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ESCAPE OF MASS IN HOMOGENEOUS DYNAMICS
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ABSTRACT. We show that in positive characteristic the homogeneous prob-
ability measure supported on a periodic orbit of the diagonal group in the
space of 2-lattices, when varied along rays of Hecke trees, may behave in
sharp contrast to the zero characteristic analogue: For a large set of rays, the
measures fail to converge to the uniform probability measure on the space
of 2-lattices. More precisely, we prove that when the ray is rational there is
uniform escape of mass, that there are uncountably many rays giving rise to
escape of mass, and that there are rays along which the measures accumulate
on measures which are not absolutely continuous with respect to the uniform
measure on the space of 2-lattices.

1. INTRODUCTION

This paper deals with the study of the positive characteristic analogue (which
turns out to have a surprisingly different outcome) of the discussion in [1], thus
we start this introduction by briefly recalling it.

The space X = PGL2(R)/PGL2(Z) may be identified with the space of homo-
thety classes of (Z-)lattices in the plane R2. If we denote by A the diagonal
subgroup of PGL2(R), then the A-orbits in X constitute a very important object
of study both from the dynamical point of view and because of their tight re-
lation to geometry and number theory. Among these orbits, the periodic ones
(recall that A is isomorphic to R), may be considered as most important. Given
a periodic orbit Ax in X , we denote by µx the unique A-invariant probability
measure supported on it.

Fixing a prime p ∈ Z and a homothety class of a lattice x ∈ X , one looks at
the countable subset Gp (x) of elements y ∈ X such that there exist k ∈ N and
Λx ∈ x,Λy ∈ y with Λy ⊂Λx and [Λx :Λy ] = pk . Upon drawing an edge between
y, z ∈Gp (x) if and only if there exist representatives Λy ∈ y and Λz ∈ z such that
Λz ⊂ Λy and [Λy : Λz ] = p, one endows Gp (x) with a graph structure which is
in fact a (p + 1)-regular tree known as the p-Hecke tree through x. The edge
structure (which is of arithmetic origin) allows one to talk about Hecke rays
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starting from x in Gp (x). These are simply sequences of homothety classes of
lattices (xn)n∈N in Gp (x) with no repetitions such that x0 = x and such that there
is an edge between xn and xn+1 for all n ∈N.

It turns out that if Ax is periodic, then Ay is periodic for any y ∈ Gp (x) and
thus it is natural to consider the possible weak-star limits of the periodic mea-
sures µxn , where (xn)n∈N is a Hecke ray. Theorem 4.8 from [1] states that for
all but potentially two special rays, the sequence (µxn )n∈N equidistributes in
X ; that is, it weak-star converges to the unique PGL2(R)-invariant probability
measure on X . For the problematic two rays (which exist only when the prime
p splits in a quadratic extension of Q which corresponds to the periodic orbit
Ax), the collection of measures (µxn )n∈N is finite and, so, nothing interesting
dynamically is happening. In particular, what we wish to stress for our analogy
with the positive characteristic case studied here are the following facts: (i) the
sequences (µxn )n∈N cannot exhibit escape of mass (i.e., they cannot accumulate
on a measure giving the space total mass strictly less than 1); (ii) there is a nat-
ural notion of rationality of Hecke rays and since the (potentially existing) two
Hecke rays which do not give rise to equidistribution are never rational, one has
that rational rays always give rise to equidistribution.

In the current paper which deals with the positive characteristic analogue of
the above discussion, the picture is in sharp contrast. As will be demonstrated,
all rational rays exhibit a uniform amount of escape of mass (conjectured to
be full), there are uncountably many rays which exhibit escape of mass, and
further more, there are uncountably many rays for which the periodic measures
of the ray accumulate on measures which are singular to the uniform measure.

We now abandon the above notation and present the notation and concepts
necessary for stating our results. Let Fq be a finite field of order a positive power
q of a prime p, and let K = Fq (Y ) be the field of rational functions in one vari-
able Y over Fq . Let R∞ = Fq [Y ] be the ring of polynomials in Y over Fq , let
K∞ = Fq ((Y −1)) be the field of formal Laurent series in Y −1 over Fq and let
X∞ = PGL2(K∞)/PGL2(R∞) be the space of homothety classes of R∞-lattices
in K∞×K∞ (that is, of rank 2 free R∞-submodules spanning the vector plane
K∞×K∞ over K∞). A point x ∈ X∞ is called A∞-periodic if its orbit under the
diagonal subgroup A∞ of PGL2(K∞) is compact. This orbit A∞x then carries a
unique A∞-invariant probability measure, denoted by µx . The aim of this pa-
per is to study the asymptotic behavior of these measures µx (and in particular
to prove unexpected escape of mass phenomena) as x varies in arithmetically
defined subsets of A∞-periodic points.

Recall that for every x0 ∈ X∞ and every prime polynomial ν in R∞, the Hecke
tree Tν(x0) with root x0 is the connected component of x0 in the graph with
vertex set X∞, with an edge between the homothety classes of two R∞-lattices
Λ and Λ′ when Λ′ ⊂ Λ and Λ/Λ′ is isomorphic to R∞/νR∞ as an R∞-module.
The boundary at infinity Ω = Ωx0 of Tν(x0) identifies with the projective line
P1(Kν) over the completion Kν of K associated with ν, and a point of Ω is called
rational if it belongs to P1(K ). (Note that the identification of Ω with P1(Kν) is
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not canonical, but the notion of rationality is well defined.) For every ξ ∈Ω, let

(xξn)n∈N be the vertices along the geodesic ray (called a Hecke ray) in Tν(x0) from
x0 to ξ.

In what follows, we fix an A∞-periodic point x0 in X∞. Note that the vertices
of the Hecke-tree Tν(x0) then also have periodic A∞-orbits. Our aim is to under-
stand the possible sets Θξ of weak-star accumulation points of the sequences
of measures (µxξn

)n∈N on X∞ associated with the vertices of the Hecke ray with

endpoint ξ, when ξ varies in Ω. For all ξ ∈Ω and c > 0, we say that

• ξ has c-escape of mass if there exists θ ∈Θξ with θ(X∞) ≤ 1− c;
• ξ has uniform c-escape of mass if for every θ ∈Θξ we have θ(X∞) ≤ 1− c.

Here is a summary of our results.

THEOREM 1. There exists c > 0 such that any rational ξ ∈Ω has uniform c-escape
of mass.

The following result also exhibits full espace of mass phenomena along Hecke
rays.

THEOREM 2. There exists (p,ν, x0) such that for every rational ξ ∈ Ω, the zero
measure belongs to Θξ.

The key approach to these results (proved in Section 4.1) is to use the geo-
desic flow on the quotient of the Bruhat-Tits tree of (PGL2,K∞) (see for instance
[27] and Section 2.3) by the lattice PGL2(R∞).

Theorem 1 proves an escape of mass phenomenon along only countably
many Hecke rays. Using the fact that the above constant c is independent of the
rational Hecke ray, we can strengthen this in the next result (see Section 4.2).

THEOREM 3. There exists c > 0 such that the set of ξ ∈Ω having c-escape of mass
is uncountable.

As guided by the analogy with PGL2(R)/PGL2(Z), we could still wonder if the
part of the measure which does not go to infinity still equidistributes in X∞,
that is, converges to a measure proportional to the probability measure on X∞
invariant under PGL2(K∞). The next result proves that this is also not always
the case.

THEOREM 4. There exists c ′ > 0 such that for every A∞-periodic point x ∈ X∞,
there exist ξ ∈Ωx and θ ∈Θξ such that c ′µx ≤ θ. In particular, θ is not absolutely
continuous with respect to the homogeneous measure on X∞.

We give explicit constants c,c ′ in the above statements. We will actually prove
a stronger result, Theorem 18 in Section 4.4, which mixes the behaviors in The-
orems 3 and 4. For this, the main tool (proved in Section 4.3) is an effective
equidistribution result of sectors of Hecke spheres in positive characteristic,
which we prove using the known exponential decay of matrix coefficients, see
for instance [2]. We refer for instance to the works of Dani-Margulis [9], Clozel-
Oh-Ullmo [7], Clozel-Ullmo [8], Eskin-Oh [13], Benoist-Oh [3] for equidistribu-
tion results of Hecke spheres in zero characteristic.
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As we shall see in the main body of the text, Theorems 1, 3 and 4 are valid
upon replacing K by any global function field (see also Section 5 for further
extensions). In this more general case, there are several (albeit finitely many)
ways to go to infinity in X∞, and we will give more precise results towards which
cusp of X∞ the escape of mass occurs.

Going back to the comparison between the zero and positive characteris-
tic cases, the underlying phenomenon which changes drastically is as follows.

While in zero characteristic the size of the orbit A∞xξn is exponential in n, in
positive characteristic, it is linear in n due to the presence of the Frobenius auto-
morphism (see Theorem 10). When this is combined with the fact that rational
rays diverge in a linear speed, we get the results regarding the escape of mass.

Although the rigidity displayed in zero characteristic completely breaks down,
as demonstrated by the above results, we still believe that the following conjec-
ture holds. It implies in particular that the set of rays having uniform escape of
mass (such as the rational rays) is a null set.

CONJECTURE 5. For almost any ξ ∈ Ω (with respect to the natural probability
measure), the averages 1

N+1

∑N
n=0µxξn

converge to the homogeneous probability
measure on X∞.

Conjecture 5 reflects our belief that the behaviour along rational rays is far
from generic. In fact, after some computer experiments, we suggest the follow-
ing.

CONJECTURE 6. For any rational ξ ∈Ω, µxξn
converges to the zero measure.

This work raises many other natural questions which we plan on studying in
subsequent works. A few examples are: Is the rationality of the ray characterized
by a uniform (or full) escape of mass? Can we find irrational rays exhibiting an
escape of mass in average? Do we have a criterion for the convergence (or
convergence in average) towards (a multiple of) the homogeneous measure?
What is the Hausdorff dimension of the set of ξ for which Theorem 3 holds?

Although we are working with the dynamics of rank 1 torus, it is interesting
to compare our results with the huge corpus of works in dynamics on noncom-
pact spaces, in particular locally homogeneous ones or moduli spaces, precisely
devoted to prove that there is no escape of mass to infinity for nice sequences
of probability measures on these spaces. This is in particular the case in homo-
geneous dynamics—with real Lie groups, thereby in zero characteristic—(see
for instance [11, 4]) or in Teichmüller dynamics (see for instance [12, 15]).

Note that an escape of mass for the diagonal group is not a feature appearing
only in positive characteristic. Over the reals, there are examples of escape of
mass for the diagonal flow: for example, in [24, p. 232] the author arithmeti-
cally constructs a sequence of closed geodesics on the modular surface which
converge to the zero measure (see also [28] for similar examples in higher di-
mensions). We stress, though, that these examples do not share the arithmetic
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relation between the measures along the sequence which is present in our re-
sults. Indeed, due to the results in [1], such an arithmetic relation cannot coexist
with an escape of mass over the reals.

As another motivation for studying the limiting behaviour of µxξn
(also orig-

inating from the analogy with [1]), let us indicate a relation with the distribu-
tion properties of the periods of the continued fraction expansion of certain
sequences of quadratic irrationals. We refer for instance to the surveys [16, 25]
for background.

We denote by O∞ = Fq [[Y −1]] the local ring of K∞ (consisting of power series
in Y −1 over Fq ). Any element f ∈ K∞ may be uniquely written f = [ f ]+ { f }
with [ f ] in the polynomial ring R∞ = Fq [Y ] and { f } ∈ Y −1O∞. The Artin map
Ψ : Y −1O∞r {0} → Y −1O∞ is defined by f 7→ { 1

f

}
. Any f ∈ K∞ irrational (not in

K = Fq (Y ) ) has a unique continued fraction expansion

f = a0 +
1

a1 +
1

a2 +
1

a3 +·· ·

,

with a0 = [ f ] ∈ R∞ and an = [ 1
Ψn−1( f −a0)

]
a non-constant polynomial, for n ≥ 1.

Let QI = { f ∈ K∞ : [K ( f ) : K ] = 2} be the set of quadratic irrationals over
K in K∞. Given an irrational f ∈ Y −1O∞, we have f ∈ QI if and only if the
continued fraction expansion of f is eventually periodic. We fix f ∈ QI . As-
sume for simplicity that the characteristic p is different from 2, that f ∈ Y −1O∞
has purely periodic continued fraction expansion and that the Galois conju-

gate f σ of f over K belongs to K∞rO∞. Let g f =
[

f σ f
1 1

]
∈ PGL2(K∞) and

x f = g−1
f PGL2(R∞) ∈ X∞. It is then easy to prove that x f is A∞-periodic. Using

the main results of [6], we may construct a natural cross-section C for the ac-
tion of A∞ on (a full-measure subset of) X∞ and a natural map from C onto (a
full-measure subset of) Y −1O∞, sending the intersection with C of the A∞-orbit
of x f in X∞ to the orbit of f under Ψ in Y −1O∞.

Given an irreducible polynomial P ∈ Fq [Y ], our results imply strong state-
ments regarding the asymptotics of the periods of the continued fraction ex-
pansions of the quadratic irrationals P n f as n →+∞ (in terms of length of the
period and the degrees of the polynomials composing it), with a strikingly dif-
ferent outcome than the ones in [1]. The exact statements and the detailed
analysis of this translation are too long to be included here, and we refer to the
future note [20]. We only mention here, as indicated by the referee, that our
results imply in particular that if (an,i )i∈N is the continued fraction expansion
of P n f for all n ∈ N, then supn,i∈N−{0} deg an, i = +∞, thus recovering a special
case of [10, Theorem 4.5].
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2. GLOBAL FUNCTION FIELDS AND BRUHAT-TITS TREES

This section introduces the notation and preliminary results used in this pa-
per. We refer the reader to the following commutative diagram for a global view
of this notation.

fraction expansion of f is eventually periodic. We fix f 2 QI. Assume for simplicity that
the characteristic p is different from 2, that f 2 Y �1O1 has purely periodic continued
fraction expansion and that the Galois conjugate f� of f over K belongs to K1 r O1.

Let gf =


f� f
1 1

�
2 PGL2(K1) and xf = g�1

f PGL2(R1) 2 X1. It is then easy to prove

that xf is A1-periodic. Using the main results of [BrP], we may construct a natural map
from (a full-measure subset of) X1 onto (a full-measure subset of) Y �1O1, sending the
A1-orbit of xf in X1 to the orbit of f under  and F⇥

q in Y �1O1.
Given an irreducible polynomial P 2 Fq[Y ], our results imply strong statements regard-

ing the asymptotics of the periods of the continued fraction expansions of the quadratic
irrationals Pnf as n ! +1 (in terms of length of the period and the degrees of the polyno-
mials composing it), with a strikingly different outcome than the ones in [AkS]. The exact
statements and the detailed analysis of this translation are too long to be included here,
and we refer to the future note [PauS]. We only mention here, as indicated by the referee,
that our results imply in particular that if (an,i)i2N is the continued fraction expansion of
Pnf for all n 2 N, then supn,i2N�{0} deg an, i = +1, thus recovering a special case of [DT,
Theo. 4.5].
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2 Global function fields and Bruhat-Tits trees

This section introduces the notation and preliminary results used in this paper. We refer
the reader to the following commutative diagram for a global view of this notation.

XS = �S\GS

GS = G1 ⇥ G⌫

V T⌫ = G⌫/G(O⌫)

hecg

�1\G1/G(O1) = �1\V T1

�1\G1/A(O1) = �1\G T1  Z

�1\G1 = �S\GS/G(O⌫) = X1  A1
⇡01

⇡1

v1

V T1 = G1/G(O1)

G1 = G(K1) G⌫ = G(K⌫)

p1

2.1 Global function fields

We refer for instance to [Ros, Ser1] for the content of this Section.

5

2.1. Global function fields. We refer for instance to [23, 26] for the content of
this section.

Let Fq be a finite field with q elements, where q is a positive power of a
prime p. Let K be a global function field over Fq , that is, the function field of a
geometrically connected smooth projective curve C over Fq , or equivalently an
extension of Fq of transcendence degree 1, in which Fq is algebraically closed.
The set P of primes of K is the set of closed points of C, or equivalently the set
of discrete valuations of K , trivial on F×q , with value group exactly Z. We fix an
element in P that we denote by ∞, and we denote by P f the set P − {∞}.

For every ω ∈P , we denote by Rω the affine algebra of the affine curve C−{ω}
(which is a Dedekind ring), by vω the discrete valuation of K associated with ω

(with the usual convention that vω(0) =+∞), by Kω the associated completion
of K (and again by vω the extension of vω to Kω), by Oω its local ring, by πω a
uniformizer of Oω, by kω its residual field (that we identify with its canonical lift
in Oω), and by deg(ω) the degree of kω over Fq . We assume, as we may using
for instance the Riemann-Roch theorem, that πν belongs to R∞ if ν ∈P f . Note
that R∞ ⊂Oν if ν ∈P f (since an element in R∞ has no pole at the closed point
ν 6=∞ of C), and that R∞[π−1

ν ]∩Oν = R∞.
We normalize the absolute value | · |ω associated to vω by |x|ω = |kω|−vω(x) =

q−degω vω(x) for every x ∈ Kω. In particular, the product formula

∀ x ∈ K ,
∏
ω∈P

|x|ω = 1

holds. Note that Kω is the field kω((πω)) of Laurent series f =∑
i∈Z fi (πω)i in the

variable πω over kω, where fi ∈ kω is zero for i ∈Z small enough. We have

| f |ω = |kω|−sup{ j∈Z : ∀ i< j , fi=0} ,
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and Oω = kω[[πω]] is the local ring of power series f =∑
i∈N fi (πω)i (where fi ∈

kω) in the variable πω over kω.
For every finite extension K̃ω of Kω, we denote again by vω the unique ex-

tension of vω to a valuation on K̃ω, and by e(K̃ω,Kω) = [vω(K̃ ×
ω ) : vω(Kω

×)] its
ramification index (see for instance [26, II §2]).

For instance, if C is the projective line P1 and if ∞= [1 : 0] is its usual point
at infinity, then K = Fq (Y ), π∞ = Y −1, K∞ = Fq ((Y −1)), O∞ = Fq [[Y −1]], k∞ = Fq ,
R∞ = Fq [Y ] and the uniformizers πν for ν ∈P f may be taken to be the monic
prime polynomials in R∞, with degν the degree of the polynomial πν. This is
the example considered in the introduction.

2.2. The semi-simple group PGL2. In this section, we give the group-theoretic
notation we are going to use in this paper, except in Section 5. Let K be as in
Section 2.1. We fix ν ∈P f .

We denote by G = PGL2 the (adjoint semi-simple absolutely simple) projec-
tive linear algebraic group over K in dimension 2. Whenever necessary, we em-
bed PGL2 in GL3 by the adjoint representation on the vector space of traceless
2-by-2 matrices.

Let A be the diagonal subgroup of G , that is, the algebraic subgroup of G
consisting in the elements represented by diagonal matrices, which is a (split)
maximal torus of G defined over K .

For every ω ∈P and every algebraic subgroup H of G defined over Kω (for in-
stance if H is defined over K ), we set Hω = H(Kω), which is a non-Archimedean
Lie group (and in particular a locally compact group).

We define Γ∞ = G(R∞) = PGL2(R∞), which is a nonuniform lattice in G∞ =
PGL2(K∞). For instance, when C = P1, the lattice Γ∞ is called Nagao’s lattice
[18] (or Weil’s modular group [31]).

We denote by X∞ the totally disconnected locally compact space Γ∞\G∞
(contrarily to the introduction, we consider the left quotient, since it makes
the connection with Bruhat-Tits theory easier). The space X∞ is noncompact,
and identifies by Γ∞g 7→ g−1[R∞×R∞] with the space of homothety classes [Λ]
under K ×∞ of R∞-lattices Λ in K∞×K∞.

Let S = {∞,ν} and let ΓS be the S-arithmetic group G(R∞[πν−1]), which em-
beds diagonally in the locally compact group GS = G∞×Gν as a nonuniform
lattice, and let XS = ΓS\GS . We identify G∞ and Gν, hence any subgroup of
them, with their images in GS by the maps x 7→ (x,e) and y 7→ (e, y). Note that
ΓS ∩G(Oν) = Γ∞ since R∞[π−1

ν ]∩Oν = R∞.
For every ω ∈ S, we denote by

•
[

a b
c d

]
the image in Gω = PGL2(Kω) of

(
a b
c d

)
∈ GL2(Kω),

• vω the map from the abelian group Aω = A(Kω) =
{[

a 0
0 d

]
: a,d ∈ Kω

}
to Z defined by

[
a 0
0 d

]
7→ vω(d/a), which is a group epimorphism with

compact-open kernel A(Oω) =G(Oω)∩ Aω,
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• αω : K ×
ω → Aω the group isomorphism t 7→

[
1 0
0 t

]
(whose inverse is the

positive root of the torus A over Kω) so that vω(αω(t )) = vω(t ), and aω =
αω(πω) =

[
1 0
0 πω

]
so that vω(aω) = 1.

2.3. Bruhat-Tits trees. Let (K ,ν,G , A) and the associated notation be as in Sec-
tion 2.2.

Trees. Let T be a locally finite tree. Its set of vertices V T is endowed with the
maximal distance for which two adjacent distinct vertices are at distance 1. A
geodesic ray or line in T is an isometric map from N or Z to its set of vertices.
The set of geodesic lines of T , endowed with the compact-open topology, is
denoted by G T .

An end of T is an equivalence class of geodesic rays, when two geodesic
rays are equivalent if the intersection of their images is the image of a geodesic
ray. The set of ends of T , endowed with the (compact, totally disconnected)
quotient topology of the compact-open topology, is denoted by ∂T , and called
the boundary at infinity of T .

The translation length of an isometry γ of T is

`T (γ) = min
x∈V T

d(x,γx) .

It is invariant under conjugation of γ in the isometry group of T . We will say
that γ is loxodromic if `T (γ) > 0, in which case there exists a unique image of a
geodesic line in T on which γ translates a distance `T (γ), called the translation
axis of γ.

The geodesic flow (with discrete times) (φm)m∈Z on the tree T is the right
action (G T ×Z) →G T of Z on G T by translations at the source, defined by

(`,m) 7→ {
φm` : n 7→ `(n +m)

}
for all m ∈Z and ` :Z→V T in G T . Given a group Γ of automorphisms of T , the
geodesic flow on T induces a right action of Z on Γ\G T , also called the geodesic
flow of Γ\T , and again denoted by (φm)m∈Z.

The tree of PGL2 over local fields. For ω ∈ S = {∞,ν}, let Tω be the Bruhat-Tits
tree of (G ,Kω), see for instance [30]. We use its description given in [27].

Recall that an Oω-lattice Λ in the Kω-vector space Kω×Kω is a rank 2 free Oω-
submodule of Kω×Kω, generating Kω×Kω as a vector space. The Bruhat-Tits
tree Tω is the graph whose set of vertices VTω is the set of homothety classes
(under K ×

ω ) [Λ] of Oω-lattices Λ in Kω×Kω, and whose non-oriented edges are
the pairs {x, x ′} of vertices such that there exist representatives Λ of x and Λ′ of
x ′ such that Λ⊂Λ′ and Λ′/Λ is isomorphic to Oω/πωOω. This graph is a regular
tree of degree |P1(kω)| = |kω|+1.

We denote by ∗ω the homothety class of the Oω-lattice Oω×Oω generated
by the canonical basis of Kω×Kω. The left linear action of GL2(Kω) on Kω×Kω

induces a faithful, transitive left action of Gω on VTω. The stabilizer in Gω of
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∗ω is G(Oω). We will hence identify Gω/G(Oω) with VTω by the map g G(Oω) 7→
g ∗ω.

We identify as usual the projective line P1(Kω) with Kω∪ {∞} using the map
(x, y) 7→ x y−1. There exists one and only one homeomorphism between the
boundary at infinity ∂Tω of Tω and P1(Kω) such that the (continuous) exten-
sion to ∂Tω of the isometric action of Gω on Tω corresponds to the projective
action of Gω on P1(Kω). From now on, we identify ∂Tω and P1(Kω) by this ho-
meomorphism.

The group Gω hence acts simply transitively on the set of ordered triples of
distinct points in ∂Tω. In particular, the group Gω acts transitively on the space
GTω of geodesic lines in Tω. The stabilizer under this action of the geodesic
line

`0 : n 7→ [Oω×πn
ωOω] = an

ω ∗ω
is the maximal compact-open subgroup A(Oω) of the diagonal group Aω. We
will hence identify Gω/A(Oω) with GTω by g A(Oω) 7→ g `0. Furthermore, the
stabilizer in Gω of the ordered pair of endpoints (`0(−∞) = 0,`0(+∞) =∞) of `0

in ∂Tω = P1(Kω) is Aω. Therefore any element γ0 ∈Gω which is loxodromic on
Tω is diagonalisable over Kω. Besides, by [27, page 108], the translation length

on Tω of γ0 =
[
λ+ 0
0 λ−

]
is

`Tω(γ0) = |vω(λ+)− vω(λ−)| .(1)

Using the group morphism vω : Aω→Z, the action by translations on the right
of Aω on Gω/A(Oω) corresponds to the geodesic flow on GTω: for all a ∈ Aω

and ` ∈GTω =Gω/A(Oω), we have

` a =φvω(a)` .

We denote by π′∞ : X∞ = Γ∞\G∞ → Γ∞\GT∞ = Γ∞\G∞/A(O∞) the canonical
projection (see the diagram at the beginning of Section 2). The previous equa-
tion proves that π′∞ is equivariant with respect to the morphism v∞ : A∞ →Z,
where A∞ acts by translation on the right on X∞ and Z by the (quotient) geo-
desic flow on Γ∞\GT∞: for all x ∈ X∞ and a ∈ A,

π′
∞(x a) =φv∞(a)π

′
∞(x) .(2)

The principal bundle π∞ : XS → X∞. Since ΓS is irreducible, the group Γ∞ =
ΓS ∩G(Oν) is dense in the stabiliser G(Oν) of the base point ∗ν of the Bruhat-
Tits tree Tν. This stabilizer G(Oν) acts transitively on the set of geodesic rays
in Tν starting from ∗ν. Thus Γ∞ preserves and acts transitively on the sphere
in Tν of any given radius centered at ∗ν. For every g ′ ∈ Gν, there hence exists
γ ∈ Γ∞ and n ∈N such that γ−1g ′∗ν = [Oν×πn

νOν] = an
ν ∗ν. Therefore

Gν =
⋃

n∈N
Γ∞ an

ν G(Oν) .(3)

In particular, Gν = ΓS G(Oν).
Therefore, every element x of XS may be written ΓS(g , g ′) with g ∈ G∞ and

g ′ ∈ G(Oν). For all g ,h ∈ G∞ and g ′,h′ ∈ G(Oν), we have ΓS(g , g ′) = ΓS(h,h′) if
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and only if g h−1 = g ′(h′)−1 ∈ ΓS ∩G(Oν) = Γ∞. Hence the map π∞ : XS → X∞,
where π∞(x) = Γ∞g if x = ΓS(g , g ′) with g ′ ∈ G(Oν), is well defined and con-
tinuous. The action of G(Oν) by right translations on the second factor of
GS = G∞ ×Gν induces an action of G(Oν) on XS = ΓS\GS , which is transitive
and free on the fibers of π∞. Hence π∞ : XS → X∞ is a principal bundle un-
der the group G(Oν), which gives an identification between X∞ = Γ∞\G∞ and
XS/G(Oν) = ΓS\GS/G(Oν) (see the diagram at the beginning of Section 2).

Ends of the modular graph at the place ∞ and heights. The quotient graph
Γ∞\T∞ will be called the modular graph at ∞ of K . By for instance [27], the
set of cusps Γ∞\P1(K ) is finite, and Γ∞\T∞ is the disjoint union of a finite con-
nected subgraph containing Γ∞∗∞ and of maximal open geodesic rays
hz ( ]0,+∞[), for z = Γ∞ z̃ ∈ Γ∞\P1(K ), where hz (called a cuspidal ray) is the
image by the canonical projection T∞ → Γ∞\T∞ of a geodesic ray whose point
at infinity in P1(K ) ⊂ ∂T∞ is equal to z̃. Conversely, any geodesic ray whose
point at infinity lies in P1(K ) ⊂ ∂T∞ contains a subray that maps injectively by
the canonical projection T∞ → Γ∞\T∞.

Let us denote by áΓ∞\T∞ = (Γ∞\T∞)tE∞ Freudenthal’s compactification (see
[14]) of Γ∞\T∞ by its finite set of ends E∞. This set of ends is indeed finite,
in bijection with Γ∞\P1(K ) by the map which associates to z ∈ Γ∞\P1(K ) the
end towards which the cuspidal ray hz converges. See for instance [27] for a
geometric interpretation of E∞ in terms of the curve C.

Let X̂∞ = X∞tE∞ and let p̂∞ : X̂∞ → áΓ∞\T∞ be the map equal to the identity
map on E∞ and to the canonical projection

p∞ : X∞ = Γ∞\G∞ → Γ∞\VT∞ = Γ∞\G∞/G(O∞)

on X∞ (see the diagram at the beginning of Section 2). Since p∞ is a proper
map, this defines a compactification of X∞, by endowing X̂∞ with the compact
metrisable topology generated by the open subsets of U and the sets p̂∞−1(U )
with U an open neighborhood of a point in E∞. We will say that E∞ is the set of
cusps of X∞, and we will indicate towards which cusp of X∞ the escape of mass
occurs.

For every x ∈ X∞, define the height of x in X∞ by

ht∞(x) = dΓ∞\T∞(p∞(x),Γ∞∗∞) .(4)

For every cusp z ∈ E∞ of X∞, define the height of x in X∞ relative to the cusp z
by ht∞, z (x) = 0 if p∞(x) does not belong to hz (]0,+∞[), and

ht∞, z (x) = dΓ∞\T∞(p∞(x),hz (0)) ,

otherwise.

LEMMA 7. For all g ′ ∈G∞ and x ∈ X∞, we have

|ht∞(x)−ht∞(xg ′)| ≤ dT∞(∗∞, g ′∗∞) ,

and |ht∞, z (x)−ht∞, z (xg ′)| ≤ dT∞(∗∞, g ′∗∞) for every cusp z ∈ E∞ of X∞.
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Proof. Let g ∈G∞ be such that x=Γ∞g . We have p∞(x)=Γ∞ g ∗∞ and p∞(xg ′)=
Γ∞ g g ′∗∞. By the triangle inequality and since the projection map T∞ →
Γ∞\T∞ does not increase the distances, we have

|ht∞(x)−ht∞(xg ′)| ≤ dΓ∞\T∞(Γ∞ g ∗∞,Γ∞ g g ′∗∞)

≤ dT∞(g ∗∞, g g ′∗∞) = dT∞(∗∞, g ′∗∞) .

The second assertion follows if p∞(x) and p∞(xg ′) simultaneously belong or do
not belong to (the image of) hz . If for instance p∞(x) belongs to hz and p∞(xg ′)
does not belong to hz , then

dΓ∞\T∞(p∞(x),he (0)) ≤ dΓ∞\T∞(p∞(x), p∞(xg ′))

and the result holds as above.

Example. Assume that C is the projective line over Fq and that ∞ is its usual
point at infinity. Then the (image of the) geodesic ray in T∞ starting from ∗∞
with point at infinity ∞∈P1(K∞), which is

n ∈N 7→ [O∞×πn
∞ O∞] = an

∞ ∗∞ ∈VT∞ ,

is a (weak) fundamental domain for the action of Γ∞ on VT∞: it injects onto
Γ∞\VT∞ by the canonical map T∞ → Γ∞\T∞.

Hence G∞ = ∐
n∈NΓ∞ an∞ G(O∞). For every g ∈ G∞, the height of x = Γ∞g

is the unique n ∈ N such that g ∈ Γ∞ an∞ G(O∞). Note that if one writes g in
the Cartan decomposition of G∞ as g ∈G(O∞) am∞ G(O∞) for some m ∈N, then
m = dT∞(∗∞, g ∗∞) ≥ ht∞(x), with usually strict inequality.

The quotient graph of finite groups Γ∞\\T∞, whose underlying graph is the
geodesic ray Γ∞\T∞, is called the modular ray. With F0 = G(k∞), F ′

0 = F0 ∩F1

and Fn = {[
a b
0 d

]
∈ Γ∞ : v∞(b) ≥ −n

}
, the modular ray Γ∞\\T∞ (which has

only one end) is given by Figure 1.

F1 F2 F3 F4F ′
0

F0 F1 F2 F3 F4 F5

FIGURE 1. The modular ray PGL2(k∞[Y ])\\T∞

The full-down property in the modular graph (see for instance [27, 17]). If ρ
is a geodesic ray in T∞ whose image is a cuspidal ray in Γ∞\T∞, the stabilizers
of the vertices of ρ different from the origin of ρ are strictly increasing along the
ray. Hence the image in Γ∞\T∞ of a geodesic ray in T∞ satisfies the following
full-down property: if it starts to go down along the image of a cuspidal ray hz

for some z ∈ E∞, then it needs to go all the way down to hz (0).
As explained in [27, 19], this full-down property has the following conse-

quence: the image by the canonical map T∞ → Γ∞\T∞ of a geodesic ray ρ
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in T∞ starting from ∗∞ either is an infinite sequence a0b0a1b1a2b2 . . . of con-
catenations of paths ai (possibly reduced to points) in the finite graph Γ∞\T∞−⋃

z∈E∞ hz (]0,+∞[) and back and forth paths bi (of even lengths at least 2) from
the origin hzi (0) of the cuspidal ray hzi to itself inside this ray, if ρ ends in an
irrational point at infinity (that is, in P1(K∞)−P1(K )), or starts by such a finite
sequence and then follows some cuspidal ray to infinity, otherwise.

he (0) he (1) he (n)

FIGURE 2. Back and forth paths in cuspidal rays

2.4. A∞-periodic orbits in X∞. Let (K ,ν,G , A) and the associated notation be
as in Section 2.2.

Let us give a description of the compact orbits for the action by translations
on the right of the subgroup A∞ on X∞ = Γ∞\G∞.

PROPOSITION 8. For every g ∈G∞, the following assertions are equivalent, where
x = Γ∞g ∈ X∞:

(1) there exists a unique A∞-invariant probability measure on the orbit x A∞;
(2) the subgroup A∞∩ g−1Γ∞g is a (uniform) lattice in A∞;
(3) the orbit of π′∞(x) under the geodesic flow (φn)n∈Z on Γ∞\GT∞ is periodic;
(4) there exists γ0 ∈ Γ∞ and t0 ∈ K ×∞ with v∞(t0) positive and minimal such

that γ0 g = g α∞(t0).

If one of these conditions is satisfied, we say that x is A∞-periodic, and the
unique A∞-invariant probability measure on x A∞ is denoted by µx .

The elements γ0 ∈ Γ∞ and t0 ∈ K ×∞ are said to be associated with g . Note that
they depend on the choice of the representative g of x: if γ0 is associated with g ,
then γ−1γ0γ is associated with γg for every γ ∈ Γ∞. Furthermore, γ0 is primitive
(not a proper power of an element of Γ∞) and loxodromic on T∞. The period
of π′∞(x) under the geodesic flow (φn)n∈Z is the translation length of γ0 on T∞,
which is equal to v∞(t0), and depends only on x.

Proof. The equivalence of (1) and (2) is well-known.
The equivalence of (2) and (3) follows from the equivariance of the canonical

projection π′∞ : X∞ = Γ∞\G∞ → Γ∞\GT∞ = Γ∞\G∞/A(O∞) with respect to the
morphism v∞ : A∞ →Z (see equation (2)).

The image Γ∞`= Γ∞ g A(O∞) in Γ∞\GT∞ of the geodesic line `= g A(O∞) ∈
GT∞ =G∞/A(O∞) is periodic under the geodesic flow if and only if there exist
n > 0 and γ0 ∈ Γ∞ such that γ0` = φn(`) = `α∞(πn∞), hence, since α∞ : O×∞ →
A(O∞) is an isomorphism, if and only if there exist n > 0, u0 ∈O×∞ and γ0 ∈ Γ∞
such that γ0g = g α∞(πn∞)α∞(u0). With t0 = πn∞u0 so that v∞(t0) = n > 0, this
proves the equivalence of (3) and (4).
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Let us now prove the additional properties of (γ0, t0) and discuss its unique-
ness. Assume that n in the above proof is minimal. Then γ0 is primitive and
loxodromic, with translation axis the image of `, translation length n, which
is the period of Γ∞` under the geodesic flow. Assume that (γ′0, t ′0) ∈ Γ∞×K ×∞
satisfies γ′0 g = g α∞(t ′0) with n′ = v∞(t ′0) positive and minimal. Then n′ = n
and γ′0`=φn(`). Hence γ−1

0 γ′0 belongs to the pointwise stabilizer in Γ∞ of the
image of `, which is the finite group g A(O∞)g−1 ∩Γ∞. Therefore, there exists
u′

0 ∈α∞−1(g−1Γ∞g ∩ A(O∞)) ⊂O×∞ such that γ′0 = γ0gα∞(u′
0)g−1 and t ′0 = t0u′

0.

2.5. Hecke trees. Let (K ,ν,G , A) and the associated notation be as in Section 2.2.
The set X∞ of homothety classes of R∞-lattices in K∞×K∞ is the set of ver-

tices of a graph, whose non-oriented edges are the pairs {x, x ′} of vertices such
that there exist representatives Λ of x and Λ′ of x ′ such that Λ ⊂ Λ′ and Λ′/Λ
is isomorphic to R∞/πνR∞. The action of G∞ on X∞ extends to an (isometric)
action by graph automorphisms on this graph.

For every x ∈ X∞, the connected component of the vertex x in this graph is a
(|kν|+1)-regular tree, called the (ν-)Hecke tree of x, and denoted by Tν(x). We
have Tν(x)g = Tν(xg ) for all x ∈ X∞ and g ∈ G∞. A (ν-)Hecke ray from x is a
geodesic ray in the Hecke tree Tν(x) starting from x.

The following description of the ν-Hecke trees in X∞ is well known, and is
given, besides in order to fix the notation, only for the sake of completeness.

LEMMA 9. Let g ∈ G∞ and x = Γ∞ g its image in X∞. The map from Gν to X∞
defined by g ′ 7→ π∞(ΓS(g , g ′)) induces an isometric map hecg from the vertex
set VTν =Gv /G(Oν) of the Bruhat-Tits tree Tν onto the vertex set V Tν(x) of the
Hecke tree Tν(x), sending ∗ν to x. For every γ0 ∈ Γ∞, the map hecg conjugates
the action of γ0 on Tν to the right action of g−1γ0g ∈ Γ∞ on V Tν(x): for every
y ∈VTν, we have

hecg (γ0 y) = hecg (y) g−1γ0g .(5)

For all h ∈ G∞ such that Γ∞ h = x, we have hecg = hech if and only if g = h;
furthermore, the following diagram commutes:

VTν
g h−1

−→ VTν
hech↘ ↙hecg

V Tν(x) .(6)

Note that hecg depends on g and not only on x. We will denote again by hecg

the (continuous) extension ∂Tν → ∂Tν(x) of hecg to the boundaries at infinity
of the Bruhat-Tits and Hecke trees.

Proof. Since the action by translations on the right of G(Oν) on XS preserves
the fibers of the bundle map π∞ : XS → X∞, the map g ′ 7→ π∞(ΓS(g , g ′)) does
induce a map hecg : VTν =Gv /G(Oν) → X∞.

By definition of the Hecke tree Tν(x) of x = Γ∞ g = g−1[R∞×R∞], its vertices
are the points g−1γ [R∞ ×πn

νR∞] where γ ∈ Γ∞ and n ∈ N. By equation (3),
any element in Gν may be written γan

ν g ′ for some γ ∈ Γ∞, n ∈ N and g ′ ∈
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G(Oν). Hence, the elements in hecg (VTν) are the points π∞(ΓS(g ,γan
ν g ′)) =

Γ∞ a−n
ν γ−1g where g ′ ∈G(Oν), γ ∈ Γ∞ and n ∈N. Therefore hecg (VTν) =V Tν(x).

If y, y ′ ∈ VTν are joined by an edge in Tν, then again by density of Γ∞ in
G(Oν), there exists an element in Γ∞ mapping the edge between y and y ′ into
the geodesic ray with vertices (an

ν ∗ν)n∈N. Up to exchanging y and y ′, there exists
n ∈ N and γ ∈ Γ∞ such that γ−1 y = an

ν ∗ν and γ−1 y ′ = an+1
ν ∗ν. In particular,

hecg (y) = Γ∞ a−n
ν γ−1g is joined by an edge to hecg (y ′) = Γ∞ a−n−1

ν γ−1g in the
Hecke tree Tν(x). Hence hecg induces a surjective graph morphism between
the trees Tν and Tν(x). Since both trees are regular of degree |kν|+1, the map
hecg is an isomorphism of trees.

Equation (5) follows by writing y ∈VTν =Gν/G(Oν) as y = g ′G(Oν) for some
g ′ ∈ ΓS (see the line following equation (3)), and by using the following equali-
ties:

π∞(ΓS(g , g ′))g−1γ−1
0 g =π∞(ΓS(g ′−1g ,e))g−1γ−1

0 g = Γ∞(g ′−1g ) g−1γ−1
0 g

=π∞(ΓS(g ,γ0g ′)) .

Let h be another element in G∞ such that Γ∞ h = x. Since Gν = ΓS G(Oν) and
by the definition of π∞, we have hecg = hech if and only if Γ∞γ−1g = Γ∞γ−1h

for every γ ∈ ΓS , that is γ−1(g h−1)γ ∈ Γ∞ for every γ ∈ ΓS . Writing g h−1 =
[

a b
c d

]
and using γ = e, we may take a,b,c,d ∈ R∞. Since the order of vanishing at a
point of C−{∞} of the element πν of R∞ is nonnegative and vν(πν) = 1, we have

v∞(πν) 6= 0 by the product formula. Taking γ =
[
πn
ν 0

0 1

]
gives πn

νc,π−n
ν b ∈ R∞

for every n ∈ Z, that is c = b = 0. Taking γ =
[

1 πn
ν

0 1

]
gives πn

ν (a −d) ∈ R∞ for

every n ∈Z, that is a = d . Hence hecg = hech if and only if g h−1 is the identity
element in Γ∞ =G(R∞).

The other claims are left to the reader.

3. DYNAMICS OF THE MODULAR GROUP AT THE INFINITE PLACE ON THE

BRUHAT-TITS TREE AT A FINITE PLACE

Let (K ,ν,G , A) and the associated notation be as in Section 2.2.
In this section, we study the dynamics of Γ∞ on the Bruhat-Tits tree Tν of

(G ,Kν). Since R∞ ⊂ Oν, the lattice Γ∞ = G(R∞) is contained in the stabilizer
G(Oν) in Gν of the base point ∗ν in Tν. Hence Γ∞ does act on Tν, and for every
n ∈N, every γ0 ∈ Γ∞ preserves the sphere

Sν(n) = STν(∗ν,n)

of center ∗ν and radius n in Tν. Since Sν(n) is finite, every orbit in Sν(n) of
the cyclic group γ0

Z generated by γ0 is periodic. The following linear growth
property of these periodic orbits is a remarkable feature of the positive charac-
teristic.
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THEOREM 10. Let γ0 be an element in Γ∞ which is loxodromic on T∞. Let K̃ν =
K̃ν(γ0) be the splitting field of γ0 over Kν, with local ring Õν, uniformizer π̃ν and
residual field k̃ν. Let eν = eν(γ0) be the ramification index e(K̃ν,Kν) of K̃ν over
Kν. Let dν = dν(γ0) be the smallest positive integer such that the image of γ0

dν in
G(k̃ν) (by reduction modulo π̃νÕν) is the identity. Let rν = rν(γ0) be the biggest
positive integer such that the image of γ0

dν in G(Õν/π̃rν+1
ν Õν) is not the identity.

Then there exists a constant κν = κν(γ0) ∈N such that for every big enough n ∈N,
the maximal cardinality mn = mn(γ0) of an orbit of γ0

Z in Sν(n) satisfies

mn ≤ dν pdlogp
eν n+κν

rν
e .

This result implies that the sequence (mn)n∈N has linear growth: for every
n ∈N big enough, we have

mn ≤ dν p

rν
(eνn +κν) ,(7)

and that if γ0 is diagonalisable over Kν, then for every k ∈N big enough

mrνpk−κν ≤ dν pk .

Proof. We start the proof by the following lemma on the growth of the valuations
of the powers of the elements of Oν with their constant terms removed, which
concentrates the positive characteristic feature.

LEMMA 11. Let a ∈ k ×
ν , λ ∈ a +πνOν and n ∈N. Define mn(λ) = min{k ∈N− {0} :

λk ∈ ak +πn
νOν} and rλ = vν(λ−a) > 0. Then for every n > rλ,

mn(λ) = p
dlogp

n
rλ

e
.

In particular, mn(λ) < p
rλ

n for every n > rλ and mrλpk (λ) = pk for every k ∈
N− {0}.

Proof. Up to replacing λ by λ
a , we may assume that a = 1. To simplify the nota-

tion, let r = rλ. For every k ∈N−{0}, consider the expansion of k in base p given
by k =∑s

i=0 ai p i where s ∈N and ai ∈ {0, . . . , p −1}. Let

vp (k) = inf{i ∈N : ∀ j < i , a j = 0 }

be the p-adic valuation of k. Then, using the Frobenius automorphism, and
the fact that ai is invertible in the characteristic subfield Fp , hence in Oν, if and
only if ai is nonzero, we have

(1+πνr O ×
ν )k ⊂

s∏
i=0

(1+πνr p i
O ×
ν )ai ⊂ ∏

0≤i≤s, ai 6=0
(1+πνr p i

O ×
ν ) ⊂ 1+πνr pvp (k)

O ×
ν .

Hence for every n ∈N, we have λk ∈ 1+πn
νOν if and only if r pvp (k) ≥ n. There-

fore, for every n > r , if r pm−1 < n ≤ r pm (that is, if m = dlogp
n
r e), we have the

equalities mn(λ) = min{k ∈N− {0} : vp (k) = m} = pm . The result follows.
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Now, let γ0 ∈ Γ∞ be loxodromic on T∞. Note that the constant dν is well
defined since R∞ ⊂ Oν ⊂ Õν. As we have seen in Section 2.3, there exist λ±
in a finite extension of K such that the element γ0 is conjugated to

[
λ+ 0
0 λ−

]
and K̃ν = Kν(λ+

λ−
). Note that λ− and λ+ are distinct since γ0 is not the identity

element.
Let T̃ν be the Bruhat-Tits tree of (G , K̃ν), and ∗̃ν = e G(Õν) its standard base

point in V T̃ν =G(K̃ν)/G(Õν). The value group of (the unique extension of) the
valuation vν on K̃ ×

ν contains the value group Z of the valuation vν on K ×
ν with

index eν. By the correspondence between the action on the right of A(K̃ω) on
G(K̃ω)/A(Õω) and the action of the geodesic flow on the geodesic lines in T̃ν, the
sphere Sν(n) of center ∗ν and radius n in Tν is naturally contained in the sphere
ST̃ν(∗̃ν,eνn) of center ∗̃ν and radius eνn in T̃ν, for every n ∈N. Therefore, up

to replacing Kν by K̃ν, we may assume that γ0 is diagonalisable over Kν, and we

prove that the cardinality of every orbit of γ0
Z in Sν(n) is at most dν pdlogp

n+κν
rν

e

for every n ∈N, for some κν ∈N.

Note that the coefficients λ± have absolute value 1 in Kν. Indeed,

(
λ+ 0
0 λ−

)
may be chosen to be conjugated to a representative of γ0 in GL2(R∞). Hence
λ± satisfy an equation P (λ±) = 0 with P a monic quadratic polynomial with
coefficients in R∞ ⊂Oν. Therefore |λ±|ν2 ≤ max{|λ±|ν,1}, so that |λ±|ν ≤ 1, and
equality holds by replacing γ0 by its inverse. Hence λ± ∈ a±+πνOν with a± ∈ k×

ν .
By the finiteness of k×

ν , there exists a smallest dν ∈ N− {0} such that a−dν =
a+dν . Note that dν coincides with the notation introduced in the statement of
Theorem 10. Let

rν = vν
((λ+
λ−

)dν −1
)

.(8)

Since γ0 is loxodromic on T∞, no power of γ0 is the identity, hence rν > 0. Note
that rν coincides with the notation introduced in the statement of Theorem 10.
Up to replacing γ0 by γ0

dν , to modify λ± by a common multiple by an element

of k×
ν , and to proving that mn(γ0) ≤ pdlogp

n+κν
rν

e for some κν ∈ N and for n big
enough, we may assume that the constant terms in k×

ν of λ± are equal to 1, so
that dν = 1.

Since γ0 is diagonalisable over Kν, there exists h ∈Gν such that

γ0 = h

[
λ− 0
0 λ+

]
h−1.

Since λ− 6=λ+, the centralizer ZGν
(γ0) of γ0 in Gν is the abelian group h Aνh−1.

Note that h is well defined modulo multiplication on the right by an element
of Aν.

Let `0 : n 7→ an
ν ∗ν be the geodesic line in Tν from 0 ∈ ∂Tν to ∞∈ ∂Tν, through

∗ν at time n = 0, which is pointwise fixed by A(Oν). The group Aν preserves
`0(Z) and acts transitively on it. Note that the projective action of A(Oν) on
P1(Kν) fixes 0 and ∞, and acts transitively on π−k

ν O×
ν ⊂P1(Kν) for every k ∈Z.
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The geodesic line `= h`0 is pointwise fixed by h A(Oν)h−1. Up to multiplying
h on the right by an element of Aν, we may assume that the closest point to ∗ν
on (the image of) ` is h∗ν = `(0). Let sν = sν(γ0) ∈N be the distance between
∗ν and h∗ν in Tν (see Figure 3).

`(�n + s⌫)

1
`0

⇤⌫

s⌫

k0

`

h(1)`(k)

E0
n, k0

E0
n, 0

En, 0

En, k

`(k0)h(0)

`(n � s⌫)

`(0)

h ⇤⌫

Let pr` : V T⌫ ! `(Z) be the closest point map on the geodesic line `. For all n 2 N
and k 2 N � {0}, define (see the above picture)

En, k = {x 2 S⌫(n) : pr`(x) = `(k)}

and
En, 0 =

�
x 2 S⌫(n) : pr`(x) = `(0), [h ⇤⌫ , ⇤⌫ ] \ [h ⇤⌫ , x] = {h ⇤⌫}

 
.

For all n, k0 2 N with 0  k0 < s⌫ , let E0
n, k0 be the set of x 2 S⌫(n) such that the length

of the common segment [⇤⌫ , h ⇤⌫ ] \ [⇤⌫ , x] is equal to k0. Then we have a partition

S⌫(n) =
[

0k0<s⌫

E0
n, k0 [

[

�nkn

En, k .

Since �0 fixes ⇤⌫ , h(0) and h(1), it pointwise fixes `(Z) [ [⇤⌫ , h ⇤⌫ ]. Hence the above
partition of S⌫(n) is invariant under �0.

Note that En, k is exactly the set of points at distance n � |k| � s⌫ from hak
⌫⇤⌫ = `(k)

on a geodesic ray from hak
⌫⇤⌫ to a point in h(⇡�k

⌫ O⇥
⌫ ) ⇢ P1(K⌫). Hence for any two points

in En, k (with n, k fixed), there exists an element in the centralizer of �0 mapping one to
the other. In particular, the cardinality cn, k = Card(�Z

0 y) is independent of y 2 En, k.
Since hak�1

⌫ h�1 centralizes �0 and hak�1
⌫ h�1En�|k|+1, 1 ⇢ En, k, we have cn, k = cn�|k|+1, 1.

For every n0 2 N, we have cn0, 1  cn0+1, 1, since the closest point map En0+1, 1 ! En0, 1 is
onto and equivariant under �0.

Every point of E0
n, k0 is at distance n + s⌫ � 2k0 from h ⇤⌫ . Hence ha⌫h

�1(E0
n, k0) ⇢

En+2s⌫�2k0+1, 1. Therefore c0n, k0 = Card(�Z
0 y) is independent of y 2 E0

n, k0 and satisfies
c0n, k0 = cn+2s⌫�2k0+1, 1.

In particular, for every n > s⌫ , we have

mn(�0) = max
�

max
0k0<s⌫

c0n, k0 , max
|k|n

cn, k

 
= cn+2s⌫+1, 1 .

Note that h(0) and h(1) do not belong to P1(K), since �0, being loxodromic on T1,
fixes no point of P1(K). The positive subray of `0 hence has no subray whose image is

16

FIGURE 3. A partition of the Hecke sphere Sν(n)

Let pr` : VTν→ `(Z) be the closest point map on the geodesic line `. For all
n ∈N and k ∈N− {0}, define (see Figure 3)

En,k = {x ∈ Sν(n) : pr`(x) = `(k)}

and
En,0 =

{
x ∈ Sν(n) : pr`(x) = `(0), [h∗ν,∗ν]∩ [h∗ν, x] = {h∗ν}

}
.

For all n,k ′ ∈ N with 0 ≤ k ′ < sν, let E ′
n,k ′ be the set of x ∈ Sν(n) such that the

length of the common segment [∗ν,h∗ν]∩ [∗ν, x] is equal to k ′. Then we have
a partition

Sν(n) = ⋃
0≤k ′<sν

E ′
n,k ′ ∪

⋃
−n≤k≤n

En,k .

Since γ0 fixes ∗ν, h(0) and h(∞), it pointwise fixes `(Z)∪ [∗ν,h∗ν]. Hence the
above partition of Sν(n) is invariant under γ0.

Note that En,k is contained in the set of points at distance n −|k|− sν from
hak

ν∗ν = `(k) on a geodesic ray from hak
ν∗ν to a point in h(π−k

ν O×
ν ) ⊂ P1(Kν).

Hence for any two points in En,k (with n,k fixed), there exists an element in
the centralizer of γ0 mapping one to the other. In particular, the cardinality
cn,k = Card(γZ0 y) is independent of y ∈ En,k .

Since hak−1
ν h−1 centralizes γ0 and ha−k+1

ν h−1En,k ⊂ En−|k|+1,1, we have cn,k =
cn−|k|+1,1. For every n′ ∈N, we have cn′,1 ≤ cn′+1,1, since the closest point map
En′+1,1 → En′,1 is onto and equivariant under γ0.
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Every point of E ′
n,k ′ is at distance n+sν−2k ′ from h∗ν. Hence haνh−1(E ′

n,k ′) ⊂
En+2sν−2k ′+1,1. Therefore c ′n,k ′ = Card(γZ0 y) is independent of y ∈ E ′

n,k ′ and satis-

fies c ′n,k ′ = cn+2sν−2k ′+1,1.
In particular, for every n > sν, we have

mn(γ0) = max
{

max
0≤k ′<sν

c ′n,k ′ , max
|k|≤n

cn,k
}= cn+2sν+1,1 .

Note that h(0) and h(∞) do not belong to P1(K ), since γ0, being loxodromic
on T∞, fixes no point of P1(K ). The positive subray of `0 hence has no subray
whose image is entirely contained in the image of `. Therefore `0(N)∩`(Z) is
either empty or the set of vertices of a compact interval [`(0),`(k0)] for some
k0 ∈Z.

Assume first that `0(N)∩`(Z) is empty. Then the segment [∗ν,h∗ν]∩ [∗ν,∞[
has length k ′

0 ∈ [0, sν[ ∩N. Define κ = 2k ′
0 ∈ N. Since the point an′

ν ∗ν belongs
to E ′

n′,k ′
0

for every n′ ≥ k ′
0, the number mn(γ0) = cn+2sν+1,1 = c ′

n+2k ′
0,k ′

0
is the

cardinality of the orbit under γZ0 of an+κ
ν ∗ν = [Oν×πνn+κOν], if n is big enough.

Assume now that `0(N)∩`(Z) = [`(0),`(k0)]∩VTν for some k0 ∈ Z (see Fig-
ure 3). Define κ= |k0|+2sν ∈N. Since the point an′

ν ∗ν belongs to En′,k0 for every
n′ ≥ |k0|+ sν, the number mn(γ0) = cn+2sν+1,1 = cn+|k0|+2sν,k0 is the cardinality of
the orbit under γZ0 of an+κ

ν ∗ν = [Oν×πνn+κOν], if n is big enough.
For all n ∈N, an element of GL2(Oν) fixes [Oν×πn

νOν] if and only if its (2,1)-
coefficient vanishes modulo πn

ν , that is, if it belongs to the Hecke congruence
subgroup of GL2(Oν) modulo πn

ν . Let Γ∞(πn
ν ) be the kernel of the morphism

Γ∞ → G(R∞/πn
νR∞) of reduction modulo πν

n . Thus for every k ∈ N, if γk
0 be-

longs to Γ∞(πνn+κ), then it fixes `0(n+κ). Therefore, by the proof of Lemma 11
applied with λ= λ+

λ−
, since the constant rλ of Lemma 11 is equal to rν by equa-

tion (8) since dν = 1, we have, if n is big enough,

mn(γ0) = min{k ∈N− {0} : γ0
k`0(n +κ) = `0(n +κ)}

≤ min{k ∈N− {0} : γk
0 ∈ Γ∞(πν

n+κ)}

≤ min{k ∈N− {0} :
(λ+
λ−

)k ∈ 1+πνn+κOν}

= min{k ∈N− {0} : vp (k) ≥ logp
n +κ

rν
} = pdlogp

n+κ
rν

e .

This concludes the proof of Theorem 10.

4. ESCAPE OF MASS ALONG HECKE RAYS OF A∞-PERIODIC POINTS

Let (K ,ν,G , A) and the associated notation be as in Section 2.2. We fix from
now on an A∞-periodic point x0 in X∞ = Γ∞\G∞, as well as a representative g0

of x0 in Γ∞, so that x0 = Γ∞g0. In this section, we prove our main results on the
asymptotic behavior of the A∞-invariant probability measures µx supported on
the A∞-orbits in X∞ of the vertices x of the ν-Hecke tree Tν(x0) of x0, as x tends
to infinity in this tree along rays. We will recall below a proof that every vertex
of Tν(x0) is indeed A∞-periodic.
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We denote by P(X̂∞) the space of probability measures on the compactifica-
tion X̂∞ = X∞∪E∞ of X∞ by its finite set of cusps E∞ = Γ∞\P1(K ) (see Section
2.3). Let ξ ∈ ∂Tν(x0) be an end of the ν-Hecke tree of x0. Let Θξ be the sub-
set of P(X̂∞) consisting of the weak-star accumulation points of the sequence

(µxξn
)n∈N of A∞-invariant probability measures on the vertices (xξn)n∈N along the

geodesic ray in Tν(x0) from x0 to ξ.
For all c > 0 and z ∈ E∞, we say that

• ξ has c-escape of mass if there exists θ ∈Θξ with θ(E∞) ≥ c.
• ξ has c-escape of mass towards the cusp z if there exists θ ∈Θξ with θ({z}) ≥

c.
• ξ has uniform c-escape of mass if for every θ ∈Θξ we have θ(E∞) ≥ c.
• ξ has uniform c-escape of mass towards the cusp z if for every θ ∈ Θξ we

have θ({z}) ≥ c.

4.1. Uniform escape of mass along rational Hecke rays. We start this section
by defining the rational Hecke rays in the ν-Hecke tree Tν(x0) of x0, and we
will then prove Theorem 12, a uniform escape of mass phenomenon for the
A∞-invariant probability measures µx , as x tends to infinity along these rays.

The group G(K ) acts transitively on P1(K ), but its subgroups Γ∞ = G(R∞)
and ΓS = G(R∞[π−1

ν ]) do not in general. The sets E∞ = Γ∞\P1(K ) (with order
at most the class number of R∞) and ΓS\P1(K ) are finite and both canonical
maps Γ∞\P1(K ) → ΓS\P1(K ) →G(K )\P1(K ) may be non-injective. Note that for
instance when C is the projective line over Fq and ∞ its usual point at infinity,
then R∞ is principal, and Γ∞ does act transitively on P1(K ).

Since Γ∞ preserves P1(K ) and by the commutativity of the diagram (6), the
image hecg0 (P1(K )) ⊂ ∂Tν(x0) by hecg0 of the set P1(K ) of rational points of
∂Tν =P1(Kν) does not depend on the choice of the representative g0 of x0, nor
does the image by hecg0 of the orbit of ∞ by any subgroup of G(K ) containing
Γ∞, as for instance hecg0 (ΓS∞).

A Hecke ray in Tν(x0), as well as its point at infinity, is said to be rational if
its point at infinity belongs to hecg0 (P1(K )), and S-rational if its point at infinity
belongs to hecg0 (ΓS∞). In particular when Γ∞ acts transitively on P1(K ) (that is,
when the graph Γ∞\T∞ has only one end, as for instance when C is the projec-
tive line over Fq and ∞ its usual point at infinity), these two notions coincides.
But there are examples of function fields when not all rational ends of Tν(x0)
are S-rational (the two inclusions Γ∞∞⊂ ΓS∞⊂P1(K ) may be strict).

If ξ is a rational end of Tν(x0), the cusp of X∞ associated with ξ is zξ = Γ∞γ∞∈
E∞, where γ ∈ G(K ) is such that ξ = hecg0 (γ∞). Note that zξ does not depend
on the choices of g0 or γ. If ξ is S-rational, we say that zξ is an S-cusp of X∞.

THEOREM 12. There exists c = c(x0) > 0 such that every rational end ξ of the
Hecke tree of x0 has uniform c-escape of mass, and if furthermore ξ is S-rational,
then ξ has uniform c-escape of mass towards the cusp of X∞ associated with ∞.
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Proof. We start the proof by giving some notation. Let us fix elements γ0 ∈ Γ∞
and t0 ∈ K ×∞ associated with the chosen representative g0 of x0 (see Proposi-
tion 8 and its following comment): we have

γ0 g0 = g0α∞(t0)

and ρ0 = v∞(t0) > 0 is the translation distance of γ0 on T∞.
Since G(K ) acts transitively on P1(K ) and E∞ = Γ∞\P1(K ) is finite, there exists

a finite subset F1 of G(K ) such that P1(K ) = Γ∞F1∞, and we may assume that
ΓS∞= Γ∞(F1 ∩ΓS)∞.

Since G(K ) commensurates ΓS , there exists a finite subset F2 of G(K ) such
that for all γ ∈ F1 and n ∈N, there exists bγ,n in F2 such that

γan
ν γ

−1 ∈ ΓS bγ,n .(9)

We assume that 1 ∈ F2 and bγ,n = 1 if γ ∈ ΓS .

For every b ∈G(K ), let b ∈ ΓS be such that b ∈ b G(Oν), which exists by Equa-

tion (3). We assume that b = b if b ∈ ΓS .

Now that this notation has been given, we consider the rational ends ξ of the
Hecke tree Tν(x0). Let γ′ = γ′

ξ
∈ Γ∞ and γ= γξ ∈ F1 be such that ξ= hecg0 (γ′γ∞).

We assume that γ ∈ ΓS if ξ is S-rational.

We assume that 1 2 F2 and b�,n = 1 if � 2 �S .
For every b 2 G(K), let b 2 �S be such that b 2 b G(O⌫), which exists by Equation

(3). We assume that b = 1 if b 2 �S .

Now that this notation has been given, we consider the rational ends ⇠ of the Hecke
tree T⌫(x0). Let �0 = �0⇠ 2 �1 and � = �⇠ 2 F1 be such that ⇠ = hecg0(�

0�1). We assume
that � 2 �S if ⇠ is S-rational.

��01

1

n⇠

n0
⇠

yn = an
⌫⇤⌫⇤⌫

�0�⇤⌫ �0�yn⇠
�0�yn�n0

⇠+n⇠
= hec�1

g (x⇠n)

For every n 2 N, let yn = an
⌫ ⇤⌫ , so that for every rational end ⇠ of T⌫(x0), the point

at infinity of the image by hecg0 of the geodesic ray n 7! �0�yn is ⇠. Let n0
⇠ 2 N be the

distance from ⇤⌫ to this ray, and let n⇠ 2 N be such that

[⇤⌫ , �0�1[ \ [�0�⇤⌫ , �0�1[ = [�0�yn⇠
, �0�1[ .

Let r⇠ = n⇠ � n0
⇠ 2 Z. Denote by (xn = x⇠n)n2N the geodesic ray in the Hecke tree T⌫(x0)

from x0 to ⇠, for every n 2 N with n � n⇠. Using in the following sequence of equalities
• the definition of hecg0 for the third equality and
• the definition of ⇡1 (since � an

⌫ �
�1b�1

�,n 2 �S by Equation (9)) for the fifth one,
we have

xn�r⇠ = hecg0(�
0�yn) = hecg0(�

0� an
⌫ ⇤⌫) = ⇡1(�S(g0, �

0� an
⌫ ))

= ⇡1(�S(g0, �
0� an

⌫ �
�1 b�1

�,n b�,n�)) = �1 (�0� an
⌫ �

�1b�1
�,n b�,n� )�1g0

= �1 (( b�,n� )�1b�,n�) a�n
⌫ (��0)�1g0 . (10)

Let E1(⇠) be the subset of E1 consisting of the elements

zn = �1( b�,n� )�1b�,n�1

as n varies. When ⇠ is S-rational, we have xn�r⇠ = �1� a�n
⌫ (�0�)�1gg0, and E1(⇠) is the

singleton of the cusp z⇠ = �1�0�1 = �1�1 associated to ⇠.
Let ⇡01 : X1 = �1\G1 ! �1\G T1 = �1\G1/A(O1) be the canonical projection,

which is equivariant under v1 : A1 ! Z (see Section 2.4). It extends to a continuous map
from dX1 = X1 tE1 to Freudenthal’s compactification \�1\G T1 = (�1\G T1)tE1, by
the identity on E1.

By Equation (5), since �0 g0 = g0 ↵1(t0) and by Equation (2), for every k 2 N and
y 2 V T⌫ , we have

⇡01(hecg0(�0
ky)) = ⇡01(hecg0(y)g0

�1�0
kg0) = ⇡01(hecg0(y)↵1(t0

k))

= �`0k(⇡
0
1(hecg0(y))) .

In particular, since the orbits of �0 on V T⌫ are finite, every x 2 V T⌫(x0) is also A1-
periodic and the A1-invariant probability measure µx on the compact orbit xA1 is well

19

FIGURE 4. Rational Bruhat-Tits rays

For every n ∈N, let yn = an
ν ∗ν, so that for every rational end ξ of Tν(x0), the

point at infinity of the image by hecg0 of the geodesic ray n 7→ γ′γyn is ξ. Let
n′
ξ
∈N be the distance from ∗ν to this ray, and let nξ ∈N be such that

[∗ν,γ′γ∞[ ∩ [γ′γ∗ν,γ′γ∞[ = [γ′γynξ
,γ′γ∞[ .

Let rξ = nξ−n′
ξ
∈Z. Denote by (xn = xξn)n∈N the geodesic ray in the Hecke tree

Tν(x0) from x0 to ξ. Using in the following sequence of equalities

• the definition of hecg0 for the third equality and
• the definition of π∞ (since γan

ν γ
−1b−1

γ,n ∈ ΓS by equation (9)) for the fifth
one,

we have, for every n ∈N with n ≥ nξ,

xn−rξ = hecg0 (γ′γyn) = hecg0 (γ′γan
ν ∗ν) =π∞(ΓS(g0,γ′γan

ν ))

=π∞(ΓS(g0,γ′γan
ν γ

−1 b−1
γ,n bγ,nγ)) = Γ∞ (γ′γan

ν γ
−1b−1

γ,n bγ,nγ )−1g0

= Γ∞ ((bγ,nγ )−1bγ,nγ) a−n
ν (γγ′)−1g0 .

(10)
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Let E∞(ξ) be the subset of E∞ consisting of the elements

zn = Γ∞(bγ,nγ )−1bγ,nγ0

as n varies. When ξ is S-rational, we have xn−rξ = Γ∞ a−n
ν (γ′γ)−1g0, and E∞(ξ)

is the singleton of the cusp z∞ = Γ∞0 = Γ∞∞ associated with ∞.
Let π′∞ : X∞ = Γ∞\G∞ → Γ∞\GT∞ = Γ∞\G∞/A(O∞) be the canonical pro-

jection, which is equivariant under v∞ : A∞ → Z (see Section 2.4). It extends
to a continuous map from X̂∞ = X∞ tE∞ to Freudenthal’s compactificationáΓ∞\GT∞ = (Γ∞\GT∞)tE∞, by the identity on E∞.

By equation (5), since γ0 g0 = g0α∞(t0) and by equation (2), for every k ∈N
and y ∈VTν, we have

π′
∞(hecg0 (γ0

k y)) =π′
∞(hecg0 (y)g0

−1γ0
k g0) =π′

∞(hecg0 (y)α∞(t0
k ))

=φρ0k (π′
∞(hecg0 (y))) .

In particular, since the orbits of γ0 on VTν are finite, every x ∈V Tν(x0) is also
A∞-periodic and the A∞-invariant probability measure µx on the compact orbit
x A∞ is well defined. Furthermore, with the notation of Theorem 10, for every
n ≥ n′

ξ
, the orbit under the geodesic flow of π′∞(xn) = π′∞(hecg0 (γ′γyn+rξ)) is

periodic, with period λn bounded as follows:

λn ≤ ρ0 min
{
k ∈N− {0} : γ0

kγ′γyn+rξ = γ′γyn+rξ

}≤ ρ0 mn(γ0) .(11)

Let d be the distance in the graph Γ∞\T∞. Recall that p∞ : X∞ → Γ∞\T∞ is
the map Γ∞g 7→ Γ∞g∗∞ (see the diagram at the beginning of Section 2). Using

• Lemma 7 with κ= κξ = dTν(∗ν, (γ′γ)−1g0∗ν) for the first inequality,
• the definition of the height (see equation (4)) and equation (10) with the

notation βn = (bγ,n+rξγ )−1bγ,n+rξγ for the second equality,

we have, for all n ∈N,

ht∞(xn) ≥ ht∞(xn(γ−1γ′−1g0)−1)−κ
= d(p∞(Γ∞βn a

−n−rξ
ν ),Γ∞∗∞)−κ

= d(Γ∞βn a
−n−rξ
ν ∗∞,Γ∞∗∞)−κ .

(12)

Recall that βn belongs to G(K ), hence preserves the set of geodesic rays in T∞
ending in P1(K ) ⊂ ∂T∞, and takes finitely many values as n varies. Let

κ′ = κ′ξ = max
n∈N

d(Γ∞βn∗∞,Γ∞∗∞)+κ .

Recall that any geodesic ray in T∞ ending in P1(K ) has a subray that isometri-
cally injects into Γ∞\T∞. Hence, using equation (12) and the triangle inequality,
there exist constants n′′

ξ
≥ n′

ξ
and κ′′

ξ
,κ′′′

ξ
≥ 0 such that for every integer n ≥ n′′

ξ
,

ht∞(xn) ≥ d(Γ∞βn a
−n−rξ
ν ∗∞,Γ∞βn∗∞)−κ′

≥ dT∞(a
−n−rξ
ν ∗∞,∗∞)−κ′′ξ

= (n + rξ) |v∞(πν)|−κ′′ξ = n |v∞(πν)|−κ′′′ξ .

(13)
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Since a−m
ν ∗ν = [πm

ν Oν×Oν] tends to 0 ∈ P1(K ) as m → +∞, this argument in
fact proves that ht∞, zn (xn) ≥ n |v∞(πν)|−κ′′′

ξ
for n big enough, where zn is the

cusp defined above.
For every n ∈N, let µ′

n = (π′∞)∗µxn , which is the equiprobability on the finite
orbit of π′∞(xn) under the geodesic flow on Γ∞\GT∞. Recall that the pushfor-
wards of measures by proper continuous maps preserve the total mass, and are
weak-star continuous. The map π′∞ is a fibration with compact fiber, hence a
proper map. Therefore ξ has uniform c-escape of mass (respectively uniform
c-escape of mass towards the cusp z∞ = Γ∞∞) if and only if for every weak-
star accumulation point θ′ of (µ′

n)n∈N in the space of probability measures onáΓ∞\GT∞, we have θ′(E∞) ≥ c (respectively θ′({z∞}) ≥ c).
Let o : Γ∞\GT∞ → Γ∞\VT∞ be the origin map Γ∞` 7→ Γ∞`(0), which is a

proper map. For all N ∈N, let

KN = o−1({x ∈ Γ∞\VT∞ : x ∈ ⋃
z∈E∞(ξ)

hz ([0,+∞[), d(x,Γ∞∗∞) ≥ N
})

,

which are open subsets of Γ∞\GT∞, which accumulate as N →+∞ exactly to
E∞(ξ) ⊂ áΓ∞\GT∞. By the full-down property (see Section 2.3), the orbit under
the geodesic flow of π′∞(xn) passes at a distance from Γ∞∗∞ which is bounded
by the diameter N0 of the finite graph Γ∞\T∞−⋃

z∈E∞ hz (]0+∞[). Recall that this
orbit is periodic, of period denoted by λn . Hence, if N ≥ N0 and if ht∞(xn) ≥ N ,
the origins of φi (π′∞(xn)) for 0 ≤ i ≤ λn needs to range twice over all points at
distance between N and ht∞(xn) on a geodesic ray in Γ∞\T∞ between Γ∞∗∞
and o(ρ∞(xn)). Hence, if n is big enough, by the comment following equation
(13) and by equation (11), we have

µ′
n(KN ) ≥ 2(ht∞(xn)−N )

λn
≥

2n |v∞(πν)|−2κ′′′
ξ
−2N

ρ0 mn(γ0)
.(14)

By the linear growth property of (mn(γ0))n∈N (see equation (7) and the notation
of Theorem 10), the right hand side of Equation (14) has a limit as n →+∞ at
least

c = 2rν(γ0) |v∞(πν)|
ρ0 eν(γ0) dν(γ0) p

.

Hence for every weak-star accumulation point θ′ of (µ′
n)n∈N, we have θ′(E∞(ξ)) ≥

c. This proves the result.

Remark. The aim of this remark is to give some estimations on the constant
c appearing in this proof, and to give examples of full escape of mass along
rational Hecke rays.

As above, let γ0 ∈ Γ∞ be a (primitive loxodromic on T∞) element associated
with x0, and let us fix γ̃0 ∈ GL2(R∞) whose image in Γ∞ = PGL2(R∞) is γ0. Note
that det γ̃0 ∈ R×∞ = k×∞, hence v∞(det γ̃0) = 0. We may denote by λ± the eigenva-
lues of γ̃0 with v∞(λ+) > 0, so that v∞(λ−) = −v∞(λ+) < v∞(λ+) and, by equa-
tion (1),

ρ0 = 2 |v∞(λ−)| = 2 |v∞(tr(γ̃0))| .
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With the notation of Theorem 10, let us define

LOM(γ0) = rν(γ0) |v∞(πν)|
|v∞(tr γ̃0)| eν(γ0) dν(γ0)

,

so that we chose c = LOM(γ0)/p in the above proof.

Let us consider nk = rν(γ0) pk − ⌈κν(γ0)
eν(γ0)

⌉
for k ∈ N big enough (again with

the notation of Theorem 10), so that mnk (γ0) ≤ eν(γ0)dν(γ0) pk by Theorem 10.
Using this majoration on the denominator in equation (14), the above proof
gives moreover that every weak-star accumulation point θ′ of (µ′

nk
)k∈N satisfies

θ′(E∞(ξ)) ≥ LOM(γ0). In particular, the sequence (µxnk
)k∈N weak-star converges

to the 0 measure on X∞ if LOM(γ0) = 1. Let us give an example of this when C
is the projective line and ∞ its usual point at infinity. Let d = dν(γ0), e = eν(γ0)
and r = rν(γ0), so that LOM(γ0) = r |v∞(πν)|

e d |v∞(tr γ̃0)| . Let k̃ν be the residual field of the

splitting field K̃ν of γ̃0 over Kν.

LEMMA 13. Assume that the discriminant∆= (tr γ̃0)2−4det γ̃0 of γ̃0 is irreducible
over Fq , and let πν =∆. Then LOM(γ0) = 1.

This assumption is satisfied, for instance, if −1 is not a square modulo p (as

for p = 3), if p = q and if γ̃0 =
(
Y 1
1 0

)
, where Y =π−1∞ is the indeterminate in K =

Fq (Y ), since ∆= Y 2+4. By the previous arguments, for every rational end ξ ∈Ω,
there exists an element θ′ ∈Θξ which vanishes on X∞. This proves Theorem 2
in the introduction. The above proof also gives a speed of escape of mass when
LOM(γ0) = 1: for every compact subset C of X∞, we have µxnk

(C ) = O( 1
nk

) when

nk = rν(γ0) pk −⌈κν(γ0)
eν(γ0)

⌉
.

Proof. Since ∆ is irreducible, we have p 6= 2. In particular, the roots of γ̃0 are
λ± = 1

2

(
tr γ̃0 ±p

πν
)
. We have K̃ν = Kν(

p
πν ), and k̃ν = kν. In particular, the

ramification index of the splitting field of γ̃0 over Kν is e = 2. Since the constant
terms in k̃ν (modulo

p
πν) of λ± are equal, we have d = 1. Since deg(det γ̃0) = 0,

we have

|v∞(πν)| = deg
(
(tr γ̃0)2 −4det γ̃0

)= 2deg(tr γ̃0) = 2 |v∞(tr γ̃0)| .

Since γ̃0 is not congruent to the identity modulo
p
πν

2 = πν, we have r = 1.
Hence LOM(γ0) = 1.

Let us give one more estimation on the constant LOM(γ0) when p 6= 2 and
vν(tr γ̃0) > 0. We then have

λ± = 1

2

(
tr γ̃0 ±

√
(tr γ̃0)2 −4det γ̃0

)
.

Since det γ̃0 ∈ k×∞ ⊂O×
ν , we have vν(−4det γ̃0) = 0, hence e = 1 (and [k̃ν : kν] = 1

if −det γ̃0 is a square and 2 otherwise). The constant terms a± =±√−4det γ̃0 ∈
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k̃ν
×

of λ± are opposite (and nonzero), hence d = 2. By equation (8), we have
r = vν

(λ+
λ+

−1
)= vν(tr γ̃0). Furthermore

|v∞(tr γ̃0)| = deg(tr γ̃0) ≥ vν(tr γ̃0)degπν = r |v∞(πν)| .

Hence LOM(γ0) ≤ 1
2 , with equality if and only if tr γ̃0 is a constant multiple of

a power of πν, as, for instance, when πν = Y and γ̃0 =
(
Y 1
1 0

)
. For these el-

ements where equality holds, at least half the mass escapes to infinity along
subsequences of every rational Hecke ray.

4.2. Escape of mass along uncountably many Hecke rays. In the previous sec-
tion, we proved escape of mass phenomena along countably many Hecke rays,
the rational ones. In this section, we use the uniformity of the escape of mass in
Theorem 12 in order to prove that an escape of mass (towards a prescribed cusp
of X∞) actually occurs along uncountably many Hecke rays. We first introduce
some notation that we will use from now on in this paper.

We denote by Ω = ∂Tν(x0) the boundary at infinity of the Hecke tree Tν(x0)
of x0. For every ξ ∈Ω, we denote by [x0,ξ[ the geodesic ray in Tν(x0) starting

from x0 and converging to ξ. We denote by (xξn)n∈N the sequence of vertices of

[x0,ξ[, in this order along this ray. In particular, xξ0 = x0 and d(xξk , xξn) = |k −n|.
Let x ∈V Tν(x0). We define the sector of x by

Ωx = {
ξ ∈Ω : x ∈ [x0,ξ[

}
,

the cone of x by

Cx = {
y ∈V Tν(x0) : ∃ ξ ∈Ωx , y ∈ [x,ξ[

}
,

and, for every n ∈N, the sector-sphere of x of radius n by

Sn
x =Cx ∩STν(x0)(x0,n) .

ξ

n

Ωx
Cx

x = xξkx0
Sn

x

xξn

FIGURE 5. Sector-spheres in Hecke trees

The depth of the cone Cx or of the sector Ωx of x is defined to be the distance
in the Hecke tree Tν(x0) from x to x0. The sector-sphere Sn

x is nonempty if and
only if n is at least this depth. For every ξ ∈ Ω, the sequences (Cxξn

)n∈N and
(Ωxξn

)n∈N are strictly decreasing, with Ωx0 =Ω, Cx0 =V Tν(x0),
⋂

n∈NCxξn
=; and⋂

n∈NΩxξn
= {ξ}.
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Note that if two cones (or sectors) intersect nontrivially, then one of them is
contained in the other. Also, sectors are nonempty compact-open sets in Ω and
in particular contain infinitely many rational ends, and even infinitely many
S-rational ends.

THEOREM 14. There exists c = c(x0) > 0 such that the set of ξ ∈Ω having c-escape
of mass towards the cusp Γ∞∞ is uncountable.

In particular, the set of ξ ∈Ω having c-escape of mass is uncountable. Theo-
rem 3 in the introduction follows immediately, being the case when C is the
projective line, in which case X∞ has only one cusp.

Proof. Let c = c(x0) ∈]0,1] be the constant introduced in Theorem 12. Let z =
Γ∞∞∈ E∞. We fix a fundamental system (Vn)n∈N of open neighborhoods of the
cusp z in X̂∞ = X∞∪E∞, so that {z} =⋂

n∈NVn . For all n ∈N, let Σn = {0,1}n be
the set of words of length n in 0 and 1. Let Σ=⋃

n∈NΣn be the set of finite words
in 0 and 1.

We are going to define a map ψ :Σ→V Tν(x0) with the following properties:
For all n ∈N and α ∈Σn ,

(1) if β is an initial subword of α, then Ωψ(α) ⊂Ωψ(β),
(2) if β is an initial subword of α with β 6= α, then the intersection Ωψ(β0) ∩

Ωψ(β1) is empty,
(3) the depth of the sector Ωψ(α) is at least n,
(4) we have µψ(α)(Vn) ≥ c − 1

n+1 .

Assume for the moment that such a map ψ is constructed. Let Σ∞ = {0,1}N,
which is uncountable. For every w ∈Σ∞, let wn be the initial subword of length
n of w . Note that by properties (1) and (3), for every w ∈ Σ∞, the sequence
of sectors (Ωψ(wn ))n∈N is strictly nested, and its intersection contains a single
point, denoted by ξw . Furthermore, for every n ∈N, we have wn ∈ [x0,ξw [ . Note
that by property (2), the map w 7→ ξw from Σ∞ to Ω is injective. By property
(4), for every w ∈ Σ∞, if θw is a weak-star accumulation point of (µψ(wn ))n∈N
in the space P(X̂∞) of probability measures on the compact space X∞, then
θw ({z}) ≥ c. Hence ξw has c-escape of mass towards the cusp z. This proves
Theorem 14.

We now build ψ|Σn by induction on n ∈ N. Note that Σ0 is reduced to the
empty word ;, and define ψ(;) = x0. Note that properties (1)–(4) with n = 0 are
then satisfied. Let n ∈N, assume that ψ|Σn is constructed, satisfying properties
(1)–(4) for every α ∈Σn . For every α ∈Σn and j ∈ {0,1}, let us now define ψ(α j ).

By density, there exist distinct points ξ0 and ξ1 in Ωψ(α) which are rational
and whose associated cusps zξ0 and zξ1 of X∞ respectively are both equal to z.
By Theorem 12, ξ0 and ξ1 both have uniform c-escape of mass towards the cusp
z.

For all j ∈ {0,1} and m ≥ d(x0,ψ(α))+1, the sector Ω
x
ξ j
m

is strictly contained

in Ωψ(α) and has depth at least n +1 by induction. Since ξ0 6= ξ1, there exists
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x0

ξ0

ξ1

xξ0
m

xξ1
m

m
Tν(x0)

ψ(α)
Ωψ(α)

FIGURE 6. Iterated construction of nested sectors

m0 ∈N such that xξ0
m0

6= xξ1
m0

, so that for every m,m′ ≥ m0, the sectors Ω
x
ξ0
m

and

Ω
x
ξ1
m′

are disjoint.

Let j ∈ {0,1}. We claim that there exists n j ≥ m0 such that µ
x
ξ j
n j

(Vn+1) ≥ c− 1
n+2 .

Otherwise, for every accumulation point θ of
(
µ

x
ξ j
m

)
m∈N, we have θ({z}) ≤ c− 1

n+2 ,

which contradicts the fact that ξ j has uniform c-escape of mass towards the
cusp z.

Defining ψ(α0) = xξ0
n0

and ψ(α1) = xξ1
n1

gives the result.

4.3. Effective equidistribution of sector-spheres. The aim of this section is to
prove an effective statement regarding the equidistribution in X∞ of the sector-
spheres of the vertices of the Hecke tree of x0, Theorem 15, by using the effective
decay of matrix coefficients for the action of GS on L2(XS). This sectorial effec-
tive equidistribution result will be the main tool used in Section 4.4 in order to
prove Theorem 4 and its improvements. We first introduce some notation.

We denote by |E | the cardinality of any finite set E and by ∆x the unit Dirac
mass at any point x of any measurable space. For all x ∈ V Tν(x0) and n ∈ N
with n ≥ k where k = dTν(x0)(x0, x) is the depth of the sector Cx , let ηn, x be the
uniform probability measure on the (finite nonempty) sector-sphere Sn

x :

ηn, x = 1

|Sn
x |

∑
y∈Sn

x

∆y ,

that we consider as a probability measure on the locally compact space X∞
with support Sn

x . Since the ν-Hecke tree of x0 (as is the Bruhat-Tits tree Tν)
is |P1(kν)|-regular, note that |Sn

x | = |kν|n−k if x 6= x0 and n ≥ k, and that |Sn
x | =

(|kν|+1)|kν|n−1 if x = x0 and n > 0.
For every place ω ∈P , we define Wω =G(Oω), which is a maximal compact-

open subgroup of Gω, and WS =W∞×Wν ⊂G∞×Gν =GS , which is a maximal
compact-open subgroup of GS .

We denote by m∞ (respectively mS) the Haar measure on G∞ (respectively
GS), normalized so that m∞(W∞) = 1 (respectively mS(WS) = 1). We again de-
note by m∞ (respectively mS) the measure on X∞ (respectively XS) such that the
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covering map G∞ → X∞ = Γ∞\G∞ (respectively GS → XS = ΓS\GS) locally pre-
serves the measures. Note that this measure on X∞ (respectively XS) is nonzero
and finite, but is not necessarily a probability measure, the above normalisation
of the Haar measures will turn out to be more convenient. For every k ∈ [1,+∞],
we define Lk (X∞) = Lk (X∞,m∞) (respectively Lk (XS) = Lk (XS ,mS) ).

The group G = G∞ (respectively G = GS) acts (on the left) on the complex
vector space of maps ψ from X = X∞ (respectively X = XS) to C, by right transla-
tion on the source: For every g ∈G , if Rg : X → X is the right translation x 7→ xg ,
then gψ=ψ◦Rg : x 7→ψ(xg ).

A map ψ from X to C is locally constant if there exists a compact-open sub-
group U of W =W∞ (respectively W =WS) which leaves ψ invariant:

∀ g ∈U , gψ=ψ ,

or equivalently, if ψ is constant on each orbit of U under the right action of G on
X . Note that ψ is continuous, since the orbits of U are compact-open subsets.
We define

dψ = dim(VectCWψ)

as the dimension of the complex vector space generated by the images of ψ
under the elements of W , which is finite, and even satisfies dψ ≤ [W : U ]. We
define the lc-norm of every bounded locally constant map ψ : X →C by

‖ψ‖l c =
√

dψ ‖ψ‖∞ .

Though the lc-norm does not satisfy the triangle inequality, we have ‖λψ‖lc =
|λ|‖ψ‖l c for every λ ∈C. We denote by lc(X ) the vector space of bounded locally
constant maps ψ from X to C.

Finally, given a set A and maps f , g : A → [0,+∞[ , we will write f ¿ g if there
exists a constant c ′ > 0 such that f (a) ≤ c ′g (a) for all a ∈ A. If f and g depend
on a parameter p, we write f ¿p g if there exists a constant c ′ > 0, possibly
depending on the parameter p, such that f (a) ≤ c ′g (a) for all a ∈ A.

The following result strenghtens the well-known result of equidistribution of
full Hecke spheres (see for instance the works of Dani-Margulis [9], Clozel-Oh-
Ullmo [7], Clozel-Ullmo [8], Eskin-Oh [13], Benoist-Oh [3] in characteristic 0),
to an equidistribution result of sector-spheres, which is furthermore effective.
Taking x = x0 gives as a particular case an effective equidistribution result of the
full Hecke spheres.

THEOREM 15. There exists δ> 0 such that for every x ∈V Tν(x0), we have∣∣∣ m∞(ψ)

m∞(X∞)
−ηn, x (ψ)

∣∣∣¿‖ψ‖l c e−δn(15)

for all n Àx 1 and ψ ∈ l c(X∞).

Proof. Let us fix x ∈ V Tν(x0) and ξ = ξx ∈ Ωx , so that x = xξk for some fixed
k = kx ∈N (see Figure 5).
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Step 1: Thickening the sector-spheres. Note that the sector-spheres are mea-
sure zero subsets of X∞. In order to be able to apply (effective) mixing argu-
ments, we have to replace them by (regular) bump functions around them.
In this step, we will define nice compact-open neighborhoods of the sector-
spheres, whose characteristic functions will be our bump functions. By the
construction of the sector-spheres, it is more natural to lift the sector-spheres
in XS and to work in the bundle XS over X∞.

We will hence use a lot the Wν-bundle map π∞ (see Section 2.3) from XS =
ΓS\GS to X∞ = Γ∞\G∞, defined by ΓS(g ,h) 7→ Γ∞g whenever h ∈Wν. Recall (see
Section 2.5) that the map hecg0 from the Bruhat-Tits tree Tν to the Hecke tree
Tν(x0), defined on VTν =Gν/Wν by hWν 7→π∞(ΓS(g0,h)) is an isomorphism of
trees, and we identify ∂Tν = P1(Kν) and Ω by (the extension to the boundary
at infinity of) this map. We endow Tν(x0) with the (left) action of Gν making
hecg0 equivariant. Since Wν =G(Oν) acts transitively on Ω=P1(Oν), we also fix
w = wx ∈Wν such that w∞= ξ, where ∞= [1 : 0].

For all n ∈N, we denote by B n
ν the stabiliser in Wν of the point x∞

n at distance
n from x0 on the geodesic ray [x0,∞[ in the Hecke tree Tν(x0). The group
Bν = B k

ν acts transitively on the sector-spheres Sn
x∞

k
of x∞

k for all n ∈ N. As we

have already seen, for all n ∈N, we have

x∞
n = hecg0 (an

ν∗ν) =π∞(ΓS(g0, an
ν )) .

Note that xξn = w x∞
n for all n ∈N. In particular, x = w x∞

k , hence wBνw−1 is the
stabilizer in Wν of x. It acts transitively on the sector-spheres Sn

x of x for all

n ∈N, with stabilizer of xξn equal to wB n
ν w−1. Therefore, for all n ∈N,

Sn
x = wBνw−1xξn = wBνx∞

n =π∞(ΓS(g0, wBνan
ν )) .(16)

Now that we have this nice description of the sector-spheres, let us define nice
neighborhoods of them.

LEMMA 16. There exist σ1,σ2 > 0 and a nondecreasing family (Bε∞)ε>0 of compact-
open subgroups of W∞, which is a fundamental system of neighborhoods of the
identity element in W∞, and which satisfies

∀ ε> 0, σ1 ε
−1 ≤ [W∞ : Bε

∞] ≤ ε−1 ,(17)

and

∀ a ∈ A∞, a−1Bε
∞a ⊂ B εeσ2 |v∞(a)|

∞ .(18)

Proof. For every n ∈N, let Zn be the kernel of the reduction modulo πn+1∞ map
from W∞ =G(O∞) to the finite group G(O∞/πn+1∞ O∞). Note that Zn+1 ⊂ Zn . Let

us consider Bε∞ = Znε
with nε =

⌊− log(ε[W∞:Z0])
log[Z0:Z1]

⌋
and σ1 = 1

[Z0:Z1] . Then Bε∞ is a

compact-open subgroup of W∞, we have Bε∞ ⊂ Bε′∞ if ε ≤ ε′ and
⋂
ε>0 Bε∞ = {1}.

Equation (17) follows since the index [Zn : Zn+1] is constant, hence [W∞ : Zn] =
[W∞ : Z0][Z0 : Z1]n .
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For all a,b,c,d ∈ K∞ and t ∈ K ×∞, we have(
1 0
0 t−1

)(
a b
c d

)(
1 0
0 t

)
=

(
a t b

t−1c d

)
.

Hence, using the isomorphism α∞ : K ×∞ → A∞ defined in Section 2.2, we have
a−1Zn a ⊂ Zn−|v∞(a)| for all a ∈ A∞ and n ≥ |v∞(a)| in N. Equation (18) (which
will only be used in Section 4.4) follows with σ2 = log[Z0 : Z1].

For every ε> 0, we finally define the following compact-open subset of XS

Uε = ΓS(g0Bε
∞, wBν) ,

so that, for all n ∈N, the image π∞(Uεan
ν ) of its translate by an

ν is a (small when
ε is small) neighborhood of the sector-sphere Sn

x in X∞, by equation (16).

Step 2: Using the decay of matrix coefficients. In this step, we use the following
theorem about effective decay of matrix coefficients for the action of GS on
L2(XS) (see for instance [2]). For every g = (g∞, gν) ∈GS =G∞×Gν, we denote
by |g |S the maximum of the norms of the adjoint representations of g∞, gν (for
the operator norm on the 3×3 matrices with entries in K∞,Kν).

THEOREM 17. There exists δ1 > 0 such that∣∣∣mS(ψ̃ ϕ̃◦Rg )− 1

mS(XS)
mS(ψ̃)mS(ϕ̃)

∣∣∣¿√
dϕ̃dψ̃ ‖ϕ̃‖2 ‖ψ̃‖2 |g |−δ1

S(19)

for all locally constant maps ϕ̃,ψ̃ ∈ L2(XS) and for every g ∈GS . �
Now, let us fix ψ ∈ lc(X∞). We denote by ψ̃ =ψ ◦π∞ its lift to XS , which is

constant on each right Wν-orbit, hence is locally constant (since invariant under
U ×Wν if ψ is invariant under U ). Note that ψ̃ ∈ L2(XS) since mS is finite and ψ̃

is bounded. By the normalization of the Haar measures, we have

mS(ψ̃) = m∞(ψ) and mS(XS) = m∞(X∞) .

Since
√

dψ̃ =
√

dψ and ‖ψ̃‖2 ≤
p

mS(XS) ‖ψ̃‖∞, we have√
dψ̃ ‖ψ̃‖2 ¿‖ψ‖lc .

For every ε > 0, let ϕε = 1
mS (Uε)1Uε

be the normalized characteristic function
of Uε, so that mS(ϕε) = 1. The map ϕε : XS → C is locally constant, since it is
invariant under the right action of the compact-open subgroup Bε∞×Bν of WS .
We have

dϕε = dim VectCWS ϕε ≤ [WS : Bε
∞×Bν] = [W∞ : Bε

∞][Wν : Bν] .

Since Wν is compact and acts freely on each of its orbits on XS , there exists
ε0 = ε0(x) > 0 such that if ε ∈ ]0,ε0], the map from Bε∞ ×Bν to XS defined by
(g ,h) 7→ ΓS(g0g , wh) is injective, and measure preserving with image Uε. Hence,
by the normalization of the Haar measures, we have, for every ε ∈ ]0,ε0],

‖ϕε‖2 = mS(Uε)
− 1

2 = (m∞(Bε
∞)mν(Bν))−

1
2 = ([W∞ : Bε

∞] [Wν : Bν])−
1
2 .(20)
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We therefore have
√

dϕε ‖ϕε‖2 ≤ 1. Note that for every n ∈N,

|a−n
ν |S = max{|a−n

ν |∞, |a−n
ν |ν} = max{|π±n

ν |∞, |π±n
ν |ν} = max{|k∞|n|v∞(πν)|, |kν|n} .

Applying equation (19) to the functions ψ̃, ϕ̃ = ϕε and taking g = a−n
ν , we

hence have, with δ2 = δ1 max{|v∞(πν)| log |k∞|, log |kν|} > 0, for every ε ∈ ]0,ε0],∣∣∣ 1

mS(Uε)

∫
Uεan

ν

ψ̃ dmS − m∞(ψ)

m∞(X∞)

∣∣∣¿‖ψ‖l c e−δ2 n .(21)

Let us now relate, for ε small enough, the above quantity 1
mS (Uε)

∫
Uεan

ν
ψ̃ dmS

to the average

ηn, x (ψ) = 1

|Sn
x |

∑
y∈Sn

x

ψ(y)

of ψ on the sector-sphere Sn
x .

Let w1, . . . , w` be representatives of the right cosets in Bν/B n
ν , so that Bν is a

disjoint union Bν =∐`
i=1 wi B n

ν and mν(Bν) = [Bν : B n
ν ]mν(B n

ν ). By the transitivity

properties seen in Step 1, the map from Bν/B n
ν to Sn

x defined by [h] 7→ whw−1xξn
is a bijection. For every y ∈ Sn

x , let i y ∈ {1, . . . ,`} be such that

y = w wi y w−1xξn = w wi y x∞
n = hecg0 (w wi y an

ν ∗ν) =π∞(g0, w wi y an
ν ) .

Let
Vy = ΓS(g0Bε

∞, w wi y B n
ν )

so that Vy an
ν = ΓS(g0Bε∞, w wi y an

ν (a−n
ν B n

ν an
ν )). Note that a−n

ν B n
ν an

ν is contained
in Wν, since B n

ν stabilizes x∞
n = an

ν x0, hence the restriction of π∞ to Vy an
ν has

image yBε∞ and its fibers are orbits of a−n
ν B n

ν an
ν . For every ε ∈ ]0,ε0], since the

map (g ,h) 7→ ΓS(g0g , wh) from Bε∞×Bν to XS is injective, we hence have

Uε =
∐̀
i=1
ΓS(g0Bε

∞, w wi B n
ν ) = ∐

y∈Sn
x

Vy .

Therefore, for every ε ∈ ]0,ε0], using equation (20) and by desintegration of mS ,
we have

1

mS(Uε)

∫
Uεan

ν

ψ̃ dmS = 1

m∞(Bε∞)mν(Bν)

∑
y∈Sn

x

∫
Vy an

ν

ψ̃ dmS

= 1

m∞(Bε∞)mν(B n
ν ) |Sn

x |
∑

y∈Sn
x

∫
π∞(Vy an

ν )
mν(a−n

ν B n
ν an

ν )ψ dm∞

= 1

|Sn
x |

∑
y∈Sn

x

1

m∞(Bε∞)

∫
yB ε∞

ψ dm∞ .(22)

Define the ε-thin part X ε∞ of X∞ as the set of points z ∈ X∞ such that the map
from Bε∞ to X∞ defined by h 7→ zh is not injective. Since ψ is locally constant,
there exists ε1 = ε1(ψ) > 0 such that if ε ∈ ]0,ε1], then ψ is Bε∞-invariant. If
y ∈ Sn

x − (Sn
x ∩X ε∞) and if ε ∈ ]0,ε1], then

1

m∞(Bε∞)

∫
yB ε∞

ψ dm∞ =ψ(y) .(23)
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A trivial majoration gives∣∣∣ 1

|Sn
x |

∑
y∈Sn

x ∩X ε∞

(
ψ(y)− 1

m∞(Bε∞)

∫
B ε∞
ψdm∞

)∣∣∣≤ 2‖ψ‖∞
|Sn

x ∩X ε∞|
|Sn

x |
.(24)

Separating the summation over Sn
x on one hand over Sn

x ∩ X ε∞ and on the
other hand over Sn

x − (Sn
x ∩ X ε∞), for every ε ∈ ]0,min{ε0,ε1}], by equations (21),

(22), (23) and (24), we hence have∣∣∣ηn, x (ψ)− m∞(ψ)

m∞(X∞)

∣∣∣¿‖ψ‖lc e−δ2 n +‖ψ‖∞
|Sn

x ∩X ε∞|
|Sn

x |
.(25)

Step 3: Estimating the thin part of sector-spheres. The aim of this step is to
prove that the part of the sector-spheres contained in the thin part of X∞ is
negligible, if ε is well-chosen. More precisely, let us prove that there exists δ4 > 0
such that for every n Àx 1, if ε= e−δ2n , then

|Sn
x ∩X ε∞|
|Sn

x |
¿ e−δ4n(26)

for every n ∈N with n > k.
For this, we will apply the arguments of Step 2 to a particular map ψ =

ψε, where ψε is, for every ε > 0, the characteristic function of the ε-thick part
X∞−X ε∞ of X∞. Note that ψε is invariant under Bε∞, hence ψε is bounded and
locally constant, and ε1(ψε) =+∞. Denoting by ψ̃ε the lift of ψε to XS , by equa-
tions (22) and (23) applied with ψ=ψε, for every ε ∈ ]0,ε0], we have

1

mS(Uε)

∫
Uεan

ν

ψ̃ε dmS = 1

|Sn
x |

∑
y∈Sn

x

ψε(y) = |Sn
x − (Sn

x ∩X ε∞)|
|Sn

x |
.(27)

By equation (17), we have

‖ψε‖lc =
√

dψε
‖ψε‖∞ ≤√

[W∞ : Bε∞] ≤ ε− 1
2 .(28)

By the exponential decay of the volumes in the cusps of the graph of groups
Γ∞\\T∞, hence in X∞, there exists δ3 > 0 such that

m∞(X ε
∞) ¿ εδ3(29)

for every ε> 0.
For every n ∈N, define ε= e−δ2n . Note that if n Àx 1, then ε≤ ε0 (recall that

ε0 depends on x). Therefore, using

• equation (29) for the second inequality,
• equation (27) and the definition of ψε for the third line,
• equation (21) with ψ=ψε for the fourth inequality,
• equation (28) for the fifth inequality,
• the definition of ε and the constant δ4 = δ2 min{δ3, 1

2 } > 0 for the last in-
equality,
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we have, for all n Àx 1,

|Sn
x ∩X ε∞|
|Sn

x |
≤

∣∣∣ |Sn
x ∩X ε∞|
|Sn

x |
− m∞(X ε∞)

m∞(X∞)

∣∣∣+ m∞(X ε∞)

m∞(X∞)

¿
∣∣∣ |Sn

x − (Sn
x ∩X ε∞)|

|Sn
x |

− m∞(X∞−X ε∞)

m∞(X∞)

∣∣∣+εδ3

=
∣∣∣ 1

mS(Uε)

∫
Uεan

ν

ψ̃ε dmS − m∞(ψε)

m∞(X∞)

∣∣∣+εδ3

¿‖ψε‖lc e−δ2 n +εδ3 ≤ ε− 1
2 e−δ2 n +εδ3 ≤ 2 e−δ4n .

This proves claim (26) of Step 3.

Step 4: Conclusion. Since ‖ψ‖∞ ≤ ‖ψ‖l c , Theorem 15 now follows from equa-
tions (25) and (26), with δ= min{δ2,δ4}.

4.4. Exotic behavior of A∞-periodic measures along Hecke rays. In this final
section, we use the tools introduced in Sections 4.1 and 4.3 to construct even
more exotic asymptotic behaviors of the A∞-periodic measures µx as x varies
along geodesic rays in the Hecke tree of x0.

THEOREM 18. Let (µi )i∈N be an enumeration of all periodic A∞-invariant prob-
ability measures on X∞. There exist c,c ′ > 0 such that the set of ξ ∈ Ω having
c-escape of mass towards the cusp of X∞ associated with ∞ and verifying

∀ i ∈N, ∃ θi ∈Θξ, c ′µi ≤ θi

is uncountable. In particular,
{
ξ ∈Ω : |Θξ| =∞}

is uncountable.

Note that there are indeed only countably many periodic A∞-orbits, and that
this result immediately implies Theorem 4.

The proof of Theorem 18 relies on the following two lemmas. We consider
again the family (Bε∞)ε>0 of compact-open subgroups of W∞ constructed in
Lemma 16.

LEMMA 19. There exists δ′ > 0 such that for every x ∈ V Tν(x0), for every A∞-

periodic point y0 ∈ X∞, and for every n Àx,y0 1, the intersection Sn
x ∩(y0 A∞B e−δ′n

∞ )
is nonempty.

Proof. Let δ′ = δ
3 where δ is the constant given by our effective equidistribution

result of sector-spheres, Theorem 15. For every ε > 0, let ψε = 1y0 A∞B ε∞ be the
characteristic function of the Bε∞-thickening of the periodic orbit y0 A∞, which
is bounded and locally constant. We are going to use Theorem 15 applied to
ψ=ψε for a suitably chosen ε.

There exists ε2 = ε2(y0) > 0 such that if ε ∈ ]0,ε2], then the orbit map Bε∞ →
y0Bε∞ is injective. Hence by the normalisation of the Haar measure and by
equation (17), we have, for every ε ∈ ]0,ε2],

m∞(ψε) = m∞(y0 A∞Bε
∞) ≥ m∞(y0Bε

∞) = m∞(Bε
∞) = 1

[W∞ : Bε∞]
.
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Furthermore,

‖ψε‖lc =
√

dψε
‖ψε‖∞ ≤√

[W : Bε∞] ≤ ε− 1
2 .

By Theorem 15, there exists κ > 0 such that if n Àx 1, we have, for every ε ∈
]0,ε2],

ηn, x (ψε) ≥ m∞(ψε)

m∞(X∞)
−κ ‖ψε‖l c e−δn ≥ ε

m∞(X∞)
−κ ε− 1

2 e−δn .

Let us now consider ε = 2(κm∞(X∞)e−δn)
2
3 . By the definition of δ′, we have

ε ≤ e−δ
′n if n À 1. If n Ày0 1, then ε belongs to ]0,ε2]. The previous centered

formula then gives ηn, x (ψε) > 0 if n Àx,y0 1. Hence if n Àx,y0 1, the support of
the measure ηn, x , which is Sn

x , meets the support of the function ψε, which is

y0 A∞Bε∞ ⊂ y0 A∞B e−δ′n
∞ , as wanted.

LEMMA 20. Let y and xk , for k ∈N, be A∞-periodic points in X∞. Suppose that
there exist σ,δ′ > 0 and an increasing sequence (nk )k∈N of positive integers such
that:

(1) For every k ∈N, the period, under the geodesic flow in Γ∞\GT∞, of π′∞(xk )
is at most σnk .

(2) There are infinitely many k ∈N such that xk ∈ y A∞B e−δ′nk
∞ .

Then there exists a weak-star accumulation point θ of (µxk )k∈N such that

δ′

2σ2σ
µy ≤ θ .

Proof. Recall that σ2 is given by Lemma 16. Up to extracting a subsequence, we

may assume that xk ∈ y A∞B e−δ′nk
∞ for every k ∈N.

By assumption (1) and by the equivariance of the canonical bundle map π′∞ :
X∞ = Γ∞\G∞ → Γ∞\GT∞ = Γ∞\G∞/A(O∞) with respect to the epimorphism
v∞ : A∞ →Z where Z acts by the geodesic flow (see Section 2.3 and in particular
equation (2)), we have

xk A∞ = {xk a : a ∈ A∞ and |v∞(a)| ≤σnk } .

For every a ∈ A∞ such that |v∞(a)| ≤ δ′
2σ2

nk , we have, by assumption (2) and by
equation (18),

xk a ∈ y A∞a−1B e−δ′nk

∞ a ⊂ y A∞B e−δ′nk eσ2 |v∞(a)|
∞ ⊂ y A∞B e− δ′

2 nk

∞ .

If mA∞ is the Haar measure of A∞ normalized so that mA∞(A(O∞)) = 1, then
the pushforward of mA∞ by v∞ is the counting measure of Z and µxn is the
measure on xk A∞ induced by mA∞ , normalized to be a probability measure.

Hence {xk a : |v∞(a)| ≤ δ′
2σ2

nk } occupies at least δ′
2σ2σ

of the total mass of xk A∞,

and accumulates on y A∞. Hence at least δ′
2σ2σ

of the total mass of any weak-star
accumulation point of (µxk )k∈N is accumulated on µy .
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Proof of Theorem 18. Let (µi )i∈N be as in this statement and let z ∈ E∞ be the
cusp of X∞ associated with ∞.

Let us denote by (ηn)n∈N a sequence of measures on X∞ which contains the
zero measure as well as all the A∞-invariant probability measures of the A∞-
periodic points of X∞, in such a way that each measure appears infinitely many
times. Using Lemma 19 and arguing similarly to the proof of Theorem 14, with
(Vn)n∈N a fundamental system of open neighborhoods of z in X̂∞ = X∞∪E∞,
we can build inductively uncountably many sequences (xk )k∈N in V Tν(x0) such
that the following holds.

(1) The sequence of cones (Cxk )k∈N is strictly nested, so that if
⋂

k∈NΩxk = {ξ},

then (xk )k∈N is a subsequence of the sequence (xξn)n∈N of vertices of the
Hecke ray from x0 to ξ.

(2) If (xk )k∈N 6= (x ′
k )k∈N are two of these sequences, then the sectors Ωxk and

Ωx ′
k

are disjoint for k big enough. In particular, the map (xk )k∈N 7→ ξ =
lim

k→∞
xk is injective, and there are uncountably many such ξ’s.

(3) For every k ∈N, denoting by nk the depth of xk which we may assume to
be at least 1,
(a) if ηk = 0 then µxk (Vk ) ≥ c − 1

k+1 , where c = c(x0) > 0 is the constant
introduced in Theorem 12,

(b) if ηk is the A∞-invariant probability measure on the orbit of an A∞-

periodic point y ′
k , then xk ∈ y ′

k A∞B e−δ′nk
∞ .

Since case (a) occurs infinitely many times, the set Θξ contains a weak-star
accumulation point θ of (µxk )k∈N such that θ({z}) ≥ c.

Let i ∈ N, and let yi be in the support of µi . By case (b), since there are
infinitely many k ∈ N such that ηk = µi , there are infinitely many k ∈ N such

that xk ∈ yi A∞B e−δ′nk
∞ . With the terminology of Section 2.4, we use Theorem 10

applied to a loxodromic element γ0 associated with the chosen representative
g0 of the A∞-periodic point x0. This result gives that the period, under the
geodesic flow in Γ∞\GT∞, of π′∞(xk ) (since Cxk has depth nk ≥ 1 in Tν(x0)) is
at most σnk for some σ> 0 (depending only on p,γ0,ν). Applying Lemma 20
with y = yi , the set Θξ contains a weak-star accumulation point θi of (µxk )k∈N
such that δ′

2σσ2
µi ≤ θi .

This proves the result, with c ′ = δ′
2σσ2

(which does not depend on i ).

5. GENERALISATION TO RANK-ONE SEMI-SIMPLE GROUPS

The aim of this final section is to explain to which rank-one groups the tools
introduced in this paper are applying besides PGL2. For the readability of this
paper, we had restricted ourselves to the case of PGL2 in Section 2.2. We refer
for instance to [29, 30] for the already known content of this section.

Let K be as in Section 2.1. Let G be a connected semi-simple linear algebraic
group defined over K , with K∞-rank one. We fix an embedding G → GLN for
some N ∈N. The example considered before Section 5 (and in particular in the
introduction) is G = PGL2 (which is adjoint and absolutely simple).
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For every ω ∈P and every algebraic group H defined over Kω (for instance
if H is defined over K ), we set Hω = H(Kω), which is a non-Archimedean Lie
group.

Note that when ν ∈P f , the Kν-rank of G may be 1 (as in the case G = PGL2)
or not. For instance, let D be a (finite dimensional) central simple algebra over
K which is ramified at ∞ (that is, D∞ = D⊗K K∞ is a division algebra). Then the
algebraic group G with G(L) = PGL2(D ⊗K L) for every K -algebra L is an (adjoint
absolutely quasi-simple) connected semi-simple linear algebraic group defined
over K , with K∞-rank one. For all ν ∈P f , the group G has Kν-rank 1 if and only
if D ramifies at ν (that is, when Dν = D ⊗K Kν is a division algebra).

The next two results will be used in Remark 23 to explain the restrictions
on the considered algebraic groups. The first one follows from a well-known
argument of weak approximation.

LEMMA 21. Let ν ∈ P f , if the Kν-rank of G is 1, then there exist tori A in G
defined over K , which splits over both K∞ and Kν (hence is a maximal K∞-split
and Kν-split torus).

Proof. By [21, Theorem 2] applied to the semisimple connected algebraic group
G defined over the infinite field K , there exists m ∈N−{0} such that the closure of
the image of the diagonal embedding of G(K ) in G∞×Gν contains the subgroup
of G∞×Gν generated by m-th powers. Let γ∞ and γν be nontrivial elements in
G(K ) which split over K∞ and Kν respectively. There hence exists an element in
G(K ) arbitrarily close to both γm∞ and γm

ν , which therefore splits simultaneously
over K∞ and Kν.

PROPOSITION 22. Let H be an adjoint, absolutely quasi-simple, connected, semi-
simple algebraic group over a local field F of F -rank one. Let T be a maximal
F -split torus, Z its centralizer, P a minimal parabolic subgroup of H over F ,
and U its unipotent radical. If H is isomorphic over F to the algebraic group
L 7→ PGL2(D ⊗F L) for every F -algebra L, where D is a central division algebra
over F , then Z (F ) acts transitively on U (F )−{0} by conjugation. If H is isomorphic
over F to the algebraic group L 7→ PU1,1(D ⊗F L) for every F -algebra L, where D
is a quaternion division algebra over F , then Z (F ) acts with finitely many orbits
on U (F )− {0} by conjugation. Otherwise, Z (F ) acts with infinitely many orbits
on U (F )− {0} by conjugation.

In particular, by the classification theorem [29], if furthermore F = Kν for
some ν ∈P and H is defined and isotropic over K , then Z (F ) acts transitively
on U (F )− {0} by conjugation if H is isomorphic over K to PGL2(D), where D
is a central division algebra over K , and Z (F ) acts with finitely many orbits on
U (F )− {0} by conjugation if H is isomorphic over K to PU1,1(D), where D is a
quaternion division algebra over K .

Proof. Let H = H(F ), T = T (F ), Z = Z (F ) and U =U (F ). Let us denote by
[
ai j

]
the image in PGL2 of a matrix

(
ai j

)
in GL2.
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If U is non-abelian (or equivalently if the (relative) root system of H is not
reduced), it is easy to see that the action of Z (F ) on U (F )− {0} by conjugation
has infinitely many orbits. Conversely, assume that U is abelian. When F = C
(then H = PGL2(C) ) or F =R (then H = PO(1,n)), the action of Z (F ) on U (F )−{0}
by conjugation is transitive. Hence assume that F is non-Archimedean. By the
classification theorem [30], up to isomorphism, H is either PGL2(D) for a central
division algebra D over F , or PU1,1(D) for a quaternion division algebra D over
F and the Hermitian form h(z1, z2) = z1z2 + z2z1.

In the first of the above two cases, we may take

T =
{[

a 0
0 d

]
: a,d ∈ F×

}
, Z =

{[
a 0
0 d

]
: a,d ∈ D×

}
, U =

{[
1 b
0 1

]
: b ∈ D

}
.

The transitivity of the action by conjugation of Z on U − {0} follows hence from
the transitivity of the action of D××D× on D − {0} by (a,d) ·b = abd−1, which is
immediate.

In the second case, we denote by z 7→ z the canonical involution in the
quaternion division algebra D over F , by N : x 7→ xx and Tr : x 7→ x + x its
(reduced) norm and trace, and by (1, i , j ,k) a standard basis of D over F . Re-
call that F×/(F×)2 is finite and nontrivial. Indeed, this group is isomorphic to
(Z/2Z)× (

f ×/( f ×)2
)

where f is the (finite) residue field of F , since if OF is the
local ring and πF is a uniformizer in F , the map (n, x) 7→πn

F x from Z×O×
F to F×

is an isomorphism.
Let Im D = {x ∈ D : Tr(x) = 0} be the K -vector space of purely imaginary

elements of D , endowed with the action of the orthogonal group O(N|Im D ) of
the restriction to Im D of the norm. Since F×/(F×)2 is finite and N (F×) = (F×)2,
there exists a finite subset A of F× such that every line in Im D contains a vector
whose norm lies in A. By Witt’s theorem, the group O(N|Im D ) hence acts with
finitely many orbits on the lines of Im D .

The group SL2(D) acts by g ·M = t g M g on the 6-dimensional F -vector space

E =
{

M =
(

a b
b d

)
: a,d ∈ F,b ∈ D

}
, by preserving the Dieudonné determinant

det M = ad −N (b), which is a quadratic form Q on E . Let M0 =
(
0 1
1 0

)
, which

is a Q-anisotropic element of E . The group SU1,1(D) is the stabilizer of M0 in
SL2(D) for the above action. Let M⊥

0 be the 5-dimensional orthogonal of M0 in
E for Q, which is invariant under SU1,1(D), and note that the restriction Q|M⊥

0
is

non-degenerate. We consider the basis(
e1 =

(
1 0
0 0

)
,e2 =

(
0 i
i 0

)
,e3 =

(
0 j
j 0

)
,e4 =

(
0 k
k 0

)
,e5 =

(
0 0
0 1

))
of M⊥

0 , and we sometimes write matrices by blocks in the decomposition

(e1, (e2,e3,e4),e5) .
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The group T =
{λ 0 0

0 id 0
0 0 λ−1

 : λ ∈ F×
}

is a maximal F -split torus in PO(Q|M⊥
0

),

whose centralizer Z contains Z ′ =
{1 0 0

0 A 0
0 0 1

 : A ∈ O(N|Im D )
}

. The projective

upper triangular subgroup P of PO(Q|M⊥
0

) is a minimal F -parabolic subgroup of
PO(Q|M⊥

0
), whose unipotent radical is, by an easy computation,

U =
{


1 xN (i ) y N ( j ) zN (k) N (xi + y j + zk)
0 1 0 0 x
0 0 1 0 y
0 0 0 1 z
0 0 0 0 1

 : x, y, z ∈ F
}

.

The action of Z ′ on U by conjugation thus identifies with the linear action of
O(N|Im D ) on Im D . The natural map SU1,1(D) → SO(Q|M⊥

0
) induced by the ac-

tion of SU1,1(D) on M⊥
0 is an isogeny, by the semi-simplicity of SU1,1(D). Hence

the adjoint groups PU1,1(D) and PO(Q|M⊥
0

) are isomorphic.

For every λ ∈ F , the action by conjugation of

λ 0 0
0 id 0
0 0 λ−1

 ∈ T on each line

in U is the multiplication by λ. Hence the action of T on each line in U is
transitive on its nonzero vectors. The fact that the action of Z (F ) on U (F )− {0}
by conjugation has finitely many orbits hence follows from the fact that the
action of O(N|Im D ) on the lines of Im D has finitely many orbits.

REMARK 23. An appropriate version of this paper (including loss of mass phe-
nomena of the homogeneous probability measures on the periodic orbits of the
points along appropriate rays of the Hecke tree of any given periodic point of
X∞) is valid when we replace G by the linear algebraic group over K defined

• either by G(L) = PGL2(D ⊗K L) for every K -algebra L, where D is a (finite
dimensional) central division algebra over K which ramifies at the places
∞ and ν, and we endow the algebraic group G with a R∞-structure such
that G(R∞) = PGL2(R∞) where R∞ is a R∞-order in D (see [22] for any
information on orders),

• or by G(L) = PU1,1(D ⊗K L) for every K -algebra L, where D is a quaternion
algebra over K (and the underlying Hermitian form is (z1, z2) 7→ z1z2 +
z2z1),

allowing, thanks to the transitivity properties described in Proposition 22, to
prove a modified version of Theorem 10, when we replace Γ∞ by a congruence
subgroup and when we replace A by any torus over K in G which splits over
both K∞ and Kν (which exists by Lemma 21).
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