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Abstract

We extend formulae of Mertens and Mirsky on the asymptotic behaviour of the
standard Euler function to the Euler functions of principal rings of integers of imagi-
nary quadratic number fields, giving versions in angular sectors and with congruences.

1 Introduction

Let K be a number field of degree ng, with ring of integers Ok, number of real places
r1, number of complex conjugated places ro, regulator Ry, class number hg, number of
units wg, discriminant Dg and Dedekind zeta function (x (see for instance |[Nar]). Let
fg be the semigroup of nonzero ideals of Ok, let pg : f; — N be the Euler function
of K, and let N : .#;f — N be the norm, with ¢ (a) = px(afk) and N(a) = N(aOf) for
every a € Ok — {0}. As usual, p below ranges over prime ideals in .#;;. The functions O(-)
below depend only on K.

Our first result (see Section [2)) is a Mertens formula with congruences for number
fields. Though probably well-known at least when m = O, we provide a proof for lack of
reference (compare with [Gro, Satz 2|, [Cosl, §4.3], [PP1l Theo. 3.1]) since arguments of its
proof will be useful for our next result. For every m e fg , let

1

cm=N(m) [ J(1+ )

plm

).

Theorem 1.1 For every m e .#,°, if nxg = 2, then as x — +00, we have

2r1+r2—1 T2 RK hK ) g 1
Z vr(a) = 2?4+ 0 (27 "x) .
ae.7;E: N(a)<z, m|a wi \/|IDk| ¢k (2) ¢m

Assume in the remaining part of this introduction that K is imaginary quadratic and
that O is principal. By Dirichlet’s unit theorem, these assumptions are more or less
necessary (besides K = Q) for the following sums to be well defined and finite.

'Keywords: Euler function, imaginary quadratic number field, Mertens formula, Mirsky for-
mula. AMS codes: 11R04, 11N37, 11R11.



We give in Section [3| a version in angular sectors of the Mertens formula given by
Theorem that will be needed in [PP3]. For all z € C*, # € ]0,27] and R > 0, we
consider the truncated angular sector

, 0 0 R
C,9,R={ ity te]—2.2],0< <f}. 1
(2.0, R) = pez:te] =5, 7] P (1)
It is important that the function O(-) in the following result is uniform in m, z and 6.

Theorem 1.2 Assume that K is imaginary quadratic with Ok principal. For all m € f;{,
ze€C* and 0 €]0,27], as x — +0, we have

z* 4+ 0(z?) .

0
v (a) =
aemm%(:z,e,:c) 2 \/m CK (2) Cm

Lastly, we give a uniform asymptotic formula for the sum in angular sectors in C of
angle 6 of the products of two shifted Euler functions with congruences, that will be needed
in [PP3]. When K = Q (the sectorial restriction is then meaningless), this formula is due
to Mirsky [Mir, Thm. 9, Eq. (30)] without congruences, and to Fouvry [PP2, Appendix]
with congruences. For simplicity, we give a version without congruences and without an
error term in this introduction, see Section ] Theorem for the general statement.

Theorem 1.3 For all z€ C*, 0 € 10,27] and k € Ok, as x — +0, we have

a a ~L — 2 ; x’
2, ex@exrh)~oome [0 5em) 0+ grmge—) =

a€0k NC(z,0,x) plkOK

Theorems and are used in [PP3| in order to study the correlations of pairs
of complex logarithms of Z-lattice points in the complex line at various scalings, when
the weights are defined by the Euler function, proving the existence of pair correlation
functions. We prove in op. cit. that at the linear scaling, the pair correlations exhibit level
repulsion, as it sometimes occurs in statistical physics. A geometric application is given in
op. cit. to the pair correlation of the lengths of common perpendicular geodesic arcs from
the maximal Margulis cusp neighborhood to itself in the Bianchi manifolds PSLa (€ )\H3.

Acknowledgements: This research was supported by the French-Finnish CNRS IEA PaCap. We
thank E. Fouvry for his inspirational appendix in [PP2].

2 A Mertens formula with congruences for number fields

Recall that .#;% is the semigroup of nonzero (integral) ideals of the Dedekind ring O (with unit
Ok). For all I, J € #;f, we write J | I if I < J, we denote by (I,.J) = I + .J the greatest common
ideal divisor of I and J, by [I,J] = I n J the least common ideal multiple of I and J, and by IJ
the product ideal of I and J.

We denote by N(I) = Card(Ck /I) the (absolute) norm of I € .#;%, which is completely multi-
plicative. The norm of a € O — {0} is

N(a) = N(aﬁK) .

It coincides with the (relative) norm Ny g(a) of a (see for instance [Nar|), and in particular is
equal to |a|? if K is imaginary quadratic.



Recall that the Dedekind zeta function (x : {s € C: Re(s) > 1} — C of K is defined (see for
instance [Narl §7.1]) equivalently by

1 1 (-1
Ck(s) = Z N(Cl)s = 1_[ (1 B N(p)é) :

4
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We denote by ¢ : #;5 — N the Euler function of K, defined (see for instance [Nar, page 13])
equivalently by

Vae 7, ¢k(a) = Card((Ox/a)*) = N(a) 1_[ (1-
pla

O

For every a € Ok — {0}, we define pi(a) = pg(alk). Note that the Euler function ¢g is
multiplicativeﬂ by the Chinese remainder theorem. We have

N(a) = ) ¢x(b) (2)

bla

as checked by telescopic sum when a is a power of a prime ideal, and by multiplicativity.
We denote by uf : F5 — Z the Mébius function of K, defined by

1 if a= ﬁK
. 2 . . .
Vae st juc(a) = 0 if p? | a for some prime ideal p
(=)™ if a = py...p, for pairwise distinct prime ideals

P1,...,Ppm and me N — {0} .

For every a € Ok — {0}, we define ux (a) = px(aCk). We have (see for instance [Shal]) the Mébius
inversion formula: for all f,g: 7% — C,

fa)=>] g(b) if andonly if g(a) =) px(b)f(ab™"). (3)

bla bla

In particular, since the norm is completely multiplicative and by Equation 7 we have

Vae 7, SD&S) :g ﬂl\f([(]?) . (4)

Proof of Theorem In this proof, all functions O(-) depend only on K. Let

_ 2" (27T)T2 Ry hg
wi +/|Dk|

PK

Recall (see for instance [MO) Theo. 5]) that, as © — + o0, we have
Card{ae 4 : N(a) < 2} = prx + O(a 7% ) . (6)
By Abel’s summation formula, as y — + o0, we have

Y N = Y nCard{ac s N(a) =n} = P02 L O R) (7)

2
aegt: N(a)<y 1sn<y

Recall that a function f : #;F — C* is multiplicative if f(Ox) = 1 and if for all coprime integral ideals
a,bin #F, we have f(ab) = f(a)f(b).



Furthermore, we have
1— L1

Card{ae #;f :N(a) =y} =0y "x).
This formula implies since N((b, m)) < N(m) that

1-5x .
D uK(b)W] :O<N(m) »e ):O(N(m) 2R 8)

N n?
bes L N(b) =2

n=x

Let us denote by Sy () the sum on the left hand side in the statement of Theorem Note that
by the Gauss lemma, for all m,b,c € .5, we have m | be if and only if m(m,b)~! | ¢. Then by
Equation , by the change of variable ¢ = m(m,b)~'a, by the complete multiplicativity of the

norm, by Equation (7)) with y = BIL((([’[’);EQQ)”, since N((b,m)) < N(m), and by Equation (§), we have

> > nx(b) N(o)

aeS L N(a)<z, mla  b,ceSt: be=a

S ()

= > ux(b) N(c)
he]}t:N(b)<I CEf;:N(c)éN(’%),mwc
N(m
= 2 ux®) D ((én)l)) N(a)
bes: N(b) <z ae st N(a)< Rilbm)z ’

S ) MY P2y o)

2
best: N(b)<w N(b) 2 N(m)

(X o) G ) g 4 0. 0

N 2N
best (m)

By decomposing a nonzero integral ideal b into powers of prime ideals, by the definition of the
Moébius function, and by the Euler product formula for the Dedekind zeta function, we have

N((b,m)) R RN N(p)
2@ = g 0wy = o [ ey

Equations (9) and () hence imply Theorem [1.1] O

3 A sectorial Mertens formula

Assume in the remaining part of this paper that K is imaginary quadratic and that O is principal
(or equivalently factorial (UFD)). By Dirichlet’s unit theorem, the group of units &, whose order
we denote by |0F|, is finite if and only if (r1,r2) is equal to (1,0) or (0,1). This justifies our
restriction, the case K = Q being well-known. With the notation of the beginning of the intro-
duction, we then have (see for instance |[Nar|) Dx € {—4,-8,—3,—-7,—11,—19,—43, —67, —163},
and

T1:0, 7“2:1, nK:2, RK:1, wK:‘ﬁ;él and hKil. (10)

Given a Z-lattice A in the Euclidean space C (that is, a discrete (free abelian) subgroup of
(C,+)), we denote by covoly = Vol(C/A) the area of a fundamental parallelogram % for A and
by diamy the diameter of .Z;. Note that every element m € ;% is a Z-lattice in C with

N D
covoly, = N(m) covolg, = M and diamy, = O(y/|Dg/| N(m) ) (11)

since diamg,, = |1+ Y2%| if Di = 0 mod 4 and diamg, = [2*YPX| if D =1 mod 4.
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With the notation of Equation , note that for every 2z’ € C*, we have
2'C(2,0,R) = C(22',0,R|2']) . (12)
Proof of Theorem 1.2 Let z € C*, § € ]0,27] and y > 0. Since Area(C(z,0,y)) = gyz, the

standard Gauss counting argument, the finiteness of the number of imaginary quadratic number
fields with class number 1, and the equality on the left of Formula give

Card(0k N C(z,0,y)) = Arezzggo(lz,a,y)) +0 (dézf,r:]ﬁl{ ’
(7574 Ok
0
= y2 + O(y) .

VIDk|

Since the map 2’ — |2/|? = N(2’) takes only integral values on O, by Abel’s summation formula,
as y — + o0, we have

Z |d|* = Z nCard{d € Ox n C(z,0,y) : |d]* = n}

deOr nC(z,0,y) 1<n<y?
0 4 3
= ———y +0(y) . (13)
24/|Dk]|

For all x > 1 and b € .#;%, let us fix b,m, (b,m) € Ok — {0} such that b = b0k, m = mOk

and (b, m) = (b,m)Ck. Since for every ¢ € O — {0} we have m | bc if and only if XD | ¢, by the

change of variable ¢ = % d, by Equation and by Equation applied with y = %, if
Sp = > N(c) ,
ce.f;,aemmC(z,G,z) : be=aOk
we have

Sp = > lef?

ce Ok —{0},aemnC(z,0,z) : be=a

2 N 2
_ 5 o = Y T |4

c€ Ox—{0} : bee C(z,0,2), m|be de O —{0} : de C(2m) g 2/l

O an((b,m)) e
NG (N(b)3/2) '

Let us denote by Sm . ¢(z) the sum on the left hand side in the statement of Theorem Then
by Equation , we have

Smep(@) = D exlafk)= ) S u(0)N(o)
aEmmC(z,O,z) aemﬂc(z,e,a:) b,ceﬂ;: bc=alOk
= Z frc (b) So

be.s: N(b) <2

(N ety M

> )
be.s: N(b)<a? N(b) 2V/IDk | N(m)

z* +0(z?) .

The proof then proceeds exactly as in the proof of Theorem O



4 A sectorial Mirsky formula

We now give a uniform asymptotic formula for the sum in angular sectors of the products of shifted
Euler functions with congruences. For all z € C*, 6 € 10,27, k€ Ok, me #;f and x > 1, let

Seokm@) = > exla)pxlatk). (14)

aemnC(z,0,x)

Theorem 4.1 Assume that K is imaginary quadratic with Ok principal. There exists a universal
constant C' > 0 such that for all k € Ok and m € F}%, there exists cm i, € ]0,1] such that for all
zeC*, 0€e]0,2r] and x = 1, we have

echg

~ 3./|Dk]

We will prove Theorem [4.1]at the end of this Section after giving a number of Lemmas required
for the proof. We fix k € O and m = mOk € ﬂ;, and we define h = kO, which is a possibly
zero integral ideal. We start by giving the first definition and a simpler formula for the constant
cm,k that appears in the statement of Theorem @ We define

N ((¢(b,m), m(b,c)))

| S okm(@) 20| < C((1+VAR)) 2 + N(k) ) .

Cm,k = Z ,LLK(b) /LK(C) N(b>2 N(C)2 N(m) ) (15)
b,ceﬂ;g
(6,¢) | b, (c(b,m),m(b,c))|bb
and
Cm = kie%fK Cm ke -

Lemma 4.2 The series in Equation defining cm ) converges absolutely. We have ¢y < 1
and ¢, > 0. Furthermore, we have

1 N((p, Km,p (P) K5 (p) N((p, m))
o iy L]0 S [0 S 1o
(p,m) b

where

(Mmoo | roy = [ 1w i plD
ﬁm’h(m_{ 1 otherwise and Kh(p)_ 1 otherwise. (17)

In the special case m = Ok, Equation becomes

e g gl g
COk .,k = 1_[ (1 - N(p)Q) 1_[ (1 N : N(p)2 : ) 1_[ (1 B T;)Q>

P plb pih
_ _ N -1 ot L
L0 O e —o) L0 = L0 )
2 1
L0 L0 eyamr—) 1

Theorem in the introduction follows from Theorem and the above computation.
Proof. Let us prove that uniformly in z > 1, we have

Z N((c(b,m), m(b,c)))

N(6)2 N(c)? N(m) (19)

1
~0().
b,ce st N(b)>w, \/E
(6,¢) b, (c(b,m),m(b,c))| b



This implies, by taking x = 1, that the first claim of Lemma [4.2]is satisfied, since the Mdbius func-
tion has values in {0, +1}. Let us denote by Zu p(x) the above sum. Since N((¢(b, m), m(b,¢))) <
N(m(b,¢)), we have

N((b,¢)) N(a)
< o L Co
Zm,b(x) ; Z N(ab’)2 N(ac’)2
b,c€7;L  N(b)=x a,b/,c/eﬂ;g
N(b')=z/N(a)
1 1 1 5 3. 1
- Z N2 Z 5/2 Z 1\3/2 iz S (k(2) Cr (5) Cr(5) —= -
SR SN A ()7 (i) N(e) S UG
N(a)N(b')=z

Equation follows, since there are only finitely many fields K satisfying the assumptions of
Theorem [4.1]

The proof of Equation that we now give is similar to Fouvry’s proof of Equation (21) in
[PP2, Appendix].

For every b € Z;F, let xp : Z& — {0,1} be the characteristic function of the set of elements
c € Z;F such that (c,b) | h. Let us define a map ¢y : S;f — F;F by

Yy e (c, (b,¢)) . (20)

(b,m)

Note that the assertion (¢(b, m), m(b,c)) | bh is equivalent to the assertion

For every b € Z;F, let x¥ : .#;f — {0,1} be the characteristic function of the set of elements ¢ € .#;F
such that the above divisibility assertion is satisfied. Let us finally define a map C* : ﬂ; — R
(which depends on m and b) by

C* s Y ’;fgf)? Yo (6) XE(©) N (©)) - (21)

+
€I

By the absolute convergence property, Equation then becomes

In order to transform the series C*(b) defined by Formula into an Eulerian product and in
order to analyse it, we will use the following two lemmas.

Lemma 4.3 For every b e f;, the maps xe, Xi and 1y on f; are multiplicative.

Proof. We have ¢ (0k) = Ok and xu(Ok) = X3 (Okx) = 1. Let I, J € ¢ be coprime.
The equality (IJ,6) = (I,b6)(J,b) and the fact that (I,6) and (J,b) are coprime imply that
Xo(LJ) = xo(I)x0(J).
In order to prove the multiplicativity of the map vy, we write
m
(b, m)

(I,6)(J,6)) (-, ﬁ (1,6)(J, b)) .

Since [ is coprime to (J,b) and since J is coprime to (I,b), we obtain as wanted the equality

Yo(LJ) = Yo (1) Yu(J).
Finally, the multiplicativity property xi(IJ) = x{(I)xg (J) of the function x} is a consequence
of the multiplicativity of the map 1, and of the fact that 1, (I) and 1, (J) are coprime. O

7

Yo(IJ) = (1J, (b,1J)) = (I,

(b, m)



Lemma 4.4 For every prime ideal p and every b € ;5 , we have

%(p):{p A

(p,m) otherwise,

and
p|(b,b)
Xo(P) Xp(p) =1 or
ptb and (p,m)|bh.

Proof. The first formula follows from the definition of ¢y (p) (see Formula (20)) by considering
the three cases

. b,

e pfbandp|m, and

e ptbandptm.

The second formula follows from the first one, from the definitions of x4 (p) and x§(p), and
from the fact that xp(p) xi(p) = 1 if and only if xs(p) = x(p) = 1, by considering the two cases

e p|band

e D J[ b. ]

The arithmetic function ¢ — pg(c) xe(c) Xxi(c) N(¢p(c)) being multiplicative by Lemma
and the complete multiplicativity of the norm7 and vanishing on the nontrivial powers of primes,
the series defining C*(b) in Formula (21) may be written as an Eulerian product

oo [T (1 )X &32wm<»)= [ 0-Me)
p
xo(p) x¥(p)=1

By Equations and ( @, and by Lemma we have

K N((p, m 1
Z u N((bm) ] (1—W) I (1—@).

b y* P10, (p,m)[h pl(b.b)
Let us define 'y, = H (1- N(I\E&’;‘;))), so that
P
(psm) b
| S 1rc (b) N((p,m))\ -1 L
g = N((6, m)) - Bltp,m)) -1y
" ) 2 () I} 0=er ) 11 0=
K plb, (pm)| b p(b.h)

This equation writes cy 1 as a series Zbe sEN )2 where f @ I T — R is a multiplicative

N
function, which vanishes on the nontr1v1al powers of prime ideals. By Eulerian product, we have

therefore proved Equation .
Let us now prove that 0 < ¢y, < 1. Note that for every prime ideal p, we have
1
1< fmp(p) <2 and o <wp(p) <1. (24)
In particular all the factors of the two products over p in Equation belong to [0, 1], hence

0<cmi < N(m)<1

Let us finally prove that ¢}, > 0. For every prime ideal p, let w, = . (P) 'I,“(Sﬁ 1p.m)). By

Formula (I7)), if N(p) = 2, we have

1/2 if plbh and p|m

) 1/6 if p|h and pifm
“P=Y 1/2 if pth and p|m
1/3 if pth and pim



In particular 1 —w, # 0 if N(p) = 2. From the inequalities and by Equation , we have

Cok = 1 1_[ (1 _ N(I\Epvm))) 1_[ (1 2 N((p,m))) 1_[ (1—wy) .

2
N(m) P p:N(p)=3 N(p) p:N(p)=2
(p,m) | b
Since there are only finitely many primes ideals p dividing m, the term on the right hand side is

bounded from below by a positive constant ¢}, = mingeg, ¢m,x > 0. This concludes the proof of
Lemma ]

Now that we understand the constant ¢y , we continue towards the proof of Theorem by
giving an asymptotic formula for the sum

aemnC(z,0,x)

Lemma 4.5 Uniformly inme 9,5, ke Ok, ze C*, 0 €]0,2n| and x > 1, we have

(z) = Lmk 22 4 0y (26)

N

Proof. For all nonzero elements a and b in the factorial ring Ok, we denote by (a,b) any fixed
choice of ged of a and b, and by [a, b] any fixed choice of lem of a and b.
By Equation , for every a € O — {0}, we have

vK(a) 1 3 pr(b)

N(a) |ﬁ;§| beOr—{0}:b|a N(b)

Let = = 1. Applying twice this equality, since N(b) < N(a) when b | a, we have by Fubini’s theorem

s 1 1k (b) pu ()
5@) = 157 2 2 N(b) 2 N(c
aemnC(z,0,x) beOk—{0}:bla ceOg—{0}: cla+k

- ¥ 1 (b) D “hf(c) S (27)

X (2
|ﬁK| beOk —{0}: |b|<z N(b) ceO0 —{0} (C) aemnC(z,0,x)
bla,clatk

~

a=0modm
Let b,c € Ok —{0}. The system of three congruences { a =0 mod b  has a solution a € Ok —{0}
a=—k mod c
such that |a| < z if and only if there exists an element n € & — {0} such that a = bn, |n| < o

and
bn =0 mod m
{ bn=—k mod c. (28)
When (b, ¢) 1 k, no solution exists.
Assume that (b, ¢) | k. Since ﬁ is invertible modulo ﬁ, we denote by ﬁ a multiplicative
inverse of ﬁ modulo ﬁ. Then the system of congruences is equivalent to
b — m — m
——n =0 mod 7= n =0 mod -
{%m_ b mod e @{ I SR (20)
Ca" = " MO0 T =00 Go mod g

n = qg mod «
n = [y mod 3
a, B, ap, By € Ok and «, B # 0, has a solution if and only if ag — Sy = 0 mod (a, §). Furthermore,

9

Recall that a system of two congruences { with unknown n € O, where



if this congruence condition is satisfied, that is, if there exists ng, my € Ok such that ag — 5y =
Bmgy — ang, then n is a solution if and only if

n—oay—ang €alg N Ok =[a,B]0k .
This is equivalent to asking n to belong to the translate Ay g.ay,8, = 0 + ang + KQ75 of the
Z-lattice Ky g = [o, 8]0k
Applying this with a = (bf”—m), B = (bfc), ap =0 and fy = *ﬁ ﬁ, since the elements ﬁ

and (b—ﬁn) are both coprime with ((b”fn), (bcc)), the system has a solution if and only if the
following divisibility condition holds

m c E b m c k
((b,m)’(b,c)) | (b,¢) (b,c) (i)((b,m)’(b,c)) 50
- ((m °) (’“ b o (mlb,e), e(b.m)) | kb

b,m)’ (b, c) b,c) (b,m)
Thus Equation becomes, using Equation ,
S 1 pr (b) i ()
- 1.
0 = o 2, () (o) 2

b,ceOk—{0}: |b|<z n€Na, B 0,80 "C (b7 12,0, 2/|b])
(b,c) | k, (m(b,c),c(bym)) [ kb

Let b,c¢ be as in the index of the first sum above. Using again the standard Gauss counting

argument, using Formula for the second equality and the equation N([a, 8]) = IL((O(‘LNB(%) for the

last equality, we have, uniformly in b,¢,m € O — {0}, k€ Ok, z€ C*, 6 €]0,2x] and y > 1,

Card(A . C’(b_lz 9 )) _ L 2.0 ( % )
@.B,0,80 Y=g covolg Y covolg
9 1
_ y>+ 0 ( y)

VIDkI V([ ma)) V([ 55))

0 n((m(b,¢),c(bm))) N((m(b, c), c(b,m)))"/*
- Dk | N(m) N(c) 0 ( N(m) /2 N(c)1/2 y)

Using this with y = I%I’ which is at least 1 since |b| < z, we have

§(m) _ 0 z* Z pi(b) pr(c) N((m(b7 c), c(b, m)))
VIDk] bcelx—{0}: |b|<z |0 |? N(b)? N(c)? N(m)

(bye) | k, (m(b,c),c(bym)) | kb

T N((m(b, C),c(b7 m)))1/2
oo < b,ceﬁZK:_{o} |ﬁl>;'|2 N(b)3/2 N(C>3/2 N(m)l/Q) ’ (30)

By Equation (replacing therein z by x2), completing the first sum of the above equation
with the indices b € Ok — {0} such that |b| > z introduces an error of the form O(2) (uniformly in
me Og —{0}, k€ Ok and x > 1). A computation similar to the one done for Equation gives
that the second sum in Equation is actually bounded by ﬁCK (%)2 Crk (2), which is uniform

K
since there are only finitely many such fields K.

By the definition of the constant cy; in Equation , this proves Equation , hence
concludes the proof of Lemma O

Proof of Theorem (4.1} For all a,k € Ok with a # 0, we have

N(a + k) = N(“)‘l + S‘Z < N(a)<1 2 Im " Egg) 7

10



and similarly N(a + k) = N(a)(1 — 2 Mk) (k)). Let us define the maps f4+ : [1,40[ — R by

N(a) * N(a)

t > 12 + 24/N(k) 32 4 N(k) t, so that their derivatives are Jh(t) = 2t £ 34/N( E)t'/? 4 N(k) and

FO@) i)

) N+ k) S S Wa) Na+ k) (31)

For all ze C*, 6 €]0,27], z > 1 and n € N — {0}, let

3 pr(a) pr(a+k)

n = N(a) N(a+k) ’

aemnC(z,0,x):N(a)=n

so that by Equation (25]), we have S(x) = Z A,

1<n<a?

By the definition of the sum S, g 1 m () and the inequalities , by Abel’s summation
formula, by applying twice Lemma [£.5 and since ¢y < 1 by Lemma[f.2] we have

Scorm@ < Y anfrm) = (Y an) f26%) - f( Y ) flydt

1<n<a? 1<n<a?

=<9|Cgi + O(x )(x + 24/N(E) 23 + N(k )

rQ(ec“”’“ t+Ot1/2)(2t+3\/7t1/2+N )d

1 |Dk|

0 ok
= +0 (1+ + N(k
N )z zt) .

Replacing fi by f_ gives the same minoration to S, gk m(z), hence Theorem follows. |
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