [ is compact then w is a
(generalised) geodesic segment, and if I = |—o0,a] or I = [a,+00[ for some a € R, then w
is a (generalised) (negative or positive) geodesic ray in X. Any geodesic line W € 4 X such
that w|; = w|; is an extension of w. Note that @ is an extension of w if and only if y@ is an
extension of yw for any « € Isom(X), if and only if 1@ is an extension of (w, and if and only
if g°® is an extension of g®w for any s € R. For any subset Q' of 4 X and any subset A of R,
let

Vg ={wla:weQ'}.
Remark 2.3. Let (¢;);en be a sequence of generalised geodesic lines such that [¢;,¢1] is
the maximal segment on which ¢; is isometric. Let (s;);eny be a sequence in R such that
tf —s; — o0 as i — 400 and /(s;) stays in a compact subset of X, then d(¢;,9X) — 0
as i — +00. Furthermore if (s;);en is bounded, then up to extracting a subsequence, (¢;);en
converges to an element in 4 X.

This conceptually important observation explains how it is conceivable that long common
perpendicular segments may equidistribute towards measures supported on geodesic lines. See
Chapter 11 for further developments of these ideas.

2.3 The unit tangent bundle

In this book, we define the unit tangent bundle T'X of X as the space of germs at 0 of the
geodesic lines in X. It is the quotient space

T'X =9X/ ~

where ¢ ~ ¢ if and only if there exists ¢ > 0 such that U—eq = €'|[_676]. The canonical
projection from ¢4X to T'X will be denoted by £ — v,. When X is a Riemannian manifold,
the spaces 4 X and T' X canonically identify with the usual unit tangent bundle of X, but in
general, the map ¢ — v, has infinite fibers.

We endow T'X with the quotient distance d = d; 1y of the distance of ¥ X, defined by:

Vo, o' e TP X, dpx(v,0) = inf de, ). (2.9)

LUedX :v=vg, v =vp

It is easy to check that this distance is indeed Hausdorff, hence that 7' X is locally compact,
and that it induces on 7' X the quotient topology of the compact-open topology of 4X. The
map £ — vy is 1-Lipschitz.

The action of Isom(X) on ¥X induces an isometric action of Isom(X) on T'X. The
antipodal map and the footpoint projection restricted to ¢4 X respectively induce an Isom(X)-
equivariant isometric map ¢ : T'X — T'X and an Isom(X)-equivariant %—Hé’)lder—continuous
map 7 : T X — X called the antipodal map and footpoint projection of T*X. The canonical

31 13/02/2019



projection from X to T'X is Isom(X)-equivariant and commutes with the antipodal map:
For all v € Isom(X) and ¢ € 9 X, we have yvy = vy, vy = v, and 7(vg) = w(¢). We denote
again by ¢ : I\T'X — I'\T'X the quotient map of ¢.

Let 02 X be the subset of X x 0, X which consists of pairs of distinct points at infinity of
X. Hopf’s parametrisation of X is the homeomorphism which identifies ¢ X with 02, X x R,
by the map ¢ — (¢_,¢;,t), where ¢ is the signed distance from the closest point to the
basepoint zg on the geodesic line £ to £(0).” We have g*(¢_, 0, ,t) = ({_,f4,t + s) for all
s € R, and for all v € I', we have y(/_,01,t) = (Y0—, vy, t +ty 0 o, ) Wwhere t, o 4, €R
depends only on v, £_ and ¢,. In Hopf’s parametrisation, the restriction of the antipodal
map to ¥ X is the map (0_, 04, t) — (Ly, 0, —1).

The strong stable leaf of w € 4, X is

WHw)={te¥9X : tlim d(e(t), w(t)) = 0},

—40

and the strong unstable leaf of w e ¥_X is

W= (w) =W (w) ={le¥9X : tli}r_noo d(e(t), w(t)) = 0}.

acx)X -----

For every w € 94+ X, let dy+(,,) be Hamenstddl’s distance on W*(w) defined as follows:®
for all £,¢" € W*(w), let

dyt () (6 0) = lim_ @G0 GO,

t—+00

The above limits exist, and Hamenstadt’s distances are distances inducing the original topol-
ogy on W*(w). For all £, € W*(w) and ~ € Isom(X), we have

and

dWi(yw) (7& PYK/) = dWi(w) <£7€/) = dwi(aw) (Lgv l,é/) :

"More precisely, £(t) is the closest point to o on £.
8See | , Appendix| and compare with | |
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Furthermore, for every s € R, we have

and for all £,/ € W*(w)

Ay (gow) (870, 8°0) = ePodyys () (0, 1) . (2.10)

If X is an R-tree, for all w € 4. X and ¢,¢' € W (w), if [s, +00[ is the maximal interval
on which £ and ¢’ agree, then dyy+ () (¢, €') = €°.

The following lemma compares the distance in ¢ X with Hamenstddt’s distance for two
geodesic lines in the same strong (un)stable leaf.

Lemma 2.4. There exists a universal constant ¢ > 0 such that for all w € 9+ X and £, €
W=(w), we have

At ) < cdys(uy (6 €) and d(m(€), (L)) < dye ) (6, L) -

Proof. We could refer to | , Lem. 3] (see also | , Lem. 2.4]) for a proof of the
first result. Note that the distance on ¥ X considered in loc. cit. is slightly different from the
one in this book, hence we give a full proof for the sake of completeness. We assume that
w € ¥, X, the proof when w € 4_X is similar.

Let £,/ € Wt(w). We may assume that ¢ # ¢. By the convexity properties of the
distance in X, the map from R to R defined by ¢ — d(¢(¢),¢'(t)) is decreasing, with image
10, +o0[. Let S € R be such that d(¢(S),¢'(S)) = 1. For every t < S, let p and p’ be the
closest point projections of ¢(S) and ¢(S) on the geodesic segment [((t), ¢ (t)]. We have
d(p,£(S)),d(p',¢'(S)) <1 by comparison. Hence, by convexity and the triangle inequality,

d((t), €'(t)) = d(e(t), p) + d(p', £'(t))

>
> d(0(t),(S)) — 1+ d(C'(£),0'(S)) =1 =2(S —t —1).

Thus by the definition of the Hamenstadt distance dyy+ (), we have
dyy+ () (6, 0) = €571 (2.11)
By the triangle inequality, if ¢ < S, then
d(l(t), 0 (t)) < d(l(t),£(S)) + d(£(S), 0 (S)) +d('(S),0'(t)) =2(S —t) +1.
Since X is CAT(—1), if t > S, we have by comparison

d(e(t), 2 (t)) < 5=t sinhd(£(S),#'(S)) = (sinh1) eS¢ .
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Therefore, by the definition of the distance d on 4 X (see Equation (2.7)),

S 400
(2(S —t) + 1) e 2 gt 4 (sinh 1)f eSte 2 at = O(e%) .
S

(e, 0 < f

—0
The first inequality of Lemma 2.4 hence follows from Equation (2.11).

The second one is proved in | , Lem. 2.4], and we again only give a proof for the
sake of completeness.

Let = w({), ' = n(¢') and p = dyy+ () (¢, ¢'). Consider the ideal triangle A with vertices
0,0 and ¢_ = ' (see the picture below on the left). Let p € {(R), p’ € ¢/(R) and g € |01, ¢, [
be the tangency points of the unique triple of pairwise tangent horospheres centred at the
vertices of A: B, (p,p) = 0, B¢, (p,q) = 0 and Be, (p',q) = 0. By the definition of the

Hamenstadt distance, we have p = ¢(—1np).

fl/p _,
| i
l
1
1 7
l
\d
|
|

=7 _ I - > -
0 2

Consider the ideal triangle A in the hyperbolic upper half-plane ]HI]%, with vertices f%, %

and o (see the above picture on the right). Let p = (—%, 1), 7 27(%, 1) and g = (0, %) be the
pairwise tangency points of horospheres centred at the vertices of A. Let T and T’ be the point
at algebraic (hyperbolic) distance —In p from p and P/, respectively, on the upwards oriented
vertical lines through them. By comparison, we have d(z,2') < d(Z,7) < 1/e""™P =p. [

Let 2 be a horoball in X, centred at £ € 0, X. The strong stable leaves W (w) are
equal for all geodesic rays w starting at time t = 0 from a point of 0.7 and converging to
€. Using the homeomorphism £ — £_ from W (w) to dnX — {¢}, Hamenstadt’s distance on
W (w) defines a distance d_» on 0x X — {£} that we also call Hamenstadt’s distance. For all
0,0 e Wt (w), we have

d,if<£—>e+) = dW*(w)w:g/) )

and for all n,n' € 0, X — {£}, we have

d(n,n) = lim ez (=0 by(=0)=t (2.12)

t—+00

where /), ¢,y are the geodesic lines starting from 7,7’ respectively, ending at £, and passing
through the boundary of J# at time ¢ = 0. Note that for every ¢ > 0, if [t] is the horoball
contained in ¢ whose boundary is at distance ¢ from the boundary of 5#, then we have
Ay = e " dn - (2.13)
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Let w € 9+ X and n > 0. We define B*(w,n’) as the set of £ € W*(w) such that there
exists an extension @ € ¥ X of w with dy =+, (¢, ®) < n'. In particular, B*(w,n’) contains
all the extensions of w, and is the union of the open balls centred at the extensions of w, of
radius 7/, for Hamenstddt’s distance on W= (w).

aooX ------- ‘EJF = Wy

The union over ¢ € R of the images under g’ of the strong stable leaf of w € ¢, X is the
stable leaf
W (w) = | g (w)
teR
of w, which consists of the elements £ € ¥ X with ¢, = w,. Similarly, the unstable leaf of
weY_X
W (w) = Je'W ™ (w),
teR
consists of the elements ¢ € ¥X with /_ = w_. Note that the (strong) (un)stable leaves
are subsets of the space of geodesic lines ¥ X. The (un)stable leaves are invariant under the
geodesic flow, and for all w € 9+ X and ~ € Isom(X), we have

(W (w) = WOF (Lw) and AW (w) = WOF(yw) .

The unstable horosphere H_(w) of w € 4_X is the horosphere in X centred at w_ and
passing through @(0) for any extension w € 4 X of w (see the picture above the definition of
Hamenstédt’s distance). The stable horosphere H. (w) of w € 4+ X is the horosphere in X
centred at w, and passing through @w(0) for any extension w € ¥ X of w. These horospheres
H . (w) do not depend on the chosen extensions w of w € ¥+ X. The unstable horoball HB_ (w)
of w € ¥_X and stable horoball HB, (w) of w € ¥, X are the horoballs bounded by these
horospheres. Note that

r (W (w)) = Ha(w) (2.14)

for every w € 4+ X, and that w(0) belongs to H (w) if and only if w is isometric at least on
+[0, +oof.

2.4 Normal bundles and dynamical neighbourhoods

In this Section, adapting | , §2.2] to the present context, we define spaces of geodesic
rays that generalise the unit normal bundles of submanifolds of negatively curved Riemannian
manifolds. When X is a manifold, these normal bundles are submanifolds of the unit tangent
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bundle of X, which identifies with ¢ X . In general and in particular in trees, it is essential to
use geodesic rays to define normal bundles, and not geodesic lines.

Let D be a nonempty proper’ closed convex subset in X. We denote by 0D its boundary
in X and by 0y D its set of points at infinity. Let

be the (continuous) closest point map to D, defined on £ € 0x X — 0y D by setting Pp (&) to
be the unique point in D that minimises the function y — B¢(y, zo) from D to R. The outer
unit normal bundle 0% D of (the boundary of) D is

LD ={pe, oX : Pp(py)=p(0)}.
The inner unit normal bundle 6* D of (the boundary of) D is
D =1wD={pe9 oX : Pp(p_) = p(0)}.

Note that é’iD and 0! D are spaces of geodesic rays. If X is a smooth manifold, then these
spaces have a natural identification with subsets of ¢ X because every geodesic ray is the
restriction of a unique geodesic line. But this does not hold in general.

Remark 2.5. As X is assumed to be proper with extendible geodesics, we have
m(01D) = oD .

To see this, let x € dD and let (xx)gen be a sequence of points in the complement of D
converging to z. For all k € N, let pj, € 01D be a geodesic ray with px(0) = Pp(xx) and such
that the image of py contains xj. As the closest point map does not increase distances, the
sequence (Pp(zk))ken converges to x. Since X is proper, the space 05X is compact and the
sequence ((pr)+)ken has a subsequence that converges to a point £ € d, X. The claim follows
from the continuity of the closest point map.

The possible failure of this equality when X is not proper is easy to see. For example, let
X be the R-tree constructed by starting with the Euclidean line D = R and attaching a copy
of the halfline [0, +o0[ at each z € D such that > 0. Then 0 € D — n(dL D).

9that is, different from X
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The restriction of the endpoint map p — p1 to 8}iD is a homeomorphism to its image
0 X — 0 D. We denote its inverse map by PE)L (see the above picture): for every p € 6}iD,
we have

p=Phps) .

Note that Pp = mo PE—F. For every isometry v of X, we have (9}_F (vD) =~ (91iD and P;—FD oy =
Yo Pz)—r. In particular, aliD is invariant under the isometries of X that preserve D.
For every w € ¥4 X, we have a canonical homeomorphism

Nui : Wi(w) — 8}—rHBJ_r(w) ,

that associates to each geodesic line £ € W (w) the unique geodesic ray p € 02 HB (w) such
that /¢ = p, or, equivalently, such that ¢(t) = p(t) for every ¢t € R with F¢ > 0. It is easy to
check that N;—ZU o =0 Nzt for every v € Isom(X).

We define
Uy ={0edX : Ly ¢ 0D} . (2.15)

Note that %5-” is an open subset of ¢4 X, invariant under the geodesic flow. We have %ViD =
7%5 for every isometry v of X and, in particular, 02/5 is invariant under the isometries of X
preserving D. Define

fh %5 — LD

as the composition of the continuous endpoint map ¢ — ¢4 from ?/I;—F onto 0 X — 0D and
the homeomorphism PZ from 05, X — 0D to 01 D (see the picture below). The continuous
map f;)—r takes ¢ € %I;—r to the unique element p € 01D such that py = 4. The fiber of
pE aiD for f}) is exactly the stable leaf W9 (p), and the fiber of p € o1 D for fp is the
unstable leaf W9~ (p). For all v € Isom(X) and t € R, we have

f;—rDOfy:fyofg and f%ogt:fg. (2.16)

0o X T

T Pl =y

Let w € 94 X and n, 7’ > 0. We define (see the picture after Equation (2.13)) the dynamical
(n,n")-neighbourhood of w by

Viow = U B wr). (2.17)
sel—n,n|
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Example 2.6. If X is an R-tree, w € 4. X and n < In7/, then V'

wn7

e which is the set

of g®¢ where s € |—n,n[ and ¢ € 4X is such that there exists an extension @ of w with
} <In7/, is as in the following picture.

inf{teR : ((t) = (t)

— &,
Clearly, B*(w,n') = :BT (1w, n’), and hence we have Vw—77 o =V ..y~ Furthermore, for
every s € R,
g*B*(w,n’) = BX(g°w,e™n’), hence SVJn y = V;w T (2.18)
For every v € Isom(X), we have vyB%(w,n') = B*(yw,n’) and WVJU g = V;U p.ay - Lhe map
from ]—n,n[ x BE(w,n’) to VJT] , defined by (s,¢') — g’ is a homeomorphism.
For all subsets 2~ of 4, X and Q1 of ¥_ X, let
+ (OF +
D () = U Vi (2.19)

weN+

that we call the dynamical neighbourhoods of QF. Note that they are subsets of X, not of
¢+ X. The families (7/77i77’ (2F))y.y=0 are nondecreasing in 7 and in 7’. For every ~ € Isom(X),

we have ’y“f/nin,(ﬂi) = ”f/+ ,(vQF) and for every ¢ > 0, we have

g5 (0F) = L (g7107) (2.20)
Note that
U 7 000) - %
n,n'>0
and that ﬂn =0 ", (8+ ) is the set of all extensions in 4 X of the elements of 0} D. Assume

that QF is a Subset of 01 D. The restriction of f7 to ”Vnin,((ﬁ) is a continuous map onto Q7F,
with fiber over w € QF the open subset an o of WO (w).

We will need the following elementary lemma in Section 10.4.

Lemma 2.7. There exists a universal constant ¢ > 0 such that for every w € 9+ X which is

isometric on [sy, +[ and every £ € V.F

s WE have

d(l,w) < d(n+n +e™).
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Proof. By Equation (2.17) and by the definition of B*(w,n’) in Section 2.2, there exist
s € ]-n,+n[ and an extension @ € ¥X of w such that g°¢ € W (w) and dyy+ () (g°¢, ¥) <
n'. By Equation (2.8), we have d(¢,g°¢) < |s| < 1. By Lemma 2.4, we have d(g*¢,w) <
¢ dy+(w) (8%, W) < ¢ n'. By the definition of the distance on ZX (see Equation (2.7)), we
have o
d(w,w) < J 50w — t| e 2 dt = O(e®v) .
—0

Therefore the result follows from the triangle inequality

d(t,w) <d(l,g°0) + d(g°¢, w) + d(w,w) . [

2.5 Creating common perpendiculars

Let D~ and D" be two nonempty proper closed convex subsets of X, where X is as in
the beginning of Section 2.1. A geodesic arc « : [0,T] — X, where T' > 0, is a common
perpendicular of length T from D~ to DV if there exists wT € (3_1D$ such that w_|[O,T] =
g_Twﬂ[O’T] = «. Since X is CAT(—1), this geodesic arc « is the unique shortest geodesic
segment from a point of D~ to a point of D*. There exists a common perpendicular from
D~ to DT if and only if the closures of D~ and D" in X U 0, X are disjoint. When X is an
R-tree, then two closed subtrees of X have a common perpendicular if and only if they are
nonempty and disjoint.

One of the aims of this book is to count orbits of common perpendiculars between two
equivariant families of closed convex subsets of X. The crucial remark is that two nonempty
proper closed convex subsets D~ and DT of X have a common perpendicular « of length
a given T > 0 if and only if the subsets gT/QﬁiD_|[_%’%] and g—T/261_D+\[_T Ty of X

272

intersect. This intersection then consists of the common perpendicular from D~ to DT
reparametrised by [—%, %] As a controlled perturbation of this remark, we now give an

effective creation result of common perpendiculars in R-trees. It has a version satisfied for X
in the generality of Section 2.1, see the end of this Section.

Lemma 2.8. Assume that X is an R-tree. For all R > 1, n € ]0,1] and t = 2In R + 4,
for all nonempty closed connected subsets D~, D% in X, and for every geodesic line £ €
gt/2”i/nTR(8}rD*) N g*t/2”f/777_R(6lD+), there exist s € |—2n,2n[ and a common perpendicular ¢
from D~ to DT such that

e the length of ¢ ist + s,

e the endpoint of ¢ in DT is wT(0) where wT = f;-} (0),

e the footpoint £(0) of £ lies on ¢, and

t

max{ d(w™ (5), £(0)), d(w* (= 3),6(0)) } <.
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Proof. Let R,n,t, DT ¢ be as in the statement. By the definition of the sets ”//fR(ﬁ}—rDi),

there exist geodesic rays wt e (9}7Di, geodesic lines Wt € 4X extending w*, and s €

]—n, +nl[, such that ¢4+ = (w¥)4+ and

Let 74 be the closest point to w*(0) on £. By the definition of Hamenstidt’s distances, we

have

d(w*(0),z%) = d(f(+= + sT),2F) <InR,

and in particular 4 = w*(0) if and only if £(+% + s%) = w*(0). As ¢ > 2InR + 4 and
+

particular, the segment [w™(0),2~ ] U [z, 2%] U [xT,wT(0)] is a nontrivial geodesic segment
from a point of D~ to a point of DT that meets D+ only at an endpoint. Hence, D~ and D™
are disjoint, and [w™(0),w™(0)] is the image of the common perpendicular from D~ to D*.

Let s = s_ + 5. The length of ¢is (£ + s*) — (—4 — s7) = t + 5. The point £(0) lies on

¢, we have wT = f§1 (¢) and the endpoints of ¢ are w*(0). Furthermore,

d(w* (+5),0(0)) = | dw® (+5),wF (0)) - d(€(0), €(F

5 TN =lsTl<n. O

N | o+

When X is as in the beginning of Section 2.1, the statement and the proof of the following
analog of Lemma 2.8 is slightly more technical. We refer to | , Lem. 7| for a proof in
the Riemannian case, and we leave the extension to the reader, since we will not need it in
this book.

Lemma 2.9. Let X be as in the beginning of Section 2.1. For every R > 0, there exist
to,co > 0 such that for all n € 10,1] and all t € [tg,+0[, for all nonempty closed convex
subsets D, D% in X, and for all w € gt/Q%TR(éiD_) N g_t/Q”//n,_R(@l_DJr), there exist s €
| —2n,2n[ and a common perpendicular € from D~ to DT such that

e the length of ¢ is contained in [t + s — ¢y efé,t +s+c 67%],

o ifwt = fé} (w) and if p* is the endpoint of ¢ in D*, then d(m(wt),pt) < co e,

e the basepoint w(w) of w is at distance at most ¢ e~ 2 from a point of ¢, and

max{ d(r(gzw™), 7(w)), d(r(g 2w"),7(w)) } <n+coe . [

2.6 Metric and simplicial trees, and graphs of groups

Metric and simplicial trees and graphs of groups are important examples throughout this
book. In this Section, we recall the definitions and basic properties of these objects.

Using Serre’s definitions in | , §2.1], a graph X is the data consisting of two sets VX and
EX, called the set of vertices and the set of edges of X, of two maps o,t : EX — VX and of a
fixed point free involution e — € of EX, such that ¢(€) = o(e) for every e € EX. The elements
o(e), t(e) and € are called the initial vertex, the terminal vertex and the opposite edge of an
edge e € EX. The quotient of EX by the involution e — € is called the set of nonoriented
edges of X. Recall that a connected graph is bipartite if it is endowed with a partition of its
set of vertices into two nonempty subsets such that any two elements of either subset are not
related by an edge.
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The degree of a vertex z € VX is the cardinality of the set {e € EX : o(e) = z}. For all
J,k € N, a graph X is k-regular if the degree of each vertex x € VXis k, and it is (j, k)-biregular
if it is bipartite with the elements of the partition of its vertices into two subsets having degree
j and k respectively.

A metric graph (X, \) is a pair consisting of a graph X and a map A : EX — ]0, +oo[ with
a positive lower bound'" such that A\(€) = A(e), called its edge length map. A simplicial graph
X is a metric graph whose edge length map is constant equal to 1.

The topological realisation of a graph X is the topological space obtained from the family
(I¢)ecEx of closed unit intervals I, for every e € EX by the finest equivalence relation that
identifies intervals corresponding to an edge and its opposite edge by the map ¢t — 1 — ¢
and identifies the origins of the intervals I, and I, if and only if o(e;) = o(ez), see [Ser3,
Sect. 2.1].

The geometric realisation of a metric tree (X, A) is the topological realisation of X endowed
with the maximal geodesic metric that gives length A(e) to the topological realisation of each
edge e € EX, and we denote it by X = |X]|,. We identify VX with its image in X. The metric
space X determines (X, \) up to subdivisions of edges, hence we will often not make a strict
distinction between X and (X, ). In particular, we will refer to convex subsets of (X, \) as
convex subsets of X, etc.

If X is a tree, the metric space X is an R-tree, hence it is a CAT(—1) space. Since A is
bounded from below by a positive constant, the R-tree X is geodesically complete if and only
if X is not reduced to one vertex and has no terminal vertex (that is, no vertex of degree 1).

We will denote by Aut(X, \), and Aut X in the simplicial case, the group of edge-preserving
isometries of X that have no inversions.'! Since the edge length map has a positive lower
bound, the metric space X is proper if and only if X is locally finite. In this case, the
nonelementary discrete subgroups I' of isometries of X we will consider will always be edge-
preserving and without inversion. If T' is a subgroup of Aut(X, ), we will again denote by
A :T\EX — 0, +oo[ the map induced by A : EX — ]0, +o0[.

A locally finite metric tree (X', \) is uniform if there exists some discrete subgroup I' of
Aut(X’, \) such that I"\X' is a finite graph. See | , | for characterisations of this
property in the case of simplicial trees.

Discrete time geodesic flow on trees Let X be a locally finite simplicial tree. The space
of generalised discrete geodesic lines of X is the locally compact space GX of 1-Lipschitz
mappings w from R to the geometric realisation X = |X|; which are isometric on a closed
interval with endpoints in Z U {—00, + o0} and locally constant outside it, such that w(0) € VX
(or equivalently w(Z) < VX). Note that &X is hence a proper subset of X, unless X is
reduced to one vertex.

By restriction to X, or intersection with ¥X, of the objects defined in Sections 2.2 and
2.4 for 49X, we define the distance d on ¢X, the subspaces 9.X, 9X, 9 oX, the strong
stable /unstable leaves W= (w) of w € 4:X and their Hamenstadt distances dy+(,, the
stable/unstable leaves W9 (w) of w € 4, X, the outer and inner unit normal bundles 01D

10This assumption, though not necessary at this stage, will be used repeatedly in this book, hence we prefer
to add it to the definition.

11 An automorphism g of a graph has an inversion if there exists an edge e of the graph such that ge = €.
The assumption that the elements of Aut(X) have no inversion ensures that, for every subgroup I'' of Aut(X),
the quotient map I"\EX — T"\EX of e — € is still a fixed point free involution, so that with the quotient
maps ["\EX — I"\VX defined by o and ¢, we do have a quotient graph structure I'"\X.
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of a nonempty proper simplicial subtree D of X, the dynamical neighbourhoods "I/nin,(QJ_r) of
subsets QF of 0?_@@ as well as the fibrations

fo Uy ={0eFX : Uy ¢ 0,0|D)1} — LD,

whose fiber over p € 91D is W% (p). Note that some definitions actually simplify when
considering generalised discrete geodesic lines. For instance, for all w € 4.X, ' > 0 and n €
10, 1[, the dynamical neighbourhood Vinm’ is equal to B (w,n’), and is hence independent
of n€]0,1].

Besides the map 7 : ¢X — VX defined as in the continuous case by ¢ — ¢(0), we have
another natural map 77 : ¥X — EX, which associates to ¢ the edge e with o(e) = £(0) and
t(e) = £(1). This map is equivariant under the group of automorphisms (without inversions)
Aut(X) of X, and we also denote by T : ['\¥X — I'\ EX its quotient map, for every subgroup
I of Aut(X).

If X has no terminal vertex, for every e € EX, let

0X={ly : Le¥9X, Tn(l) =€}

be the set of points at infinity of the geodesic rays whose initial (oriented) edge is e.

Given z¢ € VX, the discrete Hopf parametrisation now identifies 4X with 02 X x Z by the
map ¢ — (0_, 04, t) where t € Z is the signed distance from the closest vertex to the basepoint
xo on the geodesic line ¢ to the vertex £(0).

The discrete time geodesic flow (g')iez on ZX is the one-(discrete-)parameter group of

homeomorphisms of ¥X consisting of (the restriction to ¢X of) the integral time maps of the
continuous time geodesic flow of the geometric realisation of X: we have glw : s — w(s + t)

for all w € 4X and t € Z.

Crossratios of ends of trees Let X be a locally finite simplicial tree, with geometric
realisation X = |X|;. Recall'? that if (&1,&2,&3,&) is an ordered quadruple of pairwise
distinct points in 0, X, then their (logarithmic) crossratio is

[€1, 82,83, €] = a:-—>§l-ir§cl-eVX %(d(l’l,m) — d(x4, x3) + d(x3, x2) — d(w2,71)) - (2.21)

A similar definition is valid for general CAT(—1)-spaces, but we will only need the case of
simplicial trees in this book.
If z and y are the closest points on the geodesic line |€1, &3] to &2 and &4 respectively, then

&1, 62,83, 64] = d(z,y)

if &1, x,y,&s are in this order on |1, &3] and

[€1,82,&3, 8] = —d(x,y)

otherwise. In particular, [£1,&2,&3,&4] = 0 if the geodesic lines |1, £3[ and |&2, &4[ are disjoint.

128ee | |, as well as [Ota] in the case of Riemannian manifolds, and note that the convention on the
order varies in the literature.
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0&3

We have the following properties:

o [€1,&2,85,84] = [€4,85,62,&] = —[€3, 62, &1, Eu].

e the crossratio is continuous, and even locally constant on the space of pairwise distinct
quadruples of elements of 0 X,

e if v is a loxodromic element of Aut(X), with repulsive and attractive fixed points y_
and 74 in 0 X respectively, then for every £ € 0,0 X — {7y—,~v+}, the translation length of ~
satisfies

A(V) = [’777577£a7+ﬂ :

Bass-Serre’s graphs of groups Recall (see for instance | , |) that a graph of groups
(Y, Gy) consists of

e a graph Y, which is connected unless otherwise stated,

e a group G, for every vertex v € VY,

e a group G, for every edge e € FY such that G, = Gg,

e an injective group morphism pe : Ge — Gy for every edge e € VY.

We will identify G with its image in Gy by pe, unless the meaning is not clear (which might
be the case for instance if o(e) = t(e)). We refer to op. cit.'? for the definition of the Bass-
Serre tree T(Y,Gy) of (Y,Gy), of its fundamental group m (Y, Gx) when a basepoint in V'Y
is chosen, and of the simplicial action of m (Y, Gx) on T(Y,Gy). Note that the fundamental
group of (Y,G,) does not always act faithfully on its Bass-Serre tree T(Y, Gy), that is, the
kernel of its action might be nontrivial.

A subgraph of subgroups of (Y,Gy) is a graph of groups (Y, G) where

e Y is a subgraph of Y,

e for every v € VY, the group G, is a subgroup of G,

e for every e € EY’, the group G, is a subgroup of G,

e the monomorphism p, : G, — Gi(e) is the restriction to G of the monomorphism
Pe Ge - Gt(e)7 and

Gf‘,(e) N pe(Ge) = p/e<G/e) .

This condition, first introduced in | , Coro. 1.14], is equivalent to the injectivity of the
natural map G;(e)/p’e(Gé) — Gy(e)/pe(Ge) for every e € EY. It implies by | , 2.15] when
the underlying basepoint is chosen in Y’, that

e the fundamental group IV = 7 (Y, G%) of (Y, G%) injects into the fundamental group
I'=m(Y,Gy) of (Y,G,),

e the Bass-Serre tree X’ of (Y, G,) injects in an equivariant way into the Bass-Serre tree
X of (Y, Gy) so that the stabiliser of X’ in I" is I, and

Bthough see Example 2.10 for the main example encountered in this book
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e the map (I"\X') — (I'\X) induced by the inclusion map X" — X by taking quotient is
injective:

Vyel,V2e VX UEX, if 72e VX' UEX/, then 37 eI’, yz=1~z. (2.22)

The edge-indexed graph (Y, i) of the graph of groups (Y, Gy) is the graph Y endowed with
the map i : EY — N — {0} defined by i(e) = [G() : Ge] (see for instance | ) D).

In Section 12.4, we will consider metric graphs of groups (Y, Gy, \) which are graphs of
groups endowed with an edge length function A : EY — ]0, 40| (with A(€) = A(e) for every
ee EY).

Example 2.10. The main examples of graphs of groups that we will consider in this book
are the following ones. Let X be a simplicial tree and let I' be a subgroup of Aut(X). The
quotient graph of groups '\ X is the following graph of groups (Y, G). Its underlying graph Y
is the quotient graph I"\X. Fix a lift 2 e VX u EX for every z € VY u EY. For every e € EY,
assume that € = €, and fix an element g, € I such that g, t(f\eJ) =t(€). Forevery ye VYU EY,
take as G, the stabiliser I'y in I" of the fixed lift §. Take as monomorphism pe : Ge — Gy(e)
the restriction to 'y of the conjugation v +— g-1yg. by g, !. Note that I'\X has finite vertex
groups if X is locally finite and T is discrete. For every choice of basepoint in V'Y, there exist
a group isomorphism 6 : 71(Y,G,) — T' and a f-equivariant simplicial isomorphism from the
Bass-Serre tree T'(Y, Gy) to X (see for instance [Ser3, D).

The volume form of a graph of finite groups (Y, G) is the measure vol(y ¢, ) on the discrete
set VY, such that for every y € VY,

1
VO](Y,G*)({Z/}) = @ )

where |G| is the order of the finite group G,. Its total mass, called the volume of (Y, Gy), is

1

Vol(Y, Gy) = || voliy, gy | = ] @l
)

yeVyY

We denote by L*(Y,G,) = LA(VY, vol(y ¢,)) the complex Hilbert space of square integrable
maps V'Y — C for this measure volry g,), and by f — | f|ly and (f,g) — {(f, g), its norm and
(antilinear on the right) scalar product. Let

L3(Y,Gx) = {f e L*(Y,Gs) : ff dvolyy, g,y = 0}.
When Vol(Y, G,) is finite, L3(Y, G) is the orthogonal subspace to the constant functions.

We also consider a (edge-)volume form Tvolyy ¢, ) on the discrete set E'Y such that for
every ee€ EY,

TVOI(Y,G*)({e}) = |G | )

with total mass

1
TVol(Y, Gy) = [Tvoly,cyl = D, Gl
ecEY 7€
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The (edge-)volume form of a metric graph of groups (Y, G4, A) is given by

ds
TVO](Y’ Gy, N = @

on each edge e of Y parameterised by its arclength s, so that its total mass is

e
TVol(Y, G, A) = [Tvoliy, gl = D] |ch
ecEY €

For A =1, this total mass agrees with that of the discrete definition above.

Remark 2.11. Note that TVol(Y, Gx) = Card(EY) when the edge groups are trivial. We

have ) ]G ’ deg(7)
egly

TVol(Y, Gy) E E — E g ,
ecEY |G | yeVY ‘G | ecEY, o(e) |G ‘ yeVyY |Gy|

where 3 is any lift of y in the Bass-Serre tree of (Y,Gy). In particular, if X is a uniform
simplicial tree and I" is discrete subgroup of AutX, then the finiteness of Vol(I'\X) and of
TVol(I"\X) are equivalent. Defining the volume form on VY by {y} — drgﬁ) sometimes makes

formulas simpler, but we will follow the convention which occurs in the classical references
(see for instance | D).
If the Bass-Serre tree of (Y, G,) is (¢ + 1)-regular, then

m«Tvoly ¢, = (¢ + 1) voly g, and TVol(Y, Gx) = (¢+ 1) Vol(Y, Gy) . (2.23)

We say that a discrete group of (inversion-free) automorphisms I' of a locally finite metric
or simplicial tree (X, \) is a (tree) lattice of (X, \) if the quotient graph of groups I'\X has
finite volume:

Vol(T\X) < +00 .

This implies by | , Prop. 4.5]'* that T is a lattice!” in the locally compact group Aut(X, \)
(hence that Aut(X, \) is unimodular, see for instance [Rag, Chap. I, Rem. 1.9]), the converse
being true for instance if (X, \) is uniform. If I' is a uniform lattice of (X, ), that is, if T is
a discrete subgroup of Aut(X,\) and if the quotient graph I'\X is finite, then T is clearly a
(tree) lattice of (X, A).

A graph of finite groups (Y,Gy) is a cuspidal ray if Y is a simplicial ray such that the
homomorphisms Ge, — Gy(,) are surjective for its sequence of consecutive edges (€;)ien
oriented towards the unique end of Y. By | |, a discrete group I of Aut(X) (hence of
Isom(|X];)) is geometrically finite if and only if it is nonelementary and if the quotient graph of
groups by IV of its minimal nonempty invariant subtree is the union of a finite graph of groups
and a finite number of cuspidal rays attached to the finite graph at their finite endpoints.

Remark 2.12. If X is a locally finite simplicial tree and if I is a geometrically finite discrete
group of Aut(X) such that the convex hull of its limit set €AI" is (the geometric realisation
of) a uniform tree, then I' is a lattice of the simplicial tree €AT".

Musing the fact that Aut(X,\) is a closed subgroup of Aut(X)
15Recall that a lattice in a locally compact group G is a discrete subgroup I of G such that the left quotient
space ["\G admits a probability measure invariant under translations on the right by G.
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Proof. Since €AI"” is uniform, there is a uniform upper bound on the length of an edge
path in €Al which injects in T"\¢ AT and such that the stabiliser of each edge of this edge
path is equal to the stabilisers of both endpoints of this edge. It is hence easy to see that the
volume of each of the (finitely many) cuspidal rays in I"\\¢’AI" is finite, by a geometric series
argument. Hence the volume of I"\\@AI" is finite. O

Note that contrarily to the case of Riemannian manifolds, there are many more (tree)
lattices than there are geometrically finite (tree) lattices, even in regular trees, see for instance

[BasL].

In Part III of this book, we will consider simplicial graphs of groups that arise from the
arithmetic of non-Archimedean local fields. We say that a discrete group I' of (inversion-free)
automorphisms of a simplicial tree X is algebraic if there exist a non-Archimedean local field
K (a finite extension of Q) for some prime p or the field of formal Laurent series over a
finite field) and a connected semi-simple algebraic group G with finite centre defined over
K , of K-rank one, such that X identifies with the Bruhat-Tits tree of G in such a way that
I identifies with a lattice of the locally compact group G(K). If T' is algebraic, then I' is
geometrically finite by | |. Note that X is then bipartite, see Section 2 of op. cit. for a
discussion and references. See Sections 14 and 15.1 for more details, and their subsequent
Sections for arithmetic applications arising from algebraic lattices.
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Chapter 3

Potentials, critical exponents and
(Gibbs cocycles

Let X be a geodesically complete proper CAT(—1) space, let g € X be an arbitrary basepoint,
and let I' be a nonelementary discrete group of isometries of X.

In this Chapter, we define potentials on T'X, which are new data on X in addition to
its geometry. We introduce the fundamental tools associated with potentials, and we give
some of their basic properties. The development follows | | with modifications to fit the
present more general context.

In Section 3.5, given a simplicial or metric tree (X, \), with geometric realisation X,
we introduce a natural method to associate a (I-invariant) potential F,:T'X > R toa
I-invariant function ¢ : EX — R defined on the set of edges of X, that we call a system
of conductances on X. This construction gives a nonsymmetric generalisation of electric
networks.

3.1 Background on (uniformly local) Hélder-continuity

In this preliminary Section, we recall the notion of Holder-continuity we will use in this
book, which needs to be defined appropriately in order to deal with noncompactness issues.
The Holder-continuity will be used on the one hand for potentials when X is a Riemannian
manifold in Section 3.2, and on the other hand for error term estimates in Chapters 9, 10 and
11.

As in | |, we will use the following uniformly local definition of Holder-continuous
maps. Let E and E’ be two metric spaces, and let « € ]0,1]. A map f: E — E' is
e «-Hélder-continuous if there exist ¢,e > 0 such that for all z,y € F with d(z,y) < ¢, we
have

d(f(x), f(y)) < cd(z,y)* .

e locally a-Holder-continuous if for every x € E, there exists a neighbourhood U of z such
that the restriction of f to U is a-Hélder-continuous;

e Hilder-continuous (respectively locally Hélder-continuous) if there exists a € 0, 1] such
that f is a-Holder-continuous (respectively locally a-Holder-continuous);

e Lipschitzif it is 1-Holder-continuous and locally Lipschitzif it is locally 1-Holder-continuous.
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Let E be a set. Two distances d and d’ on E are (uniformly locally) Holder-equivalent
if the identity map from (E,d) to (F,d') and the identity map from (E,d’) to (E,d) are
Holder-continuous. This is an equivalence relation on the set of distances on E, and a Holder
structure on E is the choice of such an equivalence class. For a map between two metric
spaces, to be Holder-continuous depends only on the Holder structures on the source and
target spaces.

Let E and E’ be two metric spaces. We say that a map f: E — E’ has

e at most linear growth if there exist a,b > 0 such that d(f(x), f(y)) < ad(x,y) + b for all
r,ye k.,

o subexponential growth if for every a > 0, there exists b > 0 such that d(f(z), f(y)) <
betdY) for all z,y € E.

Remark 3.1. When E is a geodesic space, a consequence of the (uniformly local) Holder-
continuous property of f : E — E’ is that f then has at most linear growth: the definition
implies that

d(f(@), f(y)) < ce* Hd(z,y) + e

for all z,y in X, by subdividing the geodesic segment in E from x to y into [
of equal lengths at most € and using the triangle inequality in E’.

d(z,y)

] segments

The following result (due to Bartels-Liick | | with a different distance on &X) proves

in particular that the footpoint projection w : GX — X is %—Hb’lder-continuous, as claimed

in Section 2.2. Recall that X is endowed with the distance d defined by Equation (2.7).

Proposition 3.2. For every t € R, the map from 9X to X defined by £ — 0(t) is %-Hé'lde'r-
continuous.

Proof. Let £,¢ € X be such that d(¢,¢) < 1. Assume that ¢ > 0, otherwise the argument
is similar, replacing S;JFE by Sf_s. For every € > 0, we have by the triangle inequality

A, 0y = f o d(€(s), 0'(s)) e 2 ds = (d(L(t), €' (t)) — 2€) e e 2172,

t

2t—2

If d(€(t),0'(t)) = 4, let € = 1, so that d(¢,¢') = “=— d(£(t), £'(t)), hence

d(e(t), 0'(t)) < 2 22 q(e,0)2
IF d(£(t), /(1)) < 4, let € = 3 d(€(1), £/(£)) < 1. Hence d(€,€) > L d(¢(t), /()2 €22, s0 that

d0(t), (1)) < 2v2 e age, )z . O

When X is an R-tree, the regularity property of the footpoint projection 7 : ¥ X — X is
stronger than the one given by Proposition 3.2 (see Lemma 3.4 (2)). The results below, that
will be needed in Sections 10.4 and 12.6, say that not only the evaluation maps ¢ — £(t) are
%—Hélder—continuous, but so are the endpoint maps £ — ¢4. As we will only need these facts
in the tree case, we prove them only when X is an R-tree, and we start by a simplicial version
of it.
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Lemma 3.3. Let X be a simplicial tree. There are universal constants ¢g > 0,c9 = 1 such
that for all € € 10, e9[ and € € X, the ball By({,€) is contained in

{El e ¥9X : 5/(0) = g(O), gli € de(o) (Ei,CQ \@)}

and contains {{' € 9X : £'(0) = £(0), ¢} € By, (¢x, % Vet
In particular, the endpoint maps £ — £+ from 9X to 0 X are %—H&lder—continuous.
Proof. If ¢,/ € ¥X have distinct footpoints, then d(¢(0),¢'(0)) = 1, so that d(£(¢),¢'(t)) =
1
if [t| < 1, so that d(£,¢") = §*, 1 72 = ¢y > 0.
4

Conversely, assume that £, ¢’ € ¢X have equal footpoints, so that they coincide on [N, N’]
for some N, N’ € N. By the definition of the visual distances (see Equation (2.3)), we have

1
2

dyo) (04, 0}) = e

and similarly dy)(¢—,¢_) = eN. By the definition of the distance on ¢X (see Equation
(2.7)), we have, by an easy change of variables,

—N

+00
d(f,ﬁ’):f 2(t — N'| e—2fdt+f 2| — N —t| e at
! —0
v —any [ —2u L —on' | —oN
= (e +e ) 2ue du:i(e +e ).
0
The result follows. L

Let us now give a (more technical) version of this lemma for R-trees, also proving that
the footpoint projection is Lipschitz. If a and b are positive functions of some parameters, we
write a = b if there exists a universal constant C' > 0 such that % b<a<Chb.

Lemma 3.4. Assume that X is an R-tree.

(1) There exists a universal constant ¢y > 0 such that for all £, € 4X, if d(¢,0') < ¢,
then ¢'(0) € £(R), the intersection £(R) n¢'(R) is not reduced to a point, the orientations
of £ and {' coincide on this intersection, and

d(€,0') = dy(o) (0=, €2)" + dyo) (04, £})* + d(£(0),£(0)) -

(2) The footpoint map m: 49X — X defined by € — £(0) is (uniformly locally) Lipschitz.

(3) There are universal constants g > 0,co = 1 such that for all € € 0,€e0[ and { € 9X,
the ball By(f,€) in 4 X is contained in

{'e9X : 1'(0)€eL(R), d(¢(0),£0)) < co e, E’i € de(o) (U4, coe)}
and contains

(0 egX : £(0)el(R), d(l'(0),((0)) < 010 , 0 € By, (ei,clo .

(4) The endpoint maps € — l+ from 9X to 0xX are 3-Holder-continuous.
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Proof. Note that Assertion (2) follows from Assertion (1) and that Assertion (4) follows
from Assertion (3).

(1) Let £,¢' € 9X. If £(0) ¢ £(R), then ¢'(t) ¢ £(R) for all t = 0 or ¢'(t) ¢ ¢(R) for all
t <0, since X is an R-tree. In the first case, we hence have d(4(t), ¢'(t)) = t for all t > 0, thus
d(¢,0") is at least ¢y = SJOO te 2t dt = % > (0. The same estimate holds in the second case.
By symmetry, if £(0) ¢ ¢/(R), then d(¢,¢') = co > 0. This argument furthermore shows that
if the geodesic segment (or ray or line) £(R) n ¢/(R) is reduced to a point, then d(¢,¢) is at
least ¢y > 0.

If d(£'(0), £(0)) = 1, then d(£(t), £'(t)) = L for |t| < L, thus

(e, 0) = J ’

e 2t gy ,

N

1
4
which is a positive universal constant.

If d(¢'(0),£(0)) < 1, if £(R) n ¢/(R) contains ¢'(0) and is not reduced to a point, but if the
orientations of ¢ and ¢’ do not coincide on this intersection, then

d(l(t),0'(t)) = 2t — d(£(0),£(0)) = 2t — 1

for all t > 1, so that d(¢,¢') is at least Sfoo(Qt — 1) e~2! dt, which is a positive constant.
Assume now that ¢/(0) € £(R) and £(0) € £/(R), that d(¢'(0),£(0)) < 1, that /(R) n¢'(R) is

not reduced to a point and that the orientations of £ and ¢’ coincide on this intersection. Then
there exists s € R such that #/(0) = £(s), so that |s| = d(¢(0),¢(0)) < 1. Assume for instance
that s > 0, the other case being treated similarly. Then there exist 5,5’ > 0 maximal such
that ¢/(t) = £(t+ s) for all t € [—S, S"]. We use the conventions that S = 400 if £ = ¢_, that
S" = +o0 if ¢/, = ¢, and that e=* = 0. Since ¢(0) € ¢'(R), we have —S + s < 0.

'(—0) o e ' (40)

¢(-8) 0oy (S ot(i)

l=e) o (oS +s) £0) £s) oS+ s)

By the definition of the visual distances (see Equation (2.3)), we have, for ¢ big enough,

dooy (€4, ) = o= d(0(0), £(S"+5)) _ —S'—s _ S

Similarly dgy (£, ¢_) = e .
As can be seen in the above picture, we have

—2t—2S+s if t< -8
aiet),f'(t) =< s if —S<t
2t — 28" —s if t=95+

By the definition of the distance on ¥X (see Equation (2.7)), by easy changes of variables,
assuming that at least one of S, S is at least 1 for the last line (otherwise the previous line
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shows that d(¢, ¢') is larger than a positive constant), we have

S'+s +00

—-S
A, = f (=2t — 25 + s) e 2t dt + J s e 2t gt + f (2t — 28" —s) e 2 dt
—0 -S S'+s
1 —25+s i —u S —2lt| 1 —258"—s e —u
=—e ue “du+s e dt+ —e uwe “du
2 ) -5 2 s

!/
= ¢ 29 +e_2s + s.

Assertion (1) of Lemma 3.4 follows.

(3) The first inclusion in Assertion (3) follows easily from Assertion (1). The second
inclusion follows from the argument of its proof, and the fact that if dyo) (£, €, ), deo)(€—, £-)
and d(£(0),¢'(0)) are at most some small positive constant, then ¢/(R) n ¢'(R) contains ¢'(0)
and is not reduced to a point. ]

When X is a Riemannian manifold with pinched sectional curvature, the following result
says that the Holder structure defined by the distance d given in Equation (2.7) on the unit
tangent bundle of X, identified with ¢X and T'X as explained previously, is the usual one.

Recall that Sasaki’s metric on T' X is the Riemannian metric induced on the submanifold
T'X by the canonical Riemannian metric on the tangent bundle TX, such that for every
veTX, if L, TX =V,® H, is the direct sum decomposition defined by the Levi-Civita
connection of the Riemannian manifold X, then

e the direct sum V,, @ H, is orthogonal for Sasaki’s metric,

e the canonical isomorphism V,, >~ T7(,) X is an isometry, when V}, is endowed with Sasaki’s
scalar product,

e the restriction of the tangent map of the footpoint projection T'm : H, — Ty, X is an
isometry, when H, is endowed with Sasaki’s scalar product.

Proposition 3.5. When X is a Riemannian manifold with pinched sectional curvature, the
following distances on T'X are Holder-equivalent:

(1) the Riemannian distance on T'X defined by Sasaki’s metric,

(2) the distance 61 on T'X defined, for all £,0' € T' X, by

51(,0') = exp(—sup{t =0 : sup d({(s),l'(s)) <1}),
se[—t,t]

with the convention 61(¢,0") =1 if d(£(0),¢'(0)) > 1 and 6:(£,0') =0 if L = 1,
(3) the distance 6 on T'X defined, for all £,0' € T' X, by

52(0,0) = sup d(U(s).0(s))
s€[0,1]

(4) the distance d defined by Equation (2.7).
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Note that we could replace the interval [0,1] in the definition of d2 by any interval [a, b]
with a < b.

Proof. The fact that the first three distances on 7' X are Holder-equivalent is already known,
see for instance |Bal, p. 70].

Let us hence prove that d and do are Holder-equivalent. By the convexity of the distance
function between two geodesic segments in a CAT(—1)-space, we have

52 (€, ¢") = max{d(£(0), £ (0)), d(£(1),¢'(1))} .

Hence by Proposition 3.2 applied twice (with ¢ = 0 and ¢ = 1), there exists ¢ > 0 such that if
d(¢,0") <1, then 02(¢,0") < c d(¥, E’) Therefore the identity map from (71X, d) to (T X, &)
is Holder-continuous.

Let us now prove conversely that there exist two constants ¢j > 1 and ¢, € ]0, 1] such that
for all £, € 94X, if 65(¢,¢') < %, then

d(0,0') < &) 6o(0,0))% (3.1)

Let z = £(0), y = £'(0), z = £(1), 2/ = ¢'(1). Note that d(y,z) > 3 by the triangle
inequality, since d(z,y) < 02((,¢') < & and d(z,z) = 1. Let ¢” be the geodesic line through
y and z, oriented from y to z with ¢/(0) = y. Let us prove that d(¢,¢") < % d(z,y)% for

appropriate constants ¢} and ¢,. A similar argument proves that d(¢”,¢') < % d(z,2' )0/2, and
the triangle inequality for the distance d gives Equation (3.1).

z

If d(y, z) < d(z,z), let 2’ € [z, 2] be such d(z/,2) = d(y,2) > 5. We have s = d(z,2') =
d(z,z) —d(2',2) = d(x,2) — d(y, z) < d(z,y) by the triangle inequality, and d(z’,y) < d(x,y)
by convexity. By Equation (2.8), we have

A6, 0"y < d(L,g0) + d(g°0,0") < s + d(g*C, ") < d(z,y) + d(g°¢, (") .

If d(y,z) = d(x,2), let ¥/ € [y,z] be such d(y/, 2) = d(z,2) =1 = l (see the above picture).
We similarly have d(x,y") < d(x,y) and d(¢,¢") < d(z,y) + d(g*¢” 6”) if s =d(y,y).

We hence only have to prove that for all z,y,z € X with 0 < d(z,y) < % and d(z,z) =
d(y,z) = %, if u and v are the unit tangent vectors at  and y respectively pointing to z, then
d(u,v) < ¢ d(z,y) for appropriate constants ¢/ and ¢. This follows from the following
lemma with ¢ = 0, since % > % v/ d(z,y). We will need its more general version in the proof
of Lemma 3.15.

Lemma 3.6. There exist two constants cg = 1 cmd c3 € ]0 1] such that for all x,y,z € X

with 0 < d(z,y) <1 and p = d(z,2) = d(y,2) = 3 \/d(z,y), for every t € [0, p], if u and v
are the unit tangent vectors at x and y respectwely pointing to z, then

d(g'u, g'v) < cg d(z,y)? (e + %) . (3.2)
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Proof. For every s € R, let 3 = w(g®u) and ys = 7(g°v), so that xg = =, yo = y and
zp, =y, = 2. Let —r <1’ in R be such that d(x_,,y—,) = d(z,/,y,») = 1, which exist since
x # y. We have r > 0 by convexity since d(zg,yo) < 1, and ' > p.

Claim 1 : There exists a constant ¢z € |0, 1] depending only on the lower bound of the
curvature of X such that

e <2d(x,y)® and e <d(z,y)P e " .

Proof. Let a > 1 be such that the sectional curvature
of X is at least —a?. Consider the comparison trian-
gle (z—;,y=,%), in the real hyperbolic space 1 HR with
constant sectional curvature —a?, to the trlple of points
(x_r,y_r,2) in X. Let 0 be its angle at Z, and let 7,y
be the points corresponding to z,y (so that we have
d(T,z) = d(y,z) = p)'

Since the geodesic triangles in X are less pinched than the geodesic triangles in %H%{, we
have d(Z,7) < d(z,y). By the hyperbolic sine rule in 2 H2, we have

sinh § B sinh (§ d(z—r,y—r)) sing _ sinh (9 d(z,7)) - sinh (¢ d(z,y))

sinh(a(r + p))  sinh (ad(z_y,z)) 2 sinh (ad(z,z)) = sinh(ap)

Since the map ¢ — (In2)t + In(1 — %) is nonnegative on [0, 1], and since p > 34/d(z,y),

2
we have )

1- % d(IL’7y) '
Hence sinh(ap) = w > %eap«/d(:c,y). Therefore, since d(z,y) < 1

o inhla) ) _ 260 (e _,

€ = eartap < QSlnh(CLT + ap) d(z,y) sinh §

e2ap > 6ln2 d(z,y) >

d(z,y) .

So that the first assertion of Claim 1 follows, since 2u < 2, with ¢3 = ﬁ

In order to prove the second assertion of Claim 1, let # be the angle at z between the
unit tangent vectors gfu and gfv (see the picture before the statement of Claim 1). Since the
geodesic triangles in X are less pinched than their comparison triangles in = Hﬁ, and again
by the hyperbolic sine rule in %]HI%&, we have

sing - sinh ($ d(z,/,y,)) _ sinh §

2~ sinh (a d(z,, 2)) sinh(a(r’ — p))
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Since the geodesic triangles in X are more pinched than their comparison triangles in H%&,

since d(z,y) < 1 and since sinhp > p > % d(x,y), we have

9 _sinh (3 d(z,y)) _(sinhi)d(z,y) 1
in - < < < 2(sinh 5) /d(z,y) -
) sinhd(z, 2) sinh p (sin 2) (@)

Q=

inh 2 . . L. . .
Let ¢y = (=+2 )", which is positive and strictly less than 1 since a > 1. Then
sinh y

sinh % d(z,y)

—ar’ e " e —a
€ = Tar—a < . N se g : a o
e p = 2sinh(a(r’ — p)) 2sinh § sinhp
<e "yt A/d(z,y) . (3.3)
5 O

So that the second assertion of Claim 1 follows, since ¢4 < 1, again with c3 = 5.
Let us remark that since d(z,y) < 1, Equation (3.3) also gives that
r—p>=—Ilncy >0.

Since 6 is also the angle between the unit tangent vectors —gfu and —gPv, a similar argument

gives that

sinh% sinh (% d(l‘r'ayr')) . 0 <

sinh (% d(z,y)) 5 9 d(z,y)

sinh(r’" — p) sinh d(z,/, )

2 sinh 1 . i . .
Let ¢5 = =—= > 0. Since the map ¢ — Ln}}f(t) is nondecreasing on R, we hence have
a(l—c3) e )

—lnecy i 1

/ e 2 2sinh cs

TP ——  _sinh(r' — p) < 2 ginh < ap
sinh(—In ¢y) sinh(r” = ) 1—c2 ad(z,y) sinh(a p) d(z,y) °

Therefore
1+7 <(a+1p+(1+1Ines) —Ind(z,y),

a formula which be useful later on.
Let t € [0, p]. By the definition of the distance d on ¥ X (see Equation (2.7)), we have

+00

d(w(gsgtu),w(gsgtv)) e 2l gs = J d(zs,ys) e 2=t gg | (3.5)
—00

+00

d(g'u, g'v) = f

-
We subdivide the integral {7 as {/ + SO_T + 80+ S;/ + 5.
Claim 2 : We have
-T
I = d(zs,ys) e 25—t gs < 2 72 d(z,y)® .

—0
Proof. By the triangle inequality, for every s € [r, +o0[, we have

dx_g,y—s) < d(@_g,2—p) + d(x_p,y—r) + d(Y—r,y—s) <2s+ 1.
13/02/2019
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Hence

+00

+a0
L = f d(z_g,y_s) e 267 ds < thf (2s+1) e ¥ ds<e e,

r r

and the result follows from the first assertion of Claim 1.

Claim 3 : We have

0
I, = d(zs,ys) e 2571 ds < 2(sinh 1) e 2 d(z, y) .

T

Proof. Recall that since X is CAT(—1) and by an easy exercise in hyperbolic geometry (see
for instance | , Lem. 2.5 (i)]), for all 2/,¢/,2" in X such that d(2/,2) = d(y, 7'), for
every t' € [0,d(2',2")], if 2} (respectively y;) is the point on [2/, 2] (respectively [¢/,2']) at

distance t’ from 2’ (respectively y/'), then

d(w},yp) < eV sinhd(a’,y/) .

(3.6)

Hence for all s € [0,7], we have d(z_s,y_s) < e~ "~ sinhd(z_,,y_,) = e "**sinh 1. Thus

Ir = J d(x_s,y—s) e 2stt) gg
0

+00
< (sinh 1) e_ztf e "t 72 ds = (sinh1) e X e ",
0

and the result also follows from the first assertion of Claim 1.

Claim 4 : There exists a universal constant cg > 0 such that
’ 2
Is = J d(xs,ys) e~ Is=tl ds < cg e d(z,y) .
0

Proof. By Equation (3.6) and since d(z,y) < 1, for every s € [0, p|, we have
d(zs,ys) < e °sinhd(x,y) < (sinh1) e *d(z,y) .

Therefore

t P
I; = f d(zs,ys) e 2179 ds +J d(zs,ys) e 27 ds
0 t

4 sinh 1
3

t +00
< (sinh 1) d(z, y) (e_% f e’ds + eZtJ e 38 ds) <
0 t

Claim 5 : We have

Iy = J d(zs,ys) e 27! ds < (sinh 1) €272 d(z,y)% .
p

Proof. By Equation (3.6), for every s € [p, 7], we have
d(zs,ys) < e~ " sinhd(ws, ;) = (sinh 1) e |
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Hence

/ T/

Iy = f d(zs,ys) € 267 ds < (sinh 1) e erlf e *ds < (sinh1) e Pe " .
p p

The result follows from the second assertion of Claim 1. ]

Claim 6 : There exists a constant ¢; > 0 depending only on the lower bound of the curvature
of X such that

+o0
I; = f d(zs,ys) e 257 ds < e7 272 d(a, ) .
T/
Proof. By the triangle inequality, for every s € [r, +o0[, we have
d(zs,ys) < d(@s,z) + d(pr, yr) + Ay, ys) < 25+ 1.

Hence, using the second assertion of Claim 1, we have

+00 +a0 )
I5 = f d(zs,ys) e 2678 ds < eZtJ (25 4+ 1) e 2 ds = e*(1 +1')e 2" .

,r/ 7,/

By Equation (3.3), since sinhp > p > 3 4/d(z,y) and c3 = 5-, we have

, 2
6727" < 672[) 6421 (d(m,y)) /a < 672p d(ﬂ?,y)263 .
2sinh p

Since ¢ < e for every ¢ > 0 and d(z,y) < 1, we have —Ind(z,y) <
Equation (3.4), we have

% d(xz,y)~ . Hence by
p

<7 (ot e dle ) ot

1
+ (1+Incs) d(:v,y)2c3 + . d(:v,y)c3> .
3

Assuming, as we may, that a > 2, the map p’ — is bounded on [0, +oo[. Since

0
(sinh p’)?/a
c3 = i < %, this proves Claim 6. O

Since d(z,y) < 1, it follows from Equation (3.5) and from Claims 2 to 6 that there exists
a constant cg > 0 depending only on the lower bound of the curvature of X such that

d(glu,g'v) = I + I + Is + Iy + Is < cs d(z,y)® (et + e272) .

This proves Lemma 3.6, hence concludes the proof of Proposition 3.5. OO

Let D be a nonempty proper closed convex subset of X. The regularity property in the
Riemannian manifold case of the fibrations f Z)—r : %B—F — &iD defined in Section 2.4, that will
be needed in Section 12.3, is the Holder-continuity one, as proved in the following lemma (see
also | , Lem. 6]).

Lemma 3.7. Assume that X is a Riemannian manifold with pinched negative curvature. The
maps fj5 are Holder-continuous on any set of elements £ € %y such that d(m(€), 7(f5(£))) is
bounded.

Proof. We prove the result for f g, the one for f,, follows similarly. We will use the Holder-
equivalent distances d; and d2, defined in the statement of Proposition 3.5, on the unit tangent
bundle of X, identified with ¢ X as explained previously.

56 13/02/2019



Vy = W4

Let v,v" € T*X be such that d(v(0),v'(0)) < 1, let w = f}(v) and w' = f}(v'). Let
T =sup{t = 0 : supyod(v(s),v'(s)) <1}, so that 1 (v,v') > e~T. We may assume that
T is finite, otherwise vy = v/,, hence w = w’. Let x = v(T) and 2’ = v'(T'), which satisfy
d(z,z’) < 1. Let y (respectively y') be the closest point to = (respectively z’) on the geodesic
ray defined by w (respectively w’). By convexity, since d(v(0),w(0)) and d(v’(0),w’(0)) are
bounded by a constant ¢ > 0 and since vy = wy,v, = w/, we have d(z,y) < ¢ and
d(«',y') < c. By the triangle inequality, we have d(y,y’) < 2¢+1, d(y,w(1)) > T —2c—1 and
d(y',w'(1)) = T — 2¢ — 1. By convexity, and since closest point maps exponentially decrease
the distances, there exists a constant ¢/ > 0 such that

0a(w,w') = d(w(1),w'(1)) < ¢ d(y,y') e T2 < (2c+ 1) 2 61(0, ).

The result follows. O

When X is an R-tree, we have a stronger version of Lemma 3.7, that will be needed in
Section 12.6.

Lemma 3.8. Assume that X is an R-tree. Let n, R > 0 be such that n <1 <In R, and let D
be a nonempty closed convex subset of X. Then the restriction to the dynamical neighborhood
%%R(é}iD) of the fibration fz)—r is (uniformly locally) Lipschitz, with constants independent of
7.

Proof. We assume for instance that + = +. Let £, € ”//nTR(@}rD) and let w = f(0),w' =
fp().

Since the fiber over p € 0% D of the restriction to %;TR(a-lkD) of f} is VP-;%R’

s,5' € | — n,n[ such that g°¢ € B*(w, R) and g*¢ € B*(w', R), so that g*/(t) = w(t) and
g*l'(t) = w'(t) for all t > In R by the definition of the Hamenstédt balls. Up to permuting £
and ¢/, we assume that s’ > s.

I there exist

1See the end of Section 2.4.
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By (the proof of) Lemma 3.4 (1), there exists a constant cg > 0 depending only on R such
that if d(¢,¢') < cg and s” = d(¢(0),¢(0)), then s” = s’ — s and the geodesic lines g*¢ and
g® ¢’ coincide at least on [~InR — 1,In R + 1]. In particular, we have, since |s|,|s'| <71 <1,

w(lnR) =4(s+InR)=/¢(s+InR)=w'(InR) .
Since the origin of w is the closest point on D to any point of w([0, +o0[), we hence have that
w(t) = w'(¢) for all t € [0,In R]. Therefore (using Equation (2.8) for the last inequality),
+o0

+a0
f d<w<t>,w/<t>>e—2tdt=f d(g0(t), g° ¢ (1)) 2 dt
InR InR

d(w,w’)

+a0
= ezsf d(l(u), g 0'(v)) e 2" du < €2 d(¢,g*" V")
In R+s

2 (d(0,0) +d(¢',g*' ")) < €* (d(L,0) + 5")
e** (d(¢, ) + d(¢(0),£(0))) ,

N

so that the result follows from Lemma 3.4 (2).

Note that when X is (the geometric realisation of) a simplicial tree, we have s = s’ =
s” =0 and the above computations simplify to give d(w,w") < d(¢,¢). O

For any metric space Z and « € 0, 1], the Hélder norm of a bounded a-Hélder-continuous
function f: Z — R is

[l =110 + 1f1a

where

''=  su — .
Hf”a z,ny d(.%’,y)a
0<d(z,y)<1
When the diameter of Z is bounded by 1,% this coincides with the usual definition. Note that

even if the constant € in the definition of a a-Hélder-continuous map is less than 1, this norm

is finite, since
@ =W

T, yez d<x7 y)a
e<d(z,y)<1

<2 floo -

Note that for all bounded a-Holder-continuous maps f,g: Z — R, we have

[£9lla < [fla lgloo + 1 Flloo [9lle - (3.7)

We denote by €(Z) (respectively ¢*(Z)) the space of a-Hélder-continuous real-valued
functions with compact support (respectively which are bounded) on Z, endowed with this
norm. Note that 6%(Z) is a real Banach space.”

The next two lemmas will be needed only in Part III of this book. The first one is a
metric estimate on the extension of geodesic segments to geodesic rays, with its functional
counterpart.

2This is in particular the case for the sequence spaces of symbolic dynamical systems, see Sections 5.2 and
9.2.

3The standard proof using Arzela-Ascoli’s theorem applies with our slightly different definition of the Holder
norms.
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Lemma 3.9. Let X be a geodesically complete proper CAT(—1) space, let T > 1, and let a €
GX be a generalised geodesic line which is isometric exactly on [0,T]. For every generalised
geodesic line p € GX which is isometric exactly on [0,4+0[, such that P‘[O,T] = aljo,r), we

have
2T

4

d(a, p) =

and hence for all 3€10,1] and ¢ € (fbﬂ(?X),

<1,

—28T

48

e

(@) =¥ (p)| < [l -
Proof. By Equation (2.7) defining the distance on X, we have, since d(a(t), p(t)) = 0 for
all t € | — 00, T] and d(«(t), p(t)) = t — T otherwise,

+oo 27

o —2t —2T —2u €
d(a, p) = ., (t—T)e “dt=ce . ue ““du = 1

The result follows. ]

The second lemma gives a metric estimate, with its functional counterpart, on the map
which associates to a geodesic ray in an outer normal unit bundle its point at infinity, em-
phasising the %—Hé’)lder—continuity of endpoints maps (see Lemma 3.4 (4)). We start by giving
some definitions.

Let X be a geodesically complete proper CAT(—1) space, and let D be a nonempty proper
closed convex subset of X. The distance-like map

associated with D is defined in | , §2.2] as follows. For &,¢& € 00X — 0o D, let &,¢; :
[0,4+00[ — X be the geodesic rays starting at the closest points Pp (&), Pp(§’) to £, on D
and converging to &,& ast — 0. Let
AR Ld(e, &)t
Ip(€.€) = lim oAUt (3.5)
The distance-like map dp is invariant by the diagonal action of the isometries of X preserving
D. If D consists of a single point x, then dp is the visual distance® d, on 0, X based at x. If
D is a horoball with point at infinity &y, then dp is Hamenstidt’s distance® on 0, X — {&o}.
As seen in | , §2.2, Ex. (4)], if X is a metric tree, then

o3 APp(6),Pp(€)) < 1 if Pp(€) # Pp(¢)
dp(&,€') =  de(&,8) = e7¥=Y) <1 if Pp(§) = Pp(¢) ==
and [z,¢[ N[z, = [z,9] .

In particular, although in general it is not an actual distance on its whole domain 0o, X — 0op D,
the map dp is locally a distance, and we can define with the standard formula the g-Ho6lder-
continuity of maps with values in (0nX — 05D, dp) and the [-Holder-norm of a function
defined on (0 X — 0o D, dp). In the next result, we endow 0, X — 0o D with the distance-like
map dp.

“See Equation (2.2).
®See Equation (2.12).
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Proposition 3.10. Let X be a locally finite simplicial tree without terminal vertices, and let
D be a proper nonempty simplicial subtree of X. Let X = |X|; and D = |D|; be their geometric
realisations. The homeomorphism 0T : 01D — (0, X — 0o D) defined by p — py is %—H&lder—
continuous, and for all 5 € 10,1] and v € %I;B((%OX — 0D), the map o d* : 1D — R is

bounded and g-H(')'lder-contmuous, with
B
[oo]s < (142277 [
Proof. Let us prove that for every p, p’ € 01D, if d(p, p’) < 1, then p(0) = p’(0), and

dp(ps.p) = V2 d(p. o) . (3.9)

This proves that the map 0% is %—Hélder—continuous. We may assume that p # p'.
Let p,p' € o1D. If p(0) # p'(0), then the images of p and p’ are disjoint and their
connecting segment in the tree X joins p(0) and p’(0); hence for every t € [0, +o0[, we have

d(p(t), p'(t)) = d(p(0), p'(0)) + d(p(t), p(0)) + d(p'(t), '(0)) = 1 + 2 .

Thus

+00

0
amw=f ﬂM%ﬂ@ﬁ“ﬁ+L d(p(t), /() 2 dt
—00
0 +00 +0
>J thdt—i—f (1+2t)e_2tdt>2f e 2tdt=1.
—0 0 0

Assume that x = p(0) = p/(0) and let n be the length of the intersection of p and p’. Then

1 /
dp(ps,p.) = dgo(ps,p)y) = tEIJPoo 03 (), 0" () ~t _ o=

Furthermore, since p(t) = p/(t) for ¢ < n and d(p(t),p'(t)) = 2(t — n) otherwise, we have,
using the change of variables u = 2(t — n),

+00 +00 d —2n
d(p,p’)zf 2(t—n)e_2tdt=e_2”f ue_“?u=62 .
n 0

This proves Equation (3.9).
Let 8 € ]0,1] and ¢ € € (00X — D). We have ) 0 0| = [¢]s since o is a
homeomorphism, and, by Equation (3.9),

) +(.
H¢ o aJr”/B — sup W) © a (P) 11’; a (P )|
2 p,p'edlD, 0<d(p, p')<1 d(p, p')?
a"r _ a-‘r / 2 a"r
< sup 00" (p) w; ()l N ch_ﬁ loo
p, P'E0LD, 0<d(p, p') <} d(p,p')? 272
_ !
< sup |¢E§) 1/}(5 )| + 2%—&—1 Hw”
£,£/€aaonﬁocD 2_E dD(£,§/)6

0<dp(&, &)<l

B
<224 y)g -

60 13/02/2019



Since [0 0| g = [1p 0 0T | + |10 0 01|, this proves the last claim of Proposition 3.10. []
2 2

A stronger assumption than the Holder regularity is the locally constant regularity, that
we now define. Alhough it is only useful for totally disconnected metric spaces, several error
terms estimates in the literature use this stronger regularity (see for instance | , |
and Part 111 of this book).

Let € > 0. For every metric space E and every set E’, we say that a map f : E — E’ is
e-locally constant if f is constant on every closed ball of radius € (or equivalently of radius at
most €) in E. We say that f : E — E’ is locally constant if there exists € > 0 such that f is
e-locally constant.

Note that if E is a geodesic metric space and f : E — E’ is locally constant, then f is
constant. But when FE is for instance an ultrametric space, since two distinct closed balls
of the same radius are disjoint, the above definition turns out to be very interesting (and
much used in representation theory in positive characteristic, for instance). For example, the
characteristic function 14 of a subset A of E is e-locally constant if and only if for every
x € A, the closed ball B(z,e€) is contained in A. In particular, the characteristic function of a
closed ball of radius € in an ultrametric space is e-locally constant.

Remark 3.11. Let F and E’ be two metric spaces. If amap f : E — E’ is e-locally constant,
then it is a-Holder-continuous for every a € ]0,1]. Indeed, for all z,y € E, if d(z,y) < € then
d(f(z), f(y)) =0 < cd(z,y) for all ¢ > 0. If furthermore £’ = R and f is bounded, then

@) - fw)l /@)~ f()]
ac,yesg,l?v?ﬁy d((l?, y)a :myeE,Stll(I:)t, y)>e d(:(}, y)a

2
<= ko

For all € € ]0,1] and § > 0, we denote by CKJIC’B(E) the real vector space’ of e-locally
constant functions f : E — R endowed with the elc-norm of exponent [ defined by

Hf“elc,ﬁ = 6_6 Hf”OO .

The above remark proves that if 5 € 0, 1], then || f]g < 3| f|e1c, g, so that the inclusion map
from €, “%(E) into ‘Kbﬁ (E) is continuous.

3.2 Potentials

In this book, a potential for I' is a continuous [-invariant function F' : T'X — R. The
quotient function F': T\T*X — R of F is called a potentzal on I'\T'X. Precomposing by the
canonical projection ¥X — TlX the functlon F defines a continuous I-invariant function
from ¥X to R, also denoted by F, by F(¢) = F(uv;) for every £ € 9X.

For all z,y € X, and any geodesic line £ € 4 X such that £(0) = z and ¢(d(z,y)) = y, let

7 s

Note that for all ¢ € 0, d(z,y)[, the germ vy, is independent on the choice of such a line ,
hence Sg F does not depend on the extension ¢ of the geodesic segment [x,y]. The following

SNote that a linear combination of e-locally constant functions is again a e-locally constant function.
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properties are easy to check using the I'-invariance of F and the basic properties of integrals:

Forall yeT
Y U
f szF, (3.10)
yx T

$~ y~

jF—fFoc, (3.11)

Y o z Y
~[F=JF+JF. (3.12)
X x z

The period of a loxodromic isometry v of X for the potential Fis

for the antipodal map ¢

and, for any z € [x,y],

L

Perp(y) = f F

T

for any z in the translation axis of . Note that, for all « € I' and n € N — {0}, we have
Perp(aya™) = Perp(y), Perp(y") =n Perp(y) and Perp(y™') = Perpo,(y) . (3.13)
In trees, we have the following Lipschitz-type control on the integrals of the potentials

along segments.

Lemma 3.12. When F is constant or when X is an R-tree, for all x,2',y,y' € X, we have

v oL v oL ~ ~
J F—J F|< d(z,2’) sup |F| + d(y,y') sup |F].
T ! 71 ([z,2']) [y, ¥'])

Proof. When F is constant, the result follows from the triangle inequality.

Assume that X is an R-tree. Consider the case z = z’. Let z € X be such that [z, z] =
[z,y] n [z,y']. Using Equation (3.12) and the fact that d(y, z) + d(z,vy’) = d(y, '), the claim
follows. The general case follows by combining this case x = z’ and a similar estimate for the
case y = 1. O

Some form of uniform Holder-type control of the potential, analogous to the Lipschitz-

type one in the previous lemma, will be crucial throughout the present work. The following
Definition 3.13 formalises this (weaker) assumption.

Definition 3.13. The triple (X,F,l?’) satisfies the HC-property (Holder-type control) if F
has subexponential growth when X is not an R-tree and if there exist k1 = 0 and ko € ]0,1]
such that for all x,y, 2,y € X with d(z,2"),d(y,y") < 1, we have

Y v
fF—fF’ (HC)
< (k1 +2 max F|) d(z,2)™ + (k1 + 2 max F|) d(y,y')" .
( ! m~1(B(z,1)uB(z’,1)) ’ ’ ) ( ) ( ! 7~ 1(B(y,1)uB(y’, 1)) ‘ ’ ) (y y )
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By Equation (3.11), (X, T, Fo ¢) satisfies the HC-property if and only if (X, T, ﬁ’) does.
By the triangle inequality |d(z,y) — d(z',y') | < d(z,2") + d(y,y’), for every k € R, the triple
(X,T, P~’+/<a) satisfies the HC-property (up to changing the constant ;) if and only if (X, T, ﬁ’)
does.

When X is assumed to be a Riemannian manifold with pinched sectional curvature, requir-
ing the potentials to be Holder-continuous as in | | is sufficient to have the HC-property,
as we will see below.

Proposition 3.14. The triple (X,F,]?’) satisfies the HC-property if one of the following
conditions is satisfied:

o [ is constant,

o X s an R-tree,

e X is a Riemannian manifold with pinched sectional curvature and F is Holder-continuous.

Proof. The first two cases are treated in Lemma 3.12, and we may take for them x; = 0 and
ko = 1 in the definition of the HC-property.

The claim for Riemannian manifolds follows from the property of at most linear growth
of the Hélder-continuous maps (see Remark 3.1) and from the following lemma, so that the
constants k1 > 0 and kg € |0, 1] of the HC-property depend only on the Holder-continuity
constants of F' and on the bounds on the sectional curvature of X.

Lemma 3.15. If X is a Riemannian manifold with pinched sectional curvature and F s
Hélder-continuous, there exist two constants ¢y > 0 and cg € ]0,1] such that, for all x,y,z in
X with d(z,y) < 1, we have

z z 1 ~
F—| Fl<ecday)®+2day)? Pl
[P Fleadwy et | me P

The constants c1 and co depend only on the Hélder-continuity constants ofﬁ and the bounds
on the sectional curvature of X.

This lemma is similar to the second claim in | , Lem. 3.2|, but the proof of this claim
(and more precisely the proof of | , Lem. 2.3] used in the proof of | , Lem. 3.2|),
which involves a different distance d on ¢4 X, does not extend with the present definition of d.

Proof. By symmetry, we may assume that d(z,z) > d(y,z). The result is true if z = y,
hence we assume that = # y. Let 2/ be the point on [z, z] at distance d(y, z) from z.

[ B

The closest point p of y on [z, z] lies in [2/, z] by convexity. Hence

d(z,2") < d(z,p) < d(z,y) < Vd(z,y) <1,
since closest point maps do not increase distances and d(z,y) < 1. Therefore

~

fF‘gd(m,x’) max  |F| < J/dzy) max B, (3.14)

T 7 [z, 2']) 7 1(B(z,1))
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Since §° F = 5 Py §o F' (see Equation (3.12)), we have

z z z z
N R |
x Yy x! Y

Assume first that d(y, z) = d(2/, z) %«/d (z,y). We have

\J Rl el R
d(z' z)7r n?[%x |F| + d(y, = )Nmax ||+ +/d( wy max F|

< 24/d(z, F|,
(=.9) W’l(B(fl%ﬁB(yyl))| |

F ‘ . (3.15)

and Lemma 3.15 follows, for any ¢; > 0 and ¢z € 0,1].

Now assume that that d(y, z) > $+/d(z,y). Since the distance function from a given point
to a point varying on a geodesic line is convex, we have d(2/, y) < d(x,y). By Equations (3.14)
and (3.15), we may therefore assume that x = 2’ and prove that

z ~ z ~
‘ f F—f F‘<61d(33,y)02
z y
for appropriate constants ci, co.

Since X is a Riemannian manifold, we identify ¢X and T'X with the usual unit tangent
bundle of X as explained previously. Let u (respectively v) be the unit tangent vector at x
(respectively y) pointing towards z. Let p = d(z,z) = d(y, z) = 3+/d(z,y), and t € [0, p]. We
apply Lemma 3.6, whose hypotheses are indeed satisfied.

Since t € [0,p] and d(x,y) < 1, the term on the right hand side of Equation (3.2) is
bounded by 2¢g. Since F is Holder-continuous, let ¢ > 0 and « € ]0,1] be the Holder-
continuity constants such that [F(«/) — F(v')| < ¢ d(u/,v')* for all «/,v/ € T*X such that
d(u’,v") < 2¢s. Then, by Lemma 3.6,

Z~ 2~
N
T Yy

2 - P
‘ f (F(g'u) — F(g'v))dt ‘ < J cd(ghu, g'v)® dt
0 0

+00 0
< ceg® d(x,y)*? (f e~ dt + J g2ot—2ap dt)
0 —0
3¢
= — d s
20 CS (LE, y)
This concludes the proof of Lemma 3.15 with co = acs and ¢ = S’—; cg, hence completes the
proof of Proposition 3.14 in the Riemannian manifold case. Od

Remark 3.16. (1) If X = M is a Riemannian manifold, then 7' X is naturally identified
with the usual Riemannian unit tangent bundle of M. If the potential F:T'M — R is
Holder-continuous for Sasaki’s Riemannian metric on T M , it is a potential as in | | and
[ |. Furthermore, the definition of ¥ F coincides with the one in these references.

(2) The quotient function F' is Holder-continuous when F is Holder-continuous.
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Let }NW, F*:T'X — R be potentials for I'. We say that F* is cohomologous to F (see for
instance [Liv]) if there exists a continuous I-invariant function G : 7' X — R, such that, for
every £ € 9 X, the map t — G(vg) is differentiable and

F*(vg) — F(ug) = G (vgte) - (3.16)

dt|t=0
When working with Hélder-continuous potentials, the regularity requirement is for G to
also be Holder-continuous. Note that the right-hand side of Equation (3.16) does not depend
on the choice of the representative £ of its germ v,. In particular, Perp(vy) = Perpx(v) for any
loxodromic isometry ~ if F and F* are cohomologous potentials.
A potential F is said to be reversible if F' and F o are cohomologous.

3.3 Poincaré series and critical exponents

Let us fix a potential F:T'X >R for I',and z,y € X.
The critical exponent of (T, F') is the element 6 = or r of the extended real line [—o0, +00]
defined by

. 1 Yy
6 = limsup — In Z ela’ F
n
n—+0 vel, n—1<d(z,yy)<n

The Poincaré series of (I', F) is the map Q) = Qr r 2, : R — [0, +00] defined by

Q:s— Zeszy(ﬁ_s).

vyel

If § < 400, we say that (I', F) is of divergence type if the series Qr, F 4, 4(0) diverges, and of
convergence type otherwise.

When F' = 0, the critical exponent Jr ¢ is the usual critical exponent or € ]0, +oo] of T,
the Poincaré series Qr,o,z,, is the usual Poincaré series of I', and we recover the usual notion
of divergence or convergence type of I', see for instance | |.

The Poincaré series of (I', F') and its critical exponent make sense even if I' is elementary
(see for instance Lemma 3.17 (10)). The following result collects some of the basic properties
of the critical exponent.

Lemma 3.17. Assume that (X, T, ﬁ) satisfies the HC-property. Then

(1) the critical exponent ér p and the divergence or convergence of Qr, F,z, y(s) are inde-
pendent of the points x,y € X; they depend only on the cohomology class of F';

(2) Qr,For,z,y = Qr,F,y,z and dr po, = 01, ; in particular, (I', F') is of divergence type if
and only if (I', F' o) is of divergence type ;

(3) the Poincaré series Q(s) diverges if s < dr, p and converges if s > 6r p;

(4) Or, Fyx = Or, p+k for any k € R, and (T', F) is of divergence type if and only if (I', F +k)
1s of divergence type ;
(5) if I is a nonelementary subgroup of T, denoting by F" : I"\T'X — R the map induced
by F, then 5F’,F’ < (51“7]7;
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~

(6) if or < 40, then dp +  inf F< or,rp <dr+ sup F;
7= 1(ZAT) 7—1(4AT)

(7) or,Fp > —00;

(8) the map F or, F is convex, sub-additive, and 1-Lipschitz for the uniform norm on the
vector space of real continuous maps on ©—(€AT) ;”

i is a discrete cocompact group of isometries o such that F is T"-invariant,
9) if TV 4 di t t ) tri X h that F r” t
denoting by F" : T"\T'X — R the map induced by F, then

or, F < 0w pr ;

(10) if T is infinite cyclic, generated by a lozodromic isometry v of X, then (I',F) is of
divergence type and

Perp(y) PerFOL('y)}
AT A()

Proof. We give details of the proofs of the statements (1)—(7) and (10) which are the ones used
in this book, only for the sake of completeness. The proofs from | , Lem. 3.3] generalise
to the current setting, replacing the use of | , Lem. 3.2] by the following consequence of
the HC-property: there exist k1 = 0 and ko € ]0, 1] such that for every N € N — {0}, for all
x,y,2',y € X with d(z,2'),d(y,y") < N, we have

5F,F = max{

v Y ~
f_F—f F‘<2N0q+2 max 7)) . (3.17)
v o =1 (B(a, N)uB(@', N)uB(y, N)UB(y/, N))

This is obtained from Equation (HC) by subdividing the segments [x, '] and [y,y'] into N
subintervals of equal lengths at most 1, and by using the triangle inequality.

(1) For o',y € X, if N = max{[d(z,2")],[d(y,y')]}, by Equation (3.17) and by the I'-
invariance of F', we have, for every v e I,

IF),

L WL
f F—J Fl<e=2N (s +2
x/

x

max
7—1(B(z, N)uB(z/,N)uB(y, N)uB(y’,N))

which is finite since the continuous map F' is bounded on compact subsets of 71X . Hence by
the triangle inequality, we have, for every s € R,

e—c—sd(:c,x/)—sd(y:y’) Qr r y(s) < Qr.ra y’(S) < ec-&-sd(ac7 2 )+sd(y,y') Qr.r a y(s) )

The first claim of Assertion (1) follows.

Let F* : T'X — Rbea potential for I" which is cohomologous to F. Let G : Tl)g — R be
a continuous I-invariant function satisfying Equation (3.16). Let k; = max, -1, |G|, which

"That is, if ﬁ, F*:T'X — Rare potentials for T" satisfying the HC-property, inducing F, F* : T\T'X — R,
and if or, F,0p px < +00, then 5F,tF+(17t)F* <tdr,r + (1 —1t)p, px for every t € [0, 1],

Or, prp# < Or,F +0p px ,

6o —brpl<  sup | FRw) - B() .
ver~L(EAT)
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is finite by continuity. By I'-invariance, for every v € I', we have k, = k,. For every v € I,
with £ € 4 X any geodesic line such that £(0) = x and ¢(d(z,vy)) = vy, we have

W (Y ,7y) - YY) 4~
J F f ‘— ‘J dt|t OG( - ds = ‘f G(Ugsg)ds

T

= | G 'UZ - G(vgd(z,vy)e) | X Rg + K/y .
Hence by the triangle inequality, we have, for every s € R,

€T Qr Fay(5) < Qrpw sy (5) S €T Qr R,y (s)
The second claim of Assertion (1) follows.

(2) This assertion follows from Equations (3.11) and (3.10), by the change of variable

v +— 771 in the summation of the Poincaré series.

(3) This assertion is a standard argument of Poincaré series. For every s # or, p, let
€= % |or, 7 — s| > 0. First assume that s > op, p. By the definition of the critical exponent
or, F, there exists N € N such that for every integer n > IV,

Y B
Z 6SZ F < en(ép,ere) '
vel', n—1<d(z,yy)<n

Hence there exists ¢ > 0 such that
c+Z n(0r, r+e) s”+||—c+6||2 "< 40w0.
neN neN

Now assume that s < dr r. By the definition of or r, there exists an increasing sequence
(nk)ken in N such that for every k € N, we have

Z SUE 5 oni(Or p—e)
~el, ng—1<d(z,yy)<ng

Hence

Q(S) > Z enk(5r,F €)—sni—|s|) —|s \Z

keN keN
This proves Assertion (3).

Assertions (4) and (5) are immediate by Assertion (3), since with x and IV, F’ as in these
assertions, for every s € R, we have

Qr, Frr,2,y(8) = Qr, Fa,y(s — k) and Qr/ pr o y(5) < Qr, Fz,y(5) -

(6) If  is a point in the convex hull AT of the limit set of I', then, for every v € I', the
geodesic segment between x and yx is contained in €Al'. Hence

~ 7T ~
d inff F—s)<| (F—s)<d F—s).
(2,72) (ﬂ_ll(rgmp) 8) L (F —s) < d(z,7z) (WIS(L?AF) 8)

This proves Assertion (6) by taking the exponential, summing over v € I" with n — 1 <
d(z,vy) < n, taking the logarithm, dividing by n and taking the upper limit as n tends to
+00.
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(7) Let I be a nonelementary convex-cocompact subgroup of I" (for instance a Schottky
subgroup of I', which exists since I' is nonelementary). Denote by F’ : I'\T'X — R the map
induced by F. Since |F | is T-invariant and bounded on compact subsets of T* X, by Assertion
(6), we have 0p» pr > —00 as ér > 0. Assertion (7) then follows from Assertion (5)

(10) For every s € R, if x belongs to the translation axis of v, we have by Equation (3.13)

TS Y ST (F-s) Y S (F)

ael neN neN—{0}
= Z en(Perr(v)=s£(7)) 4 Z en(Perpo, (V) =5 (7))
neN neN—{0}

Hence Qr,F ¢, z(s) converges if and only if Perp(y) — sf(y) < 0 and Perpe, () — s€(y) < 0.

Let 6 = maux{Pe)f(F7 7) ) Pe&?’; } By Assertion (3), letting s tend to dr p on the right gives

that op,p > 6, and letting s tend to § on the left gives the reverse inequality. The above
computation also gives that Qr, p, 4, (0 ) diverges, which proves Assertion (10) and concludes
the proof of Lemma 3.17. [l

Examples 3.18. (1) If o is finite and F is bounded, then the critical exponent & is finite by
Lemma 3.17 (6).

(2) If X is a Riemannian manifold with pinched negative curvature or when X has a compact
quotient, then Jr is finite. See for instance [Bou].

(3) There are examples of (X,T") with ér = 400 (and hence § = +oo if F is constant), for
instance when X is the complete ideal hyperbolic triangle complex with 3 ideal triangles along
each edge, see | |, and T its isometry group. Hence the finiteness assumption of the critical
exponent is nonempty in general. For the type of results treated in this book, it is however
natural and essential.

We may replace upper limits by limits in the definition of the critical exponents, as follows.

Theorem 3.19. Assume that (X,F,Z?’) satisfies the HC-property. If ¢ > 0 is large enough,
then

1 ~
0= lim — In Z ele’ E
n—+w0 n
vel, n—c<d(z,yy)<n
If 6 > 0, then
1 -
6= lim — In Z ela' I
n—+o N
veT', d(z,yy)<n
Proof. The proofs of | , Theo. 4.2 and Theo. 4.3], either using the original arguments
of | | valid when F is constant, or the super-multiplicativity arguments of | |, extend,
using the HC-property (see Definition 3.13) instead of | , Lem. 3.2]. O

In what follows we ﬁx a potentlal F for T such that (X,T, F ) satisfies the HC-property.
We define F* = F and F~ = Fo t, we denote by F* : I'\T'X — R their induced maps, and
we assume that § = dp p+ = op p- is finite.
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3.4 Gibbs cocycles

The (normalised) Gibbs cocycle associated with the group I' and the potential F* is the map
Cc* = C’%Fi : 00X X X x X — R defined by

~ IS
(€.20) = Céwy) = lim | (=)~ | (-,

where t — & is any geodesic ray with endpoint £ € 0, X .

We will prove in Proposition 3.20 below that this map is well defined, that is, the above
limits exist for all (§,z,y) € 0x,X x X x X and they are independent of the choice of the
geodesic rays t — &. If F* = 0, then C~ = C* = 6pf3, where 3 is the Busemann cocycle. If
X is an R-tree, then

CE(2,y) = F(ﬁi 5 — ﬁﬁi 5, (3.18)

where p € X is the point for which [ p, [ = [z, [ » [y, &[; in particular, the map & — Cgi (z,y)
is locally constant on the totally discontinuous space 0w X .

The Gibbs cocycles satisfy the following equivariance and cocycle properties: For all £ €
O0nX and z,y, z € X, and for every isometry v of X, we have

Ci

S (v, 7y) = CF (z,y) and CF(z,2) + CF(2,y) = CF(x,y). (3.19)

3

For every £ € ¢ X, for all x and y on the image of the geodesic line ¢, if £_, x,y, £, are in this
order on ¢, we have

Cir @9) = Cf, ) = =G () = [ (F* =5) (3.20)

X
Proposition 3.20. Assume that (X,T, ﬁ) satisfies the HC-property and that § < +00.
(1) The maps C* : 0, X x X x X — R are well-defined.

(2) With the constants k1,k2 of the HC-property, for all x,y € X and £ € 0, X, if we
assume that d(x,y) < 1, then

CE(x, < (k1 +2|0]+2 max ﬁ’dm, R2
CEa)| < (av2pl+2_, max (F))d(ay)

and, in general, if N = [d(z,y)], then

CF(z,y) | < N (k1 + 28] +2 max Fl).
| Ce (2,9) | (k1 191 Tr—l(B(x,N)uB(y,N))| )

If X is an R-tree, then for all x,y € X and £ € 0, X, we have

CH(z, < d(x, max |F* —§].
CEa)| < dlavy)_maxc [~ 4]

(3) The maps C* : 0, X x X x X — R are locally Holder-continuous (and locally Lipschitz
when X is an R-tree). In particular, they are continuous.
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(4) For allr > 0, z,y € X and £ € 0, X, if £ belongs to the shadow O,B(y,r) of the ball
B(y,r) seen from x, then with the constants k1, ke of the HC-property, if r < 1, we have

Yy o ~
CE(z, J Ff_§)|<2 216 + 2 F|)rt2
|CEwy) + | (FE=5)| <2(m +2061 +2_max |F])r

and in general

Yo i
CE (e, fp+_5 <2 2(6] + 2 Fl).
Cé@w+ | (FF =) <2i 20 +2_ mas )

If X is an R-tree, then

Y~
CE(x, +J Ft—§)|<2r max [|F*—4].
Ciwy)+ | (FE=d)[<or max |F* -0

Proof. (1) The fact that Cg—r (x,y) is well defined when X is an R-tree follows from Equation
(3.18).

When X is not an R-tree, let p : t — & be any geodesic ray with endpoint £ € 0, X, let
t — x4 (respectively t — ;) be the geodesic ray from z (respectively y) to . Let t, = fe(x, &)
and t, = B¢(y,&o), so that the quantity 8 = t, —t, is equal to B¢(y,x) (which is independent
of p), and for every ¢ big enough, we have B¢ (&, x44+,) = Be(&ts Yert,) = 0.

Since X is CAT(—1), if ¢ is big enough, then the distances d(&;, z¢4¢,) and d(&, yeq¢,) are
at most one, and converge, in a nonincreasing way, exponentially fast to 0 as ¢ — +o0. For
s =0, let as = S;/S (Ft —§) — [P (F* — §) (which is independent of p). We have, using
Equation (HC), and the fact that B(z/,1) u B(y/,1) € B(«/,2) if d(«',y') < 1,

([ [ o)

y x
St Yttty Tetty &t

—((f (Fi_a)—f y(Fi—6)>+<J (Fi—d)—f (B~ 9)]
Y Y T T

< 2(k1 + 27r711(g?§’2)) |F' — 0] ) max{d(&, Tirt, ), (&t Yert, ) )™,

which converges to 0 since F has subexponential growth by the assumptions of the HC-
property. Hence in order to prove Assertion (1), we only have to prove that limg_, 4 as
exists.
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For all s = t > |f|, we have, by the additivity of the integral along geodesics (see Equation
(3.12)) and by using again Equation (HC),

Ys ~. Ts—p ~.
o —al = | [(@F o - [T -5
Yt

Tt—p

< 2 F —6))d(ys, m—p)" 2 F —6])d(ys, xs+5)" .
R

Again by the subexponential growth of ﬁ, the above expression converges (exponentially fast,
for future use) to 0 as t — 400 uniformly in s, hence lims_, o as exists by a Cauchy type
argument.

(2) Let (§,x,y) € 00X x X x X. Assertion (2) of Proposition 3.20 follows from Equation
(3.18) when X is an R-tree, since [x,y] = [z,p] U [p,y] where p is the closest point to y on
[z,&]. When X is not an R-tree, the first claim of Assertion (2) follows immediately from the
HC-property of (X,T, FE - 9), and the second claim from this HC-property and the same
subdivision argument of the geodesic segment [z, y] into [d(z,y)] subintervals of equal lengths
(at most 1), as in the proof of Equation (3.17).

(3) Let (&, z,y), (£, 2",y) € 0,X x X x X. By the cocycle property (3.19), we have

CE (2, y) — Car (2, )| < |CE(2,y) — Cg(w,y)| + |Car (w,2))| + |Car(w, ) . (3:21)
First assume that X is an R-tree. Let K be a compact subset of X, and let

— inf e~d@r0)=d@y) 5

€K
z,ye K
/
~—Iy—I€—Q
T p q ¢

Let p,q be the points in X such that [z,&[ n[y,&[ = [p,&[ and [z, ¢ N[z, & = [z,q]. If
dgo (§,€') < ek, then by the definition of the visual distance (see Equation (2.3)) and by
Equation (2.4), we have

e 00 = dy(£,€) < 0™ dyy (€,8) < U0 < emlmn),
In particular ¢ € [p, &[, so that [x,&'[ n[y,&[ = [p, [ Thus by Equation (3.18), we have

| CE () — CE(ey) | = 0.

Therefore, by Equation (3.21) and by the R-tree case of Assertion (2), if dy,(&,¢’) < ek, if
xz,y € K and d(x,2'),d(y,y") <1, then

CE(z,y)—CEH(2',y)| <d(z,z') max Fr_s§ +d(y,y) max |Ff—§]|.
CEw.w) — CE6 )| < das!) _mae (T =0l +d(yyf) _mox [P~

Since F is bounded on compact subsets of 71X, this proves that C* is locally Lipschitz.

Let us now consider the case when X is general. For all distinct &, € 0, X, let t — &
and t — & be the geodesic rays from xy to £ and &’ respectively. By the end of the proof
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of Assertion (1), for every compact subset K of X, there exist aj,az > 0 such that for every
x,y € K, we have for all ne {£, '} and t = 0

kgudo—(Jm@%—ay-fﬁﬁ+—5g‘<meﬂﬁ.

Y

Let T = —% Ind,,(&,&). If T = 0, by the properties of CAT(—1)-spaces (see Equation (3.6)
for the second inequality), there exist two constants ag, as > 0 such that d(&a7, &) < ag and
d(ér, &) < age™T. Hence if dy, (€,€) < mln{ 2 1} so that 7> 0 and d(¢r, &) < 1), w

have, using Equation (HC) for the last 1nequahty,
|CF(2,y) — Cg (2,9) |
&r $r o

U (B — —j (B 5)’+

<2 (k1 + 2 max  |F* —68))d(¢r, €0)"2 + 2a; €727
“1(B(ér,2)

ET ~ gT ~
f (F+—5)—J (F* — 5)‘+2a16_a2T

xT T

By the subexponential growth of F , there exists as > 0 such that

|C’g—r($,y)—C’£ (z.y)| <ase %T+2a167a2T\(a5+2a1) xo(gf)mln{4’2}

We now conclude from Equation (3.21) and Assertion (2) as in the end of the above tree case
that C is locally Holder-continuous.

(4) Let 7 > 0, z,y € X and £ € 05X be such that £ € 0, B(y,r). Let p be the closest point
to y on [z,£[, so that d(p,y) < r. By Equations (3.20) and (3.19), we have

Cewa+ [ (B =o)| = |t - CEwn - [(F* -5+ [ -9)
Lp(ﬁi —0) - Ly(ﬁf =) | : (3.22)

First assume that X is an R-tree. Then by Assertion (2) and by Lemma 3.12, we deduce
from Equation (3.22) that

<|CE(py)l +

Yy - ~
CH(x, +J FE—6) | <2d(y, max |F¥—6§/<2r max |FT—4].
‘ elmy | )‘ W) aiee)] <2 |

In the general case, the result then follows similarly from Equation (3.22) by using Asser-
tion (2) and the HC-property if < 1 of Equation (3.17) in general. O

3.5 Systems of conductances on trees and generalised electrical
networks

Let (X, \) be a locally finite metric tree without terminal vertices, let X = |X]) be its geometric
realisation, and let I" be a nonelementary discrete subgroup of Isom(X, \).

Let ¢: EX — R be a I'-invariant function, called a system of (logarithmic) conductances
for I'. We denote by ¢ : I'\EX — R the function induced by ¢, which we also call a system of
conductances on T'\X.
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Classically, an electric network”® (without sources or reactive elements) is a pair (G, e°),
where G is a graph and ¢ : EG — R a function, such that ¢ is reversible: c(e) = c(€)
for all e € EG, see for example | |, [Zem]. In this text, we do not assume our system
of conductances ¢ to be reversible. In Chapter 6, we will even sometimes assume that the
system of conductances is antireversible, that is, satisfying c(e) = — c(e) for every e € EX.

Two systems of conductances ¢, ¢ : EX — R are said to be cohomologous, if there exists
a [-invariant map f : VX — R such that

Jd—e=df,

where for all e € EX, we have

Proposition 3.21. Let ¢ : EX — R be a system of conductances for I'. There exists a
potential F on T'X for T such that for all z,y € VX, if (e1,...,en) is the edge path in X
without backtracking such that x = o(e1) and y = t(ey), then

ﬁﬁ:iawmm.

x i=1

Proof. Any germ v € T'X determines a unique edge e, of the tree X, the first one into which
it enters: if £ is any geodesic line whose class in 77X is v, the edge e, is the unique edge of X
containing 7(v) whose terminal vertex is the first vertex of X encountered at a positive time
by ¢. The function F : T'X — R defined by

~ 4¢(e,

F(v) = )\(ev)) min {d(ﬂ(v), o(ev)),d(w(v),t(ev))} (3.23)

is a (indeed T-invariant) potential on the R-tree X, with F(v) = 0 if 7(v) € VX.

Let us now compute Sz ﬁ', for all x,y € X. For every A > 0, let ¢ : [0,A\] — R be the
continuous map defined by ¥ (t) = % if t € [0, 3] and ¥ (t) = ’\4—2 — (’\gt)Q if t € [5,A]. Let
(eg,€1,...,6,) be the edge path in X without backtracking such that = € ey — {t(eg)} and

y € en, — {0(ep)}. An easy computation shows that

Ut (s 0(e)) = S i (A ofca)).

If x and y are vertices, the expression simplifies to the sum of the lengths of the edges weighted
by the conductances. O

We denote by F. the potential defined by Equation (3.23) in the above proof, and by
F.:T\T'X — R the induced potential. Note that F. is bounded if ¢ is bounded. We call
F, and F, the potentials associated with the system of conductances ¢ and ¢. This is by no
means the unique potential with the property required in Proposition 3.21. The following
result proves that the choice is unimportant.

8 A potential in this work is not the analog of a potential in an electric network, we follow the dynamical
systems terminology as in for example | |-
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Given a potential F:T'X >R for I', let us define a map ¢cp : EX — R by

N N 1 tle) _
cF:eHcF(e)zm J()F. (3.24)

Note that ¢p is I'-invariant, hence it is a system of conductances for I'.  We denote by
cp : T\EX — R the function induced by ¢r : EX — R. Note that ¢y, = ¢p + K for every
constant x € R, that ¢y is bounded if F' is bounded, and that ¢y, = ¢ by the above proposition.

Proposition 3.22.

(1) Every potential (resp. bounded potential) for T is cohomologous to a potential (resp. bounded
potential) associated with a system of conductances for I'.

(2) If two systems of conductances ¢ and ¢ are cohomologous, then their associated poten-
tials Fo and F, are cohomologous.

(3) If X has no vertex of degree 2, if two potentials F* and F for T are cohomologous, then
the systems of conductances ¢p+ and ¢g for I' are cohomologous.

Hence if X has no vertex of degree 2, the map [F'] — [cp] from the set of cohomology
classes of potentials for I' to the set of cohomology classes of systems of conductances for I’
is bijective, with inverse [c] — [F¢].

Proof. (1) Let F be a potential for ', and let F* = ﬁ'CF be the potential associated with
the system of conductances ¢g. Note that if Fis bounded, so is ¢g by Equation (3.24), hence
F* is bounded by Equation (3.23). For all e € EX and t € ]0,A(e)[, let v, € T'X be the
germ of any geodesic line passing at time 0 through the point of e at distance ¢ from o(e).
Let G : T'X — R be the map defined by G(v) = 0 if 7(v) € VX and such that for all e € EX
and t €10, A(e)[,

Since SZ((Z)) F = Xe) €p(e) by the construction of & and A(e) &p(e) = SZ((Z)) F* by Proposition

3.21, the map G : T'X — R is continuous. Let £ be a geodesic line. The map t — CNJ(vth)

is obviously differentiable at time ¢ = 0 if w(¢) ¢ VX, with derivative F*(vy) — F'(vy). By

considering right and left derivatives of this map at ¢ = 0, by using the fact that SZ((Z)) (ﬁ’ —F ) =

0 for every e € EX, and by the continuity of F and F* at such a point, this is still true if
7(¢) € VX. Hence F'* and F' are cohomologous, and this proves the first claim.

(2) Assume that ¢ and ¢ are cohomologous systems of conductances for I', and let f : VX — R
be a [-invariant function such that ¢ — & = df. Define G(v) = f(n(v)) if w(v) € VX. For all
e€ EX and t € ]0, A(e)[, define

Ci(ver) = L(ﬁv (ve.s) — Folve.s)) ds + f(o(e)) |

which is I-invariant. Its limit as ¢ — 0 is f(o(e)) (independent of the edge e with given
origin), and its limit as ¢ — A(e) is, by the construction of F, and F,

Ae)(¢(e) —E(e)) + flo(e)) = Ale) df(e) + f(o(e)) = f(t(e))
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(independent of the edge e with given extremity). This proves that G is continuous. One
checks as in Assertion (1) that F. and F, are cohomologous.

(3) In order to prove the third claim, assume that F* and F are two cohomologous potentials
for ', and let G : T'X — R be as in the definition of cohomologous potentials, see Equation
(3.16). By the continuity of G, for all elements v and v/ in T X such that 7(v) = 7(v') € VX,
we have G(v) = G(v'), since (by the assumption on the degrees of vertices) the two edges
(possibly equal) into which v and v’ enter can be extended to geodesic lines with a common
negative subray. Hence for every z € VX the value f(z) = é(vx) for every v, € T'X such
that m(v;) = x does not depend on the choice of v,. The map f : VX — R thus defined
is [-invariant. With the above notation and by Equation (3.24), we hence have, for every
ee FX|

e) N NORF N
Epe(e) — Br(e) — A(le) L (F*(v.0) — Flve.y)) dt = A(le) L %G(ve,t)dt
= )\(16) (G(vye)) — G(vp(e))) = f(t(e)))\(_eif(o(e)) =df(e) .
Hence ¢p+ and ¢p are cohomologous. O

Given a metric tree (X,)\), we define the critical exponent of a T'-invariant system of
conductances ¢ : EX — R (or of the induced system of conductances ¢ : I'\EX — R) as the
critical exponent of (T', F,.) where F is the potential for I" associated with ¢ :

dc = O, F, -

By Proposition 3.22 (2) and Lemma 3.17 (1), this does not depend on the choice of a potential
F, satisfying Proposition 3.21.
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Chapter 4

Patterson-Sullivan and
Bowen-Margulis measures with
potential on CAT(—1) spaces

Let X, o, be as in the beginning of Section 2.1, and let F be a potential for I'. From now
on, we assume that the triple (X, T, F ) satisfies the HC-property of Definition 3.13 and that
the critical exponent d = dp p=+ is finite.

In this chapter, we discuss geometrically and dynamically relevant measures on the bound-
ary at infinity of X and on the space of geodesic lines ¥ X. We extend the theory of Gibbs
measures from the case of manifolds with pinched negative sectional curvature treated in
| ] 2 to CAT(—1) spaces with the HC-property.

4.1 Patterson densities

A family (;5),cx of finite nonzero (positive Borel) measures on do, X, whose support is AT,
is a (normalised) Patterson density for the pair (I', F%) if

Vebly =l (4.1)

for all y e I' and z € X, and if the following Radon-Nikodym derivatives exist for all x,y e X
and satisfy for (almost) all £ € 00 X

dpz
dpi;

+
3

(€) = e ey, (4.2)

In particular, the measures 3 are in the same measure class for all # € X, and, by Proposition
3.20, they depend continuously on z for the weak-star convergence of measures. Note that
a Patterson density for (I', F*) is also a Patterson density for (T, F* + s) for every s € R,
since the definition involves only the normalised potential Fr_§ IfF = 0, we get the usual
notion of a Patterson-Sullivan density (of dimension dr) for the group I', see for instance

[ ? ? ? ? ’ ]

!That is, X is a geodesically complete proper CAT(—1) space, zo € X is a basepoint, and T is a nonele-
mentary discrete group of isometries of X.
2See also the previous works [Led, , , |
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Proposition 4.1. There ezists at least one Patterson density for the pair (T, ﬁi)

Proof. The Patterson construction (see | |, [Coo]) modified as in [Led| (with a multiplica-
tive rather than additive parameter s), [Voh] and | , Section 3.6] (all in the Riemannian
manifold case) gives the result, and we give a proof only for the sake of completeness.

We start by an independent lemma, generalizing | , Lem. 3.1] with a similar proof.

Lemma 4.2. Let 0’ € R. Let (an)nen and (by)nen be sequences of positive real numbers such
that imy, o an, = +0 and the generalised Dirichlet series Y, bnay,® converges if s > ¢’
and diverges if s < §'. Then there exists a positive nondecreasing map h on [0, +oo[ such that

e for every e > 0, there exists r. > 0 such that h(t'r") < t'“h(r') for allt’ > 1 and v’ = rl;

€
o the series Y, .y bn ay,® h(ayn) converges if and only if s > §'.

Proof. Let to =0, ¢t; =1 and hy : ]0,1] — [1, 40| the constant map 1. Let us define by
induction on n € N — {0} a positive real number ¢, and a continous map hy, : |t,—1,t,] —
[1,+0o[. If t,, and h,, are constructed, let ¢,,+1 € R be such that

hn(tn) —§+1/n
1/n Z bk Q. =1 )

n keN : tp<ap<tn+1

which exists since the generalised Dirichlet series diverges at s = §' — 1/n. For every t €

1
Jtn, tns1], let hpi1(t) = hy(ty) (é) /n'
Note that the sequence (t,)nen is increasing. Let h : |0, +00[ — [1, +00[ be the map equal

to hy on Jt,—1,t,] for every n € N—{0}. The map h is positive, continuous and nondecreasing.
1

For every € > 0, let n = []. Since In h(t) is continuous and piecewise affine in In¢ with slopes

at most 1 on [t,, +o0[, we have In(h(t'r')) —Inh(r') < LInt' < elnt’ if ¢ > 1 and ' > t,,
which proves the first claim on h.

We have
_5 _g a n
Mobway" ha) =YY bea? h(tn)(i)l/ >N 1=+tw.
neN neN keN neN

tn <ag gtn+1

If s > ¢, let e = S_T‘S/ > 0. Since by construction h(t) = O(t¢) as t — +o0, there exists
a constant C' > 0 such that h(a,) < Caf for every n € N, and the convergence of the
series >, . bn a,® h(ay) follows from the convergence of the generalised Dirichlet series
DneN On ay 9=¢_thus proving the second claim on h. O

Now, for every z € X, recall that A, denotes the unit Dirac mass at z. Let h* : [0, +o0[ —
10, +o0[ be a nondecreasing map such that

e for every € > 0, there exists r. = 0 such that (¢t +7) < e“*h*(r) for all t = 0 and
T =T ~

o if Q.(s) = 2er elaEE =9 (d(x, yag)), then Q,(s) diverges if and only if the
inequality s < d holds.
If (T, F'%) is of divergence type, we may take h™ = 1 constant. Otherwise, the existence of
hE follows from Lemma 4.2.% For all s > § and = € X, define the measure

n 1

. _ R0 )
My s = = e’ (d(m,’)/.’lfo)) Ay
Qu,(9) ZF e

3Let (Yn)nen be an enumeration of the elements of T', take a, = ed@n=0) and b, = el o ﬁi, and then
take hT = hoexp for h the map given by Lemma 4.2.
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on X. By compactness for the weak-star topology of the space of probability measures on
the compact space X U 0 X, there exists a sequence (Sg)gen in |6, +00[ converging to d such
that the sequence of probability measures (fiz,s, )reN Weak-star converges to a probability
measure fiz, on X U 0pnX. Since on (0) = 400 and since the support of piz, s in X U 05 X
is equal to I'zg = I'zg U AT, the support of p,, is contained in AI', hence equal to AI' by

+
minimality. The Radom-Nikodym derivative j: + is the map with support ['zg defined by
zQ, S
dut 20 (Ft_g)_ (120 (Ft_gy hE(d
Moot (qag) = oo FF =)= Rg0 (7 =) +( (z,y20)) (4.3)
dud, h*(d(wo,vx0))

For every k € N, if d(zg, yzp) is large enough, then
hE(d(z,yx0)) < hH(d(z, z0) + d(z0,v10)) < e(sr—0)d(z,20) h*(d(zo, vz0)) -

By the HC-property, as k — +00, the right hand side of Equation (4.3) with s = s converges

ct (z,0)

toe ¢ uniformly in & € A" as vz tends to . Therefore, as k — 400, the measures ,ui sk

+ _ot
converge to a (finite nonzero) measure p+ with support AT such that %ﬁ(f) = =0 @m0)

Let v e I'. Since v+A, = A, for every z € X, a change of variable in the summation defining
u;{’ s gives that 'y*,u;{ s = ,u;—rx’s. By the continuity of pushforwards of measures, we have
YVallE = u;—rw. By the cocycle properties of the Radom-Nikodym derivatives and of the Gibbs

cocycles, the family (1F)zex is a (normalised) Patterson density for (I, F'¥). m

We refer to Theorem 4.6 for the uniqueness up to scalar multiple of the Patterson density
when (T, F'+) is of divergence type and to [ , Coro. 17.1.8] for a characterisation of the
uniqueness when F' = 0.

The Patterson densities satisfy the following extension of the classical Sullivan shadow
lemma (which gives the claim when F is constant, see | |), and its corollaries.

If 1 is a positive Borel measure on a metric space (X,d), the triple (X, d, u) is called a
metric measure space. A metric measure space (X, d, ) is doubling if there exists ¢ > 1 such
that, for all z € X and r > 0,

p(B(x,27)) < cp(B(z, 7))

Note that, up to changing ¢, the number 2 may be replaced by any constant larger than

1. See for instance [Hei] for more details on doubling metric measure spaces. We refer for
instance to | , Ex. 17.4.12] for examples of nondoubling Patterson(-Sullivan) measures,
and to | , Prop. 17.4.4] for a characterisation of the doubling property of the Patterson

measures when I' is geometrically finite and F' = 0.
A family ((X, pi,d;))ier of positive Borel measures p; and distances d; on a common set
X is called uniformly doubling if there exists ¢ = 1 such that, for all i € I, x € X and r > 0,

Mi(Bdi(mv QT)) < Cﬂi(Bdi(xa T’)) :

Lemma 4.3. Let (uf).ex be a Patterson density for the pair (I', F*), and let K be a compact
subset of X.

(1) [Mohsen’s shadow lemmal| If R is large enough, there exists C > 0 such that for all
vyel and x,y € K,

é el (P =0 < £ (6,B(yy, R)) < C la"(F=0)

79 13/02/2019



(2) For all x,y € X, there exists ¢ > 0 such that for every n € N

Z eszu(ﬁifs) < c

~vel' : n—1<d(z,yy)<n

(3) For every R > 0 large enough, there exists C = C(R) > 0 such that for all vy € T and
all x,y e K
1 (0:B(vy,5R)) < C 117 (0:B(vy, R)) .

(4) If T is convex-cocompact, then the metric measure space (AL, dy, uE) is doubling for
every x inX, and the family of metric measure spaces (AT, dy, uE))zecar is uniformly
doubling.

Proof. For the first assertion, the proof of | , Lem. 3.10] (see also [Cou, Lem. 4] with the
multiplicative rather than additive convention, as well as | |) extends, using Proposition
3.20 (2), (4) instead of | , Lem. 3.4 (i), (ii)]. The second assertion is similar to the one of
| , Lem. 3.11 (i)], and the proof of the last two assertions is similar to the one of | ,
Prop. 3.12|, using Lemma 2.2 instead of | , Lem. 2.1|. The uniformity in the last assertion
follows from the compactness of ['\C'AI' and the invariance and continuity properties of the
Patterson densities. ]

4.2 Gibbs measures

We fix from now on two Patterson densities (uf).ex for the pairs (T, F'¥).
The Gibbs measure mp on ¥ X (associated with this ordered pair of Patterson densities)
is the measure mp on ¥X given by the density

- +
de(g) _ GCZ* (5’30»“0)) + Cng (zo, E(O))

dpi (0-) dyict (04 dt (1.4)
in Hopf’s parametrisation with respect to the basepoint zg. The Gibbs measure mp is in-
dependent of xg by Equations (4.2) and (3.19). Hence it is invariant under the action of T’
by Equations (4.1) and (3.19). It is invariant under the geodesic flow by construction (and
the invariance of Lebesgue’s measure under translation). Thus,* it defines a measure my on
% X which is invariant under the quotient geodesic flow, called the Gibbs measure on I'\¢ X
(associated with the above ordered pair of Patterson densities). If F' = 0 and the Patterson
densities (u; )zex and (g )zex coincide, the Gibbs measure mp coincides with the Bowen-
Margulis measure mpy on I'\Y X (associated with this Patterson density), see for instance

[Rob2].
Remark 4.4. (i) The (positive Borel) measure given by the density
AN(E.m) = ¢ COP T 0D Gy (&) dp () (45)

on 02X is (by the same arguments as above) independent of p €]¢, 5[, locally finite and
invariant under the diagonal action of I' on 02 X. It is a geodesic current for the action of

4See for instance | , §2.6] for the precautions in order to push locally forward an invariant measure
by an orbifold covering, since the group I' does not necessarily act freely on 4 X.
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I" on the Gromov-hyperbolic proper metric space X in the sense of Ruelle-Sullivan-Bonahon,
see for instance [Bon| and references therein.

(ii) Another parametrisation of 4 X also depending on the choice of the basepoint z( in
X, is the map from X to 02X x R sending ¢ to (¢, ,s) where now s = B;_(7(£), o)
(one may also use the different time parameter s = ¢, (2o, 7(£))). For every (n,&) in 02X,
let p;, ¢ be the closest point to zg on the geodesic line between 7 and &.

o

0

For every £ € 49X, with (¢_,¢,,t) the original Hopf parametrisation, since

s—1t=Pp_(£(0),20) — Be_(£(0), pe_e,) = Be_(Pe_ e ,%0)

depends only on /_ and £, the measures dpug, (¢-)dpf (¢4)dt and dp, (€-)dpg (€4)ds are
equal. Hence using the above variant of Hopf’s parametrisation does not change the Gibbs
measures mp and mpg.

(iii) Since the time reversal map ¢ is (¢—,¢4,t) — (¢4,¢_, —t) in Hopf’s coordinates, the
measure t,Mmp is the Gibbs measure on ¢ X associated with the switched pair of Patterson
densities ((17 )zex, (13 )vex) (and similarly on I\&X).

The Gibbs property of Gibbs measures Let us now indicate why the terminology of
Gibbs measures is indeed appropriate. This explanation will be the aim of Proposition 4.5,
but we need to give some definitions first.

For all e 4X and r > 0, T,T'" = 0, the dynamical (or Bowen) ball around ¢ is

BT, T r)={e9X : sup d(l(t),l'(t)) <r}.
te[~T",T)

Bowen balls have the following invariance properties: for all s € [-T",T] and v € T,
g’ B(; T, T',r) = B(g°t;T — s,T' + s,7) and ~B({;T,T',r) = BT, T ,r) .

The following inclusion properties of the dynamical balls are immediate: If r < s, T > 5,
T > S’ then B(¢;T,T',r) is contained in B(¢;S,S5’,s). The dynamical balls are almost
independent on r : For all 7’ > r > 0, there exists 7, ,» = 0 such that for all £ € 4X and
T,T" > 0, the dynamical ball B(¢;T + T, v, T' + T). ,+,r") is contained in B(¢;T,T",r). This
follows from the properties of long geodesic segments with endpoints at bounded distance in
a CAT(—1)-space.

For every ¢ € T\¥ X, let us define B(¢;T,T’,r') as the image by the canonical projection
GX ->T\9X of B(z7 T, T',r"), for any preimage lof {in¥9X.

A (g!)ser-invariant measure m’ on T\GX satisfies the Gibbs property for the potential F
with constant ¢(F') € R if for every compact subset K of '\ X, there exist r > 0 and ¢, > 1
such that for all large enough T',7" > 0, for every ¢ € T\¥ X with g_TIE, gll e K, we have

1 m'(B(¢;T,T,r))
< T < CK7T .
CK,r eS_T/ (F('Ugtz)*c(F)) dt
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We refer to | , Sect. 3.8] for equivalent variations on the definition of the Gibbs
property mp. The following result shows that the Gibbs measures indeed satisfy the Gibbs
property on the dynamical balls of the geodesic flow, thereby justifying the name. We refer for
instance to | , Sect. 3.8] for the explanations of the connection with symbolic dynamics
mentioned in the introduction. See also Proposition 4.14 for a discussion of the case when X
is a simplicial tree — here the correspondence with symbolic dynamics is particularly clear.

Proposition 4.5. Let mp_be the Gibbs measure on T\Y X associated with a pair of Patterson
densities (u¥)zex for (T, FE). Then mp satisfies the Gibbs property for the potential F, with
constant ¢(F) = 4.

Proof. The proof is similar to the one of | , Prop. 3.16] (in which the key Lemma 3.17
uses only CAT(—1) arguments), up to replacing | , Lem. 3.4 (1)] by Proposition 3.20
(2). O

The Hopf-Tsuji-Sullivan-Roblin theorem The basic ergodic properties of the Gibbs
measures are summarised in the following result. The case when F' is constant is due to
| |, see also | , §6].

Theorem 4.6 (Hopf-Tsuji-Sullivan-Roblin). The following conditions are equivalent
(i) The pair (I', F') is of divergence type.

(i)~ The conical limit set of T’ has positive measure with respect to p; for some (equivalently
every) v € X.

(ii)* The conical limit set of T' has positive measure with respect to pt for some (equivalently
every) r € X.

(iii) The dynamical system (02 X, T, (u, ® 13 )02, x) s ergodic for some (equivalently every)
rzeX.

(iv) The dynamical system (02X, T, (u; ® 13 )02, x) is conservative for some (equivalently
every) v € X.

(v) The dynamical system (I\4 X, (g")ier, mr) is ergodic.

(vi) The dynamical system (D\9X, (g")ier, mp) is conservative.

If one of the above conditions is satisfied, then
(1) the measures puE have no atoms for any v € X,
(2) the diagonal of 05X X 0 X has measure 0 for p; ® u;,
(3) the Patterson densities (u)zex are unique up to a scalar multiple, and
(4)

4) for all x,ye X, as n — 40,

VY ot
max ela’ I = o(e?™) .
~vel', n—1<d(z,yy)<n
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Proof. The proof® of the equivalence claim is similar to the one of | , Theo. 5.4], using

e Proposition 3.20 (2), (4) instead of | , Lem. 3.4],

e the HC-property instead of | , Lem. 3.2,

e Lemma 3.17 (2) instead of | , Lem. 3.3 (ii)],

e Lemma 4.3 (2) instead of | , Coro. 3.11 (i)],

e Lemma 4.3 (3) instead of | , Coro. 3.12 (i)],

e Remark 4.4 (ii) instead of | , Rem. (ii), §3.7],

e Lemma 4.3 (1) instead of | , Lem. 3.10].
Claims (1) and (4) are proved as in | , Prop. 5.13], Claim (2) is proved as in | ,
Prop. 5.5 (c)], and Claim (3) is proved as in | , Coro. 5.12]. ]

The following corollary follows immediately from Poincaré’s recurrence theorem and the
Hopf-Tsuji-Sullivan-Roblin theorem, see | , Coro. 5.15, Theo. 5.4 (ii’)-(iii’)] for the ar-
guments written for the manifold case, which extend.

Corollary 4.7. If mp is finite, then
(1) the pair (T, F*) is of divergence type,

(2) the Patterson densities (u)zex are unique up to a multiplicative constant and the Gibbs
measure mp is uniquely defined up to a multiplicative constant.

(3) the Gibbs measure mp gives full measure to the image Q. of
Qe={le%X : (e AT}
in T\YX, and
(4) the geodesic flow is ergodic for mp. 0
On the finiteness of Gibbs measures As the finiteness of the Gibbs measures will be a
standing hypothesis in many of the following results, we now give criteria for Gibbs measures to
be finite. Recall® that the discrete nonelementary group of isometries I' of X is geometrically

finite if every element of Al is either a conical limit point or a bounded parabolic limit point
of I'.

Theorem 4.8. Assume that I' is a geometrically finite discrete group of isometries of X.

(1) If (T, F%) is of divergence type, then the Gibbs measure mp is finite if and only if for
every bounded parabolic limit point p of I, the series

> d(z,ay) ea’ (F-9)

a€l’y
converges, where I',, is the stabiliser of p in T'.

(2) If we have 5Fp,Fpi < 0, for every bounded parabolic limit point p of I' with stabiliser I'),

in T and with FpJ—r : ITp)\X — R the map induced by F*, then (T, F) is of divergence
type. In particular, mg is finite.

®The proof occupies about 16 pages in [ |, hence we cannot reproduce it in this book.
5See Section 2.1.
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When X is a manifold, this result is due to | , Theo. B for the case F' = 0, and to
[Coul and | , Theo. 8.3, 8.4] for the general case of Holder-continuous potentials. When
F = 0 but on much more general assumptions on X with optimal generality, this result is due
to | , Theo. 17.1.2].

Proof. The proof is similar to the manifold case in | |, which follows closely the proof
of | |. Note that the convergence or divergence of the above series does not depend on
the choice of the sign +.

Let Parp be the set of bounded parabolic limit points of I'. By | , Lem. 1.9]", there
exists a I-equivariant family (7€))pepar; of pairwise disjoint closed horoballs, with .7, centred
at p, such that the quotient

My =T\ (AT — U )

peParp

is compact. Using Proposition 3.20, Theorem 4.6 and Equation (3.17) instead of respectively
| , Lem. 3.4, Coro. 5.10,Lem. 3.2|, the HC-property, the proofs of | , Theo. 8.3,
8.4] then extend to our situation. O

Recall that the length spectrum of I on X is the additive subgroup of R generated by the
translation lengths in X of the elements of IT'.

Recall that a continuous-time one-parameter group (h'),gr of homeomorphisms of a topo-
logical space Z is topologically mizing if for all nonempty open subsets U,V of Z, there exists
to € R such that for every t > tq, we have U n h'V # (.

We have the following result, due to | , Theo. 1] in the manifold case, with develop-
ments by | | when F' = 0, and by | , Theo. 8.1] for manifolds with pinched negative
curvature.

Theorem 4.9. If the Gibbs measure is finite, then the following assertions are equivalent :
(1) the geodesic flow of T\X is mizing for the Gibbs measure,

(2) the geodesic flow of T\X is topologically mizing on its nonwandering set, which is the
quotient under I' of the space of geodesic lines in X both of whose endpoints belong to
AT.

(3) the length spectrum of I' on X is not contained in a discrete subgroup of R. O

In the manifold case, the third assertion of Theorem 4.9 is satisfied, for example, if I has
a parabolic element, if A" is not totally disconnected (hence if I'\ X is compact), or if X is a
surface or a (rank-one) symmetric space, see for instance | , ].

Error terms for the mixing property will be described in Chapter 9. The above result
holds for the continuous time geodesic flow when X is a metric tree. See Theorem 4.17 for a
version of this theorem for the discrete time geodesic flow on simplicial trees. At least when
X is an R-tree and I' is a uniform lattice (so that I'\X is a finite metric graph), we have a
stronger result under additional regularity assumptions, see Section 9.2.

"See also | | for the case of simplicial trees and | , Theo. 12.4.5] for a greater generality on X.
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Bowen-Margulis measure computations in locally symmetric spaces Assume in this
subsection that the potential F is zero. The next result, Proposition 4.10, gathers compu-
tations done in | , | of the Bowen-Margulis measures mpy when X is a real or
complex hyperbolic space and I is a lattice. We start by giving the notation necessary in
order to state Proposition 4.10.

When X is a complete simply connected Riemannian manifold with dimension m > 2
and sectional curvature at most —1, we endow the usual unit tangent bundle 7' X with
Sasaki’s Riemannian metric.® Its Riemannian measure dvoly:y, called Liouville’s measure,
disintegrates (equivariantly with respect to I') under the fibration 7 : T'X — X over the
Riemannian measure dvolyx of X, as

d VOlTlX = J d VOITIX dVOlX (.’IZ’) ,
reX *

where dvolrix is the spherical measure on the fiber T!X of m above z € X. In particular,
Vol(THI'\ X)) = Vol(S™ 1) Vol(I'\ X)) .

Assume furthermore that X is a symmetric space, and that I' is a lattice in Isom(X). In
particular, I' is geometrically finite and the critical exponent of the stabiliser in I' of every
bounded parabolic fixed point of I' is strictly less than the critical exponent of I', see for
instance | , |. Then the Patterson density is independent of " and uniquely defined
up to a multiplicative constant by Theorem 4.8 (2) and Lemma 4.7 (2). We take pu, = u;
for every x € Ht and we will denote this measure simply by p,.. By homogeneity reasons, the
Bowen-Margulis measure of I' on X is proportional to the Liouville measure voly1x, and the
main point of Proposition 4.10 is to compute the proportionality constant.

Let n > 2. We endow R"™! with its usual Euclidean norm | - | and its usual Lebesgue
measure \,_1. We use the upper halfspace model for the real hyperbolic space Hy of dimension
n, that is, Hg = {(z1, -+ ,2z,) € R" : x, > 0} endowed with the Riemannian metric

1
ds%ﬁ = — (do?+ - +da?).

3
We identify R"~! with R"~! x {0} in R", and again denote by | - | the usual Euclidean norm
on R". The boundary at infinity of H is 0,HR = R"! U {oo}. Assuming that I is a lattice

in Isom(H), we normalise its Patterson density so that in the ball model of H with center
0, the measure yq is the spherical measure on the space at infinity S*~1.

Let n > 2. We refer to |Gol] and | , 83| for background on the complex hyperbolic
n-space H. We denote by ( - = Z?:_ll Z?{ the standard Hermitian product and by d¢
the standard Lebesgue measure on C"~'. We denote by Heiss,, | the Heisenberg group of
dimension 2n — 1, which is the real Lie group structure on C*~! x R with law

Cuw( )=+ ut+u +2Im¢- ).

We endow Heisy,—1 with the usual left-invariant Haar measure d\g,—1(¢,u) = d{du and
with the Cygan distance’ dcyg which is the unique left-invariant distance on Heisg,—1 with

doyg (¢ 1), (0,0)) = (I¢[* + u?)3.

8See Section 3.1.
9See [Gol, page 160]. It is called the Kordnyi distance by many people working in sub-Riemannian geometry,
though Koranyi [Kor] does attribute it to Cygan [Cyg].
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We use the Siegel domain model of the complex hyperbolic space H: of dimension n, nor-
malised to have maximum constant sectional curvature —1, hence to be CAT(—1). This is the
manifold Heisy,—1 x |0, +0[ endowed with the Riemannian metric given, in the horospherical
coordinates (¢, u,t) € C" 1 x Rx ]0, +o[, by

1

v (dt? + (du+2Im d¢ - ¢)* +4td¢-dC),

2
dS HE =
so that its volume form is

1
Note that the action of Heisg, 1 on Hg = Heisg, 1 x 10, +00[ by left translations on the
first factor, preserving the second one, is isometric. We identify Heisg,—1 with Heisy,—1 x{0}

and we endow Heisy,—1 %[0, +0oo[ with the distance dcy, extending the Cygan distance on
Heissy,, 1, defined by

12
deye ((Cou, t), (¢ u/ 8) = | |¢ — CP+t—t|+i(u—u +2Im -] .

The space at infinity 0,,Hg of HE is the Alexandrov compactification Heisp,—1 u{0o0}, so that
the extension at infinity of the isometric action of Heisp, 1 on H fixes 00 and is the left
translation on Heisp,—1. We denote by %, = Heisg,—1 x[1, +00[ the horoball of H centered
at oo whose boundary contains the point (0,0, 1).

Assuming that I is a lattice in Isom(Hg), we normalise its Patterson density (uz)zemn as
follows. If p17, is the measure defined in Proposition 7.2 associated with the horoball 7%,
then

dﬂﬂw (Cvu) = d)‘2n—1(<—7u) =dCdu .

This is possible since p, is invariant under the isometric action of Heisz,,—1 on Hg, which
preserves /%, hence is a left-invariant Haar measure on 0 Hg — {00} = Heisgp,—1.

As the arguments of the following result are purely computational and rather long, we
do not copy them in this book, but we refer respectively to the proofs of | , Eq. (19),
Eq. (21), Prop. 10| and | , Lem. 12 (i), (ii), (iii)]. Analogous computations can be done
when X is the quaternionic hyperbolic n-space Hi.

Proposition 4.10. (1) Let T' be a lattice in Isom(Hy), with Patterson density (iz)remy
normalised as above. For all x = (g, ,xy) in HY, £ € 0,HE — {0} and v € T'HE such
that vy # o0, we have

(i) () = (722)"" dAaa(9),

(ii) wusing a Hopf parametrisation v — (v—_,v4,$),

N 22 =D\, _1(v_) dhp_1(vy) dt
deM(U) = H'U+ — ”2(,,171) Y

(iii)

T?LBM = 2n—1 VOlTlHﬁ s

and in particular,

Imep| = 271 Vol(S™ 1) Vol (T\HR) .
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(2) Let I' be a lattice in Isom(H), with Patterson density (piy)zemp normalised as above.
For all x = (¢, u,t) in HE, (&,7) € 0oHE — {00} and v e T'HE such that vy # 0, we have

‘ "
(Z) dlux(&r) = dCyg(x7 (f,?‘))

(i) using a Hopf parametrisation v — (v_,v4,s),

1, ddr;

~ dAon—1(v=) dAop—1(v4) ds
d _ .
MBM (U) dcyg(’l}_, U+)4n )

(1ii)
mBMm = 92n—2 V01T1Hg )

and in particular
n

[mem| = i VOl(IHE) . [

-
22n=3 (n — 1)

On the cohomological invariance of Gibbs measures We end this Section by an ele-
mentary remark on the independence of Gibbs measures upon replacement of the potential F’
by a cohomologous one.

Remark 4.11. Let F* : T'X — R be a potential for T' cohomologous to F and satisfying
the HC-property. As usual, let F** = F* and F*~ = F* oy, and let F* : N7r'x — R
be the induced map. Let G : T'X — R be a continuous I-invariant function such that, for
every ¢ € X, the map t — é('l)gtg) is differentiable and F*(v)) — F(v) = %|t=06~¥(vgtg).
Furthermore assume that X is an R-tree or that G is uniformly continuous (for instance
Holder-continuous).

For all x € X and & € 0,X, let £, ¢ be any geodesic line with footpoint £, ¢(0) = =
and positive endpoint (¢, ¢)+ = &, and let ¢ , be any geodesic line with ¢¢ ,(0) = x and
origin (¢¢,,)— = £ Note that the value CNT’(WI’&) is independent of the choice of £, ¢, by the
continuity of C:’, and similarly for é(’(}gg’x). In particular, for all v € I', by the I'-invariance of

G, we have

G, ) =Glu, ) and Goulv, )= Glu,). (4.6)

Note that F*~ = F*o,and F~ = Foy are cohomologous, since if G*=—Go L, for every
le 49X, we have

~ ~

~ ~ ~ d
F*ou(vg) — Foulvg) = F*(vy) — Fve) = §‘t700(vgn£)
d i~
= &lt:OG([/’Ug—tg) = &H:OG (vgte) -

As already seen in Lemma 3.17 (1) and (2), the critical exponent p ps+ is equal to the
critical exponent dp g+, and independent of the choice of +, and we denote by ¢ the common
value in the definition of the Gibbs cocycle.

Let us prove that if C** = Cli—i st 15 the Gibbs cocycle associated with (I', F*¥), then
C*t and C* are cohomologous:

Cit(a.y) — Cf (z,y) = Glug, ) — G(vy, ) . (4.7)
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and similarly N N
Cg_(l',y) - Og_ (-ﬁU,y) =G* (Ufm,g) - G*(Uﬁyyg) . (48)

We only prove the first equality, the second one follows similarly, noting that G* is uniformly
continuous if G is, since ¢ is isometric. For all ,y in X and £ € 0, X, let t — & be a geodesic
ray with point at infinity £, let a; = d(x, &), let by = d(y,&;), and for z = x,y, let £, ¢, be any
geodesic line with footpoint z passing through &. Then

([ o= [T -a)- ([ -0 [ -9)

Y T
S - &t ~
_ J (F*+_F+)_J (F*+_F+)
Y T

by d ~ a g o
= J;) dtG(’Ugsgy ft) ds — L %G(’Ugsg%&) ds

= C:Y(Ufw,ﬁt) - é(véyyﬁt) + (é(’l)gbtg%&t) N é(vgaww’gt)) '

When ¢ goes to +0, the first term of this series of equalities converges to C§+ (x,y)— C’g’ (x,v)
by the definition of the Gibbs cocycle (see Section 3.4). By continuity, CNTY(UZ% ;) and CNJ(W% e)

converge to (¢ (ve, ) and G (ve, ) respectively. If X is an R-tree, then if ¢ is large enough, we

have Ugbre, ¢, = Vgtly ¢, hence Equation (4.7) follows. Otherwise, by the uniform continuity

of G, since Ughbtg, and vgatg, ., are uniformly arbitrarily close as ¢ tends to 0 by the CAT(-1)
property, the resutlt also follows.

Let (Mx )zex be a Patterson density for (I', F' 1). In order to simplify the notation, let
Gt = G and G~ = G*. The family of measures (u**),cx defined by setting, for all z € X
and £ € 0, X

AusE(©) = 0 duE(g) (4.9)
is also a Patterson density for (I', F**). Indeed, the equivariance property (4.1) for (u**),ex
follows from the one for (uE).ex and from Equation (4.6). The absolutely continuous property
(4.2) for (u*%)zex follows from the one for (u),ex and Equations (4.7) and (4.8).

Assume that the Patterson density for (T, F*%) defined by Equation (4.9) is chosen in
order to construct the Gibbs measure mp+ for (I', F*) on 4X. Then using

e Hopf’s parametrisation with respect to the base point zy and Equation (4.4) with F
replaced by F* for the first equality,

e Equations (4.7), (4.8), (4.9) and cancellations for the second equality,

e the definition of G* = — G o and again Equation (4.4) for the third equality,

e Equation (4.6) and the fact that we may choose £;_ ) = £ and £y ,, = ¢ for the last
equality,
we have

H— H+
diips (0) = 0 0 OV CL 0 O) gy a0 dt

_ O (@0, 00)) =G*(vy gy o )= CF, (20,4(0)) +Gvgy ) , )

d,U/ (6_) d:uj?o (£+> dt
_ eGOL(’UeZ(U)« 0 ) _G(/UZZ(O),Zi) de (z)

— eé(ve)*é(ve) dimp(f) ,
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hence mp+ = mp.

In particular, since the Gibbs measure, when finite, is independent up to a multiplicative
constant on the choice of the Patterson densities by Corollary 4.7, we have that mp is finite
if and only if mps is finite, and then

mp* mpg

= : (4.10)
[mps|  |mr|

4.3 Patterson densities for simplicial trees

In this Section and the following one, we specialise and modify the general framework of the
previous sections to treat simplicial trees. Recall'’ that a simplicial tree X is a metric tree
whose edge length map is constant equal to 1. The time 1 map of the geodesic flow (g')icr
on the space GX of all generalised geodesic lines of the geometric realisation X = |X|; of X
preserves for instance its subset of generalised geodesic lines whose footpoints are at distance
at most 1/4 from vertices. Since both this subset and its complement have nonempty interior
in X, the geodesic flow on X has no mixing or ergodic measure with full support. This is
why we considered the discrete time geodesic flow (gt)tez on ZX in Section 2.6.

Let X be a locally finite simplicial tree without terminal vertices, and let X = [X]|;
be its geometric realisation. Let I' be a nonelementary discrete subgroup of Aut(X). Let
F:T'X >Rbea potential for I', and let Pt = }~7, F~=Fou Let§ = or, p+ be the critical
exponent of (', F¥). Let C* : 0,X x X x X — R be the associated (normalised) Gibbs
cocycles. Let (uf)zex be two Patterson densities on 05X for the pairs (T, F'%).

Note that only the restrictions of the cocycles C* to 0, X x VX x VX are useful and
that it is often convenient and always sufficient to replace the cocycles by finite sums involv-
ing a system of conductances (as defined in Section 3.5), see below. Furthermore, only the
restriction (u3)zevx of the family of Patterson densities to the set of vertices of X is useful.

Example 4.12. Let X be a simplicial tree with geometric realisation X and let ¢: EX — R
be a system of conductances on X. For all z,y in VX and £ € 0, X, with the usual convention
on the empty sums, let

and

where, if p € VX is such that [p, &[] = [z,&] N[y, €[, then (e, ea,. .., en) is the geodesic edge
path in X from x = o(e1) to p = t(ey) and (f1, fo,. .., fn) is the geodesic edge path in X from
v= O(fl) top = t(fn)

€1

X \
m p Og
./V././?n/v
Y f2

fi

108ee Section 2.6.
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With 8, defined in the end of Section 3.5 and with C* the Gibbs cocycles for (T', F.), by
Equation (3.18) and by Proposition 3.21, we have, for all £ € 0, X and z,y € VX,

Cfi(ac,y) = — cg*r(l“,y) + 0c Be(x,y)

and Equation (4.2) gives

+ x —O¢ x, T
dpt(€) = e (V)70 Be@ ) gt ¢y

Using the particular structure of trees, we can prove a version of the Shadow Lemma 4.3
where one can take the radius R to be 0. When F' = 0, this result is due to Coornaert [Coo].

Lemma 4.13 (Mohsen’s shadow lemma for trees). Let K be a finite subset of VX. There
exists C > 0 such that for all vy €' and x,y € K with y € €Al', we have

1 ~ ~
= el 50 <y (O, {yy}) < € S

Proof. The structure of the proof is the same one as for Lemma 4.3 (1) (that is, the one

of | , Lem. 3.10]) with differences towards the end of the argument. Let us prove that
there exists C' = Cx > 0 such that for all v € I" and x,y € K with vy € €AT", we have

1

c < 1, (Oufyy}) < C . (4.11)

Assuming this, let us prove Lemma 4.13. By Equation (4.2), we have
C+
1z (Oulry}) = f RN AR
€e0z{vy}

Note that C+ (x,vy) Sﬂ’y = 01if £ € O {yy} (that is, if vy € [z,&[), by Equation
(3.20). Hence

nE(Oufyy}) = el 50 i (0,
and Lemma 4.13 follows from Equation (4.11).
Let us now prove the upper bound in Equation (4.11). Fix zp € K, and let

C' = sup ’Cgi(.%',y)‘ )
z,yeK, £€00 X

which is finite by Proposition 3.20 (2), since K is compact and F'* continuous. Then, using
Equation (4.1) for the equality and Equation (4.2) for the last inequality, we have

C/
1y (Oary}) < gyl = iy | < e gl

and the upper bound holds if C' = e’ Iz |-

Finally, in order to prove the lower bound in Equation (4.11), we assume for a contradiction
that there exist sequences (z;)ien, (¥i)ieny in K with y; € €Al and (7;)sen in T' such that
M%yi(ﬁwi{%yi}) converges to 0 as ¢ — +00. Up to extracting a subsequence, since K is
finite, we may assume that the sequences (x;);en and (y;)ien are constant, say with value x
and y respectively. Since y € €Al', as every point in €Al belongs to at least one geodesic

90 13/02/2019



line between two limit points of I', the geodesic segment from z to ~;y may be extended to a
geodesic ray from x to a limit point of I'. Since the support of uZ is equal to AT for any z € X,
we have /L};iy(ﬁx{%y}) > 0 for all < € N. Thus, up to taking a subsequence, we can assume
that ~;” Ly converges to & € AT (otherwise by discreteness, we may extract a subsequence so
that (v;)en is constant, and uj ,(Ox{viy}) cannot converge to 0).

Since X is a tree, there exists a positive integer IV such that & -1 Syt = . Ayt = Ocly}

for all i > N. As above, O¢{y} meets AT since y € €'AT’, thus py (ﬁ’g{y}) > O But for every
i>= N,
my (Oety}) = (07 Dty (0, -1,49}) = 13, (G{riy})

tends to 0 as ¢ — 400, a contradiction. O

Let quir : VX — [0, 40| be the total mass functions of the Patterson densities:

u (@) = |17 |

for every x € VX. These maps are ['-invariant by Equation (4.1), hence they induce maps
¢y T\VX — [0, +c0[. In the case of real hyperbolic manifolds and vanishing potentials,
the total mass functions have important links to the spectrum of the hyperbolic Laplacian
(see [Sull]). See also | , | for the case of simplicial trees and the discrete Laplacian,
Section 6.1 for a generalisation of the result of Coornaert and Papadopoulos, and for instance
| | for developments in the field of quantum graphs.

4.4 Gibbs measures for metric and simplicial trees

Let (X, A) be a locally finite metric tree without terminal vertices, let X = |X], be its geometric
realisation, and let 9 € VX be a basepoint. Let I' be a nonelementary discrete subgroup of
Aut(X, ). Let F': T'X — R be a potential for I', and let F+ = F, F~ = Fou. Let § = op p+
be the critical exponent of (I', F¥), assumed to be finite. Let (ui)zcyx be two (normahsed)
Patterson densities on 05X for the pairs (T, F'4).

The Gibbs measure mp on the space of discrete geodesic lines ¥X of X, invariant under
I' and under the discrete time geodesic flow (g')sez of ZX, is defined analogously with the
continuous time case, using the discrete Hopf parametrisation for any basepoint xg € VX, by

C; (20,£(0)) + C;f

diip(f) = e 0O g 0y du, () dt (4.12)

where now dt is the counting measure on Z. We again denote by mp the measure that mp
induces on I'\¥X.

In this Section, we prove that the Gibbs measures in the case of trees satisfy a Gibbs
property even closer to the one in symbolic dynamics, we give an analytic finiteness criterion
of the Gibbs measures for metric trees, and we recall the ergodic properties of tree lattices.

As recalled in the introduction, Gibbs measures were first introduced in statistical me-
chanics and consequently in symbolic dynamics, see for example | I, | I, | .
In order to motivate the terminology used in this book, we recall the definition of a Gibbs
measure for the full two-sided shift on a finite alphabet:'' Let ¥, = {1,2,...,n}% be the
product space of sequences x = (z,,)nez indexed by Z in the finite discrete set {1,2,...,n},

1Gee Section 5.1 for the appropriate definition when the alphabet is countable.
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and let o : 3, — ¥, be the shift map defined by o((zp)nez) = (Tn+1)nez. A shift-invariant
probability measure p on X, satisfies the Gibbs property for an energy function ¢ : 3, — R if
1 plla—m_ s @—m_ 115+ Qmy—1,0m,])

— < = <C
C e—P(m_+m++l)+Zk + ¢(okz)

=—m_

for some constants C' > 1 and P € R (called the pressure) and for all m4 in N with m_ < m4
and z in the cylinder [a—m_,a—m_41, ..., @m, —1, am_ | that consists of those x € £,, for which
xp = ay for all k € [—m_,m4].

Let z_,z, € VX and let g € VX n [z_,24]. Let us define the tree cylinder of the triple
(l‘*a Zo, er) by

[z_, 20,24 ={{ e 94X : Uy € Oy{x+}, £(0) = z0}.

These cylinders are close to the dynamical balls that have been introduced in Section 4.2, and
the parallel with the symbolic case is obvious, as this cylinder is the set of geodesic lines which
coincides on [—m_,m, ], where my = d(z¢, 2+ ), with a given geodesic line passing through
x4+ and through zy at time ¢ = 0. The Gibbs measure mp on the space of discrete geodesic
lines ¥X satisfies a variant of the Gibbs property which is even closer to the one in symbolic
dynamics than the general case described in Proposition 4.5.

Proposition 4.14 (Gibbs property). Let K be a finite subset of VX n €Al'. There exists
C’ > 1 such that for all x4+ € TK and xo € VX n[z_,24],

1l med)
C’ 6—5 d(z—,z)+i+ F

Proof. The result is immediate if d(x_, 2z ) is bounded, since the above denominator and
numerator take only finitely many values by the finiteness of K and by ['-invariance, and the
numerator is nonzero since 24 € €A, hence the tree cylinder [z_, zg, 2 | meets the support
of mp. We may hence assume that d(z_,z;) > 2. Using the invariance of mpr under the
discrete time geodesic flow, we may thus assume that zg # z_,x. By ['-invariance, we may
assume that x_ varies in the finite set K, and that z( is at distance 1 from x_, hence also
varies in a finite set.

Using the discrete Hopf parametrisation with respect to the vertex xq, we have, by Lemma
4.13, for some C' > 0,

Mp([2-,20,2+]) = pay (Ouo{z-}) 113, (Oao {1 })
< 02 glog (For=d) Sid(F=0) _ 2 Sit(F=0)
This proves the upper bound in Proposition 4.14 with C’ = C? and the lower bound follows
similarly. ]

Next, we give a finiteness criterion of the Gibbs measure for metric trees in terms of the
total mass functions of the Patterson densities, extending the case when I is torsion free and
F =0, due to | , Theo. 1.1].

Proposition 4.15. Let (X, \, T, ﬁ’) be as in the beginning of this Section.
(1) If (X, A) is simplicial and | - ||2 is the Hilbert norm of L2(F\VX,V01F\\X), we have'?
Imel < léu+ly [@u-1, -
12The maps ¢,+ are defined at the end of Section 4.3.
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(2) In general, with | - |2 the Hilbert norm of L*(T\EX, Tvolryx,\)), we have™
HmFH < H¢u+ © OHQ H(bpf © 0”2 :

Proof. (1) The simplicial assumption on (X, \) means that all edges have length 1. The
space I'\¥X is the disjoint union of the subsets {¢ € T\¥X : =w(¢) = £(0) = [x]} as the
orbit [z] = 'z of x € VX ranges over I'\VX. By Equation (4.12), using the discrete Hopf
decomposition with respect to the basepoint x, we have

d(mF)|{gegX - 0(0) =z} () = dpg (£-) dlujg_ (4)

Let Ap;) be the unit Dirac mass at [z]. By ramified covering arguments, we hence have the
following equality of measures on the discrete set I'\VX:

1 _
TaMp = Z T (g > ) ({(b= 04) € 02X+ well_ 04[}) Ay - (4.13)
[z]ler\VX '™ F

Thus, using the Cauchy-Schwarz inequality and by the definition of the measure volpyx,

1 _
Ime| = [meme] <) TN Iz % pa | = b Pty
[2]eD\VX

< quu— ”2“¢,u+ HQ :
This proves Assertion (1) of Proposition 4.15.

(2) The argument is similar to the previous one. Since the singletons in R have zero Lebesgue
measure, the space I'\¥ X 1is, up to a measure zero subset for mp, the disjoint union for
[e] € T\EX of the sets A[) consisting of the elements ¢ € I'\¢ X such that £(0) belongs to the
interior of the edge [e] and the orientations of ¢ and e coincide on e. We fix a representative
e of each [e] € T\EX. For every t € [0, \(e)], let e; be the point of e at distance ¢ from o(e).
By Equation (4.4), using Hopf’s decomposition with respect to the basepoint o(e) in A, we
have as above

1 Ale)
] = -
Z ITel Jo_eox Joyeacx Jo

[e]eT\EX

C; (o(e),er)+C; (o(e), e —
e ¢_(o(e)e)+Cy (ofe), er) duo(e)(e_) d/i;—(e)(g+) dt .

Since ¢_,0(e), e, {4 are in this order on the geodesic line ¢ with /_ € 0zX and ¢ € 0.X, we
have C, (o(e), e¢) + CZ(O(@), e:) = 0 by Equation (3.20). Hence, by the definition of the
measure Tvolpx, )\)’14

Imrpl= 3]

[e]eT\EX
< )
[e]eD\ EX

< ”¢u— OOH2 ”¢u+ OOHQ )

>

(¢)
Tl

(¢)
Tl

.L‘;(e) (0eX) M:(e) (0:X)

>

10| 150y | = (D= © 0,6 © 0)a

Y3Recall that o : T\EX — I'\VX is the initial vertex map, see Section 2.6.
14See Section 2.6.
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which finishes the proof. ]

Let us give some corollaries of this proposition in the case of simplicial trees. It follows
from Assertion (1) of Proposition 4.15 that if the Lo-norms of the total mass of the Patterson
densities are finite, then the Gibbs measure mpg is finite. Taking F =0 and (1) zevx =
(43 )zevx, so that the Gibbs measure mp is the Bowen-Margulis measure mgyy, it follows
from this proposition that

[mm| < ¢z 1,° < Vol(T\X) sup || . (4.14)
zeVX
15

In particular, if T is a (tree) lattice' of X and if the total mass of the Patterson density is
bounded, then the Bowen-Margulis measure mpgy is finite.

The following statement summarises the basic ergodic properties of the lattices of (X, \)
when F' = 0.

Proposition 4.16. Let (X, \) be a metric or simplicial tree, with geometric realisation X .
Assume that (X, X) is uniform and that T is a lattice in Aut(X,\). Then

(1) T is of divergence type, and its critical exponent dr is the Hausdorff dimension of any
visual distance d; on 0pxX = AT;

(2) the Patterson density (uy)zex coincides, up to a scalar multiple, with the family of
Hausdorff measures (ul1*%) ..y of dimension or of the visual distances (0o X,dy); in

particular, it is Aut(X, X)-equivariant: for all v € Aut(X,\) and z € X, we have Yy iy =
My 5

(3) the Bowen-Margulis measure mpym of I' on 49X is Aut(X, X)-invariant, and the Bowen-
Margulis measure mpy of T' on T\Y X is finite.

Proof. Let IV be any uniform lattice of (X, \), which exists since the metric tree (X, \) is
uniform. It is well-known (see for instance [Bou]) that the critical exponent s of T is finite
and equal to the Hausdorff dimension of any visual distance (0 X, d;), and that the family
(pilavs) v x of Hausdorff measures of the visual distances (00X, d,) is a Patterson density
for any discrete nonelementary subgroup of Aut(X, \) with critical exponent equal to dp.

By | , Coro. 6.5(2)], the lattice " in Aut(X, \) is of divergence type and or = dpv. By
the uniqueness property of the Patterson densities when I is of divergence type (see Theorem
4.6 (3)), the family (i )zevx coincides, up to a scalar multiple, with (pH2%) oy 5.

As the graph T"\X is compact, the total mass function of the Hausdorff measures of the
visual distances is bounded, hence so is (||pz|)zevx. By Proposition 4.15, since I' is a tree
lattice of (X, A), hence of X, this implies that the Bowen-Margulis measure mpy of I is finite.

O]

Note that as in | |, when (X, \) (or its minimal nonempty I'-invariant subtree) is not
assumed to be uniform, there are examples of I' that are lattices (or are geometrically finite)
whose Bowen-Margulis measure mpgy is infinite, see Section 15.5 for more details.

Assume till the end of this Section that (X, \) is simplicial, that is, that A = 1. Let us
now discuss the mixing properties of the discrete time geodesic flow on I"\¥X for the Gibbs
measure mg.

15See Section 2.6.
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Let Lr be the length spectrum of I', which is, in the present simplicial case, the subgroup
of Z generated by the translation lengths in X of the elements of T'.

Recall that ¢ € VX is a fixed basepoint. Let Voyen X = {x € VX : d(z,29) =0 mod 2} be
the set of vertices of X at an even distance from the basepoint xg, and let V,3qX = VX—VoyenX.
Let “ovenX (respectively Dvon X) be the subset of ¥X (respectively E?X) that consists of the
geodesic lines (respectively generalised geodesic lines) in X whose origin is in VeyenX.

Recall'® that a discrete time one-parameter group (h"),cz of homeomorphisms of a topo-
logical space Z is topologically mizing if for all nonempty open subsets U,V of Z, there exists
ng € N such that for all n > ng, we have U n b (V) # (.

Recall that given a measured space (Z, m), with m nonzero and finite, endowed with a dis-
crete time one-parameter group (h"),ecz of measure-preserving transformations, the measure
m is mizing under (h"),ez if for all f, g € L2(Z, m), we have

1
lim ffgoh”dmzf fdmfgdm,
n—+0 Jz Im|| Jz z

or equivalently if for every g € L?(Z, m), the functions g o h" weakly converge in the Hilbert
space IL?(Z,m) to the constant function m §,9dm asn— +oo.

Theorem 4.17. Assume that the smallest nonempty I'-invariant simplicial subtree of X is
uniform, without vertices of degree 2, and that mpg is finite. Then the following assertions are
equivalent:

o the length spectrum of I' satisfies Lt = Z;

e the discrete time geodesic flow on T'\¥YX is topologically mixing on its nonwandering set;
e the quotient graph T\X is not bipartite;

o the Gibbs measure mp is mizing under the discrete time geodesic flow (g!)iez on T\¥X.
Otherwise Ly = 27, and the square of the discrete time geodesic flow (g?!)sez is topologically
mizing on the nonwandering subset of I'\GevenX and the restriction of the Gibbs measure mp

t0 T\GoyenX is mizing under (g%)tez.

Proof. The nonwandering set of (g)ez on T\¥X is T\{¢ € ¥X : (¢ € AT}, and the
nonwandering set of (g2/);cz on I'\Gayen X is

Qeven = I'\{{ € GovenX : ¢4 € AT} .

Since the translation axis of any loxodromic element of I is contained in the convex hull of
the limit set, we may hence assume that the geometric realisation of X is equal to €ATL.

Lemma 4.18. If X is a locally finite tree without vertices of degree 2, if I' is a nonelemen-
tary discrete sugbroup of Aut(X) such that X is tree-minimal (that is, does not contain a
[-invariant proper nonempty subtree), then the length spectrum Ly of T is equal either to 7
or to 27, and equal to 27 if and only if the quotient graph I'\X is bipartite.

Proof. This lemma is essentially due to [Gal]. By for instance | , Lem. 4.3], since
X is tree-minimal, every geodesic segment (and in particular any two consecutive edges) is
contained in the translation axis of a loxodromic element of I'. Hence if x and y are the
two endpoints of any edge e of X, since they have degree at least 3, there exist at least two
loxodromic elements av and 3 of I" such that the translation axes Ax, and Axg contain = and

165ee above Theorem 4.9 for the continuous-time version
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y respectively, but do not meet the interior of the edge e, so that d(z,y) = d(Axq, Axg). In
particular Ax, and Axg are disjoint, which implies by for instance | , Prop. 1.6] that the
translation lengths of «, 8 and «af satisfy

AafB) = Ma) + A(B) + 2 d(Axq, Axg) .

Hence 2 = 2d(z,y) = AMaf) — AM(a) — X\(B) € Ly. Therefore 2Z c Ly < Z, and either Lp = 7Z
or Lp = 27.

Note that for all vertices z,y, z in a simplicial tree, if d(x,y) and d(y, z) are both even or
both odd, then

d(z,z) =d(x,y) +d(y,z) —2d(y,[z,z]) =0 mod 2. (4.15)
Note that for all x € VX and v € ', we have
d(xz,yx) = A(y) mod 2. (4.16)

Indeed, if v is loxodromic, then d(z,vyx) = A(y) + 2 d(x,Ax,) and otherwise, d(x,vyz) =
2 d(z,Fix(vy)) where Fix(v) is the set of fixed points of the elliptic element . For future use,
this proves that the following assertions are equivalent :

(1) LF c 27
(2) VezeX, Yyel, d(xz,vx)e2Z. (4.17)

Assume that Lp = 2Z. Then VgyenX (hence V,qq4X) is I-invariant, since for all z € Veyen X,
the distance d(z,~yz) is even by Equation (4.16), and d(vyx,vxo) = d(z, o) is even, so that
d(vyx,xzg) is even by Equation (4.15). Since no edge of X has both endpoints in Veyen X, this
proves that I'\X is bipartite, with partition of its set of vertices (I'\VevenX) 1 (I'\V5aaX).

Assume conversely that I'\X is bipartite. The set VoyenX, which is the lift of one of the
two elements of the partition of its vertices by the canonical projection VX — T\VX| is
I-invariant. By Equation (4.16), this proves that Ly < 27Z, hence that Ly = 27Z. O

The equivalence of the first, second and fourth claims in the statement of Theorem 4.17
follows from a discrete time version with potential of | , Theo. 3.1] or a discrete time
version of | , Theo. 1] (which can be extended to CAT(—1) spaces by the remark in
| , page 70]). It can also be recovered from the following arguments when Ly = 27, and
we prefer to concentrate on this case, since it requires a lot of modifications and is stated with
almost no proof in | , Prop. 3.3], and only when F=0.

Assume from now on that Lp = 2Z. Since ViyenX is I-invariant as seen above, and since
d(£(0),g%¢(0)) = 2|s| is even for all £ € ¥X and s € Z, it follows from the definition of
GovenX = {£ € 9X : 7w(l) € VeyenX} and from Equation (4.15) that %enX is invariant
under the even discrete time geodesic flow (gQS) scz, and under I'. Note that the discrete Hopf
parametrisation of ¥X gives a homeomorphism from %.yenX to

{(&.n,t) e 2X X Z : t =d(xo,]¢n[) mod 2} .

The restriction of the Gibbs measure mg to %venX, that we will again denote by mg, disin-
tegrates by the projection on the first factor 02X x Z — 02X over the geodesic current M p
where, for every (£,7) € 02X and (any) x € |, 7],

A~ . (o0, (2o, —
dinp(€,m) = % COD TR gy (&) dpf () (4.18)
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with conditional measure on the fiber over (£,7) the counting measure on the discrete set
{teZ : t = d(zo]&mn[) mod2}. Since mp is finite and invariant under the discrete
time geodesic flow, it is conservative by Poincaré’s recurrence theorem. Hence the measure
quasi-preserving action of I' on the measured space (02X, ) is ergodic by (the discrete time
version of) Theorem 4.6.

Since the distance between two points in a horosphere of a simplicial tree is even, and again
by Equation (4.15), every horosphere of X is either entirely contained in VeyenX or entirely
contained in V,gqX. For every £ € oven X, its strong stable/unstable leaf

WE) ={{ e 9X : Jimd((1), £'(t)) = 0}

is contained in Yyen X, since the image by the footpoint projection of a strong stable/instable
leaf is a horosphere (see Equation (2.14)). Thus %.yenX is saturated by the partition into
strong stable/instable leaves of ¥X.

We now follow rather closely the arguments of | , Theo. 1] in order to prove the last
claims of Theorem 4.17, the main point being that the geodesic current m g is a quasi-product
measure.

The following lemmas are particular cases of respectively Lemma 1 and Fact page 64
of | |, valid for general finite measure preserving dynamical systems, applied, with the
notation of loc. cit, to (T3)ea = (g2)sez.

Lemma 4.19. Let f € L?>(D\%eyenX, mp) be such that § f dmp = 0. If there exists an increas-
ing sequence (tp)nen in Z such that f o g?n does not converge to 0 for the weak topology on
L2(I\%ovenX, mp), then there exist an increasing sequence (Sp)nen in Z and a nonconstant'”
element f* € L?(T\GoyenX, mp) such that f o g?*n and f o g=2%" both converge to f* for the
weak topology on L?(IM\%evenX, mrp). O

Lemma 4.20. If (fu)nen is a sequence in L?(T\GowenX, mp) weakly converging to f* in
LQ(F\%VQHX,mF), then there exists a subsequence (fpn,)ren such that the Cesaro averages

2— . .
ﬁ lequo ! n, converge pointwise almost everywhere to f* as N — +o0. O

Recall that the support of mp is the nonwandering set Qeven. Assume for a contradiction
that the restriction of mp to I'\%eyen X is not mixing under the even discrete time geodesic flow.
Then there exists a continuous function f with compact support on Qeyen such that § f dmp =
0 and (f o g?"),en does not weakly converge to 0 in L2(T\%.yen X, mp). By Lemmas 4.19 and
4.20, there exist a nonconstant element f* € L2(F\gevenX,mF) and increasing sequences
(n;f) ken in N such that ﬁ ZkN:o— Lo giQ”lJf pointwise almost everywhere converges to f* as
N — +o0.

Let f * = f* 0 Peven, Where Peven @ DevenX — [N\ZevenX is the canonical projection, be the
lift of f* to %venX. Since the conditional measures for the disintegration of mp over mp are
counting measures on countable sets, there exists a full 7 p-measure subset Fy of 02X such
that, for every ¢ € YeyenX with (¢_,¢1) € Ey, the above convergences hold after lifting to
4.venX at the points g2/ for all n € Z.

For every £ € YovenX, the subgroup Ay of 27Z given by the periods of the map 2n — fN*(gzné)
only depends on (¢_,¢). Thus, we have a measurable map from FEj into the (discrete) set

1"Recall that an element of ]LQ(Z ,m) is nonconstant if any representative function is not almost everywhere
constant.
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of subgroups of 2Z, which is I'-invariant, hence is constant mpg-almost everywhere by the
ergodicity of mpg under T.

Assume for a contradiction that this almost everywhere constant subgroup is 2Z, that is,
that the values of ]? * almost everywhere do not depend on the time parameter in the discrete
Hopf parametrisation of %.yenX. Then f* defines a I'-invariant measurable function on 8§OX.
Again by ergodicity, this function is almost everywhere constant, contradicting the fact that
f* is not almost everywhere constant.

Hence there exist a full mp-measure subset F of Ey and k € N—{0, 1} such that Ay = 2k Z
for every £ € YoyenX with (/_,¢;) € E;. Let us finally prove that Lr is contained in 2k Z,
which contradicts the original assumption that Lpr = 27Z.

Let f* = lim SUP N s 400 ﬁ Zi\io fo gi%% O Peven, SO that the set

E={(n)€eE : VIeGneX, if £ =¢and ly =17, then fF(£) = () = f*(0)}

has full 7 p-measure. By the hyperbolicity of the geodesic flow (see Equation (2.10)) and the
uniform continuity of f, the map f* is constant along any strong stable leaf of %yenX and
f~ is constant along any strong unstable leaf. Let

E- ={¢e Al : (,,7) € E for ;L;O—almost every n € AT}

and
ET ={ne ATl : (¢,n) € E for u, -almost every £’ € AT} .

Since 7 p is in the same measure class as the product measure p; ® pf (see Equation
(4.18)), and by Fubini’s theorem, we have pu, ( “E~) = 0 and pjf ( °E™) = 0, and the set
E~ x E7T has full mp-measure.

Let v be a loxodromic element of I', and let x be any vertex of X on the translation axis of
7. Since d(z,vx) is even (see Equation (4.17)), the midpoint y of the geodesic segment [z, vx]
is a vertex of X. Since z and y have degree at least 3, there exist & and &, in dx X whose
closest points on the translation axis of  are respectively x and y. Note that &;,§, € A" as
X = AT Since y and z are the closest points to v+ and y— on the geodesic line |&;, &, [, we

ha’V618 [[gx,’Yngy,’Yf]] = d(fL’,y)

Since E n (E~ x E™) has full mp-measure, there exists (£,1) € En (E~ x E™) arbitrarily
close to (v—,&;). Since the set
{(€. ) edyT « (&n), (& ), (€ 1) € B}

18See Section 2.6 for the definition of the crossratio of an ordered quadruple of pairwise distinct points in
O X.
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has full 7 -measure, there exists such a (¢/,7) arbitrarily close to (v4,&,). Let £0 € GoyenX
be such that (% = ¢ and £ = 7. Let ¢' € WT(£°) be such that /1 = ¢’ Let (2 € W~ (£) be
such that £2 = 7. Let £3 € W (£?) be such that 3 = ¢. Finally, let ¢4 € W~ (£3) be such
that ¢4 = 7. Then ¢ = g2*/Y for some s € Z with 2|s| = d(£°(0), £4(0)).

By the definition of E and since f+ (resp. f_) is constant along the strong stable (resp. un-
stable) leaves, we have

P =T =T = J (@) = () = J* () = T (&)
=@ = (") = (") = [ (>0 .
Hence 2|s| is a period in Ayo, thus is contained in 2 k Z.
If t > 0 is large enough, we have

™

Ot) =), (-t)=C(=1), £@t)=20(), C(-t)=L(-1),

which respectively tend to n, &, 1/, € as t — +00. Since the crossratio is locally constant and
by its properties, in particular its definition in Equation (2.21), we have

U(y) = d(z,v2) = 2d(z,y) = 2[&, 7+, &y, 7-1 = 2[0. €1, €]
= lim d(£0(1), €3(—=t)) — d(E (=), £2(1)) + d(E2(t), £ (=) — d(£' (1), £°(t))
= lim d(£0(t), £3(=t)) — (¢ (=), £1(1)) = Jim d((t), (1)) — 2t
= d(£°(0),£(0)) = 2|s| € 2K Z .
Thus Lr < 2k Z, which contradicts the fact that Lp = 27Z. O

By Proposition 4.16, the general assumptions of Theorem 4.17 are satisfied if X is uniform,
without vertices of degree 2, I' is a lattice of X and F=0.T hus, if we assume furthermore
that T'\X is not bipartite, then the Bowen-Margulis measure mpgy of T' is mixing under the
discrete time geodesic flow on I'\¥X.

99 13/02/2019



100 13/02/2019



Chapter 5

Symbolic dynamics of geodesic flows
on trees

In this Chapter, we give a coding of the discrete time geodesic flow on the nonwandering sets
of quotients of locally finite simplicial trees X without terminal vertices by nonelementary
discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet. Similarly
we give a coding of the continuous time geodesic flow on the nonwandering sets of quotients of
locally finite metric trees (X, A\) without terminal vertices by nonelementary discrete subgroups
of Aut(X, \) by suspensions of such subshifts. These codings are used in Section 5.4 to prove
the variational principle in both contexts, and in Sections 9.2 and 9.3 to obtain rates of mixing
of the flows.

5.1 Two-sided topological Markov shifts

In this short and independent Section, that will be used in Sections 5.2, 5.3, 5.4, 9.2 and 9.3,
we recall some definitions concerning symbolic dynamics on countable alphabets.!

A (two-sided) topological Markov shift’ is a topological dynamical system (¥,0) con-
structed from a countable discrete alphabet o7 and a transition matric A = (A )i, jews €
{0,1}*“  where ¥ is the closed subset of the topological product space .«7% defined by

S={v=(@n)nez € L V€L, Ay zn. =1},
and o : ¥ — ¥ is the (two-sided) shift defined by
(@(2))n = Zn+1
for all z € ¥ and n € Z. Note that to be given (&7, A) is equivalent to be given an oriented
graph with countable set of vertices .7 (and set of oriented edges a subset of &7 x &) and

with incidence matrix A such that A; ; = 1 if there is an oriented edge from the vertex i to
the vertex j and A; ; = 0 otherwise.

!See for instance [Kit, .

2Note that the terminology could be misleading, a topological Markov shift comes a prori without a measure,
and many probability measures invariant under the shift do not satisfy the Markov chain property that the
probability to pass from one state to another depends only on the previous state, not of all past states.
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For all p < ¢ in Z, a finite sequence (a,)p<n<g € &P is admissible (or A-admissible
when we need to make A precise) if Aq, 4,,, = 1 for all n € {p,...,q¢ —1}. A topological
Markov shift is transitive if for all x,y € &7, there exists an admissible finite sequence (ay)p<n<q
with a, = x and a; = y. This is equivalent to requiring the dynamical system (X, o) to be
topologically transitive: for all nonempty open subsets U, V in X, there exists n € Z such that
Uno™(V) # .

Note that the product space 7% is not locally compact when &7 is infinite. When the
matrix A has only finitely many nonzero entries on each line and each colum, then (X, 0) is
also called a subshift of finite type (on a countable alphabet). The topological space ¥ is then
locally compact: By diagonal extraction, for all p < ¢ in Z and ap, aps1,...,aq-1,a4 in &,
every cylinder

[ap, api1,- .. aq-1,0q] = {(ajn)nez eEX :Vnelp,...,q}, = an}

is a compact open subset of X.
Given a continuous map Fiynp, : £ — R and a constant CPyymn € R, we say that a measure
P on ¥, invariant under the shift o, satisfies the Gibbs property® with Gibbs constant CPymb

for the potential Fyyyy, if for every finite subset E of the alphabet o7, there exists Cp > 1
such that for all p < ¢ in Z and for every x = (z,)nez € ¥ such that z,,z, € E, we have

1 P([wpvxp+17~--,$q_1,xq])
FE S eicFSymb(q7p+1)+ZZ:p Fyymp (o) <Cg. (5.1)

Two continuous maps Fiymp, FS’ymb : X — R are cohomologous if there exists a continuous
map G : ¥ — R such that

/
symb—Fsymb:GOU—G-

5.2 Coding discrete time geodesic flows on simplicial trees

Let X be a locally finite simplicial tree without terminal vertices, with X = |X]; its geometric
realisation. Let I" be a nonelementary discrete subgroup of Aut(X), and let F:T'X — R be
a potential for I'.

In this Section, we give a coding of the discrete time geodesic flow (gt)ez on the nonwan-
dering subset of ["\¥X by a locally compact transitive (two-sided) topological Markov shift.
This explicit construction will be useful later on in order to study the variational principle
(see Section 5.4) and rates of mixing (see Section 9.2).

The main technical aspect of this construction, building on | , §6], is to allow the case
when I' has torsion. When T' is torsion free and I'/X is finite, the construction is well-known,
we refer for instance to | | for a more general setting when the potential is 0. In order
to consider for instance nonuniform tree lattices, it is important to allow torsion in I'. Our
direct approach also avoids the assumption that the discrete subgroup I' is full, that is, equal
to the subgroup consisting of the elements g € Aut(X) such that pog = p where p: X - "X
is the canonical projection, as in [[<wo| (building on | , 7.3]).

Let X’ be the minimal nonempty I'-invariant simplicial subtree of X, whose geometric
realisation is €Al'. Since we are only interested in the support of the Gibbs measures,

3Note that some references have a stronger notion of Gibbs measure (see for instance | |), with the
constant C' independent of F.
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we will only code the geodesic flow on the nonwandering subset T'\X' of T'\¥X. The same
construction works with the full space T\¥X, but the resulting Markov shift is then not
necessarily transitive.

Let (Y,Gy) = T\X' be the quotient graph of groups of X’ by I" (see for instance Example
2.10), and let p : X’ — Y = I'\X' be the canonical projection. We denote by [1] = H the
trivial double coset in any double coset set H\G/H of a group G by a subgroup H.

We consider the alphabet <7 consisting of the triples (e™, h,e™) where
e et e EY satisfy t(e”) = o(e™) and
o "€ pe(Ge- )\Go(er)/poz(Ger) satisty h # [1] if et =e™.

This set is countable (and finite if and only if the quotient graph I"\X' is finite), we endow
it with the discrete topology. We consider the (two-sided) topological Markov shift with
alphabet @ and transition matrix A , ) - pe+) = 1if et = €~ and 0 otherwise.
Note that this matrix A = (A4; ;) jewr has only finitely many nonzero entries on each line and
each column, since X’ is locally finite and I' has finite vertex stabilisers in X’. We consider
the subspace

Y= {(ei_,hi,eJr

7

Jiecz € AL Ni€Z, e} =e;}

of the product space /%, and the shift ¢ : ¥ — ¥ defined by (o(z)); = x;41 for all (z;);ez in
> and ¢ in Z. As seen above, Y is locally compact.

Let us now construct a natural coding map © from IM¥X' to X, by slightly modifying the
construction of | , §6].

hit1(€) € Gt(ei)

Vi :"Yi+1 _p Ml
Y
% 4 Gt
gez n "’g€i+1
—_—— s _ !
- e in (Y,G,) =T\X

For every discrete geodesic line ¢ € ¥X’, for every i € Z, let f; = f;(¢) be the edge of
X" whose geometric realisation is ¢([i,7 + 1]) with origin f(i) and endpoint f(i + 1), and let
e; = p(fi), which is an edge in Y. Let us use the notation of Example 2.10: we fix lifts €
and ¥ of every edge e and vertex v of Y in X’ such that & = e, and elements ge € T' such
that get/(\e/) = t(€). Since p(é;) = e; = p(fi), there exists 7; = 7;(¢) € I', well defined up to
multiplication on the left by an element of G, = I's;, such that ~; f; = €; for all i € Z.

We define e, (0) = €;, e/, 1(f) = €41, and

) —g ! ) . -1
h2+1(€> ge;+l(€) fyl(é) ’714*1(6) geztrl(e) . (52)

Since for every edge e of Y the structural monomorphism

pelGezrg _— Gt(e) =Ft(’\g)
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is the map g — g, 'gge, the double coset of h;(£) in pe;(e)(Ge;(Z))\Go(ej(Z))/peT(g)(Gej(e))
does not depend on the choice of the ~;’s, and we again denote it by h;(¥).

The next result shows that, assuming only that I' is discrete and nonelementary, the time-
one discrete geodesic flow g! on its nonwandering subset of I'\¢X is topologically conjugate
to a locally compact transitive (two-sided) topological Markov shift.

Theorem 5.1. With X' = €A, the map © : T\YX' — X defined by

Tl (e; (£),hi(0), e (£))icz
is a homeomorphism which conjugates the time-one discrete geodesic flow gt and the shift o,
that is, the following diagram commutes

rex’ —f£ N@x'

@l l@

y 2, % 7

and the topological Markov shift (3, 0) is locally compact and transitive.
Furthermore, if we endow T\YX' with the quotient distance of

d(ﬁ, E/) —e Sup{nGN: €|[_n7n] = f'\[_n,n]}

on 9X" and ¥ with the distance

d(l‘ $/) _ efsup{nEN: Vie{-n,.,n}, x; = x;}
b )

then © is a bilipschitz homeomorphism.

Finally, if X' is a uniform tree without vertices of degree at most 2, if the Gibbs measure
mp of I is finite, and if the length spectrum Lr of I is equal to Z, then the topological Markov
shift (X, 0) is topologically mizing.

Note that when Y is finite (or equivalently when I' is cocompact), the alphabet 7 is finite
(hence (X, 0) is a standard subshift of finite type). When furthermore the vertex groups of
(Y, G) are trivial (or equivalently when I' acts freely, and in particular is a finitely generated
free group), this result is well-known, but it is new if the vertex groups are not trivial. Compare
with the construction of | |, whose techniques might be applied since I" is word-hyperbolic
if Y is finite, up to replacing Gromov’s (continuous time) geodesic flow of I' by the (discrete
time) geodesic flow on ¥X’, thus avoiding the suspension part (see also the end of op. cit. when
I is a free group).

Proof. For all £ € 49X’ and 7 € T, we can take v;(v¢) = v;(£)y 1, and since p(vf;) = p(f;), we
have e (7€) = ef (¢) and h;(v€) = h;(¢), hence the map © is well defined. By construction,
the map © is equivariant for the actions of g! on I'\¥X’ and o.

With the distances indicated in the statement of Theorem 5.1, if £,/ € 94X’ satisfy
Ui=n,n] = gi[fn,n] for some n € N, then we have e} (¢) = ef (¢) for —n < i < n — 1,
and we may take v;(¢) = v;(¢') for —n <i < n —1, so that h;(¢) = h;(¢') for —n <i<n-—1.
Therefore, we have

d(eTe),eI)) <edle,rr),
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and © is Lipschitz (hence continuous).

Let us construct an inverse ¥ : ¥ — I'\¥X’ of ©, by a more general construction that will
be useful later on. Let I be a nonempty interval of consecutive integers in Z, either finite or
equal to Z (the definition of the inverse of © only requires the second case I = Z). For all
e”,eT € EY such that t(e”) = o(e™), we fix once and for all a representative of every double
coset in p—(Ge-)\Go(e+)/pz7(Ge+ ), and we will denote this double coset by its representative.

Let w = (e;, hi, €] )ier be a sequence indexed by I in the alphabet & such that for all
i € I such that i — 1 € I, we have ej_l = e; (when I is finite, this means that w is an A-
admissible sequence in &7, and when I = Z, this means that w € X). In particular, the element

h; € Go(e:r) = FO’(;?) is the chosen representative of its double coset Pe- (Ge;) h; pg(Gej).

For every i € I, note that

But h; gT:l e;r is not the opposite edge of the edge g ! e; , since the double coset of h; is
€ K

k3
~

not the trivial one [1] when e} = g, hence h; does not fix gefl e; . Therefore the length 2

edge path (see the picture below)

~

-1°= . 1%
(98; ei,hlgg e; )

is geodesic.

- + + - +
Y . € =€ 1 . €; Cit1 Cit1 .
A
p . > )
. (3
0(61' )
X = =
gef e’L : 1 f geT ei
| g + gez'\ ‘ ‘
! ‘ | hita
| .
| ~
11 -1 + !
h Ier i |
|
| ai:
Y \
fi1 fi fiv1

Let us construct by induction a geodesic segment w in X’ (which will be a discrete geodesic
line if I = Z), well defined up to the action of I', as follows.

We fix ig € I (for instance ig = 0 if [ = Z or i9p = min [ if I is finite), and «;, € I'. Let us
define N

fig = fig(w) = oy ge;l 6;8 :
i0
Let us then define
Qjg—1 = jp—1(w) = oy, Qefl 9+ higl and  fi,—1 = fip—1(w) = ig-1 g - ! € -
20 iQ 20
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We have a;,—1 hi, gj_1 e:g = fi, and (fi,—1, fi,) is a geodesic edge path of length 2 (as the
€
image by «a;,—1 of such a path).

Let i — 1,7 € I be such that i < iy < i — 1. Assume by increasing induction on ¢ and
decreasing induction on i’ that a geodesic edge path (fy_1 = fy_1(w),..., fi—1 = fi—1(w)) in
X" and a sequence (ay_1 = ay_1(w),...,a;—1 = a;j—1(w)) in T' have been constructed such
that

-1 ¥ -1
fi=qj ge;r e; and o = a1 hj gg gej
for every j € N such that i/ — 1 < j <14 — 1, with besides j > ¢ for the equality on the right.
If 4 does not belong to I, we stop the construction on the right hand side at ¢ — 1. If on
the contrary i € I, let us define (see the above picture)

~

a; = a1 h; ge—fl ger and fi= filw) = o ge_fl e

7

Then

(fie1, fi) = (aia gei__l e; , i1 h; 967_1 el) .
is a geodesic edge path of length 2 (as the image by «;_1 of such a path). As an edge path
is geodesic if and only if it has no back-and-forth, (fy,..., f;) is a geodesic edge path in X'.
Thus the construction holds at rank ¢ on the right.

If i/ — 1 does not belong to I, we stop the construction on the left side at i’. Otherwise we
proceed as for the construction of a;,—1 and f;,—1 in order to construct a;_o and fy_o with
the required properties.

fI=[pqgnZwithp<qginZletI'=[p—1,9q]nZ. It I =727Z,let I' =7Z. We have
thus constructed a geodesic edge path

(fi)ier = (fi(w))ier (5.3)

in X’. We denote by @ its parametrisation by R if I = Z and by [p—1,q+ 1] if I = [p,q] n Z,
in such a way that @w(i) = o(f;) for all ¢ € I. In particular, f; = w([i,é + 1]) for all ¢ € I'.
When I = [p,q] nZ, we consider w as a generalised discrete geodesic line, by extending it to
a constant on | — o0, p — 1] and on [¢ + 1, + 0] .

The orbit ' of @ does not depend on the choice of ¢, since replacing «;, by o , replaces
fi by 0‘;00%‘_01 fi for all 2 € I’, hence replaces w by agoai_ol
not depend on the choice of ig € 1.

Assume from now on that I = Z, and define ¥ : ¥ — I'"¥X' by

w. This also implies that I'w does

U(w)=Tw.

Let w = (e; , hi, €] )iez and w' = (eg_,h’i,ef)ie] in ¥ satisfy e;—r = egi and h; = h/; for all
i€ {—n,...,n} for some n € N. Then we may take the same iy = 0 and o, in the construction
of @ and w’. We thus have a;i(w) = a;(w') and f;(w) = fi(w') for —n < i < n. Therefore,
with the distances indicated in the statement of Theorem 5.1, we have

d((w), ¥(w')) < d(w,w')

and ¥ is Lipschitz.
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Let us prove that ¥ is indeed the inverse of ©. As in the construction of ©, for all £ € ¥X’
and i € Z, we define f; = (([i,i + 1]), e} = p(f;) and e; = e ;. We denote by 4/ € I an

element sending f; to gejl e; for all i € Z (see the picture below): with the notation above

the statement of Theorem 5.1, we have v, = gejl Yi(£).

X’ ° T T °
: fi-1 fi 1 fit1
i | N Vi
: ! -1 I
: gef 6;_ V
: ! - :
v o | "
: 1 g—"g.+ ! ’f it1
1= I e; i 1 "\_,;_/
gei— € Y Y gefr €
o(e;) h
'7;_1fi ’

Y - + - +
Y . | . € =6+ . Cit1 .

Then ~; is well defined up to multiplication on the left by an element of I' | ~ = p_+ (G +).
ge+ €; 7 2

Let h; be an element in GO(e:r) sending g?r_ 1 e;r to v/_, fi. It exists since these two edges have

the same origin o(e; ), and same image by p:

PO fs) = p(f) = ef = ple) =plot el ) .

+
€.
et "
k3

Furthermore, it is well defined up to multiplication on the right by an element of I' _, ~ =
gi
pej(Gegr), and we have (see the above picture)

-1 _1
Vi1V 9,5 97 € hip(Ger)

Using v;(¢) = gejwy} for j = i,i—1 in Equation (5.2) gives h;(¢) = fyz’»_l’y{_lge;lgej. Hence

by the construction of © (see with 7, = ge_:l ~i(€) for all ¢ € Z), we have

6(6) = (6;7 Pei— (Ge ) h; p?(Gej'), 6;)7:62 .

Let h; be the chosen representative of the double coset pe;(Ge;) h; pE(Gej> . there exist
aep,-(G,-)= petl(Getl) and 8 € p(G +) such that h; = ah;B. Up to replacing v;_; by

™1yl and Rl by hB, we then may have h = h;. By taking a;, = ’yzfo_l, we have a; = %{_1

for all ¢ € Z, and an inspection of the above two constructions gives that ©® o ¥ = id and

¥oO =id.
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Since the discrete time geodesic flow is topologically transitive on its nonwandering subset
and by conjugation, the topological Markov shift (X, o) is topologically transitive.

If X’ is a uniform tree without vertices of degree at most 2, if the length spectrum of T is
equal to Z and if the Gibbs measure mp for I is finite, then by Theorem 4.17, the discrete time
geodesic flow on I'\¥X' is topologically mixing, hence by conjugation by O, the topological
Markov shift (X, o) is topologically mixing. This concludes the proof of Theorem 5.1. Il

When the length spectrum Ly of T' is different from Z, the topological Markov shift (X, o)
constructed above is not always topologically mixing. We now modify the above construction
in order to take care of this problem.

Recall that X' = €Al and that %..en X’ is the space of geodesic lines £ € ¥X’ whose origin
£(0) is at even distance from the basepoint zy (we assume that xg € X'), which is invariant
under the time-two discrete geodesic flow g and, when Ly = 2Z, under I', as seen in the
proof of Theorem 4.17.

Consider “eyen the alphabet consisting of the quintuples (f=,h~, fO, AT, f¥) where the
triples (f~,h~, f) and (f°,h*, f*) belong to 7 and o(f°) is at even distance from the
image in Y = I'\X’ of the basepoint xzg. Let Acven = (Aeven,i,j)ijesiw, D€ the transition
matrix with line and column indices in @ye, such that for all i = (f~,h~, fO,h*, f*) and
= (fiha  fO I fF), we have Aeyen,i; = 1 if and only if f* = f.. We denote by
(Xeven, Oeven) the associated topological Markov shift. We endow Xeven with the slightly
modified distance

deven(-%',x/) _ e—2sup{n€N: Vke{-n,..,n}, zp = x%}

Y

where © = (z)kez and @’ = (2),)kez are in Xeyen.
We have a canonical injection inj : Yeyen — X sending the sequence (£, h,, , fO, bty £ ez
to (e, hn, € Ynez with, for every n € Z,

egn = fn_7 h2n = h;’ e;n = fg? 6;n+1 = f'r?? h2n+1 = h:l_’ 62+n+1 = f'rj? .
By construction, inj is clearly a homeomorphism onto its image, and
OM\%evenX') = inj(Zeven) -

If two sequences in Yy, coincide between —n and n, then their images by inj coincide
between —2n and 2n. Conversely, if the images by inj of two sequences in Yeyen coincide
between —2n — 1 and 2n + 1, then these sequences coincide between —n and n. Hence inj is
bilipschitz, for the above distances.
Let us define ©cyen = inj ' o OlP\yenx” M\ Yeven X' — Xeven. The following diagram hence
commutes
F\gevenX, M) Eeven

Bt

nex —2. %,

where the vertical map on the left hand side is the inclusion map.

Theorem 5.2. Assume that X' = € AT is a uniform tree without vertices of degree at most 2,
that the Gibbs measure mp of I is finite, and that the length spectrum Lr of I is equal to 27.
Then the map Ocven : [N\ ZGeven X — Zeven @5 a bilipschitz homeomorphism which conjugates
the time-two discrete geodesic flow g? and the shift Oeven, and the topological Markov shift
(Beven, Teven) s locally compact and topologically mizing.
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Proof. The only claims that remains to be proven is the last one, which follows from Theorem
4.17, by conjugation. L]

Let us now study the properties of the image by the coding map © of finite Gibbs measures
on N"¥X.

Let § = &p g+ be the critical exponent of (I', F*). Let (uf)sevx be two (normalised)
Patterson densities on 0o, X for the pairs (I', F), where as previously Ft=F F-=Fou..
Assume that the associated Gibbs measure mp on I'"¥X (using the convention for discrete
time of Section 4.3) is finite.

Let us define )

[mep|
as the image of the Gibbs measure mp (whose support is I'\¢X’) by the homeomorphism ©,
normalised to be a probability measure. It is a probability measure on X, invariant under the
shift o.

Let (Z,)nez be the random process classically associated with the full shift o on X: it is
the random process on the Borel space 3 indexed by Z with values in the discrete alphabet
o/, where Z, : ¥ — o/ is the (continuous hence measurable) n-th projection (x)ken — =,
for all n € Z.

The following Proposition 5.5 summarises the properties of the probability measure P. We
start by recalling and giving some notation used in this proposition.

For every admissible finite sequence w = (ap, ..., aq) in &7, where p < ¢ in Z, we denote

o by [w] = [ap,...,aq] = {(zn)nez €E : Yne{p,....q}, x, = a,} the associated
cylinder in X3,

e by w the associated geodesic edge path in X’ with length ¢ — p + 2 constructed in the
proof of Theorem 5.1 (see Equation (5.3)), with origin w_ and endpoint w .

For every geodesic edge path a = (fp—1,..., fg) in X/, we define (See Section 2.6 for the
notation, and the picture below)

0. X' =05, X and 0,X =03-X,

and
G X={le¥9X : U(p—1)=0(fp-1) and l(g+1)=1t(fy)}-

fp—l fq

We define a map Fyymp, : X — R by

teg)
Fsymb(x) = f F (55)

o(eg)

if © = (@;)iez with 2o = (eg , ho, e ). Note that for all (z,)nez, (Yn)nez € =, if 2o = yo, then
Fyymb(2) = Fyymb(y), so that Fyymy is locally constant (constant on each cylinder of length 1
at time 0), hence continuous.
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For instance, if ' = F_ is the potential associated with a system of conductances c :
MEX" — R (see Section 3.5), then

Fsymb(x) = 6(63_) :

Note that if ¢, ¢’ : T\EX’ — R are cohomologous systems of conductances on I'\EX', then the
corresponding maps Fiymp, Fr, 1 @ 3 — R are cohomologous. Indeed if f : T'\VX — R is a
map such that ¢/(e) — c(e) = f(t(e)) — f(o(e)) for every e € T\EX, with G : ¥ — R the map
defined by G(z) = f(o(e)) if z = (x;)iez With zg = (eg, ho, €7 ), then G is locally constant,
hence continuous, and since t(ej ) = o(ef), we have, for every z € 3,

s,ymb(x) - Fsymb(x) = G(O'QZ') — G(.Z‘) .

Definition 5.3. Let X” be a locally finite simplicial tree. A nonelementary discrete sub-
group I of Aut(X") is Markov-good if for every n € N — {0} and every geodesic edge path
(€0 -, ent1) in €AY, we have

T, n---nTy [T, nT, Ty |=T, n---nD, [T,  nT¢]. (5.6)

1 €n En+1 €n+1 €n—1

Remark 5.4. (1) Note that Equation (5.6) is automatically satisfied if n = 1 and that I" is
Markov-good if I acts freely on X”.

(2) A group action on a simplicial tree is 2-acylindrical * if the stabiliser of any geodesic edge
path of length 2 is trivial. If I is 2-acylindrical on X, then IV is Markov-good, since all groups
appearing in Equation (5.6) are trivial.

(3) If X” has degrees at least 3 and if I” is a noncocompact geometrically finite lattice of X”
with abelian edge stabilisers, then I' is not Markov-good.

Proof. (3) Since the quotient graph I"\X” is infinite, the graph of groups I"\X” contains at
least one cuspidal ray. Consider a geodesic ray in X” with consecutive edges (f,)neny mapping
injectively onto this cuspiday ray, pointing towards its end. The stabilisers of the edges f, in
IV are hence nondecreasing in n: we have F/fn c F/fn+1 for all n € N. By the finiteness of the
volume, there exists n > 3 such that F/fn—Q is strictly contained in F,fn_l' Since X” has degrees
at least 3, there exists v € I fixing ¢(f,,—1) but not fixing f,—1. Let eg = fo,...,€n—1 = fn—1,
én = 7Y fon-1 and epy1 = v fn_o. Since the stabilisers of f,—; and e, are conjugated by
~ within the abelian stabiliser of f,,, they are equal. Then (eq,...,e,+1) is a geodesic edge
path in the simpliciak tree X” (whose geometric realisation is equal to @AI” since I is a
lattice). Since I', n--- NI, =T1% T, nI, nI, =T r,n-—-nl, =T

fo> -1 €n+1 fn—2’ en+1 fo?

e, nle, =T% and[[, |+ I, | the subgroup I' is not Markov-good. ]

Recall that a random process (Z,)nez on (X,P) is a Markov chain if and only if for all
p<qinZand ay,...,aq aq+1 in &7, we have, when defined,

P(Zyy = agi1| Zy = aq, ..., Z, = ap) = P(Zyy 1 = ags1 | Z = ag) . (5.7)

Proposition 5.5. (1) For every admissible finite sequence w in </, we have

Oy
(o)) < Fo 0K v, (@5%) &+ T
w =
Tl lmr|
4See for instance [Sel, |, which require other minor hypotheses that are not relevant here.
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(2) The random process (Zp)nez on (X,P) is a Markov chain if and only if T' is Markov-good.

(8) The measure P on the topological Markov shift ¥ satisfies the Gibbs property with Gibbs
constant 0 for the potential Fyy,.

It follows from the above Assertion (2) and from Remark 5.4 that when X has degrees at
least 3 and I' is a noncocompact geometrically finite lattice of X with abelian edge stabilisers
(and more generally, this is not a necessary assumption), then (Z,)nez is not a Markov chain.
The fact that codings of discrete time geodesic flows on trees might not satisfy the Markov
chain property had been noticed by Burger and Mozes around the time the paper | | was
published.” When proving the variational principle in Section 5.4 and the exponential decay
of correlations in Section 9.2, we will hence have to use tools that are not using the Markov
chain property.

Proof. (1) Let w = (ap,...,aq), with p < ¢ in Z, be an admissible finite sequence in 7.
Recall that [w] = {z e X : Vie{p,...,q}, x = a;}. By the construction of ©, the preimage
O~ !([w]) is equal to the image I'¥Y;X’ of %X’ in T\¥X'. Hence, since I'y is the stabiliser of
4.X" in T, . .
! ~ !
P([w]) T mp(lY;X") Tl e mr(9:X") .

In the expression of mp given by Equation (4.12), let us use as basepoint the origin @w_ of
the edge path @, and note that all elements of ¥;X’ pass through @w_ at time t = p — 1, so
that by the invariance of mp under the discrete time geodesic flow, we have

mp(9pX') = J

dinp(g L) = f
LeGy X!

| g g )
0_eo X Jeyeotx

— 5 (03%) 15_(05X) = i_(05%') (25 b7

where this last equality follows by Equations (4.2) and (3.20) with = @_ and y = @, since
for every ¢4 € 05X, we have Wy € [0, 4.

9

(2) Let us fix p < ¢ in Z and ay, ..., aq, ag+1 in o7, and let us try to verify Equation (5.7) for

(Z))nen = (Zn)nen- Let ay = (ap, ..., aq), which is an admissible sequence, since we assumed
the conditional probability P(Z,4+1 = ag+1|Zq = aq,...,Z, = ap) to be well defined. We
may assume that o = (ap,...,aq,aq+1) is an admissible sequence, otherwise both sides of

Equation (5.7) are 0. Let us consider

P(Zgs1 = agy1|Zg = ag, .-, Zp = ap) _ P([ap, - - -, ag+1]) P([ag])
P(Zg11 = ag+1|Z4 = aq) P([ap, ..., aq]) P([ag, ag+1])

Let us replace each one of the four terms in this ratio by its value given by Assertion (1).

; Y — A~ X At — Aot I At xw/ — At/ -/ — A— /
Since 03 X' = (9aA*X, 02X = (9aq’aq+1X, ﬁaA*X = 6aAqX and (9@X = 6%%“3&, all Patterson
measure terms cancel. Denoting by y; the common origin of & and ay, by ys the common
origin of @, and ag, ag+1, by y3 the common terminal point of @, and ax, and by vy the

common terminal point of ag, a1 and &, we thus have by Assertion (1)

Qa:

YA (F_ Y3 (F_
e .

o= ) Tal  JSBd-o) Sud-o)

5Personal communication.
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Since y1, Y2, Y3, y4 are in this order on [yi, y4], we have

Ou = Taz| Tagagi
o = —x Sl
Tal U]

Since every geodesic edge path of length n + 1 at least 3 in X' defines an admissible
sequence of length n at least 2 in <7, by Equation (5.6), we have @, = 1 for every admissible
sequence « in ./ if and only if I' is Markov-good.

(3) Let E be a finite subset of the alphabet 7, and let w = (ap,...,aq) with p < ¢ in Z be
an admissible sequence in &7 such that a,,a, € E. By Assertion (1), we have

Dy
pg (05X") M$+(55X/) ol (F=0)
Tal| [mr|

P([w]) =

Since ap, a4 are varying in the finite subset E of &7, the first and last edges of W vary amongst
the images under elements of T' of finitely many edges of X’. Since w is admissible, the
sets é%rX’ are nonempty open subsets of AI'; hence they have positive Patterson measures.
Furthermore, the quantities u:ngr (6::;5&’ ) are invariant under the action of I" on the first/last
edge of @. Hence there exists ¢; > 1 depending only on E such that 1 < [Ty < [Ts_ | < &1
and é < uf{,Jﬁ%X’) < c1.

Note that the length of @ is equal to ¢ — p + 2. Therefore

e™® —8(q—p+1)+§5 " F

c |me|

-6 .2 By~
< P(lw]) < &G el E

~
[mrl

If © = (fp—1,fp:---,fq) and x € [w], we have by the definition of Fyym

Dy q t(fi) t(fp-1) . 4 .
JA F = 2 f F IJ F+ EFsymb(UZ(x» :

w— i=p—1 o(fi) o(fp-1) i=p

Since F' is continuous and I'-invariant, and since o(fp—1) remains in the image under I'
of a finite subset of VX', there exists ¢y > 0 depending only on E such that |F(v)| < ¢, for
every v € TP X with 7(v) € [o(fy—1),t(fp—1)]. Hence ]SZ((]}Z?) F| < ¢y, and Assertion (3) of
Proposition 5.5 follows (see Equation (5.1) for the definition of the Gibbs property). O

Again in order to consider the case when the length spectrum Ly of I' is 27Z, we define
1

I(mF)| r\Gevenx |

IPDeven = (Geven)* ((mF)| F\gevenX/) )
and (Zeven, n)nez the random process associated with the full shift oeyen 0n Yeven, With Zeven, n :
Yeven — Peven the n-th projection for every n € Z.

By a proof similar to the one of Proposition 5.5, we have the following result. We define
a map Fsymb, even : Meven — R by

()
Fsymb, even($) = f F (5.8)
o(£9)
if © = (4)iez With zo = (fy . by, fg, ha”, f&“) As previously, Fyymb, even is locally constant,
hence continuous.
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Proposition 5.6. The measure Peyen, 0n the topological Markov shift Yeven satisfies the Gibbs
property with Gibbs constant § for the potential Fyym, even- O

Again, if " is a noncocompact geometrically finite lattice of X with abelian edge stabilisers
and X’ has degrees at least 3, then (Zeven,n)nez is not a Markov chain.

5.3 Coding continuous time geodesic flows on metric trees

Let (X, A) be a locally finite metric tree without terminal vertices, with X = |X] its geometric
realisation. Let I' be a nonelementary discrete subgroup of Aut(X, A), and let F:T'X - Rbe
a potential for T'. Let X’ = € AT, which is the geometric realisation | X[, of a metric subtree
(X', \). Let § = 0p g+ be the critical exponent of (I', FF). Let (47 )zevx be the (normalised)
Patterson densities on 0, X for the pairs (I', F%), and assume that the associated Gibbs
measure mp is finite. We also assume in this Section that the lengths of the edges of (X', \)
have a finite upper bound (which is in particular the case if (X', \) is uniform). They have a
positive lower bound by definition (see Section 2.6).

In this Section, we prove that the continuous time geodesic flow on I'\%¥ X is isomorphic to
a suspension of a transitive (two-sided) topological Markov shift on a countable alphabet, by
an explicit construction that will be useful later on in order to study the variational principle
(see Section 5.4) and rates of mixing (see Section 9.3). Since we are only interested in the
support of the Gibbs measures, we will only give such a description for the geodesic flow on
the nonwandering subset T\¢ X’ of I"\¥ X. The same construction works with the full space
M¥ X, but the resulting Markov shift is then not necessarily transitive.

We start by recalling (see for instance | , §1.11]) the definitions of the suspension of
an invertible discrete time dynamical system and of the first return map on a cross-section of
a continuous time dynamical system, which allow to pass from transformations to flows and
back, respectively.

Let (Z,u,T) be a metric space Z endowed with a homeomorphism 7" and a T-invariant
(positive Borel) measure pu. Let r : Z — ]0,+o0[ be a continuous map, such that for all
z € Z, the subset {r(T"z) : ne N} U {—r(T~™*z) : ne N} is discrete in R. Then the
suspension (or also special flow) over (Z, u, T') with roof function r is the following continuous
time dynamical system (Z, i, (T?)ser) :

e The space Z, is the quotient topological space (Z x R)/~ where ~ is the equivalence
relation on Z x R generated by (z,s + r(2)) ~ (Tz,s) for all (z,s) € Z x R. We denote by
[z, s] the equivalence class of (z,s). Note that

F ={(z,s) : zeZ, 0<s<r(z)}

is a measurable strict fundamental domain for this equivalence relation. We endow Z, with
the Bowen-Walters distance, see | | and particularly the appendix in | .

e For every t € R, the map T : Z, — Z, is the map [z,s] — [z,s + t]. Equivalently,
when (z,s) € Z and t > 0, then T([z, s]) = [T"z,s'] where n € N and s’ € R are such that

n—1
t+ 5= Z r(T%2)+s and 0<s <r(T"z).
i=0
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e Denoting by ds the Lebesgue measure on R, the measure u, is the pushforward of
the restriction to .% of the product measure duds by the restriction to .% of the canonical
projection (Z x R) — Z,.

Note that (T)r is indeed a continuous one-parameter group of homeomorphisms of Z,,
preserving the measure ji,.. The measure p, is finite if and only if {, r dy is finite, since

Il = J dud8=f rdpu .
F Z

We will denote by (Z, u,T), the continuous time dynamical system (Z,, g, (T?)er) thus
constructed.

Conversely, let (Z, u, (¢¢)wer) be a metric space Z endowed with a continuous one-parameter
group of homeomorphisms (¢;)icr, preserving a (positive Borel) measure p. Let Y be a
cross-section of (¢4)wer, that is a closed subspace of Z such that for every z € Z, the set
{te R : ¢(z) € Y} is infinite and discrete. Let 7 : Y — |0, +o0[ be the (continuous) first
return time on the cross-section Y: for every y € Y,

7(y) =min{t >0 : ¢(y) eY}.

Let ¢y : Y — Y be the (homeomorphic) first return map to (or Poincaré map of) the cross-
section Y, defined by

by 1Y = ey () -
By the invariance of p under the flow (¢;)ser, the restriction of u to

{oe(y) - yeY, 0<t <7(y)}

disintegrates® by the (well-defined) map ¢ (y) — y over a measure uy on Y, which is invariant
under the first return map ¢y:

du(o(y)) = dt duy(y) -

Note that if 7 has a positive lower bound and if p is finite, then py is finite, since

lpll = llpy || inf 7,

and (Y, uy, ¢y ) is a discrete time dynamical system.

Recall that an isomorphism from a continuous time dynamical system (Z, i, (¢¢)er) to
another one (Z', 1/, (¢})ter) is a homeomorphism between the underlying spaces preserving
the underlying measures and commuting with the underlying flows.

Example 5.7. If (Z,u,T) and (Z', 1/, T") are (invertible) discrete time dynamical systems,
endowed with roof functions r : Z — 10, +oo[ and v’ : Z" — 0, +00[ respectively, if 0 : Z — Z’
is a measure preserving homeomorphism commuting with the transformations 7' and 7" (that
is, Oupo = p/, 0o T = T" 0 6) and such that

rof=r,

then the map 0 : Z, — Z', defined by [z,s] — [0(2),s] is an isomorphim between the
suspensions (Z, u, T), and (Z', 1/, T") .

Swith conditional measure on the fiber {¢:(y) : 0 <t < 7(y)} over y € Y the image of the Lebesgue
measure on [0, 7(y)[ by t — ¢+(y)
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It is well known (see for instance | , §1.11]) that the above two constructions are
inverses one to another, up to isomorphism. In particular, we have the following result.

Proposition 5.8. With the general notation above Example 5.7, the suspension (Y, py, ¢y )r
over (Y, py, ¢y) with roof function T is isomorphic to (Z, j, (¢¢)wer) by the map fy : [y, s] —

bsy. O

In order to describe the continuous time dynamical system (F\gX ’, %, (gt)teR) as a

suspension over a topological Markov shift, we will start by describing i1t as a suspension
of the discrete time geodesic flow on T'\¢X'. Note that the Patterson densities and Gibbs
measures depend not only on the potential, but also on the lengths of the edges.” We hence
need to relate precisely the continuous time and discrete time situations, and we will use in
this Section the left exponent § to indicate a discrete time object whenever needed.

For instance, we set® #X’ = |X’|; and we denote by (*g')icz the discrete time geodesic
flow on T\¥X'. Note that X’ and X’ are equal as topological spaces (but not as metric
spaces). The boundaries at infinity of X’ and #X’, which coincide with their spaces of ends
as topological spaces (by the assumption on the lengths of the edges), are hence equal and
denoted by 0 X.

We may assume by Section 3.5 that the potential F:T'X - R is the potential E,
associated with a system of conductances ¢ on the metric tree (X, \) for I'. Let 0. = dp,. We
denote by ¢ : EX — R the I'-invariant system of conductances

e (E(e) — de)A(e) (5.9)

on the simplicial tree X for I', by ﬁuc - T'(*X) — R its associated potential, and by fc :
MEX — R and Fi, : T\T'(*X) — R their quotient maps.

Note that the inclusion morphism Aut(X,\) — Aut(X) is a homeomorphism onto its
image (for the compact-open topologies), by the assumption of a positive lower bound on the
lengths of the edges, hence that I" is also a nonelementary discrete subgroup of Aut(X).

Now, let (X, 0,P) be the (two-sided) topological Markov shift conjugated to the discrete
time geodesic flow (F\gX’ , il ”:%) by the bilipschitz homeomorphism O : T\¥X' — ¥ of

Theorem 5.1 (where the potential Fis replaced by Fi.). Let r : ¥ — ]0, +o0[ be the map
reze— Med) (5.10)
if 2 = (xp)nez € ¥ and mg = (ey , ho, ef ) € . This map is locally constant, hence continuous

on X, and has a positive lower bound, since the lengths of the edges of (X', \) have a positive
lower bound.

"The fact that the Patterson densities could be singular one with respect to another when the metric varies
is a well known phenomenon, even when the potential vanishes. For instance, let ¥ = T'\HZ and &' = T"\HZ be
two closed connected hyperbolic surfaces, uniformised by the real hyperbolic plane (HZ, dsﬁyp) endowed with
torsion free cocompact Fuchsian groups I' and I''. Let ¢ : ¥ — X/ be a diffeomorphism, with lift (E - HZ — H3.
Then T is a discrete group of isometries for the two CAT(—1)-metrics dsﬁyp and gzﬁ*dsﬁyp. Kuusalo’s theorem
[ | says that the corresponding two Patterson densities of I" are absolutely continuous one with respect to
the other if and only if ¢ is isotopic to the identity. See an extension of this result in | |. See also the
result of | | which parametrises the Culler-Vogtmann space using Patterson densities for cocompact and
free actions of free groups on metric trees.

8See Section 2.6 for the definition of the geometric realisation |Y|; of a simplicial tree Y.
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Theorem 5.9. Assume that the lengths of the edges of (X', \) have a finite upper bound,
and that the Gibbs measure mp s finite. Then there exists a > 0 such that the continuous
time dynamical system (I\9 X', Tra] (g')ier) is isomorphic to the suspension (X, 0,aP), over

Y, 0,aP) with roof function r, by a bilipschitz homeomorphism O, : T\¥ X' — X,.
( y

Proof. Let
={{eD\¥X' : ((0)e\VX}.

Then the (closed) subset Y of T\ X’ is a cross-section of the continuous time geodesic
flow (g!)ser, since every orbit meets Y infinitely many times in a discrete set of times and
since the lengths of the edges of (X', \) have a positive lower bound. Let 7:Y — ]0, +00[ be
the first return time, let py be the measure on Y (obtained by disintegrating [ H) and let

:Y — Y be the first return map associated with this cross-section Y.

We have a natural reparametrisation map R : ¥ — I\¥X/, defined by ¢ — ¢, where
t0(n) = (gi0)(0) is the n-th passage of ¢ in VX, for every n € Z. Since there exist m, M > 0
such that A(EX) < [m, M], the map R is a bilipschitz homeomorphism. It conjugates the
first return map gy and the discrete time geodesic flow on I'\¥X':

Rogy = tigl oR.
The main point of this proof is the following result relating the measures py and mpg, .

Lemma 5.10.

(1) The family (uE)zevx is a Patterson density for (T, Fy.) on the boundary at infinity of
the simplicial tree X', and the critical exponent oy, of ¢ is equal to 0.
77’7/}7‘ti

< .

(2) We have R*”Z—iu =

Proof. (1) By the definition of the potential associated with a system of conductances,” for
every x,y € VX', if (e1,...,e,) is the edge path in X with o(e;) = = and t(e,) = y, then
(noting that the integrals along paths depend on the lengths of the edges, the first one below
being in X', the second one in #X”)

n

[[F =00 = Y eteone) - saen - [ . (5.11)

x i=1 x

Let us denote'” by
Yy —s)
'Q(s) = Qr.ry iz y(s) = ), ek (P,

~yell

and

Q(s) = Qr, Fumsra,y(s) = D SV (Fe=be-s5)

~yell

the Poincaré series for the simplicial tree with potential ﬁﬁc and for the metric tree with
normalised potential F. — §., respectively. With M an upper bound on the lengths of the
edges of (X, \), the distances d:y, on *X’ and dxs on X’ satisfy diy, > 77 dx’ on the pairs

9See Section 3.5.
108ee Section 3.3.
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of vertices of X'. We hence have *Q(s) < Q(55) < +0 if s > 0 and *Q(s) > Q(5;) = + if
s < 0. Thus the critical exponent d;, of (I, F,.) for the simplicial tree X’ is equal to 0, hence
Fy, is a normalised potential.

By the definition'! of the Gibbs cocycles (which uses the normalised potential), Equation
(5.11) also implies that the Gibbs cocycles C* and #C* for (T', F.) and (T, F:,) respectively
coincide on d,xX x VX x VX. Thus by Equations (4.1) and (4.2), the family (ui)zevx is
indeed a Patterson density for (I', Fi,): for all v € I and x,y € VX, and for (almost) all
£ € 0 X,

dpz

+ +
> = M5, and =e
Vg M'ya: dﬂ;_r (5)

- uc,gi (Z,’y) i

(2) We may hence choose these families (uf).eyx in order to define the Gibbs measure m F
associated with the potential F;. on I'\¥X. Note that since we will prove that m F, is finite,

m
the normalised measure Hm%cl\ is independent of this choice (see Corollary 4.7).
fe

Let Y ={te9gX" : £(0) e VX'} be the (I'-invariant) lift of the cross-section Y to ¥ X",

let R:Y — X be the lift of R, mapping a geodesic line £ € Y to a discrete geodesic line W

with same footpoint obtained by reparametrisation, and let 1y be the measure on Y whose

induced measure on Y = I‘\f/ is py. We have a partition of Y into the closed-open subsets
={{e9X" : £(0) ==z} as x varies in VX'

Let us fix z € VX. By the definition of uy as a disintegration of — " with respect to the

Hm
continuous time, by lifting to ¥ X’, by using Hopf’s parametrisation with respect to x and
Equation (4.4) with zp = x , we have for every { € Y,,

Ay (6) = —— dyiy (02) dya (£2) -

1
oA

Note that £(0) = #4(0), /_ = #¢_, ¢, = */, since the reparametrisation does not change the
origin or the two points at infinity. Hence by Assertion (1), we have

~ 1
Ry(py) = 57—
Ime.|
As py is a finite measure since 7 has a positive lower bound, this implies that mp, is finite.
By renormalizing as probability measures, this proves Assertion (2). O

e Let ¥ D\YX —

Let a = |py| > 0, so that by Lemma 5.10 (2) we have R,puy =
10, +00] be the map
¢ — X(€([0,1]))

given by the length for A\ of the first edge followed by a discrete geodesic line £ € ¥X’. Note
that 7 is locally constant, hence continuous, and that 7 is a roof function for the discrete time
dynamical system (I\¥X', fgl). Also note that

YFoR=7 and ro®©=F

by the definitions of 7 and r.

11GQee Section 3.4.
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Let us finally define O, : T\¢ X’ — ¥, as the compositions of the following three maps

mp ! B amp, =

C]
(F\gXla ) (gt)t€R> = (K Ky, gY)T r (F\gX’, ) ﬁgl)T“ (E’ a’P’ U)T ) (5'12)
Imp| Img, |

where the first one is the inverse of the tautological isomorphism given by Proposition 5.8
and the last two ones, given by Example 5.7, are the isomorphisms R and © of continuous
time dynamical systems obtained by suspensions of the isomorphisms R and © of discrete
time dynamical systems. It is easy to check that ©, is a bilipschitz homeomorphism, using
the following description of the Bowen-Walters distance, see for instance | , Appendix].

Proposition 5.11. Let (Z,pu,T), be the suspension over an invertible dynamical system such
that T is a bilipschitz homeomorphism, with roof function r having a positive lower bound
and a finite upper bound. Let dgw : Z, x Z, — R be the map'? defined (using the canonical
representatives) by

dBW([ZE7 8]7 [ZLJ? Sl]) =

min{d(z,2’) + |s — §'|, d(Tz,2') +r(z) —s+s, dx,T2") +r(z') +s— s}

Then there exists a constant Cgw > 0 such that the Bowen-Walters distance d on ¥, satisfies

1
e dpw < d < Cpwdpw - [
BW
This concludes the proof of Theorem 5.9. O

5.4 The variational principle for metric and simplicial trees

In this Section, we assume that X is the geometric realisation of a locally finite metric tree
without terminal vertices (X, \) (respectively of a locally finite simplicial tree X without
terminal vertices). Let I' be a nonelementary discrete subgroup of Aut(X,\) (respectively
Aut(X)).

We relate in this Section the Gibbs measures'® to the equilibrium states'* for the contin-
uous time geodesic flow on I"\Y X (respectively for the discrete time geodesic flow on I'\¥X).

When X is a Riemannian manifold with pinched negative curvature such that the deriva-
tives of the sectional curvature are uniformly bounded, and when the potential is Holder-
continuous, the analogs of the results of this Section are due to | , Theo. 6.1]. Their
proofs generalise the proofs of Theorems 1 and 2 of | |, with ideas and techniques going
back to [ |. When Y is a compact locally CAT(—1)-space, a complete statement about
existence, uniqueness and Gibbs property of equilibrium states for any Holder-continuous
potential is given in | |.

The proof of the metric tree case will rely strongly (via the suspension process described
in Section 5.3) upon the proof of the simplicial tree case, hence we start by the latter.

12The map dpw is actually not a distance, but this proposition says that it may replace the Bowen-Walters
true distance when working up to multiplicative constants or bilipschitz homeomorphisms.

13See the definition in Sections 4.2 and 4.3.

14Gee the definitions below.
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The simplicial tree case.

Let X be a locally finite simplicial tree without terminal vertices, with geometric realisation
X = |X|i. Let I be a nonelementary discrete subgroup of Aut(X). Let ¢: EX — R be a
system of conductances for I' on X and ¢ : I'\EX — R its quotient map. Let ﬁc T'X - R
be its associated potential, with quotient map F, : I'\T'X — R, and let §. be the critical
exponent of c.

We define a map F,: 9X >R by

o Hed (0)
w>=c<eo<e>>=j 7.

for all £ € X, where ef (¢) is the edge of X in which ¢ enters at time ¢ = 0. This map is
locally constant, hence continuous, and it is I'-invariant, hence it induces a continuous map
F.: \¢X — R which is also called a potential.'?

The following result proves that the Gibbs measure of (', F.) for the discrete time geodesic
flow on I"\¥X is an equilibrium state for the potential F.. We start by recalling the definition
of an equilibrium state,'® see also | , |.

Let Z be a locally compact topological space, let T': Z — Z be a homeomorphism, and
let ¢ : Z — R be a continuous map. Let .#y be the set of Borel probability measures m on
Z, invariant under the transformation 7', such that the negative part ¢~ = max{0, —¢} of ¢
is m-integrable. Let h,,(7") be the (metric) entropy of the transformation 7" with respect to
m € My (see for instance | |). The metric pressure for the potential ¢ of a measure m in

My is
Py(m) = hp(T) + f ¢dm .
z

The fact that the negative part of ¢ is m-integrable, which is in particular satisfied if ¢ is
bounded, implies that P;(m) is well defined in R u {+c0}. The pressure of the potential ¢ is
the element of R U {400} defined by

Py = sup Py(m) .
‘ mE.//[¢

A measure mg in .4y is an equilibrium state for the potential ¢ if Py(mg) = Py.

Theorem 5.12 (The variational principle for simplicial trees). Let X,T', ¢ be as above. Assume
that d. < +00 and that there exists a finite Gibbs measure m. for F. such that the negative
part of the potential F. is mc-integrable. Then HZLL—ZH is the unique equilibrium state for the
potential F. under the discrete time geodesic flow on T\YX, and the pressure of F. coincides
with the critical exponent d. of ¢ :

Pe, =6, .

In order to prove this result, using the coding of the discrete time geodesic flow given in
Section 5.2, the main tool is the following result of J. Buzzi in symbolic dynamics, building
on works of Sarig and Buzzi-Sarig, whose proof is given in Appendix A.

'5See after the proof of Theorem 5.12 for a comment on cohomology classes.
16This definition is given for transformations and not for flows, and for possibly unbounded potentials,
contrarily to the one the Introduction.
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Let 0 : ¥ — ¥ be a two-sided topological Markov shift!” with (countable) alphabet ./
and transition matrix A, and let ¢ : ¥ — R be a continuous map.
For every n € N, we denote'® by

var, ¢ = SupZ |p(x) — o(y)|
T,YE
Vie{—n,..,n}, z;=y;

the n-variation of ¢. For instance, if ¢(z) depends only on xy where z = (x;)iez, then
vary, ¢ = 0 for every n € N (and hence ), _ (n + 1) var, ¢ = 0 converges).

A weak Gibbs measure for ¢ with Gibbs constant C'(m) € R is a o-invariant (positive Borel)
measure m on Y such that for every a € &7, there exists ¢, = 1 such that for all n € N — {0}
and z € [a] such that o™ (z) = z, we have

Lo oot (5.13)
Cq e—C(m)n o X ¢(o')

Theorem 5.13 (J. Buzzi, see Corollary A.5). Let (X,0) be a two-sided transitive topological
Markov shift on a countable alphabet and let ¢ : ¥ — R be a continuous map such that
Dnen (n+1)var, ¢ converges. Let m be a weak Gibbs measure for ¢ on ¥ with Gibbs constant
C(m), such that (¢~ dm < +o0. Then the pressure of ¢ is finite, equal to C(m), and m is
the unique equilibrium state. O

Proof of Theorem 5.12. In Section 5.2, we constructed a transitive topological Markov
shift (3, 0) on a countable alphabet &/ and a homeomorphism O : T\¥X’' — ¥ which conju-
gates the time-one discrete geodesic flow g on the nonwandering subset I'\¥X' of I'\¥X and
the shift o on ¥ (see Theorem 5.1). Let us define a potential F symb : ¥ — R by

Fe, symb () = c(eq) (5.14)

if = (7;)iez € ¥ with 2o = (eg, ho, eg ). Note that this potential is the one denoted by Fyymb
in Equation (5.5), when the potential F' on T'X is replaced by F.. By the construction of ©
and the definition of F., we have

Fe symb 0 © =F. . (5.15)

Note that all probability measures on I'\¢X invariant under the discrete time geodesic flow
are supported on the nonwandering set I'\¥X'. The pushforward of measures ©, hence gives
a bijection from the space .#4, of g'-invariant probability measures on T'\&X for which the
negative part of I, is integrable to the space .#f, ., of o-invariant probability measures
on ¥ for which the negative part of F. ¢ymp, is integrable. This bijection induces a bijection
between the subsets of equilibrium states.

Note that F. symb () depends only on zq for every x = (2;)icz € X. Hence as seen above,
the series > (n + 1) vary, Fe symp, converges.

By definition,'” the measure PP is the pushforward of ”Z—Z” by ©. Hence, P is a o-invariant
probability measure on ¥ for which the negative part of I, symp is integrable, by the assump-
tion of Theorem 5.12. By Proposition 5.5 (3), the measure P on ¥ satisfies the Gibbs property

17See Section 5.1 for definitions.
18with a shift of indices compared with the notation of Appendix A
19See Equation (5.4).
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with Gibbs constant d. for the potential F gymb, hence?’ satisfies the weak Gibbs property
with Gibbs constant .. Theorem 5.12 then follows from Theorem 5.13. O

Remark. It follows from Equation (5.15), from the remark above Definition 5.3 and from the
fact that @ og! = 000, that if ¢, : I\EX’' — R are cohomologous systems of conductances
on M EX', then the corresponding maps F.,Fy : I\¥X' — R are cohomologous: there exists
a continuous map G : %X’ — R such that for every ¢ € T\¥X',

Fo(0) = Fe(f) = G(g') - G(0) .

Note that given two bounded cohomologous continuous potentials on a topological dy-
namical system (Z,T) as above, one has finite pressure (resp. admits an equilibrium state) if
and only if the other one does, and they have the same pressure and same set of equilibrium
states.

The metric tree case.

Let (X, \) be alocally finite metric tree without terminal vertices with geometric realisation
X = [X]y, let T be a nonelementary discrete subgroup of Aut(X,\) and let ¢: EX — R be a
system of conductances for I" on X. Let E,: T'X — R be its associated potential (see Section
3.5), and let §, = dp, be the critical exponent of c.

Recall?! that we have a canonical projection X — T'X which associates to a geodesic
line ¢ its germ vy at its footpoint £(0). Let F4: %X — R be the [-invariant map obtained by
precomposing the potential ﬁ'c : T'X — R with this canonical projection:

Fo: 0 F.(vp) .

Let IFE :N¥X — R be its quotient map, which is continuous as a composition of continuous
maps.

The following result proves that the Gibbs measure of (I, F.) for the continuous time
geodesic flow on I'\¥ X, once renormalised to be a probability measure, is an equilibrium
state for the potential IFE We start by recalling the definition of an equilibrium state for a
possibly unbounded potential under a flow.??

Given (Z, (¢1)ter) a topological space endowed with a continuous one-parameter group of
homeomorphisms and ¢ : Z — R a continuous map (called a potential), let .4, be the set of
Borel probability measures m on Z invariant under the flow (¢;)wer, such that the negative
part ¢~ = max{0, —} of ¢ is m-integrable. Let h,,(¢1) be the (metric) entropy of the
geodesic flow with respect to m € .#,, (see for instance | ). The metric pressure for ¢
of a measure m € .#y is

Pulim) = hnln) + [

The fact that the negative part of ¢ is m-integrable, which is in particular satisfied if 1 is
bounded, implies that Py(m) is well defined in R U {4+00}. The pressure of the potential v is
the element of R U {+0} defined by

Py = sup Pz/z(m) .
‘ me///w

29For every a € o, for the constant ¢, required by the definition of the weak Gibbs property in Equation
(5.13), take the constant Cg given by the definition (see Equation (5.1)) of the Gibbs property with F = {a}.

21Gee Section 2.3.

22This requires only minor modifications to the definition given in the Introduction for bounded potentials.
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Note that Pyi. = Py + c for every constant ¢ € R. An element m € .#, is an equilibrium
state for 1 if the least upper bound defining P, is attained on m.

Note that if ¢’ is another potential cohomologous to 1, that is, if there exists a continuous
map G : Z — R, differentiable along every orbit of the flow, such that ¢/(z) — (z) =
%ﬁ:OG(qﬁt(aﬁ)), if ¢ and ¢ are bounded (so that .#y = .#y), then, for every m € .4y, we
have Py (m) = Py(m), Py = Py and the equilibrium states for ¢/ are exactly the equilibrium
states for .

Theorem 5.14 (The variational principle for metric trees). Let (X, \),T,¢ be as above. As-
sume that the lengths of the edges of (X, \) have a finite upper bound.>®> Assume that 6. < +0
and that there exists a finite Gibbs measure m. for F. such that the negative part of the poten-
tial ]Fi 18 me-integrable. Then H;’;—ZH 1s the unique equilibrium state for the potential ]FE under

the continuous time geodesic flow on T\Y X, and the pressure of IFE coincides with the critical
exponent . of ¢ :

Py =0 .

m

Using the description of the continuous time dynamical system (F \gX', EXE (gt)te]R) as
a suspension over a topological Markov shift (see Theorem 5.9), this statement reduces to
well-known techniques in the thermodynamic formalism of suspension flows, see for instance
[1JT], as well as | , , 1], |. Our situation is greatly simplified by the fact that
our roof function has a positive lower bound and a finite upper bound, and that our symbolic

potential is constant on the 1-cylinders {x = (z;);ez € ¥ : xy = a} for a in the alphabet.

Proof. Since finite measures invariant under the geodesic flow on I'\¢ X are supported on
its nonwandering set, up to replacing X by X’ = €AI', we assume that X = X’.

Since equilibrium states are unchanged up to adding a constant to the potential, under
the assumptions of Theorem 5.14, let us prove that ” T is the unique equilibrium state for

the potential FE —d. under the continuous time geodesic flow on I'\% X, and that the pressure
of IF'E — d. vanishes. The last claim of Theorem 5.14 follows, since

P]Fh_éc:PFh

_5. "
We refer to the paragraphs before the statement of Theorem 5.9 for the definitions of

e the system of conductances ¢ for I' on the simplicial tree X,

e the (two-sided) topological Markov shift (X, 0,P) on the alphabet o7, conjugated to the

discrete time geodesic flow (F\gX gl T “) by the homeomorphism © : T\¥X — ¥,

e the roof function r : ¥ — |0, +o0|, and

e the suspension (X,0,aP), = (., (¢!)er,aP,) over (3,0,aP) with roof function r,
conjugated to the continuous time geodesic flow (F\g X, “m E (gt)teR) by the homeomorphism
O, : N¥X — %, defined at the end of the proof of Theorem 5.9. We will always (uniquely)
represent the elements of 3, as [z, s] with z € ¥ and 0 < s < r(x).

We denote by T : 2 — R the potential defined by

c,symb *

"

¢, symb

—FioO !, (5.16)

which is continuous as a composition of continuous maps. The key technical observation in
this proof is the following one.

23They have a positive lower bound by definition, see Section 2.6.

122 13/02/2019



Lemma 5.15. For every x € ¥, we have Fy, (. (v) = Sg(x)(IFi symb — 0c)([z, 8]) ds. For
i

07 symb([m,s]) is constant on s € [0,r(x)].

every x € X, the sign of F

Proof. Let z = (zp)nez € ¥ and xg = (eg, ho, ey ) € «7. By the definition of the first return
time 7 in Equation (5.10), we have in particular

r(z) = Aeg) -
By Equation (5.14) and by the definition of ¢ in Equation (5.9), we have

Fic,qymb(2) = Feleg) = (c(eg) — ) A(eg) -

Using in the following sequence of equalities respectively

e the two definitions of the potential ]Fi symb 11 Equation (5.16) and of the suspension
flow (0%)1e,

e the fact that the suspension flow (ol)r is conjugated to the continuous time geodesic
flow by ©,,

e the definition of ©, using the reparametrisation map** R of continuous time geodesic
lines with origin on vertices to discrete time geodesic lines,?

e the definition of the potential FE,

e the fact that e] is the first edge followed by the discrete time geodesic line ©~ !z, hence
by the continuous time geodesic line R~1© 'z, and the relation between ¢ and the potential
F, associated with ¢ (see Proposition 3.21),

we have
r(x) , r(z) r(x)
f F! ymp([2:8]) ds = J FE(@;laﬁ[az,O]) ds = J Fi(gs@;l[a:,O]) ds
0 ’ 0 0
r(z) Aeg)
= J FE(gSR_l@_lx) ds = J FC(Ugstlgflx) ds
0 0

= cleg)AMeg) -

Since Sg(x) 6c ds = 6. A(eg), the first claim of Lemma 5.15 follows. The second claim

follows by the definition of the potential F, associated with ¢, see Equation (3.23). O
By Equation (5.16), the pushforwards of measures by the homeomorphism ©,, which
conjugates the flows (g')r and (ol)er, is a bijection from My 10 M , such that
c ¢, symb

Pe  (87)em) = Py(m)

¢, symb F

for every m € 4. In particular, we only have to prove that (@T)*ﬂ—z” = a P, is the unique
equilibrium state for the potential Iﬁ‘i symb

i

¢, symb

— 0. under the suspension flow (o!)cr, and that

the pressure of F — d. vanishes.

The uniqueness follows for instance from [[JT, Theo. 3.5],%° since the roof function 7 is
locally constant and the potential g = Fi symb is such that the map?” from ¥ to R defined by

218ee its definition above Lemma 5.10.

25See Equation (5.12), with the notation of Example (5.7) and Proposition 5.8.

26Note that a topological Markov shift which is (incorrectly) called topologically mixing in [IJT, page 551]
is actually (topologically) transitive with the definition in this book, Section 5.1.

?denoted by A, in loc. cit.
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x Sg(x) ([, s]) ds is locally Hélder-continuous by Lemma 5.15 and since F, g, is locally
constant.

Let us now relate the o-invariant measures on ¥ with the (ol);cg-invariant measures on
Y. Recall that we denote the Lebesgue measure on R by ds and the points in ¥, by [z, s]
with z € ¥ and 0 < s < r(x).

Lemma 5.16. The map S : M, . — M , which associates to any measure m in
¢, sym c symb
///]Fti on X the measure Y
c, symb
1
dS(m)([z, s]) = T dm du(z) ds
5 Tdm

on X, is a bijection, such that, for every m € //l]pﬂ o
c,sym

P o (S(m)) = s ™)

m)) = —(———— .

i, symb_(sC SZ T dm

Proof. Note that {i, r dm is the total mass of the measure du,([z,s]) = du(x)ds on X,. In
particular, S(m) is indeed a probability measure on X,.

Since r has a positive lower bound and a finite upper bound, it is well known since | ],
see also [IJT, §2.4], that the map S defined above? is a bijection from the set of o-invariant
probability measures m on ¥ to the set of (o )teR—lnvarlant probability measures on %,.

Furthermore, for every o-invariant probability measure m on 3, we have the following
Kac formula, by the definition of the probability measure S(m) and by Lemma 5.15,

J IFiSymde(m)—é :L (Fi symp — 0c) d S(m)

Lo e L[ 0l iy s

= — F d 5.17
SZ Tdm f fc, symb 4170 - ( )

By the comment on the signs at the end of Lemma 5.15, this computation also proves that
the negative part of Fi symb 18 integrable for S (m) if and only if the negative part of Fy. i,
is integrable for m. Hence S is indeed a bijection from ///Fu , to Mgy

c symb
By Abramov’s formula [Abr], see also [IJ], Prop. 2.14|, we have ’
han (o)
h )= e 5.18
S(m)(ar) Sg rdm ( )
The last claim of Lemma 5.16 follows by summation from Equations (5.17) and (5.18). [

By the proof of Theorem 5.12 (replacing the potential ¢ by c), the pressure of the potential
Fi¢, symp 18 equal to the critical exponent d;, of the potential fc, and by Lemma 5.10 (1), we
have 6z, = 0. Hence for every m € ///Fuc oyt WC have

P]Fﬁc, symb (m) PFuc, symb 511(3
(50m)) = —p=2 = < - ~0.
5 rdm SE r dm SE rdm

Py

c,symb

28and denoted by R in [[JT, §2.4]
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i

¢, symb — 0. is at most 0, since S is a bijection. By

In particular, the pressure of the potential F

the proof of Theorem 5.12 (replacing the potential ¢ by fc), we know that P is an equilibrium
state for the potential Fy, ¢y, Hence

P ‘SC(S(P))ZWZO'

c,symb

i

¢, symb

Therefore, S(P) is an equilibrium state of the potential F — ¢, with pressure 0. But aP,,

which is equal to Hg—:” since alP, is a probability measure, is by construction equal to S(P).
The result follows. L]

With slightly different notation, this result implies Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. Any bounded potential F for T on T'X is cohomologous to a
bounded potential F, associated with a system of conductances (see Proposition 3.22). If two
potentials F and F' for T on T'X are cohomologous?’ then the potentials ¢ — ﬁ’(vg) and
¢ — F'(vg) for T on X are cohomologous for the definition given before the statement of
Theorem 5.14. Since the existence and uniqueness of an equilibrium state depends only on
the cohomology class of the bounded?®” potentials on ¢4 X, the result follows. O]

29Gee the definition at the end of Section 3.2.
3%hence with integrable negative part for any probability measure
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Chapter 6

Random walks on weighted graphs of
groups

Let X be a locally finite simplicial tree without terminal vertices, and let X = |X|; be its
geometric realisation. Let I be a nonelementary discrete subgroup of Aut(X).

In Section 6.1, given a (logarithmic) system of conductances ¢ : T\EX — R, we define an
operator A, on the functions defined on the set of vertices of the quotient graph of groups
I'\X. This operator is the infinitesimal generator! of the random walk on T'\X associated
with the (normalised) exponential of this system of conductances. When I' is torsion free and
the system of conductances vanishes, the construction recovers the standard Laplace operator
on the graph I"\X.

Under appropriate antireversibility assumptions on the system of conductances ¢, using
techniques of Sullivan and Coornaert-Papadopoulos, we prove that the total mass of the
Patterson densities is a positive eigenvector for the operator A, associated with c.

In Section 6.2, we study the nonsymmetric nearest neighbour random walks on VX asso-
ciated with antireversible systems of conductivities, and we show that the Patterson densities
are the harmonic measures of these random walks.

6.1 Laplacian operators on weighted graphs of groups

Let X be a locally finite simplicial tree without terminal vertices, and let X = |X|; be its
geometric realisation. Let I" be a nonelementary discrete subgroup of Aut(X). Let ¢: EX — R
be a (I-invariant) system of conductances for T'.

We define ¢+ = ¢and ¢~ : e — ¢(€), which is another system of conductances for I". Recall

(see Section 3.5) that ¢ is reversible (respectively antireversible) if ¢~ = ¢ (respectively
¢~ =—CT). For every z € VX, we define
degz+(x) = Z @)
e€eEX, o(e)=x

The quotient graph of groups I'\X is endowed with the quotient maps ¢ : I'\EX — R of ¢+.

'More precisely, it is the infinitesimal generator of the continuous time random process on the graph X
whose co-called “discrete skeleton” or “jump chain” is the aforementioned random walk. The process waits an
exponentially distributed time with parameter 1 at a vertex z, then instantaneously jumps along an edge e
starting from & with probability i(e)e*(®)/deg, (). See for instance [AIF, §2.1.2].
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Also note that the quantity degz+ () is constant on the I'-orbit of x. Hence, it defines a map
deg.+ : "\VX — 0, +oo[ .

On the vector space CV* of maps from VX to C, we consider the operator A+, called
the (weighted) Laplace operator of (X, ct),? defined by setting, for all f € CV* and x € VX,

st flx _ 1O (f(z) — e
Beefo) - Gy B SO fe). (61)

This is the standard Laplace operator? of a weighted graph for the weight function e — ezi(e),

cE(e
except that usually one requires that ¢(e) = ¢(€). Note that pT(e) = deg%(;)(e)) is a Markov
transition kernel on the tree X, see the following Section 6.2. -
The weighted Laplace operator Az+ is invariant under I": for all f €
have

CV* and v e T, we

Azi(foy) = (Astf)oy.
In particular, this operator induces an operator on functions defined on the quotient graph
NX, as follows.

Let (Y,G4) be a graph of finite groups. We denote® by L2(VY,V01(Y,G*)) the Hilbert
space of maps f : VY — C with finite norm | f||yo for the following scalar product:

<f7g>v01: Z é f(fU)m

zeVY ’ z‘

We denote’ by L2(EY, Tvoly a,)) the Hilbert space of maps ¢ : EY — C with finite norm
@] Tvor for the following scalar product:

G =5 Y 1 O VO

ec EY

Let i : EY — N—{0} be the index map i(e) = [G,() : Ge]. For every function ¢ : EY — R,
let deg,. : VY — R be the positive function defined by

deg(x) = > i(e)e .

eeEY, o(e)=x

The Laplace operator® of (Y, Gy, c) is the operator A, = Ay g, . on L3(VY, voly @, ) defined
by

PRI 1 _ (e ec(e) xT) — e
Ad ety B O 1),

Remark 6.1. (1) Let (Y, Gy) = I'\X be a graph of finite groups with p : VX - VY = I'"\VX
the canonical projection. Let ¢: EX — R be a potential for T and let ¢: EY = T'\EX — R
be the map induced by ¢ An easy computation shows that for all f € CVY and z € VY, we
have

Acf(z) = Af(T)

or on X associated with the system of conductances &+

3See for example [Car] with the opposite choice of the sign, or | |-

4See Section 2.6 for the definition of the measure vol(y ) on the discrete set V'Y.
5See Section 2.6 for the definition of the measure Tvol(y,g,) on the discrete set EY.
5See for instance [Mor] when ¢ = 0.
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if fz fop: VX — C and 7 € VX satisfies p(Z) = z.
(2) For every x € VY, let

i(r) = > i(e).

eeEY, o(e)=x

Then i(x) is the degree of any vertex of any universal cover of (Y, G) above x. In particular,
the map 7 : VY — R is bounded if and only if the universal cover of (Y, G,) has uniformly
bounded degrees. When ¢ = 0, we denote the Laplace operator by A = Ay ¢, and for every
z € VY, we have

Af(x)=— Y i) (f(z) - f(te)) .

Z(.I) eeEY, o(e)=x
We thus recover the Laplace operator of [Mor| on the edge-indexed graph (Y, 1).

Proposition 6.2. Let (Y,G.) be a graph of finite groups, whose map i : VY — R is bounded.
Let ¢ : EY — R be a system of conductances on Y, and let

C
P(9) = Geg.(ole)

for every e € EY. The following properties hold.
(1) The Laplace operator A, : L2(V'Y, voliy g,)) — L2(VY,volyg,)) is linear and bounded.
(2) The map d. : L*(VY,voly g,)) — L*(EY, Tvolry g,)) defined by
de(f) = e = +/p(e) (f(t(e)) = f(o(e)))
1$ linear and bounded, and its dual operator
df : L*(EY, Tvoly g,)) — LA(VY, voly g,))

s given by

a@ire Y (o) o) - Vil ele))

€€EY, o(e)=z

(3) Assume that c is reversible and that the map deg, : VY — R is constant. Then
A, =dld,. .
In particular, A, is self-adjoint and nonnegative.

Proof. By the assumptions, there exists M € N such that i(z) < M for every z € VY, and

hence i(e) < M for every e € EY. Note that i(e) = l?é(j)l, that G, = Gz and that p(e) <1 .

(1) For every f e L2(VY, vol(yg,)), using in the following computations
e the Cauchy-Schwarz inequality for the first inequality,
e the fact that for every x € VY, we have

Y, ie?ple) <M Y pl)<sM Y i(e)p(e) = M?
eeEY, o(e)=x eeEY, o(e)=x eeEY, o(e)=x
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for the second inequality,

o the fact that |G| = |Ge| for every e € EY for the third inequality, and

e the change of variable e — €in ),y IGild |f(t(€))|? (since Gz = G,) for the first equality
on the fifth line of the computations,

we have

8= 3 | X iene@ - )]
zeVY "7 T eeEY, o(e)=x
<Y (e X e seeP)
zeVY r eeEY, o(e)=x eeEY, o(e)=x
<20 ‘Gl S (@F + )

zeVY z eeEY, o(e)=x
1 2 2

<2M? gyw(“(“e)” + £l

RN FCO) T W D W Ol O],

eeEY zeVY eeEY, o(e)=x
i(x)
4M* Y | Hﬂ@ﬁ<4wﬁ >, | Hﬂ)l =4 M | (%1 -
zeVY 7% zeVyY 77
Hence the linear operator A, is bounded.
(2) For every f € LQ(VY,VOI(Y G*)), we have
p 2
ldeflFver = — f(o(e))]

eceEY e

! ? ) = ! o(e 2
<2E = £ + |f(o(e))] ) -2 3 1 )
=9 Z ) -9 Z

ee Y O zeVY

<2M
|G ‘ ’f ”f”vol
Hence the linear operator d. is bounded.
For all f € L3(VY, voliy g,)) and ¢ € L2(EY, Tvoliyc,)), using again the change of
variable e — €, we have

G defyra =5 2, ,G‘ &) (F(t(e) — Flole))
ee Y
1 M@ e
“3 2 ol gy |Gr “”)
- Y = g<r ) 6() = V/(e) 6(e)) T@)
zeVY "7 ecEY, o(e)=x

This gives the formula for d7.

(3) Let f,g € L2(VY,voly g,))- Note that p(e) = p(€)” by the reversibility of ¢ and the fact
that deg, is constant. Hence, by developping the products in the first line and by making the

"This is the usual reversibility requirement for the corresponding Markov chain.
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change of variable e — € in half the values, we have

<dCf7 ng>TV01 =3z Z
_ i(e
eeZE:Y ‘GO(
-3 & i(0) p(€) (7(2) ~ £(1(e)) 902)
zeVY "7 ecEY, o(e)=x

= <Acf7 g>v01 .
This proves the last claim in Proposition 6.2. O

Y p(e)(f(o(e)) glo(e)) — f(t(e)) glo(e)))

The following result is an extension to antireversible systems of conductances of | ,
Prop. 3.3] (who treated the case of zero conductances), which is a discrete version of Sullivan’s
analogous result for hyperbohc manifolds (see [Sull]). Let F.:T'X — R be the potential for
I" associated with &,° so that (F )x = F +, and let J, be their common critical exponent. Let
C*t:0,X xVXx VX — R be the assoc1ated Gibbs cocycles. Let (uf)zcyx be two Patterson
densities on 0, X for the pairs (I, Fix).

Proposition 6.3. Assume that X is (¢ + 1)-regular, that the system of conductances ¢ is
antireversible and that the map degz+ : VX — R is constant with value k. Then the total
mass ¢+ : x — |pE| of the Patterson density is a positive eigenvector associated with the
etgenvalue

ede + qe‘éC

Ki

1_
for the Laplace operator As+ on CV¥.

Proof. Note that the function ¢ cf . EX — R is bounded, since e (®) < degs+ (o(e)) = kT
for every e € EX. Hence (F.)* = F.+ is bounded by its definition in Section 3.5. Since X is
(g + 1)-regular, the critical exponent dr is finite and hence the critical exponent 6. = dr, P
is finite by Lemma 3.17 (6). Since ‘

Put(x) = f dpy = J ¢ Ce (@:a0) dui,
O X O X

by Equation (4.2) and by linearity, we only have to prove that for every fixed £ € 05, X the
map

F i e CE@)

is an eigenvector with eigenvalue 1 — M for Az+.

For every e € EX, recall’ that 0,X is the set of points at infinity of the geodesic rays
in X whose initial edge is e. By Equation (3.20) and by the definition of the potential
associated with a system of conductances'’, for all e € EX and 7 € 0.X, since t(e) € [o(e), n[
(independently of the choice of sign +), we have

8See Section 3.5.
9See Section 2.6.
108ee Proposition 3.21 with the edge length map A constant equal to 1.
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Thus if £ € 0.X, we have

and otherwise N i o
F(t(e)) = €C¢ W@ =CEole) ) _ 22 @b f(o(e))

For every x € VX, let e¢ be the unique edge of X with origin = such that £ € 0., X. Then,

Besf(@) = @) = gy 3 €S (UE))
€= o(e)=x
= f@) = T Df o) — Y € ()
e#eg,0(e)=c
ede e e
(e
This proves the result. ]

Note that the antireversibility of the potential is used in an essential way in order to get
the last equation in the proof of Proposition 6.3.

6.2 Patterson densities as harmonic measures for simplicial
trees

In this Section, we define and study a Markov chain on the set of vertices of a simplicial
tree endowed with a discrete group of automorphisms and with an appropriate system of
conductances, such that the associated (nonsymmetric, nearest neighbour) random walk con-
verges almost surely to points in the boundary of the tree, and we prove that the Patterson
densities, once normalised, are the corresponding harmonic measures. We thereby gener-
alise the zero potential case treated in | |, which is also a special case of | | when
X is a tree under the additional restriction that the discrete group is cocompact. For other
connections between harmonic measures and Patterson measures, we refer for instance to
| , , ) | and their references.

Let X be a (¢ + 1)-regular simplicial tree, with ¢ = 2. Let I" be a nonelementary discrete
subgroup of Aut(X). Let ¢ : EX — R be an antireversible system of conductances for I', such
that the associated map degy : VX — R on the vertices of X is constant. Let (uz)zevx be
a Patterson density for (I', F,), where F, is the potential associated with c¢. We denote by
¢u : « — |pz the associated total mass function on VX.

We start this Section by recalling a few facts about discrete Markov chains, for which we
refer for instance to [Rev, |. A state space is a discrete and countable set I. A transition
kernel on I is a map p : I x I — [0,1] (considered as a square matrix with coefficients in
[0,1], and with row and column indices in I) such that for every z € I,

Z p(l‘ay) =1.
yel

Let A be a probability measure on I. A (discrete) Markov chain on a state space I with initial
distribution A and transition kernel p is a sequence (Z,)nen of random variables with values
in I such that for all n € N and z,...,x,+1 € I, the probability of events IP satisfies
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(1) P[Zy = z0] = AM{w0}),
(2) PZnt1 =2ny1| Zo =20, 21 = 21, ., Zn = Ty =
IPj[Zn-i-l = Tn+1 | Ly = l‘n] = p(xna$n+1)'

The associated random walk consists in choosing a point xg in I with law A, and by induction,
once I, is constructed, in choosing x, 1 in I with probability p(x,,x,+1). Note that

P[Zy = x0,Z1 =21, -, Zn = x| = A{z0}) p(x0,21) - .. P(Tp—1, X1 -

When the initial distribution A is the unit Dirac mass A, at x € I, the Markov chain is then
uniquely determined by its transition kernel p and by z, and is denoted by (Z¥)nen.

For every n € N, we denote by p(™ the iterated matrix product of the transition kernel
p: we define p(© (x,y) to be the Kronecker symbol ., for all z,y € I, and by induction
p D) = p p(™) that is, for all z,z € I,

P (@, 2) = Y pla,y)p™ (y, 2) -
yel
Note that
P (x,y) = P[Z] = y)]
is the probability for the random walk starting at time O from x of being at time n at the
point y. The Green kernel of p is the map G, from I x I to [0, +o0] defined by

(.y) = Gyla,y) = X M (z,y)

neN

and its Green function is the following power series in the complex variable z :

Gp(l‘)y | Z) = Z p(n)(I’y) Zn .

neN

Recall that if Gp(z,y) # 0 for all o,y € I, then the random walk is recurrent'! if Gp(x,y) = o0
for any (hence all) (z,y) € I x I, and transient otherwise. Note that, using again matrix
products of I x I matrices,

G,=1d+p G) . (6.2)

We will from now on consider as state space the set VX of vertices of X. If a Markov chain
(Z7)nen starting at time 0 from = converges almost surely in VX U 0 X to a random variable
Z% | the law of ZZ is called the harmonic measure (or hitting measure on the boundary)
associated with this Markov chain, and is denoted by

ve = (Z25)«(P) -

Note that v, is a probability measure on 0 X.
For instance, the transition kernel of the simple nearest neighbour random walk on X is
defined by taking as transition kernel the map p where

1

q+71 A(%y)

B(x7y) =

"that is, Card{n € N : ZZ = y} = oo for every y € I (or equivalently, there exists y € I such that
Card{neN : Z; =y} = o)
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for all z,y € VX, with A : VX x VX — {0,1} the adjacency matriz of the tree X, defined by
A(z,y) = 1 for any two vertices =,y of X that are joined by an edge in X and A(z,y) = 0
otherwise. We denote by

S(a,ylz) =) p"(z,y) 2"
keN

the Green function of p, whose radius of convergence is r = % and which diverges at z = r,

see for example | I, | , Ex. 9.82], | , §6.3].

The antireversible system of conductances ¢ : EX — R defines a cocycle on the set of
vertices of X, as follows. For all u,v € VX| let ¢(u,v) = 0 if u = v and otherwise let

= Z cleq)

where (e1, e, ..., ey) is the geodesic edge path in X from u = o(e1) to v = t(e,).
Lemma 6.4.

(1) For every edge path (€},¢€,...,€.,) from u to v, we have

(2) The map ¢: VX x VX — R has the following cocycle property: for all u,v,w € VX,
c(u,v) + ¢(v,w) = c(u,w) and hence c(v,u) = —c(u,v) .
(3) We have c(u,v) = §, F..

(4) For all € € 05X and u,v € VX, if C¢(-,-) is the Gibbs cocycle associated with F,, we

have

C¢(u,v) = c(v,u) + 0cBe(u,v) .

Proof. (1) Since X is a simplicial tree, any nongeodesic edge path from u to v has a back-and-
forth on some edge, which contributes to 0 in the sum defining ¢(x, y) by the antireversibility
assumption on the system of conductances. Therefore, by induction, the sum in Assertion (1)
indeed does not depend on the choice of the edge path from u to v.

Assertion (2) is immediate from Assertion (1). Assertion (3) follows from the definition of
¢(+,-) by Proposition 3.21.

(4) For every £ € 00X, if p € VX is such that [u,&] n[v,&] = [p,&[, then using Equation
(3.18) and Assertions (3) and (2), we have

C'guv :J
= c(v

fp(ﬁc —0c) = c(v,p) — c(u,p) + 6. Be(u, v)

u

,u) + ¢ Be(u,v) . O

Let
qg+1

ede + gede
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which belongs to 0, %] , with k. = % if arid only if e’ = \/q. Note that this constant k.
-+

is less than the radius of convergence r = BN of the Green function &(x,y | z) if and only
if 5. # 3 Ing. The computation (due to Kesten) of the Green function of p is well known,
and gives the following formula, see for instance | , Prop. 3.1]: If 6. # % In g, then there

exists o > 0 such that'? for all z,y € VX
&(z,y | ke) = a e O dBY) (6.3)

We now define the transition kernel p. associated with'® the (logarithmic) system of con-
ductances c by, for all z,y € VX,

T - K ¢u(y) ec(x,y) T
pc( 7y) c QZ)/L(-T) B( ,y) .

From now on, we denote by (Z7),en the Markov chain with initial distribution A, and
transition kernel p,.

Lemma 6.5.
(1) The map p. is a transition kernel on VX.

(2) The Green kernel . = G, of pc is

Belz,y) = )

&(z,y | Kke) - (6.4)

In particular, the Green kernel of p. is finite if 6. # % Ing.

(3) Assume that 6. # % Ing. For all x,y,z € VX, we have

¢u(y) Qjc(ya Z) _ ec(y,r)-&-&(d(m, 2)—d(y, 2)) )
Cbu(x) B.(z,2)

If furthermore z ¢ [x,y[, then, for every & € O(z),**

9) ©ely?) _ e
ﬁbu(l‘) Qjc(x?Z) '

Proof. (1) By the proof of Proposition 6.3, the positive function ¢, is an eigenvector with
eigenvalue e + ge~% for the operator

R D S N (O

eeEX, o(e)=x

q+1

q=1)e-dc’

13The transition kernel also depends on the choice of the Patterson density if T' is not of divergence type.
YRecall that given z,z € VX, the shadow €,(z) of z seen from z is the set of points at infinity of the

geodesic rays from z through z.
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Since p(o(e), t(e)) = —17 for every e € EX, we hence have

q+1
Dipelmy) = D pelwt(e))
yeVX eeEX, o(e)=x
1+g¢q

- N 9 gt(e) plastle) = 1.

(€% + ge0) ¢u(x) e€EX, o(e)=x

(2) Let us first prove that for all z,y € VX and n € N, we have

H(a9) =m0 S48 e ey (65)

Indeed, by the cocycle property of ¢(+,-) and by a telescopic cancellation argument, we have

i ()
= D pe(m 1) pe(r1,72) . Pe(n-2, Tn-1) Pe(Tn-1,7)

11,...,xn_1€VX
_ n ¢u(y) c(z,y)
- (HC) gbu(x € Y Z
¢

)
M(y) ec(:c,y) (n) P
¢u($) L (=:9) -

p(z,z1) p(z1,22) ... p(Tn—2,2n-1) P(Tn—1,¥)

T1yenny :rn,1€VX

= (k)"

Equation (6.4) follows from Equation (6.5) by summation on n. As we have already seen,
ke < 1 if and only if §, # % Ingq. The last claim of Assertion (2) follows.

(3) Let z,y,z € VX. Using (twice) Assertion (2), the cocycle property of ¢ and (twice)
Equation (6.3), we have

6c(yv Z) _ ec(y,z) ¢M(Z) ¢M(x) Q(yvz ’ KC) _ ec(y,x) d)lﬁ(x) a 6_6Cd(y7Z)
G.(r,2) el 2) ou(y) du(z) Gz, 2 | Ke) uly) « e~dcd(@,2)

Pu(®) ey, 2)+6:(d(w, —d(y.2)

B ¢u (y)

This proves the first claim of Assertion (3). Under the additional assumptions on z,¥, z, &,
we have

ﬁf(xay) = d(l‘) Z) - d(y7 Z) .
The last claim of Assertion (3) hence follows from Lemma 6.4 (4). ]

Using the criterion that the random walk starting from a given vertex of X with transition
probabilities p. is transient if and only if the Green kernel &.(z,y) of p. is finite (for any,
hence for all, z,y € VX), Lemma 6.5 (2) implies that if 6. # % Ing, then (Z7)nen almost
surely leaves every finite subset of VX. The following result strengthens this remark.

Proposition 6.6. If 0. # % Ing, then for every x € VX, the Markov chain (ZF)nen (with
initial distribution A, and transition kernel p.) converges almost surely in VX U 05X to a

random variable with values in 0 X. In particular the harmonic measure vy of (ZX)neN is
well defined if 6. # % Ing.
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Proof. Since X is a tree, if (z,,)nen is a sequence in VX such that d(z,,x,+1) = 1 for every
n € N and which does not converge to a point in 0, X, then there exists a point y such that
this sequence passes infinitely often through y, that is, {n e N : =z, = y} is inﬁnite The
result then follows from the fact that the Markov chain (Z7%),ey is transient since . # 5 lnq

O

The following result, generalising | , Theo. 4.5 when ¢ = 0, says that the Patterson
measures associated with the system of conductances ¢, once renormalised to probability
measures, are exactly the harmonic measures for the random walk with transition probabilities

De.

Theorem 6.7. Let (X,T',¢, (z)zevx) be as in the beginning of Section 6.2. If 0. # % Ing,
then for every x € VX, the harmonic measure of the Markov chain (Z})nen is

Hax
|z

Proof. We fix z € VX. For every n € N, we denote by S(x,n) and B(x,n) the sphere and
(closed) ball of centre z and radius n in VX, and we define two maps fi, fo : VX — R with

finite support by (6,() 6,()
L TR X B X

if z € S(z,n), and fi(2) = f2(z) = 0 otherwise. Let us prove that fi; = fa for every n € N.
Since {Ox(z) : =z e VX} generates the Borel o-algebra of 05X, this proves that the Borel
measures v, and | n coincide.

We will use the %ollowmg criterion. For all maps G : VX x VX - Rand f: VX - R
such that f has finite support, let us again denote by G f : VX — R the matrix product of
the square matrix G and the column matrix f, defined by, for every y € VX,

Gfly)= )Y, G,2)f(2).

2eVX

Lemma 6.8. For all f, f': VX — R with finite support, if &, f = &. f', then f = f'.

Vyp =

Proof. By Equation (6.2), we have
f/:®cf/_pc®cf/:®Cf_ch§Cf:f' U
Let us hence fix n € N and prove that &, f; = &, fo. Theorem 6.7 then follows.

Step 1: For every y € B(z,n), since {O,(z) : z € S(x,n)} is a Borel partition of 0, X,
by Equation (4.2), since z ¢ [z, y[ if z € S(z,n) and y € B(z,n), and by the second claim of
Lemma 6.5 (3), we have

_ 1 1 —Cg(y,x)
— d dpig
L= 5.0 wa =) f o e

zeS(z,n)
_ ! Du(y) &y, 2)
D D e e e O
pa(Oz(2))
S Bly,) L2026, 1)) (6.6)
zeS(z,m) e $” G (z, 2)
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Step 2: For all y,z € VX such that z ¢ [z,y[, any random walk starting at time 0 from y
and converging to a point in @, (z) goes through z. Let us denote by C,(z) the set of vertices
different from z on the geodesic rays from z to the points in &,(z). Partioning by the last
time the random walk passes through z, using the Markov property saying that what happens
before the random walk arrives at z and after it leaves z are independent, we have

vy(Oy(2)) = P|ZY € O(2)] = By, 2) P[Vn >0, Z; € Cy(2)],

so that

- 2 (6.7)

Step 3: For every y € B(x,n), again since {0,(z) : z € S(x,n)} is a Borel partition of
0 X, and by Equation (6.7), we have

Vr(ﬁm<z))

o(z, 2)

L=lwl= 2 w(0u(=)= ), ®&ly.2)

z€S(z,n) z€S(z,n)

= (& f2)(y) - (6.8)

Step 4: By Steps 1 and 3, we have (&, f1)(y) = (&, f2)(y) for every y € B(x,n). Let now
y € VX—B(z,n). Define y € S(x,n) as the point at distance n from x on the geodesic segment
[z,y]. For every z € S(xz,n), we have d(y, z) — d(y, z) = —d(y,y’), which is independent of z.

Since y' € B(x,n), we have, as just said, (&. f1)(¥') = (. f2)(y'). Hence by the first claim
of Lemma 6.5 (3), we have

(& f)) = D, Gcly,2) fi(2)

zeS(z,n)

/
— Y )y 2) =y, 2) ouly’) Ge(y',2) fi(z)
zeS(z,n) ¢H(y>

oW, y)—bed(y, y) ¢“(y/) (e f1)()

bu(y)
Py’
- ol -setod) 2 (o)) = (@ )0
This proves that &, fi = &, fa, thereby concluding the proof of Theorem 6.7. Il
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Chapter 7

Skinning measures with potential on
CAT(—1) spaces

In this Chapter, we introduce skinning measures as weighted pushforwards of the Patterson-
Sullivan densities associated with a potential to the unit normal bundles of convex subsets of
a CAT(—1) space. The development follows | | with modifications to fit the present
context.

Let X, xo,l“,ﬁ' be as in the beginning of Chapter 4, and f’i, Ft 6§ = or p+ < 400 the
associated notation. Let (uf)zex be (normalised) Patterson densities on 0, X for the pairs
(I, F+).!

7.1 Skinning measures

Let D be a nonempty proper closed convex subset of X. The outer skinning measure 55 on
the outer normal bundle é’_lkD of D and the inner skinning measure G, on the inner normal

bundle 1 D of D associated with the Patterson densities (u)zex for (I, ) are the measures

5 = 52—; Ft on 01D defined by

+
5 (p) = % @0 PO) gt (p) (7.1)

where p € 01 D, using the endpoint homeomorphisms p — py from 01D to 05, X — 00D, and
noting that p(0) = Pp(p+) depends continuously on p4 .

When F = 0, the skinning measure has been defined by Oh and Shah | | for the
outer unit normal bundles of spheres, horospheres and totally geodesic subspaces in real hy-
perbolic spaces. The definition was generalised in | | to the outer unit normal bundles
of nonempty proper closed convex sets in Riemannian manifolds with variable negative cur-
vature.

Note that the Gibbs measure is defined on the space ¥ X of geodesic lines, the potential
is defined on the space T'X of germs at time ¢ = 0 of geodesic lines, and since ﬁ}iD is
contained in ¢4 X (see Section 2.4), the skinning measures are defined on the spaces ¢4 oX
of (generalised) geodesic rays. In the manifold case, all the above spaces are canonically
identified with the standard unit tangent bundle, but in general, the natural restriction maps
4X - T'X and 9X — ¥4 oX have infinite (though compact) fibers.

1See Section 4.1.
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Remark 7.1. (1) If D = {z} is a singleton, then
do35(p) = dp(p) (7.2)

where p is a geodesic ray starting (at time ¢ = 0) from x.
(2) When the potential F is equal to F o (in particular when F = O), we have C~ = CT,
and we may (and we will) take p, = p for all z € X, hence t,mp = mp and
5'5 - L*&D .

More generally, if Fis reversible, let G : T'X — R be a continuous I-invariant function
such that, for every £ € ¥ X, the map t — G(vg) is differentiable and F*(v;) — F(ve) =
%| t:Oé(’Ugtg). Furthermore assume that X is an R-tree or that G is uniformly continuous
(for instance Hélder-continuous). Then we have, for every p € 01 D, denoting by p € 4X any
extension of p to a geodesic line in X,

duso5(p) = e~ G2 do(p) -

Indeed, for all x,y € X and § € 0, X, let £, ¢ be any geodesic line with footpoint £, ¢(0) = =
and positive endpoint (¢; ¢)+ = £. Then by Remark 4.11, we have

Cc (a,y) — Cf (2,y) = Glug, ) — Clu, )

and we may (and we will) take

dp7(€) = e O gt (e) .

Hence for every p € 0iD, we have

~_ c- o, (tp)(0 _ - (z _
45 (1p) = €= O G (1) ) = Cor 0O g ()

_ eC;; (o, p(o))_é(wl(o)y oy :

-G
duy(pi) = e ) ()

(3) The (normalised) Gibbs cocycle being unchanged when the potential F is replaced by the
potential F' + o for any constant o, we may (and will) take the Patterson densities, hence the

Gibbs measure and the skinning measures, to be unchanged by such a replacement.

When D is a horoball in X, let us now relate the skinning measures of D with previously
known measures on 0y, X, constructed using techniques due to Hamenstadst.

Let 7 be a horoball centred at a point & € 05, X. Recall that Py : 00X — {&} — 0. is
the closest point map on 42, mapping 1 # £ to the intersection with the boundary of J# of
the geodesic line from 7 to £. The following result is proved in | , §2.3| when F' = 0.

Proposition 7.2. Let p : [0,40[ — X be the geodesic ray starting from any point of the
boundary of € and converging to . The following weak-star limit of measures on 0y X — {&}

t) (77)

exists, and it does not depend on the choice of p. The measure ,ugf s invariant under the
elements of I’ preserving 7, and it satisfies, for every x € X and (almost) every n € dpnX —

{€},

P )
dps, (n) = hI+noo e -5, (FE-0) du:f(

+
duif (n) = o—Cir (Pre(n), @)
dpz
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Proof. We prove all three assertions simultaneously. Let us fix x € X. For all ¢ > 0 and
1€ 0pX — {£}, let 2z be the closest point to Py (n) on the geodesic ray from p(t) to 7.

on

Using Equation (4.2) with z replaced by p(¢) and y by the present x, by the cocycle
equation (3.19) and by Equation (3.20) as z; € [p(t), 7], we have

Py (n) 554
e Yoy (FE0)

P Fr_g§) _of =
Ay () = ¢ Vit D) =G0 gy )

Pyp(n) 7
= o Bl T EESD) =GR (p0), ) o= () g, ()

Siff(n) =0)+§5n (F£=0) —C3f (20, ) dp (n) .

As t — 40, note that z; converges to P, (n) and that by the HC-property (and since F is
bounded on any compact neighbourhood of P (n)), we have

P%(n o 2t
U )—f (Fi—é)’—>0.
) (1)

The result then follows by the continuity of the Gibbs cocycle (see Proposition 3.20 (3)). [

Using this proposition and the cocycle property of C* in the definition (4.4) of the Gibbs
measure, we obtain, for every £ € ¢ X such that 4 # &,

- +
d%p(ﬁ) — eCZ,(PK%(e—):Z(O))+C£+(P3i€(z+)ve(0)) dﬂ;;ﬂ(e—)dﬂ;f(g-‘r)dt . (73)

Note that it is easy to see that for every p € (3_15%” , we have

5%, (p) = dpZ,(p+) - (7.4)

When F' = 0, we obtain Hamenstdidt’s measure

fp = lim € ) (7.5)

t——+00

on 0 X — {£} associated with the horoball ¢, which is independent of the choice of the
geodesic ray p starting from a point of the horosphere 0.7 and converging to £. Note that
for every ¢ = 0, if #[t] is the horoball contained in . whose boundary is at distance ¢ from
the boundary of 57, we then have

ot =€ por (7.6)

Assume till the end of Proposition 7.3 that the potential F is zero. The next result
gathers computations done in | ) | of the skinning measures of horoballs and
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some totally geodesic subspaces, when X is a real or complex hyperbolic space and I' is a
lattice. We consider the notation Hlg, Hf, 57, Heisg,—1, A2,—1 introduced in Section 4.2,
and we again endow T’ 1Hﬁ and T 1]1-}1(% with their Sasaki’s Riemannian metric. Recall that a
complex hyperbolic line in H is a totally geodesic plane with constant sectional curvature —4.

As the arguments of the following result are purely computational and rather long, we do
not copy them in this book, but we refer respectively to the proofs of | , Prop. 11 (1),
(2)] and | , Lem. 12 (iv), (v), (vi)|]. Analogous computations can be done when X is
the quaternionic hyperbolic n-space Hi.

Proposition 7.3. (1) Let ' be a lattice in Isom(Hy), with Patterson density (pio)zemp nor-
malised as in Section 4.2.

(i) If D is a horoball in HE, if VOlaiD is the Riemannian measure of the submanifold 61iD mn
TYHE, then B
51_) = 2n71 VOla}_LD .

If the point at infinity of D is a parabolic fized point of I, with stabiliser T'p in T, then?
o3| = 2"t Vol(T p\dL D) = 2" ' Vol(T p\oD) = 2" *(n — 1) Vol(T'p\D) .
(1t) If D is a totally geodesic hyperbolic subspace of dimension k € {1,...,n — 1} in HE, if
VOla_l'_D s the Riemannian measure of the submanifold 6}iD in TlHﬁ, then
55 = vola1 p -

With I'p the stabiliser of D in I' and m the order of the pointwise stabiliser of D in ', if
I'p\D has finite volume, then

Vol Sn—k—l
log| = O(m) Vol(I'p\D) .

(2) Let I' be a lattice in Isom(Hg), with Patterson density (ps)zemp normalised as in
Section 4.2.

(i) Using the homeomorphism v — vy from é’}ijfoo to OpHE — {00} = Heisa,—1, we have
d&iﬂw (’U) = d/\gn_l(vi) .

For every horoball D in HE, if volop is the Riemannian measure of the hypersurface 0D in
H, then
7T*5j§ = 2 volsp .

If the point at infinity of D is a parabolic fixed point of I', with stabiliser I'p in I', then

lo5| = 4n Vol('p\D) .

(ii) For every geodesic line D in HE, if V0181+D is the Riemannian measure of the submanifold
&iD m TlH(?:, we have

n
dre6 5 = —————— dmy voly p .
D g2 1) D
%See for instance [ , p- 473] for the last equality.
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With I'p the stabiliser of D in I' and m the order of the pointwise stabiliser of D in T, if
Ip\D has finite length, then

9 n—1
T - Vol(Ip\D).

Sy n!
Ll m(2n —1)

(iii) For every complex geodesic line D in HE, if VOlaiD is the Riemannian measure of the
submanifold oY D in T'HZ, we have

1
~+
dTr*O'D = 52n—3 d'ﬂ'* VOla_lFD .

922
With I'p the stabiliser of D in I' and m the order of the pointwise stabiliser of D in ', if
I'p\D has finite area, then

7.[.n—l

| —
HUDH m4n—2 (7’L _ 2)

- Vol'p\D) . O

The following results give the basic properties of the skinning measures analogous to those
in | , Sect. 3| when the potential is zero.

Proposition 7.4. Let D be a nonempty proper closed convex subset of X, and let 5’}5 be the

skinning measures on @}LD for the potential F.

(1) The skinning measures 52—5 are independent of .
(ii) For all v € ', we have 7*52—5 = 5,J7FD. In particular, the measures 52—5 are invariant under
the stabiliser of D in T

(iii) For all s = 0 and w € 01D, we have®

eszri (m(w), m(g=*w)) d&%(

d&iD((gisw)|i[07+w[) = w)

eSS gt )
(iv) The support of &}5 18
{vediD:vy € AT} = PE(AT — (AT n 0,,D)) .
In particular, 5% is the zero measure if and only if AT is contained in OxD.

For future use, the version” of Assertion (iii) when F = 0 is

d(gts ~+
N& 20D (gou) — e (7.7
dUWSD

where w € 0L D and we again denote by g** the map from é’}LD to (9}£</1/1D defined by

w — (gisw)’i[0,+oo['
As another particular case of Assertion (iii) for future use, consider the case when X = |X],
is the geometric realisation of a metric tree (X, A) and when F' = F, is the potential associated

3denoting by (g7°w)|+[0,+w[ the element of ¥4 o which coincides with g**w on +[0, +00[
“contained in | , Prop. 4]
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with a system of conductances ¢ on X for a subgroup I' of Aut(X) (see Equation (3.23) and
Proposition 3.22). Then for all w € 0% D (respectively w € 0L D), if e,, is the first (respectively
the last) edge followed by w, with length A(e,), then

ﬂ-(gik(ew)w) N
f F* =%(ew) Mew)

w(w)

by Proposition 3.21, so that

A5, (g™ w) g0 onf) = €7 (AW TINE) 45 (w) (7.8)

Proof. The proofs of the claims are straightforward modifications of those for zero potential
in | , Prop. 4|. We give details of the proofs for the measure 575, the case of 6, being
similar.

(i) The claim follows from Equation (4.2) and the cocycle property (3.19).
(ii) The claim follows from Equation (4.1), the first part of Equation (3.19) and Claim (i).

(iii) Since ((gsw)‘[07+oo[)+ = w4 and since w € 01 D if and only if (8°W))[0,+o0[ € oL AD, we
have, using the definition (7.1) of the skinning measure and the cocycle property (3.19), for
all s >0,

~ s 5 (@0, m(g5w L (r(w), 7 (gw ~
A&, (8 W) o, 4oop) = €70+ EOTE N A () = D T TED G5 ().

This proves Claim (iii) for 7, using Equation (3.20).
(iv) The claims follow from the fact that the support of any Patterson measure is AT, see
Subsection 4.1. ]

Given two nonempty closed convex subsets D and D’ of X, let
AD,D’ = 0OOX — (é’OOD U GOOD’)

and let 3, : Pj(Ap pr) — Pp/(Ap.pr) be the restriction of P3, o (P5)~! to P5(Ap pr). It
is a homeomorphism between open subsets of 8}£D and (?}LD’ , associating to the element w
in the domain the unique element w’ in the range with w, = ws.

Proposition 7.5. Let D and D' be nonempty closed convex subsets of X and let ht = hf; D

The measures (h*), 53, and Opy on PZ,(Ap pr) are absolutely continuous one with respect to
the other, with
d(ht), 55
—— D
dop,

for (almost) all w e PE(Ap p/) and w' = ht(w).
D b

(w/) — efclit;i (71'(’[1}), TI'(’LU/))

9

Proof. As w! = w4, we have

cs, CE, (o, m(w)) CE, (w(w), m(w))
d5g, (') = e " dpg,(w) =e " e duz, (w,)

— (O (W) ) gt ()

(o, m(w"))

using the definition (7.1) of the skinning measure and the cocycle property (3.19). O
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Let w € ¢4 X. With N : W*(w) — 0L HB+(w) the canonical homeomorphism defined in
Section 2.4, we define the skinning measures pyy+ () on the strong stable or strong unstable
leaves W= (w) by

Hwt(w) = ((qu)_l)*afmi(w) )
so that

CF (zo0,£(0 T
iy (€) = € 7O au (05) (7.9)

for every £ € W*(w). By Proposition 7.4 (i) and the naturality of N3, for every v € ', we
have
VW (w) = HW= (yw) - (7.10)

By Proposition 7.4 (iv), the support of puyy+ () is {¢ € W*(w) : ¢z € AT}. For all t € R and
¢ e WE(w), we have, using Equations (7.9), (3.19) and (3.20), and since £4 = w,

w(gw) _ (Ot (0 40D
d py = (gtw)

Ciy (£(0), £(t)) ) (7.11)
Let w € 94 X. The homeomorphisms W*(w) x R — W% (w), defined by
(67 3) == gsg )
conjugate the actions of R by translation on the second factor of the domain and by the

geodesic flow on the range, and the actions of I" (trivial on the second factor of the domain).
Let us consider the measures v;;, on W% (w) given, using the above homeomorphism, by

T (0 = o (VOO gy (0) ds . (7.12)
They satisfy (g')«vE = v for all t € R (since if ¢/ = g, then g~/ = g*~ %, and by
invariance under translations of the Lebesgue measure on R). Furthermore, v,v: = y;—’w for

all v € T'. In general, they depend on w, not only on W= (w). Furthermore, the support of
vy is {{' € W% (w) : (L € AT'}. These properties follow easily from the properties of the

w
skinning measures on the strong stable or strong unstable leaves.

Lemma 7.6. (i) For every nonempty proper closed convex subset D' in X, there exists Ry > 0
such that for all R > Ry, n > 0, and w € 0L D', we have qu(Vujin p)>0.7

(i1) For all w e 9+ X and t € R, the measures V;Qw and v} are proportional:

Proof. (i) Let us show, as in | , Lem. 7], that there exists Ry > 0 (depending only on
D’ and on the Patterson densities) such that for all R > Ry, w € 01D’ and w' € 0L D', we
have gy + () (BT (w, R)) > 0 and piyy— () (B~ (w', R)) > 0. The result follows from this by

the definitions of v} and Vuj—rn 'y

5See Section 2.4 for the definition of Vwi’m R
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We give the proof of the claim on BT (w, R), the proof
of the claim on B~ (w, R) is similar. For all w € 01 D’ and
& e D U dwD', by a standard comparison and convex-
ity argument applied to the geodesic triangle with ver-
tices m(w), w4, &, the point 7(w) is at distance at most
2 ln(1+—2‘/5) from the intersection between the stable horo-
sphere H (w) and the geodesic ray or line between & and
Wy .

The triangle inequality and the definition of Hamenstadt distances imply that, for all
0,0 e Wt(w),
A+ (w) 0,0 < e2d(m (). () (7.13)

Hence, for every &' € 0, D', for every extension w € ¥ X of w, if ¢’ is the element of W (w)
such that ¢ = ¢, we have

R 1++/5

dW*(w) (wv E/) < ) :

Thus, if 0D’ N AT # &, then we may take Ry = 2 > 1+2\/5, since by Proposition 7.4 (iv),
the support of iy + () is {£ € WF(w) @ £_ € AT'}.

Assume now that 0D’ n A" = . For a contradiction, assume that, for all n € N,
there exists w, € 01D’ such that iy +(,,) (BT (wn,n)) = 0. Assume first that (wp)nen
has a convergent subsequence with limit w € oL D’. Since the measure Pw+(wy depends
continuously on w’ € 4, X, for every compact subset K of W (w), we have puyy+ () (K) = 0.
By Proposition 7.4 (iv) and by Equation (7.9), this implies that the support of the Patterson
measure i, , which is the limit set of I', is contained in {w }. This is impossible, since I" is
nonelementary.

In the remaining case, the points 7(wy,) in D’ converge, up to extracting a subsequence,
to a point £ in 0 D’. By definition of the map PE, and of 81D’, the points at infinity (wy,)+
converge to . For every 7 in 0o, X different from &, the geodesic lines from 7 to (wy,)+ converge
to the geodesic line from 7 to &.

By convexity, if n is large enough, the geodesic (wn)
line |n, (wy)+[ meets A1 D', hence passes at distance e n
at most 2 from m(w,). This implies by Equation
(7.13) that if n is large enough, then there exists
¢ € BT (wy, n) such that n = £_. 3

Since we assumed that fiyy+ () (B (wn,n)) = 0 for all n € N, Proposition 7.4 (iv) implies
that we have n ¢ AT'. Hence AT is contained in {£}, a contradiction since I" is nonelementary.

(ii) For all w € 4. X, s,t € R and £ € W*(w), we have by Equations (7.12) and (7.11), and
by the cocycle property (3.19) of C*,

_ _ + oy t
A, (&) = A, (g glt) = ¢ e ® e

_ iy (w(®),0() ,~Cit, (€(0), (1))

d:U'Wi(gtw) (gtg) d(S —t)

A+ () (£) ds
= (Cits (w(t),£(0)) (=i, (w(0).60)) g, (55)

= O W) g, T (e5p) | O
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The following disintegration result of the Gibbs measure over the skinning measures of
any closed convex subset is a crucial tool for our equidistribution and counting results. Recall
the definition in Equation (2.15) of the flow-invariant open sets %5 and the definition of the
fibrations fzjr : %5 — é’}iD from Section 2.4.

Proposition 7.7. Let D be a nonempty proper closed convex subset of X. The restriction to
%5 of the Gibbs measure mp disintegrates by the fibration f;-r : ?/]S—L — 5}_FD over the skinning
measure &3, of D, with conditional measure vy on the fiber (f5)"Hp) = W (p) of pe L D:
when £ ranges over U7, we have

e (0= | aiO@50).
pETL

Proof. In order to prove the claim for the fibration f, let ¢ € ¢.(%p ). Using in the various

steps below:

e Hopf’s parametrisation with time parameter ¢t and the definitions of mp (see Equation
(4.4)) and of %5 (see Equation (2.15)),

e the positive endpoint homeomorphism w — w, from 61+D t0 0o X —0on D, and the negative
endpoint homeomorphism ¢ +— ¢ from W (w) to 0, X — {w;}, with s € R the real
parameter such that ¢ = g=*¢ € W (w) where £ € W (w), noting that t — s depends
only on /4 =w, and {_ =/,

e the definitions Equation (7.9) and (7.1) of the measures juy+ () and 35, and the cocycle
property (3.19) of C*,

e Equation (3.20) and the cocycle property (3.19) of C'*,

we have

j o(0) dinp (1)
ey

C,_(zo, m(0)+C (w0, m(£)) _
:L €05 X —0 DJZ €00 X — {04} te]Rd)(g)e - A dtdﬂxo(gf)duio(ng)
4+ EOp X —0Oxp _€0p X —{l4+

s Co (o, m(g¢N+CL (w0, m(g"t")) _
- b(gt) e - ds dyiz, (¢ dpt, ()
wedl D JUeW+ (w) JseR
c, (n(e), n(g° +C:; w(w), 7 (g -
680 e o (), m(g°¢)) 4 (m(w), m(g°)) deMW+(w)(f/)d0E(w)

wedl D j“&W*(w) seR

s C,:r) m(w), (¢ ~
| H(g’0) e T gy () d ()
wedl D JUeW+ (w) JseR

which implies the claim for the fibration fg , by the definition (7.12) of the measure v,,. The
proof for the fibration f,, is similar. O

For every u € 4_X, if D = HB_(u), we have 01 D = N,/ (W~ (u)) and

Uy =4X W)= ) Wor(w).
weW —(u)

Applying the above proposition and a change of variable, the restriction to 4X — W°* (1u) of

the Gibbs measure m  disintegrates over the strong unstable measure iy — () = ((IV,, )55,
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with conditional measure on the fiber W% (w) of w € W~ (u) the measure v,, = V() TOT

w (w)
every ¢ € 6.(9X — W9 (1u)), we have
| H(0) dinp (0) =
Leg X —WOot (L)
& (w(w), w(e
[ B(&"t") O+ T T s o () dpy- oy (w). (714)
weW = (u) JUeW+ (w) JseR

Note that if the Patterson densities have no atoms, then the stable and unstable leaves have
measure zero for the associated Gibbs measure. This happens for instance if the Gibbs measure
mp is finite, see Corollary 4.7 and Theorem 4.6.

7.2 Equivariant families of convex subsets and their skinning
measures

Let I be an index set endowed with a left action of T'. A family 2 = (D;);er of subsets of X

or of X indexed by I is I'-equivariant if yD; = D.; for all v € I" and 7 € I. We will denote
by

the equivalence relation on I defined by ¢ ~ j if and only if D; = D; and there exists v € I'
such that j = ~«i. This equivalence relation is I'-equivariant: for all 4,5 € I and v € I', we
have vi ~ 7 if and only if i ~ j. We say that & is locally finite if for every compact subset
K in X or in 9X, the quotient set {i € I : D; n K # &}/ is finite.

Examples. (1) Fixing a nonempty proper closed convex subset D of X, taking I = T" with
the left action by translations (v,7) — i, and setting D; = iD for every i € I' gives a
I-equivariant family 2 = (D;);c;. In this case, we have i ~ j if and only if i=!j belongs to
the stabiliser I'p of D inT', and I/ =T'/T'p. Note that D depends only on the class [y] of ¢
in I'/T'p. We could also take I’ = I'/T'p with the left action by translations (v, [7']) — [v7],
and 2’ = (YD)[yjer, so that for all i, j € I, we have i ~g j if and only if i = j, and besides,
2’ is locally finite if and only if 2 is locally finite. The following choices of D yield equivariant
families with different characteristics:

(a) Let yg € I' be a loxodromic element with translation axis D = Ax,,. The family (yD)er
is locally finite and I'-equivariant. Indeed, by Lemma 2.1, only finitely many elements
of the family (vD),er/r,, meet any given bounded subset of X.

(b) Let £ € 4X be a geodesic line whose image under the canonical map 4X — I'¢ X has
a dense orbit in "% X under the geodesic flow, and let D = ¢(R) be its image. Then
the I'-equivariant family (yD)qer is not locally finite.

(c) More generally, let D be a convex subset such that I'p\D is compact. Then the family
(7D)~er is a locally finite I'-equivariant family.

(d) Let & € 05X be a bounded parabolic limit point of I', and let J# be any horoball in X
centred at {. Then the family (v.#),er is a locally finite I'-equivariant family.
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(2) More generally, let (D“)aea be a finite family of nonempty proper closed convex subsets
of X, and for every a € A, let F,, be a finite set. Define I = (J,4I' x {a} x F, with the
action of T" by left translation on the first factor, and for every i = (v, «, z) € I, let D; = yD®.
Then I/« = J,ea /T pa x {a} x F, and the I'-equivariant family 2 = (D;)er is locally
finite if and only if the family (yD*)qer is locally finite for every o € A. The cardinalities of
F, for a € A contribute to the multiplicities (see Section 12.2).

Let 2 = (D;)ier be a locally finite I'-equivariant family of nonempty proper closed convex

subsets of X. Let Q = (£;);er be a I'-equivariant family of subsets of ¢ , where §2; is a
measurable subset of 01 D; for all i € I (the sign + being constant), such that Q; = €; if
i ~g j. Then

~+ ~+
o0 = Z O-Di|ﬂi )
tel/~

is a well-defined I'-invariant locally finite measure on GX , whose support is contained in

¢+ 0X. Hence, the measure 55 induces® a locally finite measure on I'\ GX , denoted by 05.
When Q = 012 = (0} D;)icr, the measure 53 is denoted by

~+ ~
5o = ) 55,

i€l/~

The measures 5?; and ¢, are respectively called the outer and inner skinning measures of 9
on 9X , and their induced measures U;} and o, on I'\ G X are the outer and inner skinning
measures of 9 on I\ X.

Example. Consider the I'-equivariant family 2 = (yD),er/r, with D = {z} a singleton in
X. With 7% = (P3)™! : 81D — 95X the homeomorphism p +— p., we have (71),55 = u
by Remark 7.1 (1), and”

+
+ | |
ol = . 7.15
ot = (7.15)
5See for instance | , §2.6] and the beginning of Chapter 12 for details on the definition of the induced

measure when I' may have torsion, hence does not necessarily acts freely on gX.
"See also the beginning of Chapter 12.
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Chapter 8

Explicit measure computations for
simplicial trees and graphs of groups

In this Chapter, we compute skinning measures and Bowen-Margulis measures for some highly
symmetric simplicial trees X endowed with a nonelementary discrete subgroup I' of Aut(X).
These computations are parallel to the ones given in Section 4.2 when X is a rank one
symmetric space. The potentials F' are supposed to be 0 in this Chapter, and we assume
that the Patterson densities (u))zevx and (u, )zevx of I' are equal, denoted by (11)zevx. As
the study of geometrically finite discrete subgroups of Aut(X) mostly reduces to the study of
particular (tree) lattices (see Remark 2.12), we will assume that I is a lattice in this Chapter.

The results of these computations will be useful when we state special cases of the equidis-
tribution and counting results in regular and biregular trees and, in particular, in the arith-
metic applications in Part III. The reader only interested in the continuous time case may
skip directly to Chapter 9.

A rooted simplicial tree (X, zg) is spherically symmetric if X is not reduced to zp and has
no terminal vertex, and if the stabiliser of zy in Aut(X) acts transitively on each sphere of
centre xg. The set of isomorphism classes of spherically symmetric rooted simplicial trees
(X, o) is in bijection with the set of sequences (p,)nen in N — {0}, where p,, + 1 is the degree
of any vertex of X at distance n from xg.

To

po+1 D1 D2 D3

If (X, 20) is spherically symmetric, it is easy to check that the simplicial tree X is uniform*
if and only if the sequence (py,)nen is periodic with palindromic period in the sense that there

1See Section 2.6 for the terminology concerning simplicial trees.
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exists N € N — {0} such that p,+n = py, for every n € N and py_,, = p, for every n € N such
that n < N. If N =1, then X = X, is the regular tree of degree py + 1, and if N = 2, then
X = X}, p; is the biregular tree of degrees pp + 1 and p; + 1.

We denote by X = |X]|; the geometric realisation of X. The Hausdorff dimension hx of
O X for any visual distance is then

hx = —=In(po...pN-1) , (8.1)

1
N

see for example [LL.yo, p. 935].

8.1 Computations of Bowen-Margulis measures for simplicial
trees

The next result gives examples of computations of the total mass of Bowen-Margulis measures
for lattices of simplicial trees having some regularity properties.

Analogous computations can be performed for Riemannian manifolds having appropriate
regularity properties. We refer for instance to | , Prop. 10| and | , Prop. 20
(1)] for computations of Bowen-Margulis measures for lattices in the isometry group of the
real hyperbolic spaces, and to | , Lem. 12 (iii)| for the computation in the complex
hyperbolic case. In both cases, the main point is the computation of the proportionality
constant between the Bowen-Margulis measure and Sasaki’s Riemannian volume of the unit
tangent bundle. When dealing now with simplicial trees, similar consequences of homogeneity
properties will appear below.

We refer to Section 2.6 for the definitions of vol, Vol, T'w, Tvol, TVol appearing in the
following result.

Proposition 8.1. Let (X, xg) be a spherically symmetric rooted simplicial tree, with associated
sequence (Pp)nen, such that X is uniform, and let T' be a lattice of X.

(1) For every x € VX, let rp = d(z, Aut(X)zg), and let

(Pr, — 1)62 rs hx n 2po
(po+1)%p% ... P2 _ipr,  (po+1)?

Cy =

if 1o #0 and ¢, = 22 if r, = 0. Then

po+1
1
[meml = D] T |(||M:e|\2— D pa(0:X)?)
[z]eT\VX z eeEX : o(e)=x
Cy
= Huxo ”2 Z Tl (8.2)
[m]eF\VX| 2l

(2) If X = X, 4 is the biregqular tree of degrees p + 1 and q¢ + 1, with VX = V,X u VX the
corresponding partition of the set of vertices of X, if the Patterson density (piz)zevx of I is
normalised so that ||p|| = % for all x € VX, then

(T'm)xmpm = Tvolp\x
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and

[mem| = TVol(I'\X) = Z p|1j-|1 + Z q|—|—|1 (8.3)
[z]el\Vpox % [z]el\V,x '™ 7F

(3) If X = Xy is the regular tree of degree q + 1, if the Patterson density (pz)gevx of I' is
normalised to be a family of probability measures, then

T«MBM = VO]F\\X

qg+1

and in particular
q
= —— Vol(I'\X) . 8.4
Imewm| ) ol(I"\X) (8.4)

Proof. We start by proving the first equality of Assertion (1). For every x € VX, we may
partition the set of geodesic lines ¢ € ¥X with £(0) = = according to the two edges starting
from x contained in the image of £. The only restriction for the edges is that they are required
to be distinct.

For every e € EX, recall from Section 2.6 that d.X is the set of points at infinity of the
geodesic rays whose initial edge is e. For all e € EX and x € VX, say that e points away from
x if o(e) € [z, t(e)], and that e points towards x otherwise. In particular, all edges with origin
x point away from z. Hence by Equation (4.13), and since p, = p, = pu, we have

1
TxMBM = Z ‘F ‘ Z :u’x_(aex) ,u;(@/X) A[I] (85)
[z]el\VX '~ Tl ¢ &’€EX : o(e)=o(e/)=x, ese!
1 2
= X (Y m@x))’= Y w@X?) Ay (56
[zler\VX ™ 7 eeEX : o(e)=x e€EX : o(e)=x

This gives the first equality of Assertion (1).

Let us prove the second equality of Assertion (1). By homogeneity, we assume that
|tz | = 1 and we will prove that

C
Imeml = Fx-

[z]eM\VX e

Let N € N — {0} be such that p,+n = p, for every n € N and py_, = p, for every
n € {0,...,N}, which exists since X is assumed to be uniform. Then the automorphism
group Aut(X) of the simplicial tree X acts transitively on the set of vertices at distance a
multiple of N from zp. Hence for every x € VX, the distance r, = d(z, Aut(X)zg) belongs to
{0,1,...,|5]}, and there exist 7,7, € Aut(X) such that

d(z,7.20) = 12, € [V2®0,Vpxo] and  d(vex0,vpr0) = N .

The map  — 7, is constant on the orbits of I" in VX,? hence so is the map z + ¢, and thus
the right hand side of Equation (8.2) is well defined.

Since the family (ul®"),cyx of Hausdorff measures of the visual distances (0o X, d;) is
invariant under any element of Aut(X), since I' is a lattice and by Proposition 4.16, we have

Or = hx and Yiftz = fiye for all 2 € VX and v € Aut(X).

?In fact, it is constant on the orbits of Aut(X).

153 13/02/2019



Since (X, z) is spherically symmetric, and since p, is a probability measure, we have by
induction, for every e € EX pointing away from xy with d(xg,o0(e)) = n,

1

20 (0eX) =
Hao (0eX) (Po+1)p1 ... pn

(8.7)

if n # 0, and fi3,(0.X) = Iﬁ otherwise.

For every fixed z € VX, let us now compute p,(0.X) for every edge e of X with origin x.
Let v = 72,7 = 7, € Aut(X) be as above. By the spherical transitivity, we may assume that
e or € belongs to the edge path from vz( to +'xg.

There are two cases to consider.

Case 1: Assume first that e points away from yxg. There are py + 1 such edges starting

from x if r; = 0, and p,, otherwise. By Equation (8.7) and by invariance under Aut(X) of

( ,u?aus)xevx, we have

1

x eX = )
Hyo (0eX) (po+1)p1 ... pr,

with the convention that the denominator is pg + 1 if 7, = 0. Since the map & — f¢(x, yxo)
is constant with value —r, on 0.X, and by the quasi-invariance property of the Patterson
density (see Equation (4.2)), we have

_ _ eTxhX
pa(0X) = e or rm)ﬂvwo(aex) =

(po+1)p1 ... pr,
with the same convention as above.

Case 2: Assume now that e points towards yxg. This implies that r, > 1, and there is one
and only one such edge starting from x. Then as above we have

1
(pn +1)pN_1 ... Pr,

Py (an) =

9

and
e(NfTCL‘)hX

2(0.X) = e (IN=72)) )y, (0,X) = .
,u ( ) M’Y 0( ) (pN+1)pN—1 me

For every x € VX let

a-( ¥ M(agg))z— S @) (8.8)

eeEX : o(e)=x eeEX : o(e)=x
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If r, # 0, since the stabiliser of vz in Aut(X) acts transitively on the p,, edges with origin
x pointing away from yxg, since eNhx — popy .. .pn—1 and py = po, we have

eTth e(N*T‘z)hX 2
Cy = <prz + )
wpo+1)p1...pr, (oN+1)PN-1 ... Dr,
er”hx 2 e(N_""x)hX 9
— (b )+ ( )*)
(po+1)p1 ... pr, (pn +1)pN—1 ... Dp,
(P = pyy) €2l 2 py, eV =
(po+1)2pi2...p.2 (po+1)p1 ... propr, ---pN—1(pN + 1)
(pm — 1) e?rehx 2po

+ =C .
(po+1)2p?2 ... pry1?pr, (po+1)2

If r, = 0, we have

C (( +1) 1 )2 ( +1)( L )2 Po
= — = =cC, .
¥ Po po+ 1 Po po+1 po+ 1 v

Assertion (1) now follows from Equation (8.6).

Let us prove Assertion (2). Note that X = X, , is spherically symmetric with respect to
any vertex of X, and that, by Equation (8.1),

1
hye = 5 In(pq) .

Let e be an edge of X, with z = o(e) € V,X and y = t(e) € V X. For every z € VX, we define
C as in Equation (8.8).

Note that by homogeneity, we have C, = C, and || = |uz| for all z € VX, as well as
C, = Cy and ||u;|| = [|py| for all z € V,X. Hence the normalisation of the Patterson density
as in the statement of Assertion (2) is possible. By the spherical symmetry at x, and the
normalisation of the measure, we have ji;(9.X) = L and p,(0:X) = \/D- Therefore

VP
[yl = 11y (0eX) + 1y (0eX) = € 110 (0:X) + €7/ 1 (0X)
g+l

1 1
Pq—=+ =P ="
VP A/Pq NG
This symmetry in the values of |u,| and || explains the choice of our normalisation of the
Patterson density. We have

2
1% p 2
x = HNwH (p ) P+l = D 1”#:1:” =p+

and similarly Cy = _I5| tyl? = g + 1. This proves the second equality in Equation (8.3), by
the first equation of Assertion (1).

In order to prove that (T'7).mpm = Tvolpyx, we now partition IN¥X as

) T\{tewx : 60) = n(o(e), £(1) = n(t(e))} -

[e]eT\EX
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Using on every element of this partition Hopf’s decomposition with respect to the basepoint
o(e), we have, by a ramified covering argument already used in the proof of the second part
of Proposition 4.15,

(T'm)smpm = Z

[e]lel\ EX ITe]

to(e) (O X — 0eX) fig(e) (0eX) Al -

Since fio(e) (0eX) = e_hxut(e)(8€X) and by homogeneity, we have

degt(e) — 1

1 dego(e) —1
2 degt(e)

_hx A
|Fe‘ deg 0(6) HMt(e)H € [e]

(Tﬂ)*mBM = H/’LO(G)H

[e]eT\EX
Z 1 Hﬂo(e) ” HMt(e)H \/ZTq A
Cel  (p+1)(g+1)

[e] = TVOIF\\X .
[e]eT\EX

The first equality of Equation (8.3) follows, since pushforwards of measures preserve the total
mass.

Finally, the last claim of Assertion (3) of Proposition 8.1 follows from Equation (8.2), since
Cyp = q_%l for every x € VX, (or by taking ¢ = p in Equation (8.3) and by renormalising). The
first claim of Assertion (3) follows from the first claim of Assertion (2), by using Equation
(2.23) and renormalising. O

Remark 8.2. (1) In particular, if X = X is regular, if the Patterson density is normalised

to be a family of probability measures and if I" is torsion free, then wympgy is qqu times the

counting measure on I'\VX. In this case, Equation (8.4) is given by | , Rem. 2].

(2) If X = X, 4 is biregular with p # ¢, then m,mpy is not proportional to volpyx. In
particular, if I' is torsion free and if the Patterson density is normalised to be a family of
probability measures, then w,mpgy is the sum of 1% times the counting measure on I'\V,X
and _Z5 times the counting measure on I'\V,X.

This statement is coherent with the well-known fact that in pinched but variable cur-
vature, the Bowen-Margulis measure is generally not absolutely continuous with respect to
Sasaki’s Riemannian measure on the unit tangent bundle (they would then be proportional
by ergodicity of the geodesic flow in the lattice case).

8.2 Computations of skinning measures for simplicial trees

We now give examples of computations of the total mass of skinning measures (for zero
potentials), after introducing some notation. Let X be a locally finite simplicial tree without
terminal vertices, and let " be a discrete subgroup of Aut(X).

For every simplicial subtree D of X, we define the boundary 0VID of VID in X as
VD ={zxeVD : Jee EX, oe) =z, t(e) ¢ VD}.

The boundary 0D of D is the maximal subgraph (which might be non connected) of X with
set, of vertices OVID. It is contained in ID. The stabiliser I'p of D in T" acts discretely on JD.
For every x € VX, we define the codegree of x in D as codegp(z) = 0 if x ¢ D and otherwise

codegp(z) = degx(x) — degp(x) .
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Note that codegp(z) = 0 if 2 ¢ VD, and that the codegree codeg y.p(x) of x € VX in the
1-neighbourhood 41D of D is equal to 0 unless x lies in the boundary of 41D, in which case
it is equal to degx(z) — 1.

Let 2 = (D;)er be a locally finite T'-equivariant family of simplicial subtrees of X, and let
x € VX. We define the multiplicity® of x in (the boundary of) 2 as (see Section 7.2 for the
definition of ~)
_ Card{ie /., : v€dVD;}

| '

mag(x)

The numerator and the denominator are finite by the local finiteness of the family 2 and
the discreteness of I', and they depend only on the orbit of x under I'. Note that if D is a
simplicial subtree of X which is precisely invariant under I' (that is, whenever v € I is such
that D n 4D is nonempty, then v belongs to the stabiliser I'p of D in I'), if Z = (YD),er/ry,

and if x € VD, then
1

In particular, if furthermore T" is torsion free, then mgy(x) = 1 if x € OVD, and mgy(x) = 0
otherwise.

Example 8.3. Let ¢4 be a connected graph without vertices of degree < 2 and let X be its
universal cover, with covering group I'. If C'is a cycle in 4 = I'\X and if Z is the family of
geodesic lines in X lifting C, then mgy(x) = 1 for all z € VX whose image in ¢ = I'\X belongs
to C'if C' is a simple cycle (that is, if C passes through no vertex twice).

We define the codegree of x in & as

codegy(x) = Z codegp, () ,

iEI/NQ
which is well defined as codegp, (+) depends only on the class of i € I modulo ~4. Note that
codegg(x) = (degy = — k) [I'z| mg () (8.9)

if degp, (x) = k for every x € dVD; and 7 € I. If every vertex of X has degree at least 3, this is
in particular the case with k = 2 if ID; is a line for all 4 € [ and with k£ = 1 if D; is a horoball
forall ¢ e I.

We will say that a simplicial subtree D of X, with stabiliser I'p in I', is almost precisely
invariant if there exists N € N such that for every x € VI, the number of v € I'/I'p such that
x € yVD is at most N. It follows from this property that if 2 = (yD)+er, then Z is locally
finite and codeggy(x) < N codegp(x) for every z € VX.

Proposition 8.4. Assume that X is a reqular or biregular simplicial tree with degrees at least
3, and that T is a lattice of X.

(1) For every simplicial subtree D of X, we have

xT -

~t lp1z|| codegp ()
TWOm = A
A el

3See Section 12.2 for explanations on the terminology.
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(2) If 7 = (Dy)ier is a locally finite T'-equivariant family of simplicial subtrees of X, then

+ |pa| codegy(x)
TeO o = A
(8) Let k € N and let D be a simplicial subtree of X such that degp(x) = k for every x € oVD
and the T-equivariant family 9 = (yD)r/ry, is locally finite. Then

+ v lpy|l (degx (y) — k)

TxO = Ty -
7 |(Tp)y| degx(y) !

Ipyelp\ovD

(4) If D is a simplicial subtree of X such that the I'-equivariant family 2 = (YD)qer is locally
finite, then the skinning measure aé is finite if and only if the graph of groups T'p\dD has
finite volume.

Before proving Proposition 8.4, let us give some immediate consequences of its Assertion
(3). If X = X, 4 is biregular of degrees p + 1 and ¢ + 1, let VX = V,X 1 VX be the
corresponding partition of the set of vertices of X and, for r € {p, ¢}, let 0,ID be the edgeless
graph with set of vertices VI n V. X.

Corollary 8.5. Assume that (X,T') is as in Proposition 8.4. Let D be a simplicial subtree of
X such that the I'-equivariant family 2 = (yD),er/r,, is locally finite.
(1) If X = X,, 4 is bireqular of degrees p + 1 and q + 1 and if the Patterson density (pz)zevx

of T' is normalised so that ||p.|| = \/gzg%% for all x € VX, then
egx(x)—

e if D is a horoball,

loZ ] = vp Vol(Tp\2,D) + /g Vol(Tp\o,D) ,

e ifD is a line,

loE] = p\}pl Vol(I'p\@,D) + q\}ql Vol(I'p\\&,D) . (8.10)

(2) If X = X is the regular tree of degree q + 1 and if the Patterson measures (jig)zevx are
normalised to be probability measures, then

e if D is a horoball,

+ q
Z|| = —— Vol(I'p\cD 8.11
logl ) ol(IT'p\\dD) (8.11)
o if D is a line,
+ g—1
2| = —— Vol(I'p\D) . 8.12
ol = £ Vol(Tp\D) . O (5.12)
Proof of Proposition 8.4. (1) We may partition the outer/inner unit normal bundle

&1_F]D> of D according to the first/last edge of the elements in 61i]D). On each of the elements
of this partition, for the computation of the skinning measures using its definition and its
independence of the basepoint (see Section 7.1), we take as basepoint the initial/terminal
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point of the corresponding edge. Since D is a simplicial tree, note that for every e € EX such
that o(e) € VD, we have e € ED if and only if ¢(e) € V. Thus, we have

77*5]1; = Z Mo(e)(aex) Ao(e)
eeEX : o(e)eVD, t(e)¢VD

> > Ha(0.X)) A,

zedVD ecEX: o(e)=z, t(e)¢VD

and similarly

Tx0p = Z te(e) (0eX) Ay(e)
eeEX : t(e)eVD, o(e)¢VD

(X Ha(0X)) A,

zedVD ecEX :o(e)=z, t(e)gVD

As in the proof of Proposition 8.1 (2), since X is spherically homogeneous around each point
and since I' is a lattice (so that the Patterson density is Aut(X)-equivariant, see Proposition
4.16), we have pz(0.X) = %};”(HI) for all z € VX and e € EX with o(e) = z. Assertion (1)
follows, since X e px . o(e)=s, t(e)pvp 1 = codegp(z) if 2 € VD and codegp(z) = 0 otherwise.
(2) By the definition” of the skinning measures associated with I'-equivariant families, we
have 5% = Dliel/. 3]51_, where ~ = ~4. Hence by Assertion (1)

ot |piz| codegp, (z)
0 = 2 W*UD Z Z dogy (2) A,

i€l/~ €l/~ xzeVX
z «|| codegg
© 3 (3 otonn ) oL a, oy Dol o)
2eVX " ielj~ gx(x zeVX gx(

By the definition of the measure induced in I'\VX when I" may have torsion (see for instance
| , §2.6] and the beginning of Chapter 12), Assertion (2) follows.

(3) Tt follows from Assertion (2) and from Equation (8.9) that
deg
mog = X B ) g
[z]eT\V'X ex

For every x € VX, by the definition of mg(z), we have, by partitioning VD into its orbits
under I'p,

1
mg(z) = T, . yx € 0VD}

Z Card{y e I'p\I' : T'pyz = I'py}
| Ipyelp\ovVD

| Z Card{y e I'p\I" : T'pyy = I'py}
P! Ipyep\ovD, Te=Cy

1
= | | 2 [Fy : (FD)y] = Z ‘(F]D))y| :

P! Ipyep\ovD, Tz=Cy Ipyelp\oVD, Tz=Iy

4See Section 7.2.
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This proves Assertion (3), since > 1cr\vx, raery ) = Ary-

(4) It follows from Assertion (2) that

v lpe| codegg (x) ‘

+
ox| =
logl L] degz(a)

[z]eT\VX
Note that for every x € dVID, we have
[Tzl mg(x) < codegy(z) < degy(x) [Tzl my(z) .

Let m = mingevx | el and M = maxgeyx | o], which are positive and finite, as the total
mass of the Patterson measures takes at most two values, since I is a lattice and X is biregular.
By arguments similar to those in the proof of Assertion (3), we hence have

m

mingeyx degy (z)

Vol(I'p\dD) < [0z < M Vol(I'p\dD)

The result follows. ]

We now give a formula for the skinning measure (with zero potential) of a geodesic line
in the simplicial tree X, using” Hamenstidt’s distance d_ and measure p 4 associated with
a fixed horoball 27 in X. This expression for the skinning measure will be useful in Part III.

Lemma 8.6. Let € be a horoball in X centred at a point £ € 0x X . Let L be a geodesic line
in X with endpoints Ly € 0o X — {&}. Then for all p € 01 L such that py # &,

djf(L+7 L*)(SF
Ay (pss L) dyp(p, Ly)or

a5} (p) = i (ps)

Proof. By Equations (2.13) and (7.6), the power d »°" of the distance and the measure
scale by the same factor when the horoball is replaced by another one centred at the same
point. Thus, we can assume in the proof that L does not intersect the interior of 2.

Fix pe &1FL such that p; # &. Let y be the closest point to £ on L, let 2o be the closest
point to L on 4, and let z be the closest point to & on p([0,+0[). Let ¢t — z; be the geodesic
ray starting from z( at time ¢ = 0 and converging to £. When ¢ is large enough, the points
P+, 2z, 1y and € are in this order on the geodesic line |p4, &[.

We have, by the definition in Equation (7.1) of the skinning measure, the cocycle property
of the Busemann function, Equation (3.20) and the definition of z,

d&f(p) — OBy (wz,p(O))dMZt (p4) = 91 By (6, 2)+0r Bo, (zﬁp(O))duxt (p+)
= Ol KO gy ()

— 6§F t—or lgﬁ(x(% 2)761—‘ d(zap(o))duxt (p+) ,
and, by the definition of Hamenstédt’s measure u» (see Equation (7.5)),

dp(py) = € tdpa, (py) -

®See the definitions of Hamenstidt’s distance and measure in Sections 2.2 and 7.1 respectively.
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Case 1: Assume first that p(0) # y. We may assume that p(0) € [y, L4+[. Then z = p(0) and
z is the closest point to J# on the geodesic line |L, py[. Thus dy(L_,Ly) = dyp(L_, ps)
and dy(Ly,py) = ed(z:20) = Pe(20,2) and the claim follows.

Case 2: Assume now that y = p(0). Then [y, z] = [y,&[ N [y, p+[, and we may assume that
xo = z up to adjusting the horoball 7 while keeping its point at infinity. Thus d»(L_, L} ) =
e~ 20) — ¢=d(2.00) and d(L_, py) = dy(Ly, py) = 1, and the claim follows. O
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Chapter 9

Rate of mixing for the geodesic flow

Let X, zo, T, F, (uE)zex be as in the beginning of Chapter 7, and FE Ft §= op, pt < 0,
mp, mp the associated notation. In this Chapter, we start by collecting in Section 9.1 known
results on the rate of mixing of the geodesic flow for manifolds. The main part of the Chapter
then consists in proving analogous bounds for the discrete time and continuous time geodesic
flow for quotient spaces of simplicial and metric trees respectively.

We define mp = IIZ%H when the Gibbs measure is finite. Recall that this measure is
nonzero since I' is nonelementary.

Let a € ]0,1].) We will say that the (continuous time) geodesic flow on I\¥ X is ea-
ponentially mizing for the a-Hdlder reqularity or that it has exponential decay of a-Hdélder
correlations for the potential F' if there exist C, x > 0 such that for all ¢, ¢ € €¢*(I"\¥ X) and
t € R, we have
oams [ wamp| <O M olalvla,  O)

‘ J pog " dmp —
N@x n@x

Nex
and that it is polynomially mizing for the a-Holder regularity or has polynomial decay of c-
Holder correlations if there exist C' > 0 and n € N — {0} such that for all ¢, € € (I'"¥ X)
and t € R, we have

| oegtvamr— | odmp|  vdmE|<C A+ ol 6o
X rN¥x

Ngx

9.1 Rate of mixing for Riemannian manifolds

When X = M is a complete simply connected Riemannian manifold with pinched negative
sectional curvature with bounded derivatives, then the boundary at infinity of M , the strong
unstable, unstable, stable, and strong stable foliations of TIM are Holder-smooth and only
Holder-smooth in general.? Hence the assumption of Hélder regularity on functions on T'M
is appropriate for these manifolds.

The geodesic flow is known to have exponential decay of Holder correlations for compact
manifolds M = I’\M when

'"We refer to Section 3.1 for the definition of the Banach space %(Z) of bounded a-Hélder-continuous
functions on a metric space Z.

2See for instance | | when M has a compact quotient (a result first proved by Anosov), and | ,
Theo. 7.3].
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e M is two-dimensional and F' is any Holder-continous potential by | ],

e M is 1/9-pinched and F = 0 by | , Coro. 2.7],

e mp is the Liouville measure by [Live], see also [Tsu], [NZ, Coro. 5] who give more precise
estimates,

e M is locally symmetric and F' is any Holder-continuous potential by [Sto], see also [MO].

When M is a symmetric space, then the boundary at infinity of M , the strong unstable,
unstable, stable, and strong stable foliations of T M are smooth. Hence talking about leafwise
%'-smooth functions on T1M makes sense. For every £ € N, we will denote by CHT' M) the
vector space of real-valued €*-smooth functions on the orbifold T'M = F\T1]\7 with compact
support in 7'M, and by ||, the Sobolev W%2-norm of any 1 € €*(T" M). This space consists
of functions induced on T'M by €*-smooth T-invariant functions with compact support on
T'M.

Given £ € N, we will say that the geodesic flow on T'M is exponentially mizing for the (-
Sobolev regularity (or that it has exponential decay of £-Sobolev correlations) for the potential
F if there exist ¢,k > 0 such that for all ¢, € €X(T*M) and all t € R, we have

[ eotvdmr— | sdmp | wdmp|<ce ol ol
T M T M TIM

When F' = 0 and I' is an arithmetic lattice in the isometry group of M (the Gibbs measure
then coincides, up to a multiplicative constant, with the Liouville measure), this property, for
some £ € N, follows from | , Theorem 2.4.5|, with the help of [Clo, Theorem 3.1| to check
its spectral gap property, and of | , Lemma 3.1| to deal with finite cover problems.

9.2 Rate of mixing for simplicial trees

Let X be a locally finite simplicial tree without terminal vertices, with geometric realisation
X = |X|;, and zg € VX. Let I" be a nonelementary discrete subgroup of Aut(X) and let
¢: EX — R be a system of conductances for I' on X. Let E, : T'X — R be the associated
potential of ¢, and ¢ : \EX — R, F, : [\T'X — R the quotient functions. Let §. = or, F.
be the critical exponent of ¢, assumed to be finite.® Let (u)zeyx be (normalised) Patterson
densities on 0 X for the pairs (T, Fci), and let m, = mp, and m, = mp, be the associated
Gibbs measures on ¢4X and I'\¥X.

In this Section, building on the end of Section 4.4 concerning the mixing properties them-
selves,* we now study the rate of mixing of the discrete time geodesic flow on I'\¥X for the
Gibbs measure m, = mp,, when it is mixing.

Let (Z,m,T) be a dynamical system with (Z,m) a probability space and T': Z — Z a
(not necessarily invertible) measure preserving map. For all n € N and ¢,v¢ € L?(m), the
(well-defined) n-th correlation coefficient of ¢, is

COVim, (b, 1) = L GoT™ ¢ dm — L ¢ dm L b dm .

Let @ € ]0,1] and assume that Z is a metric space (endowed with its Borel o-algebra).
Similarly as for the case of flows in the beginning of Chapter 9, we will say that the dynamical

3That is, to be < +00, since The critical exponentas it is > —co0 by Lemma 3.17 (7).
4See Theorem 4.17.
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system (Z,m,T) is exponentially mizing for the a-Hélder regularity or that it has ezponential
decay of a-Hélder correlations if there exist C, k > 0 such that for all ¢,v € €*(Z) and n e N,
we have

| covim, (@, V)| < C e |9l [Y]a-

Note that this property is invariant under measure preserving conjugations of dynamical
systems by bilipschitz homeomorphisms.

The main result of this Section is a simple criterion for the exponential decay of correlation
of the discrete time geodesic flow on I'\¥X.
We define m,. = HZ—EH when the Gibbs measure m. on I'\¢X is finite, and we use the

dynamical system (I'\¥X, Mg, g') in the definition of the correlation coefficients.
Given a finite subset E of T\VX, we denote by 7 : T\9¥X — N U {+00} the first return®
time to F of the discrete time geodesic flow:

E(¢) = inf{n e N— {0} : g"¢(0) € E},
with the usual convention that inf ¢J = +o0.

Theorem 9.1. Let X,T',¢ be as above, with . finite. Assume that the Gibbs measure me 18
finite and mizing for the discrete time geodesic flow on T\YX. Assume moreover that there
exist a finite subset E of T\VX and C', k' > 0 such that for all n € N, we have

me({{e T\YX : £(0) € E and 7p(f) = n}) <C' e "". (9.2)

Then the discrete time geodesic flow on T\YX has exponential decay of a-Holder correlations
for the system of conductances c.

A similar statement holds for the square of the discrete time geodesic flow on I'\%yenX
when m. is finite, €Al is a uniform simplicial tree with degrees at least 3 and Lr = 2Z.

Note that the crucial Hypothesis (9.2) of Theorem 9.1 is in particular satisfied if I'\X is
finite, by taking E = I'\VX. In this case, the result is quite well-known: when I' is torsion
free, it follows from Bowen’s result | , 1.26] that a mixing subshift of finite type is
exponentially mixing.

Proof. Let X' = ¥ATl'. Using the coding introduced in Section 5.2, we first reduce this
statement to a statement in symbolic dynamics.

Step 1 : Reduction to two-sided symbolic dynamics. Let (3,0) be the (two-sided)
topological Markov shift with alphabet o7 and transition matrix A constructed in Section 5.2,
which is conjugated to (I'\¥X',g!) by the homeomorphism © : T\YX' — ¥ (see Theorem
5.1). Let P = O, H:%H’ which is a mixing o-invariant probability measure on ¥ with full

support, since T\¥X' is the support of m.. Let
&={(e,het)ed :tle")=0(e") e E}.

The set & is finite since the degrees and the vertex stabilisers of X are finite. For all z € ¥
and k € Z, we denote by x the k-th component of x = (z,)nez. Let

Tg(x) = inf{n e N— {0} : x, € &}

® Actually, a more precise terminology is “first positive passage time”, but we use the shorter one. If £ € T\¢X
is such that £(0) € E, then “return” is appropriate.
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be the first return® time to & of = under iteration of the shift o.
Let 7, : ¥ — &N be the natural extension’ (fcn)nez — (Zn)nen- Theorem 9.1 will follow
from the following two-sided symbolic dynamics result.®

Theorem 9.2. Let (3,0) be a locally compact transitive two-sided topological Markov shift
with alphabet & and transition matriz A, and let P be a mixing o-invariant probability measure
with full support on ¥. Assume that

(1) for every A-admissible finite sequence w = (wy,...,wy) in <, the Jacobian of the map
fw from {(xg)reny € T+(X) : xo = wn} to {(Yk)ken € T+(X) : Yo = Woy ..., Yn = Wy}
defined by (xg,x1,x2,...) — (Wo, ..., Wn,T1,Ta,...), with respect to the restrictions of

the pushforward measure (w4)P, is constant;

(2) there exist a finite subset & of &/ and C', k' > 0 such that for all n € N, we have

P({zeX : z9€ & and 15(z) = n}) < C' e "™, (9.3)

Then (3,P,0) has exponential decay of a-Holder correlations.

Proof that Theorem 9.2 implies Theorem 9.1. Since 7. is supported on ¥X’, up to
replacing X by X', we may assume that 0, X = AT.

By the construction of © just before the statement of Theorem 5.1, for every ¢ = I/ e
N\ZX, we have (0€)g = (e5 (0), ho(0), el (£)) with el (0) = p(£([0,1])) where p : X — I'\X
is the canonical projection, so that o(eg (Z))) = £(0). Since © conjugates g' to o, for every
n € N, we have

(©0)n = (a"(08))0 = (6(g"0))o -
Thus (0¢),, € & if and only if g"¢(0) € E, and

T£(00) = 1R({) .

Therefore Theorem 9.1 will follow from Theorem 9.2 by conjugation since © is bilipschitz,
once we have proved that Hypothesis (1) of Theorem 9.2 is satisfied for the two-sided topo-
logical Markov shift (X, ) conjugated by © to (I'\¥X,g!), which is the main point in this
proof.

We hence fix an A-admissible finite sequence w = (wy,...,w,) in &/. We consider the
(one-sided) cylinders
[wn] = {(xk)ken € T4 (X) : 20 = wp} ,

[w] = {(yx)ken € T4+(X) : Yo = wo, .-, Yn = Wn}

and the map f, : [w,] — [w] with (zg,z1,2z2,...) — (wo, ..., wn,T1,22,...) that appear in
Hypothesis (1). We denote by @ and w,, the discrete generalised geodesic lines in X associated
with w and wy, (see the proof of Theorem 5.1 just after Equation (5.3)). Since w ends with
wy, by the construction of ©, there exists v € I' sending the two consecutive edges of W, to
the last two consecutive edges of w. We denote by z = w(0) and y = w,(0) the footpoints of
w and w, respectively.

6See the previous footnote.
"The authors are not responsible for this questionable terminology, rather standard in symbolic dynamics.
8 Assumption (1) of Theorem 9.2 is far from being optimal, but will be sufficient for our purpose.

166 13/02/2019



° oo o -——-o— o @-———————- <
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“Oqly

For every discrete generalised geodesic line w € X which is isometric exactly on an
interval I containing 0 in its interior (as for w = w, wy,), let

%JX = {KGgX : g‘[ :wu}

be the space of extensions of w); to geodesic lines. With 0EX = {4 : (e G,X] its set
of points at +o0, we have a homeomorphism ¢4,X — (9,;X x 9} X) defined by ¢ — (¢_, (),
using Hopf’s parametrisation with respect to the point w(0), since all the geodesic lines in
“4,X are at the point w(0) at time ¢t = 0. Using as basepoint zgp = w(0) in the definition of the
Gibbs measure (see Equation (4.12)), this homeomorphism sends the restriction to ¢, X of the
Gibbs measure d m.(¢) to the product measure du;(o) (¢-) d,u:;(o) (¢4). Hence the pushforward

of My, x by the positive endpoint map ey : £ — £ is ,u;(o)(aqu) du:;(o) (¢4), and note that
“;(0)(65 X) is a positive constant.
Let p: 9X — I'\YX be the canonical projection. Since 7y : 3 — ¥ is the map which

forgets about the past, there exist measurable maps uy, : 05X — [w] and w, : 05;5& — [wy]
such that the following diagrams commute:

T4 000D T4 000p

YsX [w] and  9;X [wn] -

05X 0£X

Furthermore, the map u,, (respectively u,,, ) is surjective, and has constant finite order fibers
given by the orbits of the finite stabiliser Iy (respectively I'g; ). Since P = 9*”2—2”, the push-
forward by the map w,, (respectively u,,, ) of the measure p) (respectively u; ) is a constant
time the restriction of (74 )P to [w] (respectively [wy]). Finally, by the construction of the

(inverse of the) coding in the proof of Theorem 5.1, the following diagram is commutative:

OEX = [w,)

S

oEX — [w].

Recall that the pushforwards of measures p, v, which are absolutely continuous one with
respect to the other, by a measurable map f are again absolutely continuous one with respect
to the other, and satisfy (almost everywhere)

d fap dp
of = —/—.
d fev dv
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Hence in order to prove that Hypothesis (1) in the statement of Theorem 9.2 is satisfied, we
only have to prove that the map v : 05;1X — 8:~;X has a constant Jacobian for the measures
fiy on G%X and p on 0LX respectively.

For all £,n € 05X, by the properties of the Patterson densities (see Equations (4.1) and
(4.2)), since yy belongs to the geodesic ray from z to £ and 7 (see the above picture), and by
Equation (3.20), we have

dryspyt du, ~

T A e
dyepy o\ dpd e Chwr) = SY(FS e
dz;ry (77) d/;i! (77) € " e S ( )

This proves that Hypothesis (1) in Theorem 9.2 is satisfied, and concludes the proof of
Theorem 9.1. ]

We now indicate how to pass from a one-sided version of Theorem 9.2 to the two-sided
one, as was communicated to us by J. Buzzi.

Step 2 : Reduction to one-sided symbolic dynamics. Let (X,0.) be the one-sided
topological Markov shift with alphabet & and transition matrix A, that is, ¥ is the closed
subset of the topological product space @/~ defined by

Sp={r=(@n)nene " : VneN, A ..., =1},
and o, : ¥ — X is the (one-sided) shift’ defined by
(04 (8))n = Tnss
for all x € ¥, and n € N. We endow ¥, with the distance
d(z,2)) = ¢ max {neN : Vie{0,..n}, z; = o, } '

Note that the distances on Y and >, are bounded by 1.

The natural extension 74 : (2p)nez — (Tn)neny maps X to 4. It satisfies 700 = oy omy
and is 1-Lipschitz. Note that 3 is transitive (respectively locally compact) if and only if ¥
is transitive (respectively locally compact).

In the one-sided case, we always assume that the cylinders start at time ¢t = 0: Given an
admissible sequence w = (wg, w1, ..., w,—1), we will say that the cylinder

[w] = [wo, .. s wn—1] = {(Tp)nen € X4 : Vi€ {0,...,n—1}, x; = w;}

defined by w has length

w| = n.

We first explain how to relate the decay of correlations for the two-sided and one-sided
systems. This is well-known since the works of Sinai [Sin, §3| and Bowen | , Lem. 1.6], see
for instance | , §4], and the following proof has been communicated to us by J. Buzzi. We

9 Although it is standard to denote the one-sided shift by ¢ in the same way as the two-sided shift, we use
o4 for readability.
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fix a € 10, 1]. For all metric spaces Z and bounded a-Holder-continuous functions f : Z — R,
recall'” that

= s LTI o =171+ 151

0<d(z,y)<1

For every a € o7, let us fix z% € ¥ such that (z%)p = a.

Lemma 9.3. Let ¢ : X — R be a bounded a-Hélder-continuous map and N € N. For
all v € Xy, let y(N)(x) = (Yi)ien € X, where y; = xiyn if i = —N and y; = (2")4n
otherwise. Define ¢\N) : £, — R by ¢NM(x) = ¢p(y™)(z)). Then ¢N) is bounded and
a-Holder-continuous on X4, with

lpoo™N — oM omy| < |olh e

Moreover,

6™ < e ol and 16™ s < ol

Proof. For every z = (2p)nez € %, if y = y™) (74 (2)), we have (O’N(LU))n = TpiN = Yn if
|n| < N. Hence,

B00™ () = $V (s (2))] = |30 (@) - B(y)|
< ol dio™ @), p)° < ol e

Moreover, for all & = (2p)pen, ©' = (2)))nen in By, if y = y™N(z) and 3/ = y™M(2), then
d(y,y") = eV d(z,2') if d(z,2') < e and otherwise d(y,vy’) <1 < eNd(z,2'), so that

[0 (@) = 6™ ()] = |9(y) — oy < [8lla d(y,y)* < [lle >N d(w,a)* . O

Proposition 9.4. Let p be a o-invariant probability measure on .. Assume that the dynam-
ical system (X4, 04, (74 )ep) has exponential decay of a-Hdélder correlations. Then (X, 0, p)
has exponential decay of a-Holder correlations.

Proof. Let C,x > 0 be such that for all bounded a-Holder-continuous maps ¢',¢’ : ¥, — R
and n € N, we have

| €OV () n (85 N < C ¢l 9l €777

Let ¢,1 : ¥ — R be bounded a-Hélder-continuous maps and n € N. Denoting by +¢ any
value in [—t,t] for every t > 0, we have, by the first part of Lemma 9.3 and for every N e N,!!

Jz¢oan wdu:f2¢oan+N Yool du
= L(cﬁ(m omy & g e M) oo™ (WM omy + 9l e du

~ s oM oo™ M d(m )y + Gl G e N
+

198ee Section 3.1 for the definition of the Holder norm | - |-
146 be chosen appropriately below
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A similar estimate holds for the second term in the definition of the correlation coefficients.
Hence, by the second part of Lemma 9.3,

| covy,n (e, )]
< 100V(r, ) (O™, ) + 2 |6 [¢a e
C (Il + 0l e*™) ([¥loo + [¥l6 e ™) €™ + 2 [la [¢]a e

<
< 8la [¥]a(C e2N=xn 12 c=a Ny

Taking N = [4%], C" = C +2¢” and &' = §, we have

| covy, n (0, 0)| < C [dlla [0 e "™,

and the result follows. ]

In order to conclude Step 2, we now state the one-sided version of Theorem 9.2 and prove
how it implies Theorem 9.2.'? For every finite subset & of 7, let

Te(x) = inf{n e N— {0} : z, € &}
be the first return time'? of z € ¥, under iteration of the one-sided shift.

Theorem 9.5. Let (X4,04) be a locally compact transitive one-sided topological Markov shift
with alphabet &/ and transition matriz A, and let Py be a mizring o, -invariant probability
measure with full support on . Assume that

(1) for every A-admissible finite sequence w = (wy, ..., wy) in <, the Jacobian of the map
from [wy] to [w] defined by (wy,z1,22,...) — (W, ..., Wn,T1,Ta,...) with respect to
the restrictions of the measure Py is constant;

(2) there exist a finite subset & of o/ and C',k’ > 0 such that for all n € N, we have

/

P.({zeXy : zpefandre(z) =n}) <C e ™", (9.4)

Then (X4,P4,04) has exponential decay of a-Hélder correlations.

Proof that Theorem 9.5 implies Theorem 9.2. Let (X,0,P, &) be as in the statement
of Theorem 9.2. Let P, = (71 )4P, which is a mixing o-invariant probability measure on
Y4+ with full support. Note that Hypothesis (1) in Theorem 9.5 follows from Hypothesis (1)
of Theorem 9.2. Similarly, Equation (9.4) follows from Equation (9.3). Hence Theorem 9.2
follows from Theorem 9.5 and Proposition 9.4. ]

Let us now consider Theorem 9.5. The scheme of its proof, using inducing and Young
tower arguments, was communicated to us by O. Sarig.

12 Assumption (1) of Theorem 9.5 is far from being optimal, but will be sufficient for our purpose.
13or rather the first positive passage time
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Step 3 : Proof of Theorem 9.5. In this final Step, using inducing of the dynamical system
(X4,04) on the subspace {x € ¥, : x9 € &} = [J,erla] (a finite union of 1-cylinders), we
present (X4,04) as a Young tower to which we will apply the results of | |.

Note that since o, is mixing and P, has full support, there exists a o -invariant mea-
surable subset of full measure A of ¥, such that the orbit under o, of every element of A
passes infinitely many times inside the nonempty open subset J,.o[a]. We again denote by
Tg : A — N — {0} the restriction to A of the first return time in | J,.z[a], so that if

Ag={reA : xoeg}zu Anla],
aed

then 7¢(z) = min{n € N — {0} : o%(z) € Ao} for all x € A. We denote by F' : A — Ag the
first return map to Ay under iteration of the one-sided shift, that is

F:xw— Jig(m)(m) :

Let W be the set of admissible sequences w of length |w| at least 2 such that if w =
(wo, ..., wy) with n = |w| — 1 then

wo,Wn €E and wi,...,Wn_1 ¢ & .

We have the following properties:

e the sets A, = A n [a] for a € & form a finite measurable partition of Ay and for every
a € &, the sets Ay, = A n [w] for w e W and wy = a form a countable measurable partition
of Ag;

e for every w € W, the first return time 7, is constant (equal to |w| — 1) on A, and if
Wjy|—1 = b, then the first return map F is a bijection from A, to Ay;

e for all we W and z,y € A, since z, y have the same |w| first components, we have

d(F(z), F(y)) = d(o""' 2, ol y) = eIV d(z,y) = e d(z,y) ;
o forallwe W, ne{0,...,|w| —2} and x,y € A, we have
d(omz,0%y) = " d(z,y) < 72 d(z,y) < d(F(z),F(y)) ;

o for every w € W, the Jacobian of the first return map F : A, — Aw\w\—l for the
restrictions to A, and Awle of P, is constant.'*

By an easy adaptation of | , Theo. 3| (see also | , §2.1]) which considers the case
when & is a singleton, we have the following noneffective!® exponential decay of correlation:
there exists k > 0 such that for every ¢, € %(3; ), there exists a constant Cy > 0 such
that

|COVP+,n(¢7 ¢)| < C¢a¢ e ™
By an elegant argument using the Principle of Uniform Boundedness, it is proved in | ,

Appendix B| that this implies that there exist C,x > 0 such that for every ¢, € €%(X4),
we have

| covp+ (¢, )| < C [ Blla [¢a ™™™

14 Actually, only a much weaker assumption is required, such as a Hélder-continuity property of this Jacobian,
see | .

15 Actually, there is in | | (see also [C'yS]) a control on the constant in terms of some norms of the test
functions, but these norms are not the ones we are interested in.
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This concludes the proof of Theorem 9.5, hence the proof of Theorem 9.1. O O

The next result gives examples of applications of Theorem 9.1 when I'\X is infinite. It

strengthens | , Theo. 2.1| that applies only to arithmetic lattices and only for the locally
constant regularity (see Section 15.4), see also | | for an approach using spectral gaps. It
was claimed in [[KXwo|, but was retracted by the author.

Corollary 9.6. Let X be a locally finite simplicial tree without terminal vertices. Let I' be a
geometrically finite subgroup of Aut(X) such that the smallest nonempty T'-invariant subtree
of X is uniform without vertices of degree 2. Let o € ]0,1].

(1) If Lr = Z, then the discrete time geodesic flow on T\YX has exponential decay of
a-Holder correlations for the zero system of conductances.

(2) If Lp = 27, then the square of the discrete time geodesic flow on I'\GeyenX has expo-
nential decay of a-Hélder correlations for the zero system of conductances, that is, there exist
C, K > 0 such that for all ¢, € €' (I'\GeyenX) and n € Z, we have

1
o5 o dmpy — — J édm f dm
’ L\%an pog Y dmeM — X I\GovenX M e Geen v dmey

< Ce™ oo [¢]a-

The main point in order to obtain this corollary is to prove the exponential decay of vol-
umes of geodesic lines going high in the cuspidal rays of I'\X, stated as Assumption (9.2) in
Theorem 9.1. There is a long history of similar results, starting from the exponential decay
of volumes of small cusp neighbourhoods in noncompact finite volume hyperbolic manifolds
(based on the description of their ends) used by Sullivan to deduce Diophantine approxima-
tion results (see | , 89]).10 These results were extended to the case of locally symmetric
Riemannian manifolds by Kleinbock-Margulis | | (based on the description of their ends
using Siegel sets). Note that the geometrically finite lattice assumption on I' is here in order
to obtain similar descriptions of the ends of I'\X.

Proof. Up to replacing X by €Al', we assume that X is a uniform simplicial tree with
degrees at least 3 and that I' is a geometrically finite lattice of X. We use the zero system of
conductances.

(1) By | ],'" the graph I'\X is the union of a finite graph Y and finitely many cuspidal
rays R; for i € {1,...,k}. If (z; n)nen is the sequence of vertices in increasing order along
R; for i = 1,...,k, then the vertex group Gy, , of z; , in the quotient graph of groups '\ X
satisfies G, ,, © Gy, ., for every n € N, and the edge group of the edge e;,, with origin z;,,
and endpoint x; ,,11 is equal to GmM.18 Note that since the degrees of the vertices of X are
at least 3, we have [G : Gy, ] = 2 and |Gy, 4| = 1, so that, for every n € N,

Ti,n+1 Tin

|Ga, | =27 (9.5)

Ti,n

Let E be the (finite) set of vertices VY of Y. Note that for all n € N—{0} and ¢ € I'¥X, if
¢(0) € E and 7g(f) = 2n, then ¢ leaves Y after time 0 and it travels (geodesically) inside some

%and by probabilists in order to study the statistics of cusp excursions (see for instance [2I])
17See also Section 2.6.
18dentifying the edge group of an edge e with its image by the structural map G. — Go(e)
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cuspidal ray for a time at least n, so that there exists i € {1,...,k} such that {(n) = z; p.
Hence for all n € N, using

e the invariance of mpgy under the discrete time geodesic flow in order to get the third
term,

e Equation (8.5) where Z; , is a fixed lift of z; ,, in VX for the fifth term, and

e Equation (9.5) since [I'z, .| = |Gz, |, and the facts that the degrees of the uniform
simplicial tree X are uniformly bounded and that the total mass of the Patterson measures
of the lattice I" are uniformly bounded (see Proposition 4.16) for the last term,
we have

mpm({{ € T\¥X : £(0) € E and 75(¢) = 2n})

k
Z mBM({€ S F\gX : E(n) = J}%n})

<
i=1
k k
= Z mBM({f eN\¥X : £(0) = $z,n}) = Z ﬂ-*mBM({xi,n})
i=1 i=1
Lo
=2 ) i (0X) iz, (00 %)
“ Tz, | N
1= nnl o e e'eEX:o(e)=0(e')=2Z; n, e#e’
1 9 9
<k 5 maxdeg(z)” max |us” .

The result then follows from Theorem 9.1 using the above finite set E which satisfies
Assumption (9.2) as we just proved, and using Proposition 4.16 and Theorem 4.17 in order
to check that under the assumption that Lr = Z, the Bowen-Margulis measure mpgy of I is
finite and mixing under the discrete time geodesic flow on T'\¥X.

(2) The proof of Assertion (2) is similar to the one of Assertion (1). O

Remark. The techniques introduced in the above proof in order to check the main hypothesis
of Theorem 9.1 may be applied to numerous other examples. For instance, let X be a locally
finite simplicial tree without terminal vertices. Let I' be a nonelementary discrete subgroup of
Aut(X) such that the smallest nonempty I'-invariant subtree of X is uniform without vertices
of degree 2, and such that Lr = Z. Let o € ]0,1]. Assume that I'\X is the union of a finite
graph A and finitely many trees T, ..., Ty meeting A in one and exactly one vertex =1, ..., %,
such that for every edge e in T; pointing away from the root #; of T;, the canonical morphism
Ge — Gy between edge and vertex groups of the quotient graph of groups I'\X = ("X, G)
is an isomorphism. Assume that there exist C,x > 0 such that for all n € N,

1 _
2 G ST
i=1,....k, 2€V'Ty : d(z,%)=n '~

Then the discrete time geodesic flow on I'\¥X has exponential decay of a-Holder correlations
for the zero system of conductances.

This is in particular the case for every k,q € N such that k£ > 2, ¢ > 2k + 1 and ¢ — k is
odd, when the quotient graph of groups I'\ X has underlying edge-indexed graph'? a loop-edge

with both indices equal to q—l§+1 glued to the root of a regular k-ary rooted tree, with indices

19Gee definition in Section 2.6.
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1 for the edges pointing towards the root and ¢ — k + 1 for the edges pointing away from the
root (see the picture below with k& = 2). Note that X is then the (¢ + 1)-regular tree, and
that the loop edge is here in order to ensure that Lr = Z. For instance, the vertex group of
a point at distance n from the root may be chosen to be Z/(#)Z x (Z)(qg—k+1)Z)".

9.3 Rate of mixing for metric trees

Let (X, \), X, T, F,F* 6= op, p+ < +o0 and (u)zev x be as in the beginning of Section 4.4.
Let mp and mp be the associated Gibbs measures on 4 X and I'\¢9 X. The aim of this Section
is to study the problem of finding conditions on these data under which the (continuous time)
geodesic flow on T'\¥ X is polynomially mixing for the Gibbs measure mp.

We will actually prove a stronger property, though it applies only to observables which are
smooth enough along the flow. Let us fix a € ]0,1]. Let (Z, u, (¢¢)ier) be a topological space
Z endowed with a continuous one-parameter group (¢¢)wr of homeomorphisms preserving
a (Borel) probability measure p on Z. For all k € N, let (zf’lf "*(Z) be the real vector space
of maps f : Z — R such that for all z € Z, the map ¢t — f(¢:2) is €*-smooth, and such
that the maps 0if : Z — R defined by z — % —of (¢12) for 0 < i < k are bounded and
a-Hélder-continuous. It is a Banach space when endowed with the norm

k

b= 10 fla -

=0

171

and it is contained in L?(Z, ) by the finiteness of u. We denote by ‘(o/”;ff’”{(Z ) the vector

subspace of elements of CK: **(Z) with compact support.
For all 9,7’ € L2(Z, ) and t € R, let

coryo(v.0) = [ oot du= [ vau | o' au

be the (well-defined) correlation coefficient of the observables 1,1’ at time t under the
flow (¢¢)wer for the measure u. We say?’ that the (continuous time) dynamical system

208ee | |, and more precisely [ , Def. 2.2] whose definition is slightly different but implies the one
given in this paper by the Principle of Uniform Boundedness argument of | , Appendix B]| already used
in Section 9.2.
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(Z, p, (d)ter) has superpolynomial decay of a-Hélder correlations if for every n € N there
exist C = C,, > 0 and k = k,, € N such that for all ¢,v’ € %f’a(Z) and ¢t € R, we have

| covp,e(e, )] < C (L4 [E) ™" v

k,o H@Z),

|k,a .

Following Dolgopyat, we say that the dynamical system (Z, u, (¢¢)ter) is rapidly mizing if there
exists a > 0 such that (Z, u, (¢¢)er) has superpolynomial decay of a-Hélder correlations

We will use the following two assumptions on our data, introduced respectively in | |
and | |. Recall that the Gibbs measure mp, when finite, is mixing if and only the length
spectrum Lp is dense in R (see Theorem 4.9). The rapidly mixing property will require
stronger assumptions on Lr.

We say that the length spectrum Lr of I' is 2-Diophantine if there exists a ratio of two
translation lengths of elements of I" which is Diophantine. Recall that a real number x is
Diophantine if there exist a, 8 > 0 such that

]x—gl >aq ™’

for all p,q € Z with ¢ > 0.

Let E be a finite subset of vertices of I'\ X, and let E be the set of vertices of X mapping to
E. We denote by T the set of triples (A(7),d(7), q(~y,p)) where v € I has translation length
A(7y) > 0, has d(v) vertices on its translation axis Ax(y) modulo 4% and if the first return time
of a vertex p in En Ax(7) under the discrete time geodesic flow along the translation axis
has period ¢(,p). We say that the length spectrum Ly of I is 4-Diophantine with respect to
E if for all sequences (by)ken in [1 + oo converging to +00 and (wg)ken, (¢r)ken in [0, 27[,
there exists N € N such that for all @ > N and C, 8 > 1, there exist k > 1 and (7,d,q) € Tg
such that

d((ka + wid)|BInby| + qp, 27Z) = C qb, “ .

We define the first return time after time € on a finite subset E of vertices of I'\X as the
map 75 : I\YX — [0, +00] defined by 77°(¢) = inf{t > € : {(t) € E}.

Theorem 9.7. Assume that the Gibbs measure mp is finite and mizing for the (continuous
time) geodesic flow, and that the lengths of the edges of (X, \) have a finite upper bound.>!
Furthermore assume that

(a) either T\X is compact and the length spectrum of T is 2-Diophantine,
(b) or there exists a finite subset E of vertices of T\X satisfying the following properties:

(1) there exist C,k > 0 and € € |0, min \[ such that for allt > 0,

mp({feT\gX : d({(0),E) <e and 75°(¢) =t}) <Ce ",

(2) the length spectrum of T' is 4-Diophantine with respect to E.

Then the (continuous time) geodesic flow on T\Y X has superpolynomial decay of a-Hélder

correlations for the normalised Gibbs measure H:ﬂ"—iu

21 They have a positive lower bound by definition, see Section 2.6.
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Note that the existence of E satisfying the exponentially small tail Hypothesis (1) is in
particular satisfied if I is geometrically finite with E the set of vertices of a finite subgraph of
IMX whose complement in I'\X is the underlying graph of a union of cuspidal rays in T\\X :
see the proof of Corollary 9.6 and use the hypothesis on the lengths of edges.

Note that the exponentially small tail Hypothesis (1) might be weakened to a superpoly-
nomially small tail hypothesis while keeping the same conclusion, see | |. Since the former
is easier to check than the latter, we prefer to state Theorem 9.7 as it is.

We will follow a scheme of proof analogous to the one in Section 9.2 for simplicial trees,
by reducing the study to a problem of suspensions of Young towers, and then apply results of
| | and | | for the rapid mixing property of suspensions of hyperbolic and nonuniformly
hyperbolic dynamical systems.

Proof. Since the Gibbs measure normalised to be a probability measure depends only on the
cohomology class of the potential (see Equation (4.10)), we may assume by Proposition 3.22
that F' = F, is the potential on I'\T' X associated with a system of conductances ¢ : EX — R
for I'. We denote by d. the critical exponent of (I', F.), and by m, the Gibbs measure mp..
Up to replacing X by its minimal nonempty I'-invariant subtree, we assume that X = @AT.

Step 1 : Reduction to a suspension of a two-sided symbolic dynamics. We refer to
the paragraphs before the statement of Theorem 5.9 and at the beginning of Section 5.3 for
the definitions of

e the system of conductances fc for I' on the simplicial tree X,

e the (two-sided) topological Markov Shift (X, 0,P) on the alphabet o7, conjugated to the
discrete time geodesic flow (F\gX gl T H) by the homeomorphism © : T\¥X — X,

e the roof function r : ¥ — ]0, +oo[,

e the suspension (X,0,aP), = (., (¢!)wr,aP,) over (3,0,aP) with roof function r,
where a = m.

The suspension (3, o, aP), is conjugated to the geodesic flow (I'¥ X, /2 Tme]? , (8")¢er) by the
bilipschitz homeomorphism ©, : T\¢ X — ¥, defined at the end of the proof of Theorem 5.9.

We will always (uniquely) represent the elements of 3, as [z, s] with z € ¥ and 0 < s < r(z).

Note that since ©, ! conjugates (ol);cr and (g')icr, we have for all f : I\¢X — R and
x € X, when defined,

A o 7)) = T,y f 007 (0! —dtlit of (€67 (2)) = (1) 0 O7 ()

T dt
Hence if f: T\¢X — R is C*-smooth along the orbits of (g')scr, then f o ©; ! is C*-smooth
along the orbits of (0&)r. Furthermore, since @r is bilipschitz, the precomposition map by
O, ! is a continuous linear isomorphism from ‘5 “M\¥X) to %k a( r)

Note that since ©, conjugates (g!)icr and (ol)ser, and sends e C“ to

P, e L2(N\YX) and t € R,

B> We have, for all

cov mcH’t(@/) w) = COVH[PT",t(w o @ @D/ o @r_l) .

Therefore we only have to prove that the suspension (X, (o8) R, Hg—:u) is rapidly mixing under
one of the assumptions (a) and (b).
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Step 2 : Reduction to a suspension of a one-sided symbolic dynamics. In this Step,
we explain the rather standard reduction concerning mixing rates from suspensions of two-
sided topological Markov shifts to suspensions of one-sided topological Markov shifts. We
use the obvious modifications of the notation and constructions concerning the suspension
of a noninvertible transformation to a semiflow, given for invertible transformations at the
beginning of Section 5.3.

We consider the one-sided topological Markov shift (X4,04,P;) over the alphabet .o
constructed at the beginning of Step 2 of the proof of Theorem 9.1, where the system of
conductances ¢ is now replaced by fc, so that P = O (my./|ms.|). Let 7y : ¥ — X, be the
natural extension so that Py = (74)P and 7y o0 = 04 o7y,

We are going to construct in Step 2, as the suspension of (X,0.,P,) with an appro-
priate roof function 74, a semiflow ((31),, ((o4)k )tzo’ (P1),,), and prove that the flow

T+
t (P+)7‘+

7"+)t>0’ T®InT H) is rapidly

(7, (08) ter, %) is rapidly mixing if the semiflow ((34),,, ((o4)
mixing.

Let ry : ¥4 — ]0, +00[ be the map defined by
ry x> Neg) (9.6)

where if £ = (z,)nen, the edge ef is such that zg = (e, ho,eg). Note that this map has
a positive lower bound, and a finite upper bound, and that it is locally constant (and even
constant on the 1-cylinders of ¥ ). By Equation (5.10), we have

ryomy =1, (9.7)

We denote by ((34)r,, ((U+)$+)t>0, (P4);, ) the suspension semiflow over (X4,04,P,) with
roof function r,. We (uniquely) represent the points of the suspension space (X1),, as [z, s]
for z € ¥ and 0 < s <74 (z). For all t > 0, we have (o)., ([z,s]) = [0z, '] where n € N
and ' € R are such that ¢ + s = Y1 r, (0h2) + 8 and 0 < s’ < r (07 x).

We define the suspended natural extension as the map 7] : ¥, — (X1),, by

W—I : [:C,S] — [7T+(:L'),S] )

which is well defined by Equation (9.7). Note that m is 1-Lipschitz for the Bowen-Walters
distances on X, and (X4 )., (see Proposition 5.11).%2

For all ¢ : &, — R and T > 0, let us construct a function ™) : (X),, — R as follows.
For every [z,s] € (34),,, let N € N and s’ > 0 be such that (o4)! [z,s] = [o¥z, s], with

T+
N-1
0<s <ry(ofz) and s+ T = Z ri(otx) +5 .
i=0

Let
P ([, s]) = ¢([y, 1)

where y = (yn)nez is such that y; = z;.n if i > —N and y; = (27°),;; n otherwise. Note that
Yo = xn, hence 7(y) = 74 (ol (z)) and 0 < 8’ < r(y), so that the above map is well defined.

22Note that Proposition 5.11 is stated for suspensions of invertible maps, but the roof function is constant
on 1-cylinders, and the branches of the inverse of o4 on these 1-cylinders are uniformely Lipschitz, hence the
proof of | , Appendix| extends.
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Finally, for every 1 € 6" *(2,) or ¢ € %f’a((EJr)”), let

k k
[0k, = Y 18] and [l o =D, l25]5 ,
i=0 i=0
so that
]k, 0 = 190k, 00 + 191k, o -

Lemma 9.8. Let T >0 and ¢ € %S’Q(ET).

t

(1) For allt =0, we have (o4)., om] =7l oaot.

T
(2) With o/ = sapxs there exists a constant Cy = 1 (independent of k, T and 1) such that
ool —pMonl|<Cr ey e

(3) We have (1) e Cgf’a((EJr)m) and [P, o0 < 1]k, 00. With o = %=, there ezists a
constant Cy = 1 (independent of k, T and 1) such that

[T o < Co e T ] - (9:8)

Proof. (1) For all t > 0 and [z, s] € 3,, let n € N and s’ > 0 be such that

n—1
t+s= Z ri(oimi () +8 and 0<s <ry(otni(z)).
1=0

Since r4 oo’y om = roo’ for every i € N, these two conditions are equivalent to

n—1
t+s= Z r(clz) +s and 0<s <r(cz).
i=0
Hence
(01 )p, o ([2,8]) = (04 )1, ([m4(2), 8]) = [0 my(2), 5]
and

7l o ot([z,s]) = 7 ([o"z, 1) = [m4 (o72), ']
This proves Assertion (1) since 74 00 = o4 o m4.

(2) By Proposition 5.11, we may assume that, in the formula of the Hélder norms, the Bowen-
Walters distance is replaced by the function dgw, as this will only change C7 by Cgyy Ci.

For every [z, s] € ¥,, with [y, s’] and N associated with [ ([z,s]) = [74(x), s] as in the
definition of (¥ ([7,(z), s]), we have

daw (oy [z, 5], [y, s']) = dpw ([0, 5], [y, 8']) < d(o™w,y) <e™.
Since the positive roof function r is bounded from above by the least upper bound sup A of
the lengths of the edges, we have
N—-1 i
r(o'x) 1 ,
N > = T—-5)=
;;) sup A sup A (s+ 5)
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Hence

[ oo ([, 5]) — D ([ (2))] = [9(0] [z, s]) = ([, 8D
< [l dow (o) [z, ), [y, S D™ < [l e 7o T
(3) Let us prove that ¢(T) is €% along semiflow lines. Fix [z,s] € (X4),,. With [y,s'] and N

as in the construction of 97 ([z, 5]), let us consider € > 0 small enough, so that ¢ < r (z) —s
and € < ry (ol () — s’ =r(y) — 5. Then

VDo (04);, ([2,8]) = ¢ ([z,5 + €]) = d([y, s +€]) = Yo o7 [y, 5']) -

Therefore by taking derivatives with respect to e in this formula, ™) is indeed €* along
semiflow lines, and, for i =0, ..., k, we have

o (™) = (e)™ . (9.9)

The inequality [ < [¢]l0 is immediate by construction. Using the above centred
equation, we have [|1)|. oo < 4]k, oo-
Let us prove that there exists a constant Cy > 1 (independent of T" and 1) such that

[0 @ < C2 e T 0]l - (9.10)

Let [2,s] € (34),, take [y,s'] and N as in the definition of () ([z,s]). Let [z,s] €
(Z4)r,, take [y,8'] and N as in the definition of ¢(7)([z,s]). Up to exchanging [z, s] and
[z,s], we assume that N > N.

By Proposition 5.11,”% we may assume that, in the Holder norms formulas, the Bowen-
Walters distance is replaced by the function dpw, as this will only change C5 by C’%S\, Cs.
Let

C3 = min{e™ !, inf \} .
We have

[0 [z, s]) = D[z, s D] = [0([y, 1) — 0y D] < 1l dew(ly, 8T [y £D* . (9.11)

Note that the map dgw on X, x X, is bounded from above by 1 4 sup A, since the dis-
tance on ¥ is at most 1 and since the roof function r is bounded from above by sup A. If

dew ([z, 5], [z,8]) = C5 e~ mrx, then

1 A
SESWA G dpw ([, ], [z 5]) -

dBW([y7 S/]? [y,i/]) <1+supA < c
B 3

Therefore Equation (9.10) follows from Equation (9.11) whenever Cy > %.

Conversely, suppose that dpw([z, s],[z,s]) < Cs e~wix. Assume that
dBW(['I"’ 5]7 [&aﬁ]) = d(‘T?l) + |5 - §| 5

the other possibilities are treated similarly. Since

N-1

s+ T = Z ry(otz) + 8
i=0

23See the previous footnote.
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and since the roof function r4 is bounded from below by inf A, we have T" > N inf A\ — inf ),
or equivalently N < mf}\ + 1. Hence d(z,z) < C5 e~ wx < e N by the definition of C3. In
particular the sequences x and z indexed by N have the same N + 1 first coefficients. Since
r+(z) depends only on 2 for all z € ¥, we thus have r; (0c.z) = r (o} z) for i =0,..., N.

Note that we have
N—1
= Z ri(ofz) +5 .
i=0

If N = N, then by taking the difference of the last two centred equations, we have
s —s =5 —s', and by construction, the sequences y and y indexed by Z satisfy y; = (y); if
<0andif 0 <i<—Ind(z,z) — N. Therefore d(y,y) < e” d(z,z) and

dew([y, s'], [y ') < d(y,y) + 18" — 8| < & d(w,z) + |s — 5|
< N dpwl([z, 5], [z, 5]) < enn ! dpw([z, 5], [2.5]) -
Therefore Equation (9.10) follows from Equation (9.11) whenever Cy > e®.
If N > N, then again by difference

s—8§= Z ri(otz) +ry(olz) — s +5.
i=N+1

Note that s’ > 0, that r; (c}z) —s' > 0, and that |s—s| < C3 e~y < inf A by the definition
of C3. Hence we have N = N+1and s—s = ry (o z)—s' +5. By construction, the sequences
oy and y indexed by Z satisfy (oy); = (y): if i <0 and if 0 < —Ind(x,z) — N —1. Hence
by the definition of dgw and since r(y) = r4 (o) z), we have

N+1 d(

dew ([y, 5], [y, 8']) < d(oy,y) +r(y) — s + s <e z,z) + |5 — s

<
< M dpw([, s, [z, 5]) < em3* dpw ([x, ], [z, 5]) -
Therefore Equation (9.10) follows from Equation (9.11) whenever Cy > €2®. This ends the
proof of Equation (9.10).

Now note that Equations (9.9) and (9.10) imply Equation (9.8) by summation (using the
independence of Cy on 1), thus concluding the proof of Lemma 9.8. O

Proposition 9.9. Let u be a (Uﬁ)teR—invariant probability measure on 3,.. Assume that the
dynamical system ((34)r, (041, )ier; (m1)«p) has superpolynomial decay of a-Hélder cor-
relations. Then (3., (ol)er, i) has superpolynomial decay of a-Hdélder correlations.

Proof. We fix ne N. Let N =1+ Q[SupA] Let k € N and Cy > 0 (depending on n) be such
that for all 1,4’ € (flf “((4)r,), we have for all ¢ > 1

| €OV 1yt (98] < Ct [k, 0 918,00 £V - (9.12)

Now let 9,7 € ‘gf’a(Zr). We again denote by + a any value in [—a, a] for every a = 0.
By invariance of y under (o!)r, by Lemma 9.8 (2) and by Lemma 9.8 (1), we have, for every
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T > 0 (to be chosen appropriately later on),

_wodt w’du=L pooTH ¢ ool dy

— [ wMerrsenul e Moot (D on] £ Gyl T da

r

(T) !

=f Do (o)t D dmep £ OF [l [¢la e T .
(Z+)r+

A similar estimate holds for the second term in the definition of the correlation coefficients.
Hence, applying Equation (9.12) to the observables () and v’ (T), by Lemma 9.8 (3), we
have since Coe®' T > 1,

|00V 119 0)| < 1 €0V g (0 0/ [ 42 CF [ 'l e
< Ca ([#llk,o0 + Co [l o € T) (1810 + Co [ o € T) 7N
+20F [l ['lo e
< [l 18l (Co GF 2T 6787 12 CF )

Take T = % Int > 0. Since N = 1+ 2[27], we have 20" & — Nn < —n. Hence with
Cs =Cy C2 + 2 C%, we have for all t > 1

—n

| covy, ¢ (1, 9")] < Cs |

ko ¥

k,at

This concludes the proof of Proposition 9.9. O

Step 3 : Conclusion of the proof of Theorem 9.7. In this Step, we prove that the semi-
flow ((EJF)”, ((0+)£’+)t>0’ ”Ei%m) is rapidly mixing, which concludes the proof of Theorem
9.7, using Proposition 9.9 with u = Hg—:”.

Recall’! that Y = {£ e T\YX : /£(0) € VX} is a cross-section of the geodesic flow on
M% X, and that if R : Y — I'\¥X is the reparametrisation map of £ € Y to a discrete geodesic
line # € I\¥X with the same origin, then the measure py, induced by the Gibbs measure m,.
on the cross-section Y by disintegration along the flow, maps by R, to a constant multiple

of ms, = mp, (see Lemma 5.10 (2)). Hence for all n € N — {0} and € € 10, 3 inf A[, by

248ee the proof of Theorem 5.9.
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Assumption (b) (1) in the statement of Theorem 9.7, we have

:
muc({ﬁﬂe Ngx : ke {17”%(73)_615 (k)¢ E })

s - . R(¢t0)(0) e E
< Hﬂiu “Y<{R ey Vte]o,ninf A[, R1(*0)(t) ¢ E })

[

0<s<e dgR(*)(0),E)<e })

me({e R0 en X STl E L e R G ¢ B

~ C
€ lpy|

[
~
€lpy|

C e " (inf \)n+rke

Ims 1 Cec g
€pyl

k' = k inf X\. As seen in the proof of Theorem 9.1, this implies that there exists a finite subset
& of the alphabet o7 such that Equation (9.4) is satisfied.

We now apply | , Theo. 2.3] with the dynamical system (X,mg,T) = (X4,Py,04)
(using the system of conductances fc) and the roof function h = r,. This dynamical system
is presented as a Young tower in Step 3 of the proof of Theorem 9.1. Equation (9.4) for
the first return map 7, and the 4-Diophantine hypothesis are exactly the hypothesis needed

in order to apply | , Theo. 2.3]. Thus the semiflow ((X4)r,, ((04),) (Bt)ry ) has

r+/t20" [(P+)r |

Therefore Equation (9.2) (where ¢ is replaced by fc) is satisfied, with C’ =

superpolynomial decay of a-Holder correlations.

When I'\ X is compact, the alphabet & is finite and (X4,04,P4) is a (one-sided) subshift
of finite type, hence we do not need the exponentially small tail assumption, but only the
2-Diophantine hypothesis, and we may apply | |. O

Corollary 9.10. Assume that the Gibbs measure mp is finite and mizing for the (continuous
time) geodesic flow, that the lengths of the edges of (X, \) have a finite upper bound, and
that T is geometrically finite. There erists a full measure subset A of R* (for the Lebesgue
measure) such that if T' has a quadruple of translation lengths in A, or if the length spectrum. is
4-Diophantine, then the (continuous time) geodesic flow on T\Y X has superpolynomial decay
of a-Hélder correlations for the Bowen-Margulis measure mpgy.

Proof. The exponentially small tail Assumption (b) (1) is checked as in the proof of Corollary
9.6. The deduction of Corollary 9.10 from Theorem 9.7 then proceeds, by an argument going
back in part to Dolgopyat, as for the deduction of Corollary 2.4 from Theorem 2.3 in | |.
]

Note that under the general assumptions of Theorem 4.9, the geodesic flow on I"¥X
might not be exponentially mixing, see for instance [Poll, page 162] or | | for analogous
behaviour.
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Chapter 10

Equidistribution of equidistant level
sets to (Gibbs measures

Let X be a geodesically complete proper CAT(—1) space, let I" be a nonelementary discrete
group of isometries of X, let F be a continuous T-invariant map on T X such that § = or, p+
is finite and positive and that the triple (X, T, F ) satisfies the HC-property,’ and let (uf)zex
be Patterson densities for the pairs (T, F'¥).

In this Chapter, we prove that the skinning measure on (any nontrivial piece of) the outer
unit normal bundle of any properly immersed nonempty proper closed convex subset of X,
pushed a long time by the geodesic flow, equidistributes towards the Gibbs measure, under
finiteness and mixing assumptions. This result gives four important extensions of | ,
Theo. 1], one for general CAT(—1) spaces with constant potentials, one for Riemannian
manifolds with pinched negative curvature and Holder-continuous potentials, one for R-trees
with general potentials, and one for simplicial trees.

10.1 A general equidistribution result

Before stating this equidistribution result, we start by a technical construction which will also
be useful in the following Chapter 11. We refer to Section 2.4 for the notation concerning the
dynamical neighbourhoods (including V. o ) and to Chapter 7 for the notation concerning

the skinning measures (including v3).

Technical construction of bump functions. Let DT be nonempty proper closed convex
subsets of X, and let R > 0 be such that V%(VJn,/ z) > 0 for all n” > 0 and w € 0XD*. Let

n > 0 and let QF be measurable subsets of 0}—rDi. We now construct functions

qf)iR’Qt 199X — [0, +o0]

whose supports are contained in dynamical neighourhoods of Q. If X = M is a Riemanian
manifold and F = 0, we recover the same bump functions as in | | after the standard
identifications.

1See Definition 3.13.
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For all / > 0, let h$ e 4+ X — [0, +oo[ be the I'-invariant measurable maps defined by

1
hE (w) = - 10.1
mn (U)) VUiJ(VJn,n’) ( )

if vt (an ) > 0 (which is for instance satisfied if wy. € AI" and for every w € 0xD*ifn = R
by the choice of R) and h:;r (W) = 0 otherwise.
These functions h;i o have the following behaviour under precomposition by the geodesic

flow. By Lemma 7.6 (2), by Equation (2.18), and by the invariance of v under the geodesic
flow, we have, for all t € R and w e ¥4 X,

_ _ £ 0 w(E _
hy (g7 w) = e@or O BF L (w) . (10.2)

Let us also describe the behaviour of h;—r ” when 7’ is small. Let w € 41 X be such that w

is isometric at least on +[0, +oo[, which is for instance the case if w € oL DF. For all ¥ > 0
and £ € B (w,n'), let @ be an extension of w such that dyy+ (¢, @) < 7’. Then @(0) = w(0)
by the assumption on w, and using Lemma 2.4, we have

d(£(0),w(0)) = d(£(0),@(0)) < dy+ () (£, D) <7’
Hence, with k1 and ko the constants in Definition 3.13, if n’ < 1 and

c1 =K1 +26+2 sup |F| |
71 (B(w(0),2))

we have, by Proposition 3.20 (2),
| O (w(0), €0)) | < e1 ()"
Using the defining Equation (7.12) of v}, for all s € R, / € ]0,1] and £ € B*(w,n’), we have
e ds dpyys () (0) < dvd (g°0) < €™ ds dpyy () (£) -

It follows that for all 7 €]0,1] and w € a;D¢ such that w4 € AT, we have the following
control of A, (w):

6761 (7]/)%2 ecl (77/)“2

) < + A
20 pryy+ () (BE (w, 1))

<ht L (w
20 py+ () (BE(w, 1)) ™7 (

(10.3)

Note that when X is an R-tree, we may take kg = 1 and ¢1 = Sup,—1(B(w(0),1)) |ﬁ — 6| in this
equation, as said in the last claim of Proposition 3.20 (2). Note that ¢; is bounded when w
ranges over any compact subset of ¢4 X, and is uniformly bounded when F' is bounded.

Recall that 14 denotes the characteristic function of a subset A. We now define the test
functions <Z>:7r po+ 99X — [0, +oo[ with support in a dynamical neighbourhood of QF by

F F +
¢;} R,OQF = h;;:R © fﬁi :H“//ni’R(Qi) ) (10.4)

where ”VfR(Qi) and f5 are as in Section 2.4. Note that if £ € “//77%(91), then (4 ¢ 0y, DT
by convexity. Thus, ¢ belongs to the domain of definition %B—} of fg? Hence qﬁj rozll) =
hiR o !1%1 (¢) is well defined. By convention, gi);_r’ R.OF (0)=0if ¢ ¢ ”//fR(QJ_F)
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We now globalise these test functions in order to apply them to equivariant families of
supports.
Let n > 0. Let 2 = (D;);er be a locally finite I'-equivariant family of nonempty proper

closed convex subsets of X with I'\I finite, and ~=~. Let R > 0 be such that v} (V. o R) >
Oforalln” >0,iel and we a}iDi. Let Q = (£2;)ier be a locally finite I'-equivariant family

of measurable subsets of ?X, with Q; 6}iDi for all i € I and Q; = €1; if i ~ j. We define
the global test functions @7 : 4 X — [0, +-c0[ by

O = 2 nro,= 2 hirofor Lz n - (10.5)
iel/~ iel/~ ’

A subset Ap of X is a fundamental domain for the action of I' if the interiors of its

translates are disjoint and any compact subset of G X meets only finitely many translates of
Arp: If mp is finite, a fundamental domain with boundary of zero measure exists by | ,
p. 13], using the fact that mp has no atoms according to Corollary 4.7 (1) and to Theorem
4.6.

The following properties of the bump functions are proved as in | , Prop. 18].

Lemma 10.1. (1) For every n > 0, the functions qﬁi RO+ @€ measurable, nonnegative and
satisfy

¥ ~ ~t
J Gy r 0 AF =052 (27).
99X

(2) For every n > 0, the function Cf);l_* 1s well defined, measurable and I'-invariant. It defines,
by passing to the quotient, a measurable function <I>;7_" MY X — [0, +oo[ such that

f o dmp = |o&] . (10.6)
Ngx

Proof. (1) Recall that the fiber of the restriction of f;—} to "VniR(QTF) over w € 27T is the open
subset Vwi77 i of W% (w). By the disintegration result of Proposition 7.7, by the definition
of hi r and by the choice of R, we have

oF dim =f hF oo FE(0) ding (¢
@ X n, R, QT F ée”//ni:R(Qi) n, R D+() F()

- J o () L€V+ dvy; () d5 55 (w) = 35:(QF) .

w,n, R

(2) The function &),f is well defined, since €2; = €; and thus %]iR(Qi) = ”//niR(Qj) ifi ~j,
s~ince h;_r’R o fZ)—rl (¢) is finite if £ € “I/n’iR(Ql) (by the definition of R), and since the sum defining
<I>,f has only finitely many nonzero terms, by the local finiteness of the family  (given £ € ¥ X
the summation over I/~ giving &D,f (¢) may be replaced by a summation over the finite set
{iel:le %,iR(Qz)}/N)

The function <I>j7_r is T-invariant since

]1"//77%1{(91) oy = ﬂy_l’Vni:R(Qi) - ]11/77%1%(97_11')
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and?
F + _ ¥ + _pF +
ho rofp,ov="hyrovefimp, =hyrofp

and by a change of index in Equation (10.5). If Ar is a fundamental domain for the action
of I', we have by Assertion (1)

Jﬁ Q;de:i[ OF dinp
INND¢ Ar

(ﬁ dﬁl
2 LX Iy, deenAr

el/~""

G5 (Ar 0 Q) = FS(Ar) = og] . O
i€l /~

We now state and prove the aforementioned equidistribution result. Note that as the ele-
ments of the outer unit normal bundles are only geodesic rays on [0, +00[, their pushforwards
by the geodesic flow at time ¢ are geodesic rays on [—t, +o0[ and the convergence towards
geodesic lines (defined on | — 00, +00[ ) does take place in the full space of generalised geodesic

lines ¢X. This explains why it is important not to forget to consider the negative times in
order for the skinning measures, supported on geodesic rays, when pushed by the geodesic
flow, to have a chance to weak-star converge to Gibbs measures, supported on geodesic lines,
up to renormalisation.

The proof of the following result has similarities with that of | , Theo. 1], but the
computations do not apply in the present context because the proof in loc. cit. does not keep
track of the past: here we can no longer reduce our study to the outer unit normal bundle of
the t-neighbourhood of the elements of Z.

Theorem 10.2. Let (X,F,ﬁ’) be as in the beginning of Chapter 10. Assume that the Gibbs
measure mp on I\YX is finite and mizing for the geodesic flow. Let 9 = (D;)icr be a locally
finite T'-equivariant family of nonempty proper closed convex subsets of X. Let Q = (Q;)ier

be a locally finite I'-equivariant family of measurable subsets of f?X, with Q; G}LD,- for all

itel and Q; = Qj ifi ~9 j. Assume that U;—g 18 finite and monzero. Then, as t — 400, for

the weak-star convergence of measures on T\ 49X,

Ty (& —m
[(g*")sog] [mr|

Proof. We only give the proof when + = +, the other case is treated similarly. Given three
numbers a, b, ¢ (depending on some parameters), we write a = b + ¢ if |a — b| < c.

Let n € ]0,1]. We may assume that I'\I is finite, since for every ¢ > 0, there exists a
[-invariant partition I = I’ U I” with T'\I’ finite such that if Q' = (Q;);er and Q" = (;)er7,
then o) = o, + o, with (87«0l = |ods| < €. Hence, using Lemma 7.6 (i), we may fix
R > 0 such that V,L;(VJ%R) >0 for all i € I and w € 0L D;.

F -

Fix ¢ € G.(T'\ GX ), a continuous function with compact support on I'\ G X. Let us prove
that

1 1
d(gt)*‘7+

L ra—— = Pdmp .
=+ [(g)soq ] Jrygx © o dmel Jrgx

Let Ar be a fundamental domain for the action of I' on 4 X, such that the boundary of Ar
has zero measure. By a standard argument of finite partition of unity and up to modifying

2See Equation (2.16).

188 13/02/2019



Ar, we may assume that there exists a function 1Z : 49X — R whose support has a small
neighbourhood contained in Ar such that @Z = 1) o p on this neighbourhood, where p : GX —
F\,(?X is the canonical projection (which is Lipschitz). Fix e > 0. Since 1; is uniformly
continuous, for every > 0 small enough and for every ¢t > 0 large enough, for all w € ¥, X

isometric on [—t, +co[ and £ € VT

o, et We have

~ ~

() = Y(w) £

If ¢ is large enough and 7 small enough, we have, using respectively
e the definition of the global test function <I> <I> , since the support of w is contained in

(10.7)

l\')\m

Ar and the support of (b;’ R.Q; 18 contained in ?/Dt , for the second equality,
e the disintegration property of fzgl_ in Proposition 7.7 for the third equality,

e the fact that if £ is in the support of v, then f;i (g7t) = fgi (¢) = p and the change of
variables by the geodesic flow w = g’p for the fourth equality,
e the fact that the support of Vg_,tw is contained in W% (g~tw), and that
W (g7"w) N gV () = g (WO (g7"w) n V() = 'V, n

for the fifth equality,
e Equation (10.7) for the sixth equality, and
e the definition of A~, the invariance of the measure Vg_tw and the Gibbs measure mp under

the geodesic flow, and the definition of the measure a;g for the last two equalities:
J Y @nogtdezf 1Z &)nogftdﬁ@F
N x

Arn¥9X
S J

+
i€l/~ 62/

= - + —t ¢ _ ~
- Lea D LEW ) hy, r(fD, (8 ﬁ))ﬂ/%(gi)(g 0) dv, (£) d&}, (p)

€l /~

_ J f D) by g™ w)) dv ., (0) d(g")s5h, (w)
iel/~ wegtol D; Zegt”//+ ()

by 1.0, (&8 0) dinp(€)

- J f + 1;(6) hn R(g w) dv —tw(g) d(gt)*ﬁa (’LU)
'6 D; EegtV

i€l /~ win B
- fe tol D; h” rle” fw) v gftw(gtvgttw,n,R) d(gt)*ﬁgi(w)
iel/~ YWEE

% <I> og tdmp

= J *GD + EJ CDnog_t dmp
2 Jrwx
G

d(g"«o f @, dmp . (10.8)
Ngx

l\J\f"\

nNgx

We then conclude as in the end of the proof of | , Theo. 19]. By Equation (10.6), we
have |(gh)«oa0l = |og| = SF\%X ®,, dmp. By the mixing property of the geodesic flow on
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¥ X for the Gibbs measure mp, for ¢ > 0 large enough (while n is small but fixed), we
hence have

SF\S?X ¥ d(gh)xog B Srgx Ppog™" ¥ dmp

I(g")«0og] Srgx Oy dmp

_ Srygx ¥ dmr L.

€
+ o
2 [mp|

This proves the result. ]

Recall that by Proposition 3.14, Theorem 10.2 applies to Riemannian manifolds with
pinched negative curvature and for R-trees for which the geodesic flow is mixing and which
satisfy the finiteness requirements of the Theorem.

Since pushforwards of measures are weak-star continuous and preserve total mass, we
have, under the assumptions of Theorem 10.2, the following equidistribution result in X of
the immersed t-neighbourhood of a properly immersed nonempty proper closed convex subset
of X: ast — 400,

1 ty o+ * 1
— -~ — . 10.9
oz &) oa = e (109)

10.2 Rate of equidistribution of equidistant level sets for man-
ifolds

If X = M is a Riemannian manifold and if the geodesic flow of F\M is mixing with exponen-
tially decaying correlations, we get a version of Theorem 10.2 with error bounds. See Section
9.1 for conditions on I' and F' that imply the exponential mixing.

Theorem 10.3. Let M be a complete simply connected Riemannian manifold with negative
sectional curvature. Let I' be a nonelementary discrete group of isometries of M. Let F :
T'M — R be a bounded T-invariant Hélder-continuous function with critical exponent § =
or,F. Let 2 = (D;)ier be alocally finite I'-equivariant family of nonempty proper closed convex
subsets of M, with finite nonzero skinning measure cg. Let M = F\M and let F: T'M — R
be the potential induced by F.

(i) If M is compact and if the geodesic flow on T*M is mizing with exponential speed for the
Hélder regularity for the potential F, then there exist o € ]0,1] and k" > 0 such that for all
e C€XTM), we have, ast — +00,

1 1 "
wa d(gt)*U@ = m J'¢ dmp + O(e—n t ”77/}”01) .

(ii) If M is a symmetric space, if D; has smooth boundary for every i € I, if mpg s finite
and smooth, and if the geodesic flow on T*M is mizing with exponential speed for the Sobolev
regularity for the potential F, then there exist £ € N and " > 0 such that for all v € €X(T' M),
we have, as t — +00,

1 1 "
T d ¢ $Og = —— d O —Kk"t )
oo | P e = o [ dme s 0 )

Note that if M is a symmetric space and M has finite volume, then M is geometrically
finite. Theorem 4.8 implies that mp is finite if F is small enough. The maps O(-) depend on
M, T, F, 2, and the speeds of mixing.
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Proof. Up to rescaling, we may assume under the assumptions of Claim (i) or (ii) that the
sectional curvature is bounded from above by —1. The critical exponent § and the Gibbs
measure mp are finite under the assumptions of the theorem.

Let us consider Claim (i). Under its assumptions, there exists o € ]0,1[ such that the
geodesic flow on T'M is exponentially mixing for the Holder regularity a and such that the
strong stable foliation of TM is a-Holder.?

First assume that I'\I is finite. Fix R > 0 large enough and, for every n > 0, let us
consider the test function @, as in the proof of Theorem 10.2. Up to replacing D; by .41 D;,
we may assume that the boundary of D; is €"'-smooth, for every i € I, see for instance
[Walt].

Fix ¢ € €%(T'M). We may assume as in the proof of Theorem 10.2 that there exists a
lift @Z :TYM — R of 1 whose support is contained in a given fundamental domain Ar for the
action of I on T M. There exist 1o > 0 and ¢y = 0 such that for every n € ]0,70], and for

every t € [to, +0[, for every w € T'M and v e VJn o—tp» We have
D) = P(w) + 0 ((n + e ") ¢]a) (10.10)

since d(v,w) = O(n + e~ ') by Equation (2.8) and Lemma 2.4.
Let mp = IIZ%H be the normalisation of the Gibbs measure mg to a probability measure.
As in the proof of Theorem 10.2 using Equation (10.10) instead of Equation (10.7), we have

Spia ¥ d(gh)sog _ Sri0r ®p o gl dmp
H (8t)*0§ ” STlM (I)n dmp

+0 ((n+e ) ¢]a) -

As M is compact, the Patterson densities and the Bowen-Margulis measure are doubling
measures by Lemma 4.3 (4).* Using discrete convolution approximation,” there exist ' > 0
and, for every 1 > 0, a nonnegative function R®, € C%(T* M) such that

o $rip Ry diip = 1y Py diir,

o $rin |R®y — @y dmip = O(n §pny, @ dir),

o [RDy[a = 0(7744 STlM ®,, dmp).

Hence, applying the exponential mixing of the geodesic flow, with k£ > 0 as in its definition
(9.1), we have, for n € )0, 1] and ¢ € [to, +o0],

STlM Qﬁ d(gt)*ag .
|(g")«0d |
_ STlMRCI)n o gt dmp
- STlM @, dmp
_ Sy ROy dip
S @ dme Jpiy

= f Y dmp+0 (e ™7™ +n+ (n+eH))Y]a) -
TIM

+0 (0 [l + (1 + e )]a)

Y dimip + O (7[R [allv]a + 1 [$lo + (1 + €7 [¢]a)

38ee Section 9.1.
“See also [ , Prop. 3.12].
®See for instance [Sem, p. 290-292] or | |.
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Taking n = e~* for A small enough (for instance A = x/(2x')), the result follows (for instance
with k" = min{x/2, x/(2k"), amin{l, k/(2x’)}}), when I'\I is finite. As the implied constants
do not depend on the family 2, the result holds in general.

For Claim (ii), the required smoothness of mp (that is, the fact that mp is absolutely
continuous with respect to the Lebesgue measure with smooth Radon-Nikodym derivative)
allows to use the standard convolution approximation described for instance in [Zic, §1.6],
instead of the operator Ras above, and the proof proceeds similarly. O

10.3 Equidistribution of equidistant level sets on simplicial
graphs and random walks on graphs of groups

Let X, X, T, ¢, ¢, F’c, Fe., 6. < 40, (1) zevx, Me = Mp,, Mme = mp, be as in the beginning
of Section 9.2.

In this Section, we state an equidistribution result analogous to Theorem 10.2, which now
holds in the space of generalised discrete geodesic lines I'\ QX, but whose proof is completely
analogous.

Theorem 10.4. Let X,T',¢, (,U;_r)xEVX be as above. Assume that the Gibbs measure m. on
M¥YX is finite and mizing for the discrete time geodesic flow. Let 9 = (D;)ier be a locally
finite T'-equivariant family of nonempty proper simplicial subtrees of X, and D; = |D;|1. Let
Q = (Qi)ier be a locally finite T'-equivariant family of measurable subsets of f?X, with Q; <
8}FDZ- forallie I and Q; = Q; if i ~9 j. Assume that 06 is finite and nonzero. Then, as

n — 4+, for the weak-star convergence of measures on I'\ 49X,

]. + *

Teoal &% = gl

mp|

We leave to the reader the analog of this result when the restriction to I'\%uyenX of the
Gibbs measure is finite and mixing for the square of the discrete time geodesic flow.

Using Proposition 4.16 and Theorem 4.17 in order to check that the Bowen-Margulis
measure mpy on [N\¥X is finite and mixing, we have the following consequence of Theorem
10.4, using the system of conductances ¢ = 0.

Corollary 10.5. Let X be a uniform simplicial tree. Let I be a lattice of X such that the
graph T\X is not bipartite. Let 9 = (D;)ier be a locally finite T'-equivariant family of nonempty
proper simplicial subtrees of X and D; = |D;|1. Let Q = (2;)ier be a locally finite I'-equivariant
family of measurable subsets of GX, with Q; OLD; for alli eI and Q; = Q; if i ~g j.
Assume that the skinning measure 06 (with vanishing potential) is finite and nonzero. Then,

as n — +0, for the weak-star convergence of measures on I'\ 94X,

1

£on LI
Te.on) € o - O

Imewm|
When furthermore X is regular, we have the following corollary, using Proposition 8.1 (3).

Corollary 10.6. Let X be a regular simplicial tree of degree at least 3. Let T be a lattice of
X such that the graph T\X is not bipartite. Let 9 = (D;);er be a locally finite T -equivariant
family of nonempty proper simplicial subtrees of X and D; = |D;|1. Let Q = (£;)ier be a
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locally finite T'-equivariant family of measurable subsets of GX, with Q; © OLD; forallie I
and 2 = 0 if i ~g j. Assume that the skinning measure 05 (with vanishing potential) is
finite and nonzero. Then, as n — 40, for the weak-star convergence of measures on T\VX,

1
[CRA

i(g")w0h =

1
Vol volrx - O

Let us give an application of Corollary 10.6 in terms of random walks on graphs of groups,
which might also be deduced from general result on random walks, as indicated to the third
author by M. Burger and S. Mozes.

Let (Y, Gy) be a graph of finite groups with finite volume, and let (Y', G ) be a connected
subgraph of subgroups.® Note that (Y’, G) also has finite volume, less than or equal to the
volume of (Y, G). We say that (Y, Gx) is locally homogeneous if 3o gy o(e)=s ||G““’|‘ is constant
at least 3 for all x € VY. We say that a graph of groups is 2- acylmdrzcal if the action of its
fundamental group on its Bass-Serre tree is 2-acylindrical (see Remark 5.4). In particular,
this action is faithful if the graph has at least two edges.

The non-backtracking simple random walk on (Y,G,) starting transversally to (Y, G%)
is the following Markovian random process (X, = (fn,n))nen Where f,, € EY and =, is a
double coset or right coset of Gy, for all n € N. Choose at random a vertex yo of Y’ for
the probability measure W’»G’*) voly: ¢, (we will call yo the origin of the random path).

Then choose uniformly at random Xo = (fo,70) where fo € EY is such that o(fy) = yo
and 7o is a double coset in G \Gy,/p7;(Gy,) such that if fo € EY then yo ¢ Gy p%(GfO).7
Assuming X,, = (fn,¥n) constructed, choose uniformly at random X,, 11 = (fn+1, Yn+1) where
fn+1 € EY is such that o(fp1) = t(fn) and vai1 € Goy,41)/P 77 (Gfary) is such that if

fas1 = fn then Y+l ¢ prH(Gf"H)' The n-th vertex of (X, = (fn,n))nen is o(fn).

Corollary 10.7. Let (Y,Gx) be a locally homogeneous 2-acylindrical nonbipartite graph of
finite groups with finite volume, and let (Y',G) be a locally homogeneous nonempty proper
connected subgraph of subgroups. Then the n-th vertex of the non-backtracking simple random
walk on (Y, Gy) starting transversally to (Y', G',) converges in distribution to m voly g,
as n — +00.

Proof. Let I" be the fundamental group of (Y, G) (with respect to a choice of basepoint in
VY’), which is a lattice of the Bass-Serre tree X of (Y, Gy), since ' acts faithfully on X and
(Y, Gy) has finite volume. Note that X is regular since (Y, Gy) is locally homogeneous. Let
p: X - Y =TI'\X be the canonical projection.

Let I' be the fundamental group of (Y, G%,) (with respect to the same choice of basepoint).
As seen in Section 2.6, there exists a simplicial subtree X’ whose stabiliser in I" is IV, such that
the quotient graph of groups I"\X' identifies with (Y’, G’,) and the map (I"\X') — (I'\X) is
injective. Similarly, X’ is regular since (Y’,G,) is locally homogeneous. Let 2 = (vX') er,
which is a locally finite I'-equivariant family of nonempty proper simplicial subtrees of X.

Using the notation of Example 2.10 for the graph of groups I'\X (which identifies With

(Y,Gy)), we fix lifts f and ¥ in X by p of every edge f and vertex y of Y such that f f

and elements g € I' such that gs t(f) (f) We may assume that f € EX’ if f € EY’, that
ye VX' if ye VY’, and that g; € I if f € EY’, which is possible by Equation (2.22).

5See Section 2.6 for definitions and background.
"This last condition says that ~o is not the double coset of the trivial element.
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Let (©2,P) be the (canonically constructed) probability space of the random walk (X,, =
(fnsVn))nen- For all n € N let y,, = o(f,,) be the random variable (with values in the discrete
space Y = I'\X) of the n-th vertex of the random walk (X},)nen.

Let us define a measurable map ¥ : Q) — F\?X, with image contained in the image of

(91 X' by the canonical projection gX — I\ E?X such that ¥,P is the normalised skinning
measure ﬁ and that the following diagram commutes for all n € N :
99

o—— % ., 1n9x (10.11)

N A

Assuming that we have such a map, we have

ot 1
(Yn)«P = (me0(g")s 0 Wu)P = mu(g")s Z. = W*(g")*aj
" logl lgm)sosl 7

so that the convergence of the law of y, to m voly ¢, follows from Corollary 10.6
applied to ) = (8LDZ~)Z~€I.

Yo fo Yn fn Yn+1 fra1 Yn+2
Y L & ------- = > = - u
A
ip I fn+1 Y+l
‘ Jo 14
) -1 1
! gf’”. gfn‘ !
| | |
'g+ I =1 7 I
1< Jo .y J—— f Y. I
X : yn fn n ' n :
| ‘ ‘an+1
I | I
9 ' o 0 | n l
4 Y \
——————— e = & = e
() €0 €n €n+1

Let (X, = (fn,Vn))nen be a random path with origin yo € Y/, corresponding to w € Q.
Fix a representative of v, in its right class for every n > 1, and a representative of g in its
double class, that we still denote by ~, and 7 respectively. Using ideas introduced for the
coding in Section 5.2, let us construct by induction an infinite geodesic edge path (e, )nen
with origin o(eg) = go and a sequence (ay,)pen in I’ such that

€n = O‘n’)/ngffnil fn . (1012)

Let ag = id and eg = o g%_1 fo. Since o(fg) = 97 &‘(\/fg) = g7, Yo by the construction

of the lifts and since y9 € Gy, = I'zs, we have o(eg) = yp. Since the stabiliser of gff*1 fg is
0

o>
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p7;(G,), the edge eg does not depend on the choice of the representative 9 modulo p7(G'y,)
on the right, but depends on the choice of the representative ~y modulo G = F’~0 on the left.

The hypothesis that if fo € EY’ then v ¢ G, p7,(Gy,) ensures that the edge ey does not
belong to EX’. Indeed, assume otherwise that ey belongs to INZ'X’ . Then fy = p(eg) € EY,
and by the assumptions on the choice of lifts, the edges gJT_1 fo and eg both belong to EX'.

0

Since they are both mapped to fy by the map X' — Y’ = I'"\X/, and by Equation (2.22),
they are mapped one to the other by an element of F’% = Gy, Let g € F’% be such that

Yo eo = gfff1 ij. Then 76_170 belongs to the stabiliser in I' of the edge gfff1 ]‘Nb, which is
0 0
equal to g%_1 F%g% = p%(GfO). Therefore v € G, p%(GfO), a contradiction.
Assume by induction that e, and «a,, are constructed. Define

Opt1 = OnYn gf .gfn

and

En+1 = On41 Tn+l gf fn+1 )

so that the induction formula (10.12) at rank n + 1 is satisfied. By the construction of the
lifts, since yp+1 = t(fn) = o(fn+1), we have

3//—7;1 = gf;1 t(fn) = gfn+;1 O(fnJrl) .

Hence, since v,+1 € G =1~

for the last equality,

fixes ¥n+1, using the induction formula (10.12) at rank n

Yn+1 Untl

0(6n+1) = Qn+1 Yn+1 gﬁl O(fn-H) = Qn+1 Tn+1 ?/Jn\+1 = On+41 :/U—n\-&-i
= Q1 szl t(fn) = anmm gﬁ_l t(fn) = tlen) .

In particular, the sequence (ey)nen is an edge path in X.
Since the stabiliser of gﬁ Lpiis
n+

-1
gm an+1gfn+1 pm(an+l) ?

the edge ypt+1 g—— y- an does not depend on the choice of the representative of the right

coset yp+1. Let us prove that the length 2 edge path (gf fn, T+l 95— fn+1) is geodesic.
Otherwise, the two edges of this path are opposite one to another, hence fra1 = fn7by using
the projection p : X — Y, therefore 95y = 9 Thus v,,+1 maps gfj }; to gfj }Z, hence
belongs to py, (Gf,) = p77(G¥,,.), a contradiction by the assumptions on the random walk.

By constructlon the element a1 of I' sends the above length 2 geodesic edge path
(gf fn, T+l 95— an) to (€én,en+1). This implies on the one hand that the edge path
(En,ent1) is geodesm and on the other hand that «;,1 is uniquely defined, since the action
of I' on X is 2-acylindrical.

In particular, (ey)nen is the sequence of edges followed by a (discrete) geodesic ray in X,

starting from a point of X’ but not by an edge of X, that is, an element of (?iX’ . Furthermore,
this ray is well defined up to the action of F’%, hence its image, that we denote by ¥(w), is
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well defined in I\ ¥X. Since p(o(en)) = p(Jn) = yn for all n € N, the commutativity of the
diagram (10.11) is immediate.

For every z € VX', let 01 X'(z) be the subset of 01X’ consisting of the elements w with
w(0) = z. By construction, the above map from the subset of random paths in € starting
from 79 to F;%\ﬁ_lFX' (90), which associates to (X, )nen the I‘;%—orbit of the geodesic ray with
consecutive edges (ep)nen, is clearly a bijection. This bijection maps the measure P to the

+
. . . [ . . .. 1~/ ~4
normalised skinning measure m, since by homogeneity, the restriction to 0 X'(3p) of oy,

to 0L X'(4o), normalised to be a probability measure, is the restriction to 01 X'(gp) of the
Aut(X),-homogeneous probability measure on the space of geodesic rays with origin x in the
regular tree X. This proves the result. OJ

When Y is finite, all the groups Gy, for y € V'Y are trivial and Y’ is reduced to a vertex,® the
above random walk is the non-backtracking simple random walk on the nonbipartite regular
finite graph Y, and Wﬂ*) voly ¢, is the uniform distribution on VY. Hence this result
(stated as Corollary 1.3 in the Introduction) is classical. See for instance [OW, Theo. 1.2] and
[ |, which under further assumptions on the spectral properties of Y gives precise rates

of convergence, and also the book | |, including its Section 6.3 and its references.

10.4 Rate of equidistribution for metric and simplicial trees

In this Section, we give error terms for the equidistribution results stated in Theorem 10.2 for
metric trees, and in Theorem 10.4 for simplicial trees, under additional assumptions required
in order to get the error terms for the mixing property discussed in Chapter 9.

We first consider the simplicial case, for the discrete time geodesic flow. Let X, X, I, ¢,
¢, By, Fe., 8, < 400, (u)zev, Me, me be as in the beginning of Section 9.2.

Theorem 10.8. Assume that d. is finite and that the Gibbs measure m. on T\YX is finite.
Assume furthermore that

(1) the families (AT, py ,dy)zevear and (AT, pt, dy)zeveoar of metric measure spaces are
uniformly doubling,’

(2) there exists v € |0, 1] such that the discrete time geodesic flow on (IN\YX,m.) is expo-
nentially mizing for the a-Hélder reqularity.

Let 9 = (D;)ier be a locally finite I'-equivariant family of nonempty proper simplicial subtrees
of X with T\I finite. Let Q = (;)ier be a locally finite T'-equivariant family of measurable
subsets of GX, with Q; < 5}iDi forallie I and Q; = Q; if i ~4 j. Assume that 05 is finite
and positive. Then there exists ' > 0 such that for all ¢ € €*(T'\ gX), we have, as n — +00,

1
[(g*)xog
Remarks. (1) If ¢ = 0, if the simplicial subtree X’ of X satisfying |X'|; = AT is uniform,

if Lt = Z and if T is a lattice of X/, then we claim that §. = dr is finite, m, = mpy is finite
and mixing, and (AT, pz = pf, dy)zevear is uniformly doubling.

1
[mel

[vame s = oo [vdmes Ofulae™)

8The result for general Y’ follows by averaging.
9See Section 4.1 for definitions.
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Indeed, the above finiteness and mixing properties follow from the results of Section 4.4.
Since X' is uniform, it has a cocompact discrete group of isometries IV whose Patterson density
(for the vanishing potential) is uniformly doubling on AT” = AT, by Lemma 4.3 (4). Since
¢ =0 and T is a lattice, the Patterson densities of I" and of I coincide (up a scalar multiple)
by Proposition 4.16 (2).

(2) Assume that ¢ = 0, that the simplicial subtree X’ of X satisfying |X'|; = @ AT is uniform
without vertices of degree 2, that Lr = Z and that I' is a geometrically finite lattice of X.
Then all assumptions of Theorem 10.8 are satisfied by the first remark and by Corollary 9.6.
Therefore we have an exponentially small error term in the equidistribution of the equidistant
levels sets.

Proof. We only give the proof when + = +, the other case is treated similarly. We follow
the proof of Theorem 10.2, concentrating on the new features. We now have I'\I finite by

assumption. Let n € ]0,1] and ¢ € €I\ X). We consider the constant R > 0, the test
function ®,), the fundamental domain Ar and the lift 1Z of ¥ as in the proof of Theorem 10.2.

For all n € N, all w € 4, X isometric on [—n, +oo[ and all £ € VJ’ I Bt (w,e "R),"
by Lemma 2.7 where we can take n = 0, we have d(¢,w) = O(e™™). Since p is Lipschitz, the
map 1 is a-Holder-continuous with a-Hélder norm at most [1]4. Hence for all n € N, all

w € 9, X isometric on [—n, +oo[ and all £ € VJW o—nps We have

~

D) = d(w) + O™ [¢]a) - (10.13)

As in the proof of Theorem 10.2 with ¢ replaced by n, using Equation (10.13) instead of
Equation (10.7) in the series of equations (10.8), since the symbols w that appear in them are
indeed generalised geodesic lines isometric on [—n, +00[, we have

SF\{?X (G d(g”)*ag B Sr\gx Y @pog " dme

H(gn)*UgJSH Sr\gx ®,, dm,

+0(e™ [¢]a) - (10.14)

Let us now apply the assumption on the decay of correlations. In order to do that, we
need to regularise our test functions ®,, .

By the definition of the Gibbs measures,'' Lemma 3.3 implies that, for all € > 0 small
enough and ¢ € ¥X,

i (B (6(_00)7610 ve)) i) By (€(+oo)7clo Ve))
< Me(Bg(l,€))
< W_(O) (Bde(o) ((—o0), co \&)) ,“Z(O) (Bde(o) (£(+0), co \/g)) .

Since the Patterson densities are uniformly doubling for basepoints in ¥ AT, since the foot-
points of the geodesic lines in the support of m. belong to ¥ AIl', the Gibbs measure m, is
hence doubling on its support. Let m,. = ﬁ As in the proof of Theorem 10.3, using discrete

convolution approximation, there exists x” > 0 and, for every n > 0, a nonnegative function
R®, € C(I"\¥X) such that

10 A5 said in Section 2.6, the subsets VJ ». s and BY (w, s) of the space of discrete geodesic lines ¥X are equal
for every s > 0 since X is simplicial and n < 1.

See Equation (4.4), using 2o = £(0) as the basepoint for the Hopf parametrisation, and the fact that if
€ > 0 is small enough and ¢’ € By(¢,¢€), then ¢'(0) = £(0) as seen in the proof of Lemma 3.3.
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(1) Srgx ROy dTe = fpgx Oy dT0e,
(2) Spygx [REy — @y dme = O (n S O dm),

(3) H Rq)nHoc =0 (777#/ Sr\gx P, dmC)'
By Equation (10.6), the integral SF\%X @, dm. = |0 | is constant (in particular indepen-
dent of n). All integrals below besides the first one being over I'\¢X, and using

e Equation (10.14) and the above property (2) of the regularised map R®, for the first
equality,

e the assumption of exponential decay of correlations for the second one, involving some
constant x > 0, for the second equality,

e the above properties (1) and (3) of the regularised map R®,, for the last equality,

we hence have

Sp\g?x (0 d(gn)*aa B S P R‘I)n ngn dme

+ 0™ [¢la + 1 [¢]w0)

[REA o, dm.
RO, dim, §¢ 7, o
- AR R VT 4 0 [l + 1 Wt
n (&
1 —RKn
(%, dim, © | Ry lall?]a)

_ M A7+ O (€7 + 17+ e =" Y|9]la) -
Taking n = e " with \ = o7, the result follows with &' = min{a, 5%, §}. O

Let us now consider the metric tree case, for the continuous time geodesic flow, where the
main change is to assume a superpolynomial decay of correlations and hence get a superpoly-
nomial error term, for observables which are smooth enough along the flow lines. Let (X, \),
X, T, F, 6= or p+ < 0, (1 )gex, Mmp and mp be as in the beginning of Section 9.3.

Theorem 10.9. Assume that the Gibbs measure mp on T\Y X is finite. Assume furthermore
that

(1) the families (AT, p , dy)eeear and (AL, p), dy)eeonar of metric measure spaces are uni-

~

formly doubling,'? and F is bounded on T € AT,

(2) there exists a € 10, 1] such that the (continuous time) geodesic flow on (INY X, mp) has
superpolynomial decay of a-Hdélder correlations.

Let 9 = (Dy)ier be a locally finite T-equivariant family of nonempty proper closed convex
subsets of X with T\I finite. Let Q = (Q)ier be a locally finite T-equivariant family of
measurable subsets of GX, with O 61iDZ~ forallie I and Q; = Q; if i ~g j. Assume
that 05 is finite and nonzero. Then for every n € N, there exists k € N such that for all
Y e €PN\ GX), we have, as t — +0,

1 1
m Jlﬁ dm(git)*ag = m fl/, dmp + O(HT/JHk,afn) )

12866 Section 4.1 for definitions.
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Remarks. (1) If F = 0, if the metric subtree X’ = €ATl" of X is uniform, if the length
spectrum of I on X is not contained in a discrete subgroup of R and if I is a lattice of X', then
we claim that § = dr is finite, mp = mpy is finite and mixing, and (AT, pp = pu, dy)eex is
uniformly doubling.

Indeed, the above finiteness and mixing properties follow from Proposition 4.16 and The-
orem 4.9. Since X' is uniform, it has a cocompact discrete sugbroup of isometries I'" whose
Patterson density (for the vanishing potential) is uniformly doubling on ATV = AT, by Lemma
4.3 (4). Since F' =0 and T is a lattice, the Patterson densities of I' and of I coincide (up to
a scalar multiple) by Proposition 4.16.

(2) Assume that F' = 0, that the metric subtree X’ = AT’ of X is uniform, that the length
spectrum of I' on X is 4-Diophantine and that I" is a geometrically finite lattice of X’. Then all
assumptions of Theorem 10.9 are satisfied by the first remark and by Corollary 9.10. Therefore
we have a superpolynomially small error term in the equidistribution of the equidistant levels
sets.

Proof. The proof is similar to the one of Theorem 10.8, except for the doubling property
of the Gibbs measure on its support and the conclusion of the proof. Let X’ = €AI'. The
modification of Lemma 3.3 used in the previous proof is now the third assertion of Lemma
3.4.

If the foN()tpoints of £,0' € 94X’ are at distance bounded by cg €, then by Proposition 3.20
(2), since |F| is bounded on T' X’ by assumption, the quantities \ng (€(0),¢'(0))| for £ € AT
are bounded by the constant ¢, = ¢ €y (maxqg1 x/ |F — §]). By the definition of the Gibbs
measures (see Equation (4.4)), Assertion (3) of Lemma 3.4 hence implies that if € < ¢y then
for every £ € ¥X,

e € iz (Bayoy (=), — V) ity (B (), — V/E)

€o €o

< e2% ¢ o )(Bdg(())( (—0),co Ve)) uy; (Bdg(0)< (+20),c0 Ve)) -

As in the simplicial case, since the Patterson densities are uniformly doubling for basepoints
in X', the Gibbs measure m, is hence doubling on its support.

Fix n € N. As in the end of the proof of Theorem 10.8, using the assumption of superpoly-
nomial decay of correlations, involving some degree of regularity k in order to have polynomial
decay in t~N" where N = ["] + 1, instead of the exponential one, we have, for all ¢ > 1 and

W e G \GX),
SF\@X w d( )*UQ
I(g")«od
Taking n = t~", by the definition of IV, we hence have

SF\E?X 1/] d( *U

I(g")xoq |

f Y dime+0 (€7 + 7+ 5 ) lea) -

2 fwdmc+0(t"uw||m).

This proves Theorem 10.9. ]
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Chapter 11

Equidistribution of common
perpendicular arcs

In this Chapter, we prove the equidistribution of the initial and terminal vectors of com-
mon perpendiculars of convex subsets, at the universal covering space level, for Riemannian
manifolds and for metric and simplicial trees. The results generalise | , Theo. 8|.

From now untill the end of Section 11.3, we consider the continuous time situation where
X is a proper CAT(—1)-space which is either an R-tree without terminal point or a complete
Riemannian manifold with pinched negative curvature at most —1. In Section 11.4, X will be
the geometric realisation of a simplicial tree X, and we will consider the discrete time geodesic
flow.

Let T' be a nonelementary discrete group of isometries of X. Let xg be any basepoint in
X. Let F be a continuous I-invariant potential on T X, which is Holder-continuous if X is
a manifold. Assume that 6 = 0p p+ is finite and positive and let (13 )yex be (normalised)
Patterson densities for the pairs (T', F%), with associated Gibbs measure mp. Let 2~ =
(D; )ier- and 2% = (Dj) jer+ be locally finite I'-equivariant families of nonempty proper
closed convex subsets of X. o L

For every (4,7) in I~ x It such that the closures D;” and D;f of D;” and Dj+ in X UodxpX
have empty intersection, let X\; ; = d(D;, D;r) be the length of the common perpendicular

from D, to D;.’, and let oy ;€ GX be its parametrisation: it is the unique map from R to X
such that

° af.(t)

Iy (0)e D; ift <0,
° aj.(t)

i\j z,j()‘ivj)ED;_ ift?)\i,j, and

°* a; j|[07 Aiy] = @i, is the shortest geodesic arc starting from a point of D;” and ending

= %
= o

at a point of D;F.

A —
+ /\i,' . (V) - (V) +
Let o; = g™y ;. In particular, we have g™2 o, = g7 2 oy ;.

)

We now state our main equidistribution result of common perpendiculars between convex
subsets in the continuous time and upstairs settings. We will give the discrete time version
in Section 11.4, and the downstairs version in Chapter 12.

Theorem 11.1. Let X be either a proper R-tree without terminal points or a complete simply
connected Riemannian manifold with pinched negative curvature at most —1. Let ' be a
nonelementary discrete group of isometries of X and let F' be a bounded I'-invariant potential
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on X which is Hélder-continuous if X is a manifold. Let 9% = (D,:—r)keli be locally finite I'-
equivariant famailies of nonempty proper closed convexr subsets of X. Assume that the critical
exponent § is positive," and that the Gibbs measure mp is finite and mizing for the geodesic
flow on T\YX . Then

. - F

lim 0 |mp| e 0 Z es‘“m A -

t—+00 «
iel=/~, jeIt /., ~vel

B;ﬂﬁjj:@, Ai, i<t

® Aoﬁ; = 5;}* ® 5;*

i, ~—Llij

for the weak-star convergence of measures on the locally compact space GX x 9X.

The proof of Theorem 11.1 follows that of | , Theo. 8], which proves this result
when X is a manifold and F' = 0. The first two and a half steps work for both trees and
manifolds and are given in Section 11.1. The differences begin in Step 3T. After this, the
steps for trees are called 3T and 47 and are given in Section 11.2 and the corresponding steps
for manifolds are 3M and 4M, given in Section 11.3.

In the special case of 27 = (v&)yer and 2 = (yy),er for some x,y € X, this statement,
with Equation (7.2), gives the following version with potentials of Roblin’s double equidistri-
bution theorem | , Theo. 4.1.1] when F = 0, see | , Theo. 9.1| for general F when
X is a Riemannian manifold with pinched sectional curvature at most —1.

Corollary 11.2. Let X, T, 1?’, 0, mp be as in Theorem 11.1, and let x,y € X. We have

: 5t R _ .+ -
Jim 6 [mp| e > AL @A, = ul ey,
yel' d(z,yy)<t

for the weak-star convergence of measures on the compact space (X U 00X ) x (X U 05 X). [

Let us give a version of Theorem 11.1 without the assumption ¢ > 0.

Theorem 11.3. Let X, T, ﬁ, 6, mp be as in Theorem 11.1, except that the critical exponent
0 is not assumed to be positive. Then for every T > 0, we have

. o |mp| _ F
lim | ”5 o0t Z o A
t—>+oo 1 —e 7 @
iel=/~, jelT /., ~el
E;f\ﬁ,:rj:@, t—T<N\i <t

® Aa"’f = &éf ® 5;*

i,7j ~—Li,

for the weak-star convergence of measures on the locally compact space GX x 9X.

Proof. The key ingredient in order to deduce Theorem 11.3 from Theorem 11.1 is the
following classical lemma (see | , Lem. 9.5] for a proof).

Lemma 11.4. Let I be a discrete set and let f,g : I — [0,+0[ be maps with f proper. If
0+ k>0 and, ast — 40,

0+K)t

)

| (
Mgy ~ ©

iel, Fli)<t 0+k

'It is finite since F is bounded, see Lemma 3.17 (6).
2or rather the following Equation (11.1)
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then for every ¢ > 0, as t — 40,

i€l t—e<f(i)<t

Let x > 0 be such that or pi, = dr,F + £ > 0. As the definition of the Gibbs measure
only involves the normalised potential, we have |mp .|| = |mp|. Thus, the statement of
Theorem 11.1 for the potential F' + k is equivalent to the claim that, as ¢ — +o0,

Z el vi ¥, sz(ai_,"/j’a:}‘/__li,j) ~ J‘w ®0’é+)

ieI*/N7 jeIt/~, ~vell (6 R HmFH

ﬁi_mD =, \i, ;i <t

for all positive functions ¢ € %C(?X X ?X) Since the function (4, j,y) — A ; is proper by
the local finiteness of the families 2~ and 2", Lemma 11.4 implies that for every 7 > 0, as
t — 400,

Y A vt ~ S [ o5,
ieI*/N, jeIt/~, vell
Ei_r\D =, t—T<Ai, 4j<t
which yields Theorem 11.3. O

11.1 Part I of the proof of Theorem 11.1: the common part

Step 1: Reduction. By additivity, by the local finiteness of the families 2%, and by the
definition of 5§$ = Zke]¢/~ 53;;, we only have to prove, for all fixed i € I~ and j € I, that

. B i e
lim 0 |mp| e E e i A - @A+ =0 _®0d,_, (11.1)
B a;, Ly, D; D’
oo e (g s P,

for the weak-star convergence of measures on GX x 9X.
Let Q= be a Borel subset of ﬁ}rDi_ and let Q" be a Borel subset of (?ED;-F. In order to
simplify the notation, let

+ +

- — D + _ Dt — v s — T _
D~ =D/, D —Dj7 Oy = O yjs = Qg Q) =y,

Y
Ay = Niyj, 0 =055, (11.2)

Assume that Q= and Q" have positive finite skinning measures and that their boundaries in
0 D~ and 01 DT have zero skinning measures (for 3+ and &~ respectively). Let

Ig- q+(t) = 6 [mp| e > el P (11.3)
yel': O0<A, <t
a5 10271627 o1 @7 11-24.00€2T 112 24.0]

We will prove the stronger statement, implying Equation (11.1) by restricting to QF compact,
and useful in this generality for Chapter 12, that, for every such QF, we have
_ =tO0—) 2 (Ot
tEr—Poo Ig- q+(t) = 7 (2 )0 (Q7). (11.4)
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Step 2: First upper and lower bounds. Using Lemma 7.6 (1), we may fix R > e? such

that y%(an r) > 0forall ne€]0,1] and w € 0L D*. Let ¢ = gb:_]' R o+ De the test functions

defined in Equation (10.4).
For all t = 0, let

i) = Y j b (&7120) 67 (g2 10) divp (0). (11.5)
~el e9X

As in | |, the heart of the proof is to give two pairs of upper and lower bounds, as
T > 0 is large enough and 7 € ]0, 1] is small enough, of the (Cesaro-type) quantity

in(T) = fTe‘” an(t) dt. (11.6)

By passing to the universal cover, the mixing property of the geodesic flow on T\¥ X for
the Gibbs measure mg gives that, for every € > 0, there exists T, = T, , = 0 such that for all
t = T¢, we have

6—6

[ml

eE
o, Cl’f?LFJ (bJr dmp < ay(t) < —— J o dmpf ¢+ dmpg .
LX K gx n( ) HmFH gx gx

Hence by Lemma 10.1 (1), for all € > 0 and 7 € ]0, 1], there exists ¢. = ¢., > 0 such that for
every T' = 0, we have

e(ST e(ST

e ¢ FTQT) 5 (QF) —ce <ip(T) < €° FHOQ) T (Q7) +c. 11.7

Step 3: Second upper and lower bounds. Let 7" > 0 and 7 € ]0,1]. By Fubini’s
theorem for nonnegative measurable maps, the definition® of the test functions qﬁ;—r and the
flow-invariance® of the fibrations ]%1, we have

T
in(T) = Y f &t j B o £ (0) hE o foe(v10)
’yGF 0 KGgX

ﬂgt/gy/n-l’—R(Qf)(Z) lgit/Z%TR(WQ+)(£) de dt . (118)

We start the computations by rewriting the product term involving the functions h:?r p- For

allyel and (e %, N U, p+ define (using Equation (2.16))

w”=fh () €D 0X and wh=f.(0)=fp. (v e9d oX. (11.9)

This notation is ambiguous (w~ depends on ¢, and w* depends on ¢ and ), but it makes the
computations less heavy. By Equations (10.2) and (3.20), we have, for every ¢t > 0,

w ™ (¢/2)
_ _ _ _ _ _ (F=6) , _ _
hn,R(w ) = hn,R o g t/2 (gt/Zw ) = eSw © hn7€7t/2R(gt/2w ) .

3See Equation (10.4).
“See Equation (2.16).
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Similarly,

w+(0) ~
_ (F—5) _
By Lty = St (<12) h;;e—z/zR(g 207y |
Hence,
0 F5-(0) 1 0 e (70)
_ w:(t/2) ﬁ. w+(0) ﬁ _ _
= e 9t Qdu(0) Yt Cp2) hn: e—t/2R(gt/2 )h;; e—f/QR(g t/2w+) ) (11.10)

11.2 Part II of the proof of Theorem 11.1: the metric tree case

In this Section, we assume that X is an R-tree and we will consider the manifold case sepa-
rately in Section 11.3.

Step 3T. Consider the product term in Equation (11.8) involving the characteristic func-
tions. By Lemma 2.8 (applied by replacing D" by D7), there exists to = 2In R 4+ 4 such
that for all n € ]0,1], t > tp, ye ' and L € ¥ X, if ]lgt/gy/;R(Q,)(f) ]lg,t/Q%TR(WQ+)(€) # 0, or

equivalently by Equation (2.20) if

te?! e U N R AN CT e D

—t/ZR(

then the following facts hold.
(i) By the convexity of D*, we have £ € %] @/{DJr

(i) By the definition® of w®, we have w~ € Q= and w* € vQ*. The notation (w~,w™)
here coincides with the notation (w™,w™) in Lemma 2.8.

iii) There exists a common perpendicular a~, from D~ to yD™, whose length ). satisfies
gl gl
| Ay —t| <27, (11.11)

whose origin is a7 (0) = w™(0), whose endpoint is yaf (0) = w*(0), such that the
points w™ (4) and w' (—%) are at distance at most n from £(0) € .

See the picture following Lemma 2.8 (replacing Dt by vD™). Hence, by Lemma 3.12 and
since F' is bounded,

o | F S Ja wi(t/z)ﬁv Sw+(0) ﬁv on | F S s
e 2N Fleo glay ¥ < oIw—(0) wt(—t/2) " < 2N Fleo glay © (11.12)

For all n € ]0,1], y € T and T > o, let

e (T) = {(t,0) € [to, TT x GX : Le ¥ 0 (6707) NV~ ., (e "207)}

—t/QR

and

o= f B on@207) B (g™ ) dt i (0).
(t, £)ecty ~(

®See Equation (11.9).
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By the above, since the integral of a function is equal to the integral on any Borel set containing
its support, and since the integral of a nonnegative function is nondecreasing in the integration
domain, there hence exists ¢4 > 0 such that for all 7> 0 and 7 € ]0, 1], we have

- —o|F S
in(T) > —cs+e oo Z e jgn~(T)
vel': to+2<\, <T—2n
a5 110, A1€27 110, 31 @7 [1=ay, 0162 T I[— 1, 0]

and similarly, for every 77 > T (later on, we will take 7" to be T + 4n),

, m|F ) : /
in(T) < g + *11F e Z e (1) -
vel': to+2< A\ <T+27
a5 110, 3182 [0, 251> 0 [=2y, 01E2F |22, 0]

Step 4T: Conclusion. Let € > 0. Let v € I" be such that D~ and yD™ do not intersect
and the length of their common perpendicular satisfies Ay > tp + 2. Let us prove that if 7 is
small enough and A, is large enough,® then for every T > Ay + 21, we have

1—e<jpo(T)<1+e. (11.13)

This estimate proves the claim (11.4), as follows. For every € > 0, if n > 0 is small enough,
we have

: _ Ig-o+(T)  Iqg-o+(to +2)

T + 2 > — + 20| Flloo 1— ( ) _ > )
in( n) C4 T € ( €) §lmpledT & |mp|eo(tot2)
and by Equation (11.7)

e Q)5 ()
5 [mple~3T+20

in(T +21) < ce +

Thus, for n small enough,

FHOQT) () = s Ig- o+(T) +0o(1)

66

as T' — 400, which gives

limsup In- o+(T) < 57(Q7) 5 (QF).
T—+00

The similar estimate for the lower limit proves the claim (11.4).
In order to prove the claim (11.13), let n € ]0,1] and T > A, + 2n. In order to simplify

the notation, let
T = e_t/2R, w, = gt/zw_ and w,j’ = g_t/2w+.

By the definition of jj, -, using the inequalities (10.3) where the constant c¢; is uniform since F
is bounded (with the comment following them) and the fact that 7 = O(e~*+/2) by Equation

Swith the enough’s independent of ~
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(11.11), we hence have

j(T) = ﬂ b (o) bt i) dt diip(6)

7Tt 7, Tt
(t, E)esafn ~(T)
— M/z) fj dt dmp(€) (1114
= _ _ ‘ |
(t, )edty ~( MW+ B (wt ’ Tt)) 'uW*(wt*)(B (wt , Tt))

Let z be the midpoint of the common perpendicular a., so that d(z,£(0)) = O(n) for
every (t,0) € o, ~(T) by the above Claim (iii). Let us use the Hopf parametrisation of ¢4 X
with basepoint x., denoting by s its time parameter. When (¢,¢) € 7, ,(T), by Definition
(4.4) of the Gibbs measure mp, by the R-tree case of Proposition 3.20 (2), and since F is
bounded, we have

— +
dinp () = 7= OV T g o 0y dp (0, ds
= eOMdp (0_)duf (04)ds. (11.15)

Let P, be the plane domain of the (¢,s) € R? such that |\, —¢| < 2n and there exist
st e ] —mn,n[ with sT = % + 5. It is easy to see that P, is a thombus centred at (\,,0)

whose area is (2n)2.

Let f,;i be the point at infinity of any fixed geodesic ray from ., through afyi(()). If Ais a
subset of ¥ X, we denote by Ay the subset {¢1 : £ € A} of 0, X.

Lemma 11.5. For every t > to such that |\, —t| < 27, we have

(B+(w;_7rt)) dew(g'y?Re 7)

Proof. We prove the statement for the negative endpoints, the proof of the claim for positive
endpoints is similar. Since R > 1 and d(z, a7 (0)) = )‘7”, the term on the right hand side
does not not depend on the choice of £F.

Let us first prove the inclusion on the set on left hand side into the one on the right
hand side. Let ¢/ € B*(w; ,r), so that” there exists a geodesic line @, € ¥X, extension
of the geodesic ray w; : [—%, +oo[ — X, with dW+(wt—)(1ﬂt_,€’) < 1. We may assume that
(W; )— =& and £ # & . Let pe X be such that [¢/(0),& [ n[€/(0),¢_[ = [¢'(0),p].

"See the definition of the strong stable ball BY (w; ,r:) in Section 2.3.
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p T

(e, g ¥ L

& w™(0) = a5 (0) w(§) =(0)

Since t > to > 2In R, we have r; < 1, hence® £'(0) = w; (0) = w™(t/2) and p € 1£'(0),&;[.
Since

t t
d(p,w™(t/2)) = —lndW_+w;)(th_,€’) >—Inr = 3 InR> 50 —-InR>12>2n

and d(z,w™ (t/2)) = }/\77 — L] <n, we have p € [7+,& [ Hence
—d(p,w™(5))—d(w™ (t/2),2y) jf t < )

— —d(p,z € 2 1 =
dxy(fl_afy) =e (P, ) < { efd(p,w*(i))er(w*(t/?),:Eq) 2 7

2 otherwise.

In both cases,

>
>

Ay Lt 5
2t =Re 2 .

_ 20
2 <rpe 2t

N+

2y (£2 6y) = W+(w )(@;,El)e

Conversely, if € € Bg, (&5, Re_%), let ' € 4X be such that ¢/ (0) = w(¢/2) and ¢ = &.

We may assume that § # §. Let w; be the extension of w; such that (@, )- = 57 Let

p € X be such that [¢'(0),5[ N [¢'(0),£_[ = [¢/(0),p]. Then as above, we have Re™ T < 1,

hence
Ay

m\»

dW+( )(wt ) = e £0) = ( &) e <Tt,
thus ¢ € Bt (w; , ). O
It follows from this lemma that, for all ¢ > to, te]l—mnmn[and £ € 49X, we have
gt e BE(wf,ry) if and only if d(@( ),a:(0)) = s+ & (or equivalently, by the definition of

the time parameter s of f in Hopf’s parametrisation with basepoint x.,, when st —i—% = ’\7” +s),
and /4 € Bdwv( ;—F,RETW). Thus,

A A
py(T) = Py x By, (&, Re” %) x By, (&5, Re”2).

To finish Step 4T and the proof of the theorem for R-trees, note that by the definition
of the skinning measure (using again the Hopf parametrisation with basepoint x.), by the
above Lemma 11.5, by the claim for R-trees of Assertion (2) of Proposition 3.20 and the
boundedness of ﬁ’, we have

iy oy (BE(wF 11)) = CVE (By, (€5, Re™3)). (11.16)

Thus, by the above and by Equations (11.14) and (11.15), (and noting that O(n) £ O(n) =
O(n))

j (T) _ eO(e™ 2 )eo(n)(Zn)Qlu'l’»y(de,y (fy , Re ;))#;—W (dev( q—f,Re 5 ))
my - T 5 7 - > —
K Hay (Bd’*'“/ (57 , Ite 7 ))/L;Lt, (Bdm (£’¢7 Re 3 ))
_M
= Ote ) (11.17)

8See the definition of the Hamenst#dt distance dw+(w*) in Section 2.3.
t
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which gives the inequalities (11.13). ]

The effective control on j, ,(T") given by Equation (11.17) is stronger than what is needed
in order to prove Equation (11.13) in Step 4T. We will use it in Section 12.6 in order to obtain
error terms.

11.3 Part III of the proof of Theorem 11.1: the manifold case

The proof of Theorem 11.1 for manifolds is the same one as for trees until Equation (11.10).
The remaining part of the proof that we give below is more technical than for trees but the
structure of the proof is similar. In this Section, X = M is a Riemannian manifold, and we
identify 4 X and T'X with the standard unit tangent bundle of M, as explained in Section
2.3.

Step 3M. Consider the product term in Equation (11.8) involving the characteristic func-
. . — 2 71 2 . .
tions. The quantity IVJR(Q’)(g t2y) ]1,7/7;R(Q+)(7 g"?v) is different from 0 (hence equal to
1) if and only if
vegPY Q) A g P () = At (@) Y (e,
see Section 2.4 and in particular Equation (2.20). By Lemma 2.9 (applied by replacing D' by

vD* and w by v), there exist tg, cog > 0 such that for all n € ]0,1] and ¢ > t¢, for all v € TIM,
if l'ynTR(Q’)(g_t/%) ]1,7/77_’R(Q+)(7—1gt/2v) # 0, then the following facts hold:

(i) by the convexity of D¥, we have v e % n ?/V_DJF,
(ii) by the definition of w* (see Equation (11.9)), we have w™ € Q= and w™ € Q" (the
notation (w~,w™) here coincides with the notation (w™,w™) in Lemma 2.9),

(ili) there exists a common perpendicular o, from D~ to vD™T,? whose length ), satisfies

Ay —t | <2n+coet/?, (11.18)

~Y/2 from w(w™), whose endpoint 7(v?)

is at distance at most cye %2 from m(w™), such that both points 7(g?w~) and
m(g~"?w*) are at distance at most 7 4+ coe %2 from 7(v), which is at distance at
most ¢g e 2 from some point p, of Qy.

whose origin (v} ) is at distance at most cge

m(v) v
.z °
Pv Ty

9and we then denote as previously by v, its tangent vector at its origin, by ’U,Jyr its tangent vector at its
terminal point, and by vg its tangent vector at its midpoint
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Using (iii) and the (HC)-property'? which introduces a constant x5 € ]0, 1], and since F is
bounded, for all € ]0,1], ¢ > to and v € T* M for which 1’V+R(Qf)(g_t/2v) H’V_R(Q+)(7_lgt/27)) )
ub m,

0, we have

(gt 2w™) & en(wt = v '”('U+)~ —t/2\k
R P _ S AP0t
ﬁ —A~/2\k
_ oy I LOWm+e/2)m2) (11.19)

For all n € ]0,1], y e I" and T' > tg, define
(1) = {(6,0) € [t0, T) x TRL < ve ¥y (€207) AVl 200},

and
Jn,~( Jj 77 e*t/QR gt/z 7) h:;e t/gR(g*t/Quﬁ) dt dmp(v) .

(t,v)edy (T

By the above, since the mtegral of a function is equal to the integral on any Borel set containing
its support, and since the integral of a nonnegative function is nondecreasing in the integration
domain, there hence exists ¢4 > 0 such that for all 7> 0 and 7, € ]0, 1], we have
in(T) = —ca + Z el Jn.A(T) e Ollrre) )
~el: t0+2+cos)\.yST—O(n+67)‘W/2)
vyeN 'U’¢E YA

—O(n+e Av/% o(n+e**v/2)ﬂ

and similarly, for every 77 > T,

] F . —Ay/2)kg
in(T) < ca+ Z ega’y Jn,'y(T/) pO(n+e2/2)m2)
vel: to+2+co <A7<T+O(q7+e*/\7/2)
UJEJVO(”H_’\“’/Q v”ev‘/Vo( +e —M/Q)Q

We will take T" to be of the form T + O(n + e~*/2), for a bigger O(-) than the one appearing
in the index of the above summation.

Step 4M: Conclusion. Let v € I be such that D~ and vD* have a common perpendicular
with length Ay > tg + 2 + ¢o. Let us prove that for all € > 0, if n is small enough and A, is
large enough, then for every T = A, 4+ O(n+e~*7/2) (with the enough’s and O(-) independent
of 7), we have

1—e<jp,(T)<1+e. (11.20)

Note that % (A(QF)) and (A .(QF)) tend to 7E(QF) as ¢ — 0 (since 7+(QF) = 0 as
required in Step 1). Using Steps 2, 3M and 4M, this will prove Equation (11.4), hence will
complete the proof of Theorem 11.1.
We say that (M, T, F') has radius-continuous strong stable/unstable ball masses if for every
€ > 0, if » > 1 is close enough to 1, then for every v € T'M, if B~ (v, 1) meets the support of
- then
Hywy = (v)
5 (B (0.1) < iy (B~(0,1))

10Gee Definition 3.13.
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and if BT (v, 1) meets the support of Hoy+ (o) then
M;V+(v)(B+(U’ r)) < eeﬂa/qt(v) (B*(v,1)).

We say that (]\7, r, ﬁ’) has radius-Holder-continuous strong stable/unstable ball masses if there
exist ¢ € ]0,1] and ¢/ > 0 such that for every € € ]0,1], if » > 1 is close enough to 1, then for
every v € T'M, if B~ (v,1) meets the support of MXJ/FV*(W then

iy (B (0,1)) < sty (B (0,1)

and if BT (v, 1) meets the support of ”171/+(v)’ then

B (B (0:1)) < & iy (BY (0. 1).

Note that when F' = 0 and M is locally symmetric with finite volume, the conditional measures
on the strong stable/unstable leaves are homogeneous. Hence (]\7 1 15) has radius-Holder-
continuous strong stable/unstable ball masses.

When the sectional curvature of M has bounded derivatives and when (]\7 I F ) has
radius-Holder-continuous strong stable/unstable ball masses, we will prove a stronger state-
ment: With a constant ¢; > 0 and functions O(-) independent of v, for all n € ]0,1] and
T = Ay + O(n + e ™/?), we have

/2
2n

() = (100 () ) o, (11.21)

This stronger version will be needed for the error term estimate in Section 12.3. In order to
obtain Theorem 11.1, only the fact that j, (") tends to 1 as firstly A, tends to +o0, secondly
7 tends to 0 is needed. A reader not interested in the error term may skip many technical
details below.

Given a,b > 0 and a point z in a metric space X (with a, b,z depending on parameters),
we will denote by B(z,ae®®) any subset Y of X such that there exists a constant ¢ > 0
(independent of the parameters) with

B(z,ae ®) c Y c B(x,ae?). (11.22)
Let ne ]0,1] and T' > A, + O(n + e~*/2). In order to simplify the notation, let
+ —t/2,,+

re = e /2R, w; — g"2w™ and w, =g

By the definition of j, -, using the inequalities (10.3) where the constant ¢; is uniform since
F is bounded, and the fact that 7; = O(e~*/2) by Equation (11.18), we hence have

Jn ﬂ ) B (wf) d diip ()

ngnw

7&2/\7/2 N
'uW"'(w_ (BT (wy ,rt)) /LW_(wz_)(Bf(w:r,rt))

(tw)edy ~(T

We start the proof of Equation (11.20) by defining parameters s, s™, s,v’,v” associated
with (t,v) € o, (T).
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We have (t,v) € o, ,(T) if and only if there exist s* € | —n,n[ such that
g%ﬂ/ € Bi(git/2w$, e_t/QR) :

In order to define the parameters s, v’,v”, we use the well known local product structure of
the unit tangent bundle in negative curvature. If v € T'M is close enough to v9/ (in particular,

Vo # (v3)+ and vy # (vg)_), then let v/ = fEB )( v) be the unique element of W‘(vg)

such that v/, = vy, let v = fus, UO)( v) be the unique element of W (v9) such that v” = v_,
and let s be the unique element of R such that g=%v € W*(v’). The map v — (s,v',v") is

a homeomorphism from a neighbourhood of v7 in T1M to a neighbourhood of (O,vwvg) in
R x W~ (v9) x WH(uY). Note that if v = 2 for some r € R close to 0, then
- - + .+ o 2 /A
wo=vy,w =vy, s=1,0 =0 =uv,
R R L
= +s, st = — 5.
s 5 s, 8 5 s

Up to increasing to (which does not change Step 3M, up to increasing c4), we may assume that
for every (t,v) € o, (T'), the vector v belongs to the domain of this local product structure
of T'M at vg.

The vectors v,v’,v” are close to 1)2 if ¢ is large and n small, as the following result shows.

We denote (also) by d the Riemannian distance induced by Sasaki’s metric on T'M.

Lemma 11.6. For every (t,v) € @, (T), we have d(v,v5),d(v/,v9), d(v",09) = O(n+e~/?).

Proof. Consider the distance d’ on T M , defined by
V vy, ve € T'M, d'(vi,v9) = IFalxo]d(w(grvl),ﬁ(ger)) :
re|—1,
As seen in Claim (i) of Step 3M, we have d(m(w™*),n(vy)), d(n(v), ay) = O(e*?), and
furthermore, d(m(gt/?w™), 7 (v)), )‘7” — % = O(n+e7"?). Hence d(m(v),7(v)) = O(n+e~"/?).
By Lemma 2.4, we have

d(r(g™ 2" v),7(v)) < d(n(g™

By an exponential pinching argument, we hence have d'(v, ) O(n + e=*/?). Since d and
v

9) = O+ e 7).

N+

— ), m(w) + d(m(w”),m(vy)) S R+ coe 2

d’ are equivalent by Proposition 3.5,'! we therefore have d(v,

"'In fact, Proposition 3.5 considers the distance d2(v,v") = sup,f1) d((g"v), 7(g"v')) instead of d’, but
the argument is similar.
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For all w € T'M and V e Tleﬂ, we may uniquely write V = V= + V9 + V+ with
V= e T,W(w), V0 e R%‘togtw and V* € T,W*(w). By | , Lem. 7.4],'* Sasaki’s
metric (with norm | - ||) is equivalent to the Riemannian metric with (product) norm

IVI'= VIV IR+ VO + V2.

By the dynamical local product structure of TM in the neighbourhood of Ug and by the
definition of v’,v”, the result follows, since the exponential map of TIM at vg is almost
isometric close to 0 and the projection to a factor of a product norm is Lipschitz. O

We now use the local product structure of the Gibbs measure to prove the following result.

Lemma 11.7. For every (t,v) € &, ,(T), we have
dt dinvp(v) = ) dt ds dpugy 00 (V) dpa o) (")

Proof. By the definition of the measures (see Equations (4.4) and (7.9)), since the above
parameter s differs, when v_, v, are fixed, only up to a constant from the time parameter in
Hopf’s parametrisation with respect to the basepoint z, = W(Ug), we have

diiip(v) = O TN+ CL @ m D) gy (o) dp (v4) ds

Ol (29, 7(0")
dpiy-(0)(v) = € " ’ dpg (V)
Co (2, m(v"))

v

dpiyy+(00) (V") =€ "= dpiy (V7).

By Proposition 3.20 (2) since F' is bounded, we have |C’g—r(z7 2| = O(d(z,2')"2) for all
e 0 M and 2,7 € M with d(z,z") bounded. Since the map 7 : TIM — M is Lipschitz, and
since vy = v/, and v— = v”, the result follows from Lemma 11.6. O

When )\, is large, the submanifold g*/2Q~ has a second order contact at vg with W*(vg)
and similarly, g=*/2Q% has a second order contact at oY with W+ (v9). Let P, be the plane
domain of (t,s) € R? such that |\, — | < 2 + coe™¥? and there exist s* € | — n,n[ with
st = % + 5+ O(e=™/2). Note that its area is (217 + O(e~*/2))2. By the above, we have'?

Ty (T) = Py x B (0, P17 7)o B (00, g £O0re ™72
By Lemma 11.7, we hence have
Sy~ (T)

_ e—My/2
L0y (B~ (09, 7y, Oy

O(n+e=*/?)
; e )

(11.24)

pw s oy (B (05,70, €

The last ingredient of the proof of Step 4M is the following continuity property of the
masses of balls in the strong stable and strong unstable manifolds as their centre varies. This

result generalises | , Lem. 11]. The precise control for the error term is used in Section
12.3.
2building on | | whose compactness assumption on M and torsion free assumption on I' are not necessary

for this, the pinched negative curvature assumption is sufficient
13with the obvious meaning of a double inclusion by Equation (11.22)
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Lemma 11.8. Assume that (]\7, T, F) has radius-continuous strong stable/unstable ball mas-
ses. There exists c5 > 0 such that for every e > 0, if n is small enough and A, large enough,
then for every (t,v) € <, ,(T'), we have

O(e5) M

Py (i) (B™ (wi,me)) = e w-0) (B~ (v9:72,))

and

O(ec5)

P+ oy (BT (w7 me)) =€ w0y (BY(05,71,)) -

If we furthermore assume that the sectional curvature of M has bounded derivatives and
that (M,T, F) has radius-Hdélder-continuous strong stable/unstable ball masses, then we may
replace € by (1 + e */2)% for some constant cg > 0.

Proof. We prove the (second) claim for W, the (first) one for W~ follows similarly. The
final statement is only used for the error estimates in Section 12.3.

Bt (w™,R)

Bt (v, ROt )
Using respectively Equation (2.18) since w; = g"?w™ and r; = e %2R, Equation (7.11)
where (¢,t,w) is replaced by (v,t/2,w™), and Equation (3.20), we have
Nw+(w;)( (wy ,7t)) f duw+(gz/2w_)(gt/21))
veBT (w
= /
f Co (), mE0) gy ()
veBtT(w™, R)

7r 'u)
J S ) g W ) (©) (11.25)
eBt(w—, R)

Similarly, for every a > 0, we have

S:(E U)(F 6)

s+ o0y (BT (05, are)) = e Aty + ) (V) - (11.26)

J;EB‘*' (vy,aR)

Let h~ : B*(w™, R) — W (vy) be the map such that (b~ (v))- = v_, which is well defined
and a homeomorphism onto its image if A, is large enough (since R is fixed). By Proposition
7.5 applied with D = HB, (w™) and D' = HB, (v} ), we have, for every v e B*(w™, R),

dppy+ -y (v) = e =TT g (0 ().

Let us fix € > 0. The strong stable balls of radius R centred at w™ and v} are very close
(see the above picture). More precisely, recall that R is fixed, and that

d(n(w™),m(v3)) = O(e™/?) and d(r(g"?w™), (g™ ?v])) = O(n + e */?) .
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Therefore we have d(w(v),7(h™(v))) < € for every v € BY(w™, R) if 1 is small enough and
Ay is large enough. If we furthermore assume that the sectional curvature has bounded
derivatives, then by Anosov’s arguments, the strong stable foliation is Holder-continuous, see
for instance | , Theo. 7.3]. Hence we have d(n(v),7(h~(v))) = O((n + e */?)%) for
every v € BY(w™, R), for some constant ¢g > 0, under the additional regularity assumption
on the curvature. We also have h™(B*(w™, R)) = B* (v7, ReP)) and, under the additional
hypothesis on the curvature, h~ (B*(w™, R)) = B* (v, R eOl(nte /%))y,

In what follows, we assume that ¢ = (1 + e */2)% under the additional assumption
on the curvature. By Proposition 3.20 (2) since F is bounded, we hence have, for every
ve BT (w™,R),

dpw+ (e (v) = €9 dpuy (o (0 ()

and, using the (HC)-property and the boundedness of F )

n(g/2) _ r(g/2h(v) _
f (F—&—f (F —5) = 0(e™) .
n(v) w(h™ ()

The result follows, by Equation (11.25) and (11.26) and the continuity properties in the radius
of the strong stable/unstable ball masses. ]

Now Lemma 11.8 (with € as in its statement, and when its hypotheses are satisfied) implies
that

[f dt dip (v)
= Bt (w; + B (w'
(t0)Ed (T) MW+(w2)( (wys 7¢)) '“W—(w;)( (w;", 1))

O 8 vy () At diep(v)
(B+(U37 rt)) M{/i_vf(vg)(B_(vgy 7t))

P+ ()

By Equation (11.23) and Equation (11.24), we hence have

o) - 2 —A~/2\)\2
) T ((77+e )‘7/2)N2) O(€c5) ( n—i—O(e Y ))
Jn, e

n ’Y( ) € ( )2

under the technical assumptions of Lemma 11.8. The assumption on radius-continuity of
strong stable/unstable ball masses can be bypassed using bump functions, as explained in
| , page 81]. This completes the proof of Equation (11.20), hence the proof of Theorem
11.1. O

11.4 Equidistribution of common perpendiculars in simplicial
trees

In this Section, we prove a version of Theorem 11.1 for the discrete time geodesic flow on
simplicial trees (and we leave to the reader the version without the assumption that the
critical exponent of the system of conductances is positive).

Let X, X, zo, T, €, ¢, ]56, F., 6. < 4+, (uF)zevx, Me, me be as in the beginning of

Section 9.2. Let 2~ = (D; )jer- and 27 = (]D;)je 7+ be locally finite I'-equivariant families
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of nonempty proper simplicial subtrees of X. We denote by D;—r = |]D),f|1 the geometric
realisation of D,Jf for ke I,
For every edge path a = (eq,...,e,) in X, we set

) = 2 le)

Theorem 11.9. Assume that the critical exponent §. of € is positive and that the Gibbs
measure my is finite and mizing for the discrete time geodesic flow on T\YX. Then
i e’ —1 | —dct (i, ) A A = of o
P ede el e Z c @iy ®© Oé't_li i T9-® 0+
iel=/, jelt /., ~el '
D7 D=, \i 4j<t

for the weak-star convergence of measures on the locally compact space gX x IX.

Proof. The proof is a modification of the continuous time proof for metric trees in Sections
11.1 and 11.2. Here, we indicate the changes to adapt the proof to the discrete time. We use
the conventions for the discrete time geodesic flow described in Section 2.6.

Note that for all i € I~, j € I, v € T, the common perpendicular «;; is now an edge

path from D, to D,;’j, and that by Proposition 3.21, we have

f ﬁc = E’(Ozi,fyj) .
o

Y
In the definition of the bump functions in Section 10.1, we assume (as we may) that n < 1,
so that for all n € ]0,1[ and w € 0% D* such that ws € AT, we have

Vi

— p* /
w,n,n/ - B (w7 T] ) )

see Equation (2.17) and recall that we are only considering discrete geodesic lines. As £(0) =
w(0) for every £ € B¥(w,n’) since n’ < 1, and as the time is now discrete, Equations (10.1)
and (7.12) give

1
pw s (w) (BE (w, 1))

This is a considerable simplification compared with the inequalities of Equation (10.3).

In the whole proof, we restrict tot = n € N, T' = N € N. We keep the notation of
Equation (11.2), as well as the only assumptions on the Borel sets QF < G}TDJ—F to have finite
positive skinning measure, with boundary of zero skinning measure. In Steps 1 and 2, we
define instead of Equation (11.3)

i (w) = (11.27)

_ Fe
I e (V) = (¢ — 1) [mg] e0N+D > e
vel': 0<Ay <N
a5 [0y 1€ foas]s @7 -2y .00€2 T [1-24.0]

)

and instead of Equation (11.5)

_ — (a2 py (g2 =1y dme() .
an(n) ;fm%@ ) 6 (&2 10) i, (0)
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Equation (11.6) is replaced by

N
_ Z 66 n
n=0
so that by a geometric sum argument, the pair of inequalities (11.7) becomes

ede (N+1) FHQT) () . ede (N+1) FH(Q) 57<Q+)

e ¢ —¢e < ip(N) < €f
(€% — 1) Ime| o (€% — 1) |me|

+ Ce .

Step 3 is unchanged up to replacing So by Zn 05 F by E, 6 by 0. and t/2 by either |n/2|
r [n/2], so that Equation (11.10) becomes, since |n/2| + [n/2] = n,

h;’ Rof} (0) h;;:R © fBJr( _16)

w2 gt <o> B

— e 0 gIu(0) “In/2)) h_ (gln/ZJ *[n/2]w+) )

N
2R W) hy (8

The proof then follows in the same way as in Section 11.2, with the simplifications in the
point (iii) that, taking n < 1/2, we have A\, equal to t = n, and the points w™(|5]), w* (—[5])
and £(0) are equal. In particular, Equation (11.12) simplifies as

S +(0> ~

wt (— [2 S Fe

S —(o> P

)

thus avoiding the assumption that F, (or equivalently ¢, see Section 3.2) is bounded. We now

define

yy(N) = {(n,0) € [to, N] x¥X : e ¥+

U] e*l%JR(gl%JQj N g (’yg’[319+)} :

The end of Step 3T simplifies as

. F. .
— 1 < in(N) — Z o 1 Jny(N) < eq.
Yel: to+2<Ay <N
a3 1[0, 2182 1[0, 215 @7 I[-2y, 01€2T -4, 0

The statement of Step 4T now simplifies as

if n < %, and if v € I' is such that D~ and yD* do not intersect and \, is large enough. We
introduce in its proof the slightly modified notation

+

r =e 2R, rf = ¢ 12IR, w, = gl%wa and w, = gf[%]uﬁ.

n n

and we now take as x- the point at distance || from its origin on the common perpendicular
a. Equation (11.14) becomes (using Equation (11.27) instead of Equation (10.3))

' dn dm. ()
Jn,y(N) = ff B -
(n, £)edt ~( ’uWJr (B (wn’ n )) 'UJW*(w,*L')(B (wna 'n ))
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Since £(0) = x if (n,¢) € #, ,(N), Equation (11.15) simplifies as
~ — +
dire(l) = dyay (0-) dat (1) ds |

with ds the counting measure on the Hopf parameter s € Z of ¢ (with basepoint z,). If n < %,
replacing P, with its intersection with Z? reduces it to one point (A, 0), and now s = s* = 0.
Lemma 11.5 becomes

Ay

(BY(w, )~ = Ba, (&, Re bz

=
=

n»n

M
:{»TZ))Jr = dey(é.';_?Re 2 ])a
so that \ \

Fny(N) = {(Ay,0)} x By, (&, Re 12Ny x By, (&5, Re72).
Finally, since £(0) = z if (n,¢) € 4, (N), Equation (11.16) becomes

o - o
P+ oy (BT (wyy 7)) = i (Ba,, (65, Re7L7)),
- 2
Foyy— (it (B (wt, 7)) = pit, (Ba,, (65, Re [51)).
The last centred equation in Step 4T now reduces to j, ~(7) = 1. -

For lattices in regular trees, we get more explicit expressions.

Corollary 11.10. Let X be a (q+ 1)-regular simplicial tree (with ¢ = 2) and let T be a lattice
of X such that T\X is not bipartite. Assume that the Patterson density is normalised to be
a family of probability measures. Let DT be nonempty proper simplicial subtrees of X with
stabilisers T'py in ', such that 9% = (’yHDi)WeF/FDir 1s locally finite. Let O’;i be their skinning
measures for the sero system of conductances. Then

. q—1 _ N ~
A, o Vel o 2 Boyy ®Bar, = 05- 805,
q (0, B,7)el /Ty xI/Tpy xI' ek
0<d(aD~,y8DT)<t

for the weak-star convergence of measures on the locally compact space gX x IX.
If the measure o, is nonzero and finite, then

g — 1 Vol(I'\X) gt Z A _ o~

t—>+0o g+ 1

log| el /Ty 1, 0<d(D—,yD+)<t

for the weak-star convergence of measures on the locally compact space gX.

Proof. In order to prove the first claim, we apply Theorem 11.9 with ¢ = 0, so that by
Proposition 4.16, Theorem 4.17, and Proposition 8.1 (3), we have §. = Ing > 0, m, = mpum
is finite and mixing, and [mpwm| = 5 Vol(I'\X).

The second claim follows by restricting to &« = 8 = e and integrating on an appropriate
fundamental domain (note that Equation (11.4) does not require Q7 to be relatively compact,

just to have finite measure for 7). ]

The mixing assumption in Theorem 11.9 implies that the length spectrum Lp of I' is
equal to Z. The next result considers the other case, when only the square of the geodesic
flow is mixing, while appropriately restricted. Note that the smallest nonempty I'-invariant
simplicial subtree of X is uniform, without vertices of degree 2, for instance in the case when
Xis (p + 1,q + 1)-biregular with p,¢ > 2 and I" is a lattice of X.
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Theorem 11.11. Assume that the smallest nonempty I'-invariant simplicial subtree of X is
uniform, without vertices of degree 2, and that the length spectrum Lr of ' is 2Z. Assume
that the critical exponent 6. of ¢ is positive, that the Gibbs measure me is finite and that its
restriction to T\YGevenX is mizing for the square of the discrete time geodesic flow on T'\GeyenX.
Then

e?% — 1 5 ~
—0ct c(a ~j
Ime] e~ > R
iel=/~, jelt /., el K
D7 D=, i <t

lim — =
t—+00 26250 144

- 5505,
for the weak-star convergence of measures on the locally compact space GX x IX.

Proof. We denote by 55;7 even UD€ TEStriCtion Of 5$¢ t0 Goyen X, and by 5§$7 oqq the restriction

of 5;1 to godd X = gX — ?even X. We denote by VeyenX the subset of VX consisting of the
vertices at even distance from xg, and by VyqqX = VX — VeyenX its complement. The subsets
VevenX and V,qqX are I-invariant if Lp = 2Z by Equation (4.17).

Let us first prove that

020 _ 5 .
lim s | e 7% D i) A~ @A+
t—>+ow 2 e40% A . i vi =14,
i€l /~, jeIT /<, vel
W(ai_’w),w(ajiliyj)e%venx
Dy DX, =@, i, <t
_ 5t ~—
- U@—,even ® U.@‘*’,even (1128)

for the weak-star convergence of measures on the locally compact space geven X x S?even X.

The proof of this Equation (11.28) is a modification of the proof of the previous Theorem

11.9. We now restrict to t = 2n € N, T' = 2N € N, and we replace m. by (m.) and

gevenx
(g")iez by (8%%)icz. Note that since M, is invariant under the time 1 of the geodesic flow,

which maps N %yenX to T\YX — I\ Geyen X, we have

1
[m0)r\ gl = 5 Il (11.29)

Note that for all i € =, j € I'" and v € T, if W(a;w-) and W(a;llij) belong to VeyenX,
then the distance between D,  and fyDj is even.'?

In Steps 1 and 2, we now consider Q* two Borel subsets of 5}7Dir A DGoven X, and we define
instead of Equation (11.3)

[QiQJr(QN) — (eQéc _ 1) HmcH e 20e(N+1)

2
D goF
~vel: 0<Ay<2N, 7(ay ), ﬂ(a;r) € VovenX
a5 oy 1€ [o.a]s @7 -2y .00€2 T 1-24.0]

“Indeed, for all z,y, z in a simplicial tree, if p is the closest point to = on [y, z], then d(y, z) = d(y,z) +
d(z,z) — 2 d(z,p).
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and instead of Equation (11.5)
o) = Y | oy e oy @y die(0).
’yEF ZejevenX

Equation (11.6) is replaced by

N
_ Z 85 2n
n=0

The mixing property of the square of the geodesic flow on I'\%,yen X for the restriction of the
Gibbs measure m, gives that, for every e > 0, there exists T, = 1., > 0 such that for all
n = T, we have

f— p— ~ + ~
e ‘ S{ evenX ¢n dmc S( evenX ¢77 dmc

I(me

) oven]
e S%mx o dne S%venx ‘b; dim.

< ay(2n) < i
me

Moy

Note that ¥.venX is saturated by the strong stable and strong unstable leaves, since two points
x,y on a given horosphere of centre £ € d, X are at even distance one from another (equal
to 2d(z,p) where [z,&[ N[y, &[ = [p,&[). By the disintegration statement in Proposition 7.7,
when ¢ ranges over @/Di N YovenX, we have

diftcl g g, () = J L dv S (€)d55(p) -
pe@iDm YGoven X
Hence the proof of Lemma 10.1 extends to give
| oF dme =50, (11.30)
gevenx

~+ _ ~t
even D+, even’

Therefore, by Equations (11.29) and (11.30), and by a geometric sum argument, the pair
of inequalities (11.7) becomes

where in order to simplify notation o

2 o€ 25 (N+1) ~+ H(Q_)gtg_\/en(ﬂ+)
(e20e — 1) e

2 66626C (N+1) 5'(;/en(97)
(e20e — 1) ||

— Ce

(1)

GVEI]

<ip(2N) < +ce.

Up to replacing the summations from n = 0 to N to summations on even numbers between
0 to 2N, and replacing |n/2| by 2|n/2| as well as [n/2]| by 2[n/2], the remaining part of the
proof applies and gives the result, noting that in Claim (iii) of Step 3T, we furthermore have
that the origin and endpoint of the constructed common perpendicular ay are in VeyenX. This
concludes the proof of Equation (11.28).

The remainder of the proof of Theorem 11.11 consists in proving versions of the equidis-

tribution result Equation (11.28) in G0aaX X D4d X, Doven X X Doaa X, Goaa X X Doven X re-
spectively , and in summing these four contributions.
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By applying Equation (11.28) by replacing g by a vertex zf in V544X, which exchanges

~ ~ ~+ ~—4
VevenX and VpqaX, Yeven X and 4,4q X, as well as 057 even and 05 odar We have
29
e“% —1 ~
lim ———— [me| e %* Z e (i) A _ A 4
t—>+o 2 e2de [ o, ® Yy=1i

iel=/~, jelt /., ~el
ﬂ(a;»yj)v Tr(aj;—liyj) € VoaaX
Dy nDX; =@, Ai, <t

&gf,odd@)&é*,odd (1131)

for the weak-star convergence of measures on the locally compact space S?Odd X x godd X.

Let us now apply Equation (11.28) by replacing 2~ = (D, );jc;- by M P~ = (MD; )ier--
Let us consider the map ¢4 : gX — S?X, which maps a generalised geodesic line ¢ to the
generalised geodesic line which coincides with g™/ on [0, +oo[ and is constant (with value

¢(1)) on | — 0, 0[. Note that this map is continuous and I'-equivariant, and that it maps
Goven X i Dpaa X and Goqq X i Goyen X.

Furthermore, by convexity, ¢ induces for every ¢ € I~ a homeomorphism from GLD; to
04 M D;, which sends 01 D, n Zoqa X to L MD; N G.ven X, such that, by Equation (7.8),

7

for all w e ﬁiDi_ A Dodd X, if ey, is the first edge followed by w

~+ — E’(ew)_(sc ~+
dO—D7 odd(w) =€ dgt/ﬁD;,even((er(w)) :

i

Note that for all £ > 0, there is a one-to-one correspondence between the set of common
perpendiculars of length ¢, with origin and endpoint both in Veyen, between 41D, and 'ny
forallie I~, j e I™ and v € I', and the set of common perpendiculars of length ¢ + 1, with
origin in Vyqq and endpoint in Veyen, between D, and ’yD;-r forallie I=, 7€ I" and yeT.
In particular, . (; ;)
time ¢ = 0 from 4 D; .

Therefore Equation (11.28) applied by replacing 2~ = (D; );ef- by MP™ = (MD; )icr-
gives

is the common perpendicular between .41 D, and WD;.F, starting at

20,
. e“re —1 iy
Jm s Imel e

ct

o2

(e )+E(pslaiy,)
Z e i A @A L
Qi vj Q=145
iel= /<, jelt /., ~el
a;wj) € VoaaX, Tr(aj:_li,j) € VevenX
-
Dy nD =@, Ai, yj<t+1

(

_ 0e ~+ ~—
= € U.@—,odd®09+,even

for the weak-star convergence of measures on the locally compact space goddX X ?even X.
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Since ¢(e,~ )+ c(p4 (e ;) = ¢(oy ), replacing ¢ by t — 1 and simplifying by %, we get

i,

26,
lim & - Ime| e~%?
t—>+oo 2 e20c
Z RECTY A(f ®Aa+
1,75 —Li,j
i€l=/~, jel T/, vel Y
ﬂ(a;’yj) € VoaaX, 71'(01::712, j) € VevenX
- p+
Di mew'zgv Aia’YJ'St
_ U@_}Qdd®0@+7even (11.32)

for the weak-star convergence of measures on the locally compact space S?Odd X X Doyen X.

Now Theorem 11.11 follows by summing Equation (11.28), Equation (11.31), Equation
(11.32) and the formula, proven similarly, obtained from Equation (11.28) by replacing 2% =
(D} )jer+ by (MD] ) jer+- O

The following result for bipartite graphs (of groups) is used in the arithmetic applications
in Part I1I (see Section 15.4).

Corollary 11.12. Let X be a (p+1, g+ 1)-biregular simplicial tree (with p,q = 2, possibly with
p = q), with corresponding partition VX = VX u V,X. Let T' be a lattice of X such that this

partition is T'-invariant. Assume that the Patterson density is normalised so that ||u.| = %

for every x € V,X. Let DE be nonempty proper simplicial subtrees of X with stabilisers I'p
in T, such that the families 9% = (’}/]D)i),yel"/l“]m . are locally finite. Let O‘;i be their skinning
measures for the sero system of conductances. Then

. pq—1 —t—2
tEToo 2 TVoITAX) /pg Z Aa;, +8 ® Aa"‘:—*la,ﬁ
(e, B, 7)€l /T xT/Tpq xT
0<d(aD~,yBDT)<t

~+ ~—
= 0,5 Q0.

for the weak-star convergence of measures on the locally compact space gX x IX.
If the measure o, is nonzero and finite, then

pq—1 TVOl(F\\X) —t—2 . ~+
o T2 lo. V™ 2 Bz = Op- s
VEF/FDJr
0<d(D~,yD+)<t

for the weak-star convergence of measures on the locally compact space gX.

Proof. In order to prove the first result, we apply Theorem 11.11 with ¢ = 0, so that
by Equation (8.1), Proposition 4.16, Theorem 4.17, and Proposition 8.1 (2), we have §, =
%ln(pq) > 0, m. = mpy is finite and its restriction to I'\%eyen X is mixing under the square
of the geodesic flow, and |[mpwm| = TVol(I'\X).

The second claim follows as in the proof of Corollary 11.10. O

Remark. In some special occasions, the measures involved in the statements of Theo-
rem 11.11 and Corollary 11.12 (whether skinning measures or Dirac masses) are actually

all supported on S?evenX (up to choosing appropriately zp). This is in particular the case
if 2+ = (VDi)weF/FD . with D7, D" horoballs at even signed distance (see below), as the
following lemma shows.
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The signed distance between horoballs 7 and . in an R-tree that are not centred at the
same point at infinity is the distance between them (that is, the length of their common per-
pendicular) if they are disjoint, or the opposite of the diameter of their intersection otherwise.
Note that if nonempty, the intersection of . and .’ is a ball centred at the midpoint of
the segment contained in the geodesic line between the two points at infinity of the horoballs,
which lies in both horoballs.

Lemma 11.13. Let X be a simplicial tree, T’ a subgroup of Aut(X) and 7, 7" two horoballs
in X (whose boundaries are contained in VX), which either are equal or have distinct points at
infinity. If AT < 27 and 7, 7' are at even signed distance, then the signed distance between
H and v is even for every v € T' such that 7 and v do not have the same point at
nfinity.

Proof. Fix such a 7. For every horoball s#” and for all s € N, let #"[s] be the horoball
contained in J#, whose boundary is at distance s from the boundary of .7#. Shrinking the
horoballs J# and J#’, by replacing them by the horoballs J#[s] and J#'[s] for any s € N,
only changes by +2s the considered signed distances. Hence, taking s large enough, we may
assume that ¢ and y#” are disjoint, and that % and " are disjoint or equal. Let [z, 2]
be the common perpendicular between . and 7’ with x € 07, 2’ € 0" if A and ' are
disjoint, and otherwise, let x = 2’ be any point in 09 = 0#". Let [y,y'] be the common
perpendicular between J# and v, with y € 02, y' € 0(y7"). Note that vz’ € 0(yH#").

The distance between two points xz,y of a horosphere is always even (equal to twice the
distance from x to the geodesic ray from y to the point at infinity of the horosphere). Since
geodesic triangles in trees are tripods, for all a, b, ¢ in a simplicial tree, since

d(a,c) = d(a,b) + d(b,c) — 2d(b, [a,c]) ,

if d(a, b) and d(b, c) are even, so is d(a,c).
Since AT' 27, the distance between 2’ and vz’ is even by Equation (4.17). Since d(z,z’)
is even by assumption, we hence have that d(z,vz') is even. Therefore

d(ya y/) = d(l’, ’Y'xl) - d(l‘, y) - d(y,7 F}/x,)
is even. [l
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Chapter 12

Equidistribution and counting of
common perpendiculars in quotient
spaces

In this Chapter, we use the results of Chapter 11 to prove equidistribution and counting
results in Riemannian manifolds (or good orbifolds) and in metric and simplicial graphs (of
groups).

Let X, zg, ' and F be as in the beginning of Chapter 11. We will need the following two
notions in this chapter.

Recall that the narrow topology' on the set .#;(Y) of finite measures on a Polish space
Y is the smallest topology such that the map from .#;(Y) to R defined by u — wu(g) is
continuous for every bounded continuous function g : ¥ — R. Since continous functions
with compact support are bounded, the narrow convergence of finite measures implies their
weak-star convergence.

Recall that given a discrete group G acting properly (but not necessarily freely) on a
locally compact space Z, the induced measure’ on G\Z of a (positive, Radon) measure x on
Z is a measure  which depends linearly and continuously for the weak-star topology on p,
and satisfies A, = @ Ag, for every z € Z. The following observation on the behaviour of
induced measures under quotients by properly discontinuous group actions will be used in the
proofs of Corollary 12.3 and its analogues in Section 12.4. Let G be a discrete group that
acts properly on a Polish space Y and let Y = G\EN/ Let fix for k € N and & be G-invariant
locally finite measures on EN/, with finite induced measures uy for £k € N and g on Y. If for
every Borel subset B of ¥ with 7i(B) finite and Ji(0B) = 0 we have limy_,o fix(B) = f(B),
then the sequence (uy)ren narrowly converges to f.

12.1 Multiplicities and counting functions in Riemannian orb-
ifolds

In this Section, we assume that X = M is a Riemannian manifold. We denote its quotient
Riemannian orbifold under I' by M = I'\M, and the quotient Riemannian orbifold under T'

'also called weak topology see for instance [DM, p. 71-I11] or [Bil, |
%See for instance [ , §2.6] for details.
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of its unit tangent bundle by T'M = F\TIM . We use the identifications ¥X = ¥4, (X =
T'X = T'M explained in Chapter 2.

Let 2 = (D;)ier be a locally finite I'-equivariant family of nonempty proper closed convex
subsets of M. Let Q = (Q)ier be a I'-equivariant family of subsets of T1]\7, where €); is a
measurable subset of 01 D; for all i € I (the sign + being constant) and Q; = Q; if i ~g j.
The multiplicity of an element v € T'M with respect to € is

Card{ie I/. : Ve }
Card(Stabr ?)

ma(v) =

for any preimage v of v in T1M. The numerator and the denominator are finite by the local
finiteness of the family 2 and the discreteness of ', and they depend only on the orbit of v
under T'.

The numerator takes into account the multiplicities of the images of the elements of (2
in T'M. The denominator of this multiplicity is also natural, as any counting problem of
objects possibly having symmetries, the appropriate counting function consists in taking as
the multiplicity of an object the inverse of the cardinality of its symmetry group.

Examples 12.1. The following examples illustrate the behaviour of the multiplicity when I"
is torsion-free and ) = @i@ .

(1) If for every i € I, the quotient I'p,\D; of D; by its stabiliser I'p, maps injectively in M
by the map induced by the inclusion of D; in M, and if for every ¢, j € I such that j ¢ I'i, the
intersection D; N Dj; is empty, then the nonzero multiplicities mq(¢) are all equal to 1.

(2) Here is a simple example of a multiplicity different from 0 or 1.

Let ¢ be a closed geodesic in the Riemannian manifold M, let ¢ be

a geodesic line in M mapping to ¢ in M, let Z = (7¢)qer, let = be T Y
a double point of ¢, let v € TLM be orthogonal to the two tangent

lines to ¢ at x (this requires the dimension of M to be at least 3, if

x is a transverse self-intersection point). Then mg1 4 (v) = 2.

Given t > 0 and two unit tangent vectors v,w € T'M, we define the number n;(v,w)
of locally geodesic paths having v and w as initial and terminal tangent vectors respectively,
weighted by the potential F', with length at most ¢, by

Z Card(T eS F

where the sum ranges over the locally geodesic paths « : [0,s] — M in the Riemannian
orbifold M such that &(0) = v, &(s) = w and s € |0,t], and 'y, is the stabiliser in I" of any
geodesic path & in M mapping to a by the quotient map M — M. If F =0 and T is torsion
free, then n;(v, w) is precisely the number of locally geodesic paths having v and w as initial

and terminal tangent vectors respectively, with length at most ¢.
Let Q7 = () );e;- and Q1 = (Q+)Jel+ be T-equivariant families of subsets of T M,

where Q is a measurable subset of 0L D" for all k € IT and Qf = QF if k ~5= k. We
will denote by AG- g+ g : ]0,+00[ — R the following counting functzon for every t > 0,
let AG- o+ r(t) be the number of common perpendiculars whose initial vectors belong to
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the images in TTM of the elements of Q~ and terminal vectors to the images in 7'M of the
elements of Q7 counted with multiplicities and weighted by the potential F, that is:

M- arpt) = > mg-(v) mas (w) ny(v,w) .

v,weTtM
When QF = 0L 2%, we denote Nq- g+ g by Np- g+ p.

Remark 12.2. Let Y be a negatively curved complete connected Riemannian manifold and
let Y — Y be its Riemannian universal cover. Let D* be a locally convex® geodesic metric
space endowed with a continuous map f£ : D — Y such that if D* - D* is a locally
isometric universal cover and if ]?i : D* - Y is a lift of f*, then fi is on each connected
component of D an isometric embedding whose image is a proper nonempty closed locally
convex subset of 17, and the family of images under the covering group of Y — Y of the
images by fi of the connected components of D7 is locally finite. Then D* (or the pair
(D%, %)) is a proper nonempty properly immersed closed locally convex subset of Y.

If T is a discrete subgroup without torsion of isometries of a CAT(—1) Riemannian mani-
fold X, if 2+ = ('yﬁi)vep where D¥ is a nonempty proper closed convex subset of X such that
the family 27 is locally finite, and if DT is the image of D= by the covering map X — I'\ X,
then D is a proper nonempty properly immersed closed convex subset of I'\X. Under these
assumptions, 45— g+ p is the counting function 4p- p+ p given in the introduction.

Let us continue fixing the notation used in Sections 12.2 and 12.3. For every (i,j) in
I~ x I* such that D; and D;r have a common perpendicular?, we denote by v, j this common

perpendicular, by A; ; its length, by v, ; € 6}rDi its initial tangent vector and by U;_ ;€ 81_D2.+

its terminal tangent vector. Note that if i’ ~ 7, j/ ~ j and v € I, then

+ _ .t
Y Qi jr = Qi gy Airjr = Ayiyj o and AT A I (12.1)

When TI' has no torsion, we have, for the diagonal action of I on I~ x I,

F
No-, 9+, F(t) = > e
(i, EPN((I=/~)x(IF/~)) : Dy nDf =@, Xi, j<t

When the potential I is zero and I has no torsion, .45~ 4+ p(t) is the number of common
perpendiculars of length at most ¢, and the counting function ¢ — 45— 4+ ((f) has been
studied in various special cases of negatively curved manifolds since the 1950’s and in a
number of recent works, see the Introduction. The asymptotics of A% 4+ o(t) as t — +0
in the case when X is a Riemannian manifold with pinched negative curvature are described
in general in | , Theo. 1], where it is shown that if the skinning measures a_j]_ and o,
are finite and nonzero, then as s — +00,

_leg-llog.l ers
Imem|  or

N, 7+,0(5) (12.2)

3not necessarily connected

4that is, whose closures D; and Di;' in X U 0xX have empty intersection
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12.2 Common perpendiculars in Riemannian orbifolds

Corollary 12.3 below is the main result of this text on the counting with weights of common
perpendiculars and on the equidistribution of their initial and terminal tangent vectors in
negatively curved Riemannian manifolds endowed with a Holder-continuous potential. We
use the notation of Section 12.1.

Corollary 12.3. Let M be a complete simply connected Riemannian manifold with pinched
negative sectional curvature at most —1. Let ' be a nonelementary discrete group of isometries
of M. Let F: T*M — R be a bounded T-invariant Hélder-continuous function with positive
critical exponent 6. Let 9~ = (D] )jer- and 9+ = (D;_)jeIJr be locally finite T'-equivariant

1
families of nonempty proper closed convex subsets of M. Assume that the Gibbs measure mp
is finite and mizing for the geodesic flow on TYM. Then,

lim 4 |mp| et Y Mg (v) Mot g (w) M (v, W) Ay ® Ay
v, weTt M

=0, Qo (12.3)

t

for the weak-star convergence of measures on the locally compact space T'M x T*M. If J%,
and o, are finite, the result also holds for the narrow convergence.

Furthermore, for all T-equivariant families QF = (Q;—r)keli of subsets of T*M with Q;—r a
Borel subset of 6}¢D,;i for all k € I* and Q,‘f = Q;L, if k ~g= k', with nonzero finite skinning
measure and with boundary in (91iD,f of zero skinning measure, we have, as t — 400,

log- | logsl s
Sa-,0+, r(t) ~ %HTFiT K

Proof. Note that the sum in Equation (12.3) is locally finite, hence it defines a locally finite
measure on T'M x TTM. We are going to rewrite the sum in the statement of Theorem 11.1
in a way which makes it easier to push it down from T'M x T M to T'M x T M.

For every v € T1]\7, let

m* (V) = Card{ke IT/. : ¥ediDf},
so that for every v € T'M, the multiplicity of v with respect to the family 8}£ 97 is®

) = )
Moy g=\Y) = Card(Stabrp v) ’

for any preimage v of v in TM.
For all v € T and ¥, @ € T'M, there exists (i,7) € (I7/~) x (I"/~) such that ¥ =
~ —1
and w = v;r_lm. =7y U;,ij
and there exists j' € I/ such that yw € 01_D;5. Then the choice of such elements (i, j), as

Ui_ﬁj
if and only if y@ € g ¥, there exists i’ € I~/ such that ¥ € 01 D,

5See Section 12.1.
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well as 7' and 7', is free. We hence have

Z S‘% Vi A - ®A+
Vi, g ~—Lli, 4
i€l /~, jeI't/~, vel
0<Xi 7y <t, vy =0, o)y, =
(@) o - - > ]
~ ¥ STy Card {(i,j) € (I /~) x (IT/~) v, =0, vl =0} A © Ay
'yeI‘~,0<s<t
YO=g"v
(@) f
= Y O @) mt08) A @A,
~vel, 0<s<t
Y=gV
Therefore
Z es"‘i,'m A - ®Av+

Vi, vj —14,5
iel~/~, jeIt /N,yel“ T
0<Aj, yj<t

(@) fa

- ¥ ( G ) m= (%) m* (@) Ay ® Aw .
v,weTtM €L, 0<s<t
YW=g*v

By definition, 09 - is the measure on 7'M induced by the T- invariant measure 09 <
Thus Corollary 12.3 follows from Theorem 11.1 after a similar reduction® as in Section 11.1.
The narrow convergence is obtained when the skinning measures a;; are finite, using the
continuity properties of the induced measures recalled at the beginning of Chapter 12, since
no compactness assumptions were made in Equation (11.4) on 0.

The counting statement follows from the equidistribution result by integration. O

In particular, if the skinning measures o

- and o, are positive and finite, Corollary 12.3
gives, as t — 400,

log -l o]
N, g+, F(t) ~ %HTFH% et

Remark 12.4. Under the assumptions of Corollary 12.3 with the exception that § may now
be nonpositive, we have the following asymptotic result as ¢ — +oo for the growth of the
weighted number of common perpendiculars with lengths in |t — 7, ¢] for every fixed 7 > 0:

(L—eN) oyl ozl s
6 [mp|

Nog— g9+, 7(t) = Ngp— g+ pt —T) ~

This result follows by considering a large enough constant o such that or pis = +0 > 0,
by applying Corollary 12.3 with the potential F' 4+ o (see Remark 7.1 (2)) as in the proof of
Theorem 11.3.

Using the continuity of the pushforwards of measures for the weak-star and the narrow
topologies, applied to the basepoint maps 7 x 7 from T'M x T'M to M x M, and from

5See Step 1 of the proof of Theorem 11.1.
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TYM x T'M to M x M, we have the following result of equidistribution of the ordered pairs
of endpoints of common perpendiculars between two equivariant families of convex sets in
M or two families of locally convex sets in M. When M has constant curvature and finite
volume, F' = 0 and 2~ is the I'-orbit of a point and 27" is the I'-orbit of a totally geodesic

cocompact submanifold, this result is due to Herrmann | ]. When 2% are T'-orbits of
points and F' is a Holder-continuous potential, see | , Theo. 9.1, 9.3], and we refer for
instance to | | for an application of this particular case.

Corollary 12.5. Let ]\7, I, Z?', 2=, 9% be as in Corollary 12.5. Then

. - S,
lim 9§ |mp|e ot Z e A, A
t—+00 Il vy 5) ® ﬂ—(v::—*li,j)
iel= /-, jelt /N, ~vel
0<y, 4j<t

= 7['*0' ®7T*0'9+ ,
for the weak-star convergence of measures on the locally compact space M x ]\7, and

tggloo 0 |mp| e” Z My g ) Ma1 g+ (W) ne(v, W) Ariy) @ Aru)
v, weT1 M

= 77*0 ®7T*0'9+,

for the weak-star convergence of measures on M x M. If the measures Uj+ are finite, then
the above claim holds for the narrow convergence of measures on M x M. O

We will now prove Theorems 1.4 and 1.5 (1) in the Introduction for Riemannian manifolds.
Recall from Remark 12.2 the definition of proper nonempty properly immersed closed locally
convex subsets D¥ in a pinched negatively curved complete connected Riemannian manifold
Y and the associated maps f+ Dt Y.

Proof of Theorems 1.4 and 1.5 (1) for Riemannian manifolds. Let Y, F, D* be as in
these statements and assume that Y is a Riemannian manifold. Let I' be the covering group
of a universal Riemannian cover Y — Y. Let IT =T x Wo(ﬁi) with the action of I' defined
by 7 (a,¢) = (ya,c) for all v, € T' and every connected component ¢ of D*. Consider
the families 2% = (D )ger+ where D = « fE(c) if k = (a,¢). Then 9% are I-equivariant
families of nonempty proper closed convex subsets of Y which are locally finite since D are
properly immersed in Y. The conclusions in Theorems 1.4 and 1.5 (1) when Y is a manifold
then follow from Corollary 12.3, applied with M =Y and with F the lift of F to T M. []

Corollary 12.6. Let M T, F D=, 9% be as in Corollary 12.3. Assume that o=
and nonzero. Let

o5 are finite

ne.g+ ( Z ma1 g+ (w) ng (v, w)
weTl M

be the number (counted with multiplicities) of locally geodesic paths in M of length at most t,
with initial vector v, arriing perpendicularly to 2% . Then

b g Odmrel?e” D marg-(v) ny g+ (V) Agsy = mp
ot t,9 v
s——+00 t—+00 HU+ HH‘79+H veT'M g |

for the narrow convergence on F\g]\f\f
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Proof. For every s € R, by Corollary 12.3, using the continuity of the pushforwards of
measures by the first projection (v, w) > v from T*M x T'M to T'M, and by the geodesic
flow on T' M at time s, since (g%)«A, = Agsy, We have

. -5 _
i 5 mel e Y ma g (0) g () Mg = (89405
veTt M

The result then follows from Theorem 10.2 with Q = 6i 9. [l

12.3 Error terms for equidistribution and counting for Rieman-
nian orbifolds

In Section 9.1, we discussed various results on the rate of mixing of the geodesic flow for
Riemannian manifolds. In this Section, we apply these results to give error bounds to the
statements of equidistribution and counting of common perpendicular arcs given in Section
12.2. We use again the notation of Section 12.1.

Theorem 12.7. Let M be a complete simply connected Riemannian manifold with pinched
negative sectional curvature at most —1. Let I' be a nonelementary discrete group of isome-
tries of M. Let F : T'M — R be a bounded T-invariant Hélder-continuous function with
positive critical exponent §. Assume that (]\7,F, ﬁ) has radius-Hélder-continuous strong sta-
ble/unstable ball masses. Let 9~ = (D, )ier- and 97 = (D;_)jeIJr be locally finite T'-

(2
equivariant families of nonempty proper closed convex subsets of M such that T\I* are finite,
with finite nonzero skinning measure 04— and cg+. Let M = T\M and let F : T*M — R be
the potential induced by F.

(1) Assume that M is compact and that the geodesic flow on T'M is mizing with exponential

speed for the Holder reqularity for the potential F. Then there exist a € 10,1] and &' > 0 such
that for all nonnegative v+ € €X(T' M), we have, as t — +o0,

° ;sntﬂ Y Mo g-(v) mar g (w) ny(v,w) Y7 (v) P (w)

v, weT1 M

_ J W do_ f Wrdog, +O(e o 1 |a)
TIM TIM

(2) Assume that M is a symmetric space, that D;—r has smooth boundary for every k € IT,
that mp is finite and smooth,” and that the geodesic flow on T'M is mizing with exponential
speed for the Sobolev regularity for the potential F. Then there exist £ € N and k' > 0 such
that for all nonnegative maps 1+ € €L(T*M), we have, as t — 40,

el S oy () mas g () (v ) 07 (0) 0 ()
v, weT1 M

[ wrdop [ wtdog 0l o).
TiM TIM

"Recall that a measure on a smooth manifold N is smooth if any local chart, it is absolutely continuous
with respect to the Lebesgue measure, with smooth Radon-Nikodym derivative.
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Furthermore, if 2~ and 27 respectively have nonzero finite outer and inner skinning
measures, and if (M,T',F) satisfies the conditions of (1) or of (2) above, then there exists
k" > 0 such that, as t — +o0,

_log-llog:l 5 —
Nog= o+, 7 (t) = STmel © (1+0(e™")).

The maps O(-) depend on M ,I', F, 2, and the speeds of mixing. The proof is a generali-
sation to nonzero potential of | , Theo. 15].

Proof. We will follow the proofs of Theorem 11.1 and Corollary 12.3 to prove generalisations
of the assertions (1) and (2) by adding to these proofs a regularisation process of the test
functions 5;7—" as for the deduction of Theorem 10.3 from Theorem 10.2. We will then deduce
the last statement from these generalisations, again using this regularisation process.

Let 8 be either a € ]0,1] small enough in the Holder regularity case or £ € N large enough
in the Sobolev regularity case. We fix i € I, j € I'*, and we use the notation Di,av, Ay

and &* of Equation (11.2). Let v € 01 DT be the initial and terminal tangent vectors to

o and v o, respectively. Let JJ—F e’ (8}7Di). Under the assumptions of Assertion (1) or
of Assertion (2), we first prove the following avatar of Equation (11.4), indicating only the
required changes in its proof: there exists kg > 0 (independent of ¢)*) such that, as T — +c0,

Slmpl e S e () §F (o)

vel, 0< Ay <T

_ j It j I+ 5= + O T | |8 ) - (12.4)
o D- ol D+

By Lemma 3.7 and the Holder regularity of the strong stable and unstable foliations under
the assumptions of Assertion (1), or by the smoothness of the boundary of D* under the
assumptions of Assertion (2), the maps fg - "I/niR(ﬁl DF) — 0L D¥ are respectively Hélder-
continuous or smooth fibrations, whose fiber over w € 01 D¥ is exactly VJr r- By applying
leafwise the regularisation process described 1n the proof of Theorem 1() 3 to characteristic
functions, there exist a constant k] > 0 and Xn, R€ €" (TlM ) such that

||X$RHB = O(n™),

° ]1

+
< v— <
o@Dt S Xp r S LyF G psy,

1
”75_ O(n) .Re F

o for every w € 5}7DJ—F, we have
*_ =t -0 O
Jvi X77» dvy, = vy (V+n,R) e Ot — (VJne— O, Re~ o) € ),
w,n, R

We now define the new test functions (compare with Section 10.1). For every w € (9}—rDi,
let

1
- .

HJ_F
m, R( ) X:I_F’R dV@

SVuTnR

Let (13;7t : TYM — R be the map defined by

(I)$ = (H,wai)OfEi XiR~
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The support of this map is contained in ”I{fR(&}—rDi). Since M is compact in Assertion (1)
and by homogeneity in Assertion (2), if R is large enough, by the definitions of the measures
v the denominator of H ni p(w) is at least ¢n where ¢ > 0. The map HT;—L r is hence Holder-
continuous under the assumptions of Assertion (1), and it is smooth under the assumptions

of Assertion (2). Therefore ®; € ¢ B(TYM) and there exists a constant k4 > 0 such that

[@5 15 = O~ "[9%]5) -

As in Lemma 10.1, the functions <I),J7—r are measurable, nonnegative and satisfy

J N@,jde:J pE 5T
T'M 0L D*

As in the proof of Theorem 11.1, we will estimate in two ways the quantity
T
I(T) = f et Z J _(®, og ) (@, og? oY) dip dt. (12.5)
0 i JTM

We first apply the mixing property, now with exponential decay of correlations, as in Step
2 of the proof of Theorem 11.1. For all ¢t = 0, let

AO=% | e o5 ) dir(o).
~el vE

Then with x > 0 as in the definitions of the exponential mixing for the Holder or Sobolev
regularity, we have

1
A (t) = —— O dm dF di O (e Ft|d— P+
O = o [ ey [ apdme + 0 (015197 )5)
1 - o IV
— [t [t o sl ).
Imel Jorp- oD+

Hence by integrating,

ST N N o
L.(T) = —d~+f +d5— + 0 —kT —2K5 |-~ + ‘ 12.6
i) = 5ty (L 570 [, 9707 4 0T 4011 81) - (120

Now, as in Step 3 of the proof of Theorem 11.1, we exchange the integral over ¢ and the
summation over 7 in the definition of I,,(T"), and we estimate the integral term independently
of ~:

T
E) — — — ~
I??(T):Z f et 1N(CI)nog t/2) (@;ogt/QO’y Y dinp dt .
Ser Jo T'M
Let &);7’ = H;—r’R o fgi XiRﬂ so that @% = Ji o f;i (f:f By the last two properties of the
regularised maps X;{ r» We have, with qbg—r,’n,,,ﬂi defined as in Equation (10.4),

Ot < it < gt O (12.7)

oF e
nefo(n),Re*O(m,a#Di n

If v € T'M belongs to the support of (@, © g~ l?) (@ o g"? 0 v~1), then we have v €
gt/2”f/n+R(8}rD*) N g*t/Q"I/n_R(*yc?lDﬂ. Hence the properties (i), (i) and (iii) of Step 3M of
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the proof of Theorem 11.1 still hold (with Q_ = o1 D~ and Q; = 01 (yD™)). In particular,
if w- = fg, (v) and wt = fW_D+ (v), we have, by Assertion (iii) in Step 3M of the proof of
Theorem 11.1,% that
d(wi, ij,r) =0(n+ 67>‘“’/2) .
Hence, with x4 = « in the Holder case and x5 = 1 in the Sobolev case (we may assume that
¢ = 1), we have
| P (wh) — §E(E) | = O((n + e 25 [ | g) .

Therefore there exists a constant lﬁ:il > (0 such that

L(T) = Y, (7 (@) (@) +O((n +e72) [ |5 5)) x

vyel
T . .
f et J N @;(g*t/%) @;('flgt/%) dmp(v) dt.
0 veTl M

Now, using the inequalities (12.7), Equation (12.4) follows as in Steps 3M and 4M of the
proof of Theorem 11.1, by taking n = e 5T for some k5 > 0 and using the effective control
given by Equation (11.21) in Step 4M.

In order to prove Assertions (1) and (2) of Theorem 12.7, we may assume that the supports
of 1% are small enough, say contained in B(z*, €) for some 2+ € T'M and e small enough. Let
7% be lifts of 2T and let Ji € %’B(TIM) with support in B( 2%, €) be such that JJ—F =¢toTp
on B(7*,¢) where p : M — M is the universal Riemanian orbifold cover. By a finite
summation argument since I'\I* are finite, and by Equation (12.4), we have

_ F ~_ N
5 || e 07 3 elor ' P (07) (o)
i€l™ [~, jeIT /~, vl
0<)‘i7'¥j§T
_ f I 5t j I a5 + O T35 15 s) (12.8)
o1 D- o D+

Assertions (1) and (2) are deduced from this equation in the same way that Corollary 12.3
is deduced from Theorem 11.1. Taking the functions ¢,:£ to be the constant functions 1 in
Assertion (1) gives the last statement of Theorem 12.7 under the assumptions of Assertion
(1). An approximation argument gives the result under the assumptions of Assertion (2). []

12.4 Equidistribution and counting for quotient simplicial and
metric trees

In this Section, we assume that X is the geometric realisation of a locally finite metric
tree without terminal vertices (X, \), and that I" is a (nonelementary discrete) subgroup
of Aut(X, ). Let ¢: EX — R be a system of conductances for I', and let ¢ : T\EX — R
be its quotient function. We assume in this Section that the potential F is the potential FN’C
associated” with ¢. Let 6. = or, F, be the critical exponent of (I', F) and let m. = mp, and

8See also the picture at the beginning of the proof of Lemma 11.8.
9See Section 3.5.
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me = mp, be the Gibbs measures of F, for the continuous time geodesic flow on respectively
¥ X and I'\9 X, as well as for the discrete time geodesic flow on respectively ¥X and I'\¥X
when (X, A) is simplicial, that is, if A is constant with value 1.

Let D* be simplicial subtrees of X, with the edge length map induced by A, and D¥ =
ID*|y its geometric realisation, such that the I'-equivariant families % = (’yDi)Vep/pD , are
locally finite in X .17

For all 7,~4" in T’ such that yD~ and /D™ are disjoint, we denote by v, , the com-
mon perpendicular from yD~ to D% (which is an edge path in X), with length A\, ,» =
d(yD~,4'D%*) € N, and by ai 4 € G X its parametrisations as in the beginning of Chapter
11: it is the unique map from R to X such that o _,(f) € yVD™ is the origin o(a, ) of
the edge path o, . if t <0, o L(t) € 7'VD? is the endpoint t(c., ) of the edge path .,
ift >\, 4, and o, ’Y”[OvM,w’] is the shortest geodesic arc starting from a point of vD~ and
ending at a point of v D™ .

For all 4,7/ in T" such that D~ and +'D* are disjoint, we define the multiplicity of the
common perpendicular o, from YD~ to 4'D* as

1
~ Card(h\Tp-v~1 nyTpry D)

My (12.9)
Note that m, , = 1 for all 7,7 € I' when I" acts freely on EX (for instance when I' is
torsion-free). Generalising the definition for simplicial trees in Section 11.4, we set

Ha) = Y () Ae),
i=1
for any edge path a = (eq,...,e) in X.
For n e N — {0}, let

M-+ (n) = DU ey et (12.10)
[v]e Tp-\I'/Tp+
0<d(D~,yDT)<n
where d is the the distance on X = |X[\. When T' is torsion-free, .4~ p+(n) is the number
of edge paths in the graph I'\X of length at most n, starting by an outgoing edge from the
image of D~ and ending by the opposite of an outgoing edge from the image of D, with
multiplicities coming from the fact that I' p+\D¥ is not assumed to be embedded in T\X, and
with weights coming from the conductances.
In the next results, we distinguish the continuous time case (Theorem 12.8) from the
discrete time case (Theorem 12.9). We leave to the reader the versions without the assumption
de > 0, giving for every 7 € N — {0} an asymptotic on

e/‘ﬁ))*,DJr,T(n) = Z Me, ~ eE(ae,.\,) .
[v]eTp-\T/Tp+
n—1<d(D~,yDt)<n
When I'\X is compact, ¢ = 0 and D* are reduced to points, the counting results in
Theorems 12.8 and 12.9 are proved in [Gui]. When D* are singletons, Theorem 12.8 is due
to | | if ¢ = 0. Otherwise, the result seems to be new.

10We leave to the reader the extension to more general locally finite families of subtrees, as for instance
finite unions of those above.
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Theorem 12.8. Let (X, \), I', D* and c be as in the beginning of this Section. Assume that
the critical exponent d. is finite and positive, that the skinning measures ‘751 are finite and
nonzero, and that the Gibbs measure m, is finite and mizing for the continuous time geodesic

flow. Then ast — 400, the measures

e fmell €% D) ey O AL @A

[v] €T \I'/Tp+
0<d(D~,y D)<t

,e

narrow converge to U;, ®0,,. in T\ GX xT\9X, and

ot o,
o oty ~ VT e

de [[mel
Proof. By Theorem 11.1, we have
lim . [me] e > s A @A -5 ©F;
t—}glm ¢ el € o Ya b ajylla,b = 9P+

(a,b,y)el/Tp— xT/Tp4 xT
0<d(aD~,ybD+)<t

for the weak-star convergence on GX x IX.
The group I' x " acts on I'/T'p- x I'/Tp+ x T' by

(a', V) - (a,b,v) = (d'a,b'd, a’fy(b’)*l) .

and the map from the discrete set I'/T'p- x I'/T'p+ x T to 4 X x 9 X which sends (a,b,v) to

(a b Oé:;_1a p) is (I x I')-equivariant. In particular, the pushforward of measures by this map

sends the unit Dirac mass at (a,b,y) to A_- \ RA +
a,y

—lap

Every orbit of I'xI" on I'/T'p- xT'/T'p+ xT" has a regresentative of the form (I'p-, I'p+, ) for
some v € I, since (a,b)-(I'p-,Tp+,a "ty b) = (al'p-, bI'p-,~). Furthermore the double class in
I'p-\I'/T'p+ of such a = is uniquely defined, and the stabiliser of (I'p-, I'p+, ) has cardinality
ITp- N AT+, since (a,b) - (I'p—, Tp+,7) = (Cp-,Tp+,7’) if and only if a € Ty, b e I'p+
and ayb~! = 4/. When +' = ~, this happens if and only if b = v 'ay and a € T'p- nyTp+y~ L.

By using the properties recalled at the beginning of Chapter 12 on the narrow convergence
of induced measures, and since no compactness assumptions were made in Equation (11.4)

on QT the measures

_ 1 S "
O [me] e St T A @A
c c 0] eFDZ\F/FD+ ‘F]D)* N PYF]DH ry—l’ T,y Fa’y71

0<d(D~,yDT)<t

,e

hence narrow converge as t — +00 to 05, ® 0o, in I‘\? X x F\? X. By applying this
convergence to the constant function 1, and by the finiteness and nonvanishing of o} and
0+, the result follows using the defining property of the potential Fi, see Proposition 3.21.
]

In the remainder of this Section, we consider simplicial trees with the discrete time geodesic
flow.

236 13/02/2019



Theorem 12.9. Let (X, \), I', € and D* be as in the beginning of this Section, with A constant
with value 1. Assume that the critical exponent 6. is finite and positive. If the Gibbs measure
me on the space T\YX of discrete geodesic lines modulo T' is finite and mizing for the discrete

time geodesic flow, and if the skinning measures 051 are finite and nonzero, then as n — 40,
the measures
1
e —1 —dcn ¢ (a
o me] e D Mey VAL @A
, “1.

[v]elp-\T/Tp+
0<d(D~,yD+)<n

narrow converge to J%, ®o0,. in NIXxN\gX and

Se |t -
e’ Jlog—| oy
. N 9 9 Sen
b, p+ (1) (&% — 1) [md] €

Proof. The claims follow as in Theorem 12.8, replacing Theorem 11.1 by Theorem 11.9. []

Remark 12.10. A common perpendicular in a simplicial tree is, in the language of graph
theory, a non-backtracking walk. Among other applications,'' Theorem 12.9 gives a complete
asymptotic solution to the problem of counting non-backtracking walks from a given vertex
to a given vertex of a (finite) nonbipartite graph. See Theorem 12.12 for the corresponding

result in bipartite graphs, and for example | , Th. 1.1], | , p- 4290,4302], [Fri2,
L. 2.3], [Sod, Prop. 6.4] for related results. Anticipating on the error terms that we will give
in Section 12.6, note that the paper | , Th. 1.1] for instance gives a precise speed using

spectral properties, more precise than the ones we obtain.

Examples 12.11. (1) Let X,T',¢ be as in Theorem 12.9, and let D™ = {z} and D* = {y} for
some z,y € VX. If the Gibbs measure m. is finite and mixing for the discrete time geodesic
flow on I"¥X, then we have a discrete time version of Roblin’s simultaneous equidistribution
theorem with potential,’? and the number .4, ,(n) of nonbacktracking edge paths of length
at most n from the image of = to the image of y (counted with weights and multiplicities)
satisfies, by Equation (7.15),

et | sy | S
(€% — 1) [lme| [Tg] [Ty

%y(n) ~

(2) If Y is a finite connected nonbipartite (¢ + 1)-regular graph (with ¢ > 2) and Y+ are
points, then the number of nonbacktracking edge paths from Y~ to Y* of length at most n

is equivalent as n — +0 to
g+1 q"

+O(r™) (12.11)

for some r < ¢. Indeed, by Theorem 12.9 with X the universal cover of Y, I its covering group
and ¢ = 0, we have §, = Inq and m, is the Bowen-Margulis measure, so that normalising the
Patterson measures to be probability measures, we have |m.| = qqu |VY| by Equation (8.4).
We refer to Section 12.6 (see Remark (i) following the proof of Theorem 12.16) for the error
term.

"when restricting to groups I' acting freely, which is never the case if T' is a nonuniform lattice in the tree
X, that is, when the quotient graph of groups I'\X is infinite but has finite volume
128ee Corollary 11.2 for the continuous time version.
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Let Y be the figure 8-graph with a single vertex and four directed edges, and let Y* be

the singleton consisting of its vertex. In this simple example, it is easy to count by hand
that the number of loops of length exactly n without backtracking in Y is 437!, Thus the
number .4 (n) of common perpendiculars of the vertex to itself of length at most n is by a
simple geometric sum 2(3™ — 1). This agrees with Equation (12.11) that gives A4 (n) ~ 23"
as n — +00.
(3) Let Y be a finite connected nonbipartite (¢ + 1)-regular graph (with ¢ > 2). Let Y* be
regular connected subgraphs of degrees ¢& > 0, with ¢* < ¢ + 1. Then the number .4 (n)
of nonbacktracking edge paths of length at most n starting transversally to Y~ and ending
transversally to YT satisfies

(q+1—q )(g+1—q") VY | |VYT|
(> —1)|VY]|

N (n) = q" +0(r")
for some r < ¢. This is a direct consequence of Theorem 12.9, using Proposition 8.1 (3) and
Proposition 8.4 (3), again refering to Section 12.6 for the error term.

We refer for instance to Chapters 15 and 16 for examples of counting results in graphs of
groups where the underlying graph is infinite.

In some applications (see the examples at the end of this Section), we encounter bipartite
simplicial graphs and, consequently, their discrete time geodesic flow is not mixing. The
following result applies in this context.

Until the end of this section, we assume that the simplicial tree X has a I'-invariant
structure of a bipartite graph, and we denote by VX = V1 X1 15X the corresponding partition
of its set of vertices. For every ¢ € {1,2}, we denote by 7. X the space of generalised discrete
geodesic lines ¢ € 4 X such that £(0) € V;X, so that we have a partition X = 4 X 1 % X.
Note that if the basepoint zq lies in V;X, then ¥ nX is equal to %X N ¥X. Let J$;7i =

U_Oiﬁ |F\$?,-X' For all 7, j € {1, 2}, we define
J‘ﬁ)f’]]]ﬁ’i’j(n) = 2 Me, ~ ea(aeﬂ) .
[Vlep-\I'/T'p+
0<d(D~,yDT)<n
o(ae,~)EViX, t(ate,)eV;X

Theorem 12.12. Let (X, \), I and ¢ be as in the beginning of this Section, with \ constant
with value 1. Assume that the critical exponent é. is finite and positive. Assume that X has
a T-invariant structure of a bipartite graph as above, and that the restriction to I'\GevenX of
the Gibbs measure m¢ is finite and mizing for the square of the discrete time geodesic flow.

. . — + .
Then for all 2% e {1, 2} su?h that the measures Py and O+ j OTC finite and nonzero, as n
tends to +00 withn =1 —j mod 2, the measures
62 de 1 5 o )
—dcn ¢ (ae,
9 626‘9 ”mcH e Z me,’Y € o7 AFae_’.Y ®AFa+7 .
(V] €Ty \I/Tp+ ’
0<d(D~,yDT)<n
o(ae,~)EViX, t(ae,y)eV;X
narrow converge to O‘_;;,’i Q0. ; in MN¥XxT\¥YX and
26c + -
2635 of oz ;| 5 |

B I T
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Proof. This Theorem is proved in the same way as the above Theorem 12.9 using Theorem
11.11. Note that we have a (I' x I')-invariant partition

GXx9X= || “4xXxgX,
(i, )e{1,2)2

that o ., € & X if and only if o(ae, ) € VX, and that a;ll . € ?j X'if and only if t(c, 4) € V;X,

)

since a;r (0) =77t (0) = v M (ae, ). O

71,8

Examples 12.13. (1) Let X,T', ¢ be as in Theorem 12.12, and let D™ = {z} and Dt = {y}
for some vertices x, y in the same V;X for i € {1, 2}. If the restriction to I'\@eyen X of the Gibbs
measure m, is finite and mixing for the square of the discrete time geodesic flow, then as n is
even and tends to +0 ,

2e2% gl eyl 5.
e2% — 1 |me| [Ty| [Ty

J‘fD)—,IDﬁ (n) ~

Indeed, we have Ap- p+(n) = Ap- p+ i (n) and a_oi]i ;= aéi, and we conclude as in
Example 12.11 (1).

(2) Let Y be the complete biregular graph with ¢+ 1 vertices of degree p+ 1 and p+ 1 vertices
of degree ¢ + 1. Let Y = {y} be a fixed vertex of degree p 4+ 1. Note that Y being bipartite,
all common perpendiculars from y to y have even length (the shortest one having length 4).
Then as n is even and tends to +00, we have

alp+1) n
Ny y+(n) ~ m(m) /2.

Indeed, the biregular tree X, , of degrees (p + 1,¢+ 1) is a universal cover of Y with covering
group I' acting freely and cocompactly, so that with ¢ = 0 we have 6. = In ,/pq and the Gibbs
measure m. is the Bowen-Margulis measure mpy. If we normalise the Patterson density such
that |p,| = %, then by Proposition 8.1 (2), we have [mpm| = 2(p + 1)(¢ + 1). Thus the
result follows from the above Example (1). Note that if p = ¢, then

q
</I/_ ~ n’
¥- v+ (n) q2_1q

and the constant in front of ¢" is indeed different from that in the nonbipartite case.

(3) Let Y be a finite biregular graph with vertices of degrees p + 1 and ¢ + 1, where p,q > 2,
and let VY = V,Y 1 V,Y be the corresponding partition. If Y~ = {v} where v € VY and Y*
is a cycle of length L > 2, then as N — +00, the number of common perpendiculars of even
length at most 2N from Y~ to YV is equivalent to

Lq(p—1)

N
2 (o — 1) [V,7] PV

and the number of common perpendiculars of odd length at most 2N — 1 from v to Y* is
equivalent to
Lg—1
la=1) (pg)™ .
2 (pg —1) [VpY]|
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Proof. The cycle Y* has even length L and has % vertices in both VY and VY. A common
perpendicular from Y~ to Y* has even length if and only if it ends at a vertex in V,Y.

Let X — Y be a universal cover of Y, whose covering group I' acts freely and cocompactly
on X. Let D™ = {v} where ¥ € VX is a lift of v, and let D™ be a geodesic line in X mapping to
Y*. We use Theorem 12.12 with V1 X the (full) preimage of V,,Y in X, with V2X the preimage
of VY in X and with ¢ = 0, so that . = In,/pq and m. = mpm. Let us normalise the
Patterson density of I" as in Proposition 8.1 (2), so that

I o = sl = 2L

VP

By the proof of Equation (8.10), the mass for the skinning measure of the part of the inner

unit normal bundle of Y+ with basepoint in V,,Y is 2 \Fl é and its complement has mass gq\;al).

Recall also that, by Proposition 8.1 (2) and Remark 2.11, considering the graph Y as a graph
of groups with trivial groups,

[l = TVol(Y) = [EY] = 2(p + )|V, Y[ = 2(¢ + 1)|VGY].

The claim about the common perpendiculars of even length at most 2N follows from
Theorem 12.12 with ¢ = j = 1, since

_ 1 L 1
262 Job_ lloge | 2 EREEEY -
(2% — 1) [mad] (pg—1) 2 (p+1)[V,Y| 2(pg—1)|V,Y]|

The claim about the common perpendiculars of odd length at most 2/N —1 follows similarly
from Theorem 12.12 with ¢ = 1 and j = 2. O

(4) Let Y be a finite biregular graph with vertices of degrees p + 1 and ¢ + 1, where p,q > 2,
and let VY = V,Y u VY be the corresponding partition. If Y~ and Y* are cycles of length
L™ > 2 and L* > 2 respectively, then as N — 400, the number of common perpendiculars
of even length at most 2N from Y~ to YV is equal to

(p+q) L™ L*

for some r < ,/pq.

Proof. As in the above proof of Example (3), let X — Y be a universal cover of Y, with
covering group I' and let DT be a geodesic line in X mapping to Y. Let V1 X be the preimage

of V, Y and VX be one of V;Y. We normalise the Patterson density (pz)zevx of I' so that
_ _ degx(x)

Iz = dogy (@)1

a (simple) cycle of length X in a biregular graph of different degrees p+ 1 and ¢+ 1 has exactly

2 vertices of degree either p + 1 or ¢ + 1, we have

2
Hcrj+ = Z |2 | (degX Z e i

_ de
TzeV, Y+ gx(@ yeV, Y+

_ L7vg
9F, 2” =T T2

12.12, using Proposmon 8.1 (2) and Remark 2.11, since the number we are looking for is
M- pr11(2N) + M- pr22(2N). We refer to Section 12.6 (see Remark (ii) following the
proof of Theorem 12.16) for the error term. ]
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12.5 Counting for simplicial graphs of groups

In this Section, we give an intrinsic translation “a la Bass-Serre” of the counting result in
Theorem 12.9 using graphs of groups (see [Ser3] and Section 2.6 for background information).

Let (Y,G.) be a locally finite, connected graph of finite groups, and let (Y, G%) be
connected subgraphs of subgroups.'® Let ¢ : EY — R be a system of conductances on Y.

Let X be the Bass-Serre tree of the graph of groups (Y, G4) (with geometric realisation
X = |X];1) and T its fundamental group (for an indifferent choice of basepoint). Assume that
[ is nonelementary. We denote by ¢(Y, G,) = T\¢X and (g : (Y, Gx) — 9(Y,Gx)),, the
quotient of the (discrete time) geodesic flow on 49X, by ¢ : X — R the (I'-invariant) lift of
¢, with d. its critical exponent and l?’c : T'X — R its associated potential, by m,. the Gibbs
measure on ¥ (Y, G,) associated with a choice of Patterson densities (ui).cx for the pairs
(T, FE), by D* two subtrees in X such that the quotient graphs of groups I'p+\D* identify
with (Y£, G%) (see below for precisions), and by a(iY; o) the associated skinning measures.

G

The fundamental groupoid m(Y,G.) of (Y, G4)'* is the quotient of the free product of the
groups G, for v € VY and of the free group on EY by the normal subgroup generated by the
elements e € and e p.(g) € pz(g)~! for all e € EY and g € G.. We identify each G, for z € VY
with its image in 7(Y, Gy).

Let n € N —{0}. A (locally) geodesic path of length n in the graph of groups (Y, Gy) is
the image o in (Y, Gy) of a word, called reduced in | , 1.7],

hoethies ... hp_1e, hy
with
e ¢; € EY and t(e;) = o(e;1+1) for 1 <i < n—1 (so that (e,...,e,) is an edge path in
the graph Y);
o hp € Gyey) and hj € Gy, for 1 < i< my
e if ;11 = € then h; does not belong to pe, (G, ), for 1 <i<n—1.

Its origin is o(«) = o(e1) and its endpoint is t(«) = t(e,). They do not depend on the chosen
words with image o in 7(Y, G).

A common perpendicular of length n from (Y~,G;) to (Y*,G}) in the graph of groups
(Y, Gy) is the double coset

o] = Gy

of a geodesic path « of length n as above, such that:

« G;Ea)

e « starts transversally from (Y~,G, ), that is, its origin o(«) = o(e1) belongs to VY~
and ho ¢ Gy, per(Ge,) if 1 € EY ™,

e « ends transversally in (YT, G}), that is, its endpoint ¢(«) = t(e;) belongs to Y* and
B & pe, (Ge,) Gj(en) if e, € EY™.
Note that these two notions do not depend on the representative of the double coset
G;(a) ! G;Ea), and we also say that the double coset [a] starts transversally from (Y~,G;) or
ends transversally in (Y—,Gy).

13See Section 2.6 for definitions and background.
“denoted by F(Y,Gy) in | , §5.1], called the path group in | , 1.5], see also [Hig]
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We denote by Perp((Y*,G¥),n) the set of common perpendiculars in (Y, Gy) of length
at most n from (Y~,G;) to (Y, G}). We denote by

c(a) = Y efe)

=1

the conductance of a geodesic path « as above, which depends only on the double class [«].
We define the multiplicity m, of a geodesic path « as above by

1

- Card(G,) na G,

m, .
a O[_l)

It depends only on the double class [a] of a. We define the counting function of the common
perpendiculars in (Y, Gy) of length at most n from (Y~,Gy) to (Y*,GY) (counted with
multiplicities and with weights given by the system of conductances ¢) as

‘/V(YiG;),(YtG;)(”) = Z My e
[a]ePerp((Y£,G%).n)

Theorem 12.14. Let (Y,G,), (YX,GE) and ¢ be as in the beginning of this Section. Assume
that the critical exponent d. of c is finite and positive and that the Gibbs measure m. on
9G(Y,Gy) is finite and mizing for the discrete time geodesic flow. Assume that the skinning

measures aéﬁ o) e finite and nonzero. Then as n € N tends to o
Oy

Oc + -
e o ~ a7 epl
(v-,G7), (Y+,G) (& — 1) [ma]

Proof. Let X be the Bass-Serre tree of (Y, G ) and I its fundamental group (for an indifferent
choice of basepoint). As seen in Section 2.6, the Bass-Serre trees D* of (Y* G¥), with
fundamental groups I't, identify with simplicial subtrees Dt of X, such that I't are the
stabilisers I'p+ of D* in T, and that the maps (I'p+\D*) — (I'\X) induced by the inclusion
maps DT — X by taking quotient, are injective.

As in Definition 2.10, for all\z_'/e VY U EY and e € EY, we fix a lift 2 € VX u EX of z
and g. € T, such that € = ¢, g. t(e) = t(¢), G = I's, and the monomorphism pe : G, — Gie)
is v — g-'vg.. We assume, as we may, that 2 € VD* U ED* if z € VYT U EY:. We
assume, as we may using Equation (2.22), that if e € EYE, then g, € I'p+. We denote by
p: X — Y =TI'\X the canonical projection.
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For all v,~' € T such that yD~ and 4'D™* are disjoint, the common perpendicular QyD-, /D+
from yD~ to /D7 is an edge path (f1, f2,..., fr) with o(f1) € YD~ and t(fx) € ¥/D*. Note
that y~!o(/f1) and m are two vertices of D™ in the same T-orbit, and that 4/~ ' ¢(f3) and
m are two vertices of DT in the same I'-orbit. Hence by Equation (2.22), we may choose
Y0 € Tp- such that 70y ~" o(f1) = p(o(f1)) and 11 € Tp- such that 17~ ¢(fx) = p(t(f)).
For 1 < i < k, choose 7; € I such that ~; f; = p(f;). We define (see the above picture)

o ¢; =p(f;) for 1 <i<k,

o h; = g;il%-’yprflgm, which belongs to I‘t(f;«) = Gy for 1 <i<k—1,

o ho =077 "ger =7 (19071 ger, which belongs to Iy = Go(ey),

_ _ — —1\— .
o hi =g Y 1t = 95, (Y k1Y), which belongs to L' = Gien)-
Lemma 12.15.

(1) The word hoeihy ... hg_1ephy is reduced. Its image « in the fundamental groupoid
m(Y,Gy) does not depend on the choices of v1,...,7, and starts transversally from
(Y=, Gy) and ends transversally in (Y*,G}). The double class [a] of « is independent
of the choices of vy and Yii1.

(2) The map 5) from the set of common perpendiculars in X between disjoint images of D™
and DT under elements of T, into the set of common perpendiculars in (Y,Gy) from
(Y~,Gy) to (YT,GY), sending cp- yp+ to [a], is invariant under the action of T' at
the source, and preserves the lengths and the multiplicities.

(8) The map © induced by &) from the set of I'-orbits of common perpendiculars in X between
disjoint images of D™ and DV under elements of I into the set of common perpendiculars
in (Y,Gy) from (Y™,Gy) to (YT,G}) is a bijection, preserving the lengths and the
multiplicities.
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Proof. (1) If e;+1 = €;, then by the definition of h;, we have

~

hi € pe,(Ge,) = 9, Te.9e, == ge, hi g;,' € = &

-1 -1 15 _ ~
= Ge; Ge; ViVi+l YGegi e, € = €

-1 = ~
< Yi%i+1 = €i+1 = €

— T 1~ -
=y leqi= 6 = fini=fi.

Hence the word hgeihi ... hg_1ephi is reduced.

The element ~; for i € {1,...,k} is uniquely determined up to multiplication on the left
by an element of I'z. = G,. If we fix!? i € {1,..., k} and if we replace v; by 7, = ay; for some
a € Ge,, then only the elements h;_; and h; change, replaced by elements that we denote by
h’_, and R} respectively. We have (if 2 < ¢ < k — 1, but otherwise the argument is similar by
the definitions of hg and hy)
hi_yeihi=g.' vie1v o ge e g avivisr  ge

=g Yie1%i 9w pe (@) € pe, () 92 Vi vier  geT -

Since pg; ()™t e; pe, (@) is equal to ; ~1 = ¢; in the fundamental groupoid, the words h/_; e; h/
and h;_1 e; h; have the same image in 7(Y, G). Therefore « is does not depend on the choices
of y1,..., 7.

We have o(a) = o(e1) € VY™ and t(a) = t(ex) € VYT, hence « starts from Y~ and ends
in Y*.

Assume that e; € EY ™. Let us prove that hg € Goen) pe(Ge,) if and only if f; € vy ED™.

v

~ o~ ot v

ger Y0

By the definition of per, we have hy € Gg(el) per(Ge,) if and only if there exists a €
I’Of(;;) N Tp- such that o= hg € g%l I'zy g&r- By the definition of hy and since 71 maps fi to
€1, we have

athoe g Ty gar <= garo ' (v 1 l9er) 9= €1 = €1

— fi=77 ags" e .

Since €1 € ED™ and 79, «, ge; all belong to I'p—, this last condition implies that f; € v ED™.
Conversely (for future use), if f; € v ED™, then (see the above picture) vy~ f1 is an edge

of D~ with origin o(ey), in the same I'-orbit than the edge g%l é1 of D™, which also has

origin 0/(\/61). By Equation (2.22), this implies that there exists o € Fof(;;) N I'p- such that

fi= fyyal Ozg%1 €1. By the above equivalences, we hence have that hg € G;(el) Per(Gey).

15\We leave to the reader the verification that the changes induced by various #’s do not overlap.
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Similarly, one proves that if e, € EY™, then hy € pe, (Ge, ) G;Eek) if and only if f, € v/ ED™T.
Since (f1,. .., fn) is the common perpendicular edge path from v D~ to 4/D7, this proves that

« starts transversally from Y~ and ends transversally in Y.

Note that the element vy € I'p- is uniquely defined up to multiplication on the left by
an element of F(T(Zf) N I'p- = G;(el), and appears only as the first letter in the expression of
hg. Note that the element v;,1 € I'p+ is uniquely defined up to multiplication on the left by
an element of ' @ "N T'p+ = G:Eek)’ hence ’y;}rl is uniquely defined up to multiplication on
the right by an element of G:Eek)’ and appears only as the last letter in the expression of hg.
Therefore « is uniquely defined in the fundamental groupoid n(Y,G,) up to multiplication
on the left by an element of Gg(el) and multiplication on the right by an element of G

t(ex)’
that is, the double class [a] < 7(Y, G) is uniquely defined.

(2) Let 8 be an element in I' and let © = a,p-

between disjoint images of D~ and D under elements of T'. Let us prove that O(8z) = O(x).
Since fx = ag,p-,gyp+, in the construction of O(Fx), we may take, instead of the

p+ be a common perpendicular in X

elements o, V1, - - -, V&, Vik+1 Used to construct (:)(:n), the elements
Vg = "0, 7% =N ﬁila AR ’YIE; ="k ﬂila 7]8;4_1 = Vk+1-

And instead of v and +/, we now may use ¢ = 3~ and 7/ = 3+'.

The only terms involving 7,7+, 71, . . ., 7k in the construction of ©(z) come under the form
’y_lfyl_l in ho, vivir1 Lin h; for 1 <i < k—1, and 737 in hg. Since (’yﬁ)_l(’yﬂ)_1 = fy_lfyl_l,
("YE)(’YEH)_I =7ivi41 Lfor 1 <i<k-—1, and (fy,i)(’y’ﬁ) — 7', this proves that (3 z) =
O(z), as wanted.

It is immediate that if the length of a.,p- /p+ is k, then the length of [a] is k.

Let us prove that the multiplicity, given in Equation (12.9),

1
 Card(yTp-v~! N Ty ™)

Moy,

of the common perpendicular « p+ in X between yD~ and 7/ D" is equal to the multi-

plicity

D=,y

1

Me = — —
Card(Go(a) N aG;Ea) a1

of the common perpendicular « in (Y, Gy) from (Y~,Gy) to (YT, Gy).

Since the multiplicity m., . is invariant under the diagonal action by left translations of
’yo_lfy*l e I' on (v,7), we may assume that v = 79 = id. Since the multiplicity m., - is
invariant under right translation by v41~', which stabilises D, on the element v/, we may
assume that v5,1 = id. In particular, we have

—_—

o(fi) =o(er) and t(fy) =~ t(ex) -

We use the basepoint zp = o(e;) in the construction of the fundamental group and the
Bass-Serre tree of (Y, Gy), so that (see in particular | , Eq. (1.3)])

VX = I B Gup)
pen(Y,Gx) : o(B)=x0

245 13/02/2019



and

F=mY,Gx) ={Ben(Y,Gs) : o(B) =t(B) =z} .

Since an element in T" which preserves D~ and 7/ D™ fixes pointwise its (unique) common
perpendicular in X, we have

—1
F]D)f M ’yIFDJr")// = F]D)f N F,y/]D)Jr = (FO(fl) N F]D)f) M (Pt(fk) A FW’ ]D*)
= (F;(\el/) M F]D)f) M (F’y’t/(;;) M F,Y/]D)+) .

Note that F;(e\lj NnIp- = G;(el). By the construction of the edges in the Bass-Serre tree of a
graph of groups (see | , page 11]), the vertex a Gy, is exactly the vertex t(fx) = o/ t/(e\;:).
By | , Eq. (1.4)], we hence have

o Ge) 0" = Stabr, (v, (@ Gye)) =T, o

Therefore m, = mq.

(3) Let [a] = Gya) @Gy be a common perpendicular in (Y,Gy) from (Y~,Gy) to
(YT, Gf), with representative o € 7(Y,Gy), and let hgey hy ... ex hy be a reduced word
whose image in 7(Y, Gy) is a.

We define

o Y1 =gehy',
b fl = 7;1 €~1 ;
e assuming that ~; and f; for some 1 < i < k — 1 are constructed, let

-1 -1 1~
Yit1 = gerz i Ge, Vi and fir1 = viy1  €iv1,

e with 7, and fj, constructed by induction, finally let 7' = 7, ! Gey, P

It is easy to check, using the equivalences in the proof of Lemma 12.15 (1) with v =~y =
Yk+1 = id, that the sequence (f1,..., fx) is the edge path of a common perpendicular in X
from D~ to 4D with origin (3@ and endpoint 7/ t(?;;).

If hg is replaced by a hg with a € Go_(el), then by induction, f1, fo..., fr are replaced by
afi,afa, ..., afy and v is replaced by ay’. Note that (afi, afa, ..., afk) is then the common
perpendicular edge path from D~ = aD~ to ay’D*. If hy, is replaced by hy o with o € GZEEk),
then f1, fo..., fr are unchanged, and + is replaced by 7’ a. Note that v/ aD" =+ D*.

Hence the map which associates to [«] the I-orbit of the common perpendicular in X from
D~ to v/D* with edge path (f1,..., fx) is well defined. It is easy to see by construction that
this map is the inverse of ©. O

Theorem 12.14 now follows from Theorem 12.9. O

12.6 Error terms for equidistribution and counting for metric
and simplicial graphs of groups

In this Section, we give error terms to the equidistribution and counting results of Section

12.4, given by Theorem 12.8 for metric trees (and their continuous time geodesic flows) and by
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Theorem 12.9 for simplicial trees (and their discrete time geodesic flows), under appropriate
assumptions on bounded geometry and the rate of mixing.

Let (X, ), X, T, ¢ ¢, E., F., 6., Dt DX 9% Ayyls Qg nts C%v” M be as in Section
12.4. We first consider the simplicial case (when A = 1), for the discrete time geodesic flow.

Theorem 12.16. Let X be a locally finite simplicial tree without terminal vertices, let I' be
a nonelementary discrete subgroup of Aut(X), let ¢ be a system of conductances on X for T’
and let DT be nonempty proper simplicial subtrees of X. Assume that the critical exponent 6.

is finite and positive, that the Gibbs measure m. (for the discrete time geodesic flow) is finite

and that the skinning measures aéi are finite and nonzero. Assume furthermore that

(1) at least one of the following holds :
e I'p:\0D?* is compact
o CAL is uniform and I" is a lattice of €A,

(2) there exists B € ]0,1] such that the discrete time geodesic flow on (T\¥X,m.) is expo-
nentially mizing for the B-Hélder reqularity.

Then there exists k' > 0 such that for all Y+ € ‘KCB(F\ ?X), we have, as n — +00,

e

1 _ 5 _ _
mel e 3 e, @) y(Tag,) ¢t (Tat, )

[v]elp\I'/T'p+
0<d(D~,yDT)<n

_ j 4 doh_ j 6 dog, +0 (e s 4+ )

eéc

and if Tp+\0D* is compact, then

e log-| log.|
(€% — 1) [lme]

M- p+(n) = %" +0 (6(6“”/)”) )

Proof. We follow the scheme of proof of Theorem 12.7, replacing aspects of Riemannian
manifolds by aspects of simplicial trees as in the proof of Theorem 11.9. Let ¢t e 4 (S?X)

. . . _ _ - _ — + _ +
In order to simplify the notation, let Ay = Ay, ay = ey, ) = a,, ay = a1, and
0F =0p7-

Let us first prove the following avatar of Equation (£2.4), indicating only the required
changes in its proof: there exists ko > 0 (independent of 1)*) such that, as n — 40,

0
e’ —1 —dem o) T = (=)l
prrell L KD DR A Cp KT (A
vel', 0<Ay<n
[ e[ e o . (219
o D- ol D+

Most of the new work to be done in order to prove this formula concerns regularity properties
of the test functions that will be introduced later on.
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We fix R > e? large enough. Let 0 < n < 1. We introduce the following modification of
the test functions qb%r:w

O = (hir g ) o e Lyw (o1 pe)-

As in Lemma 10.1, the functions <I>7J7£ are measurable and satisfy

J o dmczf 5T (12.14)
9X 6l¥lD>i

Lemma 12.17. The maps @;—r are B-Hélder-continuous with

|25 ]6 = Ol ]s) - (12.15)

Proof. Since X is a simplicial tree and n < 1, we have Vf, -
we é’_l_FD; By the proof of Lemma 3.3,'7 there exists cg > 0 depending only on R such that
if ¢/ € 94X satisfy d(¢,¢') < cg, then ¢ coincides with ¢ on +[0,In R + 1]. Therefore, if £ €
B*(w, R) for some w € 01 DF and d(¢,¢') < cp, then ¢ coincides with w on +[In R,In R + 1],
thus ¢/ € B¥(w', R) where w’ € 01 D¥ is the geodesic ray with w/'(0) = w(0) and w/y = ¢,.
Hence (see Section 3.1) the characteristic function Ilnf,niR(aiD;) is cp-locally constant, thus
(-Holder-continuous by Remark 3.11. o

By Assumption (1) in the statement of Theorem 12.16, the denominator of

r = BT (w,R) for every

- 1
ht o (w) =
n ) = B (w, B))

is at least a positive constant depending only on R, hence hi r is bounded by a constant
depending only on R. Since the map 1+, g) is cg-locally constant, so is the map hi - The
result then follows from Lemma 3.8 and Equation (3.7). O

In order to prove Equation (12.13), as in the proofs of Theorems 12.7 and 11.9, for all
N € N, we estimate in two ways the quantity

N
I(N)= Y e*m )" L Py (g~ ") @.F (g 2y ~1e) dine(0) . (12.16)
n=0 7

vyell

On the one hand, as in order to obtain Equation (12.6), using now Assumption (2) in the
statement of Theorem 12.16 on the exponential mixing for the discrete time geodesic flow, a
geometric sum argument and Equations (12.14) and (12.15), we have

I,(N) = _ (J o d6+f Ot dET +
! (€% — 1) |me] \Ja1p- LD+

(e M|~ 1" ) ) (12.17)

16See Equation (10.4) for the definition of ¢ and Equation (10.1) for the definition of hi R, that simplifies
as hiR(w) = (uwi(w)(Bi(w, R)))™* since X is simplicial, as seen in Equation (11.27).
17See also the proof of Lemmas 3.4 and 3.8.
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On the other hand, exchanging the summations over v and n in the definition of I,,(IV),
we have

=2 Z e f o (g7 o F (gl"Ply ey divic(0)

vel' n=0

With the simplifications in Step 3T of the proof of Theorem 11.1 given by the proof of Theorem
11.9,if n < 1, if £ € X belongs to the support of P, o g/l oF o g2l o 41 setting

27
~ = fp-(0) and wt = f,;D+(€), we then have A, = n, w™(0) = a5 (0), w*(0) = yad (0) and

Y
w (n/2]) = w* (=[n/2]) = £(0) = a5 (In/2]) = yoi (=[n/2]) .

Hence by the triangle inequality

+00 o /
dtwsaq) = [ dtu ()05 () e ds < 2 [ oo ay
[n/2]
= 0(e™™).

Similarly, d(w™,vad) = O(e™). Therefore, since ¥+ is B-Holder-continuous,
[0 (W) =~ (W) ], [0 (v wt) =Pt ) [ = O™ [0 4).
Note that now ®;- = Do fhs i, so that

LN) =3, (7 ()P (ad) + O™ [§7 |t 5))

vel

Z i “210) g (g9 dimel(£)

Now if < 3, Equation (12.13) with ko = min{23, x} follows as in Steps 3T and 4T of
the proof of Theorem 11.1 with the simplifications given by the proof of Theorem 11.9.

The end of the proof of the equidistribution claim of Theorem 12.16 follows from Equation
(12.13) as the one of Theorem 12.7 from Equation (12.4).

The counting claim follows from the equidistribution one by taking ¥+ = ]]_Fa//mR(alIDi),

which has compact support since I'p+\dD* is assumed to be compact, and is B-Holder-
continuous by previous arguments. O

Remarks. (i) Assume that ¢ = 0, that the simplicial tree X’ with |X'|; = AT is uniform
without vertices of degree 2, that Lr = Z and that I' is a geometrically finite lattice of X’. Then
all assumptions of Theorem 12.16 are satisfied by the results of Section 4.4 and by Corollary
9.6. Therefore we have an exponentially small error term in the (joint) equidistribution of the
common perpendiculars, and in their counting if T'p+\0D* is compact, see Examples 12.11

(2) and 12.13 (4).

(ii) Assume in this remark that Assumption (2) of the above theorem is replaced by the
assumptions that €Al is uniform without vertices of degree 2, that Lr = 27Z, and that there
exists B € ]0,1] such that the square of the discrete time geodesic flow on (I'\ZevenX, m.)
is exponentially mixing for the S-Holder regularity, for instance by Corollary 9.6 (2) if T’
is geometrically finite. Then a similar proof (replacing the references to Theorem 11.9 by
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references to Theorem 11.11) shows that there exists &’ > 0 such that for all = € €7 (I'\ ¥X),
we have, as n — +0,

— e e e Z Me, v et (@) wi(ra;y) 1/’+(Fajyr—1,e)
] EFD—\F/FD+
0<d(D~,yDT)<n
~ [vrdoy [0t om0 1 107)
and if I'p+\0dD* is compact, then

2¢% o | log. | /
iy _ 9— 9+ demn 0 (6c—K")n )
P 0= T Sy O

Let us now consider the metric tree case, for the continuous time geodesic flow, where the
main change is to assume a superpolynomial decay of correlations and hence get a superpoly-
nomial error term. We refer to the beginning of Section 9.3 for the definitions of the function

space €& (T \%X) and the superpolynomial mixing.

Theorem 12.18. Let (X,\), T, € and D* be as in the beginning of this Section, and let
D* = |D*|,. Assume that the critical exponent §. is finite and positive, that the Gibbs
measure me (for the continuous time geodesic flow) is finite and that the skinning measures
aéi are finite and nonzero. Assume furthermore that

(1) at least one of the following holds :
o I'p:\0D* is compact
o the metric subtree €Al is uniform and T is a lattice of € AT,

(2) there exists 8 € ]0,1] such that the continous time geodesic flow on (I\Y X, m.) has
superpolynomial decay of B-Hdlder correlations.

Then for every n € N there exists k € N such that for all Y% € %Ck’B(F\gX), we have, as
T — 40,

S fmel €T 31 men @) g (Pag ) wF(Tal )

[v]el p\I/T'
0<d(D~y D)<T

= W~ dot J v do_, +O(T7" |~
jr\s?x 7 Ngx 7t ( ”

kg |97k, 6)

and if T p=\0DZ is compact, then for every n € N

v ol ol 5.7 5o Trp—n
D_’D+(T)_W e +O(€ T )
(& C

Remark. Assume that ¢ = 0, that the metric tree €Al is uniform, either that I'\X is
finite and the length spectrum Lr of I' is 2-Diophantine, or that I' is a geometrically finite
lattice of ¥AT" and Ly is 4-Diophantine. Then all assumptions of Theorem 12.18 are satisfied
by the results of Section 4.4 and by Corollary 9.10. Therefore we have a superpolynomially
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small error term in the (joint) equidistribution of the common perpendiculars (and in their
counting if T'p+\0D* is compact).

Proof. The proof is similar to the one of Theorem 12.16, except that since the time is
now continuous, we need to regularise our test functions also in the time direction in order
to obtain the regularity required for the application of the assumption on the mixing rate.

. . . . . _ _ - _ — + _ +
We again use the simplifying notation Ay = Aey, ay = Qey, @) = o, ay = a1, and
0F =05

We fix n € N — {0}. Using the rapidly mixing property, there exists a regularity k& such
that for all ¢, € (ﬁf’ﬂ(l’\g){) we have as t — +o0

covams, ¢ (¥, 9) = O™ [k, 8 ¢k, 8) » (12.18)

where N € N — {0} is a constant which will be made precise later on.
Let us first prove that for all @Zi € Cfck"g(gX), we have, as T' — +00,

S fmel e Y F YT (a]) P ()

~vel, 0<\, <T

_ f Izt f I do= + O™ [ 5 |9
a1 D~ o' D+

k. 8) - (12.19)

In order to prove this formula, we introduce modified test functions with bounded Holder-
continuous derivatives up to order k (by a standard construction) in the time direction (the
stable leaf and unstable leaf directions remain discrete). We fix R > 0 large enough.

For every n € ]0,1[, there exists a map /]l; : R — [0,1] which has bounded S-Holder-
continuous derivatives up to order k, which is equal to 0 if ¢ ¢ [—-n,n] and to 1 if ¢t €
[-ne ™ ne "] (when k = 0, just take ]/l; to be continuous and affine on each remaining
segment [—n, —ne~ "] and [ne~",n]), such that, for some constant s} > 0,

Lok, 5 = On™") .

Using leafwise this regularisation process, there exists X;—r R € %f B (¢ X) such that

+ ot
o x5 glks=0mn""),
+
o 1.+ <vr,.<1,7
Ve, fODF) S X RS LY EL@0LDE):

e for every w € 8}—FDJ—F, we have

jv N pdvs = vE(VE ) e O = (v ) €O

w\ "w,ne"", R

As in the proof of Theorem 12.7 in the manifold case, the new test functions are defined, with

1
X;ﬁRdV% ’

Hryp: wedpD* —

=
Vw,n,R

by
+ + T+ Tt
o) = (H g7 )ofpe xpp + YX - R.
Let <f>;—]r = H;{R o fphe X:f,R? so that (I>7J7—r_ = Jto fhs Cf;—r By the last two properties of the
regularised maps X:f r» We have, with ¢ defined as in Equation (10.4),

e O < dE < g O (12.20)
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By Assumption (1), if R is large enough, by the definitions of the measures vE, the
denominator of H ;’i r(w) is at least ¢n where ¢ > 0. As in the proof of Theorem 12.7,

J oF din, = f FdoF
gX 01D+

and there exists k” > 0 such that
4 o

|®5 [k, 8 = O(n
We again estimate in two ways as T' — 400 the quantity

T
I)(T) = L e Z

~yell

8)-

f O, (g720) @ (g% 710) dine () dt . (12.21)
e9 X

Note that as T" — 400,

T T/2 T
1 1 T/2

_ O(efJCT/Q) + O(TanJrl) _ O(Tf(Nfl)n) )

Using Equation (12.18), an integration argument and the above two properties of the test
functions, we hence have

660 T

( J & dst f ot de +
de [mel 01 D~ oL D+
O~ =02 || g5 |1 ) (12.22)

As in Step 3T of the proof of Theorem 11.1, for all v € T and ¢ > 0 large enough, if £ € ¥ X
belongs to the support of ®, o g2 P o g/ o 4~1 (which is contained in the support of
¢y © g i/? o o g2 041, then we may define w— = fp- () and wt = f;D+(€).

By the property (iii) in Step 3T of the proof of Theorem 11.1, the generalised geodesic
lines w™ and a7 coincide, besides on | — 0, 0], at least on [0, 5 — 7], and similarly, w" and
Y coincide, besides on [0, —i—oo[, at least on [—5 + 7,0]. Therefore, by an easy change of

| <

In(T) =

variable and since |& — 7"

+00

S) < d(w™(s), a5 (s)) e 2 ds < e 2z f 2se %% ds

Similarly, d(w™,va)) = O(e™). Hence since ii is B-Holder-continuous, we have
[0 (™) =¥ (e3) ], [P (v wh) =t (ad) | = Ole™ ™ [ihE ) .
Therefore, as in the proof of Theorem 12.16, we have

L(T) =), (&7 ()P () + O™ g [ |5))

vyel’
J iz f g120) B (1 g!20) dine(0) dt
e9X
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Finally, Equation (12.19) follows as in the end of the proof of Equation (12.4), using
Equations (12.20) and (11.17) instead of Equations (12.7) and (11.21), by taking n = T~"
and N = 2([x"] + 1).

The end of the proof of the equidistribution claim of Theorem 12.18 follows from Equation
(12.19) as the one of Theorem 12.7 from Equation (12.4).

The counting claim follows from the equidistribution one by taking % to be B-Holder-
continuous plateau functions around I'#), p(0LD¥). O

We are now in a position to prove one of the counting results in the introduction.

Proof of Theorem 1.9. Let X be the universal cover of Y, with fundamental group I' for
an indifferent choice of basepoint, and let DT be connected components of the preimages
of Y in X. Assertion (1) of Theorem 1.9 follows from Theorem 12.18 and its subsequent
Remark. Assertion (2) of Theorem 1.9 follows from Theorem 12.16 and its Remarks (ii) and
(i) following its proof, respectively, if Y is bipartite or not. O
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Chapter 13

Geometric applications

In this final Chapter of Part II, we apply the equidistribution and counting results obtained
in the previous Chapters in order to study geometric equidistribution and counting problems
for metric and simplicial trees concerning conjugacy classes in discrete isometry groups and
closed orbits of the geodesic flows.

13.1 Orbit counting in conjugacy classes for groups acting on
trees

In this Section, we study the orbital counting problem for groups acting on metric or simplicial
trees when we consider only the images by elements in a given conjugacy class. We refer to
the Introduction for motivations and previously known results for manifolds (see | | and
| |) and graphs (see [Dou| and [[<eS]). The main tools we use are Theorem 12.8 for the
metric tree case and Theorem 12.16 for the simplicial tree case, as well as their error terms.
In particular, we obtain a much more general version of Theorem 1.12 in the Introduction.

Let (X, A) be a locally finite metric tree without terminal vertices, let X = |X], be its geo-
metric realisation, let 79 € VX and let I' be a nonelementary discrete subgroup of Aut(X, \).!
Let ¢ : EX — R be a I'-invariant system of conductances, let l?‘c and F,. be its associated
potentials on 7' X and I'\T' X respectively, and let 6. = 51“7 Pt be its critical exponent.’ Let
(uE)zex (vespectively (u)ievx) be (normalised) Patterson densities for the pairs (T, F3),
and let m, = mp, and m. = mp, be the associated Gibbs measures on ¥X and I"¥X
(respectively X and I'\¥X) for the continuous time geodesic flow (respectively the discrete
time geodesic flow, when A = 1).?

Recall that the wvirtual centre ZV™(T') of T" is the finite (normal) subgroup of I" consisting
of the elements v € I' acting by the identity on the limit set AT’ of I' in 0o, X, see for instance
[Cha, §5.1]. If AT = 05X (for instance if I is a lattice), then ZV'™(T") = {id}.

For any nontrivial element v in I" with translation length A(v) in X, let C, be

e the translation axis of «y if v is loxodromic on X,

e the fixed point set of v if 7y is elliptic on X,

1See Section 2.6 for definitions and notation.
2See Section 3.5 for definitions and notation.
3See Sections 4.3 and 4.4 for definitions and notation.

255 13/02/2019



and let I'c., be the stabiliser of C, in I'. In the simplicial case (that is, when A =1), C, is a

simplicial subtree of X. Note that A(y) = A(¥y(y)™") and /Cy = C,y(4-1 for all ' € T,

and that for any xg e X

d(z0, 70) — A7)
2

Let 2 = (v'Cy)yerr o, Which is a locally finite I-invariant family of nonempty proper

d(il?(), C’Y) =

(13.1)

(since v # id) closed convex subsets of X.* By the equivariance properties of the skinning
measures, the total mass of the skinning measure® 0, depends only on the conjugacy class
R of v in I', and will be denoted by [o||. This quantity, called the skinning measure of R,
is positive unless 0,,C, = AT, which is equivalent to v € ZV"(T") (and implies in particular
that v is elliptic). Furthermore, o | is finite if 7 is loxodromic, and it is finite if vy is elliptic
and I'c,\(Cy n €AT") is compact. This last condition is in particular satisfied if C, n €Al
itself is compact, and this is the case for instance if, for some k > 0, the action of I' on X
is k-acylindrical (see for instance [Sel, |), that is, if any element of T" fixing a segment of
length k in €Al is the identity.
For every v € I — {e}, we define

1
Card(I'y, nTc)’

m,yz

which is a natural multiplicity of -, and equals 1 if the stabiliser of z¢ in I is trivial (for
instance if I' is torsion-free). Note that for every 3 € T', the real number mg,3-1 depends only
on the double coset of 3 in I';(\['/T'c, .

The centraliser Zr(v) of v in I' is contained in the stabiliser of C, in I'. The index

ig =[Tc, : Zr(v)]

depends only on the conjugacy class & of ~; it will be called the index of K. The index ig is
finite if v is loxodromic (the stabiliser of its translation axis C is then virtually cyclic), and
also finite if C., is compact (as for instance if the action of I' on X is k-acylindrical for some

k= 0).
We define
k
oy = > E(ei) Mei)
i=1
where (e, ..., ey) is the shortest edge path from zg to C,,.

We finally define the orbital counting function in conjugacy classes, counting with multi-
plicities and weights coming from the system of conductances, as

Ng, z,(t) = Z Mg €9 .

a€R, d(zo, axo)<t

for t € [0, +o0| (simply ¢ € N in the simplicial case). When the stabiliser of zg in I' is trivial
and when the system of conductances ¢ vanishes, we recover the definition of the Introduction
(above Theorem 1.12).

4See Section 7.2 for definitions and notations.
5See the previous footnote.
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Theorem 13.1. Let R be the conjugacy class of a nontrivial element vy of I, with finite index
ig, and with positive and finite skinning measure o |. Assume that o, is finite and positive.

(1) Assume that m. is finite and mizing for the continuous time geodesic flow on T'\X. Then,
ast — +00,

. .y _2(0)
ig lpzol logle” 2" s,

de [me

Nﬁv xo (t) ~

If Tc \(Cy n GAT) is compact when v € R is elliptic and if there exists B € ]0,1] such
that the continous time geodesic flow on (I\Y X, m.) has superpolynomial decay of B-Holder

d¢
correlations, then the error term is O (t_” eTt) for every n € N.

(2) Assume that A =1 and that m, is finite and mizing for the discrete time geodesic flow on
M¥X. Then, as n — 40,

& ig i llogl 5 zmom,

N ~
R, o (n) (B‘SC _ 1) HmCH

If T \(Cy n€AT) is compact when v € R is elliptic and if there exists 3 € |0, 1] such that the
discrete time geodesic flow on (T\YX, m.) is exponentially mizing for the f-Hdélder reqularity,
then the error term is O (6(50_")”/2) for some k > 0.

One can also formulate a version of the above result for groups acting on bipartite simplicial
trees based on Theorem 12.12 and Remark (ii) following the proof of Theorem 12.16.

The error term in Assertion (1) holds for instance if ¢ = 0, X is uniform, and either I"\ X
is compact and the length spectrum Lr is 2-Diophantine or I' is a geometrically finite lattice
of X whose length spectrum Lr is 4-Diophantine, by the Remark following Theorem 12.18.
When I'\ X is compact and T" has no torsion (in particular, I' has then a very restricted group
structure, as it is then a free group), we thus recover a result of [I[<e5].

The error term in Assertion (2) holds for instance if ¢ = 0, X is uniform with vertices of
degrees at least 3, I is a geometrically finite lattice of X with length spectrum equal to Z, by
Remark (i) following the proof of Theorem 12.16.

Theorem 1.12 in the introduction follows from this theorem, using Proposition 4.16 (3)
and Theorem 4.17.

Proof. We only give a full proof of Assertion (1) of this theorem, Assertion (2) follows
similarly using Theorems 12.9 and 12.16 instead of Theorems 12.8 and 12.18.

The proof is similar to the proof of | , Theo. 8]. Let D~ = {zo} and D" = C,,. Let
2~ = (YD )yeryr,_ and 9t = (7D+)7€p/FD+. By Equation (7.15), we have

1,
[T

log-1 =

By Equation (13.1), by the definition® of the counting function Ap-, p+ and by the last claim

5See Equation (12.10) in Section 12.4.
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of Theorem 12.8, we have, as t — +o0,

S omers R mee

a€R, 0<d(zo, azo)<t ack, 0<d(:ro,Ca)st7)‘2(“{0)
- Z Moyggy-1 € 77077
~v€l'/Zr (7o), 0<d(zo, WCWOK%
=Tyl in Z Meyrory—1 e“rvor !
YETuy\[/T ey » 0<d(wo, 7Crg) < 2000
: t— ()
Pl in A s (L2200
0

de [lme|

Assertion (1) without the error term follows, and the error term statement follows similarly
from Theorem 12.18. ]

Theorem 13.1 (1) without an explicit form of the multiplicative constant in the asymptotic
is due to [[KeS] under the strong restriction that I' is a free group acting freely on X and I'\ X
is a finite graph. The following result is due to [Dou, Theo. 1] in the special case when X is
a regular tree and the group I has no torsion and finite quotient I'\X.

Corollary 13.2. Let X be a regular simplicial tree with vertices of degree q + 1 = 3, let
x0 € VX, let T be a lattice of X such that T\X is nonbipartite, and let & be the conjugacy class
of a lozodromic element vo € I'. Then, as n — +00,

e~ A(10) | 2=200)
2 “~ (o) : AE] VolT\X) ¢

a€eR, d(zo, azo)<n

If we assume furthermore that I' has no torsion and that ~yy is primitive, then we have as
n — +0o0,
)\(’}/0) l”—>\2(’Y())J

Card{a € R : d(xg, axg) < n} ~ WX q

Proof. Under these assumptions, taking ¢ = 0 in Theorem 13.1 so that the Gibbs measure
is the Bowen-Margulis measure, the discrete time geodesic flow on I'\¢X is finite and mixing
by Proposition 4.16 (3) and Theorem 4.17. We also have §, = Ingq. Using the normalisation
of the Patterson density (uf)zeyx to probability measures, Proposition 8.1 (3) and Equation
(8.12), the result follows, since when + is loxodromic,

~ Vol(A\C,) A()
VoUTe N = TR T T Fe s o & A

The value of C’ given below Theorem 1.12 in the Introduction follows from this corollary.

We leave to the reader an extension with nonzero potential F' of the results for manifolds
in | |, along the lines of the above proofs.
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13.2 Equidistribution and counting of closed orbits on metric
and simplicial graphs (of groups)

Classically, an important characterisation of the Bowen-Margulis measure on compact nega-
tively curved Riemannian manifolds is that it coincides with the weak-star limit of properly

normalised sums of Lebesgue measures supported on periodic orbits, see | |. Under much
weaker assumptions than compactness, this result was extended to CAT(—1) spaces with zero
potential in | | and to Gibbs measures in the manifold case in | , Theo. 9.11]. As

a corollary of the simultaneous equidistribution results from Chapter 11, we prove in this
Section the equidistribution towards the Gibbs measure of weighted closed orbits in quotients
of metric and simplicial graphs of groups and as a corollary of this result, in the standard
manner, we obtain asymptotic counting results for weighted (primitive) closed orbits.

Let (X, ) be a locally finite metric tree without terminal vertices, and let X = |X|) be
its geometric realisation. Let I' be a nonelementary discrete subgroup of Aut(X,\). Let
¢: EX — R be a I'-invariant system of conductances, and ¢ : '\ EX — R its induced function.

Given a periodic orbit g of the geodesic flow on "Y' X, if (ey,...,ex) is the sequence of
edges followed by g, we denote by .7, the Lebesgue measure along g, by A(g) the length of g
and by ¢(g) its period for the system of conductances c:

k k
Mg) = D Mei) and c(g) = > Mei) e(ei) -
i=1 i=1
Let Per(t) be the set of periodic orbits of the continuous time geodesic flow on I'\¢ X with
length at most ¢ and let Per’(¢) be the subset of primitive ones.

Theorem 13.3. Assume that the critical exponent d. of ¢ is finite and positive and that the
Gibbs measure m. of c is finite and mizing for the continuous time geodesic flow. Ast — +o0,
the measures

5. e Ot Z ec(g)Zg

gePer’ (t)
and
Sote it Y eelo) Lo
, A9)
gePer’(t)
converge to H%—EH for the weak-star convergence of measures. If I' is geometrically finite, the

convergence holds for the narrow convergence.

We conjecture that if I' is geometrically finite and if its length spectrum is 4-Diophantine’,
then for all n € N and 8 € 0, 1], there exist £ € N and an error term of the form O(t" ||, 5)
for these equidistribution claims evaluated on any v € 62" (M¥X). But since we will not

need this result and since the proof is likely to be very long, we do not address the problem
here.

Proof. Let ﬁc and F. be the potentials on 77X and I'\T' X respectively associated® with c,
and note that the period of a periodic orbit g for the geodesic flow on I'\¥ X satisfies’

c(g) = Zy(F}) = Perp.(7)

"See the definition in Section 9.3.
8See Section 3.5.
9See Proposition 3.21 and Section 3.2.
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where F! is the composition of the canonical map NgX — I\T'X with F,. : T\T'X — R,
and v € I is the loxodromic element of I' whose conjugacy class corresponds to g.

Let Jt; be the subset of I' that consists in the loxodromic elements whose translation
length is at most ¢, and let 7, be the subset of .7t ; that consists in the primitive ones. For
every v € J;, we denote by 977 its corresponding periodic orbit in T\¥ X . The first claim is
equivalent to the following assertion: we have

soett 3 ePernt) g 2 Me (13.2)
o7y el

as t — 4+00. We proceed with the proof of the convergence claimed in Equation (13.2) as in
[ , Theo. 9.11]. We first prove that

I/él = 3 |me| e Oet Z ePerre(7) ggw A Me . (13.3)
YEIHMT

We then refer to Step 2 of the proof of | , Theo. 9.11] for the fact that the contribution
of the non primitive elements is negligible, so that Equation (13.3) implies Equation (13.2).
Although the proof of this deduction in loc. cit. is written for manifolds, the arguments are
directly applicable for any CAT(—1) space X and potential F' satisfying the HC-property.'’
In particular, the use of Proposition 5.13 (i) and (ii) of op. cit. in the proof of Step 2 in
loc. cit. is replaced now by the use of Theorem 4.6 (1) and (4) respectively.

Let us fix x € X. Let

Viz)={(n) e (X vinX)*:&#n, velén(},

which is an open subset of X U 0, X. Note that the family (V (y))yex covers the set of pairs
of distinct points of 85, X. For every t > 0, let 14 be the measure on (X U 0, X)? defined by

—ct 7 F,
v = Oc |me| e % Z el A1, @A,
~vel' : d(z,yz)<t

The measures v; weak-star converge to p, ® u as t — +oo by Corollary 11.2 (taking in its
statement y = x).
Let v+ be the attracting and repelling fixed points of any loxodromic element v € I'. Let
v = Selmd et Y FEROA @A, .
’YEJff,t
Since X is an R-tree, every element v € I" such that x € ]y~*
z and v we have

x,vz| is loxodromic, and for such

R

d(z,yz) = \(vy) and J F. = Perg.(v) .

T

If furthermore d(z,~z) is large, then !

X UoxpX.
Hence, for every continuous map 1 : (X U dnX)? — [0, +00[ with compact support
contained in V' (z), and for every € > 0, if ¢ is large enough, we have

e~ vi() < v (Y) < e ()

x and ~vyx are respectively close to v— and 4 in

10Gee Definition 3.13.
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Using Hopf’s parametrisation with basepoint =, and by Equation (3.20), the measures m,. and
By @ ,u;f ® ds are equal on V(x) x R. Hence the measures vy ® ds weak-star converge to m.
on V(x) xR as t — +oo. For every continuous ¢’ : X — R which is a product of continuous
functions in each variable with compact support in V' (z) x R and for every € > 0, if ¢ is large
enough, we hence have

e “Mme(V) < v ®@ds(y') < e“Mme(y) .

Note that the support of any continuous function with compact support on ¥X may be

covered by finitely many open sets V(x) x R where € X. The induced measure'! of the

I-invariant measure v}” ® ds on ¢ X is the measure v/ on T\¢X. Since m, is the induced

mesasure of m., this proves Equation (13.3), hence gives the first claim of Theorem 13.3.

The second claim follows from the first one in the same way as in | , Theo. 9.11]:
Consider the measures

=6 B g and ml =gt Y )
gePer’(t) gePer’ (t)

on N¥X. Fix a continuous map ¢ : I\¥X — [0,400[ with compact support. For every
e > 0, for every ¢t > 0, we have, since \(g) = et for all g in the second sum below,

my () = my() = e 0t Z eZa(F) Z,(1h)
gePer’ (t)—Per’ (e—¢t)
> e~¢6 te 0t 3 Zo(F) “Z4(¥)

gePer’ (t)—Per’ (e~ ¢t)

= e~ ml (1) — e et et Z e

gePer’ (e—¢t)

By the local finiteness of X, the closed orbits meeting the support of ¥ have a positive lower
bound on their lengths. Thus, by the first claim of Theorem 13.3, there exists a constant
C > 0 such that the second term of the above difference is at most C'te %t €t which
tends to 0 as t tends to +00. Hence by applying twice the first claim of Theorem 13.3, we
have

me() s

= / < lim inf m” <1 " < 1 .y _
[me  ttoo my (1) < lim inf my () < im sup m; (¥) < lim_emi(¥)

66 mc(¢)

[me|

and the result follows by letting € go to 0. (and writing any continuous map v : T*M — R
with compact support into the sum of its positive and negative parts).

In order to prove the last claim of Theorem 13.3, assume that I is geometrically finite. The
narrow convergence follows as in | , Theo. 9.16], using the fact that there exists a com-
pact subset of I'\¥ X meeting every periodic orbit of the geodesic flow, and replacing Lemma
3.10, Lemma 3.2, Equation (112), Theorem 8.3 and Corollary 5.15 of op. cit. by respectively
Lemma 4.3 (1), the (HC)-property, Proposition 3.20 (4), Theorem 4.8 and Corollary 4.7 (1).
(]

11Gee the beginning of Chapter 12.
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In a similar way, replacing in the above proof Corollary 11.2 of Theorem 11.1 by the similar
corollary of Theorem 11.9 with 27 = (v&)yer and 27 = (yy)qer for any z,y € VX, we get
the following analogous result for simplicial trees. For every n € N, let now Per(n) be the set
of periodic orbits of the discrete time geodesic flow on I'\¥X with length at most n and let
Per’(n) be the subset of primitive ones.

Theorem 13.4. Let X be a locally finite simplicial tree without terminal vertices, let T' be
a nonelementary discrete subgroup of Aut(X) and let ¢ : EX — R be a I'-invariant system
of conductances. Assume that the critical exponent . of ¢ is finite and positive and that the
Gibbs measure m. is finite and mixing for the discrete time geodesic flow. As n — +00, the
measures

€5c —1 ei5cn Z ec(g) g
g

ede

gePer’(n)

and 5
e’ —1 Z
= ne—écn Z 6c(g) )\( 9)

gePer’(n) g
converge to Hz—zu for the weak-star convergence of measures. If ' is geometrically finite, the
convergence holds for the narrow convergence. Il

In the special case when I'\ X is a compact graph and F' = 0, the following immediate

corollary of Theorem 13.3 is proved in [Gui], and it follows from the results of | ].12 There
are also some works on non-backtracking random walks with related results. For example,
for regular finite graphs, | | and [Fril]| (see [Fri2, Lem. 2.3]) give an expression of the

irreducible trace which is the number of closed walks of a given length.

Corollary 13.5. Let (X, \) be a locally finite metric tree without terminal vertices. Let T be
a geometrically finite discrete subgroup of Aut(X, \). Let ¢ : EX — R be a I'-invariant system
of conductances, with finite and positive critical exponent d..

(1) If the Gibbs measure m is finite and mizing for the continuous time geodesic flow, then

ast — +0.

(2) If X\ = 1 and if the Gibbs measure m. is finite and mizing for the discrete time geodesic
flow, then

dc den
3 ecle) o &€
ede—1 n
gePer’(n)
as n — +00. ]
12See the introduction of [Sha] for comments.
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Arithmetic applications
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Chapter 14

Fields with discrete valuations

Let K be a non-Archimedean local field. Basic examples of such fields are the field of formal
Laurent series over a finite field, and the field of p-adic numbers (see Examples 14.1 and
14.2). In Part III of this book, we apply the geometric equidistribution and counting results
for simplicial trees given in Part II, in order to prove arithmetic equidistribution and counting
results in such fields K. The link between the geometry and the algebra is provided by the
Bruhat-Tits tree of (PGLag, K ), the construction of which is recalled in Section 15.1. We will
only use the system of conductances equal to 0 in this Part III.

In the present Chapter, before embarking on our arithmetic applications, we recall basic
facts on local fields for the convenience of the geometer reader. For more details, we refer for
instance to [Ser2, |. We refer to | | for an announcement of the results of Part III,
with a presentation different from the one in the Introduction.

We will only give results for the algebraic group G = PGLy over K and special discrete
subgroups I' of PGLy(K ) even though the same methods give equidistribution and counting
results when G is any semisimple connected linear algebraic group over K of K-rank 1 and T
any lattice in G = G(K).

14.1 Local fields and valuations

Let F be a field and let F'* = (F — {0}, x) be its multiplicative group. A surjective group
morphism v : F'* — 7Z to the additive group Z, that satisfies

v(a 4+ b) = min{v(a),v(b)}

for all a,b e F*| is a (normalised discrete) valuation v on F. We make the usual convention
and extend the definition of v to F' by setting v(0) = +00. Note that v(a+b) = min{v(a), v(b)}
if v(a) # v(b). When F' is an extension of a finite field k, the valuation v vanishes on k*.
The subring
O,={xeF : v(r) =0}
is the valuation ring (or local ring) of v (or of F' is v is implicit).

The maximal ideal
={zeF : v(x) >0}

of 0, is principal and it is generated as an ideal of &, by any element 7, € F' with
v(my) =1
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which is called a uniformiser of F'.
The residual field of the valuation v is

ky, = O,/m, .

When £, is finite, the valuation v defines a (normalised, non-Archimedean) absolute value |- |,
on F' by

|y = |kv|7v(x) ’
with the convention that |k,|™® = 0. This absolute value induces an ultrametric distance on
F by

(z,y) = & =yl

Let F, be the completion of F' with respect to this distance. The valuation v of F' uniquely
extends to a (normalised discrete) valuation on F,,, again denoted by v.

Example 14.1. Let K = F,(Y) be the field of rational functions in one variable Y with
coefficients in a finite field I, of order a positive power ¢ of a positive prime p in Z, let F,[Y]
be the ring of polynomials in one variable Y with coefficients in Fg, and let v, : K* — Z be
the wvaluation at infinity of K, defined on every P/Q € K with P € F,[Y] and @ € F,[Y] — {0}
by

Vo (P/Q) = deg@Q — deg P .

The absolute value associated with vy, is
IP/Qls = gleeFtes

The completion of K for vy, is the field Ky, = F,((Y 1)) of formal Laurent series in one
variable Y ~! with coefficients in F,. The elements = in F,((Y!)) are of the form

T = Z ;Y !
€L

where z; € I, for every i € Z, and x; = 0 for ¢ small enough. The valuation at infinity of
F,((Y™1)) extending the valuation at infinity of F,(Y) is

V() =sup{ieZ : Yj<i, x;=0},

that is,

o)
'Uoo( Z xiyii) =1

=10

if z;, # 0. The valuation ring of vy, is the ring &, = F,[[Y ~1]] of formal power series in one
variable Y ! with coefficients in F,. The element

Ty = y~!

o0}

is a uniformiser of vy, the residual field &, /7y, O, of vy is ky,, = Fy.
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Example 14.2. Given a positive prime p € Z, the field of p-adic numbers Q,, is the completion

of Q with respect to the absolute value | - |, of the p-adic valuation v, defined by setting
w(p") =n,

when n € Z, a,b € Z — {0} are not divisible by p. Then the valuation ring &,,, denoted by

Zyp, of Qy is the closure of Z for the absolute value |- |, the element 7,, = p is a uniformiser,
and the residual field is k,, = Z,/pZ, = Fp, a finite field of order p.

A field endowed with a valuation is a non-Archimedean local field if it is complete with
respect to its absolute value and if its residual field is finite.! Its valuation ring is then a
compact open additive subgroup. Any non-Archimedean local field is isomorphic to a finite
extension of the p-adic field Q, for some prime p, or to the field F,((Y~!)) of formal Laurent
series in one variable Y ~1 over [F, for some positive power ¢ of a prime p.

These formal Laurent series fields may occur as completions of numerous (global) fonctions
fields, that we now define. The basic case is described in Example 14.1 above, and the general
case is detailed in Section 14.2 below. The geometer reader may skip Section 14.2 and use
only Example 14.1 in the remainder of Part III (using g = 0 when the constant g occurs).

14.2 Global function fields

In this Section, we fix a finite field IF, with ¢ elements, where ¢ is a positive power of a positive
prime p € Z, and we recall the definitions and basic properties of a function field K over F,
its genus g, its valuations v, its completion K, for the associated absolute value |- |, and the
associated affine function ring R,. See for instance [Gos, | for the content of this Section.

Let K be a (global) function field over F,, which can be defined in two equivalent ways as

(1) the field of rational functions on a geometrically irreducible smooth projective curve C
over [y, or

(2) an extension of F, of transcendence degree 1, in which [F, is algebraically closed.

There is a bijection between the set of closed points of C and the set of (normalised discrete)
valuations of its function field K, the valuation of a given element f € K being the order of
the zero or the opposite of the order of the pole of f at the given closed point. We fix such
an element v from now on. We denote by ¢ the genus of the curve C.

In the basic Example 14.1, C is the projective line P! over F,, which is a curve of genus
g = 0, and the closed point associated with the valuation at infinity vy, is the point at infinity
[1:0].

We denote by K, the completion of K for v, and by
O, ={xe K, : v(zx) =0}

the valuation ring of (the unique extension to K,) of v. We choose a uniformiser 7, € K of
v. We denote by k, = 0, /m,0, the residual field of v, which is a finite field of order

Gy = ‘kv’ .

!There are also two Archimedean local fields C and R, see for example [Cas].
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The field &, is from now on identified with a fixed lift in &), (see for instance [Col, Théo. 1.3]),
and is an extension of the field of constants F,. The degree of this extension is denoted by
deg v, so that

Q= q*" .
We denote by | - |, the (normalised) absolute value associated with v: for every z € K,, we

have
|;c|v = (qv)—”(x) _ q—v(z) degv

Every element z € K, is” a (converging) Laurent series x = Y., x; (m,)" in the variable T,
over k,, where x; € k, is zero for ¢ € Z small enough. We then have

|$|v _ (qv)—sup{jEZ 1V i<j, z;=0} 7 (141)

and O, consists of the (converging) power series z = Y. (my)" (where z; € k;) in the
variable 7, over k.

We denote by R, the affine algebra of the affine curve C — {v}, consisting of the elements
of K whose only poles are at the closed point v of C. Its field of fractions is equal to K, hence
we will often write elements of K as x/y with z,y € R, and y # 0. In the basic Example 14.1,
we have R, = F,[Y]. Note that

R,n0C,=T,, (14.2)
since the only rational functions on C whose only poles are at v and whose valuation at v is
nonnegative are the constant ones. We have (see for instance | , IL.2 Notation]|, [Gos, page
63])

(Ry)™ = (Fg)™ . (14.3)

The following result is immediate when C = P!, since then R, + 0, = K,,.

Lemma 14.3. The dimension of the quotient vector space K,/(R, + O) over Fy is equal to
the genus g of C.

Proof. (indicated by J.-B. Bost) We refer for instance to [Serl] for background on sheaf
cohomology. We denote in the same way the valuation v and the corresponding closed point
on C.

Let & = K n 0, be the discrete valuation ring of v restricted to K. Since K is dense in
K, and 0, is open and contains 0, we have K, = K + 0,. Therefore the canonical map

K/(R, +0) — Ky/(Ry, + Oy)

is a linear isomorphism over ;. Let us hence prove that dimp, K/(R, + 0) = g.

In what follows, ¥ ranges over the affine Zariski-open neighbourhoods of v in C, ordered
by inclusion. Let Oc¢ be the structural sheaf of C. Note that by the definition of R,, since the
zeros of elements of K™ are isolated and by the relation between valuations of K and closed
points of C,

R, =H(C—{v},0¢c), K=Ilim H'(V —{v},0c) and O =lim H(V,0c).
v v

2See for instance [Col, Coro. 1.6].
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Since 7 and C — {v} are affine curves, we have H'(C — {v}, 0c) = H (¥, 0c) = 0. By the
Mayer-Vietoris exact sequence for the covering {C — {v}, ¥} of C, we hence have an exact
sequence

H°(C,0c) — H°(C — {v},0c) x H(V,0c) — H*(V — {v},06c) — H'(C, 6¢) .
Therefore

K/(Ry+ 0) =lim H°(V —{v},0c)/(H"(C - {v}, Oc) + H'(V, 0¢))
Ve
~ HY(C,0¢) .

Since dimp, H'(C, 0c) = g by one definition of the genus of C, the result follows. O

Recall that R, is a Dedekind ring.® In particular, every nonzero ideal (respectively frac-
tional ideal) I of R, may be written uniquely as I = l_[p p? () where p ranges over the prime
ideals in R, and vy (/) € N (respectively v,(I) € Z), with only finitely many of them nonzero.
By convention I = R, if vy(I) = 0 for all p. For all z,y € R, (respectively z,y € K), we
denote by

{x,y)=xRy+y R,

the ideal (respectively fractional ideal) of R, generated by x,y. If I, J are nonzero fractional
ideals of R,, we have

[ag = s and 147 = []pminleDo) (14.4)
p p

The (absolute) norm of a nonzero ideal I =[], po»(D of R, is

N(I)=[Ry:1I]=|Ry/I| = Hq”v )degp

where degp is the degree of the field R,/p over F,, so that N(R,) = 1. By convention
N(0) = 0. This norm is multiplicative:

N(IJ) = N(I)N(J) ,

vp (1)

and the norm of a nonzero fractional ideal I =[], p of R, is defined by the same formula

N(I) Hp g?»(Ddegp  Note that if (a ) is the principal fractional ideal in R, generated by a

nonzero element a € K, we define N(a) = N((a)). We have (see for instance [Gos, page 63)])
N(a) =laly . (14.5)
Dedekind’s zeta function of K is (see for instance |Gos, §7.8] or [Ros, §5])

3See for instance | , 11.2 Notation]. We refer for instance to [Nar, §1.1] for background on Dedekind
rings.
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if Re s > 1, where the summation is over the nonzero ideals I of R,,. By for instance [Ros, §5],
it has an analytic continuation on C — {0, 1} with simple poles at s = 0,s = 1. It is actually

a rational function of ¢7*. In particular, if K = F,(Y’), then (see [Ros, Theo. 5.9])
e o (14.6)
R VR EE VN |

We denote by Haary, the Haar measure of the (abelian) locally compact topological
group (K,,+), normalised so that Haarg, (€,) = 1. The Haar measure scales as follows
under multiplication: for all A\, z € K,,, we have

dHaarg, (Az) = |\|, dHaarg, (x) . (14.7)

Note that any nonzero fractional ideal I of R, is a discrete subgroup of (K,,+), and we
will again denote by Haarg, the Haar measure on the compact group K,/I which is induced
by the above normalised Haar measure of K.

Lemma 14.4. For every nonzero fractional ideal I of R,, we have
Haarg, (K,/I) = ¢~ N(I) .

Proof. By the scaling properties of the Haar measure, we may assume that I is an ideal
in R,. By Lemma 14.3, we have Card K,/(R, + 0,) = ¢¢. By Equation (14.2) and by the
normalisation of the Haar measure, we have

1
Haarg, (R, + 0y)/R, = Haarg, 0,/(R, n 0,) = Haarg, 0,/F, = — .
q

Hence

Haarg, (K,/Ry,) = Card(Kv/(Rv + @,)) Haarg, (R, + O,)/R, = ¢t
Since Haarg, (K,/I) = N(I) Haarg, (K,/R,), the result follows. ]

“Other normalisations are useful when considering Fourier transforms, see for instance Tate’s thesis [Tat].
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Chapter 15

Bruhat-Tits trees and modular groups

In this Chapter, we give background information and preliminary results on the main link
between the geometry and the algebra used for our arithmetic applications: the (discrete time)
geodesic flow on quotients of Bruhat-Tits trees by arithmetic lattices. We refer to Section 2.6
for the basic notation and terminology for trees and graphs (of groups).

We denote the image in PGL9 of an element <Z Z) e GLy by [Z b

d:| € PGLQ.

15.1 Bruhat-Tits trees

Let K, be a non-Archimedean local field, with valuation v, valuation ring &,, choice of
uniformiser 7, and residual field k, of order ¢, (see Section 14.1 for definitions).

In this Section, we recall the construction and basic properties of the Bruhat-Tits tree X,
of (PGLg, K,,), see for instance [1it]. We use its description given in [Ser3|, to which we refer
for proofs and further information.

An O,-lattice A in the K,-vector space K, x K, is a rank 2 free 0,-submodule of K, x K,
generating K, x K, as a vector space. The Bruhat-Tits tree X, of (PGLqg, K,) is the graph
whose set of vertices VX, is the set of homothety classes (under (K,)*) [A] of O,-lattices
A in K, x K,, and whose nonoriented edges are the pairs {z,z’} of vertices such that there
exist representatives A of x and A’ of 2 for which A = A" and A’/A is isomorphic to &, /m,O,,.
We again denote by X, the geometric realisation of X,.! Two (oriented) edges are naturally
associated with each nonoriented edge. If K is any field endowed with a valuation v whose
completion is K, then the similarly defined Bruhat-Tits tree of (PGL9, K) coincides with
Xy, see | , p- 1.

The graph X, is a regular tree of degree |Py(k,)| = ¢, + 1. In particular, the Bruhat-Tits
tree of (PGLsg, Q) is regular of degree p + 1, and if K, = Fy((Y 1)) and v = vy, then the
Bruhat-Tits tree X, of (PGLeg, K,) is regular of degree ¢ + 1. More generally, if K, is the
completion of a function field over F, endowed with a valuation v as in Section 14.2, then the
Bruhat-Tits tree of (PGLa, K,) is regular of degree ¢, + 1 = 38V + 1.

The standard base point =, of X is the homothety class [0, x €] of the O,-lattice O, x O,
generated by the canonical basis of K, x K,. In particular, we have

d(%y, [0y x 26,]) = |v(2)| (15.1)

!giving length 1 to (the geometric realisation of) each nonoriented edge, see Section 2.6.
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for every = € (K,)*. The link
k(%) ={ye VX, : d(y,*,) = 1}

of #, in X, identifies with the projective line Py (k).

The left linear action of GL2(K,) on K, x K, induces a faithful, vertex-transitive left action
by automorphisms of PGLg(K,) on the Bruhat-Tits tree X,. The stabiliser in PGLy(K,) of
#, 18 PGL2(0),), acting projectively on 1k(x,) = Py (k,) by reduction modulo 7, &, of the coef-
ficients. We will hence identify PGLa(K, )/ PGL2(0,) with VX, by the map g PGL2(0,) —
g *y.

We identify the projective line Py (K,) with K, u {oo} using the map K,(x,y) — %, SO
that

w=[1:0].

The projective action of GLa(K,) or PGLy(K,) on P!(K,) is the action by homographies®
. b - a b a b
on K, u {0}, given by (g,2) — g-2 = 57 if g = <c d) € GLa(Ky), or g = [c d} €

PGLa(K,). As usual we define o0 +— ¢ and —% — 00.

There exists a unique homeomorphism between the boundary at infinity dX, of X, and
[P (K) such that the (continuous) extension to 0, X, of the isometric action of PGLy (K, ) on
X, corresponds to the projective action of PGLy(K,) on Pi(K,). From now on, we identify
00Xy and Pi(K,) by this homeomorphism. Under this identification, &, consists of the
positive endpoints £, of the geodesic lines ¢ of X, with negative endpoint /_ = oo that pass
through the vertex =, (see the picture below).

el .. -'aooX'U

Let 5727, be the horoball centred at 00 € 0, X, whose associated horosphere passes through
#,. There is a unique labeling of the edges of X,, by elements of P;(k,) = k, U {0} such that
(see the above picture)
e the label of any edge of X, pointing towards o0 € 0, X, is o0,
e for any z = Y, z; (m)" € K,, the sequence (z;);ez is the sequence of the labels of the
(directed) edges that make up the geodesic line Joo, [ oriented from oo towards z,
e 1 is the label of the edge of ]oo, [ exiting the horoball .7%.

2or linear fractional transformations
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We refer to | , Sect. 5| for a detailed treatment of the case K, = F,((Y 1)) and v = vy.

For all n,n' € K, = 0x,X, — {0}, we have

= 1'lo = dor, (7)1 (15.2)
by the definitions of the absolute value |- |, and of Hamenstadt’s distance, see Equation (14.1),
the above geometric interpretation, and Equation (2.12). Note that in | |, Hamenstadt’s

distance in a regular tree is defined in a different way: In that reference, the distance |n—17/|,
equals Hamenstéddt’s distance between 7 and 7.

In particular, the Holder norms® |4 |._.|, and [¢]g, a,,, of a function ¢ : K, — R,
respectively for the distances (z,y) — |z — y|, and d g, on K,, are related by the following
formula:

1
v3e o, E]’ llg,1- =10 = 1¥lg1n g0, dopey, - (15.3)

The group PGLy(K,) acts simply transitively on the set of ordered triples of distinct
points in 0,X, = P1(K,). In particular, it acts transitively on the space ¥X, of (discrete)
geodesic lines in X,,. The stabiliser under this action of the geodesic line (from oo = [1 : 0] to
0=1[0:1])

U imoe [Oy x (1) O]

is the maximal compact-open subgroup

of the diagonal group

A(Ku)={[8 2} :a,de(Kv)X}.

We will hence identify PGLy(K,)/A(6,) with X, by the mapping Z : gA(6,) — g £*. Define

1o
av_()mjl’

which belongs to A(K,) and centralises A(&,). The homeomorphism = is equivariant for the
actions on the left of PGLy(K,) on PGLy(K,)/A(0,) and ¥X,. It is also equivariant for the
actions on PGLy(K,)/A(0,) under translations on the right by (a,)% and on ¢X, under the
discrete geodesic flow (g")nez: for all n € Z and x € PGLy(K,)/A(0,), we have

E(ra)=g"Z(z) . (15.4)

Furthermore, the stabiliser in PGLy (k) of the ordered pair of endpoints (¢* = oo, ¢ = 0)
of £* in 0, X, = P1(K,) is A(K,). Therefore any element v € PGLy(K,) which is loxodromic
on X, is diagonalisable over K,. By | , page 108|, the translation length on X, of 7y =

a 0 is
0 d
3See the definition in Section 3.1.
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g 2 € GLo(K,) is a representative of vy such that detyy € (0,)*,
then 0 = v(det4p) = v(ad) = v(a) + v(d), so that v(d) = —v(a) and A(y9) = 2|v(a)|. Since
v(a) # v(d) if AM(70) # 0, we have v(trJp) = v(a + d) = min{v(a),v(d)} = —|v(a)|. Thus,

Note that if 45 =

A(v0) = 2lv(tro)] - (15.6)

By conjugation, this formula is valid if 9 € PGLy(K,) is loxodromic on X, and represented
by 70 € GLa(K,) such that det 4y € ().

Let 2 be a horoball in X,, whose boundary is contained in VX, and whose point at
infinity & is different from co. With g4 : VX, x VX, — Z the Busemann function at oo (see
Equation (2.5)), the height of 5 is

hto, (A7) = max{fBe(x,%y) : ©EH}EL,

which is the signed distance between %, and J.* It is attained at the intersection point
with 02 of the geodesic line from oo to &, which is then called the highest point of 7. Note
that the height of 7 is invariant under the action of the stabiliser of 7%, in PGLy(K,) on
the set of such horoballs 7.

The following lemma is a generalisation of | , Prop. 6.1] that only covered the partic-
ular case of K = F,(Y') and v = ve.

Lemma 15.1. Assume that K, is the completion of a function field K over I, endowed with
Z] e PGLy(K)
with a,b,c,d € K such that ad — be € (0,)* and ¢ # 0, the image of 7, by v is the horoball
centred at % € K ¢ K, = 05X, — {00} with height

a valuation v, with associated affine function ring R,. For every v = [CCL

htoo (7-7%) = =2 v(c) .

Proof. It is immediate that yoo = ¢ under the projective action. Up to multiplying v on

a

the left by [1 _C] € PGLy(K), which does not change ¢ nor the height of v7#,, we may

0 1
assume that a = 0 and that b has the form ¢ 'u with v = bc — ad € (£,)*. Multiplying v
_d
on the right by [(1) 1‘3] € PGLy(K) preserves 7.7, and does not change a = 0, b = ¢~ !u or

c. Hence we may assume that d = 0. Since « then exchanges the points o0 and 0 in 05X,
the highest point of v, is y#,. Assuming first that 0,y=,, *,,00 are in this order on the
geodesic line from 0 to o0, we have by Equation (15.1)

htoo (7.560) = d(#y, V%) = d([Oy x O], [ uO, x cO,))
=d([Oy x O], [0 x 20,]) = —v(c?) = =2 v(c) .

If 0, ~#*,, %,,00 are in the opposite order, then the same computation holds, up to replacing
the distance d by its opposite —d. ]

4See the definition of the signed distance just above Lemma 11.13.
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15.2 Modular graphs of groups

Let K be a function field over g, let v be a (normalised discrete) valuation of K, let K, be
the completion of K associated with v, and let R, be the affine function ring associated with
v (see Section 14.2 for definitions).

The group I', = PGL2(R,) is a lattice in the locally compact group PGLy(K,), and a
lattice® of the Bruhat-Tits tree X, of (PGLg, K,), called the modular group at v of K. The
quotient graph I',\X,, is called the modular graph at v of K, and the quotient graph of groups®

I'\X, is called the modular graph of groups at v of K. We refer to | | for background
information on these objects, and for instance to | | for a geometric treatment when
K =TFy(Y) and v = vgp.

By for instance [Ser3|, the set of cusps T',\IP1(K) is finite, and T',\X, is the disjoint

union of a finite connected subgraph containing I'; %, and of maximal open geodesic rays
h.(]0,+[), for z = I',Z € T',\P1(K), where h, (called a cuspidal ray, see Section 2.6) is
the injective mage by the canonical projection X, — I',\X, of a geodesic ray whose point at
infinity in P;(K) < 0, X, is equal to Z. Conversely, any geodesic ray whose point at infinity
lies in P1(K) c 01X, contains a subray that maps injectively by the canonical projection
Xy = T\ X,.

The group I', = PGLy(R,) is a geometrically finite lattice” by for instance [ |. The
set of bounded parabolic fixed points of I';, is exactly P1(K) < 05Xy, and the set of conical
limit points of T, is P1(K,) — P1(K).

Let us denote by m = (I',\X,) u &, Freudenthal’s compactification of I',\X, by its

finite set of ends &, see [I're¢]. This set of ends is indeed finite, in bijection with I',\[P;(K)
by the map which associates to z € I',\IP;(K) the end towards which the cuspidal ray h,
converges. See for instance |Ser3| for a geometric interpretation of &, in terms of the curve
C.

Let .7, be the set of classes of fractional ideals of R,. The map which associates to an
element [z : y] € P1(K) the class of the fractional ideal zR, + yR, generated by z,y induces
a bijection from the set of cusps I'\P; (K) to .Z,.

The volume® of the modular graph of groups I',\X, can be computed using Equation
(14.3) and Exercice 2 b) in | , 11.2.3]:

VOI(PGLQ(RU)\\XU) = (q - 1) VOI(GL2(RU)\\XU) =2 CK(_l) : (157)

If K = F,(Y) is the rational function field over F, and if we consider the valuation at
infinity v = vy of K, then the Nagao lattice’ T, = PGLy(F,[Y]) acts transitively on P(K).
Its quotient graph of groups I',\ X, is the following modular ray (with associated edge-indexed
graph)

®See Section 2.6 for a definition.

5See Section 2.6 for a definition.

"See Section 2.6 for a definition and for instance | | for a profusion of geometrically infinite lattices in
simplicial trees.

8See Section 2.6 for a definition.

9This lattice was studied by Nagao in [Nag], see also [Moz, |. It is called the modular group in | |.
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q+1 g1 q 1l q 1 qg1
where I'_1 = PGLy(FF,), I, = T'o n I'_; and, for every n € N,

r, - { {a b] € PGLa(Fy[Y]) : a,deF;,beF,[Y] degh<n + 1} .

0 d
Note that even though PGLy (K, ) has inversions on X,, its subgroup I', = PGL2(R,) acts
without inversion on X, (see for instance [Ser3, I1.1.3]). In particular, the quotient graph

I',\X, is then well defined.

15.3 Computations of measures for Bruhat-Tits trees

In this Section, we compute explicit expressions for the skinning measures'” of horoballs and
geodesic lines, and for the Bowen-Margulis measures,!! when considering lattices of Bruhat-

Tits trees. See | , Section 7| and | , Section 4| for analogous computations in the
real and complex hyperbolic spaces respectively, and | | for related computations in the
tree case.

Let (K,,v) be as in the beginning of Section 15.1. Let I" be a lattice of the Bruhat-Tits
tree X, of (PGLg, K,). Since X, is regular of degree ¢, + 1, the critical exponent of T" is

or =Ing, (15.8)

by Proposition 4.16 and Equation (8.1).

We normalise the Patterson density (i)zevx, of T' as follows.'? Let /%, be the horoball
in X, centred at co whose associated horosphere passes through =*,. Let ¢t — x; be the geodesic
ray in X, such that zg = %, and which converges to co.

o0

Hp

rrrrrrrrrrr AN AN WS e, = ax, — (o)

193ee Section 7.1.
See Section 4.2.
12Since the system of conductances is 0, note that p} = ju; = pin is the standard Patterson measure of T'.
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Hamenstadt’s measure

13 associated with 72,

» = lim et = lim ¢}
Mot M My P Qv Mo,

is a Radon measure on 0,X, — {0} = K,, invariant under all isometries of X, preserving
Iy, since 1" is a lattice. Hence it is invariant under the translations by the elements of K.
By the uniqueness property of Haar measures, 1, is a constant multiple of the chosen Haar
measure'? of K,, and we normalise the Patterson density (ta)zevx, so that

Kty = HaarKv . (15.9)

We summarise the various measure computations in the following result.

Proposition 15.2. Let T be a lattice of the Bruhat-Tits tree X,, of (PGLq, K,), with Patterson
density normalised as above.

(1)

(3)

The outer/inner skinning measures of the singleton {*,} are given by
~ -2
Ay, \(p) = dp, (px) = (max{l, |ps|,}) " dHaarg, (ps)

on the set of p € 0% {x,} such that py # 0.

The total mass of the Patterson density is

Qv + 1
Qv

HM@BH =

for all x € VX,.

The skinning measure of the horoball 7€, is the projection of the Haar measure of K, :
For all p e 61ijfoo, we have

d‘}f?rfw (p) = dusw, (p+) = dHaarg, (p+) -

If oo is a bounded parabolic fixed point of I', with 'y, its stabiliser in ', if @ =
(Y#%)ver Ty, » we have

loZ| = Haarg, (Doo\Ky) = Vol (Too\0.75) -

Let L be a geodesic line in X, with endpoints Ly € K, = 0,X, — {00}. Then on the set
of pe ﬁiL such that py € Ky = 05pXy — {0} and py # Ly, the outer skinning measure
of L is
Ly—L_|
457 (p) =
r [P+ = L—lv|p+ — Lo

dHaarg, (p+) -

Let L be a geodesic line in Xy, let Ty, be the stabiliser in T' of L, and assume that T\ L
has finite length. Then with 9 = (yL)err,, we have

QU_l

(2

log 1 = Vol(TL\L) .

138ee Equation (7.5).
14Recall that we normalise the Haar measure of (K., +) such that Haarg, (0,) = 1.
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Proof. (1) For every £ € K, by the description of the geodesic lines in the Bruhat-Tits tree
X, starting from oo given in Section 15.1, we have £ € 0, if and only if Py, (§) = #,.1°

For every & € K, — 0, by Equations (15.2) and (2.12), we have

p 5 d(#0, Poy (€))
. .

[y = o, (0,6 = (15.10)

On the set of geodesic rays p € 0} {*,} such that p1 # o0, by Equation (7.2), by the last

claim of Proposition 7.2, by Equation (15.8),'% since P, (p+) belongs to the geodesic ray
[#4, p+[ (even when py € 0),), and by Equation (15.9), we have

d5, 1 (p) = dpus, (ps) = 5= P02 qp e (p)

— I Brs (Pren o)) gy ()

= q;d(P%oc(pi)»*v) dHaarKU (pi) .

Therefore, if p € 01 {,} is such that

pr €0, ={{e Ky : [{Ju <1} ={{e Ky : Pyl ==},

then d (7'{i;v

}(p) = dHaarg,(p+) . If p+ € K, — 0, Equation (15.10) gives the claim.

(2) This Assertion follows from Assertion (1) by a geometric series argument, but we give a
direct proof.

As T is a lattice, the family (u1;)zevx, is actually equivariant under Aut(X,),'” which acts
transitively on the vertices of X, and the stabiliser in Aut(X,) of the standard base point ,
acts transitively on the edges starting from s,,.

Since X, is (g, + 1)-regular, since the set of points at infinity of the geodesic rays starting
from =,, whose initial edge has endpoint 0 € lk(x,) = P;(ky), is equal to m,0,, since all

5Recall that Pye, : 0,X, — {00} — 0.9, is the closest point map to the horoball /%, see Section 2.4.
16Since the potential is zero, the Gibbs cocycle is the critical exponent times the Busemann cocycle.
17See Proposition 4.16 (2).
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geodesic lines from o € 0,X, to points of m,0, < 0,X, pass through =*,, and by the
normalisation of the Patterson density and of the Haar measure, we have

Ity | = (qo + 1) ps, (M O) = (qv + 1) pror, (0 Oy) = (v + 1) Haarg, (m, O.)

1 1
ot Haarg, (0,) = Wt
Qv Qv

I

(3) This follows from Equation (7.4), and from the normalisation ., = Haarg, of the
Patterson density.

(4) This follows from Assertion (3) and from Equation (8.11) (where the normalisation of the
Patterson density was different than the one given by Assertion (2)).

(5) Let L, L4, L_ be as in the statement of Assertion (5), see the picture below. The result
follows from Lemma 8.6 applied with J# = 7, from Equations (15.9), (15.8) and (15.2).

p(+0)

(6) This follows from Equation (8.12) (where the normalisation of the Patterson density was
different), since X, is (g, + 1)-regular, and from Assertion (2):

b Vol \L) = P VoI L) . O

+
Ol =
H _@” HIU‘*UH T 1 T

We now turn to measure computations for arithmetic lattices I' in X,, in the function field
case. We still assume that the Patterson density of I' is normalised so that p., (0,) = 1, and
we denote by mpy the Bowen-Margulis measure of I associated with this choice of Patterson
density.

Proposition 15.3. Let K be a function field over Fy of genus g and let v be a valuation of
K. Let T be a finite index subgroup of I, = PGLa(R,), with Patterson density normalised
such that pyr, = Haarg, .

(1) We have

(g +1) [Ty : T Vol(T,\X,) = 2(qp+1)Cx(—1) [y :T]
‘D) v dv ’

279 13/02/2019

Impm| =



and if K = Fy(Y) and v = vy is the valuation at infinity of C = Py, then

2 [PGLy(F,[Y]) : T
q(qg—1)> '

Impm| =

(2) Let T'ey be the stabiliser in I' of 0 € 0xXy, and let 9 = (Y Hp)erjr,,- We have

o) = L1 L]
2 g—1 ’
Proof. (1) Recall that I, = PGL2(R,) acts without inversion on X,. By Equation (8.4)

(which uses a different normalisation of the Patterson density of I'), and by Proposition 15.2
(2), we have

Qv (g +1) [Ty T]
- Vol(I'\X,) = p Vol(T,\X,) -

v

2
mBMm| =
o = 1

The first claim of Assertion (1) hence follows from Equation (15.7).
If K =Fy(Y) and v = vy, then the second claim of Assertion (1) follows either from the

first claim where the value of (x(—1) is given by Equation (14.6), or from the fact that ¢, = ¢
and that the covolume Vol(PGL2(F,[Y])\X,, ) of the Nagao lattice PGLa(F4[Y]) is

2

Vol(PGL2(Fy[YINKw) = £z =7y

(15.11)

as an easy geometric series computation shows using the description of the modular ray in
Section 15.2 (see also | , Sect. 10.2]).

(2) Let us prove that

g/
Haarg, (T'y)o0\Ky) = 1

(15.12)
The result then follows by Proposition 15.2 (4) since
log]l = Haarg, (Do \Ky) = [(T)eo : o] Haare, ((Ky)eo\Ky) -
The stabiliser of co = [1 : 0] in T', acts on K, exactly by the set of transformations

z— az + b with a € (R,)* and b € R,. Since'® (R,)* = (F,)* acts freely by multiplication
on the left on (K, — R,)/R,, and by Lemma 14.4, we have

1 9-1
HaarKU((Fv)oo\Kv) = quaarKv (KU/Rv) — q

g—1°

This proves Equation (15.12). (]

183ee Equation (14.3).
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15.4 Exponential decay of correlation and error terms for arith-
metic quotients of Bruhat-Tits trees

As in the beginning of Section 15.1, let K,, be a non-Archimedean local field, with valuation
v, valuation ring @, choice of uniformiser m,, and residual field k, of order ¢,. Let I' be a
lattice of the Bruhat-Tits tree X, of (PGLqg, K,). In this Section, we discuss the error terms
estimates that we will use in Part III.

Partly in order to simplify the references, we start by summarizing in the next statement
the only results from the geometric Part II of this book, on geometric equidistribution and
counting problems, that we will use in this algebraic Part III. We state it with the normali-
sation introduced in Section 15.3 which will be useful in what follows.

Theorem 15.4. Let I" be a lattice of X, whose length spectrum Lt is equal to 27Z. Assume
that the Patterson density of " is normalised so that ||p.| = q”q—i'l for every x € VX,. Let D*
be nonempty proper simplicial subtrees of X, with stabilisers I'p+ in I, such that the families
9% = ('}/]1))i)7€1~/1~1[)ir are locally finite in X,. For every v € I' such that D~ and yD* are
disjoint, let o ., be the generalised geodesic line, isometric exactly on [0,d(D™, yDT)], whose
image is the common perpendicular between D~ and YDT. If the measure 0,4+ 1S nonzero and
finite, then

(20° = (g +1) VoII\X) _, S oA =
AR i = O
’YEF/FDJr
0<d(D~,yDT)<n

lim
n—+00 2 %}3

for the weak-star convergence of measures on the locally compact space gXU.
Furthermore, if I' is geometrically finite, then for every B € 10,1], there exists an error

term for this equidistribution claim when evaluated on ¢ € €7 (X) of the form O( ¢ lge™™m)
for some k > 0.

As recalled at the end of Section 2.6, lattices in PGLy(K,) are geometrically finite, see
| |. We will hence be able to use the error term in Theorem 15.4 in particular when

e K, is the completion of a function field K over [, with respect to a (normalised discrete)
valuation v of K and I is a finite index subgroup of PGLy(R,) with R, the affine function
ring associated with v,'” as in Chapters 16 and 19, and in Sections 17.2 and 18.2;

e when K, = Q, and I is an arithmetic lattice in PGLg(K,) derived from a quaternion
algebra, see Sections 17.3 and 18.2.

Proof. In order to prove the first claim, we apply Corollary 11.12 with X = X, and p = ¢ = q,.
Since Lt = 27, the lattice I" leaves invariant the partition of VX, into vertices at even distance
from a basepoint zg € VX, and vertices at odd distance from zy. Since the Patterson density
is now normalised so that [ua,| = %le (instead of ||z = %5 in Corollary 11.12), the

- NG
skinning measures 5}1 are now \/% times the ones in the statement of Corollary 11.12.

Hence the second assertion of Corollary 11.12 gives

g —1 TVOIT\X,) 5
i, SITHO
n—+o Qv \/q>’l) HO'9+ H »yeF/FD+ 7

0<d(D~,yDT)<n

19Gee Section 14.2 for definitions.

281 13/02/2019



By Equation (2.23), we have
TVol(I\X,) = (g» + 1) Vol(I\X,) .

The first claim follows.

The last claim concerning error terms follows from Remark (ii) following the proof of
Theorem 12.16. ]

In the last four Chapters 16, 17, 18 and 19 of this book, we will need to push to infinity
the measures appearing in the statement of Theorem 15.4. We regroup in the following two
remarks the necessary control tools for such a pushing.

Remark 15.5. With the notation of Theorem 15.4, we will use Lemma 3.9 when X = |X,|;
is the geometric realisation of the simplicial tree X, a = ag is?’ the common perpendicular
between D~ and yD* for v € I' (when it exists), and p = p, is any extension of o to a
geodesic ray, or rather to a generalised geodesic line isometric exactly on [0, +00[. Under the

assumptions of Theorem 15.4, we have by Lemma 3.9

(¢* = D)(go +1) VOIT\X,) _, £~
T o o] > A, = OF (15.13)
v 7+ Vel /Ty ¢

0<d(D~,yD+)<n

with, if I' Is geometrically finite, an error term when evaluated on @Z € ‘gcﬁ (gXU) of the form
O(e™ " |4 | g) for some £ > 0 small enough (depending in particular on S € 10, 1]).

From now on in this book, for every subtree D of X, with geometric realisation D =
|D|1, we endow 0, X, — 0D with the distance-like map dp defined in Equation (3.8). We
use this map dp in order to define both the [-Holder-continuity of maps with values in
(0oXy — 0D, dp) and the S-Holder-norm of a function defined on (0,X, — 05D, dp).

Remark 15.6. With the notation of Theorem 15.4, we will use Proposition 3.10 when X = X,
and D = D~. Under the assumptions of Theorem 15.4, with p, any extension to a geodesic
ray of the common perpendicular a, ., between D™ and ~D* for v € T, since pushing forward
measures on 8}F]D)* by the homeomorphism 0% : p — p, introduced in Proposition 3.10 is
continuous, we have by Equation (15.13)

2

@” —1)(gw +1) Vol(INX,) _, -

( 2)(3 : (_\\ ) v > Ay, — (0707 . (15.14)
& log+|

'YEF/FDJr
0<d(D~,yDT)<n

If T is geometrically finite, for all 8 € ]0,1] and v € €7 (0Xy — 0D7), using the error

term in Equation (15.13) with regularity g when evaluated on 1) = 1) o ¢, which belongs to

B
¢ (9X,) by the first claim of Proposition 3.10, we have by the last claim of Proposition 3.10

an error term in Equation (15.14) evaluated on v of the form O(e™"" |4 |g) for some £ > 0
small enough.

2Othe generalised geodesic line isometric exactly on [0, d(D™,yD")] parametrising
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A stronger assumption than the Holder regularity is the locally constant regularity, that
has been defined at the end of Section 3.1, and is applicable here since the involved spaces
are totally disconnected. Several error terms estimates in the literature use this stronger
regularity (see for instance | ) ). The following result of decay of correlations
under locally constant regularity follows from Corollary 9.6 by Remark 3.11 and since’! any
lattice of PGLo(K,) is geometrically finite.??

Proposition 15.7. Assume that I" is a lattice of PGLy(K,), and let § € ]0,1].
(1) If Ly = Z, there exist C,k > 0 such that for every e € 10, 1], for all e-locally constant
maps ¢, : T\YX, - R and n € Z, we have

‘J pog " dmpy— ¢deMJ Y dmpm
N¥x,

)
Imem| Jrgx, N@x,
<C 67'{'”‘ H¢Helc,5 Hwnelc,ﬁ :

(2) If Ly = 27, then there exist C,k > 0 such that for every e € ]0,1], for all e-locally
constant maps ¢, : T\GevenXy — R and n € Z, we have

1
b0 g2 b dmpy— f qbdeMf ¥ dmp
‘ J‘F\%evenx mBM (F\gevenx) F\‘ﬁevenX F\gevenx

< Ce gl ae s [Wlere. s - O

We will not use the following result in this book, but its Assertion (2) is used in the
announcement | | which only considers the locally constant regularity.

Theorem 15.8. Assume that I is a lattice of PGLa(K,), and let 5 € ]0,1].
(1) If Ly = Z, there exists k > 0 such that for every e € 0, 1] and every e-locally constant

map 1; : ?XU — R, we have, as n — +00,

(@ —1) Vol(I\Xy) ., D "

(qv + 1) T HU§+ H v 1#(0{;7)

'YEF/F]D)+
0<d(D~,yDT)<n

= | Jd&ﬁ;, +0 (e HJHelc,ﬁ) .
9Xy
(2) If Ly = 27, there exists k > 0 such that for every € € |0, 1] and every e-locally constant
map J  GX, — R, we have, as n — 400,
(@? —1)(gy +1) VoI(T\X,) _ ~
. 2 qv3v ~q," Z b(ec,)

HO-_%JF ” ’YEF/F]D-%—
0<d(D~,yDT)<n

[ G 0 D)
GXoy

Proof. This result follows by replacing in the proof of Theorem 12.16 (or rather Remark
(ii) following its proof) the use of the exponential decay of S-Holder correlations given by
Corollary 9.6 by the use of Proposition 15.7. O

2!See the end of Section 2.6.
22Note that being a lattice of PGLg(K,) is much stronger than been a lattice in Aut(X,).
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We conclude this Section by giving an algebraic second proof of Theorem 15.8; in the
following situation. Let K, be the completion of a function field K over IF, with respect to a
valuation v of K and let T' be a nonuniform?® lattice of G, = PGL2(K,). We only obtain a
version using an exponent 8 = In g, for the locally constant norm. For simplicity, we consider
only Assertion (1) of Theorem 15.8, though Assertion (2) xould be treated similarly.

The group G, acts (on the left) on the complex vector space of maps ¢ from I'\G, to R,
by right translation on the source: For every g € G, we have gy : x — (xg). A function

¥ : T\G, — R is algebraically locally constant if there exists a compact-open subgroup U of
PGL3(0,) which leaves 1 invariant:

VQEU7 ngdja

or equivalently, if ) is constant on each orbit of U under the right action of G, on I'\G,. Note
that 1 is then continuous, since the orbits of U are compact-open subsets. We define

dy = dim (Vectg (PGLa(6,)1))

as the dimension of the complex vector space generated by the images of 1 under the elements
of PGL2(0,), which is finite, and even satisfies

dy < [PGLy(6,) : U] .

We define the alc-norm of every bounded algebraically locally constant map ¢ : I'\G,, — R

by
[llate = v/dy 9]0 -

Though the alc-norm does not satisfy the triangle inequality, we have |[A Y| = |A| ¥ ale
for every A € R. We denote by alc(I'\G,) the vector space of bounded algebraically locally
constant maps ¢ from I'\G, to R.

For every n € N, let U,, be the compact-open subgroup of PGLs(&,) which is the kernel
of the morphism PGLy(0,) — PGLy (0, /7, O,) of reduction modulo m,”. Note that any
compact-open subgroup U of PGLy(&,) contains U, for some n € N. Hence ¢ : ['\G, — R is
algebraically locally constant if and only if there exists n € N such that v is constant on each
right orbit of U,,. For every n € N, since the order of PGLy (0, /m,"0),) is at most the order
of (0,/m,"0,)*, which is ¢,*", if ¢ : T\G, — R is constant on each right orbit of U,, then

[9]late < @™ [%]loo - (15.15)

Recall?* that we have a natural homeomorphism = : T'gA(&,) — I'g £* between the double
coset space I'\G,/A(0,) and I'\¥X,. We denote by py : I'\G, — I'¥X, the composition
map of the canonical projection (I'\G,) — (I'\Gy/A(0,)) and of E. By Equation (15.4), for
all z € I'\G, and n € N, we have

py (v a,") = g" py(z) . (15.16)

Lemma 15.9. For every e € ]0,1], for every e-locally constant function ¢ : T\94X, — R, if
n = [—% Ine|, then the map ¥ o py : T\G, — R is Uy -invariant and

W Op%Halc < qy2 kuelc,lnqv . (1517)

23This assumption is introduced in order to apply the following Theorem 15.10. Note that the existence of
a nonuniform lattice in G, = PGL2(K,) forces the characteristic to be positive, see for instance | |
248ee Section 15.1.
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Proof. Let ¢,1,n be as in the statement. Let us first prove that if £,/ € ¥X, satisfy
Un4n] = Z'[inﬂrn], then d(¢,0") < e.

Il in] = E’[_n7+n], then d(£(t),¢(t)) = 0 for t € [-n,n] and by the triangle inequality
d(l(t), 0 (t)) < 2(Jt| — n) if |t| = n, hence

+00 +00 du

2(t—n) e_2tdt=26_2"f we ™t — =e 2"

/
d(€,€)<2f O :

n

—2(—% Ine)

<e =€,

as wanted.

In order to prove that ¥ o py : I'\G, — R is U,-invariant, let z, 2’ € T\G, be such that
2’ € 2 U,. Since U, acts by the identity map on the ball of radius n in the Bruhat-Tits tree X,,
the geodesic lines pg () and pgy(2') in T\¥X, coincide (at least) on [—n,n]. Hence, as we saw
in the beginning of the proof, we have d(py(z), pw(z")) < e. Therefore (py(x)) = P (py(2'))
since ¢ is e-locally constant.

Now, using Equation (15.15), we have

Hi/} o pfé’”alc < QU2n Hd) © p%Hoo
_1 _
< @272 [Pl = ¢ € [Pl = @0? [Yllete,mg, - O

Now, we will use an algebraic result of exponential decay of correlations, Theorem 15.10
(see for instance | ). We first recall some definitions and notation, useful for its state-
ment.

Recall that the left action of the locally compact unimodular group G, on the locally
compact space ¥X,, is continuous and transitive, and that its stabilisers are compact hence
unimodular. Since T' is a lattice, the (Borel, positive, regular) Bowen-Margulis measure
mpm on 99X, is Gy-invariant (see Proposition 4.16 (2)). Hence by | | (see also | ,
Lem. 5]), there exists a unique Haar measure on G,,, which disintegrates by the evaluation map
py : Gy — 949X, defined by g — gl,, with conditional measure on the fiber over £ = g/, € ¥X,
the probability Haar measure on the stabiliser gA(&,)g~"! of £ under G,. Hence, taking the
quotient under I' and normalising in order to have probability measures, if u, is the right
G,-invariant probability measure on I'\G,, we have

mBMm

_BM (15.18)
lmBwm|

(P )ty =
For every g € G,, we denote by R, : I'G, — I'\G, the right action of g, and for all
bounded continuous functions 1,1’ on I'\G,,, we define

C0v.(0.0) = |

%&&mffﬁwv V dus .
N\G,

\Gy I\Gy

Note that by Equations (15.18) and (15.16), for all bounded continuous functions ¢, 1’ :
N¥X, — R and n € Z, we have?

cov mpm (9, ¢") = covy, a,n (¥ 0 pg, Y opy) . (15.19)

[meml”?

25See Section 9.2 for a definition of cov,, .

285 13/02/2019



Recall that the adjoint representation of G, = PGLy(K,) is the continuous morphism
G, — GL(#>(K,)) defined by [h] — {x — hzh~'}, which is independent of the choice of
the representative h € GLo(K,) of [h] € PGLy(K,). For every g € G,, we denote by |g|, the
operator norm of the adjoint representation of g. For instance, recalling that a, = {(1) 91},

v
we have, for all n € Z,

lau"ly = ™. (15.20)
We refer for instance to | | for the following result of exponential decay of correlations.

Theorem 15.10. Let I' be a nonuniform lattice of Gy. There exist C', k" > 0 such that, for
all bounded locally constant functions 1,4 : T\G, — R and g € G,

\COVuv,g("LZ, 1;/) ’ < HJHalc H{/;/Halc lgl,™" . O (15.21)

Proposition 15.7 (1) and therefore Theorem 15.8 (1) with 8 > In g, follows from this result
applied to ¥ = 1 opg, ¥ = o py and g = a," by using Equations (15.19), (15.17) and
(15.20) and by taking C' = C’q} and k = x'In g,. ]

Remark. There is a similar relationship between locally constant functions on K, in an
algebraic sense and the ones in the metric sense.

The additive group (K,,+) acts on the complex vector space of functions from K, to R,
by translations on the source: for all y € K, and ¢ : K, — R, the function y - ¢ is equal to
x — Y(x +y). A function ¢ : K, — R is algebraically locally constant if there exists k € N
such that 1) is invariant under the action of the compact-open subgroup (7,)*&, of K, that
is, if for all € K, and y € (7,)* @, we have ¥ (z + y) = ¢(z). Note that a locally constant
function from K, to R is continuous.

For any locally constant function ¢ : K, — R, the complex vector space Vectr(0, - 1)
generated by the images of ¢ under the elements of &, is finite dimensional. Its dimension
dy, satisfies, with k as above,

dy < [0y : (Wv)kﬁv] = qvk .

We define the alc-norm of every bounded algebraically locally constant function ¢ : K, - R
by

1% ]ale = /dy %] -

Though the alc-norm does not satisfy the triangle inequality, we have | A\¢)|ac = |A| |1 a1c for
every A € R, and the set of bounded algebraically locally constant maps from K, to R is a
real vector space.

Actually, a function v : K, — R is algebraically locally constant if and only if it is locally
constant. More precisely, for every € € ]0,1], since the closed balls of radius ¢, kin K, are
the orbits by translations under (m,)¥@,, every e-locally constant function 1 : K, — R is

constant under the additive action of (m,)*@, for k = [Inlg;], hence

[ ]ate < [¥lle1e, 1 -
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15.5 Geometrically finite lattices with infinite Bowen-Margulis
measure

This Section is a digression from the theme of arithmetic applications, in which we use the
Nagao lattice defined in Section 15.2 in order to construct a geometrically finite discrete
group of automorphisms of a simplicial tree which has infinite Bowen-Margulis measure. This
example was promised after Proposition 4.16, where we saw that such examples do not exist
for uniform trees.

We will equivariantly change the lengths of the edges of a simplicial tree X endowed with
a geometrically finite (nonuniform) lattice I' in order to turn X into a metric tree in which the
group I' remains a geometrically finite lattice, but now has a geometrically finite subgroup
with infinite Bowen-Margulis measure. This example is an adaptation of the negatively curved
manifold example of | , 84]. The simplicial example is obtained as a modification of the
metric tree example.

Theorem 15.11. There exists a geometrically finite discrete group of automorphisms of a
metric tree with constant degrees, whose Bowen-Margulis measure is infinite.

There exists a geometrically finite discrete group of automorphisms of a simplicial tree
with uniformly bounded degrees whose Bowen-Margulis measure is infinite.

Proof. Let v = vy be the valuation at infinity of K = F,(Y), K, = F,(Y 1)), 0, =
F,[[Y']] and R, = Fy[Y]. Let X, be the Bruhat-Tits tree of (PGL2, K,,) with base point
%y = [0y x O,]. Let ', = PGLa(R,), which is a lattice of X,,, with quotient graph of groups
the modular ray I',\X,, described in Section 15.2. We denote by (yi)i=—1,0,.. the ordered
vertices along I',\X,, with vertex stabilisers (I';)i=—1,,.., and by (e;)ien the ordered edges
along I',\ X, (pointing away from the origin of the modular ray).

The subgroup

P=[]Jr= { [‘O‘ d] ;Qqu[Y],a,deF;}

120
is the stabiliser in I' of o0 € 0,,X,. Let Py be the finite index subgroup of P consisting of the

elements [(1) ?] with Q(0) = 0. Observing that d(y#,,*,) = 2(i + 1) for any y e I'; — I';_1
and that the cardinality of (I'; — T';_1) n Py is (¢ — 1)g*™!, it is easy to see that the Poincaré

series

—S d(%qy,y%
DPy,0, 5, %,(8) = Z g0 A7)
vePo

of the discrete (though elementary) subgroup Py of Isom(X,) is (up to a multiplicative con-
stant) equal to Z;‘io q‘e~%5' which gives dp, = lan for the critical exponent of Py on X,,.

Let h be an element of I', which is loxodromic on X, and whose fixed points belong to
the open subset Y 10, of K, = 0,X, — {c0}. Hence the horoball /%, centred at o0 € 0y, Xy,
whose horosphere contains #,, is disjoint from the translation axis Ax; of h. Note that the
stabiliser of 72, in I', is P and that Py acts freely on the edges exiting 4%,. Let xg € VX, be
the closest point on Axy to 54, let e, be the edge with origin =, pointing towards xg, and

let e_, e, be the two edges with origin xg on Axy.
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Let Uy be the set of points x in VX, — {2} such that the geodesic segment from zy to z
starts either by the edge e_ or by e;. Let Up, be the set of points y in VX, — {t(es)} such
that the geodesic segment from ¢(es) to y starts by the edge e;. We have

(1) Up,nUp, = & and z ¢ U, v Up,,
(2) hW*(VX,—Uy) < Uy, for every k € Z—{0} and w(VX,—~Up,) < Up, for every w € Py—{id},
(3) d(z,y) = d(z, o) + d(zo,y) for all x € Uy, and y € Up,.

Let IV be the subgroup of I',, generated by Py and h. By a ping-pong argument, I is a free
product of Py and of the infinite cyclic group generated by h, and I is geometrically finite
(see for instance | , Theorem C.2 (xi)| for Kleinian groups). Hence every element «y in
IV — {e} may be written uniquely as a word woh™wih™ ... wph™ with k € N, w; € Py,n; € Z
with w; # e if i # 0 and n; # 0 if ¢ # k. Using the above properties, we have by induction

d(xo, woh™wih"™ .. wEh™F ) = Z d(xo, h""zp) + Z d(xo, wizg) . (15.22)

0<i<k 0<i<gk

Let A : EX, — R, be the I"-invariant length map on the set of edges of X,, such that for
every i € N, the length of e € EX,, is 1 if e is not contained in U’yeF’ v, and otherwise, if e
maps to e; or to ¢ under the canonical map X, — I',)\X,,, then A(e) =1+ In % if i > 1 and
A(e) = 1if ¢ = 0. Note that the distance in the metric graph |X,|) from =, to the vertex on
the geodesic ray from *, to oo originally at distance ¢ from #, is now ¢ + In 7. The distances
along the translation axis of h have not changed. Equation (15.22) remains valid with the new
distance. Let us denote by d' this (new) distance on |X,[y, and by Zp.(s) = 2 ¢ 0,0 (8)
and 2}, (s) the Poincaré series for the actions of I and Py on (|X,[x,d’) (taking (o, zo) as
pair of basepoints and the zero system of conductances).

Let us now prove that the discrete subgroup IV of automorphisms of the metric tree (X, \)
(with degrees all equal to g + 1) satisfies the first claim of Theorem 15.11.

By IM-invariance of A, the group I' remains a discrete subgroup of Aut(X,, ). The
elements of Voo, or equivalently, the points at infinity of the horoballs in the I"-equivariant
family of horoballs (v.7#% ) er/r, with pairwise disjoint interiors in X, remain bounded
parabolic fixed points of IV, and the other limit points remain conical limit points of T".
Hence I remains a geometrically finite discrete subgroup of Aut(X,, \).
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The Poincaré series 2}, is (up to a multiplicative and additive constant) >}, ¢" e =25/ i72%,

which has the same critical exponent dp, = lan as previously, but it is easy to see that the

discrete group Py is now of convergence type if ¢ > 3.

Let A(h) be the (old and new) translation length of h. Using Equation (15.22) and
partitionning the above words by the number of nonzero powers of A they contain, we have,
for every s = 0,

D(s) = 3 e o)

el
+00 k

< <1+ Z ( Z o8 lilA(R) Z 6—sd/(x0,u;x0)) ) Z o5 (wo,wwo)
k=1 iGZ—{O} we Py wePy

At s = 0p,, the above sums over i € Z — {0} and over w € Py converge, and by replacing h by a
high enough power if necessary, we may assume that Ziezf{o} e slilA(h) Zwepo e—s ' (zowzo)
if s = dp,, which makes the Poincaré series of I converge at s = dp,. Since Py is a subgroup
of I'" with critical exponent §p, we have that 2r,(s) > 2}, (s) = + if s < Jp,. We conclude
that the critical exponent of I is equal to dp, and that I is of convergence type. By Corollary
4.7 (1), the Bowen-Margulis measure of I/ is infinite.

In order to prove the second claim of Theorem 15.11, we first define a new length map
A EX, — R, which coincides with the previous one on every edge e of X, unless e maps to
e; or to €; for any i € N under the canonical map X, — I'\X,, in which case we set

Ae) =1+ |In(i +1)| — [In4]

if i > 1and A(e) = 1if i = 0 (where || is the largest previous integer map). This map A
now has values in {1, 2}, and we subdivide each edge of length 2 into two edges of length 1.
The tree Y thus obtained has uniformly bounded degrees (although it is no longer a uniform
tree), and the group I defines a geometrically finite discrete subgroup of Aut(Y) with infinite
Bowen-Margulis measure. To see that Fy is again of convergence type, observe that each
distance in the simplicial case appearing in the Poincaré series differs by at most 1 from the
corresponding distance in the metric tree case. The remainder of the argument is the same
as in the metric tree case. (]
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Chapter 16

Equidistribution and counting of
rational points in completed function

fields

Let K be a (global) function field over F, of genus g, let v be a (normalised discrete) valuation
of K, let K, be the associated completion of K and let R, be the affine function ring associated

1

with v.” In this Chapter, we prove analogues of the classical results on the counting and

equidistribution towards the Lebesgue measure on R of the Farey fractions % with (p,q) €

7. (Z—{0}) relatively prime.? In particular, we prove various equidistribution results of locally
finite families of elements of K towards the Haar measure on K,, using the geometrical work
on equidistribution of common perpendiculars done in Section 11.4 and recalled in Section
15.4.

16.1 Counting and equidistribution of non-Archimedian Farey
fractions
The first result of this Section is an analog in function fields of the equidistribution of Farey

fractions to the Lebesgue measure in R, see the Introduction, and for example | , p. 978]
for the precise statement and a geometric proof. For every (zg,y0) € Ry, x R, — {(0,0)}, let

My 2,40 = Card{a € (R,)* : Ibe xR, N yoRy, (a — 1)zoyo — bxo € YRy} -
For future use, note that by Equation (14.3)
mv’l,g =q—1 . (161)

For every (a,b) € R, x R, and every subgroup H of GLa(R,), let H,) be the stabiliser of
(a,b) for the linear action of H on R, x R,.

Theorem 16.1. Let G be a finite index subgroup of GLa(Ry), and let (xo,yo) € Ry x Ry —
{(0,0)}. Let

(g0 = 1) (qu+ 1) Cre(=1) Moy g, yo (N0, 90))* [GL2(Ry) : G]
(q—1)q971 ¢} [GL2(RU)(xo,yo) : G(xoyyo)] .

!See Section 14.2 for definitions and background.
2See for instance [Nev], as well as | | for an approach using methods similar to the ones in this text.
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Then, as s — +00,
cs? Z A

(z,9)eG(z0,y0); lylv<s

*
— Haarg, .

<8

For every 3 € 0, ﬁ], there exists k > 0 such that for every S-Hdélder-continuous function
¢ : K, — R with compact support,® as for instance if ¢ : K, — R is locally constant with
compact support (see Remark 3.11), there is an error term in the equidistribution claim of
Theorem 16.1 evaluated on v, of the form O(s™*|¢g).

It is remarkable that due to the general nature of our geometrical tools, we are able to work
with any finite index subgroup G of GLa(R,), and not only with its congruence subgroups. In
this generality, the usual techniques (for instance involving analysis of Eisenstein series) are
not likely to apply. Also note that the Holder regularity for the error term is a much weaker
assumption than the locally constant one that is usually obtained by analytic number theory
methods.

Theorem 1.13 in the Introduction follows from this result, by taking K = F,(Y") (so that
g=0),v =100, g =q, (x0,y0) = (1,0) and s = ¢*, and by using Equations (14.6) and (16.1)
in order to simplify the constant.

Before proving Theorem 16.1, let us give a counting result which follows from this equidis-
tribution result.
The additive group R, acts on R, x R, by the horizontal shears (transvections):

VzeRy,, V(zr,y) € Ry xRy, z-(x,y)=(x+2y,y),
and this action preserves the absolute value |y|, of the vertical coordinate y. Let G be a
finite index subgroup of GLa(R,), and let xo,yo € R,. Let R, ¢ be the finite index additive
1
0 1
shears on G(zo, yo). Note that R, ¢ = R, if G = GLa(R,). We may then define a counting
function Va4, .4, Of the elements of K in an orbit by homographies under G, as

\I'G,mo,yo(s) = Card RU,G\{(xa y) € G(l’o, yO)a |y|v < 5} .

Corollary 16.2. Let G be a finite index subgroup of GLa(Ry), and let (zg,yo) € Ry X Ry —
{(0,0)}. Then there exists k > 0 such that, as s — +00,

subgroup of R, consisting of the elements z € R, such that x) € (G, acting by horizontal

Va zo,y0 (s)

_ (¢—1) q29—2 qg [GLQ(R”)(JBO,?JO) : G(fﬂo,yo)] [R. : RU,G] 2+ 0(82—n>
(00* = 1) (qv + 1) Cr(=1) M, g, yo (N<20,%0))* [GL2(Ry) : G]
Proof. This follows from Theorem 16.1, by considering the locally constant characteristic
function of a closed and open fundamental domain of K, modulo the action by translations

of R, ¢, and by using Lemma 14.4 with I = R,. O

Let us fix some notation for this Section. For every subgroup H of GLa(R,), we denote
by H its image in ', = PGL2(R,). Let X, be the Bruhat-Tits tree* of (PGLg, K,), which is
regular of degree g, + 1. Let

r=2cKy {oo}.
Yo

3where K, is endowed with the distance (z,y) — |z — y|o
“See Section 15.1.
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If yo =0, let g, = id € GLa(K), and if yp # 0, let

gr = (71" é) € GLy(K) .

Proof of Theorem 16.1. We apply Theorem 15.4 with ' = G, D™ = %, and Dt = g,.7%%.
Recall that .77, is the horoball in X, centred at oo whose boundary contains =, (see Section
15.1).

Note that I" has finite index in I, and, in particular, it is a lattice of X,. By | , 11.1.2,
Coro.], for all x € VX, and v € GLa(R,), the distance d(z,~z) is even since v(det~y) = 0.
Hence by the equivalence in Equation (4.17), the length spectrum Ly, of T, is 2Z. The length
spectrum of I' is also 27Z, since it is contained in Ly, .

Note that DV is a horoball in X,, centred at r = % € 0 Xy, by Lemma 15.1. The stabiliser
I'p- of D™ (respectively I'p+ of DY) coincides with the stabiliser I'o, of 00 € 04X, (respectively
the stabiliser I',. of ) in I'. Note that the families 2+ = (")/Di),},er /T,,+ are locally finite, since
'y, and hence its finite index subgroup T, is geometrically finite,” and since o0 and r € K are
bounded parabolic limit points of I'y, hence of its finite index subgroup I'.

For every v € T'/T, such that D™ and yD* are disjoint, let ., -, be the generalised geodesic
line, isometric exactly on [0,d(D™, vDT)], whose image is the common perpendicular between
D~ and yD*, and let p, be the geodesic ray starting (at time ¢t = 0) from @, -(0) and ending
at the point at infinity - r of YD*. Note that p, and a_ ., coincide on [0, d(D™,yD")].

Since the Patterson densities of lattices of X, have total mass q”q—:rl by Proposition 15.2
(2), they are normalised as in Theorem 15.4. Then by Equation (15.14), we have

. w2 —1(gy +1) VoI(I\X,) _ -

im )(3q ) (_\\ ) —n 3 Ay, = (@D)d5 . (162)

n—+0o0 2 q; HO-@Jr H ~el/T
0<d(D~,yDt)<n

1

» Tn gy
error term of the form O(e™"" H1,Z |1ng,) for some £ > 0 in the above formula when evaluated
on ¢ € €X' (0,X, — {o0}), where 05,X, — {00} is endowed with Hamenstéidt’s distance®
dw,. Hence we have an error term O(e™*" |1|) for some x > 0 in the above formula
when evaluated on 1) € &7 (Ky), where K, = 0,X, — {0} is endowed with the distance
(x,y) — |x — ylv, see Equation (15.3).

By Proposition 15.2 (3), we have

Furthermore, for every 8 € |0 ], by the comment following Equation (15.14), we have an

(07)«6p- = Haarg, .

Hence Equation (16.2) gives, with the appropriate error term,

lim

A, =H . 16.
n—4+o0 2q3 Ho- yr aarg, ( 63)

- v
9+ “ ~el'/Ty

0<d(D~,yDT)<n

(" = D(g +1) VoII\Xy) D

®See Section 15.2.
5See Equation (2.12), and note that with D = %, Hamenstédt’s distance d,, coincides with the distance-
like function dp introduced in Equation (3.8) and used in Remark 15.6, since D is a horoball.
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Let g € GLa(K) be such that goo # oo. This condition is equivalent to asking that
the (2,1)-entry ¢ = ¢(g) of g is nonzero. By Lemma 15.1, the signed distance between the
horospheres %, and g%, is

In|c|,
Ing,

d(Hy, g5) = =2 v(c) =2 (16.4)
If yo # 0, then (z,y) = g(xo, o) if and only if (> ’y0> 99r(1,0), and the (2, 1)-entry of gg,
is y . If yo = 0 (which implies that g, = id and zg # O) then (z,y) = g(xo,yo) if and only if
(X y L) = ¢(1,0), and the (2,1)-entry of g = gg, is L. Let

zo’ xo

Lo _ v iy #0
0 To otherwise.

By Equation (16.4), the signed distance between D~ = J#, and gD = g g, is

d(D™,gD) = lnq In ’zo

v

By discreteness, there are only finitely many double classes [g] € G(1,0)\G/G (g 4,) Such
that D™ = J#, and gDt = gg,74, are not disjoint. Let Z(G) be the centre of G, which
is finite. Since Z(G) acts trivially on Py(kK,), the map G/G 4, ) — /T induced by the
canonical map GLg2(R,) — PGL2(R,) is |Z(G)|-to-1. Using the change of variable

n
s = |20lv qu? ,

so that ¢, " = |Zo|v2 572, Equation (16.3) gives, with the appropriate error term,
2

lim (QU2 — 1) ?EQv + 1) ‘Z0|v VOI(IL\\XU) 8_2 Z Az

e 20,7 12(G)] log-| (2,1)€G (@0, 90); lylu<s

= Haarg, . (16.5)

The order of the centre Z(GL2(R,)) = (Ry)*id is ¢ — 1 by Equation (14.3). The map
GL2(R,)/G — T'y/T induced by the canonical map GLa(R,) — PGL2(R,) is hence %—to—l.
By Equation (15.7), we hence have

Vol(I'\X,) = [Ty : T] Vol(Ty\Xy) = 2 Cx(—1) [Ty : T
_ qil (i (~1) 12(G)| [CLa(Ry) : G] . (16.6)

Theorem 16.1 follows from Equations (16.5) and (16.6) and from Lemma 16.3 below. []
Lemma 16.3. We have

q9 ! |20’v2 [GL2(RU)(Io,y0) : G(xmyo)]
My, 20, yo (N<:E07 y0>)2
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Proof. Let v, be the image of g, in PGLy(K). Let us define IV = 5,7 'T'y,, which is a finite
index subgroup in I, = v, 'T',7, and a lattice of X,. Since 7, maps oo to r, the point oo is a
bounded parabolic limit point of IV, and we have (I')o, = 7, 1I'7,.. Since the canonical map
GLa(R,) — PGL2(R,) is injective on the stabiliser GLa(R,), we have

Z0,Y0)?
[(F;)oo : (F/)OO] =[(Ty)r : I'v] = [GLQ(RU)(xo,yo) : G(xo,yo)] :

Since the Patterson density of a lattice does not depend on the lattice (see Proposition
4.16 (1)), the skinning measures &, of a given horoball .7 do not depend on the lattice.

Thus
for every v € Aut(X,). Let 2y = (v %) er 1, , which is a locally finite I'-equivariant
family of horoballs. We hence have, using Proposition 15.2 (4) for the third equality,

o4 = 177 | = Lo | = Haari, (T)\,)
= [(I)ar < (I")oo] Haarge, (I)\K,)
= [GLa(Ro) oy * Clan)] Haare, (T)\K,) (16.7)

Every element in the stabiliser of oo in PGL2(K,) can be uniquely written in the form

a = [g b] with (a,b) € (K,)* x K,. Note that

1
r 1\ fa b\ (0 1Y\ [br+1 ar —br? —r
1 0/\0 1/J\1 —r) b a—br '
When z¢ = 0 or yo = 0, we have a € '} if and only if

be R, and ae (Ry,)™.

When zg,yo # 0, we have € I', if and only if y,.a7,.~! € Ty, hence if and only if

1
beRvm;RU, ae(R,)™, ar—br’ —reR,.

Let U/, be the kernel of the group morphism from (I'})s to (K,)* sending {g ll)] to a,

and let m, be its index in (I'))e. If 29 = 0 or yo = 0, then m, is equal to |(R,)*|, so that,
by Equation (14.3),
my = [(Ro)[ = |(Fg)*[ =q—1.

If zg,y0 # 0, we have
1
m, = Card {a € (R,)™ : EIbeRvm;Rv, ar —br* —re Ry} .

Note that the notation m, coincides with the constant m, ,,,, defined before the statement
of Theorem 16.1 in both cases.

If I(4,y,) is the nonzero fractional ideal

(R, if 7o =0o0ryy =0,
(z0,y0) R, N %Rv A T%Rv otherwise,
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then

10
Uéo:{[o 1:| :bEI(xo,yg)}‘

HaarKv (Ir , \Kv) qg—l N(I:B , )
Haarse, (1) \Ko) =~y S0y = s (168)
v ° 0 v

Therefore by Lemma 14.4,

Let (xzg) = Hp p»» (@) and (yg) = ]—[p p?»(®0) be the prime decompositions of the principal
ideals (z9) and (yp). By the formulas of the prime decompositions of intersections, sums and
products of ideals in Dedekind rings (see for instance [Nar, §1.1] and Equation (14.4)), we
have

(x%) N (Toyo) N (yg) = (1?(2)) N (yg) = Hp2ma’<{”p($0)vl’p(yo)}
p

and

{x0,Yo) = Hpmin{”'ﬂ(m)v’/p(%)} )
p

By the definition of the ideal I, ), by the multiplicativity of the norm, and by Equation
(14.5), we hence have if xg # 0 and yo # 0

N(I(xo,y())) (N<£L‘0, y0>)2
|y0|v2

= N(((x%) N (zoyo) N (yg))@?o,y0>2(m0)*2(y0)’2> =1. (16.9)
If xg = 0 or yg = 0, then
N(Iipgyy) = N(Ry) =1 (16.10)

Lemma 16.3 follows from Equations (16.7), (16.8) and (16.9) if 9 # 0 and yo # 0 or
(16.10) if zp = 0 or yo = 0. ]

Let us state one particular case of Theorem 16.1 in an arithmetic setting, using a congru-
ence sugbroup.

Theorem 16.4. Let I be a nonzero ideal of R,. Then as t — +00, we have

(a7 = 1) (9 + 1) G (=1) N TTppr(1 + 57 (g0) 2 D A

g—1 43
q 0 (z,y)eRy x T
<x7y>:RU1 v(y))—t

<8

A Haarg, ,
where the product ranges over the prime factors p of the ideal I. Furthermore, if
U(t) = Card R,\{(z,y) € Ry x I : {z,y) = Ry, v(y) = —t},

then there exists k > 0 such that, as t — +00,
29—2 .3
_ q 4y 2t (2—k)t
U(t) = 7@~ +O(q )
(%2 - 1) (QU + 1) gK(_l) N(I) Hp|[(1 + N%p)) ° !
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For every f3 € |0, ﬁL there exists x > 0 such that for every ¢ € €7 (K,) there is an error

term in the above equidistribution claim evaluated on 1, of the form O(g, " [ ]3).

Proof. The counting claim is deduced from the equidistribution claim in the same way that
Corollary 16.2 is deduced from Theorem 16.1, noting that the action of R, by horizontal
shears preserves R, x I.

In order to prove the equidistribution claim, we apply Theorem 16.1 with (zg,y0) = (1,0)
and with G the Hecke congruence subgroup

G = { (Z Z) e GLy(R,) : ce I}, (16.11)

which is the preimage of the upper triangular subgroup of GLy(R,/I) by reduction modulo
I. In this case, the constant my, 4, 4, appearing in the statement of Theorem 16.1 is equal to
q — 1 by Equation (16.1). The group G has finite index in GLa(R,). The following result is
well-known to arithmetic readers (see for instance [Shi, page 24| when R, is replaced by Z),
we only give a sketch of proof (indicated to us by J.-B. Bost) for the sake of the geometer
readers.

Lemma 16.5. We have

[CLo() : Grl = N[0+ 575)
Pl

where the product ranges over the prime factors p of the ideal I.

Proof. Recall that we denote by |E| the cardinality of a finite set E. For every commutative
ring A with finite group of invertible elements A*, we have a disjoint union

GLy(4) = | (g ?) STy (A) .

acAX

Hence [GL2(A) : SLa(A)] = |A*|. Since (8 (1)> belongs to G for all a € (R,)*, we have

a 0
Gr=J <o 1>G1mSL2(Rv),

ae(Ry)*

so that [GLQ(RU) : G[] = [SLQ(RU) :Grn SLQ(RU)].

The group morphism of reduction modulo I from SLy(R,) to SLo(R,/I) is onto, by an
argument of further reduction to the various prime power factors of I and of lifting elementary
matrices. The order of the upper triangular subgroup of SLa(R,/I) is |(R,/I)*| |R/I|, where
(Ry/I)* is the group of invertible elements of the ring R,,/I (that we will see again below).
Hence

| SL2(RU/I)’
|(Ro/T)[ |R/T|

[GLa(Ry) : G1] = [SL2(Ry) : G n SLa(R,)] =

— |GL2(R’U/I)‘
~ |(Ro/D)*PIR/I| (16.12)
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By the multiplicativity of the norm and by the Chinese remainder theorem,” one reduces the

result to the case when I = p™ is the n-th power of a fixed prime ideal p with norm N(p) = N,
where n € N. Note that since R, /p is a field, we have

| GL1(Ry/p)| = [(Ro/p)"| = |Ry/p| =1 =N —1

and

| GLa(Ro/p)| = (|Ru/pl* = 1)(|Ru/pl* — |Ru/pl) = N*(N = 1)%(1 + %) '

For kK = 1 or k = 2, the kernel of the morphism of reduction modulo p from GLg(R,/I) =
GLi(Ry/p™) to GLy(Ry/p) has order N¥* (=1 Hence

1

| GLa(R,/I)| = N*"UN2(N — 1)3(1 + N) ,
and
(Ro/I)*| = N""H(N —1)..
Therefore, by Equation (16.12), we have
NA=DNZ(N - 1)3(1 + &) n 1
[GL2(Ry) : Gf] = NZD (N 12" =N (1 + N) .
This proves the result. ]

We can now conclude the proof of Theorem 16.4. Note that GL2(Ry)(1,0) = (G1)(1,0)- The
result then follows from Theorem 16.1 and its Corollary 16.2, using the change of variables
s = (qu)t, since

Gr(1,0) = {(z,y) e Ry x I : {z,y) =Ry} . [

The following result is a particular case of Theorem 16.4.

Corollary 16.6. Let Py be a nonzero element of the polynomial ring R = Fy[Y'] over Fy, and
let Py = ag Hle(ﬂ)"l be the prime decomposition of Py. Then as t — +00,

1 k n; deg P; 1 —deg P;
(¢+DITiiq (1+gq ) 2 D A

*
(q _ 1) q2 Haarlpq((yfl)) .

(P,Q)ERX(PoR)
PR+QR=R, deg Q<t

, ﬁ], there exists kK > 0 such that for every ¢ € Cﬁf (Fq((Y—l))) there is
an error term in the above equidistribution claim evaluated on 1, of the form O(q ~*!|¢| 3)-

For every 5 € ]0

Proof. In this statement, we use the standard convention that & = 0 if Py is constant,
ap € (Fy)* and P; € R is monic.

We apply the first claim of Theorem 16.4 with K = Fy(T") and v = vy so that g = 0,
¢ = q and R, = R, and with I = PyR, so that N(I) = H]-Ll g9 i The result follows

(2

from Equation (14.6). L]

"saying that the rings R,/I and I, R,/p"» D) are isomorphic, see for instance [Nar, page 11]
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16.2 Mertens’s formula in function fields

In this Section, we recover the function field analogue of Mertens’s classical formula on the av-
erage order of the Euler function. We begin with a more general counting and equidistribution
result.

Let m be a (nonzero) fractional ideal of R,, with norm N(m). Note that the action of
the additive group R, on K, x K, by the horizontal shears z - (z,y) = (x + zy,y) preserves
m x m. We consider the counting function ¢y, : [0, +00[ — N defined by

Ym(s) = Card(R, \{(z,y) em xm : 0< Nm)"IN(y) < s, (z,y) = m}).

Note that vy, depends only on the ideal class of m and thus we can assume in the computations
that m is integral, that is, contained in R,,.

Corollary 16.7. There exists k > 0 such that, as s — +0,

(g—1) ¢?972 ¢}

2 0O 2—kK
(0% = 1) (qo + 1) Cr(—1) My, 20, 4o =0T,

wm(s) =

where m = (xg,yo). Furthermore, as s — +0,

(%2 —1) (qo + 1) (ke (—1) My, z0,y0 —
(q—1) qgif1 @3 o 2

*
A§ — Haarg, .

(z,y)emxm
N(m)~'N(y)<s, (z,y)=m

For every 8 € ]0, =], there exists £ > 0 such that for every v € €/ (K,)) there is an

) m
error term in the above equidistribution claim evaluated on 1, of the form O(s™" |4 ).

Theorem 1.14 in the Introduction follows from this result, by taking K = F,(Y") (so that
g = 0) and v = vy (so that ¢, = ¢). In order to simplify the constant, we use Equation
(14.6) and the fact that the ideal class number of K, that equals the number of orbits of
PGLy(F,[Y]) on P1(F,(Y)), is 1. Thus, if m = (z¢,yo) then the constant m., 4, 4 is equal to
M, 1,0, which is ¢ — 1 by Equation (16.1).

Proof. Every nonzero ideal I in R, is of the form I = xR, +yR, for some (z,y) € R, x R, —
{(0,0)}, see for instance [Nar, Coro. 5, page 11|. For all (z,y) and (z,w) in R, x R,, we have
xRy, +yR, = 2R, +wR, if and only if (z,w) € GLa(R,)(z,y). The ideal class group of K
corresponds bijectively to the set PGLy(R,)\P*(K) of cusps of the quotient graph of groups
PGLy(R,)\X,,® by the map induced by I =z R, +y R, — [z : y] € P}(K).

Given a fixed ideal m in R,, we apply Theorem 16.1 with G = GLa(R,) and (zg,y0) €
R, x R, —{(0,0)} a fixed pair such that zo R, + yo R, = m, so that G(zg,y9) = m x m.
Using therein the change of variable s — N(m)s and Equation (14.5), the result follows from
Theorem 16.1 and its Corollary 16.2. O

As already encountered in the proof of Lemma 16.5, the Euler function ¢r, of R, is
defined on the set of (nonzero, integral) ideals I of R, by setting’

¢r, (I) = Card((Ry/1)”) ,

8where X, is the Bruhat-Tits tree of (PGL2, Ky)
9See for example [Ros, §1].
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and we denote pg, (y) = ¢r, (y R,) for every y € R,. Thus, by the definition of the action of
R, on R, x R, by horizontal shears, we have

Vg, (s) = 2 Card{x € R,/yR, : {x,y) = Ry}
yeERy, 0<N (y)<s

= > or, (y) . (16.13)

yERy, 0<N (y)<s

As a particular application of Corollary 16.7, we get a well-known asymptotic result on
the number of relatively prime polynomials in F,[Y]. The Euler function of the ring of
polynomials R = Fy[Y] is then the map ¢, : R — {0} — N defined by

Q) =|(R/QR)"| = Card{P e R: (P,Q) = R, deg P < deg Q}.

Note that ¢q(AQ) = ¢4(Q) for every X e (Fy)*.

Corollary 16.8 (Mertens’s formula for polynomials). We have

q(g—1)
g+1

im S 4,Q) =

n—-+00 q2n
QeF4[X], deg Q<n

Proof. We apply the first claim of Corollary 16.7, in the special case when K = F,(7") and
v = vy so that ¢ = 0, ¢, = ¢ and R, = R, and with m = R,,, so that my 4,4, = ¢— 1, in
order to obtain the asymptotic value of 1 g, (s) with the change of variable s = ¢™. The result
follows from Equations (16.13) and (14.6). ]

The above result is an analog of Mertens’s formula when K is replaced by Q and R, by Z,
see | , Theo. 330]. See also | , Satz 2|, [Cos, §4.3|, as well as | | and | ,
§5] for further developments.

A much more precise result than Corollary 16.8 can be obtained by purely number theo-
retical means as follows. The average value of ¢, is computed in [Ros, Prop. 2.7]: For n > 1,

S b =),

deg f=n, f monic q

This gives g0y pop $q(f) = Rl Ut 1) , so that

S q—l2 2¢*" =1 qlg—1)(¢"" —1)
O<deg f<n k=1 q q

from which Corollary 16.8 easily follows.

300 13/02/2019



Chapter 17

Equidistribution and counting of
quadratic irrational points in
non-Archimedean local fields

Let K, be a non-Archimedean local field, with valuation v, valuation ring &,, choice of
uniformiser ,, and residual field &, of order ¢,; let X,, be the Bruhat-Tits tree of (PGLg, K,,).!
In this Chapter, we give counting and equidistribution results in K, = 0,,X, — {00} of an orbit
under a lattice of PGLg(K,) of a fixed point of a loxodromic element of this lattice. We use
these results to deduce equidistribution and counting results of quadratic irrational elements
in non-Archimedean local fields.

When X, is replaced by a real hyperbolic space, or by a more general simply connected
complete Riemannian manifold with negative sectional curvature, there are numerous quan-
titative results on the density of such an orbit, see the works of Patterson, Sullivan, Hill,
Velani, Stratmann, Hersonsky-Paulin, Parkkonen-Paulin. See for instance | | for ref-
erences. The arithmetic applications when X, is replaced by the upper halfspace model of
the real hyperbolic space of dimension 2, 3 or 5 are counting and equidistribution results
of quadratic irrational elements in R, C and the Hamiltonian quaternions. See for instance
[ , Coro. 3.10] and | |.

17.1 Counting and equidistribution of loxodromic fixed points

An element v € PGLy(K,) is said to be lorodromic if it is loxodromic? on the (geometric

realisation of the) simplicial tree X,,. Its translation length is

A(y) = Jnin d(z,vyz) >0,

and the subset
Ax, = {z e VX, : d(z,yz) = A\(7)}

is the image of a (discrete) geodesic line in X,,, which we call the (discrete) translation axis of
7. The points at infinity of Ax, are denoted by v~ and v+, chosen so that ~ translates away

1See Sections 14.1 and 15.1.
2See Section 2.1.
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from 4~ and towards v* on Ax,. Note that for every 7/ € PGLy(K,), we have

v Ax, = Axyry (41 and Yt =GRy HE.

If ' is a discrete subgroup of PGLg(K,) and if « is one of the two fixed points of a
loxodromic element of I', we denote the other fixed point of this element by o“. Since I is
discrete, the translation axes of two loxodromic elements of I" coincide if they have a common
point at infinity. Hence a is uniquely defined. For every v € I', we hence have

(7-0) =7 (a”) . (7.1)
We define the complezity h(a) of the loxodromic fixed point a by

1

la — ],

h(a) = (17.2)

if a,a” # o0, and by h(a) = 0 if a or a“ is equal to c0. We define ¢, € {1,2} by tq = 2 if
there exists an element v € I' such that v -« = o, and ¢, = 1 otherwise.?

Following | , 11.1.2], we denote by PGLo(K,)" the kernel of the group morphism
PGLy(K,) — Z/27 defined by v = [g] — v(det g) mod 2. The definition does not depend

on the choice of a representative g € GLy(K,) of an element v € PGLa(K,), since

o(det <3 D) —20(\)

is even for every A € (K,)*. Note that when K, is the completion of a function field over [,
endowed with a valuation v, with associated affine function ring R,,, the group I';, = PGL2(R,)
is contained in PGLa(K,)": For every g € GL2(R,), since detg € (Ry)* = (Fy)*,* we have
v(det g) = 0.

The following result proves the equidistribution in K, of the loxodromic fixed points
with complexity at most s in a given orbit by homographies under a lattice in PGLy(K,) as
s — 400, and its associated counting result. If £ € 0,X, = P;(K,) and I is a subgroup of
PGLy(K,), we denote by I'¢ the stabiliser in T" of &.

Theorem 17.1. Let T' be a lattice in PGLo(K,)™, and let 9 € T be a lozodromic element of
I'. Then as s — 400,

@+ D2 VATNE) g

*
— Haarg,
2q2 Vol(F%_\\AX%)

aelyy, h(a)<s
and there exists k = kr > 0 such that

2 g2 Vol(T_-\\ Ax,,)
Card{a e (I'-v5) N G, : h(a) < s} = 2o

ar {O[ ( 70 ) Ny (Oé) 8} (q'u + 1)2 VOI(F\\XU>

3Recall that the groups GL2(K,) and PGL2(K,) act on P*(K,) = K, u {0} by homographies, and that

these actions are denoted by -, see Section 15.1.
“See Equation (14.3).
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For every 3 € ]0, ﬁ], there is an error term of the form O(s™"|4| ) for some £ > 0 in
the equidistribution claim evaluated on any S-Hoélder-continuous function ¢ : &, — C.

Proof. The second result follows from the first one by integrating on the characteristic
function of the compact-open subset &, whose Haar measure is 1.

In order to prove the equidistribution result, we apply Theorem 15.4 with D™ = {x,}
and Dt = Ax,,. The families 2% = (’)/]D)i),yel"/r‘m . are locally finite, since I" is discrete and
the stabiliser I'p+ of D¥ acts cocompactly on D*. Furthermore, |0, | is finite and nonzero
by Equation (8.12). Since I' is contained in PGLg(K,)", the length spectrum Lp of T is
contained in 27Z by | , 11.1.2, Coro.]. Hence, it is equal to 2Z by the equivalence given by
Equation (4.17).

For every v € I' such that d(D~,yD*) > 0,° let a. , be the generalised geodesic line,
isometric exactly on [0,d(D~, yD™)], whose image is the common perpendicular between D~
and yD*, and let p, be the geodesic ray starting at time 0 from the origin of Qg (which is
%,) with point at infinity v - v, . Since X, is a tree and 7 -, is one of the two endpoints
of yD*, the geodesic segment e ~l[0,d(m- 4p+)] is an initial subsegment of p~-% Therefore, by
Equation (15.14), for the weak-star convergence of measures on 01 D™, we have

w2 —1)(gu + 1) Vol(T\X, N
lim (q )(3q +1) 0(7\\ ) " Z A'y-w_ _ (a+)*gﬂ§7’ (17.3)
n—s+00 2q; ||o'@Jr | Del Ty o

0<d(D~,yDT)<n

Furthermore, for every g € |0 , by the comment following Equation (15.14) and since

1
9 @]
I', being a lattice in PGLo(K,), is geometrically finite,” we have an error term of the form
O(e "™ [¥]g1mg,) for some £ > 0 in the above formula when evaluated on ¢ € €0 (0,.X,),
where 00X, is endowed with the visual distance d*v.8 Note that on &, the visual distance

dy, and the distance (z,y) — |z — y|, are related by

[ = ylo = do (2,9) % = o, (2,9)" ",

using Equation (15.2) for the first equality. Hence we have an error term O(e™"" [¢| ) for

some > 0 in the above formula when evaluated on ¢ € €7 (Oy), where 0, is endowed with
the distance (z,y) — |z — ylo.

Sthat is, such that #, ¢ YD

°It connects #, to its closest point P.p+ (#,) on vD*, with P. (-) defined in Section 2.4.

See the end of Section 2.6.

®Note that when D = {z} is a singleton, the distance-like map dp used in Remark 15.6 coincides with the
visual distance d, as said after Equation (3.8).
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K’U = aOOXU — {OO}

Let us fix for the moment & € N. For every ¢ € 7, % + &, we have |¢|, = qv_v(g) = ¢~ if
k> 1and ||, < 1if k = 0. By restricting the measures to the compact-open subset 7, % + @,
and by Proposition 15.2 (1), we have, with the appropriate error term when k = 0,

(@° = D@ +1) VoITN\X,) D

lim 5 3 — v -
n—+0 QU Ho-_@+ H 'YEF/F]D+
'y-’yaew;kJrﬁv
0<d(D~,yDT)<n
-2k
= ¢, " Haarg, (r0)—F+60 (17.4)

If 3 € T is loxodromic and satisfies 3~ € 7% + &, and B+ ¢ 7% 4+ 0, then the translation
axis of  passes at distance at most 2k from #,, since it passes through P (7, k) which is
the closest point on 7%, to 7, *. If 8 € T is loxodromic and satisfies 5, 8+ € 7, % + &, then

(%, Axg) = 2k + d(Hp, Axp) .

Furthermore, we have, by Equations (15.2) and (2.12)

_ _ —d(Hp, Ax
B = B[y = do, (87, BH)m 0 = g7 ).
Therefore by the definition of the complexity in Equation (17.2), we have for these elements

_ 1 d(Hy, Axg) d(#y, Axg)—2k
h /B = - = q ’ B = q ’ s . 17.5
( ) ‘B_ o /6+|1) v v ( )
Since the family 2 = (7D+)76F Tpy 1S locally finite, there are only finitely many elements
v € T/T'p+ such that /D" = Ax . -1 is at distance at most 2k from #,. Hence for all but
finitely many v € I'/T'p+ such that v -5 = (y07" )~ € 7% + 0,, we have v -7 =
(yyoy™ ) € ;% + O, and, using Equation (17.5) with 8 = yyoy ™"

)

h(y-y) = gf® P2k
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Therefore, using the change of variable s = ¢,*~2*, Equation (17.4) becomes

2 _
@D VIOV
s—+00 2q3

Ho-i H Yo - HaarKv |(m0) "k 40,y * (176)
7T el Ty

Yy €Ty T+ O

0<h(yg )<s

Note that the stabiliser F%f of 7, in I' has index bye in I'p+ by the definition of bye and

keN
countable family of pairwise disjoint compact-open subsets covering K,,, and since the support

of any continuous function with compact support is contained in finitely many elements of
this family, we have

that I‘/I’%_ identifies with IT" - v, by the map 71’70- — -7, . Since ((Wv)_k + 0,) is a

(@® — (g +1) VOIT\Xy) _,

> A, = Haarg, , (17.7)

ael -y,
O<h(a)<s

H‘7§+ [

with the appropriate error term.
Recall that by Equation (8.12), if the Patterson measures are normalised to be probability
measures, then
— _ Qv — 1 +
HU@+ I = m Vol(T'p+\D™) .

Hence if instead the Patterson densities are normalised to have total mass q”q—“ as in Propo-

sition 15.2 (2), then ’
Qv — 1

v

VO](FID)+ \\D+ ) .

log-I =

Note that, since by = [Cax,, : F%_],

Vol(F%_\\AX,YO) =y Vol(T'Ax,, \ Axyg) -
Equation (17.7) thus gives the equidistribution result in Theorem 17.1. OJ

In the following two Sections, we use Theorem 17.1 to deduce counting and equidistri-
bution results of elements of non-Archimedean local fields that are quadratic irrational over
appropriate subfields, when an appropriate algebraic complexity tends to infinity.

17.2 Counting and equidistribution of quadratic irrationals in
positive characteristic

Let K be a (global) function field over g, let v be a (normalised discrete) valuation of K, let
K, be the associated completion of K and let R, be the affine function ring associated with

v.?

An element 8 € K, is quadratic irrational over K if 5 ¢ K and [ is a root of a quadratic
polynomial a3? 4+ b3 + ¢ for some a, b, c € K with a # 0. The Galois conjugate 37 of 3 is the
other root of the same polynomial. Let

tr(f) =4+ p° and n(f)=p55°

9See Section 14.2.
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be the relative trace and relative norm of 8. It is easy to check that 57 # (3, as the following
lemma shows.

Recall that for every field F', a polynomial P € F[Y'] is separable if its roots in any algebraic
closure of F' are simple, and inseparable otherwise. It is well known (see for instance [Lan,
§V.6]) that, with p the characteristic of F', any irreducible quadratic polynomial P over F' is
separable when p # 2, and is inseparable when p = 2 if and only if P = a(Y? —b) with a € F'
and b € F' which is not a square in F.

Lemma 17.2. An irreducible quadratic polynomial P over K which splits over K, is separable.

Proof. The result is immediate if ¢ is odd. Otherwise, assume for a contradiction that P
is inseparable, so that P = a(X? — b) with a € F* and b € K not a square in K. Since P
splits over K, the element b is a square in K,. Since K, is isomorphic to the field g, ((m))
of formal Laurent series over [F,, with variable the uniformiser ,, which may be assumed to
belong to K, there exist m € Z and a sequence (ap)nen in Fy, such that, by the properties of

the Frobenius automorphism z — z2,

b=( Z an7r5”+k)2 = ng( Z aiﬂgk) .

neN neN

Since b € K, this implies that a? = 0 for n large enough, hence that a,, = 0 for n large enough,
so that b is a square in K, a contradiction. O

The next proposition gives a characterisation of quadratic irrationals over K.
Proposition 17.3. Let 8 € K,,. The following assertions are equivalent:
(1) B is quadratic irrational over K,
(2) B is a fived point of a loxodromic element of PGLa(R,).

Proof. The fact that (2) implies (1) is immediate since PGL2(R,) acts by homographies.
The converse is classical once we know that 8 # 37, see for instance | , Lem. 6.2] in
the Archimedean case and | | above its Section 5 when K = F,(Y') and v = vg. ]

If 8 € K, is quadratic irrational over K, its Galois conjugate 57 is the other fixed point
of any loxodromic element of PGLa(R,) fixing (3, hence the notations 37 in this Section and
in Section 17.1 coincide.

The actions by homographies of the groups GLa(R,) and PGLy(R,) on K, U {0} preserve
the set of quadratic irrationals over K. Contrary to the case of rational points, both groups
act with infinitely many orbits.

The complexity of a quadratic irrational o € K, over K is

1

T Ja—a],

h(«)

see for instance | , §6] for motivations and results when K = Fy(Y) and v = vy. Note
that this complexity is invariant under the action of the stabiliser GLa(R,)o of 00 in GLa(R,),
which is its upper triangular subgroup. In particular, it is invariant under the action of R, by
translations.'" In [ |, where K and |- |, are replaced by Q and its Archimedean absolute

“This is a particular case of Proposition 17.4 (2) below.
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value, there was, for convenience, an extra factor 2 in the numerator of the complexity, which
is not needed here. We refer for instance to | , Rem. 3, p. 136] for the connection of this
complexity to the standard height, and to | , §4.2, 4.4] and | , §6.1] for studies
using this complexity.

The complexity h(-) satisfies the following elementary properties, giving in particular its
behaviour under the action of PGLy(R,) by homographies on the quadratic irrationals in K,
over K. We also give the well-known computation of the Jacobian of the Haar measure for
the change of variables given by homographies, and prove the invariance of a measure which
will be useful in Section 18.1.

For all g = (CCL Z) € GLo(K,) and z € K, such that g -z # o0, let
. | detgl,
79(2) = lez+d|2"

Proposition 17.4. Let a € K, be a quadratic irrational over K.

1

(1) We have h(a) = T = in(a),

(2) For every g = <CCL Z) € GLy(K) with |det g|, = 1, we have
h(g-a)=|n(d+ ca)ly h(a) .

(3) If Qo : Ryx Ry — [0, 400 is the map (z,y) — |n(z—y a)l|y, then for every g € GLa(R,),
we have
h(a) -1
e Qa © .
Gre = hig-a) 99

In particular, if g € GLa(R,) fizes «, then

Qaog=CQq .
(4) For all x,y,z € K, and g € GLa(K,) such that g-x, gy, g-z # o0, we have

lg-z—g-ylZ = |lz—yl} jolz) jo(y)

and
d(g7 1)« Haarg,

dHaarp,

79(z) = (2) -
(5) The measure
du(z) = dHaarg, (z)

N |z — aly |z — a%,

on K, —{a,a’} is invariant under the stabiliser of o in PGLa(R,)

Proof. (1) This follows from the formula (o — a%)? = (a + a%)? —4aa”.
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(2) Since g has rational coefficients (that is, coefficients in K'), we have

0—(g-0)f =g a— ao_aoﬁ—biaa"—l—b
g g g g ca+d ca’+d

(ad —be)(a—a”)  (detg)(a— a?) '

(ca + d)(cal + d) n(d + ca)

Taking absolute values and inverses, this gives Assertion (2).

a—cao”

(3) Let g = <CCL Z) € GLy(R,). Note that g~ - o = 92=b_ For all z,y € R,,, we hence have

n ((az + by) — (cz + dy)a) = n (z(a — ca) — y(da — b))
=1 (z(a— ca) — y(a — ca) gt )

1

=n(a—ca)n(z—yg  -a)

Taking absolute values and using Assertion (2), we have

hg™'-a)

h() @gtar-

Qaog=
Assertion (3) follows by replacing g by its inverse.

(4) Let g = (Z 2) € GL2(K,). As seen in the proof of Assertion (2), we have

(detg)(z — y)
cr+d)(cy+d)

9 T=9y =

Taking absolute values and squares, this gives the first claim of Assertion (4).

Recall that a homography z — £ jis is holomorphic'! on K, — {—%}, with derivative
z — (23;3332. Hence infinitesimally close to z, the homography acts (up to translations which

leave the Haar measure invariant) by a homothety of ratio (Zjls)cz. By Equation (14.7), this

proves that
| det g,

ot d? dHaarg, (z) ,
v

dHaarg, (g - 2) =

as wanted.

(5) Let g = (CCL 2) € GLa(R,) fixing . Note that an element of GLy(R,) which fixes a also

fixes a?. By Assertion (4), we have

dHaarg, (g - 2) dHaarg, (g - 2)
du(g - z) = = =

lg-z—alylg-z=ay  lg-z2=g-alylg-2-g-a,

_ jg(z) dHaarg, (2)
|2 = aly Vig(2) Gg(e) |2 = a%ly 1/79(2) G9(a”)

1

= — ——— dp(2) .

Vigle) jg(a)
"'We refer for instance to [ | for background on holomorphic functions on non-Archimedean local fields.
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By Assertion (4) applied with z = « and y = a“, we have

figa) jglan) = 9 a=9-a% _

la—a”l,
The result follows. ]

Let G be a finite index subgroup of GLa(R,). We say that a quadratic irrational 5 € K,
over K is G-reciprocal (simply reciprocal if G = GLo(R,)) if some element of G maps 8 to 7.
We define the G-reciprocity index v;(/3) as 2 if B is G-reciprocal and 1 otherwise. Similarly,
we say that a loxodromic element v of G is G-reciprocal (simply reciprocal if G = GLa(Ry))
if there exists an element in G that switches the two fixed points of ~.

Proposition 17.5. Let G be a finite index subgroup of GLa(R,), and let v be a loxodromic
element of G. The following assertions are equivalent:

(1) v is conjugate in G to 'y~ for some v' € G pointwise fizing Ax,,
(2) the lozodromic element v is G-reciprocal,
(3) the quadratic irrational v~ is G-reciprocal.

When G = GLa(R,), Assertions (1), (2) and (3) are also equivalent to

(4) the image of v"~ in PGLa(R,), for some v" € G pointwise fixing Ax., is conjugate to
the image in PGLa(R,) of v.

Proof. Most of the proofs are similar to the ones when R,, K and |- |, are replaced by Z,
Q and its Archimedean absolute value, see for instance | |. We only give hints for the
sake of completeness. Let a = y~.

If « is G-reciprocal, then let 5 € G be such that -« = a?. Since R, ¢ K, we have
B-a° = a. Hence ByB~! is a loxodromic element of G fixing a and o, having the same
translation length as ~, but translating in the opposite direction on Ax,. Hence 7/ = BB Ly
fixes pointwise Ax,. Therefore (3) implies (1).

If B € G conjugates v to vy~ for some v € G pointwise fixing Ax,, then 3 preserves the
set {a, a”}. Hence, it preserves the translation axis of v but it switches a and o since « and
7'y~1 translate in opposite directions on Ax.,. Therefore (1) implies (2).

The fact that (2) implies (3) is immediate, since a? = y*.

The equivalence between (1) and (4) when G = GLy(R,) follows from the fact that the
stabiliser of Ax, normalises the pointwise stabiliser of Ax,, and from the formula

cfa BN 1 0 1\[a b\[/0 1\
¢c d) ad—bc \-1 0)\c dJ\-1 0
which is valid over any field. O

The following result says that any orbit of a given quadratic irrational in K, over K, by
homographies under a given finite index subgroup of the modular group PGL2(R,), equidis-
tributes to the Haar measure on K,. Again, note that we are not assuming the finite index
subgroup to be a congruence subgroup.
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Theorem 17.6. Let G be a finite index subgroup of GLa(R,). Let ag € K, be a quadratic
irrational over K. Then, as s — +00,

(g0 +1)* ¢k (=1) mg [GLa(R,) : G] 1

A, > Haarg, ,
243 (g—1) [v(tr go)l i

aeG-ap : h(a)<s

where g € G fizes ag with v(tr gg) # 0, and where my is the index of g% in the stabiliser of
ag i G. Furthermore, there exists k > 0 such that, as s — 400,

2¢2 (q—1) |v(trgo

| ) )
Card{a e (G-ag) n O, : h(a) < s} = (g + 1)2 Cx(—1) mo [GL2(Ry) : G]

s+ 0(s'7) .

)
For every f3 € |0, ﬁ], there exists x > 0 such that for every ¢ € € (K,) there is an error
term in the above equidistribution claim evaluated on 1), of the form O(s™*|| ).

Proof. We apply Theorem 17.1 with I" the image of G in T, = PGLy(R,) and with vy the
image in I';, of the element gg introduced in the statement. Note that I', which is contained
in Ty, is indeed contained in PGLa(K,)™".

By Equation (15.6), for every g € GLa(R,), the translation length of ¢ in X, is 2 |v(tr g)],
and ¢ is loxodromic if and only if v(trg) # 0. This implies that gy exists, since G has
finite index in GLg(R,), and such an element exists in GL2(R,) by Proposition 17.3. Up to
replacing go by its inverse, which changes neither |v(tr go)| nor mg, we assume that v, = ap.
Furthermore

A0) = 2 |v(tr go)| -

Since the centre of GLa(K,) acts trivially by homographies, we have
G- ap = I Qg .

For every a € G - ap, the complexities h(«), when « is considered as a quadratic irrational or
when « is considered as a loxodromic fixed point, coincide.
Since the centre Z(G) of G acts trivially by homographies, by the definition of mg in the
statement, we have
[Gao : g(% ] mo

[T - 9] = = .
o 2@ 12(G)]
Therefore,
A7)
Vol(I' -\ Ax,) = ———— Vol(74\ Ax,,) =
i V) = g VolO§ ) = =
2 Ju(t Z(G
mo
Theorem 17.6 now follows from Theorem 17.1 using Equations (16.6) and (17.8). O

Example 17.7. (1) Theorem 1.15 in the Introduction follows from this result, by taking
K =TF,(Y) and v = vy, and by using Equation (14.6) in order to simplify the constant.

(2) Let Gt be the Hecke congruence subgroup associated with a nonzero ideal I of R, see
Equation (16.11). By Lemma 16.5, we have, as s — +00,

(g0 +1)* Cr(=1) mo N(D [ Tyr 1+ x59)
2q; (¢ —1) Jo(trgo)|
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We conclude this Section by a characterisation of quadratic irrationals and reciprocal
quadratic irrationals in the field of formal Laurent series Fy((Y !)) in terms of continued
fractions. When F4[Y], Fy(Y) and vy are replaced by Z, Q and its Archimedean absolute
value, we refer for instance to | | and | , Prop. 4.3] for characterisations of reciprocal
quadratic irrationals.

Recall that Artin’s continued fraction expansion of f € F (Y 71)) —F,(Y) is the sequence
(a; = a;i(f))ien in Fy[Y] with dega; > 0 if i > 0 such that

1
f =ap + 1
ai + I
G2t
az + —
See for instance the surveys |Las, |, as well as | | for a geometric interpretation. We

say that the continued fraction expansion of f is eventually periodic if there exist n € N and
N € N — {0} such that a,4; = ap+n4; for every i € N, and we write

f = [aow",anflaana"' 7a’n+N71] .

Such a sequence ay,...,an,+n—1 is called a period of f, and if of minimal length, it is well
defined up to cyclic permutation.

Two elements 3, 3" € Fo((Y™!)) are in the same PGLy(F,[Y])-orbit if and only if their
continued fraction expansions have equal tails up to an invertible element of F,[Y'] by | ,
Theo. 1] or | , Theo. 1] (and even before that by | , Sect. 1V.3]). More precisely,
B, 8" € K, are in the same PGLy(IF,[Y])-orbit if and only if there exist m,n € N and x € F

such that for every k € N, we have a,x(8) = A am+k(5).
Proposition 17.8. Assume that K = Fo(Y) and v = vg.

(1) An element a € K, — K is quadratic irrational over K if and only if its continued
fraction expansion of B is eventually periodic, and if and only if it is a fixed point of a
lozodromic element of PGLa(F4[Y]).

(2) A quadratic irrational o € K, is reciprocal if and only if the period a, . ..,an—1 of the
continued fraction expansion of « is palindromic up to cyclic permutation and invertible
elements, in the sense that there exist x € F; and p € N such that for k =0,...,N —1,

we have ajqp = x(*l)kaN,k,l (with indices modulo N ).

Proof. (1) The equivalence of being quadratic irrational and having an eventually periodic
continued fraction expansion is well-known, see for instance the survey |Las, Theo. 3.1|. The
second part of the claim follows from Proposition 17.3.

(2) The proof is similar to the Archimedean case in [Per, §23].12 For every quadratic irrational
feF, (Y1), up to the action of GLa(F,[Y]), we may assume that f, (f7)~! € Y 71F,[[Y~!]]

128ee also [ , Coro. 1] by relating, using twice the period, what the authors call the — continued fraction
expansion to the standard expansion.
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and f = [0, a1, az,..-,ay|. Then we may define by induction quadratic irrationals fa, ..., f,, €
F,((Y™1)) over Fy(Y) such that

1 1 1 1
*:a1+f277:a2+f37"‘77:a 1+f,7=(l +f
f 2 faer T T
Passing to the Galois conjugates, we have
1 ag 1 (e 1 (e
F:al‘i‘fé, Tg:a2+f3,...,7g:an+f .
Taking these equations in the reverse order, we have
1 1 1 1 1 1
T "W T g T T Wl T e s e T T M T
7 i =7 S { d
so that, since —f% e YIF,[[Y 1], we have
1
—F = [0, an,...,ag,al] .
Therefore f = |—ap,...,—a2,—a1]. Thus, if f and f7 are in the same orbit, the periods
are palindromic up to cyclic permutation and invertible elements by | , Theo. 1], | ,
Theo. 1]. U

17.3 Counting and equidistribution of quadratic irrationals in

Q,

There are interesting arithmetic (uniform) lattices of PGL2(Q,) constructed using quaternion
algebras. In this Section, we study equidistribution properties of loxodromic fixed points ele-
ments of these lattices. See for instance | | for an equidistribution result of the eigenvalues
of the loxodromic elements. We use [Vig| as our standard reference on quaternion algebras.

Let F be a field and let a,b € F*. Let D = (‘}b) be the quaternion algebra over F'
with basis 1,4, 4,k as a F-vector space such that i = a, j2 = b and ij = ji = —k. If
T =20+ x1% + x2J + x3k € D, then its conjugate is

T =x9— X1t — T — w3k,

8

its (reduced) norm is
N(z)=2T = Ta =22 —azt — brs + abx’

and its (reduced) trace is
Tr(z) =2 +7T = 2.

Let us fix two negative rational integers a,b and let D = (‘?@b) . For every field extension

E of Q, we denote by Dp the quaternion algebra D®q F over E, and we say that D splits over
E if the E-algebra D ®q E is isomorphic to My(E). The assumption that a,b are negative
implies that D does not split over R. Furthermore, when p € N is an odd prime, D splits over
Qp if and only if the equation az? + by? = 1 has a solution in Qp, see [Vig, page 32|.
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The reduced discriminant of D is

Discp = H q.

geRam(D)

where Ram(D) is the finite set of primes p such that D does not split over Q,.

For instance, the quaternion algebra D = (_1@_1) splits over Q,, if and only if p # 2, hence

it has reduced discriminant 2.

Assume from now on that p € N is a positive rational prime such that D splits over Q,
and, for simplicity, that Q, contains square roots /a and Vb of a and b. For example, if
a = b = —1, this is satisfied if p =1 mod 4. We then have an isomorphism of Q,-algebras
0 =04, : Do, — M2(Q,) defined by

O(xo + x10 + x2j + x3k) = < (17.9)

xo + x1v/a \/E(x2+\/ﬁx3)>
Vb (w2 —vaxzs)  mo—x1v/a 7

so that
det(0(z)) =N(z) and tr(f(z)) = Tr(x) .

If the assumption on the existence of the square roots in QQ,, is not satisfied, we can replace
Qp by an appropriate finite extension, and prove equidistribution results in this extension.
Let & be a Z[%]-order in Dg,, that is, a finitely generated Z[%]—submodule of Dq, gener-
ating Dg, as a Qp-vector space, which is a subring of Dg,. Let & I be the group of elements of
norm 1in &. Then the image '), of §(61) in PGL2(Qy) is a cocompact lattice, see for instance
[Vig, Sect. IV.1]. In fact, this lattice is contained in PSL2(Q,), hence in PGL2(Qp)". In this
Section 17.3, we denote by X, the Bruhat-Tits tree of (PSLg, Q,), which is (p + 1)-regular.

The next result computes the covolume of this lattice.

Proposition 17.9. Let D be a quaternion algebra over Q which splits over Q, and does not
split over R, and let & be a Z[%]—order in Dg,. If Omax is a mazimal Z[%]-order in Dg,
containing O, then
VOl(LH\Xp) = [ s 01 15 [T (a=1).
12

q|Discp

Proof. We refer to [Vig, page 53] for the (common) definition of the discriminant Disc(Q,)
of the local field Q, and Disc(Dgq,) of the quaternion algebra Dg, over the local field Q,. We
will only use the facts that Disc(Q,) = 1 as it easily follows from the definition, and that

Disc(Dg,) = Disc(Q,)* (N (pZ,))* = p? (17.10)
which follows by [Vig, Lem. 4.7, page 53| and |[Vig, Cor. 1.7, page 35| for the first equality
and N (pZ,) = Card(Z,/pZ,) = Card(Z/pZ) = p for the second one.

We refer to [Vig, Sect. I1.4] for the definition of the Tamagawa measure pr on X* when

X = Dg, or X = Q. It is a Haar measure of the multiplicative locally compact group X*,
and understanding its explicit normalisation is the main point of this proposition. By [Vig,

13The index ¢ ranges over the primes dividing Discp, that is, over the elements of Ram(D).
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Lem. 4.6, page 52],'* with dz the Haar measure on the additive group X, with |z| the
module of the left multiplication by x € X* on the additive group X,'® we have

1
d )= ——— dx
wr() = e ]

By [Vig, proof of Lem. 4.3, page 50|, identifying Dg, to M2(Qy) by 6, the measure of GL2(Z,)
for the measure m dz is 1 —p~2. Hence, by scaling and by Equation (17.10), we have

(I=p?)-p) _ @-D-1)

GLy(Z,)) = =
By [Vig, Lem. 4.3, page 49|, the mass of Z,; for the measure w dz on Q) is 1, hence
by scaling
1—p! p—1
pr(Zy) = —= =
)= JBre@,) ~ »
By [Vig, pages 53-54], since we have an exact sequence

det,

1 — SLy(Qp) — GL2(Qp) — Q — 1,

the Tamagawa measure of GLy(Q,) disintegrates by the determinant over the Tamagawa
measure of Q, with conditional measures the translates of a measure on SL (Qp), called the
Tamagawa measure of SLy(Q)) and again denoted by pp. Thus,

_ MT(GL2(ZP)) _ p*—1

pr(SLa(Zy))

pr(Zy ) p?
By Example 3 on page 108 of [Vig], since the Z[%]—order Omax 1s maximal, we have, with
G = 0(Onax),

1 _
pr(G\SL2(Qy) = — (1—-p?) [] («-1).
24 .
q|Discp
Since GL2(Qy) acts transitively on VX, with stabiliser of the base point * = [Z,, x Z,] the
maximal compact subgroup GL3(Z,),'” and by the centred equation mid-page 116 of | ],
we have

1 pr(G\GLy(Q)) _ pr(G\SLa(Qp))

Yol = [z]e;\vx,, Gal — p1(GLa(Zy))  pr(SLa(Zy)

[] @-1.

g| Discp

2[

The natural homomorphism G = 6(0},..) — Flﬁmx is 2-to-1, so that

Vol(I'y, - \X,) =2 Vol(G\X,) .

14See more precisely the top of page 55 in op. cit.

15with a normalisation that does not need to be made precise

g0 that (M, )sdz = ||z|| dz where M, : y — zy is the left multiplication by = on X
17See Section 15.1.
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Since [['y, Ty = [0,

max

: 0], Proposition 17.9 follows. O

Note that the fixed points z for the action on P}(Q,) = @, U {00} by homographies of the
elements in the image of §(D) are quadratic over Q(+/a, v/b). More precisely, % is quadratic
over Q(y/a). An immediate application of Theorem 17.1, using Proposition 17.9, gives the
following result of equidistribution of quadratic elements in Q, over Q(+y/a, V).

Theorem 17.10. Let T be a finite index subgroup of T'Y, and let vg € T be a lozodromic
element of I'. Then as s — +0o0,

(p + 1)2 Hq\DiscD (q - 1) [ﬁrlnax : ﬁl] [Flﬁ’ : P] -1
24 p VOI(F,YO—\\AXVO) 5 Z

Aq

aelyy, h(a)<s
*
— Haarg, ,

where Omax 5 a maximal Z[%]—order m D@p containing O, and there exists k > 0 such that
as s — +0o0

Card{ae (I'-vy ) nZy : h(a) < s}

B 24 p Vol(F%f\\Ax%) s+ 0. O
P+ 1?2 Ty piscp (@ = 1) [Ohax : O] [T} : T '

Assume furthermore that the positive rational prime p € N is such that p = 1 mod 4
and that the integer paT_l is not of the form 4*(8b + 7) for a,b € N (for instance p = 5). By
Legendre’s three squares theorem (see for instance | |), there exist x, 4, x4 € Z such that
paT_l = $’12 + $’22 + 3532. Hence there are 1, z2, 23 € 27 such that p? — 1 = 212 + 222 + 23°.

A standard consequence of Hensel’s theorem says that when p is odd, a number n € Z
has a square root in Zj, if n is relatively prime to p and has a square root modulo p, see for
instance | , page 351]. Thus, 1 — p? has a square root in Zp, that we denote by 4/1 — p2.
As noticed above, since p =1 mod 4, the element —1 has a square root in @Q,, that we denote

by €. The element
_exp+4/1— p?
T3 + X9

Qo
is a quadratic irrational in Q, over Q(¢).

The following result is a counting and equidistribution result of quadratic irrationals over
Q(e) in Q. We denote by a” the Galois conjugate of a quadratic irrational o in Q, over

Q(e), and by
1

lo — a7,

h(a) =

the complezxity of a.

Theorem 17.11. Let D = (71@71) be Hamilton’s quaternion algebra over Q. Let p € N be

a positive rational prime with p = 1 mod 4 such that p*> — 1 = 212 + 29> + x3% for some

T1,T9,x3 € 27, and let O be the Z[%]-orderls

O={yeZ[;] +Z[;]i+Z[}]j+Z[;]k : y=1 mod 2}

18This order plays an important role in the construction of Ramanujan graphs by Lubotzky, Phillips and
Sarnak | , | (see also | , §7.4]), and in the explicit construction of free subgroups of SO(3)
in order to construct Hausdorff-Banach-Tarsky paradoxical decompositions of the 2-sphere, see for instance
[ , page 11].
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in Dq,. Let T' be a finite index subgroup of F}ﬁ. Then as s — +0,

(p+1)?[Ty:T] §1 Z

A, = H
2 p? kp “ 410, -

aelap, h(a)<s

l+exy —x3+cx0

kr
] e I'. Further-
T3+ €xo 1—cx

where kr is the smallest positive integer such that [
more, there exists k > 0 such that as s — +0

2 p? kr

(p i 1)2 [Flﬁ : F] s + 0(51—/{) )

Card{ae (I'-ag) N Zp : h(a) < s} =

Proof. The group 6% of invertible elements of & is
0% ={re 0 : N(z)ep’}.

The centre of 6* is Z(€0*) = {£p" : n € Z} and the centre of ¢! is Z(0') = {£1}. We
identify 0'/Z(0") with its image in 0% /Z(6>). The quotient group &*/Z(0*) is a free
group on s = % generators 71,72, ...,%s, which are the images modulo Z(&*) of some
elements of & of norm p, see for instance | , Coro. 2.1.11].%

Since N(p) = p?, any reduced word of even length in S = {yf—r,’yQi, ...,7%} belongs to
0'/Z(0'). Two distinct elements in S differ by a reduced word of length 2, and ~; does not
belong to ¢'/Z(0'). Hence {1,71} is a system of left coset representatives of 01/Z(6") in

0*)Z(0*), and the index of O'/Z(0") in 0% )Z(0*) is

[0*)Z2(0%): 0')Z(6M)] =2. (17.11)

l+exq —x3+ExT
— p p
90 = | z3fexo l—ex; .
p p

By the definition of the isomorphism @ in Equation (17.9) (with \/a = v/b = ¢) and of the
integers x1, x2, x3, the element gy belongs to §( &) since x1, x2, x3 are even (and p is odd), and
det go = 1. Hence go € 6(0"). Its fixed points for its action by homography on P*(Q,) are,

by an easy computation,
ex1 £ vV 1-— p2
T3 + € T9 '

Let

In particular, o is one of these two fixed points. Note that tr gy = %, hence |vp(trgo)| = 1,

and the image [go] of gy in PGL3(Q),) is a primitive loxodromic element of T'}.
Let us define

Y0 = [go]“*r

where u € {1} is chosen so that 7; = ag and where kr is defined in the statement of Theorem
17.11. Since T has finite index in '}, some power of [go] does belong to T', hence kr exists
(and note that kp = 1if I' = T’ }/9) By the minimality of kr, the element 7 is a primitive
loxodromic element of I". We will apply Theorem 17.1 to this ~.

9The group 6*/Z(6*) is denoted by A(2) in [ , page 11].
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The algebra isomorphism 6 induces a group isomorphism from 0> /Z(&0*) onto its image
in PGL(Q,), that we denote by I';.*’ By | , Lem. 7.4.1], the group I'j; acts simply
transitively on the vertices of the Bruhat-Tits tree X,,.

In particular, F}ﬁ acts freely on X, and by Equation (17.11), we have

Vol(T5\X,) = [T} : Tg] Vol(TZ\X,)
=[0%/Z(0"): 0')Z(0")] Card(L\VX,) =2. (17.12)

Again since Flﬁ (hence I') acts freely on X,, since 7 is primitive loxodromic in I', and by
Equation (15.6), we have

Vol(l“%f\\AX%) = Card(Fva\VAx%) = A(70)

= k‘r )\([go]) =2 kr |vp(trg0)] =2 kp . (17.13)
Using Equations (17.12) and (17.13), the result now follows from Theorem 17.1. ]
20This group is denoted by T'(2) in [ , page 95].
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Chapter 18

Equidistribution and counting of
crossratios

We use the same notation as in Chapter 17: K, is a non-Archimedean local field, with
valuation v, valuation ring &, choice of uniformiser 7,, residual field k, of order ¢,, and X,
is the Bruhat-Tits tree of (PGLq, K,,). Let I" be a lattice in PGLa(K,).

In this Chapter, we give counting and equidistribution results in K, = 0,X, — {0} of
orbit points under I', using a complexity defined using crossratios, which is different from the
one in Chapter 17. We refer to | | for the development when K, is R or C with its
standard absolute value.

Recall that the crossratio of four pairwise distinct points a, b, ¢,d in Py (K,) = K, u {0}
is
(c—a)(d—b) x
(=) (d—a) - )"
with the standard conventions when one of the points is co. Adopting Ahlfors’s terminology in

the complex case, the absolute crossratio of four pairwise distinct points a, b, ¢, d € P1(K,) =

K, u {0} is

[a,b,c,d] =

lc — aly |d — bl
,b,e,dly, = |la,b,¢,d||y = —FF——,
’(l’ ,(/(’ H:a’ c ]| ’C b|v’d a‘v

with conventions analogous to the previous ones when one of the points is c0. As in the
classical case, the crossratio and the absolute crossratio are invariant under the diagonal
projective action of GL2(K,) on the set of quadruples of pairwise distinct points in Py (K,).!

18.1 Counting and equidistribution of crossratios of loxodromic
fixed points

Let a, 8 € K, be loxodromic fixed points of I'. Recall that o, 3% is the other fixed point of
a loxodromic element of I' fixing «, 3, respectively. The relative height of 8 with respect to «

!The logarithm in base ¢, of this absolute crossratio is up to the order equal to the (logarithmic) crossratio
[+, -] introduced in Section 2.6: More precisely, if &1, &2, &3, &a are pairwise distinct points in the boundary
of X, then

[€1,62,83,84] = log,, [€1,84,83,82]v -

We will not use this relationship in this book.
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s )
h’(y =
D = o=

When 5 ¢ {a,a”}, we have

maX{|B - a|v |/80 - OZU|U, |B - a0|v |BJ - a|v} .

1
min{|a?67 ag7/80—|v? |a7507a07/8|1)} ‘

We will use the relative height as a complexity when [ varies in a given orbit of I' (and « is
fixed).

The following properties of relative heights are easy to check using the definitions, the
invariance properties of the crossratio and Equation (17.1).

ha(8) = max{|a, 3,87, 0%y, |o, 87, 8,07 |v} = (18.1)

Lemma 18.1. Let o, 8 € K, be lozodromic fized points of I'. Then

(1) hao(BT) = ho(B) for all p, T € {id,o}.

(2) If B € {a,a}, then ho(B) = 1.

(3) By B) = ha(B) for every y € T.

(4) ha(v - B) = ha(B) for every ~ € Stabr({a, a”}). O

The following result relates the relative height of two loxodromic fixed points with the
distance between the two translation axes.

Proposition 18.2. Let «, § € K, be loxodromic fized points of T' such that 8 ¢ {a,a”}. Then

ha(ﬁ) — qu(]avo‘o-[v]ﬁwgg[) .

In particular, we have hy(f) > 1 if and only if the geodesic lines |a, o[ and |8, 57[ in X,
are disjoint, and ho(B) = 1 otherwise (using Lemma 18.1 (2) when 3 € {a, a}).

Proof. Up to replacing «, 5,a%, 37 by their images under a large enough power v of a
loxodromic element in I' with attracting fixed point in &,, we may assume that these four
points belong to €. Note that v exists since AI' = 0,X,, and it preserves the relative height
by Lemma 18.1 (3) as well as the distances between translation axes.

Let A = ]a,a?[ and B = |3, 87[. Let u be the closest point to =, on A, so that

vl —a%) = d(u,*,) .

We will consider five configurations.

o oAl

2The factor |« — a”|, in the denominator, that did not appear in | | in the analogous definition for
the case when K, is R or C, is there in order to simplify the statements below.
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Case 1. First assume that A and B are disjoint. Let [a,b] be the common perpendicular
from A to B, with a € A, so that, by the geometric interpretation of elements in @, given in
Section 15.1, we have

d(A, B) = d(a,b) .

First assume that v # a. Up to exchanging o, o (which does not change d(A, B) or hq ()
by Lemma 18.1 (1)), we may assume that a € [u,«[. Then (see the picture on the left above),

v(B— %) =d(b, %), via—p)=v(a—p%)=d(a,%*)
and
v(@” = p) =v(@” = B7) = d(u, *) .
Therefore
. 8,07, 57| = e, 7, 07, Bl = g,/ (@D mvlamaT) mo B8
_ qg(a,*v)—d(b, o) _ g @) — qv—d(A,B) ’
which proves the result by Equation (18.1).

Assume on the contrary that u = a. Let u' € VX, be such that [a,*,] N [a,b] = [a,u/].
Note that u’ € [#,,b] since 3, 87 € 0,. Then (see the picture on the right above),

v(B—B7%) =d(b, %), v(ia—P8)=v(a—p87)=v(” —B)=v( —B%) =du, *) .
Therefore

|a7 67 a07/80—|1) = |a7 /BU? ao—7ﬁ|v = qU(a_ﬁ)+v(ao_ﬁg)_U(O‘_O‘U)_U(B_/Ba)

v
— G2 ) (e w0) (b ) gd(a,) _ —d(A, B)

9

which proves the result by Equation (18.1).

o g g a” o g o
Case 2. Now assume that A and B are not disjoint, so that
d(A,B) =0.

Since (¢ {«, a?}, the intersection A N B is a compact segment [a, b] (possibly with a = b) in
Xy. Up to exchanging a and b, a and a“, as well as 5 and 87 (which does not change d(A, B)
or hy(f) by Lemma 18.1 (1)), we may assume that «,a,b,a” and 3, a,b, 37 are in this order
on A and B respectively, and that a € [u, af .

Assume first that b € Ju,a[. Then (see the picture on the left above),

U(CK - /8) = d(aa *v)7 U(a - /BU) = U(B - ﬁa) = d(b7 *U)
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and

Therefore
la, B, 0, By = qv(a*b’)ﬂ(a(’*ﬁ”)*v(a*a")*v(ﬁfﬁ") _ qg(a,*v)*d(b, *u) _ q;l(a,b) > 1

- Hv

and
o, B, a7, 87|, = qv”(o‘_ﬁa)+”(a”—5)—v(a—a°)—v(,3—ﬁ") _ qg 11— qv—d(A,B)

which proves the result by Equation (18.1).

Assume that b € Ju,a”[. Then (see the picture in the middle above),

1)(0[ - ﬁ) = d(av *v)v v(ag - ﬁa) = d(b, *v)

and
v(a—B7) =v(B —a%) =v(B - p7) =d(u,*) .
Therefore
o, 87,07, By = qvv(afﬁ)Jrv(a”*5")*1)(04*0(")*71(6*5”)
_ qzl(a, #y)+d(b, #p)—2d(u,%y) _ qzl(a,b) >1,
and

la, 8,7, 57|, = qvv(afﬁ")+v(a"fﬁ)7v(afa”)fv(6fﬁ“) —0=1= qfd(A,B)

which proves the result by Equation (18.1).
Assume at last that b = u. Let ' € VX, be such that [b, #,] N [b, 37 = [b,u']. Then (see
the picture on the right above),

v(a - /B) = d(a’7 *v)7 v(ag - 6) = d(“y *v)
and
v(a—B7) =v(B—-pB%) =v(a® —B%) =d, ) .
Therefore

la, B, %, B, = greB)Hv(e?=B%)—vla—a?)—v(B-57)

(2

= qg((L *U)_d(U7*U) — qg(a,b) 2 1 ,

and
la, 8,7, 87|, = qvv(afﬁ")+v(a"f/3)fv(afa”)fv(6fﬁ") —=1= q;d(A,B) ’

which proves the result by Equation (18.1). O]

The next result says that the relative height is an appropriate complexity on a given orbit
under I' of a loxodromic fixed point, and that the counting function we will study is well
defined. We denote by I'¢ the stabiliser in I' of a point £ € 0,X, = P1(K,).

Lemma 18.3. Let o, 8 € K, be loxodromic fixed points of I'. Then for every s > 1, the set
E;={B €T \['-B : 1<ha(B)<s}

is finite.
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Proof. The set E; is well defined by Lemma 18.1 (4). Recall that a loxodromic fixed point is
one of the two points at infinity of a unique translation axis. By local finiteness, there are, up
to the action of the stabiliser of a fixed translation axis A, only finitely many images under
I' of another translation axis B at distance at most ﬁ?qi from A. Since the stabiliser of A
contains the stabiliser of either of its points at infinity with index at most 2, the result then

follows from Proposition 18.2. ]

We now state our main counting and equidistribution result of orbits of loxodromic fixed
points, when the complexity is the relative height with respect to a fixed loxodromic fixed
point.

Theorem 18.4. Let ' be a lattice in PGLa(K,)T. Let ap, By € K, be lozodromic fized points
of I'. Then for the weak-star convergence of measures on K, — {ag,af}, as s — 400,

(v +1)* Vol(T\\X,) 4 5 . dHaarg, (2)
2 o - S AB _— p .
2qv ‘Oé()—OéO‘U VOI(F,B(J\\ ]/80750 D \z—aolv\z—ao\v

BeT-Bo : hag(B)<s

Furthermore, there exists kK > 0 such that, as s — +o0,

Card To,\{BeT By : hao(B) < s}

_ 20 (a0 = 1) Vol(Tug) Jao, o) Vol(Ta\ 10, B5D) | , o)1)
(a0 + 12 VoI(I\X,) |

For every 3’ € ]0, 1], there exists x > 0 such that for every ¢ € Cﬁf/(Kv —{a, af}), where
K, — {ao,af} is endowed with the distance-like map d]oémag[,3 there is an error term in the
equidistribution claim of Theorem 18.4 when evaluated on 1), of the form O(s™*|| g ). This
result applies for instance if ¢ : K, — {a, o} — R is locally constant with compact support,
see Remark 3.11.

Proof. The proof of the equidistribution claim is similar to the one of Theorem 17.1. We
now apply Theorem 15.4 with D™ := ]ag,af[ and D := ]fy, 5[ Since I is contained in
PGLy(K,)™T, the length spectrum Lr of I' is equal to 2Z. The families 2+ = (’YDi),YEI‘/FDi
are locally finite, and |0, || is finite and nonzero.

Arguing as in the proof of Theorem 17.1,* we have

lim (%2 —1)(gy +1) Vol(I'\X,) —n Z A’y-ﬁo _ (aJr)*&-i-_ (18.2)

n—+00 2QU3 Haé+ H ° 'YEF/FD+

0<d(D~,yD*)<n

for the weak-star convergence of measures on 0y, X, — 0 D—. Futhermore, for every g’ € 0, 1],

there exists k > 0 such that for every S-Holder-continuous function v € &7? /(6OOX7J — 0pD_),

where 05X, — 0xD_ is endowed with the distance-like map dp-, there is an error term in the

equidistribution statement of Equation (18.2) when evaluated on 1, of the form O(s™"|¢|g).
By Proposition 18.2, we have

hao (v - Bo) = g 2@

3See Equation (3.8).
“See Equation (17.3).
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By Proposition 15.2 (5), we have

(aJr) oy (z) = |a0—a8|v
ES D—

dHaarg, (2
|z — aolv |2 — o (2)
for z in the full measure subset K, — {ag, af} of 0xX,. Hence, using the change of variable
s = q,', we have, with the appropriate error term,

(%2 —1)(qw + 1) VOI(F\\Xv> 51 Z A dHaar, (Z)

lim = -
|z — aolv [z — af v

S——400 2q3 | —048|v HU;‘F [

vBo T
vel'/T'p+
1<hag(v-Bo)<s

We again denote by ¢, the index

lag = [F{ao,ag} :Fao] s

and similarly for fy. Since the stabiliser I'g, of Sy in I' has index tg, in I'p+ and I'/T'g,
identifies with I - B9 by the map v — v - By, we have, with the appropriate error term,

(@® —1)(gqy + 1) Vol(T'\X,) o1 Z A dHaarg, (z)

lim = - -
|z —aplv |z — O‘O‘v

s—+00 2(]2 lag — 048|v HU;+ [ LBy

Bel-Bo
1<hag (B)<s

As in the end of the proof of Theorem 17.1, we have

ol = = Vol(Ts,\, 160, 851 -
Qv L,
This proves the equidistribution claim, and its error term.

In order to obtain the counting claim, we note that since 55, is invariant under the
stabiliser in I' of D™, hence under I',,, the measures on both sides of the equidistribution
claim in Theorem 18.4 are invariant under I'y,, see Proposition 17.4 (5) for the invariance of
the right hand side. By Proposition 15.2 (5) and (6), and by the definition of ¢4,, we have

f dHaarg, (z) Lag J ~t
ol o dUD—
Tog\(Ko—{ao,ag}) 12— 0lv|z —afle a0 —afle Jr, \o1p-
(qv — 1) tay Vol(I'p-\D™)
Q |0 — of v
(gv — 1) Vol(I'a,\ Javo, of[)

= . 18.3
Qv |040 —048\1; ( )

The counting claim follows by evaluating the equidistribution claim on the characteristic
function v of a compact-open fundamental domain for the action of I'y, on K, — {ag,af}.
This characteristic function is locally constant, hence 3-Holder-continuous for the distance-
like function dp-, as seen end of Section 3.1. Ol

18.2 Counting and equidistribution of crossratios of quadratic
irrationals

In this Section, we give two arithmetic applications of Theorem 18.4.
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Let us first consider an application in positive characteristic. Let K be a (global) function
field over [y, let v be a (normalised discrete) valuation of K, let K, be the associated com-
pletion of K and let R, be the affine function ring associated with v.° Given two quadratic
irrationals a, 8 € K, over K, with Galois conjugates a“, 37 respectively, such that § ¢ {a, a%},
we define the relative height of § with respect to a by

1

min{|a,ﬁ, a0—760‘v7 ‘Oé, 60—7 aa7/6|v} .

ha(B) = (18.4)

The following result says that the orbit of any quadratic irrational in K, over K, by homo-
graphies under a given finite index subgroup of the modular group PGL2(R,), equidistributes,
when its complexity is given by the relative height with respect to another fixed quadratic
irrational . The limit measure is absolutely continuous with respect to the Haar measure
on K, and it is invariant under the stabiliser of ag in PGLa(R,) by Proposition 17.4 (5).

Theorem 18.5. Let G be a finite index subgroup of GLa(Ry). Let ag, By € K, be quadratic
irrationals over K. Let go, ho be elements in G fizing oy, Bo with v(tr go), v(tr ho) # 0, and let
mo, ng be the index of g(Zf, h% in the stabiliser of ag, By in G respectively. Then, as s — 400,

(g0 +1)? Cx(—1) no [GL2(R,) : G] o1 D
245 (q—1) |ag — aflv [v(tr o)

Agp
BEG-Bo * hrag (B)<s
% dHaarg, (z)

—_

2 — aolv |z — of |’

and there exists kK > 0 such that, as s — +00,

Card To,\{B €G- Lo : hay(B) < s}

_ 4q0 (g —1) (g —1) o(trgo)| Jo(tr ho)| |Z(G)| s+ 0(s ")
(qv +1)? (x(—1) mg no [GL2(Ry) : G] '

Proof. This follows, as in the proof of Theorem 17.6, from Theorem 18.4 using Equations
(16.6) and (17.8), as well as Equation (18.3) for the counting claim. O

Example 18.6. (1) Theorem 1.16 in the Introduction follows from this result, by taking
K =F,(Y) and v = vy (so that ¢, = ¢), and by using Equation (14.6) in order to simplify
the constant.

(2) If Gy is the Hecke congruence subgroup associated with a nonzero ideal I of R, (see
Equation (16.11)), using Lemma 16.5, we have, as s — 40,

(g +1)* Cxe (1) no N(I) [, (1 + ﬁ) 1 Z Ay B dHaarg, (2)

2¢2 (¢—1) |ag — af v |v(tr ko) |z — aoly |z — a§y

BeGT-Bo : hag(B)<s

The second arithmetic application of Theorem 18.4 is in Q,. We use the notation of
Section 17.3.

5See Section 14.2.

325 13/02/2019




Let p € N be a positive rational prime with p = 1 mod 4 such that p%l is not of the
form 4%(8b + 7) for a,b € N (for instance p = 5). Let € be a square root of —1 in Q. Let
x1, Ta, 3 € 27 be such that p? — 1 = 212 + 292 + 23%. We again consider

e /1 — p?
)

xr3 +Ex2

which is a quadratic irrational in Q, over Q(g). We denote by a” the Galois conjugate of a
quadratic irrational « in @, over Q(¢), and by

1

min{‘aa B?aa-’ Ba|p7 ‘aa 507 O[U,,B|p}

ha(B) = (18.5)

the relative height of a quadratic irrational § in Q, over Q(e) with respect to «, assuming
that 8 ¢ {a,a”}. We again consider Hamilton’s quaternion algebra D = (71(@71) over Q and

its Z [%]—order

ﬁ={yeZ[%]+Z[%Ji+Z[%]j+Z[%]k: ty=1 m0d2}.

The following result says that the orbit of ag in Q, by homographies under a given finite
index subgroup of the arithmetic group Flﬁ (defined in Section 17.3) equidistributes, when
its complexity is given by the relative height with respect to g, to a measure absolutely
continuous with respect to the Haar measure on Q.

Theorem 18.7. With the above notation, let I' be a finite index subgroup of Flﬁ. Then, as
s — +00,

(p+1)°[T5:T] 5 A » _ dHaarg,(2)
2 p? kr |ao — oflp “ |z —aolplz —aflp

a€el-ap @ hag(a)<s

l+exy —x3+exs

kr
] e I'. Further-
T3 + € T2 1l—cxq

where kr is the smallest positive integer such that {
more, there exists k > 0 such that, as s — +00,

4p(p—1) (kr)?
(p+ 2L 1]

Card Th,\{a el - ag : hoy(a) < s} = s+ 0(s'7") .

Proof. This follows, as in the proof of Theorem 17.11, from Theorem 18.4 using Equations
(17.12) and (17.13), as well as Equation (18.3) and again Equation (17.13) for the counting
claim. ]
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Chapter 19

Equidistribution and counting of
integral representations by quadratic
norm forms

In the final Chapter of this book, we give another arithmetic equidistribution and counting
result of rational elements in non-Archimedean local fields of positive characteristic, again
using our geometric equidistribution and counting results of common perpendiculars in trees
summarised in Section 15.4. We use here a complexity defined using the norm forms associated
with fixed quadratic irrationals. In particular, the complexity in this Chapter is different from
that used in the Mertens type of results in Section 16.1. We refer for instance to | , §5.3]
for motivations and results in the Archimedean case, and also to | | for higher dimensional
norm forms.

Let K be a (global) function field over [, of genus g, let v be a (normalised discrete)
valuation of K, let K, be the associated completion of K and let R, be the affine function
ring associated with v.! Let a € K, be a quadratic irrational over K. The norm form n,
associated with « is the quadratic form K x K — K defined by

(z,9) = n(z — ya) = (z — ya)(z — ya’) = 2* — zytr(a) + y*n(a) .

See Proposition 17.4 (3) for elementary transformation properties under elements of GLo(R,)
of this norm form.

A pair (z,y) € R, X R, is an integral representation of an element z € K by the quadratic
norm form n, if ny(x,y) = z. The following result describes the projective equidistribution
as s — 400 of the integral representations by n, of elements with absolute value at most s.
For every (zo,y0) € Ry X Ry, let Hy, oy be the stabiliser of (z9,yo) for the linear action of
any subgroup H of GLy(R,) on R, x R,. We use the notation N{zg,yp) for the norm of
the ideal {(zg,yo) generated by zg, yo (see Section 14.2) and the notation my, 4, 4, introduced
above Theorem 16.1.

Theorem 19.1. Let G be a finite index subgroup of GLa(R,), let a € K, be a quadratic
irrational over K, and let (zo,y0) € Ry x Ry, — {(0,0)}. Let
r_ (gv — 1) (g + 1)2 Ck (1) M, o, 9o (N <0, 3/0>)2 [GL2(Ry) : G]

g (g—1) ¢o1 [GLQ(RU)(%,?JO) : G(fo,yo)]

1See Section 14.2.
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Then for the weak-star convergence of measures on K, — {a,a’}, we have

lim ¢ s~ z = .
Y |z — aly |z — a,

§——+00

1 Z A dHaarg, (z)

(z,9)€G (20, y0), [ n(z—ya)|v<s

For every (3 € ]0,1], there exists > 0 such that for every 1 € (fcﬁ(Kv —{a,a%}), where
K, — {a,a”} is endowed with the distance-like map d]%aa[,? there is an error term in the
equidistribution claim of Theorem 19.1 when evaluated on 1, of the form O(s™*|v|3). This
holds for instance if ¢ : K, — {a,a°} — R is locally constant with compact support (see
Remark 3.11).

Examples 19.2. (1) Let (z9,y0) = (1,0), K = Fy(Y) and v = vy (so that ¢ = 0 and
qv = q). Theorem 1.17 in the Introduction follows from Theorem 19.1, using Equations (14.6)
and (16.1) to simplify the constant ¢.

(2) Let (zg,y0) = (1,0) and let G = G be the Hecke congruence subgroup of GLa(R,) defined
in Equation (16.11). The index in [GL2(R,) : Gp] is given by Lemma 16.5 and G satisfies
(Gr)a,0) = GLa(Ry)(1,0)- For every nonzero ideal I of R,, for the weak-star convergence of
measures on K, — {a,a’}, we have

zr = 9
Y |z — aly |z — a,

. _ dHaarg (2
lim ¢y st Z A 2(2)
§—+00

(z,y)eRy %I, (z, y)=Ro, | n(z—ya)|s<s

where

(g —1) (g0 +1)* Cre(—1) N(I) Hp|[(1 + ﬁ)

C] = —
q3 q971

(3) This third example is only interesting when the ideal class number is larger than 1. Given
any fractional ideal m of R,, taking (zo,yo) € R, x R, such that the fractional ideals {(zg, yo)
and m have the same ideal class and G = GLy(R,), using the change of variables s — sN(m)?
in the statement of Theorem 19.1, for the weak-star convergence of measures on K, — {a, a”},
with the same error term as for Theorem 19.1, we have

lim e 5! 2 A dHaarg, (z)

K =
s+ v z—aly|lz—a%l,’
(z,y)emxm, (z,yy=m, N(m)~?|n(z—ya)|,<s | o o

where

e = (g0 — 1) (g + 1)* ¢{r(=1) M, 20, yo
g (q—1) ¢o! '

Before proving Theorem 19.1, let us give a counting result which follows from it. Any
subgroup of G acts on the left on any orbit of G. Furthermore, the stabiliser G, of « in
G preserves the map (z,y) — |n(z — ya)l|y, by Proposition 17.4 (3). We may then define a
counting function V'(s) = Ve .o (s) of elements of R, x R, in a linear orbit under a finite
index subgroup G of GLg(R,) on which the absolute value of the norm form associated with
« is at most s, as

V'(s) = Card Go\{(z, y) € G(z0, %0), |n(z —ya)l, < s} .
2See Equation (3.8).
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Corollary 19.3. Let G be a finite index subgroup of GLa(Ry,), let a € K, be a quadratic
irrational over K, and let (xg,y0) € Ry x Ry —{(0,0)}. Let go € G, with v(tr gg) # 0 and let
mo be the index of g5 in Go. Let

y 2a5 (a—1) ¢ Z(G)] [v(trgo)| [GL2(Ry) (o, 40) * G o, uo)]

(@o +1)? (ke (=1) [ = %[y 1m0 M, 0,y (N<20, Y0))? [GLa(Ry) : G]

Then there exists k > 0 such that, as s — +00,

\Ill(s) _ C”3+O(31_H)-

Proof. Using Equation (18.3) (with I" the image of G in PGLy(R,)) and Equation (17.8),

we have
dHaark,(2)  2(q —1) [Z(G)] |v(tr go)|

Go\(Ky—{a,a}) |z —aly [z —aly B Qv | —a“ly mo

The corollary then follows by applying the equidistribution claim in Theorem 19.1 to the
characteristic function of a compact-open fundamental domain of K, — {&, @’} modulo the
action by homographies of G,. O

Example 19.4. Let (zg,y0) = (1,0), K = Fy(Y), v = vy (so that ¢ = 0 and ¢, = q)
and G = GLy(F,[Y]). Using Equations (14.6) and (16.1), Proposition 17.4 (1), the change
of variable s = ¢! and the fact that |Z(G)| = ¢ — 1 in order to simplify the constant ¢’ of
Corollary 19.3, and recalling the expression of the absolute value at o0 in terms of the degree
from Section 14.2, we get the following counting result: For every integral quadratic irrational
a e F (Y1) over Fy(Y), there exists £ > 0 such that, as t — +00,

<$7 y> = FQ[YL
Card GLQ(Fq[Y])a\{(x’ y) € Fq[Y] X Fq[Y] : deg(x2 o mytr(a) + y2 n(a)) <t }

2q(q— 1)3 _14 2_ _
_ deo(t 5 deg(tr(a)®—4n(a)) t +0 t—k
mo (g 1) eg(tr go) q ¢ +0(™"),
where go € GL2(F,[Y]) fixes a with deg(tr go) # 0 and my is the index of g& in the stabiliser
GLy(Fy[Y])a of o in GLy(F,[Y]).

Proof of Theorem 19.1. The proof is similar to that of Theorem 16.1. Let r = % €
K u{w}. If yo =0, let g, = id € GLy(K), and if yo # 0, let

gr = <71" é) € GLy(K) .

We apply Theorem 15.4 with I' = G the image of G in PGLy(R,), D™ = ], a”[ the (image
of any) geodesic line in X,, with points at infinity @ and o, and D" = 7,5, where , is the
image of g, in PGLa(Ry).

We have Lr, = 2Z and the family 2% = (yD¥),cr/r,, is locally finite, as seen in the
beginning of the proof of Theorem 16.1. The family 2~ = (*y]D_)Wep/FW is locally finite as
seen in the beginning of the proof of Theorem 17.1.

By Proposition 15.2 (5), we have (on the full measure subset K, — {a, a”} of 0xX,)

g
@)t = 197 faarg (2.

TP |z —alylz -y
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As in order to obtain Equation (16.3), since the point at infinity of yD% is - r, we have,
with an error term for every 3 € |0, 1] of the form O(s™"|4|3) for some x > 0 when evaluated
on ¢ € CL(0,,Xy — 0D,

(@ = Digy + 1) Vol(\Xy)
nl—l}-&r-loo 2 q% Z

— v
HU_O]+ H ’YEF/FT
0<d(D~,yDT)<n

Ay

la — %y

= dHaarg, (z) . (19.1
|z — aly |z — a%ly (). (19.1)
We use the following result in order to switch from counting over elements v € I'/T",. for

which 0 < d(D~, D) < ¢ to counting over integral representations with bounded value

of the norm form. See | , page 1054| for the analogous result for the real hyperbolic
3-space and indefinite binary Hermitian forms.

Lemma 19.5. Let g € GLa(R,) and let v be the image of g in PGLy(K). Let zo = yo if
yo # 0 and 29 = xo otherwise. Let (x,y) = g(xo,v0). If d(D~™,yD*) > 0, then
In (| n(z — ya)l, @> .

|Zo|v2

1
d(D™,4D") = i

N gy

Proof. We start by showing that

Ty
99-(1,0) = (f,f) :
Z0 20

Indeed, if yy # 0, we have

1
gg?“(]-’o) = g(r, 1) = Z,TO g(ajo’yO)

and otherwise 1 )
99-(1,0) = g(1,0) = — g(x0,0) = — g(x0,%0) -
o o

_ * *
(990) %=(_yz>.
z20 20

Note that g g, € GLa(K) and |det(gg,)|» = |detgl|, |detgr|, = 1 since g € GLa(R,). By
Proposition 17.4 (2), we hence have

In particular,

h(g9) ™ 0) =|n (2~ Za)

(19.2)

With 5. (-, ) the Busemann function defined in Equation (2.5), we use the signed distance
d(L, H) = minger, B¢(z, 25) between a geodesic line L and a horoball H centred at & # L*,
where x 7 is any point of the boundary of H. Now, by Equations (15.2) and (2.12), we have

d(D_77D+) = d(]a’aa[’,y%%}foo) = d(](ggr)_l tQ, (ggr)_l : O‘a[’%oo)
= U((ggr)il T (ggr)il ' ao)

—In|(ggr) " a—(99,) %, nh((gg,) ")
In g, B In g, .

(19.3)
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Combining Equations (19.2) and (19.3) gives the result. ]

By discreteness, there are only finitely many double classes [g] € Ga\G/G (3,,y,) such that
D~ = Ja,a%[ and gD = g g, are not disjoint. Let Z(G) be the centre of G, which is finite.
Since Z(G) acts trivially on Py(K,), the map G/G 4, ,,) — T/I'; induced by the canonical
map GLgo(R,) — PGL2(R,) is | Z(G)|-to-1. Using the change of variable

_ ‘ZO|U2 n

h(a) Qv

S

and Lemma 19.5 since v - r = % with the notation of this lemma, Equation (19.1) gives

. (%2 —1) (qv + 1) |ZO‘U2 Vol(T\X,)
lim s A
s+ 2 ¢, 1Z(Q)| lo |l 2,

< |8

(z,9)eG(z0,y0), |n(z—ya)|v<s
dHaarg, (2)

- |z —aly |z —a%l, ’

with the appropriate error term. Replacing Vol(I'\X,) and [o_, | by their values respectively
given by Equation (16.6) and Lemma 16.3, the claim of Theorem 19.1 follows. O
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Appendix A

A weak Gibbs measure is the unique
equilibrium, by J. Buzzi

In this Appendix, for a transitive topological Markov shift endowed with a Holder-continuous
potential, we prove that a weak Gibbs measure is the unique equilibrium measure.

A.1 Introduction

Let o : ¥ — X be a topological Markov shift (possibly one- or two-sided), see for instance
Section 5.1. More precisely, we consider the one-sided and two-sided vertex-shifts defined by
a countable oriented graph G with set of vertices V7 and set of arrows Ag < Vo x V. We
assume that ¥ is transitive, that is, that G is connected (as an oriented graph).

We denote by P(X) the set of o-invariant probability measures on ¥ and by Pee(X) the
subset of ergodic ones. Recall that, for all n € N, the n-cylinders are the following subsets of
Y., where x varies in X:

Cn(x) =[z0,...,2n—1] ={yeX : Yke{0,...,n—1}, yp = a1},

so that the 1-cylinders are [v] = {y € ¥ : yg = v} for all v € V5. The points of ¥ admitting
n € N as period under the shift o form the set

Fix,(X) ={xe X : 0"z =z} .

We fix a potential on 3, that is, a continuous function ¢ : 3 — R. We do not assume that ¢

is bounded. We define ¢~ = max{—¢,0} and, for all n € N — {0},

vary (¢) = sup [9(y) — d(2)]

z,yeX : V ke{0,...,n—1}, zp=yx
if (X, 0) is one-sided and otherwise

vary (¢) = sup lp(y) — d(z)] -

z,yeX: Vke{—n+1,...,n—1}, zr=yyi

We say that ¢ has summable variations if ), _, var,(¢) < oo. This is in particular the case if
¢ is Holder-continuous. Let S,¢ = Z?:_ol ¢ oo’ for all neN.
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Definition A.1. A weak Gibbs measure for the potential ¢ is a o-invariant Borel probability
measure m on X such that there exists a number c(m) € R such that for every v € Vi, there
exists C' = 1 with

i | L mlCw)
Vn=1, VexeFix,(X)n[v], C < oxp (8n6(@) — c(m)n)

Note that ¢(m) is then unique; it is called the Gibbs constant of m. Let us stress that we
do not assume the so-called Big Image Property | | and hence using the above weakened
Gibbs property (that is, allowing C' to depend on v) is necessary.

Note that if ¥ is locally compact, that is, if every vertex of G has finite degree (the number
of arrows arriving or leaving from the given vertex), then the above condition is equivalent to
the fact that for any nonempty compact subset K in X, there exists C' > 1 with

m(Cn(z))
exp (Sud(x) — c(m)n)

The pressure P(¢,v) of an element v € P(X) such that { ¢~ dv < 40 is

<C. (A1)

Vn>1, YzeFix,(8)nK, C'<

P(¢,v) = hy(o) + f¢dV .

An equilibrium measure peq for (3, ¢) is an element e, € P(X) such that §¢~ duey, < +00
and

P(¢, preq) = sup{P(¢,v) : v € P(X) and Jqﬁ_ dv < 400} .
The Gurevic pressure is
1
Pg(¢) = limsup — log Z (@)
n—oo T .
2€Fix, (X)N[v]

for any vertex v € Vz. Note that the Gurevi¢ pressure does not depend on v. Let us recall a
few results on the above notions.

Theorem A.2 (Iommi-Jordan [I.J, Theorem 2.2|). If ¢ has summable variations, the following
variational principle holds:

P (¢) = sup{P(¢,v) : ve P(X) and Jqﬁ_ dv < +o}. [

Theorem A.3 (Buzzi-Sarig [BuS, Theorem 1.1|). Assume that ¢ has summable variations.
If Pg(¢) < o0, then there exists at most one equilibrium measure.
If there exists an equilibrium measure i, then du = hdv where h : 3 — R is a continuous,
positive function and v is a positive measure with full support on ¥ such that

o Lyh = esOn, and L;’;V = ey where Ly is the transfer operator defined by
Lou(z) =X per1s e?W) u(y).
e v is finite on each cylinder. O

We note that | | assumed sup ¢ < o0, but this was only used to justify the variational
principle and so this condition can be removed by using Theorem A.2.
We now state the main result of this appendix.
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Theorem A.4. Let (X,0) be a one-sided transitive topological Markov shift and let ¢ : ¥ — R
be a potential with summable variations. Let m be a o-invariant probability measure on % such
that { ¢~ dm < +c0.

Then m is a weak Gibbs measure if and only if it is an equilibrium measure. In this
case, the Gibbs constant c(m) is equal to the Gurevic pressure and the equilibrium measure is
unique.

By a classical argument that follows, this result extends to two-sided topological Markov
shifts (up to a slight strengthening of the regularity assumption on ¢, still satisfied if ¢ is
Holder-continuous).

Corollary A.5. Let (3, 0) be a two-sided transitive topological Markov shift and let ¢ : ¥ — R
be a potential with Y, _,n var,(¢) < c0. Let m be a o-invariant probability measure on ¥
such that § ¢~dm < +o0.

Then m is a weak Gibbs measure if and only if it is an equilibrium measure. In this
case, the Gibbs constant c¢(m) is equal to the Gurevic¢ pressure and the equilibrium measure is
unique.

Remark. The case of the full shift N* has been treated in | , Sec. 3|. More generally,
assuming the Big Image Property, the above result follows from [Sarl| and [BuS| along the
lines of | ].

Proof of Corollary A.5. Let (X,0), ¢, and m be as in the statement of this Corollary. Let
w2 — XN, with (2,)nez — (acn)neN be the obvious factor map onto the one-sided topological
Markov shift (X4, 04 ) defined by the same graph G as for (3, o), called the natural extension.

First, we replace ¢ by a potential ¢ depending only on future coordinates. The proof of
| , Lemma 1.6] applies to our non-compact setting without changes. To be more precise,
for each vertex a € Vi, choose 2% € ¥ with 2§ = a. Define r : ¥ — ¥ by r(x) = y with
Yn = Ty, for n > 0 and y,, = 2720 for n < 0. For every x € ¥, let

u(z) = Y (600t —poot or)(a).

k=0

This defines a bounded real function on ¥ since |¢ o o — ¢ o 0% o r| < var,1(¢) and ¢ has
summable variations. Moreover, u itself has summable variations since, given x,y € ¥ with
xy, = yg for |k| < n, we have

w@) —u@l < Y (6l0"e) — 0(oFy)] + 6(oF () — o(o*(r9))])

0<k<|n/2|

+ Z <|¢oa gboa(m‘)|~l—|¢00()—¢00k(ry)|)

k=|n/2|

<4 Z vargy1(¢

k=|n/2]

so that

Now define ¢ : ¥ — R by
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The function ¢ is continuous with summable variations. Following | |, let us prove that
¢ = ¢ or. We have

b=0¢+ Z(¢ng+l_¢00k07“00)— 2(¢Oak—¢oakor)

k>0 k>0
:¢—¢—Z <¢ogkoroa—¢oakor>
k=0
= Z <¢ogkor—¢oakoroa> .
k=0

Now, 2 = rand rocor = roo. Hence ¢ or = ¢ as claimed. Thus, ¢ induces on the

one-sided shift a function gg : 24+ — R defined by

¢ (p)neny — o(. .. 222" xozy ... ),

satisfying ¢ = 5 oT.

To conclude, observe that S,,é(x) —S,¢(z) = Sp(uoo —u)(x) = 0 if x € Fix, (o), and that
cylinders defined by the same finite words have the same measure for an invariant probability
measure m on the two-sided shift (3, o) and for its image m,m on the one-sided shift (X4,0).
Therefore m is a weak Gibbs measure for ¢ if and only if m,m is a weak Gibbs measure for
5, and their Gibbs constant are then equal.

By construction mym(¢) = m(¢) = m(¢) since m is invariant. As it is well-known, the
natural extension 7w preserves the entropy. Thus, the measure m is an equilibrium measure
with respect to ¢ if and only if m,m is an equilibrium measure with respect to 5

The reduction to one-sided topological Markov shifts is thus complete. O

A.2 Proof of the main result Theorem A .4

The uniqueness of the equilibrium state is given by Theorem A.3. We need to prove that
weak Gibbs measures and equilibrium measures coincide under the integrability assumption
on ¢~ and that the number ¢(m) is equal to the Gurevi¢ pressure.

Step 1. If m is an equilibrium measure, then it is a weak Gibbs measure.

This is a routine consequence of Theorem A.3. Our definition of an equilibrium measure
m enforces ¢~ dm < +o (hences excludes the concomitance of hy,(0) = 400 and {¢dm =
—0).

Recall from Theorem A.3 that dm = hdv with h and v as mentionned. For v € V7 and
x € Fix,(X) n [v], we have

m(Cn(x)) = Jh L, () dv = e 76 Jh Lo, @) d((Ly)"v)
= e Fe(@) ng(h Lo, () dv -

By definition,

Lg(h ¢, (2))(2) = exp(Spd(zo . . . 2p-12)) k(20 . .. Tn-12)
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for all z € 0"(Cp(z)) = o([v]) (and Li(h 1, (s))(2) = 0 otherwise). Hence'

m(Cp(z)) = e Pe®) exp (Sngb(x) + i Vark(gb)> J([ . hdv .
k=1 o([v

As 0 < Sa([v]) hdv < +o0 and Z;:ool varg(¢) < +o0, the measure m is a weak Gibbs measure
for ¢ with Gibbs constant ¢(m) = Pg(¢).

We now turn to the converse implication. Let m be a weak Gibbs measure for ¢ such that
§o~dm < +o0.

The weak Gibbs condition only controls the cylinders that start and end with the same
symbol. Passing to an induced system (that is, considering a first return map on a 1-cylinder)
will remove this restriction. More precisely, let a € Vg be a vertex of G and let p be an
invariant probability measure on (X,0) with p([a]) > 0. The induced system on the 1-
cylinder [a] = {x € ¥ : xy = a} is the map & : [a] — [a] (almost everywhere) defined as
follows:

o let 7(x) = inf{n > 1 : o"x € [a]} be the first-return time in [a], that we also denote
by T[q](x) when we want to emphasize [a];

o let 7(x) = 07®) () if 7(x) < o0;

e let u(B) = u(B n [a])/u([a]) for every Borel subset B of ¥ be the restriction of p to
[a] normalized to be a probability measure.

We also define 7%(z) = 0 and by induction 7"*!(x) = 7(x) + 7%(7z) for every n € N. Note
that @ can only be iterated on the subset

{xela] : Vn=1, 7"(x) < w0} .

By Poincaré’s recurrence theorem, this is a full measure subset of [a], hence the distinction
will be irrelevant for our purposes.
The induced partition is

B=A{la&,....6n1,a] # D :n =1, #a} .

We note that 7 : [a] — [a] is topologically Bernoulli with respect to the partition 8 (that is,
0 : b — [a] is a homeomorphism for each b € 3). For every integer N > 1, we define the N-th
iterated partition BN of 8 by

ﬁN = {bo ﬂﬁ_lbl N ﬁE_N—HbN_l # @ by,...,bny_1 € 6}
and we write 3V (x) for the element of the partition 4V that contains z.
Step 2. The topological Markov shift may be assumed to be topologically mixing.

This follows from the spectral decomposition for topological Markov shifts, see for instance
[BuS, Lem. 2.2].

'We use, for all u,v,d = 0 and ¢ > 0, the notation u = ¢t if E%U <u < cto.
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Step 3. The Gibbs property implies full support and ergodicity.

Let A be a o-invariant (0~!(A) = A) measurable subset of ¥ with m(4) > 0 and let us
prove that m(A) = 1.

Observe that the Gibbs property, together with the transitivity of X, implies that any
cylinder has positive measure for m, hence that m has full support. Let a € V5 be such that
m(A n [a]) > 0.

As m([a]) > 0, we may consider the induced system on [a]. Let N > 1. When f is
a homeomorphism between topological spaces, let f* denote the pushforwards of measures

by f~!. First note that, for almost every z € [a] and every N € N — {0}, since @V is an
homeomorphism from A% (z) onto [a], we have
—N N S d(EN)*m dm
m(An[a]) _ m@ (A0 BY(x)) _ IsV@)na " dm
N N (BN N d@N)*m
ma) @ E@) ., O gy
Now, observe that for m-almost every y € g™ (x):
— 7_N
LN)*m(y) i O o, yn]) e v 9l () eom)
dm n—o  m([yo,-..,Yn])
Hence, since 7V is constant on gV (x),
mAolal) _ psa a5y v A0 BT (@)
m([a]) m(BN(x))
By Doob’s increasing martingale convergence theorem (see for instance [Pet]), for m-almost

every x € [a] — A, the ratio on the right hand side converges to 0 as N — oo. Thus [a] is
contained in A modulo m. Therefore A = | J,.y[a] modulo m for some subset W of V.

Since ¥ is topologically mixing, for any vertex b, the intersection [a] N o7*[b] n c7/[a]
is not empty for some integers 0 < ¢ < j. Pick some point = in that set. By invariance,
m([b]) = m(c'(Cj(z))) = m(Cj(z)). But this last number is positive by the weak Gibbs
property. Thus [b] is contained in A modulo m. Hence m(A) = 1, proving the ergodicity of
m.

Step 4. The Gurevi¢ pressure Pg(¢) is equal to ¢(m), hence is finite. Furthermore h,,(0) <
and ¢ € L!(m).

Fix v € Vo and let K = [v]. Note that m(K) > 0. The ergodicity of m gives a Cesaro
convergence: as n — 00, we have

S|

n—1
Yim(E no " K) — m(K)? > 0.
k=0

The Gibbs property implies that, for all n > 1,

m(K no "K) = C*! Z eSno(@)—c(m)n
2€Fix, (Z)nK
= Cﬂ( Z eS”¢(x)> e—clmn (A.2)
2€Fixn (Z)nK
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If we write Z,, for the term between the parenthesis, we have by the definition of the Gurevic¢
pressure:
1
Pg(¢) = limsup — log Z,, .

n—oo N
As the value of the left hand side of Equation (A.2) is less than one, we see that ¢(m) = Pg(¢).
If this was a strict inequality, then the left hand side of Equation (A.2) would converge to
zero, contradicting its Cesaro convergence to m(K)? > 0. Therefore Pg(¢) = c(m).
Since ¢(m) is finite, so is Pg(¢). Hence Theorem A.2 implies that, for any v € P(X) with
§ ¢~ dv < 400, we have h,(0) < 0 and ¢ is v-integrable. In particular, this holds for v = m,
which finishes the proof of Step 4.

Step 5. If the mean entropy Hp(8) = — 35 1(b) log 7i(b) is finite, then

where o*1 is the measure on X defined by B — > 5 1i(0(B nb)), with respect to which p is
absolutely continuous: u < o* .

This is a classical formula, sometimes called the Rokhlin formula (see for instance [BuS]),
which follows from the computation of the entropy in terms of the information function when
the mean entropy is finite

ha(@) = — f 3 () lim log By(ly [ 728 v - v 7" 8) (x) dr(w)
bep

and from the identity, for x € b,

_ _ A () BB ()
Ex(ly | 18V ---va "B)(z) == — = —— .
s | )= o) ~ TR )
The absolute continuity follows from a direct computation and ensures that the integral above
is well-defined.

Step 6. For all a € Vg, N > 1 and p € Pee(X) with § ¢~ du < 400, we have

1 dn
(o) = —ula) | 1o b d (A3)
: @ N d(@N)*nm)

We use arguments from the proof of | , Theorem 1.1]: the key is to see that the
induced partition (3 of [a] has finite mean entropy for the induced measure i using a Bernoulli
approximation.

Let us consider the Bernoulli measure g for ([a],7) defined by

n—1 n—1
ip( (o 'B:) =[[n(B)
=0 =0

for all B; € . We construct from it an invariant measure pup on (3,0): For every Borel
subset A, let
Tla]—1 4
MB(A)_M([a])fH S Lyootdfg.
al =0

339 13/02/2019



Note that pp is ergodic, since fip is ergodic and J;», o “([a]) has full measure. Define

- -1 i . . . . L.
¢ = ZE(]) poo’. Let C' = supy> vary(¢), which is finite since ¢ has summable variations.
Since every b € (3 is a cylinder of length 7, (x) +1 for every x € b, the conditional expectation

Bx(318) = 3 b = qubdn

bes
satisfies [¢ — Ez(é| B)|lso < C’. Hence
| dun = ntta)) | iy > utia)) | (Ex(315) - ) drig
[a] [a]
> u([a])f[a]cbdu—d - [odu-c'> 0.

Therefore, the last paragraph of the proof of Step 4 applies to v = up and hy,(0) < +00.
Since pp is ergodic, Abramov’s formula yields

hup (0) = wllal) b, (@) -

Since g is Bernoulli, the right hand side of this equality is equal to

p(la]) Hpp (B) = pl[a]) Hu(B) ,

so that Hy(f) is proven to be finite. Thus, Step 5 applies:

L dp
hp (o) = J[a] log a7 di .

This formula extends to hy(@") for all integers N > 1. Using Abramov’s formula this time
for p and @ (since p is ergodic), we have
1 dp

= (@) = ) nlo) = —u(la — log ————
hule) = plel) ) = PN ™) =l | 1w g

as claimed.
Step 7. The entropy of m is equal to ¢(m) — { ¢ dm.

In order to prove this, we apply Step 6 with u = m (which is possible, since m has been
proven to be ergodic in Step 3). As in the proof of Step 3, the Radon-Nikodym derivative is
almost everywhere

dm m(s"(x))

T ) " A gy O P () — em)r @)

Therefore, using Step 6 and the fact that m,) = m([a]) 7, we have

hm(o) = lim (f[ | (c(m) ™V (@) = Sy (5 d(2)) dm + 21og 0) . (A4)
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Note that 7V (z) can be seen as a Birkhoff sum for the induced system on [a] and the function
7 and that, by Kac’s theorem (see for instance [Pet, Sect. 2.4]),

f[a] rdm = m([a])"" .

Therefore, Birkhoff’s ergodic theorem yields, with convergence in L (),

N
i )T () _ c(m)
N—o N m([a])
In order to analyze the second term in Equation (A.4), let ¢(z) = Z(:‘Tg*l #(c*z) and observe

that, by a variation of the proof of Kac’s theorem, ¢ € L!(m) with m(¢) = m([a])~'m(s).
Indeed, passing to the natural extension, one can assume the system to be invertible and use
the partition modulo m given by

) Fdzeld : r(@)=n}).

n=1,0<k<n

Since S~ (;)¢(z) coincides with the Birkhoff sum Snyo(x) for the induced system, Birkhoff’s
ergodic theorem yields, with convergence in L' (),

Jim %STN(M(@: lim —Snd(z) = m([a]) " m(g)

1
N—0 N—w N

The claim follows.
Step 8. Conclusion: any weak Gibbs measure is an equilibrium measure and ¢(m) = Pg(¢).

Steps 4 and 7 prove that hy, (o) + § ¢ dm is well-defined and equal to ¢(m), which by Step
4 is equal to Pg(¢), which is equal to sup{P(¢,v) : v € P(X) and (¢~ dv < 400} by Theorem
A.2, so that m is an equilibrium measure. This completes the proof of Theorem A .4. O
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List of Symbols

6.(2)

L0y

@, " (2)

343

(Z)

standard point at infinity [1 : 0] of a projective line

weak-star convergence of measures on locally compact spaces
characteristic function of a subset A

equivalence relation on index set of an equivariant family &
a-Holder norm of f e €4(Z)

Sobolev W2-norm of ¢ € €(N)

(normalised) absolute value associated with a valuation v

length of the cylinder [w] associated with an admissible sequence w
base point #, = [0, x O,] of the Bruhat-Tits tree X,

maximal compact-open diagonal subgroup of PGLa(K,)
automorphism group (edge-preserving, without inversion) of a metric
tree (X, \)

automorphism group (without inversion) of a simplicial tree X

closed ball of center x and radius r in a metric space
Hamenstadt’s ball of radius ' > 0 with center any geodesic line
extension of w e ¥4 X

dynamical ball in the space of geodesic lines ¢ X

geometrically connected smooth projective curve over F,
complementary set of a subset A

system of conductances on X associated with a potential F
system of conductances on I'\X associated with a potential F'
period for a system of conductances c of a closed orbit g for the
geodesic flow

space of real-valued continuous maps with compact support on Z
space of bounded a-Hélder-continuous real-valued functions on Z
space of real-valued functions on Z with bounded a-Holder-continuous
derivatives of order at most k along the flow

space of a-Holder-continuous real-valued functions with compact
support on Z

272
22
22
148
58
164
268
168
271

273
41

41

22
35

81

267
22
74
74
259

22
58
174

58
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codegp ()
codeggy(x)

COVm,n(¢7 )
covy, (¥, 9)

€OV, g
CAT

T

[a,b,c,d]

la, b, c,d|,
[€1,&2,&3,&4]

O X

X
0eX
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space of real-valued functions on Z with bounded a-Hélder-continuous
derivatives of order at most k£ along the flow and compact support
space of real-valued €*-smooth functions with compact support on T M
metric space satisfying the Alexandrov-Topogonov comparison property
with the real hyperbolic space of constant curvature —1

(normalised) Gibbs cocycle associated with the group I' and the
potential F*

codegree of a vertex x with respect to a subtree I

codegree of a vertex x with respect to a family of subtrees Z

n-th correlation coefficient of two observables ¢, 1 for the measure m
under a transformation

correlation coefficient at time ¢ of 1,1 for the measure p under a flow
correlation coefficient for g € G, and a measure p, on I'\G,

convex hull in X of the limit set AI" of '

conjugate of a quaternion x

crossratio of pairwise distinct points a, b, ¢, d in K,

absolute crossratio of pairwise distinct points a, b, ¢, d for a valuation v
(logarithmic) crossratio of pairwise distinct points &1, &2, &3, &4 in 05X

space at infinity of X

space of distinct ordered pairs of points at infinity of X

set of points at infinity of the geodesic rays whose initial (oriented) edge
ise

boundary of set of vertices of a simplicial subtree D

maximal subgraph with set of vertices VD

inner unit normal bundle of a closed convex subset D

outer unit normal bundle of a closed convex subset D

degree of valuation v, equal to dimp, ky

critical exponent of (T, F')

Laplacian operator associated with a system of conductances ¢* on a
simplicial tree

Laplacian operator associated with a system of conductances ¢ on a
graph of groups

unit Dirac mass at a point x

reduced discriminant of a quaternion algebra D over Q

distance-like map on 0 X — 0o D associated with a closed convex
subset D

distance on the space of generalised geodesic lines

distance on the space of germs of geodesic lines

Hamenstéddt’s distance at infinity associated with an horoball .77
visual distance on 0 X seen from x € X

Hamenstadt’s distance on the strong stable/unstable ball of w € ¥, X

174

164

164

174
285
26

312
319
319
42

26
32
42

156
156
36
36
268
65
128

128

22
313

30
31
34
28
32
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EX set of edges of a graph X 40

YR, Euler function of function ring R, 299
f~ negative part of a real-valued map f 22
fj—r fibration over 01 D with fibers the stable/unstable leaves 37
F potential on T' X 61
F potential on T\T1 X 61
ﬁ’c potential on 7' X associated with a system of conductances & 73
F, potential on T'\T' X associated with a system of conductances c 73
Fy, finite field of order a prime power ¢ 267
Ty modular group at a valuation v of a function field 275
g genus of the smooth projective curve C 267
9X space of geodesic lines in X 30
GX space of generalised geodesic lines in X 30
gxX space of generalised discrete geodesic lines in a simplicial tree X 41
GDoon X space of generalised discrete geodesic lines ¢ in X with d(¢(0), z¢) even 95
G venX space of discrete geodesic lines ¢ in X with £(0) at even distance from xy 95
9. X space of generalised positive/negative geodesic rays in X 30
Yi 0X space of generalised geodesic lines in X isometric exactly on £[0, +oo[ 31
(g))ter (continuous time) geodesic flow on space of generalised geodesics GX 30
(g')ter (continuous time) geodesic flow on the quotient space of generalised 31
geodesics I\ 9 X
(g')ez (discrete time) geodesic flow on space of generalised geodesics 9X, as 42

well as on T'\ ¢X

hn(T) metric entropy of a transformation 7" with respect to a probability 119
measure m

hm(¢1)  metric entropy of a flow (¢¢)er With respect to a probability measure m 121
h(«) complexity of a loxodromic fixed point « 302
h(«) complexity of a quadratic irrational « in K, 306
h(«) complexity of a quadratic irrational a in Q) 315
ha(5) relative height of a loxodromic fixed point 8 with respect to «a 320
ha(B) relative height of a quadratic irrational § with respect to « 325
Haarg,  normalised Haar measure of (K, +) 270
hto height of a horoball in the Bruhat-Tits tree X, 274
Heisg,—1  Heisenberg group of dimension 2n — 1 85
H(t] horoball contained in .7 whose boundary is at distance ¢ from the 29
boundary of 7
HB,(w) stable horoball of w e ¥, X 35
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HB_(

346

unstable horoball of w e ¥_X

stable horosphere of w e 4, X

unstable horosphere of w e ¥_X
complex hyperbolic space of dimension n

antipodal map w — {t — w(—t)} on GX, as well as on T' X
antipodal map T'w — {t — Dw(—t)} on T\&X, as well as on I\T1X
reciprocity index of a loxodromic fixed point «

G-reciprocity index of a quadratic irrational S

isometry group of X

set of classes of fractional ideals of R,

global function field over [,
completion of function field K for the valuation v
residual field of the valuation v on K

translation length of an isometry v of X

length of a periodic orbit ¢

limit set of a discrete group of isometries I' of X
conical limit set of a discrete group of isometries I of X

Hilbert space of square integrable maps on VY for the measure voliy g,

Lebesgue measure along a periodic orbit g

links of vertices in simplicial trees

length spectrum of action of I' on X

natural logarithm (with In(e) = 1)

positive /negative endpoint of geodesic line ¢
standard basepoint in space of geodesic lines ¥X,

multiplicity of a vertex x with respect to an equivariant family &
Gibbs measure on the space of geodesic lines ¥4 X

Gibbs measure on the quotient space of geodesic lines I'\¥ X

Gibbs measure on the space of discrete geodesic lines ¥X

Gibbs measure on the quotient space of discrete geodesic lines I'\¥X
renormalised Gibbs measure mp/||mp|| on T\Y X

renormalised Gibbs measure m./||m.|| on T\¥X

(normalised) Patterson density for the pair (I, FT)

skinning measures on the strong stable or strong unstable leaf W= (w)

Hausdorfl measures of the visual distances d, on AI'

(absolute) norm of a nonzero ideal I in a Dedekind ring
closed e-neighbourhood of a subset A of a metric space

W W
v Ot Ot

w

30

31
302
309
26
275

267
267
267

26
259
26
26
44
259
272
95
22
30
273

80
80
91
91
163
165

269
22
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Q = QF,F,z,y
Qv

R,

O+
aO’

347

set of points of A at distance at least € from the complement of A
homeomorphism between stable/unstable leaves and inner/outer normal
bundles of horoballs

relative norm of quadratic irrational £

reduced norm of a quaternion x

conditional measure on the (weak) stable/unstable leaf W9% (w) of

w e giX

initial vertex map EFX — VX in a graph X

shadow of a subset A of X seen from z € X U 0pn X
valuation ring of v in K,

two-sided recurrent set for the geodesic flow in "Y' X

footpoint projection w — w(0) of (generalised) geodesic lines, and of
their germs at 0

natural extension from one-sided to two-sided shifts

uniformiser of a field endowed with a valuation v

uniformiser of a valuation v of a function field K over I,
fundamental groupoid of a graph of groups (Y, G)

closest point map to a convex subset D

closest point map homeomorphism from 0, X — 0D to outer/inner
normal bundle of D

total mass function of Patterson density (u¥).ex

kernel of morphism [g] — v(det g) mod 2 from PGLy(K,) to Z/27Z
pressure of a potential ¢ under a transformation

pressure of a potential 1 under a flow

metric pressure for a potential ¢ of a probability measure m invariant
under a transformation

metric pressure for a potential ¢ of a flow-invariant probability measure
m

Poincaré series of (T, F')
order of residual field k&,

affine algebra of the affine curve C — {v}

one-sided shift in symbolic dynamics

Other fixed point than « of a loxodromic element

Galois conjugate of a quadratic irrational 8 in K,

Galois conjugate of a quadratic irrational o in @,

skinning measure on outer/inner normal bundle of convex subset D

inner skinning measure on I'\ %X of a family of closed convex subsets 2

22
37

305
312
145

40
26
267
83

30

166
265
267
241
36
37

91
302
119
9, 121
119

9, 121

65
267

268

168
302
305
315
139
149
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Tr

T'X
tr(p)
Tr(z)
TVOI(Y’ G)

TVOI(Y7 G*,)\)

TVol(Y, G
TVol(Y, Gy, \)

348

outer skinning measure on I'\ GX of a family of closed convex subsets 2

outer/inner skinning measure on 4 X of a family of closed convex

subsets 9

outer/inner skinning measure of a family 2 = (£2;);es of subsets of

(0LDy)ier

terminal vertex map FX — VX in a graph X
first edge map of a discrete time geodesic line
space of germs at ¢t = 0 of geodesic lines in X
relative trace of quadratic irrational 5
reduced trace of a quaternion x

volume form on the set of edges of a graph of finite groups (Y, G)
volume form of the set of edges of a metric graph of finite groups

(Y7 G*7 )\)

total volume of the set of edges of a graph of finite groups (Y, G)
total volume of the set of edges of a metric graph of finite groups

(Y7 G*7 A)

domain of the fibration fjj—r

dynamical neighbourhoods of a point w € ¥+ X
dynamical neighbourhood of a subset QF of ¥ X
valuation at infinity of Fy(Y")

germ at t = 0 of a geodesic line ¢

volume form on the set of vertices of a graph of finite groups (Y, G)

volume of a graph of finite groups (Y, G)
set of vertices of a graph X

set of vertices of a pointed graph (X, z() at even distances from xg
set of vertices of a pointed graph (X, z) at odd distances from z

positive /negative endpoint of generalised geodesic line w
strong stable leaf of w € ¥, X

stable leaf of we ¥, X

strong unstable leaf of w e ¥ X

unstable leaf of w e ¥_X

geometric realisation of a metric tree (X, \)
Bruhat-Tits tree of (PGLa, K,)

Dedekind’s zeta function of a function field K
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38
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31

44
40
95

30
32
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Index

absolute complexity, 302, 306, 315

crossratio, 319 conductance, 72, 242

value, 266 reversible, 73
acylindrical, 110, 193, 256 conical limit
adjacency matrix, 134 point, 26
admissible, 102 set, 26
alc-norm, 284, 286 conjugate, 312
algebraic lattice, 46 continued fraction, 311
algebraically locally constant, 284, 286 eventually periodic, 311
almost precisely invariant, 157 convergence
antipodal map, 30, 31 narrow, 225
antireversible, 73 weak, 225
attractive, 27 convergence type, 65

convex, 26

bipartite, 40 convex hull, 26
biregular, 41 correlation coefficient, 164, 174
boundary, 156 counting function, 226, 242, 292, 328
bounded parabolic limit point, 26 critical exponent, 65, 75
Bowen ball, 81 cross-section, 114
Bowen-Margulis measure, 80 crossratio, 42, 319
Bowen-Walters distance, 113 absolute, 319
Busemann cocycle, 29 cusp, 275

cuspidal ray, 45

closest point map, 36 Cygan distance, 85

cocycle cylinder, 102, 166
Busemann, 29 tree, 92
cohomologous, 87
Gibbs, 69 decay of correlations

codegree, 156, 157 exponential, 163

cohomologous, 65, 73, 87, 102, 122 polynomial, 163

common perpendicular, 39, 241 superpolynomial, 175
ending transversally, 241 Dedekind’s zeta function, 269
endpoint, 241 degree, 41
multiplicity, 235 Diophantine, 16, 175
origin, 241 2-Diophantine, 175
starting transversally, 241 4-Diophantine, 175

comparison triangle, 25 discriminant, 313

complex geodesic line, 142 reduced, 313
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distance
Bowen-Walters, 113
Cygan , 85
Hamenstadt’s, 32, 34
signed, 223
visual, 28
distance-like map, 59
divergence type, 65
doubling measure, 79
uniformly, 79
dynamical
ball, 81
neighbourhood, 38
of a point, 37

edge
length map, 41
nonoriented, 40
opposite, 40
edge-indexed graph, 44
€lc-norm, 61
elliptic, 26
ending transversally, 241
endpoint, 241
negative, 30
positive, 30
equilibrium measure, 334

equilibrium state, 9, 119, 122

equivariant family, 148
locally finite, 148
Euler function, 299
exponential decay
Holder, 163, 165
Sobolev, 164
exponentially mixing
Holder, 163, 165
Sobolev, 164
extendible geodesics, 25
extension, 31

first return

map, 114

time, 114
footpoint projection, 30, 31
full, 102
function field, 267
fundamental groupoid, 241

350

Galois conjugate, 305
generalised geodesic
line, 30
discrete, 41
ray, 31
segment, 31
geodesic, 25
current, 80
flow, 30
discrete time, 42
line, 25
generalised, 30

generalised discrete, 41

path, 241
ray, 25
asymptotic, 26
segment, 25
geodesically complete, 25
geometric realisation, 41
geometrically finite, 26
Gibbs
cocycle, 69
constant, 102, 334
measure, 80, 91
weak, 120, 334
property, 81, 92, 102
graph, 40
bipartite, 40
edge-indexed, 44
of groups, 43
metric, 44
quotient, 44
Green
function, 133
kernel, 133
growth
linear, 48
subexponential, 48
Gurevi¢ pressure, 334

Hamenstadt’s
distance, 32, 34
measure, 141

harmonic measure, 133

heigth, 274

Heisenberg group, 85

highest point, 274
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Holder-continuity, 47
local, 47
Holder-equivalent, 48
Hélder norm, 58
homogeneous
locally, 193
homography, 272
Hopf parametrisation, 32
discrete, 42

Hopf-Tsuji-Sullivan-Roblin theorem, 82

horoball, 29

stable, 35

unstable, 35
horosphere, 29

stable, 35

unstable, 35
horospherical coordinates, 86

index, 256
induced
partition, 337
system, 337
inner unit normal bundle, 36
inseparable, 306
inversion, 41
isomorphism, 114
iterated partition, 337

Kac formula, 124

Laplacian, 128
lattice, 45
(tree), 45
algebraic, 46
uniform, 45
O,-lattice, 271
leaf
stable, 35
strong stable, 32
strong unstable, 32
unstable, 35
length

of common perpendicular, 39

spectrum, 84, 95

limit point
bounded parabolic, 26
conical, 26

limit set, 26
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linear growth, 48
link, 272
Liouville’s measure, 85
Lipschitz, 47
local field
non-Archimedean, 267
locally
constant, 61
finite, 148
Holder-continuous, 47
Lipschitz, 47
loxodromic, 27, 301
reciprocal, 309

Markov
chain, 110, 132
shift
one-sided, 168
transitive, 102
two-sided, 101
Markov-good, 110
measure
Bowen-Margulis, 80
doubling, 79
Gibbs, 80
Hamenstadt’s, 141
induced, 225
Liouville, 85
Patterson, 77
satisfying the Gibbs property, 81, 92, 102
skinning, 139, 145
smooth, 231
Tamagawa, 313, 314
measured metric space, 79
metric
graph of groups, 44
pressure, 9, 119, 121
tree, 41
mixing, 95
modular
graph, 275
graph of groups, 275
group, 275
ray, 275
multiplicity, 157, 226, 235, 242

Nagao lattice, 275
narrow topology, 225
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natural extension, 166, 335 property HC, 8, 62

suspended, 177
negative quadratic irrational, 305

endpoint, 30 complexity, 306

part, 22 reciprocal, 309
non-Archimedean local field, 267
non-backtracking, 193
nonelementary, 26

radius-continuous ball masses, 210
radius-Hoélder-continuous ball masses, 211
random walk, 133

norm, 200 non-backtracking, 193
elc, 61 e o
alc, 284, 286 iasl mixing,
form, 327 . )
Holder, 58 cuspidal, 45

generalised geodesic, 31
reciprocal, 309
reciprocity index, 309

of a quaternion, 312
of quadratic irrational, 306

opposite edge7 40 recurrent, 133
order, 313 reduced, 241
origin, 193, 241 regular, 41
ortho]ength spectrum, 11 relative helght, 319, 325, 326
marked, 11 repulsive, 27
outer unit normal bundle, 36 residual field, 266
reversible, 65
parabolic, 27 Rokhlin formula, 339
Patterson density, 77 roof function, 113
period, 62, 259, 311
Poincaré Sasaki’s metric, 51
map, 114 separable, 306
series, 65 shadow, 26
pointing lemma, 79
away, 153 for trees, 90
towards, 153 shift, 92, 101, 168
polynomially mixing, 163 Siegel domain, 86
positive endpoint, 30 signed distance, 223
potential, 61, 121 simple, 157
associated with, 73 simplicial tree, 41
cohomologous, 65 skinning measure, 139, 145, 256
reversible, 65 inner, 149
precisely invariant, 157 outer, 149
almost, 157 space at infinity, 26
pressure, 9, 92, 119, 121, 334 special flow, 113
Gurevi¢, 334 spherically symmetric, 151
metric, 9, 119, 121 splitting over, 312
primitive, 27 stable
proper, 25, 36 horoball, 35
proper nonempty properly immersed closed horosphere, 35
locally convex subset, 227 leaf, 35
properly immersed, 10 standard base point, 271
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starting transversally, 241
state space, 132
strong
stable leaf, 32
unstable leaf, 32
subexponential growth, 48
subgraph of subgroups, 43
subshift of finite type, 102
subtree, 26
suspension, 113
system of conductances, 8, 72
antireversible, 73
cohomologous, 73
reversible, 73

Tamagawa measure, 313, 314
terminal vertex, 41
Theorem
of Hopf-Tsuji-Sullivan-Roblin, 82
thermodynamic formalism, 9
topological Markov shift
one-sided, 168
transitive, 102
two-sided, 101
topologically
mixing, 84, 95
transitive, 102
topology
narrow, 225
weak, 225
trace
of a quaternion, 312
of quadratic irrational, 306
transient, 133
transition kernel, 132
transitive, 102
translation
axis, 27, 301
length, 26
tree
biregular, 41
metric, 41
uniform, 41
regular, 41
simplicial, 41
R-tree, 25
tree cylinder, 92
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uniform tree, 41
uniformiser, 266
uniformly doubling, 79
unit
normal bundle
inner, 36
outer, 36
tangent bundle, 31
unstable
horoball, 35
horosphere, 35
leaf, 35

valuation, 265
p-adic, 267
at infinity, 266
ring, 265
n-variation, 120
vertex
initial, 40
terminal, 40
n-th vertex of a random walk, 193
virtual centre, 255
visual distance, 28
volume
form
of a graph of groups, 44
of a graph of groups (edge-), 44
of a metric graph of groups, 45
of a graph of groups, 44

weak Gibbs measure, 120
weak topology, 225

zeta function, 269

13/02/2019



354 13/02/2019



Bibliography

[Abr]
[AIF]

L. M. Abramov. On the entropy of a flow. Doklady Akad. Nauk. SSSR 128 (1959) 873-875.

D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on Graphs. Unfin-
ished monograph 2002, recompiled 2014, available at http://www.stat.berkeley.edu/$\
sim$aldous/RWG/book.html.

[AloBLS] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-backtracking random walks miz

[AloL)]

[AmK]

[AnFH]

[ArCT]

[AtGP]

[Babl]

[Bab2]

[Bal]

[Bar]]

[BarS]

[BartL)|

[Basm|

[Bass]
[BasK]
[BasL]
355

faster. Commun. Contemp. Math. 9 (2007) 585-603.

N. Alon and E. Lubetzky. Poisson approzimation for non-backtracking random walks. Israel

J. Math. 174 (2009) 227-252.

W. Ambrose and S. Kakutani. Structure and continuity of measurable flows. Duke Math. J.
9 (1942) 25-42.

O. Angel, J. Friedman, and S. Hoory. The non-backtracking spectrum of the universal cover
of a graph. Trans. Amer. Math. Soc. 367 (2015) 4287-4318.

G. Arzhantseva, C. Cashen, and J. Tao. Growth tight actions. Pacific J. Math. 278 (2015)
1-49.

J. Athreya, A. Ghosh, and A. Prasad. Ultrametric logarithm laws, II. Monat. Math. 167
(2012) 333-356.

M. Babillot. On the mizing property for hyperbolic systems. Israel J. Math. 129 (2002) 61-76.

M. Babillot. Points entiers et groupes discrets : de l'analyse aux systémes dynamiques. In
"Rigidité, groupe fondamental et dynamique", P. Foulon ed., Panor. Synthéses 13, 1-119,
Soc. Math. France, 2002.

W. Ballmann. Lectures on spaces of nonpositive curvature. DMW Seminar 25, Birkhauser,

1995.

L. Barreira and G. lommi. Suspension flows over countable Markov shifts. J. Stat. Phys. 124
(2006) 207-230.

L. Barreira and B. Saussol. Multifractal analysis of hyperbolic flows. Comm. Math. Phys.
214 (2000) 339-371.

A. Bartels and W. Liick. Geodesic flow for CAT(0)-groups. Geom. & Topol. 16 (2012)
1345-1391.

A. Basmajian. The orthogonal spectrum of a hyperbolic manifold. Amer. Math. J. 115 (1993)
1139-1159.

H. Bass. Cowvering theory for graphs of groups. J. Pure Appl. Math. 89 (1993) 3-47.
H. Bass and R. Kulkarni. Uniform tree lattices. J. Amer. Math. Soc 3 (1990) 843-902.
H. Bass and A. Lubotzky. Tree lattices. Prog. in Math. 176, Birkh&user, 2001.

13/02/2019


http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html
http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html

[BekL|
[BeHP]
[Bell

[BerK]|
[BerN]

[Bil]
[BIHM|

[Bon|
[Bou|
[Bowd]

[Bowel]
[Bowe2]

[BowW]
[BoyM]

[BridH]
[BridK]
[Brin]

[BrinS]
[BrP1]

[BrP2]
[BrPP]
[BuM|
[BuS|

356

B. Bekka and A. Lubotzky. Lattices with and lattices without spectral gap. Groups Geom.
Dyn. 5 (2011) 251-264.

K. Belabas, S. Hersonsky, and F. Paulin. Counting horoballs and rational geodesics. Bull.
Lond. Math. Soc. 33 (2001), 606-612.

K. Belarif. Genericity of weak-mizing measures on geometrically finite manifolds. Preprint
[arXiv:1610.03641].

G. Berkolaiko and P. Kuchment. Introduction to quantum graphs. Math. Surv. Mono. 86,
Amer. Math. Soc. 2013.

V. Berthé and H. Nakada. On continued fraction expansions in positive characteristic: equiv-
alence relations and some metric properties. Expo. Math. 18 (2000) 257-284.

P. Billingsley. Convergence of probability measures. Wiley, 1968.

S. Blachére, P. Haissinsky, and P. Mathieu. Harmonic measures versus quasi-conformal
measures for hyperbolic groups. Ann. Sci. Ec. Norm. Supér. 44 (2011) 683-721.

F. Bonahon. Geodesic currents on negatively curved groups. In “Arboreal group theory”, R.
Alperin ed., pp. 143-168, Pub. M.S.R.I. 19, Springer Verlag 1991.

M. Bourdon. Structure conforme au bord et flot géodésique d’un CAT(—1) espace. L’Ens.
Math. 41 (1995) 63-102.

B. Bowditch. Geometrical finiteness with variable negative curvature. Duke Math. J. 77
(1995) 229-274.

R. Bowen. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 1-30.

R. Bowen. FEquilibrium states and the ergodic theory of Anosov diffeomorphisms. Lect. Notes
Math. 470, Springer Verlag, 1975.

R. Bowen and P. Walters. Ezpansive one-parameter flows. J. Diff. Eq. 12 (1972) 180-193.

A. Boyer and D. Mayeda. Fquidistribution, ergodicity and irreducibility associated with Gibbs
measures. Comment. Math. Helv. 92 (2017) 349-387.

M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Grund. math. Wiss.
319, Springer Verlag, 1999.

M. Bridgeman and J. Kahn. Hyperbolic volume of manifolds with geodesic boundary and
orthospectra. Geom. Funct. Anal. 20 (2010) 1210-1230.

M. Brin. FErgodicity of the geodesic flow. Appendix in W. Ballmann, Lectures on spaces of
nonpositive curvature, DMV Seminar 25, Birkh&user, 1995, 81-95.

M. Brin and G. Stuck. Introduction to dynamical systems. Cambridge Univ. Press, 2002.

A. Broise-Alamichel and F. Paulin. Dynamique sur le rayon modulaire et fractions continues
en caractéristique p. J. London Math. Soc. 76 (2007) 399-418.

A. Broise-Alamichel and F. Paulin. Sur le codage du flot géodésique dans un arbre. Ann. Fac.
Sci. Toulouse 16 (2007) 477-527.

A. Broise-Alamichel, J. Parkkonen, and F. Paulin. Fquidistribution non archimédienne et
actions de groupes sur les arbres. C. R. Acad. Scien. Paris, Ser I 354 (2016) 971-975.

M. Burger and S. Mozes. CAT(—1) spaces, divergence groups and their commensurators. J.
Amer. Math. Soc. 9 (1996) 57-94.

J. Buzzi and O. Sarig. Uniqueness of equilibrium measures for countable Markov shifts and
multidimensional piecewise expanding maps. Erg. Theo. Dyn. Sys. 23 (2003) 1383-1400.

13/02/2019



[Cal]
[Car]

[Cas]

[Cha|
[ChaP]

[ChCS]

[ChGY]

[Clo]
[Co]]

[CoM]

D. Calegari. Bridgeman’s orthospectrum identity. Topology Proc. 38 (2011) 173-179.

P. Cartier. Fonctions harmoniques sur un arbre. In "Symposia Mathematica" Vol. IX (Con-
vegno di Calcolo delle Probabilita, INDAM, Rome, 1971), pp 203-270, Academic Press, 1972.

J. W. S. Cassels. Local fields. London Math. Soc. Stud. Texts 3, Cambridge Univ. Press,
1986.

C. Champetier. L’espace des groupes de type fini. Topology 39 (2000) 657-680.

D. Chatzakos and Y. Petridis. The hyperbolic lattice point problem in conjugacy classes.
Forum Math. 28 (2016) 981-1003.

J.-R. Chazottes and P. Collet and B. Schmitt. Statistical consequences of the Devroye in-
equality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems.
Nonlinearity 18 (2005) 2341-2364.

F. Chung, A. Grigor'yan, and S.-T. Yau. Higher eigenvalues and isoperimetric inequalities
on Riemannian manifolds and graphs. Comm. Anal. Geom., 8 (2000) 969-1026.

L. Clozel. Démonstration de la conjecture 7. Invent. Math. 151 (2003) 297-328.

P. Colmez. Corps locaur. Master lecture notes, Université Pierre et Marie Curie, https:
//webusers.imj-prg.fr/ pierre.colmez/CL.pdf.

C. Connell and R. Muchnik. Harmonicity of quasiconformal measures and Poisson bound-
aries of hyperbolic spaces. Geom. Funct. Anal. 17 (2007) 707-769.

[ConLT| D. Constantine and J.-F. Lafont and D. Thompson. The weak specification property for

[Coo
[CoP1]
[CoP2]
[CoP3]
[CoP4]
[CoP5]
[CoP6|
[Cos]
[Cou]
[Cyg]
[CyS]

357

geodesic flows on CAT(—1) spaces. Preprint [arXiv:1606.06253], to appear in Groups,
Geometry, and Dynamics.

M. Coornaert. Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens

de Gromov. Pacific J. Math. 159 (1993) 241-270.

M. Coornaert and A. Papadopoulos. Symbolic dynamics and hyperbolic groups. Lect. Notes
Math. 1539, Springer Verlag, 1993.

M. Coornaert and A. Papadopoulos. Récurrence de marches aléatoires et ergodicité du flot
géodésique sur les graphes réguliers. Math. Scand. 79 (1996) 130-152.

M. Coornaert and A. Papadopoulos. Positive eigenfunctions of the Laplacian and conformal
densities on homogeneous trees. J. London Math. Soc. 55 (1997) 609-624.

M. Coornaert and A. Papadopoulos. Upper and lower bounds for the mass of the geodesic
flow on graphs. Math. Proc. Cambridge Philos. Soc. 121 (1997) 479-493.

M. Coornaert and A. Papadopoulos. Spherical functions and conformal densities on spheri-
cally symmetric CAT(—1)-spaces. Trans. Amer. Math. Soc. 351 (1999) 2745-2762.

M. Coornaert and A. Papadopoulos. Symbolic coding for the geodesic flow associated to a
word hyperbolic group. Manuscripta Math. 109 (2002) 465-492.

S. Cosentino. Equidistribution of parabolic fixed points in the limit set of Kleinian groups.
Erg. Theo. Dyn. Syst. 19 (1999) 1437-1484.

Y. Coudéne. Gibbs measures on negatively curved manifolds. J. Dynam. Control Syst. 9
(2003) 89-101.

J. Cygan. Wiener’s test for Brownian motion on the Heisenberg group. Coll. Math. 39 (1978)
367-373.

V. Cyr and O. Sarig. Spectral gap and transience for Ruelle operators on countable Markov
shifts. Comm. Math. Phys. 292 (2009) 637-666.

13/02/2019


https://webusers.imj-prg.fr/~pierre.colmez/CL.pdf
https://webusers.imj-prg.fr/~pierre.colmez/CL.pdf

[Dall]

[Dal2]
[DaOP]

[DaPs]

[DaSU]

[deM]
[DM]

[Doll]
[Dol2]

[Dou]
[EF]

|EM]
[Fre]
[Fril]
[Fri2]
|GaL|
GaP]
|GH]
[GLP]

[Gol]
[GoP]

[Gos]

F. Dal’Bo. Remarques sur le spectre des longueurs d’une surface et comptage. Bol. Soc. Bras.
Math. 30 (1999) 199-221.

F. Dal’'Bo. Topologie du feuilletage fortement stable. Ann. Inst. Fourier 50 (2000) 981-993.

F. Dal’'Bo, J.-P. Otal, and M. Peigné. Séries de Poincaré des groupes géométriquement finis.
Israel J. Math. 118 (2000) 109-124.

F. Dal’Bo, M. Peigné, and A. Sambusetti. On the horoboundary and the geometry of rays of
negatively curved manifolds. Pacific J. Math. 259 (2012) 55-100.

T. Das, D. Simmons, and M. Urbanski. Geometry and dynamics in Gromov hyperbolic metric
spaces, with an emphasis on non-proper settings. Math. Surv. Monographs 218, Amer. Math.
Soc. 2017.

B. de Mathan. Approzimations diophantiennes dans un corps local. Mémoire Soc. Math.
France 21, 1970.

C. Dellacherie and P.-A. Meyer. Probabilities and Potential. North-Holland Math. Stud. 29,
North-Holland, 1978.

D. Dolgopyat. On decay of correlation in Anosov flows. Ann. of Math. 147 (1998) 357-390.

D. Dolgopyat. Prevalence of rapid mixing in hyperbolic flows. Erg. Th. Dyn. Sys. 18 (1998)
1097-1114.

F. Douma. A lattice point problem on the regular tree. Discrete Math. 311 (2011) 276-281.

N. Enriquez and J. Franchi. Masse des pointes, temps de retour et enroulements en courbure
négative. Bull. Soc. Math. France 130 (2002) 349-386.

A. Eskin and C. McMullen. Mizing, counting, and equidistribution in Lie groups. Duke
Math. J. 71 (1993) 181-209.

H. Freudenthal. Uber die Enden topologischer Riume und Gruppen. Math. Z. 33 (1931)
692-713.

J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Com-
binatorica 11 (1991) 331-362.

J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem.
Amer. Math. Soc. 195, 2008.

D. Gaboriau and G. Levitt. The rank of actions on R-trees. Ann. Scien. Ec. Norm. Sup. (4)
28 (1995) 549-570.

D. Gaboriau and F. Paulin. Sur les immeubles hyperboliques. Geom. Dedicata 88 (2001)
153-197.

E. Ghys and P. de la Harpe. Sur les groupes hyperboliques d’aprés Mikhael Gromov. Prog.
in Math. 83, Birkhduser 1990.

P. Giulietti, C. Liverani, and M. Pollicott. Anosov flows and dynamical zeta functions. Ann.
of Math. 178 (2013) 687-773.

W. Goldman. Complez hyperbolic geometry. Oxford Univ. Press, 1999.

A. Gorodnik and F. Paulin. Counting orbits of integral points in families of affine homoge-
neous varieties and diagonal flows. J. Modern Dynamics 8 (2014) 25-59.

D. Goss. Basic structures of function field arithmetic. Erg. Math. Grenz. 35, Springer Verlag
1996.

[GouMM] S. Gouézel, F. Mathéus, and F. Maucourant. Entropy and drift in word hyperbolic groups.

358

Invent. Math. 211 (2018) 1201-1255.
13/02/2019



[Gros|
[Grot]

[Gui]
[GuL]

[Gyol

[Ham1]
[Ham2]
[HaW]

[Hei]
[Herr]

[Hers|
[HeP1]
[HeP2]
[HeP3|
[HeP4|
[Hig]
[Hub1]
[Hub2|
(L]
[T
[JKL]
[KaN]
[Kel]

359

E. Grosswald. Representations of integers as sums of squares. Springer Verlag, 1985.

W. Grotz. Mittelwert der Fulerschen @-Funktion und des Quadrates der Dirichletschen Teil-
erfunktion in algebraischen Zahlkorpern. Monatsh. Math. 88 (1979) 219-228.

L. Guillopé. Entropies et spectres. Osaka J. Math. 31 (1994) 247-289.

V. Guirardel and G. Levitt. Trees of cylinders and canonical splittings. Geom. Topol. 15
(2011) 977-1012.

K. Gy6ry. Bounds for the solutions of norm form, discriminant form and index form equations
in finitely generated integral domains. Acta Math. Hungarica 42 (1983) 45-80.

U. Hamenstadt. A new description of the Bowen-Margulis measure. Erg. Theo. Dyn. Sys. 9
(1989) 455-464.

U. Hamenstadt. Cocycles, Hausdorff measures and cross ratios. Erg. Theo. Dyn. Sys. 17
(1997) 1061-1081.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford Univ.
Press, sixth ed., 2008.

J. Heinonen. Lectures on analysis on metric spaces. Universitext, Springer Verlag, 2001.

O. Herrmann. Uber die Verteilung der Lingen geoditischer Lote in hyperbolischen Rawmfor-
men. Math. Z. 79 (1962) 323-343.

S. Hersonsky. Covolume estimates for discrete groups of hyperbolic isometries having parabolic
elements. Michigan Math. J. 40 (1993) 467-475.

S. Hersonsky and F. Paulin. On the rigidity of discrete isometry groups of negatively curved
spaces. Comm. Math. Helv. 72 (1997) 349-388.

S. Hersonsky and F. Paulin. Hausdorff dimension of diophantine geodesics in megatively
curved manifolds. J. reine angew. Math. 539 (2001) 29-43.

S. Hersonsky and F. Paulin. Counting orbit points in coverings of negatively curved manifolds
and Hausdorff dimension of cusp excursions. Erg. Theo. Dyn. Sys. 24 (2004) 803-824.

S. Hersonsky and F. Paulin. On the almost sure spiraling of geodesics in negatively curved
manifolds. J. Diff. Geom. 85 (2010) 271-314.

P. J. Higgins. The fundamental groupoid of a graph of groups. J. London Math. Soc. 13
(1976) 145-149.

H. Huber. Uber eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in
der hyperbolischen Ebene. I. Comment. Math. Helv. 30 (1956) 20-62.

H. Huber. Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen.
Math. Ann. 138 (1959) 1-26.

G. Iommi and T. Jordan. Phase transitions for suspension flows. Comm. Math. Phys. 320
(2013) 475-498.

G. Iommi and T. Jordan and M. Todd. Recurrence and transience for suspension flows. Isr.

J. Math. 209 (2015) 209-547.

J. Jaerisch and M. Kessebéhmer and S. Lamei. Induced topological pressure for countable
state Markov shifts. Stoch. Dyn. 14 (2014), no. 2.

I. Kapovich and T. Nagnibeda. The Patterson-Sullivan embedding and minimal volume
entropy for outer space. Geom. Funct. Anal. 17 (2007) 1201-1236.

G. Keller. Equilibrium states in ergodic theory. London Math. Soc. Stud. Texts 42, Cambridge
Univ. Press, 1998.

13/02/2019



[KemaPS] A. Kemarsky and F. Paulin and U. Shapira. Escape of mass in homogeneous dynamics in

[Kemp]
[KeS]

[Kim)]

positive characteristic. J. Modern Dyn. 11 (2017) 369-407.

T. Kempton. Thermodynamic formalism for suspension flows over countable Markov shifts.
Nonlinearity 24 (2011) 2763-2775.

G. Kenison and R. Sharp. Orbit counting in conjugacy classes for free groups acting on trees.
J. Topol. Anal. 9 (2017) 631—647.

I. Kim. Counting, mixing and equidistribution of horospheres in geometrically finite rank one
locally symmetric manifolds. J. reine angew. Math. 704 (2015) 85-133.

[KinKST] J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen. A characterization of

KiSS|

[Kit]

[KM1]

[KM2]

[Kna]
[Kon]

[KonO]

[Kor]
[Kuy]

[Kwo

[Lan]
[Las]

[LaxP]
[Led]

[LedP]
[LedS]

360

Newtonian functions with zero boundary values. Calc. Var. Part. Diff. Eq. 43 (2012) 507—
528.

A. Kiro, Y. Smilansky, and U. Smilansky. The distribution of path lengths on directed weighted
graphs. Preprint [arXiv:1608.00150], to appear in “Analysis as a Tool in Mathematical
Physics: in Memory of Boris Pavlov”, edited by P. Kurasov, A. Laptev, S. Naboko and
B. Simon, Birkh&user.

B. P. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov
Shifts. Universitext, Springer Verlag, 1998.

D. Kleinbock and G. Margulis. Bounded orbits of nonquasiunipotent flows on homogeneous
spaces. Sinai’s Moscow Seminar on Dynamical Systems, 141-172, Amer. Math. Soc. Transl.
Ser. 171, Amer. Math. Soc. 1996.

D. Kleinbock and G. Margulis. Logarithm laws for flows on homogeneous spaces. Invent.
Math. 138 (1999) 451-494.

A. W. Knapp. Advanced algebra. Birkhauser, 2007.

A. Kontorovich. The hyperbolic lattice point count in infinite volume with applications to
sieves. Duke Math. J. 149 (2009) 1-36.

A. Kontorovich and H. Oh. Apollonian circle packings and closed horospheres on hyperbolic
3-manifolds. J. Amer. Math. Soc. 24 (2011) 603-648.

A. Koranyi. Geometric properties of Heisenberg-type groups. Adv. Math. 56 (1985) 28-38.

T. Kuusalo. Boundary mappings of geometric isomorphisms of Fuchsian groups. Ann. Acad.
Sci. Fenn. 545 (1973) 1-7.

S. Kwon. Effective mizing and counting in Bruhat-Tits trees. Erg. Theo. Dyn. Sys. 38 (2018)
257-283. Erratum 38 (2018) 284.

S. Lang. Algebra. 3rd rev. ed. Springer Verlag, 2002.

A. Lasjaunias. A survey of Diophantine approximation in fields of power series. Monat.
Math. 130 (2000) 211-229.

P. D. Lax and R. S. Phillips. The asymptotic distribution of lattice points in Fuclidean and
non-Euclidean spaces. J. Funct. Anal. 46 (1982) 280-350.

F. Ledrappier. A renewal theorem for the distance in negative curvature. In “Stochastic
Analysis” (Ithaca, 1993), p. 351-360, Proc. Symp. Pure Math. 57 (1995), Amer. Math. Soc.

F. Ledrappier and M. Pollicott. Distribution results for lattices in SL(2,Q,). Bull. Braz.
Math. Soc. 36 (2005) 143-176.

F. Ledrappier and J.-M. Strelcyn. A proof of the estimation from below in Pesin’s entropy
formula. Erg. Theo. Dyn. Sys. 2 (1982) 203-219.

13/02/2019



[LeO]
[Live]
[Livs|
[Lubl]
[Lub2]

[LuPS1]

[LuPS2|

[Lyo]
[LyP2]

[MacR]
[Marl|

[Mar2]

M. Lee and H. Oh. Effective circle count for Apollonian packings and closed horospheres.
Geom. Funct. Anal. 23 (2013) 580-621.

C. Liverani. On contact Anosov flows. Ann. of Math. 159 (2004) 1275-1312.
A. Livsic. Cohomology of dynamical systems. Math. USSR-Izv. 6 (1972) 1278-1301.
A. Lubotzky. Lattices in rank one Lie groups over local fields. GAFA 1 (1991) 405-431.

A. Lubotzky. Discrete groups, expanding graphs and invariant measures. Prog. Math. 125,
Birkhauser, 1994.

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan conjectures and explicit construction
of expanders. Proc. Symp. Theo. Comput. Scien (STOC) 86 (1986) 240-246.

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica 8 (1988) 261-
246.

R. Lyons. Random walks and percolation on trees. Ann. of Prob. 18 (1990) 931-958.

R. Lyons and Y. Peres. Probability on trees and networks. Cambridge Univ. Press, 2016.
Available at http://pages.iu.edu/"rdlyons/.

C. Maclachlan and A. Reid. The arithmetic of hyperbolic 3-manifolds. Grad. Texts in Math.
219, Springer Verlag, 2003.

G. Margulis. Applications of ergodic theory for the investigation of manifolds of negative
curvature. Funct. Anal. Applic. 3 (1969) 335-336.

G. Margulis. On some aspects of the theory of Anosov systems. Mono. Math., Springer
Verlag, 2004.

[MasaM| H. Masai and G. McShane. Equidecomposability, volume formulae and orthospectra. Alg. &

[Mask]
[Masol]
[Maso2]
[Mell]

[Mel2]
[MO]
[Moh]

[Mor|
[Moz]

[Nag]
[Nar]

[NaW]

361

Geom. Topo. 13 (2013) 3135-3152.

B. Maskit. Kleinian groups. Grund. math. Wiss. 287, Springer Verlag, 1988.

R. Mason. On Thue’s equation over function fields. J. London Math. Soc. 24 (1981) 414-426.
R. Mason. Norm form equations I. J. Numb. Theo. 24 (1986) 190-207.

I. Melbourne. Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Amer.
Math. Soc. 359 (2007) 2421-2441.

I. Melbourne. Decay of correlations for slowly mizing flows. Proc. London Math. Soc. 98
(2009) 163-190.

A. Mohammadi and H. Oh. Matriz coefficients, counting and primes for orbits of geometri-
cally finite groups. J. Euro. Math. Soc. 17 (2015) 837-897.

O. Mohsen. Le bas du spectre d’une variété hyperbolique est un point selle. Ann. Sci. Ecole
Norm. Sup. 40 (2007) 191-207.

M. Morgenstern. Ramanujan diagrams. SIAM J. Discrete Math. 7 (1994) 560-570.

S. Mozes. Trees, lattices and commensurators. In "Algebra, K-theory, groups, and education"
(New York, 1997), pp. 145-151, Contemp. Math. 243, Amer. Math. Soc. 1999.

H. Nagao. On GL(2, K[z]). J. Inst. Polytech. Osaka City Univ. Ser. A 10 (1959) 117-121.

W. Narkiewicz. FElementary and analytic theory of algebraic numbers. 3rd Ed., Springer
Verlag, 2004.

C. Nash-Williams. Random walk and electric currents in networks. Proc. Camb. Phil. Soc.
55 (1959) 181-194.

13/02/2019


http://pages.iu.edu/~rdlyons/

[Nev]  E. Neville. The structure of Farey series. Proc. London Math. Soc. 51 (1949) 132-144.

[Nic] P. Nicholls. The ergodic theory of discrete groups. London Math. Soc. Lect. Not. Ser. 143,
Cambridge Univ. Press, 1989.

[NZ] S. Nonnenmacher and M. Zworski. Decay of correlations for normally hyperbolic trapping.
Invent. Math. 200 (2015) 345-438.

[Oh] H. Oh. Orbital counting via mixing and unipotent flows. In "Homogeneous flows, moduli
spaces and arithmetic", M. Einsiedler et al eds., Clay Math. Proc. 10, Amer. Math. Soc.
2010, 339-375.

[OhS1] H. Oh and N. Shah. The asymptotic distribution of circles in the orbits of Kleinian groups.
Invent. Math. 187 (2012) 1-35.

[OhS2] H. Oh and N. Shah. Equidistribution and counting for orbits of geometrically finite hyperbolic
groups. J. Amer. Math. Soc. 26 (2013) 511-562.

[OhS3] H. Oh and N. Shah. Counting visible circles on the sphere and Kleinian groups. In "Geometry,
Topology and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore),
C. S. Aravinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes 425, Cambridge
Univ. Press, 2016.

[Ota] J.-P. Otal. Sur la géometrie symplectique de l’espace des géodésiques d’une variété a courbure
négative. Rev. Mat. Ibero. 8 (1992) 441-456.

[OtaP] J.-P. Otal and M. Peigné. Principe variationnel et groupes kleiniens. Duke Math. J. 125
(2004) 15-44.

[OW]  R. Ortner and W. Woess. Non-backtracking random walks and cogrowth of graphs. Canad.
J. Math. 59 (2007) 828-844.

[PaP1la] J. Parkkonen and F. Paulin. On the representations of integers by indefinite binary Hermi-
tian forms. Bull. London Math. Soc. 43 (2011) 1048-1058.

[PaP11b] J. Parkkonen and F. Paulin. Spiraling spectra of geodesic lines in negatively curved mani-
folds. Math. Z. 268 (2011) 101-142, Erratum: Math. Z. 276 (2014) 1215-1216.

[PaP12] J. Parkkonen and F. Paulin. Equidistribution, comptage et approzimation par irrationnels
quadratiques. J. Mod. Dyn. 6 (2012) 1-40.

[PaP14a] J. Parkkonen and F. Paulin. Skinning measure in negative curvature and equidistribution
of equidistant submanifolds. Erg. Theo. Dyn. Sys. 34 (2014) 1310-1342.

[PaP14b] J. Parkkonen and F. Paulin. On the arithmetic of crossratios and generalised Mertens’ for-
mulas. Numéro Spécial "Aux croisements de la géométrie hyperbolique et de arithmétique”,
F. Dal’Bo, C. Lecuire eds, Ann. Fac. Scien. Toulouse 23 (2014) 967-1022.

[PaP15] J. Parkkonen and F. Paulin. On the hyperbolic orbital counting problem in conjugacy classes.
Math. Z. 279 (2015) 1175-1196.

[PaP16] J. Parkkonen and F. Paulin. Counting arcs in negative curvature. In "Geometry, Topology
and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore), C. S. Ar-
avinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes 425, Cambridge Univ.
Press, 2016.

[PaP17a] J. Parkkonen and F. Paulin. Counting and equidistribution in Heisenberg groups. Math.
Annalen 367 (2017) 81-119.

[PaP17b] J. Parkkonen and F. Paulin. Counting common perpendicular arcs in negative curvature.
Erg. Theo. Dyn. Sys. 37 (2017) 900-938.

362 13/02/2019



[PaP17c| J. Parkkonen and F. Paulin. A survey of some arithmetic applications of ergodic theory in

[ParP]

[Part]
[Pat1]
[Pat2]
[Paul]
[Pau2|

[Pau3]
[Paud|
[PauP§]

[Per]
[PeSZ]

[Pet]

[Poll]

[Pol2]

[Pol3]

[Rag]
[Rev]
[Rob1]

[Rob2]

[Ros]
[Ruel]

[Rue2]

[Rue3|

363

negative curvature. In "Ergodic theory and negative curvature" CIRM Jean Morley Chair
subseries, B. Hasselblatt ed, Lect. Notes Math. 2164, pp. 293-326, Springer Verlag, 2017.

W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic
dynamics. Astérisque 187—188, Soc. Math. France, 1990.

K. R. Parthasarathy. Probability measures on metric spaces. Academic Press, 1967.

S. J. Patterson. A lattice-point problem in hyperbolic space. Mathematika 22 (1975) 81-88.
S. J. Patterson. The limit set of a Fuchsian group. Acta. Math. 136 (1976) 241-273.

F. Paulin. The Gromov topology on R-trees. Topology Appl. 32 (1989) 197-221.

F. Paulin. Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc. 54
(1996) 50-74.

F. Paulin. Groupe modulaire, fractions continues et approzimation diophantienne en carac-
téristique p. Geom. Dedi. 95 (2002) 65-85.

F. Paulin. Groupes géométriquement finis d’automorphismes d’arbres et approximation dio-
phantienne dans les arbres. Manuscripta Math. 113 (2004) 1-23.

F. Paulin, M. Pollicott, and B. Schapira. Equilibrium states in negative curvature. Astérisque
373, Soc. Math. France, 2015.

O. Perron. Die Lehre von den Kettenbriichen. B. G. Teubner, 1913.

Y. Pesin and S. Senti and K. Zhang. Thermodynamics of towers of hyperbolic type. Trans.
Amer. Math. Soc. 368 (2016) 8519-8552.

K. Petersen. Ergodic theory. Cambridge Stud. Adv. Math. 2, Corr. ed, Cambridge Univ.
Press, 1989.

M. Pollicott. Meromorphic extensions of generalised zeta functions. Invent. Math. 85 (1986)
147-164.

M. Pollicott. The Schottky-Klein prime function and counting functions for Fenchel double
crosses. Preprint 2011.

M. Pollicott. Counting geodesic arcs in a fixed conjugacy class on negatively curved surfaces
with boundary. Preprint 2015.

M. Raghunathan. Discrete subgroups of Lie groups. Springer Verlag, 1972.
D. Revuz. Markov chains. North-Holland Math. Lib. 11, 2nd ed., Elsevier, 1984.

T. Roblin. Sur la fonction orbitale des groupes discrets en courbure négative. Ann. Inst.
Fourier 52 (2002) 145-151.

T. Roblin. Ergodicité et équidistribution en courbure négative. Mémoire Soc. Math. France,
95 (2003).

M. Rosen. Number theory in function fields. Grad. Texts Math. 210, Springer Verlag, 2002.

D. Ruelle. The pressure of the geodesic flow on a negatively curved manifold. Bol. Soc. Bras.
Mat. 12 (1981) 95-100.

D. Ruelle. Flows which do not exponentially miz. C. R. Math. Acad. Sci. Paris 296 (1983)
191-194.

D. Ruelle. Thermodynamic formalism: The mathematical structure of equilibrium statistical
mechanics. 2nd ed., Cambridge Math. Lib. Cambridge Univ. Press, 2004.

13/02/2019



[Sarl]

[Sar2]

[Sarn]
[Schi]

[Sch2]

[Sel]
[Sem|

[Serl]
[Ser2]

[Ser3|
[Serd]
[Sha]

[Shil

[Sin|
[Sod]

[Sto]

[Sull]

[Sul2]

[Sul3]

[Tan]

[Tat]

[Tit]

[Tsu]

364

O. Sarig. FEzistence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc.
131 (2003) 1751-1758.

O. Sarig. Thermodynamic formalism for countable Markov shifts. Proc. Symp. Pure Math.
89 (2015) 81-117, Amer. Math. Soc.

P. Sarnak. Reciprocal geodesics. Clay Math. Proc. 7 (2007) 217-237.

W. M. Schmidt. Thue’s equation over function fields. J. Austral. Math. Soc. 25 (1978)
385-422.

W. M. Schmidt. On continued fractions and Diophantine approrimation in power series

fields. Acta Arith. XCV (2000) 139-166.
Z. Sela. Acylindrical accessibility for groups. Invent. Math. 129 (1997) 527-565.

S. Semmes. Finding curves on general spaces through quantitative topology, with applications
to Sobolev and Poincaré inequalities. Selecta Math. 2 (1996) 155-295.

J.-P. Serre. Fuaisceaux algébriques cohérents. Ann. of Math. 61 (1955) 197-278.

J.-P. Serre. Corps locaux. Pub. Inst. Math. Univ. Nancago VIII, Actualités Sci. Indust. 1296,
Hermann, 1962. English version: Local Fields, Springer Verlag, 1979.

J.-P. Serre. Arbres, amalgames, SLs. 3éme éd. corr., Astérisque 46, Soc. Math. France, 1983.
J.-P. Serre. Lie algebras and Lie groups. Lect. Notes Math. 1500, Springer Verlag 1992.

R. Sharp. Degeneracy in the length spectrum for metric graphs. Geom. Dedicata 149 (2010)
177-188.

G. Shimura. Introduction to the arithmetic theory of automorphic functions. Princeton Univ.
Press, 1971.

Y. G. Sinai. Gibbs measures in ergodic theory. Russian Math. Surv. 27 (1972) 21-70.

S. Sodin. Random matrices, nonbacktracking walks, and orthogonal polynomials. J. Math.
Phys. 48 123503 (2007).

L. Stoyanov. Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity 24 (2011)
1089-1120.

D. Sullivan. Related aspects of positivity in Riemannian manifolds. J. Diff. Geom. 25 (1987)
327-351.

D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math.
IHES 50 (1979) 172-202.

D. Sullivan. Disjoint spheres, approximation by imaginary quadratic numbers, and the loga-
rithm law for geodesics. Acta Math. 149 (1982) 215-237.

R. Tanaka. Hausdorff spectrum of harmonic measure. Erg. Theo. Dyn. Sys. 37 (2017) 277—
307.

J. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In " Algebraic Number
Theory" (Proc. Instructional Conf., Brighton, 1965) pp. 305-347, Thompson.

J. Tits. Reductive groups over local fields. In "Automorphic forms, representations and L-
functions" (Corvallis, 1977), Part 1, pp. 29-69, Proc. Symp. Pure Math. XXXIII, Amer.
Math. Soc., 1979.

M. Tsujii. Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity
23 (2010) 1495-1545.

13/02/2019



[Vig]
[Walf]
[Walt]

[Weil]
[Wei2]

[Woel]

[Woe2]
[Youl]

[You2]
[Zem]

[Zie]
[Zin]

M. F. Vignéras. Arithmétique des algébres de quaternions. Lect. Notes in Math. 800, Springer
Verlag, 1980.

A. Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher
Verlag der Wissenschaften, 1963.

R. Walter. Some analytical properties of geodesically convex sets. Abh. Math. Sem. Univ.
Hamburg 45 (1976) 263-282.

A. Weil. L’intégration dans les groupes topologiques et ses applications. Hermann, 1965.

A. Weil. On the analogue of the modular group in characteristic p. In "Functional Analysis
and Related Fields" (Chicago, 1968), pp. 211-223, Springer Verlag, 1970.

W. Woess. Random walks on infinite graphs and groups - a survey on selected topics. Bull.
London Math. Soc. 26 (1994) 1-60.

W. Woess. Denumerable Markov chains. EMS Textbooks in Math, Europ. Math. Soc. 2009.

L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of
Math. 147 (1998) 585-650.

L.-S. Young. Recurrence times and rates of mizing. Israel J. Math. 110 (1999) 153-188.

A. Zemanian. Infinite electrical networks. Cambridge Tracts Math. 101, Cambridge Univ.
Press, 1991.

W. P. Ziemer. Weakly differentiable function. Grad. Texts Math. 120, Springer Verlag, 1989.

M. Zinsmeister. Formalisme thermodynamique et systémes dynamiques holomorphes. Pano.
Synth. 4, Soc. Math. France, 1996.

Laboratoire de mathématique d’Orsay, UMR, 8628 Université Paris-Sud et CNRS
Université Paris-Saclay, 91405 ORSAY Cedex, FRANCE
e-mail: anne.broise@math.u-psud.fr

Department of Mathematics and Statistics, P.O. Box 35
40014 University of Jyviskyld, FINLAND.
e-mail: jouni.t.parkkonen@jyu.fi

Laboratoire de mathématique d’Orsay, UMR, 8628 Université Paris-Sud et CNRS
Université Paris-Saclay, 91405 ORSAY Cedex, FRANCE
e-mail: frederic.paulin@math.u-psud.fr

365

13/02/2019



	Introduction
	General notation

	I Geometry and dynamics in negative curvature
	Negatively curved geometry
	Background on CAT(-1) spaces
	Generalised geodesic lines
	The unit tangent bundle
	Normal bundles and dynamical neighbourhoods
	Creating common perpendiculars
	Metric and simplicial trees, and graphs of groups

	Potentials, critical exponents and Gibbs cocycles
	Background on (uniformly local) Hölder-continuity
	Potentials
	Poincaré series and critical exponents
	Gibbs cocycles
	Systems of conductances on trees and generalised electrical networks

	Patterson-Sullivan and Bowen-Margulis measures with potential on CAT(-1) spaces
	Patterson densities
	Gibbs measures
	The Gibbs property of Gibbs measures
	The Hopf-Tsuji-Sullivan-Roblin theorem
	On the finiteness of Gibbs measures
	Bowen-Margulis measure computations in locally symmetric spaces
	On the cohomological invariance of Gibbs measures

	Patterson densities for simplicial trees
	Gibbs measures for metric and simplicial trees

	Symbolic dynamics of geodesic flows on trees
	Two-sided topological Markov shifts
	Coding discrete time geodesic flows on simplicial trees
	Coding continuous time geodesic flows on metric trees
	The variational principle for metric and simplicial trees

	Random walks on weighted graphs of groups
	Laplacian operators on weighted graphs of groups
	Patterson densities as harmonic measures for simplicial  trees

	Skinning measures with potential on CAT(-1) spaces
	Skinning measures
	Equivariant families of convex subsets and their skinning measures

	Explicit measure computations for simplicial trees and graphs of groups
	Computations of Bowen-Margulis measures for simplicial trees
	Computations of skinning measures for simplicial trees

	Rate of mixing for the geodesic flow
	Rate of mixing for Riemannian manifolds
	Rate of mixing for simplicial trees
	Rate of mixing for metric trees


	II Geometric equidistribution and counting
	Equidistribution of equidistant level sets to Gibbs measures
	A general equidistribution result
	Rate of equidistribution of equidistant level sets for manifolds
	Equidistribution of equidistant level sets on simplicial  graphs and random walks on graphs of groups
	Rate of equidistribution for metric and simplicial trees

	Equidistribution of common perpendicular arcs
	Part I of the proof of Theorem 11.1: the common part
	Part II of the proof of Theorem 11.1: the metric tree case
	Part III of the proof of Theorem 11.1: the manifold case
	Equidistribution of common perpendiculars in simplicial trees

	Equidistribution and counting of common perpendiculars in quotient spaces
	Multiplicities and counting functions in Riemannian orbifolds
	Common perpendiculars in Riemannian orbifolds
	Error terms for equidistribution and counting for Riemannian orbifolds
	Equidistribution and counting for quotient simplicial and metric trees
	Counting for simplicial graphs of groups
	Error terms for equidistribution and counting for metric and simplicial graphs of groups

	Geometric applications
	Orbit counting in conjugacy classes for groups acting on trees
	Equidistribution and counting of closed orbits on metric and simplicial graphs (of groups)


	III Arithmetic applications
	Fields with discrete valuations
	Local fields and valuations
	Global function fields

	Bruhat-Tits trees and modular groups
	Bruhat-Tits trees
	Modular graphs of groups
	Computations of measures for Bruhat-Tits trees
	Exponential decay of correlation and error terms for arithmetic quotients of Bruhat-Tits trees
	Geometrically finite lattices with infinite Bowen-Margulis measure

	Equidistribution and counting of rational points in completed function fields
	Counting and equidistribution of non-Archimedian Farey fractions
	Mertens's formula in function fields

	Equidistribution and counting of quadratic irrational points in  non-Archimedean local fields
	Counting and equidistribution of loxodromic fixed points
	Counting and equidistribution of quadratic irrationals in positive characteristic
	Counting and equidistribution of quadratic irrationals in Qp

	Equidistribution and counting of crossratios
	Counting and equidistribution of crossratios of loxodromic fixed points
	Counting and equidistribution of crossratios of quadratic irrationals

	Equidistribution and counting of integral representations by quadratic norm forms
	    Appendix
	A weak Gibbs measure is the unique equilibrium, by J. Buzzi
	Introduction
	Proof of the main result Theorem A.4

	List of Symbols
	Index
	Bibliography


