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Prescribing the behaviour of geodesics in negative curvata

JOUNI PARKKONEN
FREDERIC PAULIN

Given a family of (almost) disjoint strictly convex subsefsa complete negatively
curved Riemannian manifoldl, such as balls, horoballs, tubular neighbourhoods
of totally geodesic submanifolds, etc, the aim of this pap#r construct geodesic
rays or lines inM which have exactly once an exactly prescribed (big enough)
penetration in one of them, and otherwise avoid (or do notretoio much in)
them. Several applications are given, including a defimitprovement of the
unclouding problem ofPP], the prescription of heights of geodesic lines in a
finite volume suchM, or of spiraling times around a closed geodesic in a closed
suchM. We also prove that the Hall ray phenomenon described byiiiafiecial
arithmetic situations and by Schmidt-Sheingorn for hypécsurfaces is in fact
only a negative curvature property.

53C22,11J06,52A55;53D 25

1 Introduction

The problem of constructing obstacle-avoiding geodesys @& lines in negatively
curved Riemannian manifolds has been studied in varioderdift contexts. For ex-
ample, Dani Dar] and others $tr, AL, KW] have constructed (many) geodesic rays
that are bounded (i.e. avoid a neighbourhood of infinity) @amecompact Riemannian
manifolds. This work has deep connections with Diophanépproximation prob-
lems, see for instance the papers by Sulliv8al]] Kleinbock-Margulis KM] and
Hersonsky-PaulinHIP5. Hill and Velani [HV] and others (see for instancelP3)
have studied the shrinking target problem for the geodesic f5chroeder$chi and
others BSW] have worked on the construction of geodesic lines avoidiign sub-
sets, see also the previous woEH] of the authors on the construction of geodesic
rays and lines avoiding a uniformly shrunk family of hordbal

In this paper, we are interested in constructing geodesis oa lines in negatively
curved Riemannian manifolds which, given some family oftables, have exactly
once an exactly prescribed (big enough) penetration in érikem, and otherwise
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avoid (or do not enter too much in) them. We also study an asytimprersion of this
problem. This introduction contains a sample of our reqske alsoPP3).

Let H be either a horobalH of center¢ or a ball of centerx and radiusr in a
CAT(—1) metric space (such as a complete simply connected Rigaranmanifold

of sectional curvature at mostl). For everyt > 0, letH[t] be the concentric horoball
or ball contained irH, whose boundary is at distanté&om the boundary oH (with
H[t] empty if H is a ball of radiusr andt > r). The following result (see Section
4.1) greatly improves the main results, Theorem 1.1 and Thedr&mof [PP1. The
fact that the constantg is universal (and not very big, though not optimal) is indeed
remarkable.

Theorem 1.1 Let X be a proper geodesic CAT1) metric space with arcwise con-
nected boundary..X and extendible geodesics, I¢t.).c.; be a family of balls or
horoballs with pairwise disjoint interiors i, and letug = 1.534. For everyx in

X — Uaew Ha, there exists a geodesic ray starting franand avoidingH,[ 0] for
everyo.

From now on, we denote byl a complete connected Riemannian manifold with sec-
tional curvature at most-1.

If M has finite volume ane is an end ofM, let Ve be the maximal Margulis neigh-
bourhood ofe (see for instanceBK, Bow, HPYH and Sectiorb.1). If pe is a minimiz-
ing geodesic ray iM starting from a point in the boundary ®% and converging te,
let ht,. : M — R be the height map defined bye®) = lim_ ., (t — d(pe(t),X)). The
maximum height spectruMaxSpM, e) of the pair M, €) is the subset of } oo, +00]
consisting of elements of the form sup hte(+(t)) where~ is a locally geodesic line
in M.

As a consequence of Theorelri (see Corollaryt.4), we prove that ifM is noncom-
pact and has finite volume, then there exist universally llmsex] geodesics iM.

From now on, we assume that the dimensiorvbfs at least 3. The following state-
ments are true or expected to be true in the constant cuev&dimensional case,
but are expected to be false in variable curvature and dimers We first have the
following result on the upper part of the maximum height $peu.

Theorem 1.2 If M has finite volume ané is an end oM, thenMaxSpM, €) con-
tains the interval4.2, +o0].
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Prescribing the behaviour of geodesics in negative cumeatu 1003

For more precise analogous statements wikeis geometrically finite, and for finite
subsets of cusps dfl, see Sectiod.l. Schmidt and Sheingorr8§ proved the two-
dimensional analog of Theorefn2 in constant curvature-1. They showed that the
maximum height spectrum of a finite area hyperbolic surfaitie k@spect to any cusp
contains the interval [81, +oc].

The previous result is obtained by studying the penetratioperties of geodesic lines
in a family of horoballs. Our next theorem concerns famibéballs (see Sectioh.1
for generalizations). See for instandgHg| for the almost everywhere properties of
the geodesic lines passing at very small distance from a gioet.

Theorem 1.3 Let x be point inM with r = inj,,x > 56. Then, for everyd €
[2,r — 54], there exists a locally geodesic linepassing at distance exactlyfrom x
at time0 and remaining at distance greater ththfrom x at any nonzero time.

Given a closed geodeslcin M, the behaviour of a locally geodesic rayin M with
respect toL is typically that~ spirals around. for some time, then wanders away
from L, then spirals again for some time aroulndthen wanders away, etc. Our next
aim is to construct such @ which has exactly one (big enough) exactly prescribed
spiraling length, and all of whose other spiraling lengtheslzounded above by some
uniform constant. Let us make this precise.

Let L be an embedded compact totally geodesic submanifald imith 1 < dim L <

dim M — 1, ande > 0 small enough so that the (closedheighbourhood #;L of L
is a tubular neighbourhood. For every locally geodesic fine M, the set oft € R
such thaty(t) belongs ta#.L is the disjoint union of maximal closed intervals, [t,],

with sy < t, < s+1. Lety be any lift of v to a Riemannian universal cover bf.

Let C, be the lift of C at distance at most from 7(sn). Let py_ andps, be the
orthogonal projections oS, of the points at infinity ofy. The distance betwegn,

andps, will be called afellow-traveling timeof v alongL (see Sectior.2).

Theorem 1.4 Let L be as above. There exist constagts’ > 0, depending only
on e, such that for everjn > c, there exists a locally geodesic lineh, having one
fellow-traveling time exacthh, all others being at most .

See Sectiol.2for an extension of Theoreth4whenL is not necessarily embedded,
and to finitely many disjoint such neighbourhoadgL. If M has finite volume, we
also construct bounded locally geodesic lines with the alpreperty (with a control

of the heights uniform ire). In constant curvature, we can also prescribe one of the
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1004 Jouni Parkkonen and Frédéric Paulin

penetration length#t, — s,| at leastc, while keeping all the other ones at mast
Schmidt and SheingorrB8§ sketch a proof of a result for hyperbolic surfaces which
is analogous to Theoreth4 with a different way of measuring the affinity of locally
geodesic lines. Other results about the spiraling praggexif geodesic lines around
closed geodesics are given HF6 PPJ3.

For our next result, we specialize to the case whdrés a hyperbolic 3-manifold.
See Sectio®.3for a more general statement, and for instarl@& | for references on
3-manifolds and Kleinian groups.

Theorem 1.5 Let N be a compact, connected, orientable, irreducible, aaytiat]

atoroidal, boundary incompressibBemanifold with boundary, withtoN having ex-
actly one torus componest For every compact subsKt in the spaces.% (N, €) of

(isotopy classes of) complete geometrically finite hypécbmetrics in the interior of
N with one cusp, there exists a constarnt 0 such that for evenh > ¢ and every
o € K, there exists a locally geodesic linecontained in the convex core of such

that the maximum height of is exactlyh.

If M has finite volume ane is an end ofM, define theasymptotic height spectrum
LimsupSpM, €) of the pair M, €) to be the subset of } oo, +oc] consisting of ele-
ments of the form lim suypy hte(v(t)) where~ is a locally geodesic line iM.

Theorem 1.6 (The ubiquity of Hall rays) If M has finite volume ané is an end of
M, thenLimsupSpM, €) contains[6.8, o] .

The interval given by Theorerh.6 is called aHall ray. Note that the value .8 is
uniform on all couplesNl, €), but we do not know the optimal value. M is the one-
ended hyperbolic 2-orbifold P$(Z)\H]§ WhereHﬁ is the real hyperbolic plane with
sectional curvature-1, then the existence of a Hall ray follows from the work of Hal
[Hall, HalZ] on continued fractions. Freimafie] (see also$l0]) has determined the
maximal Hall ray of PSk(Z)\H2, which is approximately [B, +oc]. The generality
of Theoreml.6 proves in particular that the Hall ray phenomenon is neittmearith-
metic nor a constant curvature property. See Se&idifior a more precise version of
Theoreml.6, which is valid also in the geometrically finite case.

The results of Hall and Freiman cited above were originadiymfulated in terms of
Diophantine approximation of real numbers by rationalse Pptojective action of the
modular group PS4(Z) on the upper halfplane provides a way to obtain the geomet-
ric interpretation. We conclude this sample of our resultgylving applications of
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Prescribing the behaviour of geodesics in negative cumeatu 1005

our methods to Diophantine approximation problems (sedide6 for generaliza-
tions in the framework of Diophantine approximation on rtagdy curved manifolds,
developped infiP3 HP4, HPY). These results were announced RP[J.

Theorem 1.7 Let m be a squarefree positive integer, and.#étbe a non-zero ideal
in an order? in the ring of integerst_, of the imaginary quadratic number field

Q(iv/m). For everyx € C — Q(i,/m), let

c(X) = lim inf Z‘X—E‘
®) (PQEOX S, (p,q)=0 |g|—o0 & q

be the approximation constant of the complex numbéy elements otv .7 1, and

Sp ag the Lagrange spectrum consisting of the real numbers obtimed(x) for some

x € C—Q(iv/m). ThenSp o4 contains the intervd0, 0.0005]

Theoreml.7 follows from Hall's result and from the work of Poito®§i in the par-
ticular case¥ = 0 = 0_n,. Other arithmetic applications of our geometric methods
can be obtained by varying the (nonuniform) arithmetiddatin the isometry group
of a negatively curved symmetric space. We only state tHewiolg result in this
introduction (with the notation of Sectiof.l), see Sectior6.4 and [PP3 for other
ones.

Theorem 1.8 Let 2(R) be the real quadrié(zw) € C2 : 2Rez— |w]?> = 0}
endowed with the Lie group lafz,w) - (Z,wW) = (z+ Z + ww,w + W) and 2(Q) =
2(R) N Q(i)? be its rational points. If = (p/q,p'/q) € 2(Q) with p,p',q € Z[i]
relatively prime, leth(r) = |g|. Let dgyg be the left-invariant distance a2(R) such
thatdey4((z W), (0,0)) = \/2|z| + |w|2. For everyx € 2(R) — 2(Q), let
B . /

c(X) = re‘Q(I(l@rp mf)_}oo h(r) dgyg(X, 1)
be the approximation constant wfby rational points, anép .4 the Lagrange spec-
trum consisting of the real numbers of the foofx) for somex € 2(R) — 2(Q).
ThenSp ,4 contains the intervd0, 0.001].

The paper is organized as follows. In Sectiynve define a class of uniformly strictly
convex subsets of metric spaces, that we ealbnvex subsetdVe study the interac-
tion of geodesic rays and lines withconvex sets in CAT{1)-spaces. In particular,
we give various estimates on the distance between the eqgtand exiting points in
an e-convex set of two geodesic rays starting from a fixed poirthanspace and of
two geodesic lines starting from a fixed point in the boundarinfinity. Section3 is
devoted to defining and studying several penetration majshveie used to measure
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1006 Jouni Parkkonen and Frédéric Paulin

the penetration of geodesic rays and lines inrazonvex set. We emphasize the case
of penetration maps in horoballs, balls and tubular neight@ods of totally geodesic
submanifolds. We show that in a number of geometricallyrégegng cases, it is possi-
ble to adjust the penetration of a geodesic line or ray inc@nenvex set while keeping
the penetration in another set fixed. Sectorontains the inductive construction that
gives geodesic rays and lines with prescribed maximal pati@t with respect to a
given collection ofe-convex sets. As a warm-up for the construction, we prove The
orem1.1in Subsectiod.1l The other theorems in the introduction besides the last
two and a number of others are proved in SecBavhere the results of Sectighare
applied in the cases studied in SectnFinally, we give our arithmetic applications
in Section6.

Acknowledgments. Each author acknowledges the support of the other authwstgtition,
where part of this work was done. This research was suppbitede Center of Excellence
"Geometric analysis and mathematical physics" of the Aogdef Finland. We thank P. Pansu,
Y. Bugeaud, A. Schmidt, P. Gilles, A. Guilloux, D. Harari fearious discussions and com-
ments on this paper.

2 On strict convexity in CAT (—1) spaces

2.1 Notations and background

In this section, we introduce some of the objects which argrakin this paper. We
refer to BH, GH] for the definitions and basic properties of CATL) spaces. Our
reference for hyperbolic geometry Bd4g.

Let (X, d) be a proper geodesic CAF() metric space, and U 0., X be its compact-
ification by the asymptotic classes of geodesic rays. Bgadesic lindresp.ray or
segmerntin X, we mean an isometric map: R — X (resp.v : [ty, +oo[ — X with

1y € Rorvy:[ab] — X, with a <b). We sometimes also denote hythe image of
this map. Forx,y in X, we denote byX, y] the (unique) closed geodesic segment be-
tweenx, y, with the obvious extension to open and half-open geodegjments, rays
and lines (with one or two endpoints i, X). We say thaiX has extendible geodesics
if every geodesic segment can be extended to a geodesic line.

We denote byT'X the space of geodesic lines ¥y endowed with the compact-open
topology. WhenX is a Riemannian manifold, the spatéX coincides with the usual
definition of the unit tangent bundle, upon identifying a desic line~ and its (unit)
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Prescribing the behaviour of geodesics in negative cumeatu 1007

tangent vectory(0) at timet = 0. For every geodesic ray or ling, we denote by
~v(4o0) the point ofd,, X to which~(t) converges as — +oc, and we definey(—oo)
similarly when~ is a geodesic line. We say that a geodesic line (resp.yastarts
from a point{ € 0., X (resp.§ € X) if £ = y(—o0) (resp.v(v,) = &). For every¢
in XU 0,X, we denote byTglx the space of geodesic lines ffe 0.,X) or rays (if
¢ € X) starting from¢, endowed with the compact-open topology.

If Y is asubset oK and¢ a pointinXU 9. X, theshadow of Y seen frofis the set
O:Y of points~(+oc) where~ is a geodesic ray or line starting frofnand meeting
Y.

TheBusemann functiop; : X x X — R at a point{ in 0. X is defined by
Pe(x,y) = lim (d(x, p(1) — d(y, p(1)))

where p is any geodesic ray ending at The functiony — G¢(x,y) can be thought
of as a normalized signed distanceéta 0., X, or as theheightof the pointy with
respect tcg (relative toy). Accordingly, if B¢(x,y) = B:(x,¥), then the pointy and
y are said to bequidistantto . If £ € X, we define

Be(x,y) = d(x, &) —d(y, &) -

This is convenient in Sectiof.2and in the proof of Corollar.5. For everyx,y, z in
Xand¢é € XU 0, X, we have

5§ (X7 y) + 6§(y7 Z) = 5§ (X7 2)7

Bﬁ(xa X) =0, and’ﬂﬁ(xa y)‘ < d(X, y)

A horoballin X centered at € d,.X is the preimage ofg +oc[ for somesin R by
the mapy — (¢(x,y) for somex in X. If

H={yeX: Bxy) >s}
is a horoball, we define ifsoundary horospherby

OH = {y eX: ﬁ{(x>y) = S}v
and for everyt > 0, its t-shrunk horoballby

Ht] = {ye X : Be(xy) > s+t}.

(In[PP1], we denotedH[t] by H(t).) Similarly, if B is a ball of centex and radius,
for everyt < r, we denote byBJ[t] the ball of centex and radiug —t. By convention,
if t > r, defineB[t] = (). Note that for every ball or horobatl, we haveH[t'] c HJt]
if ' > t. The point at infinity of a horobalH is denoted byH[oc]. Note that, in this
paper, all balls and horoballs X are assumed to be closed.
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1008 Jouni Parkkonen and Frédéric Paulin

Recall that a subsél in a CAT (—1) metric space isonvexf C contains the geodesic
segment between any two points@ Let C be a convex subset iX. We denote by
0 C its set of points at infinity, and byC its boundary inX. If C is nonempty and
closed, for every in 0., X, we definethe closest point tg on the convex set @ be
the following pointp in CU 0,.C: if £ ¢ 0-C, thenp belongs toC and maximizes
the mapy — (¢(Xo,y) for some (hence any) given poirg in X; if £ € 0,C, then
we definep = £. This pointp exists, is unique, and depends continuouslys oy
the properties of CAT{1)-spaces.

If X,y,z € XU dxxX, we denote byX, y, 2) the triangle formed by the three geodesic
segments, rays or lines with endpoints{iny,z}. Recall that ifa : t — o and

6 :t+— [ are two (germs of) geodesic segments starting from a pgiimt X at time

t =0, if (Xo, &, 3;) for t > 0 small enough is a comparison triangle f&g, (v, 3) in
the real hyperbolic plangl 2, then thecomparison angléetweena and 3 at x is
the limit, which exists, of the angl&ss(at, 3) ast tends to 0.

If x,y € X and¢ € 9%, then a triple %,V,€) with X,y € H2, € € 9 ,H2,
d(x,y) = d(x,y) and ﬁg(x y) = B¢(x,y) is called acomparison trianglefor (x,y, &).
Clearly, this comparison triangle exists, and is unique aisbmetry. The natural
map from E,X] U [X,y] U[Y, €[ to 16, X] U [x,y] Uy, £[ is 1-Lipschitz, and for every
z e [xy], if Zis its corresponding point orx[y], then 5:(z,x) < ﬁg(z X).

We end this section with the following (well known) exerase hyperbolic geometry.

Lemma 2.1 For all pointsx,y in X andz in X U 05X, and everyt in [0, d(x, 2)]
(finite if z € 05, X), if % is the point or(x, Z] at distancd from x, then

dix, [y, 2) < e 'sinhd(x,y) < % oty |

Proof. By comparison, we may assume thét= Hﬁ. As it does not decrease
d(x, [y, Z]) to replacez by the point at infinity of the geodesic ray starting from
and passing through, we may assume thatis the point at infinity in the upper half-
space model oHﬁ. Let p be the orthogonal projection of on the geodesic line
throughy andz. Assume first thap belongs toy, 7.

If we replacey by the orthogonal projection of on ~, then we decreasd(x,y),
and do not change and d(x, [y, 2]). Hence we may assume that= i and x is
on the (Euclidean) circle of center 0 and radius 1.«lfs the (Euclidean) angle at
0 between the horizontal axis and the (Euclidean) line frorpa@sing througtx,
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then an easy computation in hyperbolic geometry (see &sd,[page 145) gives
sinhd(x,y) = cosa/ sina. Similarly, sinhd(x, [y, Z]) = cosa/(€ sina). So that

d(x, [y, 2]) < sinhd(x;,[y,2]) = e‘tsinhd(x, y) .

COS«

Assume now thap does not belong toy[Z. In particular,y # x.. Let X be the point
at same distance from as x; (and on the same side) such thats the orthogonal
projection ofx; on ~, so that

d(7t7 [y> Z]) = d(%v y) = d(Xh y) = d(Xb [y> Z])

Let X be the intersection of the geodesic line franthroughX; with the (hyperbaolic)
circle of centery and radiusd(x, y), so thatd(X,y) = d(x,y). Then, witht = d(X;,X),

we havet > t, as the angle at of [%, X] with the outgoing unit vector of the geodesic
ray fromy through¥; is bigger than the corresponding one fgrand x. Hence we
may assume that; = X andx = X. As then the orthogonal projection &f on the
geodesic line througly and z is y, this reduces the situation to the first case treated
above. O

Lemma 2.2 Foreverye > 0, if

2(1+ e€/2)sinh5)
€ )

(-1) co(e) = 2log
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then for all pointsa, b, a', b/ in X such that
dad)<e, dbb)<e, d@b)>cofe),
if m is the midpoint of the geodesic segméatb], thend(m, [&,b]) < 5.

Proof. Let p be the point in & b'] the closest tam, and g the point of F, b] the
closest top. Lett = d(a,m) = d(b,m) = d(a,b)/2. By Lemma2.1, we have

d(m, p) < e"9®M sinhd(b, b') < e~'sinhe
and, ad(m, p) < ¢/2 by convexity,
d(p,q) < e 9@P sinhd(a, a) < e 4@M+dMP) sinhd(a, a’) < e /2 sinhe .

Henced(m, g) < d(m, p) +d(p, g) < e {(1+e7/2)sinhe, and the result follows by the
assumption oml(a, b). O

Remark. If we want a simpler expression, we can also tafe) = 3¢ + 4log 2.

2.2 Entering and exiting e-convex subsets

For every subsef in X ande > 0, we denote by 4 A the closede-neighbourhood
of Ain X. For everye > 0, a subsetC of X will be called e-convexif there exists

a convex subse€’ in X such thatC = _#,C’. As the metric spacX is CAT(—1),

it is easy to see that arrconvex subseC is closed, convex, equal to the closure of
its interior, andstrictly convexin the sense that for every geodesic lipeneetingC

in at least two points, the segmentn C is the closure ofy N (% If X is a smooth
Riemannian manifold, then anconvex subset has a-&-smooth boundary, se@al].

Examples. (1) For everye > 0, any ball of radius at least is e-convex, and any
horoball ise-convex. Conversely, as proved below, if a sulSet X is e-convex for
everye > 0, thenC is X, () or a horoball. Accordingly, we will sometimes refer to
horoballs asx-convex subsets.

To prove the above statement, assume Gat X, () and that for alle > 0, there exists
a convex subse€_. in X such thatC = 4.C_.. For everyx in 9C (note thatoC

is non empty a<C # X, ()) and everyt > 0, let x; be the point of the closed convex
subsetC_; which is the closest ta. Thent — X is a geodesic ray, which converges
to a point calledx,,. We claim thatx,, = Yy~ for everyx,y in 9C. Otherwise, the
geodesic segment betwegnandy;, contained inC_; by convexity, converges to the
geodesic line betweex,, = y.,. Hence, the poink; would not be the closest one to
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X, for t big enough. Therefor@C is a horosphere whose point at infinityxs,, and
by convexity,C is a horoball.

(2) When X is a Riemannian manifold an@ is a closed convex subsé& with
nonempty interior and €'-smooth boundary, the property &f being e-convex is
related with extrinsic curvature properties of its boundaee for instanceqP4 and
references therein. In particular,Xf has constant curvaturea?, thenC is e-convex
if and only if the eigenvalues of the second fundamental fofr@C (for the inner
pointing normal unit vector field along it) belong tathnh@e), acothae)] almost ev-
erywhere (see loc. cit.).

The rest of this section is devoted to several lemmas coimgethe relative distances
between entering points and exiting points, in and out of &@onvex subset oK, of
two geodesic rays or lines starting from the same point. Byenatotic behaviour of
the various constants appearing in this section is destibRemark2.7.

Lemma 2.3 Let C be a convex subset M, let e > 0 and let{y € (X U 0xcX) —
(C U d,,C). If two geodesic segments, rays or linesy’ which start fromé&g
intersect.#,C, then the first intersection poinksX of v,~' respectively with.4#,C
are at a distance at most

ci(e) = 2arsinh(coth).

Proof. Lety andy be the closest points i€ to x and X' respectively. Asx,x €
oAy, Y1], itis sufficient to prove the result whe@ = [y, y'].

We may assume that # X', and, by a continuity argument, that# y'. Let us con-
struct a pentagon il 3 with verticeséy, X, y, X', ¥ by gluing together the comparison
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triangles of £, x,X), (X, X,y) and & Y,y). By comparison (see for instancBH,
Prop. 1.7.(4)]), the comparison anglesxay, X,y are at leastr/2. Hence, the seg-
ments or rays&, X[ and o, X[ do not meet#([y, Y], and the pointy is the closest
point on [, y'] to X.

Furthermore,y’ is the closest point ony[y] to X'. Indeed, the angle at of the
pentagon is at mostn32 sinceéy(y, X) < 7/2 and (%, X) < m. Therefore, if by
absurdz < [y,y] is closest tox, the geodesic segment [Z] intersects ¥, X] at a
pointT. If z < [y,y] andu € [y,X] are such that(y,2) = d(y,2) andd(y,u) =
d(y’,u), then by comparison

d(¥,2) < d(x,u) +d(u,2 <dX,0)+d(0 2 = d¥,2) < dX,y) =dx,y),
a contradiction.

As d(x,X) = d(x,x’), we only have to prove that(x, x') < c(e), i.e. we may assume
that X = Hﬁ. Up to replacingép by the point at infinity of the geodesic ray starting
at x and passing througkp, we may assume thay is at infinity. By homogeneity,
we may assume thgp is the point at infinityoo in the upper halfplane model (‘Hﬁ.
As a geodesic line starting fromxo and meeting the-neighbourhood of a vertical
geodesic segment enters it in the sphere of radiaentered at its highest point, we
may assume that is a segment (possibly a point) of the geodesic lirteetween the
points —1 and 1 of the real line.

Claim. There are points; anclxg1 that are first meeting points withV.¢ of geodesic
lines starting frompo, such thatd(x, X') < d(x;, xg).

(— coskhk, sinhe) | (coshe, sinhe)

[ ]
(0, sinhe)

Proof. Note thato.#.¢ is the union of two arcs of Euclidean circles, meeting-atand
1, and letd™.#.¢ be the upper one, which is the intersection v@lﬁlﬁ of the Euclidean
circle through £1,0) and (Qe). The horizontal line with equatioy = sinhe goes
through the Euclidean center,&nhe) of this circle, and the points a#*™.4,¢ above

“eometry & 0pology XX (20XX)



Prescribing the behaviour of geodesics in negative cumeatu 1013

or on this line are exactly the first hitting points with;¢ of the geodesic lines starting
from oo.

We may assume, up to permutirngndx’ that the horizontal coordinate &fis strictly
less than the one of .

If both x and X' are ind.4.¢ or have vertical coordinate at least sinhthen replace
them by the points; andx&, respectively to their left and right, ai".4.¢ at the same
vertical coordinate. These points satisfy the claim.

Otherwise, assume for instance tlkatoes not lie oro.#.¢ and has vertical coordinate
strictly less than sinh. In particular,x belongs to the hyperbolic circl® of radius

e centered at one endpoint of the segmént Moreover, the horizontal Euclidean
diameter ofSis at vertical height strictly less than siah

Since the Euclidean normal line 8 and 9*.4.¢ at their common tangency point
goes through both their Euclidean centers, this tangenicyt [gobelow the horizontal
Euclidean diameter 08. Hence bothx and X' lie on S, since the other points of
0.4¢C are not first hitting points with#.C of the geodesic lines starting fronw. By
horizontal translations and homotheties, which are hyg&rlisometries preserving
the geodesic lines starting fromv, we may assume tha is reduced to the closest
point on/ to co. Hence we are again in a situation when brtand X' have vertical
coordinates at least simhwhich has already been considered. O

The above claim allows us to assume tRat /. The distanced(x, X') is then maxi-
mized when the geodesic lines are tangent/f@ on both sides (see the figure above).
Thus, we may assume that the poirix’ are @ coshe, sinhe). The computation of
d(x, x') yields the result. O

The following technical result will be used in Lemrdéb. Define, for every > 0,
2
c’(€) = - arcosh(2 cosh(2)) .
€
For future use, it is easy to check that, for every O,

(-2-) Co(e) > ec’(e) .

Lemma 2.4 For everye > 0, for every convex subsét in X, for everya,b in .#.C
and for everyag in [a,b], if d(a,b) > cp(e) and

min{d(ao, @), d(ap, b)} <

NI ™

1
N0
thend(ag,C) < e — 1.
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Proof. Let e > 0. LetC,a b,ap,n be as in the statement, and let us prove that
d(ag,C) < € — 1. By an easy computation, we haeé(c)e < co(e). By symmetry,
we may assume thait(a, ag) < d(b,ap), so that our assumptions give the following
inequalities:

(-3-) d(a,ap) = ¢’ (e)n < ’(e)e/2 < co(€)/2 < d(a, b)/2 .

Let &,b’ be the points inC the closest ta, b respectively. As &, b'] is contained
in C, we may assume thal = [a,b/]. Let m be the midpoint of & b], and ' its
closest point ond, b']. By Lemma2.2, we haved(m, m') < 5.

Asn < ¢/2,if d(a @) < e—n, then by convexity every point ira[ m] is at distance at
moste — n from C. In particular, this is true fogg, sinced(a, ag) < d(a, m). Hence,
we may assume thak(a, a') > ¢ — 1.

Consider the quadrupley@, m, m') of points of X, which satisfies
e c—n<d@ad)<e,
e dimm) <5,
e & isthe pointin f/, n'] the closest ta, and
e 1 is the pointin B, '] the closest tan.
Definet = t(a, @', m,n7) as the distance betweanand the poinz = z(a, &, m,nY) in

[a, m] at distancec — n from [a', ] (which exists and is unique by convexity), see
the figure below.

We claim thatt < ¢”(e)n = d(a, ap). Before proving this claim, we note that it implies
by Equation {3 -) thatt < d(a, ap) < d(a, b)/2, hence, by convexityd(ap, [&, m]) <
e —n, and Lemma.4 will follow.

We will make several reductions, in order to reach a sitmatibere easy computations
will be possible.
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First we may assume, by comparison, tat Hfg. If the segmentd, m| cuts the
segmentd, b'] in a pointu, then replacingn andnY by the intersection point gives

a new quadruple with the samieBy an approximation argument, we may assume that
[a,m] N [&,b] is empty and thal’ # M’ # m. The assumptions on the quadruple
(a, &, m,n') then imply that the anglegy(a, M) and £ (m, &) are at least;. Let

L’ be the geodesic line througil andnt.

If [a, m] does not enter4;_,,C in the sphere)B(a’, ¢ — 1) (in which casea andm are
on the same side df’), then definea, = a. Otherwise, replaca by the pointa, at
distance equal td(a, &) from &, such that the geodesic segment betwaeand m
goes through the poirt, € 9B(&, e — 1) N 0.4;_,L’ (on the same side df’ asm).
This gives a new quadruple.(, ', m, ') satisfying the same properties, whdsieas
not decreased, by convexity.

Replacea by &, anda. by a.. such that/y (a..,m) = 3, d(a..,a,) = d(a &),
anda, € [a..,a,]. Clearly, this does not decrease Now replacea,, by the point
A SUCh thatd(a,..,a.) = € and ., a.] C [a.«,a.]. Let m, be the point on
¢/2C such that there is a geodesic line through. and m. which is tangent to
¢ oC atm,. Letm, be its closest pointih’. Again, the value of for the quadruple
(@4sx, &, m,, M) has not decreased.

Hence, after these reductions, we may assume Xhat HZ2, that the quadrilateral
(a, @, m,nm) has right angles &', ', m, and thatd(a, &) = 2d(m, ") = e.

Now, let ¢ = d(m, a) — t be the distance between and the point ond, m| at distance
e —n from [&, m]. An easy computation (se8&¢a page 157]) shows that

sinh) __sinhfe —n)
sinhgj2) and cosit = ~ghe) -

Consider the maf. : s — arcosh z'l?fr‘]((j;; This function is increasing and concave

on [—¢/2,0], with f.(—e/2) = 0. By concavity, the graph df on [—¢/2,0] is above
the line passing through its endpointse(/2,0) and (0f.(0)). Hence, for everys

in [0,€/2], by the definition ofc”(¢), we havef.(0) — f.(—s) < c’(e)s. Therefore

t = f.(0) — f.(—n) < c’(e)n asn < €/2. This proves our claim, and ends the proof of
Lemmaz2.4. OJ

coshf+ /) =

Here is a finer version of Lemn#&a3which shows that the entering point of a geodesic
which enters are-convex set for a long enough time and the entering point gf an
nearby geodesic are close. For every 0, we define

Jon Y 2c) (€) coshe  sinhc/(¢)
(49 g =ma{ 9+, = [ SeaE
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Lemma 2.5 Foreverye > 0, every&y in XU 0, X, every convex subsél in X, and
all geodesic rays or lineg,~' in X which start aty and enter#;C at the pointsx, X
in X respectively, if the length of’ N .#.C is at leastcy(e), then we have

d(x,X) < (d(x7) .

Remarks. (1) Without assuming that the geodesic ray or lyiehas a sufficiently big
penetration distance insidg;C, the result is false, as can be seen by taking point,
~' a geodesic line tangent & 4.C andx very close tox' on 9.4,C.

(2) The curvature assumption is necessary, as can be seambigering geodesics
which enter a half-plane ii®? almost parallel to the boundary.

Proof. Let ¢ > 0 and assume th&p, C,v,7/,x X are as in the statement. We may
assume thak # X. In particularéy ¢ C. Let p’ be the point ofy’ the closest tox.
Let [X,y] be the intersection of’ with .#.C (or [X,y[ with Y € 9, X if v/ N A4.C

is unbounded). By assumptiod(x’,y') > co(e).

Case 1: Assume first thap’ does not belong togh, x]. If d(x',p’) < 5c”(e), then
let a9 be the pointp’. Otherwise letag be the point in ¥, y[ at distance5c”(e)
from x'. This point exists and is at distance at legst(e) > d(ap, x) from y’, as
d(X,y) > co(e) > ec’(¢) by Equation {2-). By Lemmaz2.4, we haved(ap, C) <
€— C,,—l(e)d(ao, X).
Hence, ifag = p/, then
1, 1

C”(E) d(p 7X,) - C”(E)

Thus,

d(a0. X) < € — d(ao, C) = d(x,C) — d(p, C) < d(x, p') .

d(x,x) < d(x, p') +d(p',X) < (1 +¢"(e)) dx. P) ,
which proves the result, by the definition df(e).

If ag # p', thenp' ¢ [ag, &o[. Let us prove thatl(x, p’) > 5. This implies, by Lemma

2.3 that
2¢(e)

€

d(x,X) < cy(e) < d(p’,x) ,

which proves the result, by the definition df(¢). Let by be the point in X,y] at
distance5c”(e) fromy’ (or by =y’ if y' is at infinity). By Lemma2.4, we have

max{d(ap, C),d(bp,C)} < € —

1 ;
C”(E) mln{d(a()axl)ad(bOa)/)} = E .
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Assume by absurd thal(x, p’) < 5. If p’ € [ao, bo], then by convexityd(p’,C) < 5,
therefored(x, C) < d(x, p’) + d(p’, C) < €, a contradiction. If otherwisg’ ¢ [ap, bo],
thenby € [p/,&[. Therefore there exists a poiatin [x, £o[ whose closest point to
[P, &ol is bp. By convexity,d(z, bp) < 5. Henced(z, C) < d(z bp) + d(bo,C) < e,
which contradicts the fact that enters.4.C at x.

Case 2: Assume now thap’ belongs to {o,X]. Let & andb’ be the points ofC the
closest tax' andy’ respectively. They are at distanee- 0 from x' andy’ respectively
(except that = y' if ¥y is at infinity). Let¢ be the comparison angle &t between

. / / H i 1
the geodesic segmentg,[a] and X, y[. We claim that sin) < N

To prove this claim, ify’ € X, we construct a comparison quadrilateral with vertices
X, &b,y € H2 by gluing together the comparison triangle &,y of (X, d,y)
and @,b',y) of (&,b/,y) along their isometric edges'[y]. If ¥ ¢ X, thenb' =

y', and the above quadrilateral is replaced by the comparisamgte with vertices
X,a,y € H% U {co}. By comparison, all angles in the quadrilaterallirg, with
verticesx', @, b/,y are greater than or equal to those in the quadrilatera{ vith
verticesx, &, b',y. In particular, if the angle ax’ is ¢, we have¢ < ¢. If the
quadrilateral with vertices’, &, 1,y is replaced by the one with verticgs &, b/, y’
with d(x', @) = ¢ = d(y’,I/,) and right angles a&', andl/'., the angleg, at X' of
this quadrilateral is at leasgt. Furthermore, this quadrilateral is symmetric: the angle
aty is also¢, . Thus, we get an upper bound forby estimatinge, .

Let [m, m'] be the common perpendicular segment betwe€ry] and [, b'.], with
m < [X,y]. We have (see for instancB¢a page 157]),

—  coshd(m, m')

sing, = and coshl(x',m) = sinhe

coshe sinhd(m, ) -
Hence, agi(x', y') > co(e),

o \/1+(sinr?e)/(cosﬁd(7, m)) \/1+(siane)/(cosﬁ(co(e)/z)) 1
sing, = coshe = coshe = V/coshe ’

as, by Equation-@2-), co(€) > ec’(¢) > 2 arcosh{/2cosh¢/2)). This proves the
claim.

By convexity, the comparison angle =t between the geodesic segments ] and
[¥,&] is at most%. Hence the comparison angleat X' between X', x] and [x', o]
(which lies in [Q 5[ sincep’ € [&o,X[) is atleastr — 5 — ¢ = 5 — ¢. In particular,

1 - 1 B 1 - coshe
sing ~ sin(GZ —¢) /1—sik$ ~ Vcoshe—1"
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If p’ = X, then the result holds, sinag(¢) > 1. Otherwise, since/ enters.#.C at
X, the pointsx, X, p’ are pairwise distinct. Letk(X,p') be a comparison triangle in
H?2 of the geodesic trianglex(x, p). By comparisonf = Zz(X,p) > 6 andp is
the closest point t& on [p/, X']. In particular, the anglaa(x X) is at least7 . By the
formulae in right-angled hyperbolic triangles, we have

sinhd(x,p’)  sinhd(x, p’)

sinhd(x,X) ~ sinhd(x, X)
Sincep’ is the closest point tox on +/, we haved(x,p’) < d(x,X) < cj(e). In
particular, by the convexity of the map— sinht on [0, +oc[ , we have

> sind > sind .

sinhd(x, p) < S gy
cy(e)
Hence, by the definition of;(e),
sinhd(x, p')

d(x,X) < sinhd(x,X) < <o) dixp). O

sing
In general, there is no estimate analogous to Ler@rBdor the distance between the
pointsy,y where two geodesic rays or lines~’ starting from a pointy exit ane-
convex subset#,C. For instance, the geodesic linecould be tangent to#,C, and+’
could enter for a long time in#,C, so thaty andy’ would not be close. But the result
is not true even if we assume that bottand+’ meet.#,C in a long segment. Here is
a counterexample wheX is a tree (but this phenomenon is not specific to trees).

=2

Let v, be two geodesic lines in a tre, coinciding on their negative subrays,
starting at{y € 0. X, and with disjoint positive subrays. Let= n = 1, and
C =7/([-¢,+/]). Then the entering points of, 7' in 4.C arex = X = +/(—¢ — 1).
Besides,y = v(1), Y = +/(¢ + 1) andd(y,~’) < 1. But we haved(y,y) = ¢ + 2,
which goes to+oo as¢ — +oo.

This explains the dichotomy in the following result on thétiexy points from ane-
convex sets of two geodesic lines which start from the sarrg gbinfinity. For every
e,n > 0, we define

(-5 M(en) = max{ 2+ max{0,~2log 5} , 0+ c;(e) + ca(e) }
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and

2c
(-6-) o =3+ 22
Lemma 2.6 Lete,n > 0. Let C be a convex subset K, &n € X U 05X, and~y,~/
geodesic rays or lines starting frofg. If ~v enters./#.C at a pointx € X and exits
N.C at a pointy € X such thatd(x,y) > HW(e,n) andd(y,’) < n, theny meets
N:C, entering it at a poink € X, exiting it at a pointy’ € X U d,,X such that

d(y,y) < c5(e)d(y, ') or d(x,y) > d(xy) .
Proof. Let p’ be the closest point off to y. Let q be the closest pointofnto p’. The
point g belongs to ¥, £o] and satisfiesl(y, ) < d(y, p’) < n, as closest point maps do

not increase the distances. By the properties of geodéasgtes in CAT (1) spaces,
we have

d(p’,q) < arsinh 1= log(1+ V'2).

Let us first prove that’ meets.4.C. Let m be the midpoint of X, y]. As
d(y,m) = d(x,y)/2 > h'(e,n)/2 > n > d(y, 0) ,
the pointq belongs to in,y]. Furthermore,
d(a, m) = d(y,m) — d(y, Q) > W(e,n)/2—n > —log 5 ,
by the definition oftY(e, ). By Lemma2.1, we have
d(m, 7') < e~ %4 sinhd(g,p) < 5 -

By Lemma2.2 asd(x,y) > W(e,n) > co(e) by the definition ofh'(e,n), we have
d(m,C) < 5. Hence the pointr’ of ' the closest tan belongs to.4.C, which is
what we wanted.

Let X andy be the entering point in4,C and exiting point out of #.C of +' re-
spectively. The poiny could for the moment be at infinity, in which case the second
possibility below would hold.

Casel Case 2
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Case 1 :Assume thap' ¢ [y, &o]. Let n. = ec”’(€)/2. There are two subcases. First
assume thadl(y, p') > ¢/2. Let
t. = max{n., — log %}.
Note thath'(e, ) > 1. + t. + n by the definition oftY(¢, n), as by Equation-@2 -) we
havecy(e) > e c’(e) = 2., and by a discussion on the valuetpf Hence we have
dy,x) — d(y,a) —te > h(e,n) —n—t>n>0.

Therefore, the poinyg in [X, q] at distancet. of q exists and satisfied(yg, X) > 7.
Furthermored(yo, q) = t. > . and

d(X, q) = d(X7 y) - d(y7 q) > h/(€7 77) -n > CO(E) > 2775 )

by the definition oftY(e,n). Let ag and by be the points in), q] at distancer, from

x and g respectively, which are at distance at legsfrom g and x respectively. By
Lemma2.4, we haved(ayp, C) < ¢ — n./c"(€) = ¢/2, and similarlyd(bp, C) < ¢/2.

Note thatyy belongs to &, bp]. Hence by convexity, we have(yp, C) < ¢/2. By

Lemma2.1, we have

d(yo,~") < e ' sinhd(g, p') < % .

Therefore the pointf on +' the closest toyy belongs to.4,C. As Y is the exiting
point of o/ from .#,C, it belongs to {[, p']. As closest point maps do not increase the
distances, we have(p’, ') < d(y, yo). Hence
d(y,y) < d(y, ') +d(p',y) < d(y, ') +d(p’, q) < d(y, p’) + d(y, o)
< d(y, p') +d(y, a) + d(@, yo) < 2d(y, p') +t
< (242t /e)d(y, p) < c5(e) d(y, p) ,
as it can be checked that/Ze)/e + 1 > 2t /e.

Assume now thadl(y, p') < ¢/2. Since
d(x,y) > (e, ) > col€) > 2ne > 2¢"(e)d(y, p) ,

the pointyp in [x, y] at distancec” (e)d(y, p’) from y exists andd(yo, X) > ¢’ (e)d(y, ).
Hence by Lemma.4, we haved(yp, C) < ¢ — d(y,p'). Let d be the point oy’ the
closest toyg. By convexity,dq is at distance at mosi(y, p’) from yp, hence belongs
to #,C. As Y is the exiting point ofy’ from .4,C, it belongs to §,p’]. As closest
point maps do not increase distances, we hd(g p') < d(yo,y). Hence, as above,
and by the definition of,

diy,y) < d(y,p') + d(yo,y) < (14 c”"(e)) d(y, ) ,
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which proves the result, by the definition df(c), as 2/ (e)/e + 1 > c”(e).

Case 2 :Assume thap' € ]y, &o]. Lemma2.3implies thatd(x, X') < c¢;(¢). Note that
p ¢ [X, &]. Otherwise, withg ands the closest points tp’ andx’ on ~ respectively,
we would haves ¢ 1q, £o] by convexity. Asq € [y, o], we would then have

d(x,y) < d(x,s) +d(a,y) < dx,x)+d(p’,y) < ci(e) +n < h(en),

by the definition oftY(e, n)), a contradiction.

Assume first thatl(y, p’) < €/2. We start by observing thal(p’,y') < c’(e)d(y, p').
Indeed, suppose by absurd tlip’,y') > c”’(e)d(y, p’). By continuity of the closest
point maps, letp be a point ony that does not belong tof.C, but is close enough to
y, so that the closest poigt to yp on~’ belongs to Y, y'] and satisfiesl(yp, 9') < ¢/2
andd(q,y) > c’(e)d(d,yo). Hence, using the definition df (¢,7) and Equation
(-2-), we have
d(y,>X,) 2 d(q/v)() 2 d(p/>xl) 2 d(X> y) - d(p/vy) - d(X>X,)

> N(e,n) —n — cy(e) > coe) > ec’(e) > 2¢"()d(d, o) -
Let ap and by be the points inf,y] at distancec”(e)d(d,yo) < ec’(e)/2 from
X andy respectively. The estimate {-) implies thatay and by are at distance at
leastc”(e)d(q, yo) from y and X' respectively. By Lemma.4, we haved(ag, C) <
e — d(d,yo) andd(bg,C) < ¢ — d(d,yo). Hence, the pointf, which belongs to
[ag, bg] by Formula ¢ 7-) and the construction off , is by convexity at distance at

moste — d(d, yo) from C. Therefore by the triangular inequalitg(yo, C) < ¢, which
is a contradiction. Hence(p',y) < c¢’(e)d(y, p’), and

d(y,y) < d(y,p') +d(p,y) < (L +c"(e)d(y, p) ,
which proves the result, as in the end of Case 1.

(-7-)

Assume now thatl(y, p’) > €/2. Suppose first thad(p',y’) > d(y,p’) + c(€). Then,
asp’ € [X,Y],
d(x,y) = d(x, p) + d(p',y) > d(p’,y) +d(x,y) — d(y, p') — d(x,X) > d(x,y) ,

which is one of the two possible conclusions. Otherwise,

2Cll () )

d(y,y) < d(y, p) + d(p’,y) < 2d(y, p') + ci(e) < (2+ d(y, p') < c3(e)d(y, p) ,

by the definition ofcs(e). This is the other possible conclusion. O
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Remark 2.7 The asymptotic behaviour of the constants whes very big or very
small is as follows.

o Co(e) ~ 3case — oo and lim_pCo(e) = 4log 2~ 2.77.

o lim._ . Cj(e) = cj(o0) = 2log(l+ v2) =~ 1.76, and cj(e) ~ —2loge as
e — 0. Note thate — c}(¢) is decreasing.

o lim_. 4o C’(e) =1, andc’(e) ~ Zlog(2+ v/3) ase — 0.
e For e big, cj(€) = ¢’(¢) + 1, hence lim_.; Cy(c) = 2. Fore > 0 small,

coshe  sinhc)(e) V2
coshe —1  cj(e) 4e3log(L/e)

Co(€) =

o lim._ o ch(e) =3, andc(e) ~ —2loge ase — 0.

e h(e,n) ~ 3¢ ase — +oo, andh'(e,n) ~ —2loge ase — 0, uniformly on
compact subsets of's.

Whene goes to+oo, ¢j(e) and c;(e) have finite limits, and the limiting values apply
for the horoball case, see Lemna9and2.12below. On the other hand, the constants
Co(€) andh' (e, n) behave badly as — oo, and we will improve them in Sectioh 3.

When X is a tree, the constanis;(e) and W (e,n) can be simplified, we can take
c;(e) = 2 and anyi' (e, n) > 27, as the following more precise result shows, improving
Lemma2.6 for trees. Note that the versions of Lemn#a8 and 2.5 for trees simply
say that we can takey(c) = ¢, andcy(e) = c,(e) = 0, since for every point or engh

of a (real) tree, for every convex subsgt for all geodesic rays or lineg, 7" starting
from &y and enteringC in x, X' respectively, we have = x'.

Remark 2.8 Let X be anR-tree ande > 0. Let C be a convex subset M, & €
XU d X, and~y,~' geodesic rays or lines starting frofg. If v enters#.C at a point
x € X and exits.#.C at a pointy € X such thatd(x,y) > 2d(y,~’), then+' meets
N:C, entering it at = X, exiting it at a pointy’ (possibly at infinity) such that

d(y,y) < 2d(y,~") or d(x',y) > d(x.y).

Proof. Let p’ be the closest point tp on . Note thatp’ belongs to §o,y], asX is a
tree andy’ also starts frongg. If p’ € 1o, X[, thend(y,~’) > d(x,y), a contradiction.
Hencep' € [x,y] C .#C, andy’ enters.#.C atX' = x.

Suppose first thad(x,y) < 2¢. Then the closest poirgto y in C does not belong to
[x,y]. Let g be the midpoint of X, y], which is also the closest point on [X,y]. As
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d(x,y) > 2d(y,~"), the pointp’ belongs to ¢,y], henced(y,y) = 2d(y,~’), which is
fine.

Assume now thatl(x,y) > 2¢. If x. andy, are the points inX, y] at distance: from x

andy respectively, thend y]NC =[x, y.]. If p’ belongs toY.,y], theny. is also the
closest point to/ in C, andd(p’,y) = d(p,Y'), so thatd(y,y) = 2d(y,~’), which is
fine. Otherwise, we have(y,~') > e. If d(X,y) < d(x,y), thend(p',y) < d(p',y).

Hence

d(y,y) = d(y,p') + d(p',y) < 2d(y,p') = 2d(y,~) . O

2.3 Hitting horoballs

As shown in Remarl.7, the constantsg(e) and i (e, n), used to describe the pene-
tration of geodesic lines inside-convex subsets, do not have a finite limitaagoes
to +o0o. Horoballs ares-convex subsets for every, and we could use for instance
e = 1 in these constants to get numerical values. But in ordeettetter values, we
will prove analogs for horoballs of the lemmas3, 2.4, 2.5and2.6. The proofs of
the lemmas below follow the same lines as the ones for therglecase ofe-convex
subsets given in Sectidh2, with many simplifications.

As c/(e) tends to

¢y (c0) = 2log(1+ V2),
the next lemma follows by passing to the limit in Lem@&a&. It is not hard to see (for
instance by considering the real hyperbolic plane) thattmstantc; (co) is optimal.

Lemma 2.9 For every horobalH in X, for every&y in (X U 05X) — (H U H[o<]),
for all geodesic rays or lines and~' starting from&y and enteringH in x and x
respectively, we have

d(x,X) < cj(c0) = 2log(1+v2). O
The following result, Lemm&.10, improves Lemm&.4 for horoballs, and says that
when thee-convex subset under consideration is a horoball, we cdaaepy(e) by
(-8-) Co(00) = 4.056,

andc”(e) by ¢’(o0) = % Lemma2.11below is the analog of Lemnia5for horoballs,
and says that when the-convex subset under consideration is a horoball, we can
replacecy(e) by co(oo) = 4.056 andd,(¢) by

99 o) = >
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Note thatc”(c0), co(co) and c,(co) are not limits as: goes tooo of ¢”(¢), co(e) and
c,(¢), but this mnemonic notation will be useful in Sectidrnwhere it will be used in
a similar way whethee is finite or not.

Lemma 2.10 For every horobalH, for everya andb in 0H with d(a, b) > co(c0),
for everyag in [a,b], we have

a0 € H[ § min{d(ao, ), d(a0, b)}] -

Proof. Let ¢ = H[oo] be the point at infinity ofH. Up to exchanging and b, we
may assume that = d(ap, a) = min{d(ay, &), d(ap, b)}.

Let @, b, ¢ = co) be a comparison triangle of,(b, &) in Hﬁ. By comparison (see the
paragraph before Lemn#al), the (non negative) differenc® of the heights ofa and

ap with respect tct is at least the corresponding quantityfor the comparison points
aandag. Thus, in order to show that > 2¢, itis sufficient to show that’ > 2¢, and

the question reduces to the caée- Hﬁ. We assume thab[ a] lies on the unit circle,
with a (and henceyg, asa andb have the same (Euclidean) vertical coordinate) in the
closed positive quadrant.

Let s be the (Euclidean) vertical coordinate &f
andt the one ofa, with 0 <t < s< 1. An easy

computation in hyperbolic geometry (see also the
proof of Lemma2.1) gives ¢’ = log { and

V1—1? V1i-¢
t

— arsinh—— L _______Z_\
s

I

¢ = arsinh

1+vV1-1t2

S
=log- +lo
gt gl+ 1-&

Hence, to prove that < 3¢/, we only have to show that Ioﬁ:\/% < Zlogs,
which is equivalent toy/t(1 + v1—1t2) < /s(1 + V1—?). The mapf : x —
VX + /1 —x2) on [0,1] is increasing fronf(0) = 0 to f(@), and then decreasing
to f(1) = 1. Lett’ = 0.25873. Asf(t') < 1 ands > t, to prove thatf(t) < f(s),

it is sufficient to show that < t’. Let & andb’ be the two points of the unit circle
at (Euclidean) height'. As a andb are at the same (Euclidean) heightn the unit
circle, to prove that < t’, we only have to show thad(a’,b’) < d(a,b). By the
definition of cg(>0), we have

VIt

—— < co(00) < d(ab) .

d@@,b’) = 2arsinh v
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Hence the result follows. O

Lemma 2.11 For every horobalH in X, for every&y in X U 0xX, for all geodesic
rays or linesy and~’ starting from&y and enteringH in x € X andx € X respec-
tively, if the length ofy' N H is at leasicy(><), then

d0cxX) < 2 dx ).

Proof. Let p’ be the point ofy’ the closest tox. Let ¢ be the point at infinity ofH.
Definey by [X,Y] = v/ N H if this intersection is bounded, and = ¢ otherwise.
We may assume that=£ X'. In particular,&y ¢ H U {¢}.

Assume first thap’ does not belong to&f, X[. As closest point projections do not
increase distances and by Lemg8, we haved(x', p’) < d(x,x) < ¢j(c0). Since

(-10-) d(X,y) = co(o0) = 2¢i(c0),

the pointp’ belongs toH, andd(p’,y) > d(p’,X). Let z be the point of intersection
of 1¢,x] with the horosphere centered &tpassing throughp’, so that in particular
d(x,p’) > d(X,2). By Lemma2.10, we haved(xX, z) > %d(x’, p'). Hence

dx.X) < dex. )+ AP X) < dox ) + 5 X2 < (e pl)

Assume now thap’ belongs to {o, X[. Let 3 be the comparison angle &t between
the (nontrivial) geodesic segments or rays Y[ and X, £[. By comparison,s is
at most the angled between K, y[ and [¥, [, wherex andy are two points, at
distanced(x, y), on a horosphere ifil 2 centered at. An easy computation in the
upper half space model and the inequalit{-) show that

-1 1

1
tan = (gm%a&, 7)) < (simn(2log1-+ v2)) " < .

As 0< 3 < 3, this implies that3 < 3 < Z.

Let o be the comparison angle dtbetween the (nontrivial) geodesic segmentsy]
and K, x], which is at mostZ, asp’ is the closest point tx on ¥, &]. As the
geodesic segmenk,[x] lies in H, we havea > 7 — 5 — 3 > %. By Lemma2.9,
we haved(x, p’) < d(x,x") < ¢j(o0). Using the formulae for right-angled hyperbolic
triangles (seeBed) and the comparison triangle i 2 to the triangle X, X, p') in X,

we have, by convexity of — sinht,
. 1 . 2 sinhc/(o0) 5
< < < 1/ )< = ) .
d(x,X) < sinhd(x,X) < = sinhd(x, p') < NACS) d(x,p) < > d(x, p)
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This proves the result. O

The following Lemma is the analog of Lemr2z6 for horoballs. It says that when the
e-convex subset under consideration is a horoball, we cdaaeg;(e) andh'(e, ) by

(-11-)  c5(o0) = g and h'(co,n) = 3n + co(c0) + ¢} (c0) ~ 3y + 5.8188,

and that the first of the two possible conclusions of Len2Znéalways holds. Note that
c;(c0) is not the limit ase goes to+oco of ¢4(e), and thath' (e, ) diverges ag — oco.
However, in both cases, this mnemonic notation will be Usef&ection4, where it
will be used in a similar way whetheris finite or not.

Lemma 2.12 For every horobalH in X, for every&g in (XU 05,X) — (H U H[<]),
for all geodesic rays or lineg, ' starting from&, if v entersH at a pointx € X and
exitsH at a pointy € X, and ifd(x,y) > (oo, d(y,7’)), theny' meetsH, exiting it
at a pointy’ € X such that

dy.y) < 5 dy, )

Proof. Let & be the point at infinity ofH, let p be

the closest point onx[y] to &, and letp, and py be

the points of intersection of the horosphétd, cen-

tered at¢ passing througlp with the geodesic rays

[x, &[ and [y, [ respectively. By comparison, we have

d(px, py) < 2log(1+ v2) = ¢(o0). Thus, the trian-

gle inequality, along with the fact tha, is the closestyy, ) Px
point toy on dH,, and the assumption ai(x, y), gives T)/ / 5H

2min{d(y, p), d(x,p)} > d(y, py) + d(x, px) >
d(x,y) — 2log(1+ v/2) > co(c0) > 3.

In particular, asd(x,y) > cp(oc), LemmaZ2.10implies thatp belongs toH[1]. By
Lemmaz2.1and the assumption ait(x, y), we have

1

1 : y 1
d(p, ) < 5 & DI < 5 g B0 Hog V2 <

This implies thaty’ meetsH, because/V%(H[l]) = H[%] is contained inH.

Let X andy be the entering point it and the exiting point out oH of +/, respec-
tively. Let p’ be the point ony’ the closest tg.
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Case 1 :Assume thap’ ¢ [y, &o]. Note that

3 3
dx,y) — 5 d(y, p) > 5 dv, p)>0,

asd(x,y) > 3d(y,~’), by the definition of/(co, 7). Hence, there is a poiry in [, Y]

at distance3 d(y, p) of y which satisfiesd(x, yo) > 3 d(y, '). By Lemma2.10, we
haveyy, € H[d(y,p')]. Let g be the point ofy’ the closest tg/y. By convexity, we
haved(yo, d) < d(y,p’). Henceq belongs toH. By the intermediate value theorem,
the pointy belongs to §,p']. As closest point maps do not increase the distances,
we haved(p', ) < d(y, o) = 3 d(y, p'). Therefore,

diy,y) < d(y,p') + d(p’,y) < d(y,p’) +d(p’, o) < g dy,p) ,

which proves the result.

Case 2 :Assume thap’ € |y, &]. By the same argument as in Case 2 of the proof of
Lemma2.6, we havep’ ¢ [X,&]. If d(p'.y) < 3d(y,p), thend(y,y) < 3d(y,p),
and the result is proved. Therefore, assume by absurdithay’) > %d(y, p). By the
continuity of the closest point maps, there exists a pginin ~ that does not belong
to H, whose closest poinf on ~/, which lies iny'— ]p/, &], satisfiesd(q,y) >

3 d(yo. o) and d(yo, ) < d(y,p’) + 3 Co(cc). Lemma2.9 implies thatd(x,x) <

¢} (c0). Thus, by the assumption affx, y),

d(xla )/) 2 d(xla q/) 2 d(p/7 X,) 2 d(X7 y) - d(X, X,) - d(y7 p/)
> 3d(y, p') 4 co(c0) + ¢3(o0) — ¢ (c0) — d(y, p')
> 2d(y, p') + co(oc) > max{2d(yo, '), Co(oc)} .

In particular, d(yo,q) < %d(x’,q/) < %d(q’,x’) and we already hadi(yo, ) <
%d(q’,)/). Hence, by Lemm&.10 we haveq € H[d(yo,d)]. This implies that
Yo belongs toH, a contradiction. O

3 Properties of penetration ine-convex sets

3.1 Penetration maps

Let X be a proper geodesic CAF(Q) space, andp € X U 0,,X. We are interested
in controlling the penetration of geodesic rays or linestisig from &g in e-convex
subsets ofX. One way to measure this penetration is the intersectiogthenf C is
a closed convex subset K such that{p ¢ C U 0,,C, we define a magc : T§10X —
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[0, +0o¢], called thepenetration length mapvhich associates to every in Tglox the
length of the intersectiory N C (which is connected by convexity).

When we study specific geometric situations, such as callecf horoballs and-
neighbourhoods of geodesics, there are further naturad wameasuring the penetra-
tion. These will be used in many applications in Secttoand in [PP3. If C is an
e-convex subset oK such thatéy ¢ C U 0,,C, we will require our penetration maps
f: T510X — [0, 4+o¢] in C to have one or two of the following properties, the first one
depending on a constanrt> 0. The sup—norm of a real valued functibron T§10X is
denoted byi|f|| -

(i) (Penetration property) For any-~ in T510X, f(y) = +oc ifand only if £c(y) =
+o00, and the restrictions df and /¢ to the set where both functions are finite
satisfy [|f — lc|lec < K .

(i) (Lipschitz property) For every~,+ in T510X which intersectC, if yN C =
[a,b] andy’ N C = [@,b] with a,b,a, b’ in X, then

[f(7) = f()] < 2max{d(a &), d(b, b')} .

If Cis ane-convex subset oK such that{y ¢ C U 0,,C, andf : T510X — [0, +oc[ is
a map which satisfies)(for somex > 0, we say thaf is a x-penetration map in (the
e-convex set) CWe also say thatQ, f) is an €, x)-penetration pair In the condition
(i), we could have replaced 2 by some> 2, but if f also satisfies the property) (
then only A = 2 is really relevant in the large scale.

Note that if C,f) is an ¢, ’)-penetration pair, it > ¢ andx’ < «, then C,f) is
an (, x)-penetration pair. IC is co-convex and C, f) is an ¢, x)-penetration pair in
everye > 0 thenf will be called ax-penetration map in (thec-convex set) C

Penetration maps in generale-convex subsets. If C is a closed convex subset of
X, the map/c is in general not continuous oT’gOX, as can be seen by takirigto be

a geodesic segment of positive length. The following resiitiws that the situation
is nicer fore-convex subsets. Note that the statement of Leriridgs not true inR"
(which is not a CAT{1) space).

Lemma3.1 Lete > 0 and letC be ane-convex subset ok such thaty ¢ CU0C.
The maplc . T§10X — [0, +0o¢] is a continuou®-penetration map il satisfying the

Lipschitz propertyii).

Proof. The Lipschitz propertyii) of the penetration length mafz. follows from the
triangular inequality. It remains to show the continuitytioé map.
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Choose a convex subs€t such thatC = .#/(C’), and note that by the definition of
the topology ofX U 9., X, the subset€ andC’' have the same points at infinity. Let
Yo € T§10X, and let us prove thaic is continuous aty.

Assume first thatyp(+o0) is a point at infinity ofC. Then there exists a geodesic ray
contained inC’ ending at this point at infinity. As geodesic rays converdginghe
same point at infinity become exponentially close, this iegthat/c(y9) = oo. Let

A > 0. Asyy N C is the closure ofyy N E‘, let [x,y] be a geodesic segment of length
A+ 2 contained iy N (O: Letn € ]0, 1] be such that the ballB andB’ of radiusy

and of centex andy respectively are contained ff) If v € Tflox is close enough to
v0, theny meetsB and B, and by convexity/c(y) > A, which proves the result.

Assume now thatyp(4oc) is not a point at infinity ofC, but that, does mee(C.
Then~y N C is a nonempty compact segmeat Ij]. For everyn > 0, leta,, by be
points inyo—[a, b], at distance at most/4 from a, b respectively, and, ifi(a, b) > 0,
let a_,b_ be points in & b[ at distance at mos}/4 from a, b respectively. AC is
closed andyp N C is the closure ofyg N E: if a # b, there exists) € ]0,7/4] such
that the ballsB(a ), B(b.) of radius7’ and centers, , b, respectively are contained
in X — C and, ifd(a,b) > 0, the ballsB(a_), B(b_) of radiusn’ and centera_,b_
respectively are contained in the interior@©f If v € Tgox is close enough teo, then
~v meetsB(a,), B(b;) (and henceB(a_),B(b_) by convexity, ifd(a,b) > 0). Itis
easy to see then thgic(v) — c(ho)| < 7.

Assume now thaty, does not mee€C. Let U,V be neighbourhoods of the endpoints
of 7o in X U 0, X that are disjoint fromC U 0,,C. Letn > 0 be such that the
n-neighbourhood ofyg is disjoint from C, which exists, as int., d(x,C) > 0. If

v € T510X is close enough tgp, then (the image of)y lies in U UV U .40, hence
does not mee€. So thatlc(v) = £c(y0) = 0. O

In particular, ifH is a horoball such thagy ¢ H U 0H, then/y is a continuous
0-penetration map foH satisfying the Lipschitz propertyiif.

Let C be a convex subset of such thaty ¢ C U 9,,C. For every~y in Tglox, let
7— = & andyy = y(+00), and letg,, be the closest point 0@ to v+ . Define the
boundary-projection penetration map. : Tglox — [0, +00] by

bpc(y) = d@,_,0.) ,

with the obvious convention thadip-(v) = +oo if g,, is at infinity.
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Lemma 3.2 Let C be ane-convex subset oK such thaty ¢ C U 0,,C. The map
bpc is a continuouc; (€) -penetration map irc.

Proof. The continuity ofbpc follows from the continuity of the projection maps and
the endpoint maps. Let us prove thai. has the Penetration property (ith x =
2ci(e). Lety e Tgox. If 4 is a point at infinity ofC, thenbpc(vy) = ¢c(y) = +o0,
and the claim is true for these geodesics. Otherwise rifeetsC, then~ entersC at

x and exitsC aty, with x,y in X. By Lemma2.3, we hence have

d(x,y) — d(0_, Gy, )| < d(x,0,_) + d(gy, ,Y) < 2¢3(e) ,
and the result follows.

If v does not meeC, let [p, q] be the shortest connecting segment between a point
in v and a pointqg in C. By angle comparison, the geodesic segment or ray between
g and~+ meetsC exactly inq. Hence, by Lemma.3,

d(a,_,a,,) <d@,_,q) +d(@,a,,) < 2cj(e) .
As /c(y) = 0, the result follows. O

Penetration maps in horoballs. If H is a horoball inX, with ¢ its point at infinity,
such thatgp ¢ H U {¢}, and if xg is any point in the boundary dfl in X, define a
1-Lipschitz mapsy : X — [0, +o0o[, called theheight maypof H by

Br - X — max{ 3¢ (xo, %), 0},

whose values are positive in the interiortdf and 0 outsidéH . By convention, define
Br(€) = +o0o. Note that3y is independent of the choice of the poiat For every~y
in Tgox, let p, be the closest point t9(+o00) on the geodesic line betwegp and¢,
with p, = ¢ if y(400) = ¢£.

We will study two penetration maps associated with the Heiggp. The maphy :
TE X — [0, +0o¢] defined by

phu(7) = 2 supBu((1))
teR

will be called thepenetration height mamside H. The mapippy, : Tgox — [0, +0o0]
defined by

ippu () = 2 Bu(py)
will be called theinner-projection penetration majmside H. Note that for every
t > 0 andy € T2 X, we havephyy(y) = max{0,phy(y) — 2t} andippyg(y) =
max{0, ippy (7) — 2t}.
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Lemma3.3 LetH be ahoroball ir, such thaty ¢ HUOH. The mapshy, ippy :
T510X — [0, +00] are continuou log(1+ v/2)-penetration maps fdd, andph,, has
the Lipschitz propertyii). Furthermore,

[phy — ipppy oo < 2l0g(1+ V2).

Remark. In HYy, the equalityippy(y) = pby(y) + log 2 holds for any horobalH
with £ ¢ H U H[oo] andy € Tgox meetingH . Thus, inHp the mapipp,, satisfies
the Lipschitz propertyi(). We do not know whetherH, ippy) satisfies the Lipschitz
property {i) in general.

Proof. Let us prove thatH, ph,) satisfies the Lipschitz propertyi). Let~,~’ be
elements inT510X such thaty "H = [a,b] and+' N H = [&, b/]. Then, for everyx in
[a, b], if X isthe point on &, bY] the closest tok, we have, with¢ the point at infinity
of H,

|Be(a,X) — Be(a, X)| = [Be(x,X)| < d(x,x) < max{d(a,&),d(b,b')}
by convexity. Takingx the highest point ind, b], we get

Phr(7) = 20¢(a.X) < 2max{d(a, &), d(b, b')} + 23 (a, x)
< 2max{d(a, &), d(b,b')} + phu (v) -

Using a symmetry argument, the result follows.

Let us prove thatH, phy) satisfies the Penetration property With « = cj(c0) =
2log(1+ V/2). Lety € T§10X. Note thaty enters the interior oH if and only if
/() > 0, and if and only ifphy(v) > 0. Hence we may assume thatmeetsH in
a segmenty, y]. By the first paragraph of the proof of Lemrdl2 we have

phu(7) < th(7) < phu(7) + 2log(1+ v2) .

Let us prove thatH, ippy) satisfies the Penetration property With ~ = 2log(1+
V2). Letry € Tgox. If p, = &, thenippy(y) = ¢u(y) = +oo, and the result holds,
hence we may assume that belongs toX. If p, does not belong tél, as the closest
point projection ofy on the geodesic lineyl, [ is ]v—, p,[, then~y does not enter
H, and henceéppy(v) = ¢n(v) = 0, and the result is proven.
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Assume thafp, belongs toH, and note that by
comparison and an easy hyperbolic estimate, we
have d(p,,v) < log(1+ v2). In particular,

if v does not enteH, then 0 < Bu(p,) <
d(p,.7) < log(1+v/2), andlippy () —n ()| <
2log(1+ v/2), hence the result holds. There-
fore we may assume thatentersH at the point

x and exitsH at the pointy. We then have

phu () < ippu(v) < phy(v)+2d(p,,~). Hence,

() = 2109(1+ v2) < ippy(7) < lu(7) +2l0g(1+ V2)

and the result is proven. The continuity Wiy follows from the continuity of the
endpoint maps, of the closest point projection maps anglof X U {£} — [0, +oc].
To prove the continuity ofph, at a point~y of Tglox, note that ifyo(4+o00) = &,
thenphy(70) = +o0, and the continuity follows from the Penetration propeiyof
(H, phy) and the continuity of. Otherwise,yo N H is a compact segment. If it is
nonempty, then ify is close enough te/, the argument in the proof of Lemngal
shows that the Hausdorff distance between H and~o N H is as small as wanted.
The result follows then sincgy is 1-Lipschitz (and vanishes outsid). If ~o does
not meetH, then if v is close enough tg’, the argument in the proof of Lemn3al
shows thaty also avoidsH, hencephy(v) = ¢n(vy) = 0. OJ

Penetration maps in balls. If B is a ball of centexy and radiugg in X with & ¢ B,
define a 1-Lipschitz mapg : X — [0, +oo[, called theheight mapby

Bs : X — max{rg — d(xo, x), 0} ,

whose values are positive in the interior®f and 0 outsideB. For every~ in Tglox,
let p, be the closest point tg(+o0) on the geodesic segment or ray betwggrand

X0.
The mapphg : T{, X — [0, 2ro] defined by

phe(7) = 2 supGa(v(1)
teR

will be called thepenetration height mamside B. The mapippg : Tglox — [0, 2r¢]
defined by

ippg(7) = 2 Bs(p,)
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will be called theinner-projection penetration maipside B.

We claim that the mapshg, ippg are continuous 2 log(% v/2)-penetration maps, and
that phg has the Lipschitz propertfi); furthermore,

[phg — ippgllee < 2l0g(1+ V2).

This is proved as in Lemma&. 3, except that in the proof of the Penetration property of
ippg, the discussion is on whether, is equal toxy or not, and ifp, = Xo, then, by
comparisond(y, %) < log(1+ v/2), and the claim follows in this case gsg(y) =
2['0.

If a sequence of ballsB)icn converges to a horobaHll (for the Hausdorff distance
on compact subsets of), then the mapsghg, ippg, converge, uniformly on compact
subsets ofT, gox, to phy, ippy respectively.

Penetration maps in tubular neighbourhoods of totally geo@sic subspaces.

We define two functions oﬁ'gox which describe the closeness of a geodesic line to a
totally geodesic subspade If &g is in the boundary at infinity oK, then these func-
tions are defined without reference to ameighbourhood ot.. However, we show
that they are penetration maps in thaeighbourhood oL, with explicit constants
which depend only om.

Let e > 0, and letL be a complete totally geodesic subspac& pivith set of points
at infinity 0L, such that{g ¢ A.L U O5L. For everyy in Tglox, letv_. = & and
74+ = 7(+00), and letp,, be the point orl the closest toy.. .

v-

5’# 5’Y+ L
We define thdellow-traveller penetration maftp, : Tgox — [0, +o0] by

ftpL(fY) = d(p77 9 p’y+) )
with the convention that this distance-sx if p,, isin dL.

Lemma 3.4 Lete > 0, and letL be a complete totally geodesic subspac& afuch
thato ¢ AL U OsL. The mapftp, is a continuoug2c;(€) + 2¢) -penetration map in
el and||ftp, — bp s [loo < 2e.
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Proof. The continuity offtp, follows from the continuity of the projection maps and
of the endpoint maps. Note that, for everyn T510X, the geodesic segment or ray from
p,,. to v+ exits /L at the closest poind,, on.#.L to v+. Hence, by the triangular
inequality, and as closest point maps do not increase distamve have

0<bp s (7) —fto (v) < 2e.

Therefore the fact th&tp, (v) satisfies the Penetration property With x = 2¢/(¢) +
2¢ follows from Lemma3.2 O

If L is one-dimensional angh € 0,.X — 0L, a natural penetration map is defined
using the crossratios of the endpointslofand «. Let 94X be the set of quadru-
ples @, b,c,d) in (0,.X)* such thata # b andc # d. Thecrossratio[a,b,c,d] €
[—o0, +o¢] of a quadruple & b, c,d) in 04X is defined as follows (see for instance
[Ota Bou, Pay). If a, b, c;, d; are any geodesic rays convergingad, ¢, d respec-
tively, then

[a.bc.d] = 5 lim_d(@,0) — d(e,b) + dby, ) — d(c, ).

Note that the order conventions differ in the references,ane using the ones of
[Bou, HPZ), and that our crossratio is the logarithm of the crossnasied in Bou]. As
suggested by the referea, b, ¢, d] should rather be called “crossdifference”, but we
will stick to the “crossratio” terminology, which is more giély known, because of for-
mula ¢ 12 -), and because taking a log from the very beginning makesuhgesjuent
formulas shorter.

Let us give other formulae for the crossratio. Migual distanceof two pointsa and
b in 0,,X with respect to a given poing in X is

defab) = fim o 3 (d0x0,80+d(0,)—d(a,b)

If £ € 0,.X, if H is a horosphere centered @gtanda, b are points in0,,X — {¢},
andt — X is a geodesic ray witkx, € H which converges tg, the Hamenstadt
distance(defined in Haml, [HP2 Appendix]) ofa andb in 0, X — {£{} normalized
with respect taH is

du(ab) = lim €'dy (a, b).

Note that ifH’ is another horosphere centered athen there exists a constamt> 0
such thatdy, = cdy. In particular, for everyt’ € 9,.X — {£} andr > 0, the sphere
of centeré’ and radiusr for dy coincides with the sphere of centé€rand radiuscr
for dy/ .
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Itis easy to see that for ang € X and any horobalH , we have for everyg; b, c,d) €
04X

Oy, (a, €) dx,(b, d) o du(a, ) dy(b,d)

Oy, (C, b) dx,(d, a) dy(c,b) dy(d,a) ’

if, in the second equatior, b, c,d are in0,,X — H[oo]. Note that each expression in
the above two equalities isco if a=corb=d, and+c if c=b ora=d. If the
points¢ anda coincide, the expression of the crossratio simplifies to

du (b, d)

du(c,b) -

The crossratio is continuous anX, it is invariant under the diagonal action of the
isometry group ofl", and it has the following symmetries

[c,d,a,b] =[ab,cd and [ab,d,c] =[b,ac,d =—[ab,cd]

(' 12 ') [a7 b> C, d] = IOg

[€,b,¢,d] = log

If X =Hp and¢ is the point at infinityoo in the upper halfspace model Hfy, , then
the Hamenstadt distance coincides with a constant mulbipplee Euclidean distance
of O HR — {00} = R (see for instanceHP3J). In particular, ifn = 2 orn = 3,
then our crossratio is the logarithm of the modulus of thesital crossratio of four
points iNnC U {oo}.

If {0 € 00X — 0L, we define therossratio penetration magxp, : Tglox — [0, +¢]
as follows. Lety be a geodesic line starting at = &g, and ending aty, € 0, X.
Let Ly, L, be the endpoints df. Set

ctpL(’)/) = maX{O, [7—7 le T+ L2]7 [/7—7 L27 T+ Ll]} .

Note thatcrp, (v) = +oo if 4 is equal toLg or L,. The maperp, is clearly continu-
ous, and is independent of the orderilag L, of the endpoints of..

If H is a horosphere centered&t then

dn (L1, L)

Oh (74, La)’

and the level sets forrp, have a simple form:&p, L1, v+, L2] = ¢ if and only if v

is on the sphere of radiwes °dy (L1, L) centered at; with respect to the Hamenstadt
metric. Thus, in particular, the boundary of the zero setwf is the boundary of
the union of the two balls of radiugd (L1, Lo) centered at.; andL,. Furthermore, if
¢ > log 2, then the level satcp, ~1(c) is the union of two spheres for the Hamenstadt
distancedy of centersL; and L, and radiuse °dy(L1,L,). These two spheres are
disjoint by the triangle inequality. Each of them separaiefrom exactly one of the
endpoints ofL. We will use this in the proof of Lemma.9.

[607 L17 Y+ L2] = Iog
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\
N
N

dn (L, L2)

Note that ifX is a negatively curved symmetric space, then the spheresadisdf the
Hamenstéadt distance are topological spheres and ballg itofiological spheré,.X
(see HP3 if X =H} and HP4 if X = H). We do not know (and in fact we doubt
it) whether this always holds in the general variable cumatase.

Lemma 3.5 Let (a,b,c,d) € 04X. If b = d, we define by conventiop = q = b
andd(p,q) = 0. Otherwise, letp andq be the closest points dip, d] of a andc
respectively.

(1) If b,q,p,d are in this order offb, d] andd(p,q) > cj(c0), then|[a,b,c,d] —
d(p. g)| < 2¢(0).

(2) If b,p,q,d are in this order oifb, d] andd(p,q) > c;(c<), then[a,b,c,d] <
c;(c0).

(3) If d(p,q) < ¢;(c0), then[a,b,c,d] < 2¢j(c0).

Proof. If a=d or c = b, thenp =d or q = b, hence we are in case (1) with£ d,
and [a,b,c,d] = d(p,q) = +oo, which proves the result. A = c or b = d, then

p = g, we are in case (3) andy,[b, c,d] = —oo, which proves the result. Hence we
may assume tha, b, c, d are pairwise disjoint.

Lett — a, by, ¢, d; be geodesic rays converging to respectivalp, c,d ast — oo,
and letp; and g; be the closest points ta and c; respectively onlf, d]. Let p’ €
[a,d] and p” € [a;,c] be the closest points tp; on [a;, d] and [a;, c], and let
q € [b,c] andq” € [&;, ¢] be the closest points tq on [b, ¢] and [a, ¢].
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Recall that by an easy comparison argument, for pairwisgndispoints u, v, w in
X U dxX, if 1 is the closest point tev on Ju, V[, thenr is at distance less thah=
log(1+ /2) from a point on &I, w[ . We will apply this remark ta = p; andr = ¢.
Recall also that)(co) = 24.

Case (1).Under the assumptions of Assertion (1)f ifs big enough, then the points
by, ai, pt, d; are in this order onl, d;]. Using the triangle inequality od(a, ¢;) and
d(b, d), and inserting the pointg’ andq in [d;, &] and [c, bx], we have

d(ag, ¢) — d(ct, by) + d(by, di) — d(dk, &)
< d(a, py) + d(pt, a) + d(a, &) — d(cr, o) — d(a, by) + 2 d(d, )
+ d(bx, o) + d(a, pr) + d(pr, d) — d(ck, pr) — d(pr, &) + 2 d(p', pr)
<2d(pt,q) +49 .
By comparison and a standard argument on hyperbolic qasehdlls with three right
angles (seeBea page 157]), for every > O, if t is big enough, we have that

d(a, q") < 26 + €/4, asd(pt, ) — d(p,q) > cj(o0). If we insert the pointg”
andq” in [a;, ¢ ], we get, as above,

d(a, ¢) — d(ct, by) + d(bt, dr) — d(dk, a)

> d(a, pr) + d(pt, ) + d(ae, &) — 2 d(pr, p*) — 2 d(a, 9") — d(c, &) — d(a, br)
+ d(bx, o) + d(ak, pr) + d(pr, di) — d(dk, pr) — d(pr, &)

>2d(pt,q) — 8 +¢€.

This proves Assertion (1) in Lemn&b.
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Case (2).The proof of Assertion (2) is almost identical to the one @&f tipper bound
in the first inequality in Case (1). The different order of tha&ints p; and g now
causes cancellations:

d(a, c) — d(ct, b) + d(b, dy) — d(dk, &)
< d(a, pr) + d(pr, o) + d(ck, ) — d(c, o) — d(ax, p) — d(pe, by) + 2 d(d, o)

+ d(bx, pr) + d(px, o) + d(ck, d) — d(ck, &) — d(a, pr) — d(pr, a) + 2 d(p, pr)
<45

Case (3).Assume thatl(p, g) < c;(oc0) and lete > 0. By takingt big enough, we can
assume thatl(p, o) < 26 + €. Inserting the pointg” andq” in [a, ¢ and using
the fact that closest point maps do not increase distan@ebaved(p”’, ") < 26 + ¢,
d(ci, ) > d(ct, q”) andd(a, pr) > d(a, p”). Thus, as in the cases above,

d(a, ¢) — d(ct, by) + d(bt, dr) — d(dk, a)

< d(a, p") +d(p”,q") + d(g”, &) — d(cr, o) — d(cr, br) + 2 d(of, o)
+ d(bx, ar) + d(ax, pr) + d(pr, dr) — d(ck, pr) — d(pr, &) + 2 d(p', pr)

<86+ 2¢.

As this holds for any > 0, the result follows. O

Lemma 3.6 Lete > 0, letL be a geodesic line iX, and assume thgp € 0o X —
JsoL. The mapcrp, is a continuoug2c] (e) + 2¢;(c0) + 2¢)-penetration map in the
e-convex set/#;L and||ctp. — ftp| [|oo < 2¢1(00).

Proof. Let v € T§10X, let v_ = & and~, be the endpoints of, andL; andL; be
the endpoints of.. Let p andq be the closest points tp_ and~. on L respectively,

so thatftp () = d(p. 0).

If d(p,q) < cj(c0), then LemmeB.5 (3) implies that 0< ctp, (y) < 2 ¢j(o0), and
thus [cepy (7) — ftp ()| < 2 ¢y(00).

If d(p,q) > cj(o0), then up to renaming the endpointslaofwe have by Lemma.5(2)

and (1) that 4, L, v+, L1] < cj(o0) and —2¢y(o0) + ftpL(7) < [v-, L1, 74, L2] <
2¢;(c0) + ftpL (), which implies the result, using Lemn3a4. O

Remark. The penetration maps can be defined for any fixed starting pdiicth is
outside thec-convex setC, except forcrp, , and its boundary at infinity. Thus, the
penetration mapsc, bpc, phy, ibpy, Pbe, iPPg, ftp. considered in this section are all
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restrictions toTéLOX of maps defined, and continuous (as an inspection of the above
proof shows) onJe¢crn. o TIX C T'X with C' respectivelyC, C,H,H, B, B, /(L.

The penetration magxp, is defined and continuous QD&GBOOX—BOOC’ T§1X. This point

of view is used in cases (3) and (4) of Proposittrbelow, and will be useful to apply
Corollary4.11

3.2 Prescribing the penetration

In Section4, we will use the following operation repeatedly: a geodesicor liney
starting from a given poin{y is given that penetrates twaconvex setsC andC’ with
penetration mapk andf’, first enteringC with f(v) = h, and thenC’ with f’(y) > K.
We will need to pick a new geodesic ray or lineéstarting from&p which intersect<C
beforeC’, for which we still havef (/) = h, and for which we now have the equality
f'(7') = h'. In the following result, we show that this operation is plolesin a number
of geometric cases. These cases will be used in Sestionvarious applications.

Proposition 3.7 Let X be a complete, simply connected Riemannian manifold with
sectional curvature at mostl and dimension at lea&. Lete > 0 andd,h,i > 0.
Let C andC’ be e-convex subsets ok, and&y € (XU 0,,X) — (CU 05C). Letf
andf’ be mapsT} X — [0, +-oc], with f' continuous and’ = ||f' — {c/[|oe < +00.
Consider the following cases:
(1) C is a horoball withdiam(C N C') < ¢, f is either the penetration height map
phc or the inner-projection penetration mamc;

h > h™" = 2¢] (€) + 26 + ||f — phelloo

andh > hg“” = r' + 2§, if C' is also a horoball we may take= +oc in the
definition of h™n,

(2) Cisaball of radiuR (> ¢€) with diamCnNC') < §; f is either the penetration
height maph or the inner-projection penetration magpc;

h>h™" = 2ci(e) + 20 + [If —pheloo < h < 2R—2¢1(e) — [If — phcloc = ™
andh’ > hin = k' + 25;
(3) C isthee-neighbourhood of a complete totally geodesic subspaoédimen-

sion at leas2, with diam(C N C') < 4, eitherf = /c and X has constant
curvature, off is the fellow-traveller penetration magp, ;

h > h™" — 4¢) () + 2¢ + 6 + 2||f — ftp| [|oo
andh’ > hQin = ' +§;
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(4) e Cisthee-neighbourhood of a geodesic lihe
o h>h"N=4c)(e) + 2+ + ||If — ftp |l ;
e eitherf = ¢c and X has constant curvature, bris the fellow-traveller

penetration magtp, , or & € 0o X, T = ctp, and the metric spheres of
the Hamenstéadt distance 0g,X — {{o} are topological spheres;

e eitherC' is anye-convex subset that does not mé€etin which case) =
0) andh’ > hJ"" =/, or C' is thee-neighbourhood of a totally geodesic
subspace with codimension at least two such dah(C N C') < § and

H > hJ" = 3c)(e) + 3¢ + 0 + ||’ — ftp/]|oo -

Assume that one of the above cases holds. If there existsdesgieoray or liney
starting fromé&y which meets firs€ and thenC' with f(v) = h andf’(y) > i, then
there exists a geodesic ray or liffestarting fromé&g which meets firs€C and thenC'
with f(3) = h andf'(3) = H'.

Proof. Let ~ be as in the statement, anxd(resp.y) be the point wherey enters
(resp. exits)C (with y in X sincef(y) = h < +00). Let X (resp.y’) be the point
where v enters (resp. exitsf’ (with X' € X but possibly withy' at infinity). By
convexity, &y ¢ C' U d-,C'. For everyh > 0, we defineA as the set of points,(+oc)
wherea € Tgox satisfiesf (o) = h. Let Ap be the arcwise connected component
of A containing~y(+o0). By considering the various cases, we will prove below the
following two claims :

a) every geodesic ray or line, starting frafm and meetingC’, first meetsC and
thenC’;

b) there exists a geodesic ray or lifig starting from&p with 5y(+0o00) belonging
to Ag, andf’(7,) < hj"n.

As f’ is continuous andyg is arcwise connected, the intermediate value theorem im-
plies the existence of a geodegiowith the desired properties, and Propositiid is
proven.

Case(1). Letk = ||f — phcll~ - Let& be the point at infinity ofC, which is different
from &, and letp; be the closest point t§ on v. As f(y) = h > 0, the pointp;
belongs to the interior of the horoball. Let 4¢ be the geodesic ray or line starting
from &o with ~¢(4-00) = €.
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We start by proving the (stronger) first claim that every g=icl ray or line starting
from &, and meetingC’ meetsC[d] first (hence it meet< before C' and Assertion
a) holds). Note that

min
dy,p) > d(pe, o) = P Tl Z o, W
Asf'(y) > W > hJIn = s/ 4 25, we havelc () > /() — k' > §, unlesslc(y) =
5 = 0. Note thaty N C’ is not contained in the geodesic segment]. Otherwise,
this would contradict the assumption that di@n{C’) < § when/c/(y) > §. When
lc(y) = 6 = 0, asy meetsC’, the segmenty N C' would be reduced to a point by
the convexity ofC’. This point would be{x} or {y} (asC’ is not a singleton). But
then the tangent vector of at x or its opposite ay would both enter strictly}C and
be tangent taC’, which contradicts the fact that= 0.

=cj(e)+5>90.

As ~ meetsC beforeC’, this implies, in particular, that the geodesic rgy~[(+oo)[
meetsC’, and that the poinp, belongs to ¥, &o] : otherwiseC N C’ would contain a
segment of length at lead(p;, y) > ¢, which is impossible. Hence, by convexity, any
geodesic ray or line starting frogy and meetingB(xX', ¢;(¢)) first meetsB(pg, ¢;(e)).

By Lemma2.3, every geodesic ray or line, starting frafjm and meetingC’, meets the
ball B(X, ¢/ (¢)) before enteringC’ (and we may take = +oc if C’ is also a horoball,
by Lemma2.9). This proves the first claim, as the b&(p;, c;(¢)) is contained in
C[4], sinced(pe, dC) > c;(e) + J, as seen above.

Let us prove now the (stronger) second claim that theresaigeodesic ray or ling,
starting fromé&p with 7(+00) belonging toAg, and avoiding the interior of’, which
implies assertion b), as théh(7) < (o (7o) + ' = ' < hin.
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The subspacé of 0,,X is a codimension 1 topological submanifold of the topo-
logical sphered,X, which is homeomorphic to the sphe$&-2, hence it is arcwise
connected. Indeed, if = ph¢, thenA is the subset of endpoints of the geodesic rays
or lines starting from¢y that are tangent t@(C[h/Z]). If f = ippc, the subseA is

the preimage of a point ir¢j, £[ by the closest point map frorl,. X to [£g, £], which

is, over ko, &[, a trivial topological bundle with fibers homeomorphicSt2.

Note thatf is continuousf(y¢) = oo > h, andf(a) = 0 if « is a geodesic ray or line
starting from&p with a(4+-00) close enough te(—oo). ThereforeA separates/(—oo)
and~y,(+o0), as the connected componentsigf X — A are arcwise connected.

If the (stronger) second claim is not true, then the topalalgsphereA; = A of
dimensionn— 2 is contained in the interior of the shadavy,C’. As ¢y ¢ C'UdC/,
this shadow is homeomorphic to a ball of dimensioal. Thus, by Jordan’s theorem,
one of the two connected components@®fX — A is contained in the interior of
O¢,C'. As v(—o0) does not belong t@,,C’' and A separatesy(—oo) and ¢(+00),
this implies thaty¢(+occ) belongs to the interior of;,C'. Hencey, meets the interior
of C'.

Therefore, by the first claim, the geodesic ray or lipemeetsC[J] before meeting
C'. Let U be the entering point of in C'. As ¢ is the point at infinity ofC[0], the
points&o, U, € are in this order ony.. Hence by convexity, this implies that belongs
to C[4]. As f'(y) > h' > hJ"" = x’ 4 25, we have

diX,y) =tlo(y) > f'(y) — ' > 25.

Hence by the triangular inequality, one of the two distand@s, x),d(t’,y’) is at
leastd, and by the strict convexity of the distance, it is strictigder thans (as U/
does not belong tg (asy # ~¢). Hence, ifu” is a point close enough tf in Ju', [,
then u” belongs to the interior o€’ and to the interior ofC[4], and is at distance
strictly greater thad from eitherZ = X' or Z = y'. Therefore, the geodesic segment
[u”, Z]NC has length strictly bigger thah, and is contained in the intersecti@ncC’.
This contradicts the assumption that di&@m(C’) < ¢.

Case(2). The proof is completely similar to Casé&)( Let now z be the center

of the ball C, let p, be the point ofy the closest taz, let +, be the geodesic ray

or line starting froméy and passing through, and letx = ||f — phcl/~. Note that

R > hM&/2 > hMin/2 > §, so thatC[0] is non empty. We only have to replageby

z, pe by p, and~, by v,, and to replace two arguments in the above proof, the one
in order to show thaf\ separates/(—oo) from ~,(+00), and the one in order to show
that &p, U, z are in this order ony,, whereu' is the entering point ofy; in C'.
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To prove thatA separatesy(—oco) from ~,(4+oc), we simply use now that(v;) =
2R > hM® > hinstead off (y¢) = co > h. Let us prove thatp, U, z are in this order
on ;. We have

hmax_|_ K
s
By Lemma2.3 we haved(x, u) < c¢j(e). As v, meets the interior o€’, by the same

argument as in Case 1, we even ha\e,v) < c/(¢). Hence by strict convexity, we
do haveu' € ]z &[. The rest of the argument in the proof of Cagi¢ unchanged.

d(z,pz) =R — > R—

>R

pb(_“é('y) — C’l(e) )

f() +x
2

Before studying the last two cases, we start by proving twon@s. The first one
implies the first of the two claims we need to prove in Cass(4), and the second
one gives the topological information @athat we will need in these last two cases.

Lemma 3.8 Let L be a complete totally geodesic subspace with dimensioraat le
1,e>0,C= #L, & € (XU DxX) — (CUIxL), andC' be ane-convex subset
of X such thatdiamC N C/) < §. Letf, ' : Tflox — [0, +oc] be maps such that
k= |f —ftp o < +00, K = ||f' —lc|lec < +00. Let~ be a geodesic ray or
line starting froméo, enteringC before enteringC’, such thatcy(e) + 2 + § + k <
f(y) < +oo andf’(y) > 6 + '. If 5 is a geodesic ray or line starting frogg which
meetsC’, theny meets the interior o before meetindC’ .

Proof. Note thatéy ¢ C' U d,,C’, by convexity and the assumptions enasép ¢
CU 0xC. Let Lo be the geodesic line passing through the closest ppIt(+)
on L of &, v(+00), respectively. Note that

(-13-) d(Peys Py(400)) = FtoL(7) = f(7) — k> 4ci(€) + 2 +6 > 0.

Hence, by Lemma.4, and asjtp| (v) = ftp,(7), we have

Ca,(y) > ftpLo(’V) — 2C'1(€) —2¢ > 0.

In particular,y enters.#Lq at a pointxy and exits it at a poinyp in X (as~y(+oc) ¢
Osol sincef (v) < +o0). Letu — py be the closest point map froiud,. X onto LoU
OsoLo. Recall that this map does not increase the distances (@mddecreases them,
unless the two points under consideration aré@p and that ipreserves betweenness
that is, if U € [u, U], thenpy: € [py,pv]. Let X (resp.X) be the point where
v (resp.7¥) entersC’, and g¢, and g,(4+~) be the closest point tgo and ~(+o0)
respectively on4#,Lg.
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€o F(+o0) y(+o0)

Yo o _Neet--mmmmmm T q"i(-i-OO)

LoCL

P _T
Peo P Pi+oc) Px Pyo  Pytoo)

Recall that by Lemma.3, the distancesi(X', X), d(Xo, 0¢,), d(Yo, Oy(+c)) are at most
ci(e). Note thatX' € [£o, 7(+00)]. Hence, as betweenness is preserved,
ftpL, (7) = d(Pgos P5(+00)) = d(Pgos Pxr) = d(Peo: Pr) — APy, Pr)
> d(pfov pX’) - d(leil) > d(pfov pX’) - Cgl_(e) .
Note thatd(pg,, Px) > d(Pe,, Py,) When&o, yo, X' are in this order ory. When&o, yo, X
are not in this order or, as~ enters inC beforeC’, as/c/(v) > f'(y) — ' > § and
as diamC N C') < 4, we haved(X, yo) < §; hence
d(p§o7 pX’) > d(p§o7 pyo) - d(pym pX’) > d(p507 pyo) - d(y()a X,) > d(pﬁoa pyo) -0
Therefore, in both cases, §6 € [£o, 7(+00)] andu — p, preserves the betweenness,
and SiNCeP,(+oc) = Pa. )+ WE have, using-13-),
ftpL,(7) > d(Peys Px) > d(Pgy, ) — C1€) > d(Peg Pyo) — 0 — Ci(e)

> d(Pgy, Py(+00)) — APa, s oy Pro) — Ca€) — 0

> ftpL () — d(Gh(+-00)s Yo) — C1(€) — 8 >

ftpL(7) — 2¢1(€) — & > 2¢y(e) + 2¢ .
By Lemma3.4, we hence have

L () = Lro() = fto,(3) — 2¢i(€) — 26 > 0.
In particular,7y does enter the interior ¢, at a pointx. Note that the geodesic from
&o throughpg, entersC at g¢,. Now by absurd, ify enters the interior oC after it
entersC’, thenX € [£p,X], so that

ci(€) > d(dgy, ¥) > d(pey, PY) > d(Pgy, Px) > 2¢4(€) + 2¢

as seen above, a contradiction. O
Lemma 3.9 Let X be a complete, simply connected Riemannian manifold with se
tional curvature at most1 and dimension at lea&. Lete,h > 0. LetL be a com-

plete totally geodesic submanifold with dimension at ldagindég € (X U 050 X) —
(AL U 05 L). Assume either that
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(1) f =¢,,, X has constant curvature ahdt [4cy(e) + 2¢, +oo[, or

(2) & € OocX, dimL =1, f = crp, h € |log2 +oo|, and the metric spheres of
the Hamenstéadt distance 08, X — {&o} are topological spheres, or

(3) f=jtpL.

Then
A={a(+) : a €TLX, fa) =h}

is a codimensiorl topological submanifold of the topological spheére X, which is
homeomorphic to the tor&4mL—1 x scodimb—1 - Fyrthermore,

(@) if dimL = 1, thenA has two arcwise connected components, homeomorphic
to a sphere of dimension— 2. If f = ctp_ or if h > c(¢), then each of them
separatesy(—oo) and exactly one of the two points at infinity bf for every
geodesic ray or ling starting fromég if f = cvp,, and for those meetings;L
if f % cep .

(b) if codimL = 1, thenA has two arcwise connected components, homeomorphic
to a sphere of dimensiom— 2, separated by..L .

(c) if dimL > 2 andcodimL > 2, thenA is arcwise connected.

In cases (b) and (c), for every componégtof A, for every geodesic ray in L with
p(0) the closest point tgy on L, there exists) € Ag such thatp(h) is at distance at
most||f — ftp, ||~ from the closest point tg on p.

Proof. Let m. : XU 0,X — L U JdxL be the closest point map, ampd = . (£o).
Note thatL has codimension at least one, by the existencg of

Assume first thatf = ftp,. As h > 0, the subspacé of 0,.X is the preimage

of the sphere (of dimension dim— 1) of centerpy and radiush in L, by 7. As

L 00X \ 0oL — L is a trivial topological bundle whose fibers are spheres of
dimension codink — 1, the topological structure (including the assertionsaim (c) )

of A is immediate. The final statement on (b) and (c) is trivialsdefinition, p(h)

is the closest point to some point Ay.

If dimL = 1 andh > ¢j(e), if 7 € T3 X meets.#L, then by Lemma.3 and by
convexity, d(m (y(—o0)), po) < ¢;(e) < h. Hence, the separation statement in (a)
follows.

Assume then that = ctp, , and that the hypotheses of (2) are satisfied. The result in
this case (only assertion (a) needs to be checked) follows the discussion before
Lemma3.5.
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Assume now that = ¢ ;| , X has constant curvature, ahd: [4c¢)(€)+2¢, +o0[ . Let
S = wfl(po) N X. Using normal coordinates alorg the topological spher8. X
is homeomorphic to the topological join of the sphefiesL of dimension dinl — 1
and S of dimension codink. — 1

SV Ol = (S x [0, +00] x OsL)/ ~ ,

where ~ is the equivalence relation generated ayQ(b) ~ (a,0,b') as well as
(@, +oo,b) ~ (&,+00,b), for everya,@ in § and b, b/ in d,,L. We denote by
[a,t,b] the equivalence class oft,b). We choose the parametrization 8f,X

by & Vv d-L such that § 0,b] = a, [a,+o00,b] = b, d(m_([a,t,b]),po) = t, and

the geodesic ray‘ftm([a,t, b)), [at, b][ are parallel transports ofpg, al along the
geodesic rayfp, b[ , for 0 <t < 4o0.

For everyt in ]0, +oo[ and every & b) in § x L, letyaty be the geodesic ray or
line starting from¢g and ending atd, t, b]. By the proof of Lemma&.4and by Lemma
3.2, we have

—2¢(e) < € () — ftp () < 2¢(e) + 2e,

for everya € TZ X. In particular, ift = jtp_ (Yatby) > 2¢4(€), thenl s (Yatk) > O,
that is sty Meets the interior of #.L. The pointspo, a, b, {o are contained in an
isometrically embedded copy dﬂﬂi in X, and therefore we can restrict to the case
when X is the upper halfspace model E]f% andL has dimension 1. If we normalize
so thatép = oo and the endpoints df areb = 1 and—b, then the level sets of 4,

for positive values are drawn in the following picture. Tlegdl setéf/éL(Ze) is the
unique figure-8 curve. Each level s@él_(t) for t > 2¢ has exacty two components,
one in each bounded component of the complemetﬁg@‘(ZE).

The curvet — [a,t,b], t > 0, is a segment of a circle throudhand —b that con-
nects the pointa on the imaginary axis td. Thus, it is easy to see that the map
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from [2¢)(€), +-o0[ to [0, +oo[ defined byt — £ 4 (77a,p)) is continuous and strictly
increasing, for every fixeda(b) in S x dL.

Hence, as Lemma.4 gives
Lt (Vazeo,6) < 4Ci(€) + 26 < h < +o0,

there exists a uniqui, € [2¢(¢), +oo[, depending continuously ora(b), such that

€ L (Matap,b) = h. In particular, the subset of points 6f,X of the form g, tap, b]

for some &,b) in § x 0L is indeed a codimension 1 topological submanifold of
dso X, Which is homeomorphic to the torn@imL—1 x scodimL—1 The statements (b)
and (c) follow.

If L has dimension 1, and Hy < Tgox meets. /L, then by Lemma2.3 and by

convexity, d(m (7(—o0)), po) < cj(e). For every{ in a componenthg of A, if as

above¢ = [a, tap, b], then we haved(m (£), po) = tap > 2¢;(€), henceAq separates
~v(—o0) andb. This proves (a).

Let us prove the last assertion of the lemma. ket ||f — ftp ||~ , and letAg be a
connected component &f. For everyu in L such thaid(u, pg) = h, let g = [a, h, b],
on the same side ofi,,L as Aq if codimL = 1, be such thatr (n9) = u. Let
nt = [a, h+t, b], which is on the same side éf,L asAy if codimL = 1. Note that

f(Mahtrb) = fthL(Oahswb) — £ = h,

and similarly, f(y{ah—x,p;) < h. By the intermediate value theorem, there exists
[—~&, +k] such thatn; € Ag. Henced(u, 7 () = [t| < k. O

Now we proceed with the proof of the remaining parts of Prajmos3.7.

Case(3). By Lemma3.8, we only have to prove the second claim, that there exists
a geodesic ray or lingg starting from¢&g with 3p(4-00) belonging toAg, such that
t'(70) < hg™.

Let = ||f —ftp_[|c. Let po (respectivelyp,) be the point ofL the closest tcto
(respectivelyy(+o00)), so that, in particular,

d(po,py) = fto () > f(y) =k =h—k > 0.

Let p’V be the point on the geodesic lihg (contained inL) passing througlpy andp,

on the opposite side gd, with respect topg, and at distancé from pp. By Lemma
3.9 there exists a geodesic ling starting from&y and ending at a point iBg whose
closest poinpy; on L is at distance at most from pg.
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H

° LoCL
p, Po

>h-«k

Assume by absurd thét(3p) > hJ'™. We have
lo() =) =K >N =K > — K >0

Similarly, ¢c/(70) > d, and, in particularyp entersC’. Lety (resp.yg) be the point,
possibly at infinity, wherey (resp.7gp) exits C’'. By Lemma3.8, 75 meetsC beforeC'.
Let xg (resp.yo) be the point whereg enters in (resp. exits}. As diamCnNC’) < 4,
we haveyy € ]yo, vo(+o0)[ andy € ]y, v(+o0)[, so that in particulam(yg, L) > €
andd(y’,L) > e.

Let 1 be the geodesic line througft andy;. The points at infinity ofy; do not
belong tod..Lo, so thatftp (v1) and (c(v1) are finite. Note that by strict convexity
and by Lemm&.3, we have

d(y', [Py, y(+00)D) < d(y, [Py, ¥(+o0)D) < (o),

and, similarly,d(yy, [Pyg, 7o(+00)[) < ¢)(€). Hence, withm, the closest point map to
Lo, which preserves betweenness and does not increase distanc

ftpr,(v1) = d(mi, (o), T (Y))
> d(ps5; Py) — 2¢1(€) = d(ps5, Po) + d(Po, P,) — 2} (€)
>h—k+h—x—20(c) = 2h — 2k — 2c](e) .

In particular, by Lemma.4,
le(v1) > Loy(n1) > fto, (1) — 2¢4(e) — 2¢ > 2h — 2k — 4ci(e) — 26 >0,

by the definition ofh™". Hence~y; meetsC in a segment of length > §. But as

Y, andy’ are at a distance strictly bigger tharof L, the segment is contained in
[, ¥5l. which is contained inC’, by convexity. This contradicts the assumption that
diamCnC’) <.
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Case(4). Letx” = ||f' — ftp,/ |« . Note thatf’(y) > I > h'" > §+ . This is true
under both assumptions on the valuengf", as whenh™ = 3c/ () + 3¢ + & + «”,
we have, by Lemma.4,

5+ K <0+ K"+ 2¢)(€) + 2¢ < hn

By Lemma3.8, we only have to prove the second claim that there exists dego
line 7, starting from&o with 7,(+00) belonging toAg, such thatf’(F,) < hd'n.

We first consider the cas€’ = 4L’ wherel’ is a totally geodesic subspace of
codimension at least 2, with dia@(C’) < 4, andh’ > hg“i” = 3cy(e) +3e+0+K".
Assume by absurd that every geodesic ray or tingtarting from¢&p with a(co) € Ao
satisfiesf’(a) > h"". In particular, every sucl satisfieslc/(a) > f'(a) — &' >
hi'" — k' > § > 0, hencea meets the interior of’. Let

B' = {6(c0) : B € TEX, ftpu(8) > h™ — k"

By the absurdity hypothesis and the definition«df, we haveAy C B'. Let pj be the
closest point tcfp on L’. Note thatB’ is a (topological) open tubular neighbourhood
of L', whose fiber over a poirg in d..L’ is the preimage ope(Jh"" — K", +oc])

by the closest point map frofl,. X to L’ U d5.L’, wherep, is the geodesic ray with
p(0) = py and p(+o0) = §.

By Lemma3.9 (a), let &, be the point at infinity ofL separated fromy(—oo) by
Ao. Letp ., be the closest point ta(—occ) on L'. Recall thaty entersC’ at
X,and&y ¢ C', so thatéy € [y(—o0),X[. Hence, by Lemm&.3 and the fact that
closest point maps preserve betweenness and do not in¢cheadistances, we have
(P, seys PO) < C1(€) < h§™— k" by the definition ofh'™". Hence the complement of
B’ in 05X, which is connected as codith > 2, containsy(—oo). As Ay separates
~v(—o0) from &; and is contained i, it follows that B’ containsé; .

&1

Lol

P P P,

Let x; be the intersection point ofg, p] with 9C’. LemmaZ2.3 then implies that
d(X, xp) < cj(e). Hence, by convexity and as first meetsC and thenC’, we have
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d(x,]go,p{)]) < cj(e). If u e L is the closest point tox on L, we therefore have
d(u, Jéo. Pol) < ci(€) +e. Letp;, be the closest point &, onL’, andLg the geodesic

line (contained inL") throughpf, and p’gl. As the closest point map does not increase
distances, the closest poip{ to u on Ly, satisfiesd(pg, p,) < c/(€) + €. Then, since

the closest point map th; preserves betweenness, by the triangle inequality, and as
&1 belongs toB’, we have

Fepuy (L) > d(p(;, Pk,) > d(pL,, Po) — d(po, pl) > g™ — k" — Ci(e) — e .
Therefore, using Lemma.4,
diam(C N C') > diam(C N AcLo) > € 4,15 (L) > ftpy (L) — 2c3(e) — 2¢
> hi'n — " — 3c(e) —3e =0,

a contradiction.

Assume now thatC’ is any e-convex subset such th& N C' = (), and thath/ >
hg“” = . Let us prove that there exists a geodesic ray or ijpestarting from¢&g
with 7y(+00) in Ag, and avoiding the interior of’. This implies the result as in Case

(2.

By absurd, suppose that for evefyin A, the geodesic ray or ling; starting from
o and ending at meets the interior o€’. By Lemma3.8 (applied withd = 0), ~¢
meets the interior o€ before meetingC’. Let x; be the entering point of; in C’
andy; be its exiting point out ofC. As C and C’ are disjoint, note thago,yg,x’g,g
are in this order along;. The maps; — y; and§ x’5 are injective and continuous
on Ag (by the strict convexity oC andC’, as~, meets the interior o€ andC’). We
know thatAg is a topological sphere, by Lemn3a9 (a), separating the endpoints of
L. Hence the subsets, andS = {x’5 : £ € Ap} are spheres, that are homotopic (by
the homotopy along the geodesic ray or limethat does not meet betweenx’5 and

&) in the complement of. in X U 9,,X. By a homology argument, every disc with
boundaryS in X U d,,X has to meet.. But by convexity ofC’, there exists a disc
contained inC’ with boundaryS' (fix a point of S and take the union of the geodesic
arcs from this point to the other points 8f). This contradicts the fact th&nC’ = ().

O

Remarks. (1) In Case 2), we haveh™ > h™n jf R is big enough, ag() has a
finite limit ase — oo.

(2) In Case ), if the codimension of. is 1, then we may assume tiaimeetsL if ~
meetsL. Indeed, as we have seen in Lem&8(b), L U d,.L separateX U 0,,X into
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two connected components, aAddefined in the beginning of the proof) has exactly
two components separated by o L. If A{{ is the component oA on the same side
of LU 0L as&p, andA; the component oA on the other side, then a geodesic ray
or line starting from&y and ending inAar does not meek (asL is totally geodesic),
and any geodesic line starting frofs and ending inA, meetsL, by separation. This
observation on the crossing property will be used in the fpadaCorollary 5.12 to
make sure that the locally geodesic ray or line constructetie course of the proof
stays in the convex core.

(3) Case4) is not true if C’ is assumed to be anryconvex subset, as shown by taking
X the real hyperbolic 3-space, afiti the e-neighbourhood of the (totally geodesic)
hyperbolic plane perpendicular toat a point at distanch from the closest point to
&o on L: any geodesic ray or line: starting fromé&p, with ftp, (o) = h and meeting
C’ satisfiesf’(a)) = +oco for everyf’ which is ax’-penetration map irC’.

4 The main construction

4.1 Unclouding the sky

The aim of this section is to prove the following result, imying on our result in
[PP1. The first claim of Theorerd.1was stated as Theorehilin the introduction.

Theorem 4.1 Let X be a proper geodesic CAF1) metric space (having at least
two points), with arcwise connected bounddly X and extendible geodesics. Let
(Ho)acor be any family of balls or horoballs with pairwise disjointténiors. Let
po = 1.534,

(1) Foreveryx in X —J,c., Ha, there exists a geodesic ray starting franand
avoidingH,[ 0] for everya.

(2) For everyaq in </ such thatH,, is an horoball, there exists a geodesic line
starting from the point at infinity dfi,, and avoidingH,[.0] for everyo # op.

Remarks. (1) Note that by its generality, Theoreil greatly improves the main
results, Theorem 1.1 and Theorem 4.5 RiP[l, where (except for trees§ was always
assumed to be a manifold, strict assumptions were made dothelary ofX, and no
definite value ofug was given except in special cases. But besides this, an iamor
point is that its proof is a much simplified version of the uping main construction
of Section4, and hence could be welcome as a guide for reading Setiibn
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(2) Note that the constanty is not optimal, but not by much. For simplicial trees all
of whose vertices have degree at least 3, the result is tritle any ;.o > 1 and this

is optimal (though they do not satisfy the hypotheses of theva result, the proof
is easy for them, see for instandeH1, Theo. 7.2 (3)]). We proved irPP] that the
optimal value for the second assertion of the theorem, wkea Hp and allH,'s
are horoballs, isig = —log(4v/2 — 5) ~ 0.42. Hence Theorem.1 (2) is not far
from optimal, despite its generality. Furthermore, whén= Hyp and allH,’s are
horoballs, a possible value @iy for the first assertion of the theorem that was given
in [PP1, Theo. 7.1] was log(2- v/5) — log(4v/2 — 5) ~ 1.864. Hence Theorer.1
(1) is even better than the corresponding resultiR] when X = Hf,, despite its
generality.

Proof. We start with the following geometric lemma. For every> 0, define
2eH
1+V1—e2’

which is positive and decreasing from 2 to 0;agoes from 0 to+oo.

(-14-) v() =

Lemma4.2 LetX be a proper geodesic CAF1) space. LeH be a ball or a horoball
in X and&p € (XU 05xX) — (HUH[x]). Let > log 2 be at most the radius of,
and lety and~' be geodesic rays or lines startingégt meetingH|[ ], parametrized
such thaty'(s), v(s) are equidistant tgo for some (hence eveng, and thaty enters
H at timeO.

(1) If x = ~(0) andX are the points of entry i of v and~' respectively, then
d(x,x') < v(u).

(2) For everys > 0, we have

d(v(—9),7'(-9) < v(u) e .

Proof. Let £ be the center or point at infinity dfi, and lett,t’ be the entrance times
of v, respectively inH[]. Note thatt > 0 asp > 0. Let us prove first that > 0
too. We refer to SectioB.1for the definition and properties of the mag , especially
when&p € X. Let u be the point on the geodesi€y]&[ such that3g, (x,u) = 0. By
the convexity of the balls and horoballs, the paints the closest point tg on the
sphere or horosphere centered@tpassing througlx. Since 5, (x,7/(0)) = 0, we
hence havese(x,7'(0)) < Be(x,u). Let us prove that(x,u) < x, which will hence
imply that~’ entersH[ ] at a non-negative time (which i$).
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Glue the two comparison triangleséy( X, &) and
(€,%,~(t)) in H2 for the geodesic trianglesd, x, £) and
(€, %,~(t)) along their sides ¥, £]. Let H be the ball or
horoball centered af such thatx ¢ OH. By compari-

ke = -OTPe X H
son, we have/x (€0, &) < m < Zx (&o0,€)+24x(&1(D)). @.95 el
Hence the geodesic ray or lirg starting from&y and ﬁy, 1
passing throughx meets [(t), €], therefore it enters .- H[x]

H[x]. Let u be the point on the geodesicd, €] such
that 5{0(77 0) = 0. As G¢(x,u) = 55(7(, u), we only have
to prove the result iiX is the upper halfspace model of
the hyperbolic planél .

We may then assume thgg is the point at infinityoco, and thatH is the horoball
with point at infinity O and Euclidean diameter 1 (see the fghbelow). But then,
the vertical coordinate of(0) is at least}, since~ entersH at 4(0). Ase * < 1,
the result follows: any geodesic line, starting fr@igand meetingH[ ], meets the
horizontal horosphere containing0) beforeH[].

Now, in order to prove both assertions of Lem#3, let us show that we may assume
thatX = H2.

For the first one, glue the two comparison triangl€s, &, £) and (S, X, €) for the
geodesic trianglestd, x, £) and €o, X, £) along their sides {o,£]. As seen above,
the geodesic line§ (resp.y’) starting from&, and passing througk (resp.x’) enter
H[]. And by comparison, we have(x, xX') < d(X, X).

For the second assertion, we glue the two comparison teangh, 7(t),7/(t')) and
(&,7(t),7/(t")) for the geodesic trianglestd, y(t),7/(t")) and &,~(t),~'(f')) along
their isometric segmentsy[t),~'(t)]. As in the beginning of the proof of Lemma
2.3, the geodesic segment or rayo](t) [ does not meet the ball or horobaH[ ;]
centered at whose boundary goes througit) and v/(t). By comparison, ifH’

is the ball or horoball centered gtwhose boundary passes through the poi(@)
on ]&,~(®) [ at distancet from ~(t), then H'[1] containsH[x], so that 1o, v(t) ]
and ]&o,7/(t)] meetH'[]. For everys > 0, ast,t’ > 0, if v(—s),v/(—9) are the
corresponding points t9(—s),7'(—9) on ]&o, () [, 1 0, 7/ (') [ respectively, then by
comparisond(y(—s),~'(—9)) < d(7(—9),7'(-9)).

Hence we may assume thAtis the upper halfspace model of the real hyperbolic

plane Hﬁ. Up to replacingép by the point at infinityé;, of a geodesic ray starting
perpendicularly from the boundary ¢t and passing througlip, and ~,~’ by the
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geodesic lines starting frog}, and passing througk x', we may assume thap is at
infinity.

By homogeneity and monotonicity, it is suffi- 4
cient to prove the result fofg the point at infinity 7'(=9) ii V(=9
oo, for H the horoball with point at infinity O and
Euclidean diameter 1, and with and+/ different S
and both tangent t&i[.]. Then, by an easy com-
putation, the Euclidean height of the poim(0) is 9 (0)
V(1) = 3(1+ v1—e %), so that the Euclidean
height of the pointy(—s) is /(1) €. The hyper-
bolic distance between(—s) and 7/(—s) is hence >
Proof of Theorem 4.1 Let X and H.).c» be as in the statement. L&j be either
a point inX — (J,¢ ., Ha or the point at infinity ofH,,, for someay in <7 such that
H,, is a horoball. For every:; > log 2, define the following constants, withthe
map introduced before Lemmda2,

at most% = v(u) €S, With the cases = 0,
this proves both assertions. O

p2=v(u) >0, wuzg=pr1+p2>0, pa=2u1—2uz.

As u1 > log 2, v is decreasing and(log 2) < log 2, we haveus > 0. We define by
induction an initial segment/” in N and the following finite or infinite sequences

*  (wker Of geodesic rays or lines starting frofp,
. (ak)keW—{O} of elements ine,
e (ke Of Nnon-negative real numbers,
o (UW)ker Of mapsu : [0, +oo[ — ]0, +o0f,
such that for everk in .4, the following assertions hold:

(1) If & e X, thenqy(0) = &. Otherwiseyx meetsoH,,, attime 0.

(2) If k> 1, theny entersH,, atthe pointyk(tx) and meetd,,[x1] in one and
only one point.

(3) If k> 1, thenuy(t) = u_1(t) + po € % if t <ty g, andug(t) = pa if t > te_1.
4) Ifk>1,thenty > pg+tk_1.
(5) If t [0, [, then the pointy(t) does not belong @), ., Ha[Uk()].
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If & € X, let 4o be a geodesic ray starting frofg at time 0. Otherwise, lety
be a geodesic line starting frofy and exitingH,,, at time 0. Such ay exists by
the assumptions oX. Defineuy as the constant map— u3. Lettg = 0. The
assertions (1)—(5) are satisfied foe= 0. Assume thaty, ty, ak, Ux are constructed for
0 < k < n verifying the assertions (1)—(5).

If the geodesic rayyn(]tn, +oo[) does not enter in the interior of any element of the
family (Ho[p1])acw » then defines” = [0,n] N N, and the construction terminates.
Otherwise, letH,,,. ,[11] be the first element of the familyH(,[1:1]) ac» SUCh that the
geodesic rayyn(]tn, +oo[) enters in its interior. Such an element exists askhgs
have disjoint interiors. Note thain.1 # an, asyn does not meet the interior of

Han[p1] DY (2).

If $o € X, letyny1 be a geodesic ray starting frogp at time 0 and meetindl,,,., ,[11]

in one and only one point. This is possible as there existodeagic ray starting from
o and avoidingH,,,,, by the properties oK (consider for instance the extension to
]—o0, 0] of v,,) and sinced, X is arcwise connected. & ¢ X, let vy+1 be a geodesic
line starting fromép, and meetingH,,,, ,[#1] in one and only one point. Again, this is
possible a$). X is arcwise connected. Parametrigg 1 such thaty,,1 exitsH,, at
time 0. In particular, in both cases, the assertion (Lkfer n + 1 is satisfied.

Define t,;1 > 0 such thatyn,1 entersH,,,, at the pointy,,1(th1), so that the

assertion (2) fok = n+ 1 is satisfied. Asy, and~n;1 both meetH,, . ,[1] and as
u1 > log 2, it follows from Lemmad.2 (2) that, for everyt < t,.1,

(-15-) d(nr1(0), (D) < pz €700

Define, > t, as the entrance time af, in H,,,,,. By Lemma4.2(1), as bothy, and
Yn+1 MeetH,, . [p1] and pg > log 2, we have

d(yn+1(tnt1); () < pz -

As H,,., andH,, have disjoint interiors, and sindd,,, andH,,[x1] are at distance
pa, we haved(yn(tn), (7)) > 2u1. Hence

d(n(tn), M(tn+1)) = d(n(tn), Yn(mn)) — d(n(m), Ynra(tnr1)) — d(nra(tnra), W(tnra))
> 2p1 — 2p2 = pa > 0.

In particulart,1 —ty, is positive (otherwisey(t,) belongs to {n(th+1), ()], hence

2111 < d(yn(tn), () < d(vn(th+1), ()
< d(m(7n), Mr1ltnia)) + dOnsa(thra), Wlthre)) < 2u2,
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a contradiction). Thereforg 1 — ty is at leastus, which proves the assertion (4) for
k=n-+1.

Definet — up11(t) by the induction formula in Assertion (3). The only remai
assertion to verify is (5). By absurd, assume that therd egimet in [0, t, 1] and

somea € o7 such thaty,.1(t) belongs toH,[un:1(t)]. AS un1(t) > 0, the element
« is different fromay if £o € 0,X, and it is also different fronav,1 by construction.
By Equation ¢ 15 -), the pointy(t) belongs toH[un;1(t) — pp €t +1].

Assume first that > t,, so thatup, 1(t) = 3. As piz— pp €701 > i1 (sincet <ty g
and by the definition ofi3), this implies thaty,(t) belongs to the interior o[ 11].
This contradicts the fact th#d,,,,, ,[1.1] is the first element of the familyHq [11]) aer
encountered byy,(]tn, +oc[) in its interior.

Assume now that < t,. Then y,(t) belongs toH,[un(t)]. This contradicts the
assertion (5) at step. Thus, the assertions (1)—(5) hold for klE 4.

Let us prove that the maps, are uniformly bounded from above by
2
ea —1°
As ug4 > 0, the sequencéeyfker increases toroo. Fix t > 0. Letk = k(t) be the
unigue non-negative integer such thabelongs to f_1,t] (by convention,t_; =
—00). Let us prove, by induction on, that
n—k

Un(t) < pg+ 2 » | e H4
=1

Hs = p3 +

(Recall that an empty sum is 0). This implies thgft) < ps.

This is true ifn = 0, asup(t) = 3. Assume that the result is true far If t > t,,
then un41(t) = w3, and the result is true. Otherwise, by the property (3), weeha
Uns1(t) = Un(t) + p2€ 41, Note thatty — tny1 < —ua(n+ 1—K) by the property (4),
and thatt < tx. Hence, by induction,

n—k n+1—k
Unt1(t) < pz+ p2 Z e M 4 e eI — s Z e Hal
=1 =1

This proves the induction.
Summarizing the above construction, there exist a sequaingeodesic rays or lines

(vn)nen Starting fromé&p, and a sequence of timek,)qey converging to+oo, such
that for everyt in [0, tn], the pointyy(t) does not belong t4 )., Halpus]. (Take
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an eventually constant sequencg)fcn if the construction stops at a finite stage,
which is possible agis > p1.) As (tn)neny grows at least linearly, the formulai5s -)
implies that {n(t))ney is @ Cauchy sequence, uniformly on every compact subset of
non-negativet’s. Hence, the geodesic rays or lings converge to a geodesic ray or
line avoidinglJ,,c ., Halps — €], for everye > 0. Takinguy = 1.042 > log 2, we can
check thatus < 1.5332, hence the result follows. O

Corollary 4.3 Let X and(H,)ac.y be as in Theore.1 For everyx € X, there
existt > 0 and a geodesic ray starting atx such thaty([t, oo[) is contained in the
complement ot J . ., Hal o] -

Proof. We may assume that € H,, for someag € o7, otherwise, Theorem.1 (1)
applies (witht = 0). LetH, = H, if a # ao, andH, = Hq,[d(X, 0Ha,) +1]. Then
X ¢ X = Uper Hiy- By Theoremd.1(1), let y be a geodesic ray starting fromand
avoiding theH/ [10]'s. Let t = d(x,0Ha,) + 2 + 210 + 210g(1+ v/2). Recall that
1€ — PDH,, lloo < 210g(1+ v2) by Subsectior8.1 With 7 any extension ofy to

a full geodesic line, the length of the geodesic segmentH,,, is at most
EHO&Q(W) - d(X7 aHao) é thO‘O + 2 IOg(1+ \/E) - d(X> 8HO&(J) <t 9

sincey avoidsH,,[d(x,OH,,) + 1 + po]. Hence the geodesic ray([t, oo[) does not
meetH,,. The result follows. O

Let e be an end of a finite volume complete negatively curved Rigiaanmanifold

V. Let ht be the Busemann function efnormalized to be zero on the boundary of
the maximal Margulis neighbourhood ef(see for instanceBK, HP3 PP1, as well

as the paragraph above Corolldryl). Our next result improves Theorem 7.4 (hence
Corollary 1.2) in PP1], with the same proof as in [loc. cit.], by removing the teiciah
assumptions on the manifold, and giving a universal uppant@nhg(V).

Corollary 4.4 LetV be a finite volume complete Riemannian manifold with dimen-
sion at leas® and sectional curvatuté < —1. Then there exists a closed geodesic in
V whose maximum height (with respectlit) is at mostl.534. O

4.2 The inductive construction
Fix arbitrary constantsg € R* U {oo} and do,x0 > 0, and fix an arbitrary point

&o in XU 05 X. Let (Ch)nen be a family ofep-convex subsets oX such thatgy ¢
Co U 05,Co, and letfy be axg-penetration map fo€g.
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The aim of this section is to construct by induction a seqa@igeodesic rays or lines
in X, starting from¢&y and having a suitable penetration behaviour in@hés.

Prescription of constants. The following constants will appear in the statement, or
in the proof, of the inductive construction:

« €1 = Cy(eo) > 0 given by Lemma.3if ¢y # oo and by Lemma.9if g = oo
and (o, do) # (phc,, 0); otherwisec; = 75 ;

« €2 = Ch(eg) > 0 given by Equation-4-) if ¢y # oo and by Equation-(9-)
otherwise;

« 3 = 2sinhcy 4 ¢, €% sinhcy, which is positive, and depends eg:;

« ¢4 = Chleo)sinh(ey + do) + ¢ e 3 sinCitdo)—og2ginhcy , where ¢(-) is
given by Equation+6-) if ¢g # oo and by Equation-(11 -) otherwise. Note
that ¢4 is positive, and depends @g, do;

« €5 = Cs(€p, d0) = 2max{cz, (o)} sinh(C1 + do), which is positive, and de-
pends oreg, dg;

« Cg = 3c4 + log 2, which is positive, and depends & dp;

e hg = hg(eo, do, ko) = max{ do + Ko , Coeo) + Ko , N (eo, SINh@ + 1)) , do +
2c1 +Cs , Cs+ Ko + 0o — 2C5 }, wherecy(+) is given by Equation-(1 -) if
€0 # oo and by Equation-@-) otherwise, andY(-,-) is given by Equation
(-5-) if eg # oo and by Equation-(11 -) otherwise;

« Foreveryhy > 0, leth] = N (eo, do, hy) = hg + 2¢s.

Fix hi > hp andh > .

Assumptions on the family (Cp)ney. Assume that there exists at least one geodesic
ray or lineg starting from&g with fo(+o) = h (this implies thatyy meetsCy, sincefy

is a ko-penetration map ilCg andh > h} > hiy > hg > ko, hencelc,(y0) > 0), and
that the following conditions are satisfied.

(i) (Almost disjointness property) For everym, n in N with m = n, the diameter
of C, N Cy, is at mostdg.

(iv) (Local prescription property) For everyn in N — {0} such that¢y ¢ C, U
0-Ch, If there exists a geodesic ray or linestarting fromégp which meets first
Co and thenC, with fo(e) = h and /¢, («) > hf, then there exists a geodesic
ray or linec/, starting fromé&y which meets firsCy and thenC,, with fo(a’) = h
and/c,(a’) = hy.
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Note that {ji) is satisfied withég = 0 if the C,’s have disjoint interior. In Sec-
tion 5, we will use Propositior8.7 to check {v) for various applications, wittn, =
max{ho, h§""} andh > max{h;, ™"}, for the various values df§'", h™" defined in
Proposition3.7.

For everyn in N such thaty ¢ C, U 05,Cy, definef, = (¢, : Tglox — [0, +00], and
for every geodesic ray or line starting from¢&y and meetingCh, let t;, (7),t7 () €

] — o0, +0¢] be the entrance time and exit time 9fin and out of the convex subset
C, respectively. The following remark will be used later on.

Lemma 4.5 For everyn > 0, for every geodesic ray or ling starting from&y and
enteringCy at timet = 0, such thaffg(y) = h and~(]dg, +oc[) meetsC,, we have
€0 ¢ Cnh U 05,Cp andt; (v) > 0.

Proof. Otherwise, asy(]dg, +oo[) meetsC,, and by convexity, there exisis > 0
such that the geodesic segmeif0, 6o + €]) is contained inC,,. By the Penetration
property () of fp, the length ofy N Cy is at leasth — g, which is bigger thanjy
ash > h, > hy > hg > do + ko by the definitions ofh] and hy. As v enters

Cp attimet = 0, up to takinge > 0 smaller, this implies that the geodesic segment
~([0, do+¢€]) is also contained ilCy. This contradicts the Almost disjointness property
(i) asn#£ 0. O

Statement of the inductive construction. We will define by induction an initial
segment/” in N, and finite or infinite sequences

e (wke.r Of geodesic rays or lines starting frofg,

« (NWke.r of integers such thady ¢ Cp, U JoCh,,

« (uke.r Of mapsu : [0, +oo[— [hy, Mi],

such that the following assertions hold, for evérin .4, where we uselaf(IE = t,ﬂfk(yk)
to simplify notations.

(1) The geodesic ray or ling entersCy at timet = 0 andfy(~) = h.
(2) If k> 1, theny meetsCp, with t, > 0 andf,, (1) = hg.

(3) If k> 1, thend(mk(t), w-1(t)) < c3 € % foreverytin [0,t].
(4) Ifk>1,then

Uk(t) = sup Uk—1(S) + C5 €
s€ 0,4 : |s—t|§c4et7tk7

fort € [0,t, ] anduk(t) = hy if t >t .
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(5) Ifk>1,thent >t _, + Cs.
(6) If k> 1, foreverynin N—{0} such thaty(]do, +oc[) meetsCy with t;, () <
t, ., we havefy () < uk(ty () — do).

Note that by Lemmd.5and by (1), ify(]do, +oco[) meetsC,, for somen > 1, then
€0 ¢ Cn U 05Chn, so that, in particularti(vk) are well defined, and (6) does make
sense.

Proof of the inductive construction. By the assumptions, lefg be a geodesic ray
or line starting from&y and enteringCp at timet, = O, such thatfo(yo) = h. Let
np = 0. Letug : [0,+oo[— [hy, h;] be the constant map with valug. As the
conditions (2)—(6) are empty K = 0, the construction is done at step 0.

Let k > 1, and assume thafy, ng, U, - . . , Yk—1, Nk—1, Uk—1 are constructed. Note
that uc_1 > hj by induction. If for everyn in N — {0} such thaty_1(]do, +ocl)
meetsC,, we havefy(w-1) < W 1(tt(w_1) — do), then we stop and we define
A ={0,1... k—1}.

Otherwise, letr be the greatest lower bound of thg(yx—_1)’s taken over alln in
N — {0} such thatyk_1(]do, +-00[) meetsCy with fo(k-1) > Uk_1(t7 (k—1) — do).

Let us prove that this lower bound is in fact a minimum, atdifior only one such.
Let e > 0 such thaty, > do + ¢, which is possible by the definition &, ashy > ho.
If t, (—1) andt; (k1) belong to [, 7 + €] with fa(k—1) > Wk_1(tF (9k—1) — o)
and fm(vk—1) > W_1(th(k—1) — do), assume for instance thegt (1k-1) < ty(k_1)-
As fn = (¢, fm = lc,,, W1 > hi andty, (Yk—1) — t, (k—1) < ¢, the subset€, and
Cm meet along a segment of length at leb§t- ¢ > dp. By the Almost disjointness
property (iii), this implies thath = m. In particular, we haver = t, (k1) for a
uniquen € N — {0}, and we denote this by n, € N — {0}, so thatyk_1(]do, +0o0f)
meetsCy, with

(-16-) fa (k—1) > Uk—1(t (k—1) — do) > hg .
In particular,{o ¢ Cp, U 0-Cp, by Lemma4.5and by Assertion (1) at rank — 1.

Note thatng # n_1, asfn_,(—1) = hy by the assertion (2) at rank— 1, which
would contradict Equation (@6 -) if ng = nk_1.

Tk—1

(0) Ye—1(ty, (1))

Cy Nt
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By Lemma4.5, the geodesic ray or lingx_1 first entersCy and thenCy, . Further-
more,yx_1 satisfies (1) and, (vk—1) > hf. Hence, by the Local prescription property
(iv), there exists a geodesic ray or ling starting from¢g that first entersCy and then
Ch,, with fo(v) = h andfp (%) = hp. Choose the parametrization in such a way that
1k entersCop at time 0. In particular, (1) and (2) hold fok, andt,” = t; (1) > O.
Defineuy : [0, +oo[ — [0, +oc[ by using the induction formula given in the assertion
(4). Before checking (3)—(6) fotk, n, Uk, let us make two preliminary remarks.

Lemma 4.6 We haved(yk_1(7), w(t ) < ¢1 andd(7x-1(0), (0)) < c;.

Proof. By Lemma2.3if ¢g # oo and Lemma.9 otherwise, we have the inequalities
d(n-1(7), w(t)) < c1(eo) and d(7k-1(0), (0)) < cy(eo). By the definition ofcy,
we hence only have to prove Lemm& wheney = oo, do = 0 andfo = phg,. In
this case, ag; = 1/19, ¢; = 5/2, co(c0) = 4.056, ko = 2log(1+ v/2) = ¢j(c0),
c5(c0) = 5/2, easy computations show that

ho = W (o0, sinhcy) = 3 sinhcy + co(00) + ¢j(00) ~ 5.9767
and, for future use,
(-17-) h; (o0, 0, hg(oo, 0, ¢} (c0))) ~ 6.5032

As phc, (1) andphc,(w-1) are equal tch > h} > hy > ho, and sincehg /2 > log 2,
it follows from the definition of the maphc, and from Lemmat.2 (1) and (2) that
d(7x-1(0), 7(0)) and similarlyd(yw—1(7), w(t, )) are at most/(hg/2), wherev(.) is
defined by Equation-(L4-). An easy computation shows thathy/2) < c¢; = 1/19,
which proves the result. O

Lemma 4.7 We have|r —t, | < 2c;.

Proof. Lemma4.5, applied ton = ng and vy = ~k_1, implies thatr > 0. We
have seen that > 0. By the triangular inequality and the above lemma, we have
|T — tk_| < 2¢. O

Verification of (5). If k=1, then sincen; # 0, t; > 0, andf,, (v1) = hi > ho > do,
we havet; > fc,(v1) — do by the Almost disjointness property (iii). Therefore

t; —ty =1t > ley(71) — do > fo(1) — do — ko = h— ko — do
2hg_—ﬁo—(so:hé)—l-zcs—ﬁo—(sozho+2C5—/£o—(50206,

by the definition ofhg.
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Assume now thak > 2. Note thatr = t, (w-1) > t,_,. Otherwise, as
th (k=1) = 7 + fn(w-1) > 7+ ho > 74+ hy > do

by Equation {16 -) and by the definition ohy, we have, by the assertion (6) at step
k—1, the inequalityfp, (7k-1) < uk_l(t;fk(fyk_l) — dp), which contradicts the definition
of ng, see Equation-(L6 -).

Let us first prove that > t, ", + hg — dp. Assume first that > t[f_l. Sincek > 2,
we have

(-18-) T—4 42 tlz_—l —ti_1 = fa (1) = hy > ho.

Hence the result holds. Otherwigg,; < 7 < tl‘{_l. By convexity,vx_1(7) belongs to
Cn_,- Note thaty_1([7, 7 + ho]) is contained inCy, , sincer is the entrance time of
-1 in Cp,, andfy (-1) > hy > ho. If 7+ do < t_4, aslc, (-1) > ho > do by

the definition ofhg, thenC,, NC,, , contains a geodesic segment of length bigger than
do. This contradicts the Almost disjointness propelity) Sinceny # n_1. Hence

T >4, — 00>t g +Fa (k1) —do >t +ho—do,
and the result holds.
Now, by Lemma4.7,
e —t 1 >7—-200 -t ;>hg—dg—2C1 >Cs

by the definition ofhg. Therefore, the assertion (5) holds at rank

Verification of (4). We only have to check thai, has values intf, h]. This will
follow from the following easy but tedious general lemma.

Lemma 4.8 Letc,c,c’,h, > 0, let .# be an initial segment itN, let (tn)nc.» bE
a sequence of non-negative real numbers, anfljet [0, +oo[ — [0, +oc)ne.s bE
a sequence of maps. Assume thagthas constant valub,, and that for evenn in
M — {0}, we havet, —t,_1 > ¢’, un(t) = h, if t > t, and ift < t,, then

un(t) =cé + sup Un—1(S) .
s€[0,4o0f : [s—t|<c/ e~

If ¢ > 3¢ + log 2, then for everyt € [0, +oc[, for everyn in .# , we have

h. <un(t) <h.+2c.
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To prove thatug has values inffy, l;], we apply Lemma4.8 with ¢ = cs, ¢’ = ¢4,

" =cs, ho =hy, # ={0,1,... ,k} and €)ic.sr = (t )1<i<k. Its hypotheses are
satisfied by the definition of the constagy, by the assertion (5) at rank less than or
equal tok, that we just proved, and by the definitionwf and the assertion (4) far
with 0 < 1 < k— 1. Hence the mapy does have values ih{, i;], by the definition

of h;.

Proof of Lemma 4.8. First note that by an easy induction, whatever the valug a$,
for everyt € [0, +oo[ andn € .# , we haveu,(t) > h,.

Letc” > 3¢ +1log2,t € [0,+o0c[ andn € .. Let us prove that,(t) < h, + 2c.

We may assume that< t, and thatn > 1. Definet_; = —2¢ — 1. Let m be the
unique element in# such thatty,_1 + 2¢ <t <ty + 2¢. SetN = n— m, which is
non-negative (otherwise < m—1 andt, < tn_1 < tm_1+2¢ < tn, a contradiction).
Note that for every integek with 0 < k < N, we havet,_x — tn, > (n — m — k)c”

hence

(-19-) t—thk <2 — (N —K)" .

Consider the finite sequenci)o<k<n defined byxg = 0 and
X1 = X + ec’xk—(N—k)c”-i-Zc’

for 0 < k < N — 1. Let us prove by induction ok that x, < e"(N=K<" which in
particular implies that

(-20-) o <1
Indeed, the result is true fdr= 0. Assume it to be true for some< N — 1. Then
Xk+l é e_(N—k)C” + eC/e*(N*k)CN_(N_k)c//+2C,

< e (N—k=1)c" (e—c” n e—c”+3c’> < @~ (N—k=1)"

asc” > 3¢ + log2 > log(1+ €*).
Let us now prove by induction ok that, for 0< k < N, we have

(-21-) Up(t) < sup  Unk(S) +CX%-
|s—t] < ¢/ %

This is true ifk = 0, assume it is true for some< N — 1. In particular,n — k > 1.
For everys € [0, +oo[ such that|s—t| < ¢ x, we have

Uhk(9 < SUP  Upi-a(S) +ce
| —s| < ¢/ eIk
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(this is true by definition ifs < t,,_y, and also true otherwise as thepn (s) = h, and
un_k—1(S) > h, for everys'). Hence by the triangular inequality and Equatiehq-),

Un(t) S Sup un_k_l(d) _|_ (o] Xk _I_ Cé"‘C,Xk—tn,k
|s'—t| <¢ xk+c’et+°’><k*tn7k
S sup Un_k_]_(Sl) +C X¢ + CeC/Xk-i-ZC’—(N—k)c”

o |S’—t| <c Xk—‘,-C’eC/Xk‘FZCI*(N*k)CN

= Sup  Un—k-1(S) +CXe1,
|8/ —t] < ¢ Xr1

which proves the inductive formulaZl-).

Finally, let us prove thati,(t) < h, + 2c, which finishes the proof of the lemma. Take
k = N in the inductive formula{21-), and note thah — N = m. For everye > 0,
let s € [0, +oof with |s—t| < ¢'xy such that SUR_ < x, Um(S) < Um(S) + €. If
s>ty or m= 0, thenuy(s) = h,, hence by the inequality 20 -),

Uh) < sup  um(S) +cxw <h.+e+c,

|s'—t| </ xn

and the result holds. Otherwisg,< t, andm > 1. For everys < [0, +oo[ such
that|s — s < ¢ €', by Equation {20-), we haves >s—¢ >t—cxy —C >
t — 2c > tm_1. Again, the definition of and the inequality-(20 -) gives

Un(t) < um(s) +e+Ccxy

=  sup  Up1S) +ce€mpetexy<e+h,+2c,
|§—s| < ¢/ es—tm

and the result also holds. O

Verification of (3). Lett be in [0t ]. Recall thatd(yk—1(7), w(t;)) < ¢ by
Lemma4.6. By Lemma2.1 applied withx = yx_1(7),y = %t ),z = &, we have
d(k-1(0),v) < €77 sinhcy. By the Penetration property) (of fo and the definition
of hg, we have

ley() = fo(k) — ko = h— Ko > hg — Ko > Co(e€p) -
Thus, by Lemma&.5if ¢y # oo and by Lemm&.11if ¢g = oo, and by the definition
of ¢, we have
(-22-) d(-1(0),7%(0)) < c2€ " sinhc; .

We refer to Sectior2.1 for the definition and properties of the maj,. It follows
from the inequality {22 -) that
(-23-)

| Beo (—1(1), WD) = |8, (k-1(0), %(0))| < d(%-1(0), %(0)) < c2€ 7 sinhc; .
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For everys in R, let 1«_1(S) be the point on the geodesic ling_; such that the
equality ¢, (7k—1(S), 7(s)) = 0 holds. For every poinp € w1, we have

(-24-) d(p, Ne-1(t)) = [Beo (P -2 ()] = [Beo (P (W) < A, (1)

Using the triangle inequality with the poiptthe closest toy(t) on ~«_1, Lemma2.1
and Lemmat.6, we hence have the following inequalities

d((®), m-1(t)) < 2d((t), 1) < 2€7% sinhd((ty ), Yk—1(7))

(-25-) < 2é7% sinhc; .
Note that, using Equation 24 -) with p = _1(t) and the inequalities 3 -),

d(w-1(1), w-1(t)) = |8, (—1(1), (V)| < c2€ " sinhey .
Hence, by the inequality €5 -), we have

d(w(®), w-1(1) < d(w(®), w-1(t) + d(w-1(t), w-1(1))

< 2é~% sinhcy + ¢, e 7 sinhc; .
As T >t — 2c; by Lemmad.7, and by the definition o€z, we get
d(k(t), -1(t)) < cz €,

which proves the assertion (3) at rakk

Verification of (6). By absurd, assume that there existss N — {0} such that
(190, +o0[) meetsC,, (so that in particulagy ¢ Cn U 9-,C, by Lemma4.5), with
th () <t and

(-26-) fa(n) > Uk(ty () — do) -

To simplify notation, lets: = tF(w), X = (s.),y = (s)), and, as we will
prove later on thaty_; also meetCy, let 57 ; = tF(-1), X = %-1(S._1),Y =
7k—l(§—<’__1)-
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Note thats;f <t + do. Otherwise, ag, <t and by convexity, there exists> 0
such thaty([t, , t, + do + €]) is contained inCp. As t —t, = hy > hy > do, up to
making e smaller, the geodesic segmen([t, ,t, + do + ¢€]) is also contained irCp, .
Hencen is equal tony by the Almost disjointness property (iii). B, («) = hp and,
by Equation {26 -), we havef,(vk) > uk(s{f — dp) > hy, so thatn cannot be equal to
Nk .

By Lemma2.1applied to the geodesic triangle with verticagt, -+ do), —1(7), o,
and asd(yk(t, ), -1(7)) < c1 by Lemma4.6, we have

d(y, 1) < e 9OKEN sinhd(y(t + do), Y—1(7))
(-27-) < &% % % sinh@ + ¢1)
which is, in particular, at most sindy + ¢;).
Note that
(-28-) d(x,y) = fa() > ho > ho > h(eo, sinh@ + ¢1)) > sinh@ + ¢1) + ¢} (eo)

by the definition ofhg and of (-, -) in Equation ¢5-) if ¢g # oo and in Equation
(-11-) otherwise. It follows from Lemm&.6if ¢y # oo and by Lemma.12 other-
wise, that the geodesic ling_1 meetsC, (thusx andy indeed exist) and that one
of the following two assertions hold :

(-29-) d(y, y) < ca(eo) d(x', )
or
(-30-) d(x,y) > d(xy) -

Note thatd(x,X') < c(eg) by Lemma2.3if ¢y # oo and Lemma2.9 otherwise. Let
g be the closest point tg on v¢_1, so that

d(y, d) = d(y, -1) < sinh@o + ¢1) -
By the cocycle property off,, we have
ﬁﬁo(qlv )() = ﬁﬁo(q/7 y) + ﬁfo(y> X) + ﬁﬁo(x> X,) > d(y> X) - d(y7 q/) - d(X> X,) 5

which is non-negative by the two previous assertions andatimu (- 28-). Hence
o, X, d are in this order ony. Therefore, by convexity,

(' 31 ') d(xl>/7k) < d(qlv Wk) < d(q/>y) = d(y7 Wk—l) .
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By Equation {28 -) and the definition ohg, we haved(x,y) > hy > co(eg). Hence,
by Lemma2.5if ¢y # co and Lemma2.11otherwise, and by the inequalities3(l -)
and €27 -), we have

(-32-) d(x, X) < o d(X, 1) < 2 €% % ~% sinh( + c1) .

Before obtaining a contradiction from both assertior?9(-) and ¢ 30-), we prove a
technical result.

Lemma 4.9 We havedp < §_; < 7, so that the geodesic ray_1(]do, +oo[) meets
Ch with ty (1) < 7.

Proof. Assume first by absurd tha_;, < do. If 5_; € ]0,d0], we have by the
triangular inequality, Lemmad.6 and the inequality-(32 -),

S = d(w(0), (s, )
< d(w(0), %-1(0)) + d(7k-1(0), W—1(S_1)) + d(—1(S_1)> (S )
<cL+d+C Sinh(50 + Cl) .

Let zo ansz; ) be the closest points ok to x—1(0) andX' = y-1(S_,), respec-

tively. If s_; < 0, then as the closest point map does not increase distanees,
have

5 = dow(0), w(S)) < d(u(0). 20) + dl(z0, w(S)
< d(K(0), 20) + d(z,(S,)

< d((0), 1k-1(0)) + d(k-1(S_1)s (S )
< c1+ ¢ sinh@g + ¢1) .

Hence, by the definition ofs and asc;(eg) > 1 (see the equation §-) if ¢g # oo or
(-11-) otherwise), we have

Cs > C sinh(@ + ¢1) + ¢5(e0) Sinh@ + €1) > ¢, sinh@ + ¢1) + do + €1 > S .
Now /c,(yk) > ho > do by the definition ofhg, and
lcy() > fo(w) — ko = h — ko > hj — Ko > ho + 25 — kg > do + C5 > Jo + S -

As the entrance timey, of + in C, is positive by Lemma4.5, this implies that
diam(Cy N C,) > do. As n #£ 0, this contradicts the Almost disjointness property
(iii). Hencedp < §_ ;.

Assume now by absurd thaf ; > 7. Then as in the casg_; < 0, we get

(-337)  t =5 < dOy-1(7), (b)) + dn-2(S 1) WS ) < €1+ Cyleo)
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by Lemma4.6, and by Lemm&.3if ¢y # oo and Lemma2.9 otherwise. We have
seen in the inequalities 28 -) that

hg > Sinh(50 + C1) + C&(Eo) > 0g+C1+ CS_(EQ).

Hence
te >80 —do>5 +ho—do >S5 + 1+ Cifeo),

a contradiction to Equatiors 83 -). Hences_; < 7. O
Assume first that the inequality Z9 -) holds. Ass_ > 0 by Lemma4.5and by the
definition of hy, we have

S(’_ > h6—|—§(_ >hg>dp+2c1+Cs .

Hence, as, < 7 + 2c1 by Lemma4.7, we havee % e 0t > g T, By the
definition of cg and ofc,, we have

Cs = 3c4 + l0g 2 > 3 c4(ep) sinh(cy + dp) + log 2.

By the triangular inequality sincqf_1 > 0 by Lemmad4.9, by the equations-@9 ),
(-319), (-27-), and € 22 -), and by the definition ot4, we hence have

sk —stal < dy.y) + d(w(0), %-1(0))
< y(eo) €% % % sinh@o + ¢1) + C, €77 sinhcy
(-34-) < cpeX ot

By the Lipschitz property i) of f, = ¢c, (asn # 0), by the inequalities-B2 -),
(-299), (-314), and € 27 -), and by the definition o€s, we have

Ifa(7k—1) — fa(y)| < 2max{d(x, x), d(y,Y)}
< 2max{c; &% ~% % sinh + 1), Cy(eo) €%~ % sinho + 1)}
(-35-) <oc5ex 0l

By the inequalities {26 -) and ¢ 35-), by the definition ofr and by Lemmat.9, we
have

Uk(SE — 00) < falw) < fa(k—1) + Cs e ot < U—1(S¢_ 1 — o) + Cs % ot

Assume now that the inequality 30 -) holds instead of the inequality 29 -). Then
fa(k) < fa(hk—1), SO we again have that

Uk(S) — do) < Uk—1(S¢ 1 — o) + Cs eS¢ —do—t
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As|(sf 1 —d0) —(sf —do)| < ca e% ~%~t by the inequality {34 ), this contradicts
the assertion (4) on the maj. Hence the assertion (6) at rakKks verified.

The main corollary of the construction. The above inductive construction will only
be used in this paper through the following summarisingestant.

Proposition 4.10 Let X be a proper geodesfcAT(—1) metric space. Ley in R U
{0}, do,k0 > 0 andép € X U 9X. Let h6 > ho(eg, do, ko) andh > ha_ =

h, (co, do, hp). Let (Cnh)nen be a collection okqg-convex subsets ok which satisfies
the assertiongiii) and (iv), and with&y ¢ Co U 0,,Co. Letfy : T510X — [0, +o0]

be a continuous.-penetration map ilCy. Assume that there exists a geodesic ray or
line ~q starting fromé&g with fo(yo) = h. Then there exists a geodesic ray or ling
starting from&y, enteringCq at timet = 0 with fo(v) = h, such that'c, (V) < h}

for everyn in N — {0} such thaty..(]do, +oo[) meetsC,.

Proof. Apply the main construction of the previous subsection$wiitial input a
geodesic ray or liney enteringCy at timet = 0 with fp(79) = h, to get finite or
infinite sequencesy)ke.»» (ke » (Ukey Satisfying the assertions (1)—(6).

If .4 is finite, with maximumN, defineyx = N for k > N. Then the sequence
(vken converges to a geodesic ray or ling, = ~n in Tgox. If 4 is infinite, as
X is complete, it follows from the assertions (3) and (5), byeasy geometric series
argument, that the sequencg)¢c.» converges inT§10X to a geodesic ray or ling
starting from¢&g. SinceCy is closed, the point,(0) belongs toCy. If v, does not
enter inCy at timet = 0, then there existy > 0 such thaty,,(—2n) € Cp. By
the strict convexity ofCy, the geodesic segment.} (—27), v (0)[ is contained in the
interior of Cy. Hence ifn is big enough, we haven(—n) € Co, which is impossible.
Hence~., does enter irCq at timet = 0. By the continuity offy and the assertion
(1), we havefp(vs0) = h.

Suppose by absurd that there exist;n N — {0} such thaty..(]do, +oc[) meetsCp
and lc,(7s) > h; > 0. In particular, v (]do, +oc[) meets the interior ofC, and
& ¢ CnU 05Cn by Lemma4.5. Furthermore, it follows from the definition of the
stopping time, and the fact thai < h) for every k, that .4 is infinite. Hence,
as theny’s converge toy,,, and by the continuity ofc,, if k is big enough, then
(90, +00[) meetsC,, and ¢, (k) > h].

In particular, t (v) > do. Since the pointy(t, (1x)) is at distance at most; (o)
from the pointy(t, (70)) by Lemma2.3if ¢g # oo and by Lemma.9 otherwise,

the sequence of timef; (1)), is bounded. Hence i is big enough, thetty, (1)
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is less thart, , sincet, converges tor-oo whenk — +oo by the assertion (5). This
contradicts the assertion (6), as< h]. O

Remark. If X, €, do, ko, o, N, h, (Cn)nen, fo satisfy the hypotheses in the statement
of Proposition4.10, and if for everyn such that{y ¢ Cn U 9,,C,, we have ax-
penetration magm, : Tflox — [0, +00] for some constank > 0, then Proposition
4.10implies that there exists a geodesic ray or linpg starting fromé&g, enteringCy
attimet = 0 with fo(7) = h, such thatgn(ys) < h} + « for everyn in N — {0}
such thaty..(]do, +oo[) meetsC,,. We will apply this observation to more general
penetration maps than tife,’s, in Section5.

The next corollary yields geodesic lines with a prescribedgtration inCy, and that
essentially avoid th&€,,’s not only for positive times, but also for negative oneseTh
penetration in the setS, for n #£ 0 cannot be made quite as small as in Proposition
4.10

Corollary 4.11 Let X be a proper geodesiCAT(—1) metric space. Lety in R* U
{0}, 00, k0 > 0. Let Cy be a propekg-convex subset ok, and let

fo : U  T&X =0, +o]
£E€D00X—00Co

be a continuous map such th‘@ﬁgl x IS a ko-penetration map iCy for every&p €
0
OsoX — 050Co. Let h6 >hy = ho(EQ, o, Iio), h> ha_ = h&(EO, o, h6), and

//

1 = hy(eo, do, ho) + C3(e0)(do + 1) + Ci(eo) -

Assume that there exists a geodesic hygein X with fo(yo) = h. For everyn in

N — {0}, let C,, be aney-convex subset ok, such tha{C,)ncn Satisfies the assertions
(iii) and(iv) with respect to evergy € 0,.X — 0,,Cp. Then there exists a geodesic
line ~" in X enteringCy at timet = 0 with fo(y') = h, such thatlc,(y') < N for
everyn in N — {0}.

Proof. Let vo be a geodesic line iX with fo(vo) = h, and let¢ be the starting point
at infinity of o, which does not belong t6,,Cy ash < +oo. Applying Proposition
4.10with & = £, ash > W, there exists a geodesic linestarting from¢ and entering
Cop at time 0, such thaly(y) = h and¢c,(y) < h, for everyn € N — {0} such that
v(]60, +o0[) meetsCy.

Let ¢’ be the other endpoint at infinity of, which does not belong t6,,Cy ash <
+oo. Applying Proposition4.10again with nowéy, = £, we get that there exists a
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geodesic liney’ starting from&’ and enteringCo at time 0, such thafy(7’) = h and
lc,(v") < h, foreveryn € N — {0} such thaty’(]do, +oo[) meetsC,.

Assume by absurd that there exist& N — {0} such that/c,(y’) > h{ > 0. Then
7' entersC, at a pointx;,, exiting it at a pointy;, at time at mosvy, ashj > h] by
the definition ofh]. In particular, ifxX = +/(0) is the entering point of’ in Cop, then
d(yh, X) < do if X, y5, X, & are not in this order or’.

Let y be the exiting point ofy out of Cy. Note that
(-36-) h>h > hg > ho > H(eo, sinh(@o + ¢1)) > N (eo, do + C1)

by the definitions of}, ho, i'. By Lemma2.3if eg # co and by Lemma&.9if eg = oo
and (o, do) # (pbc,; 0), and as in the proof of Lemn#a6if (<o, fo, do) = (o0, ph,, 0)
sinceh > hg, we haved(x',y) < c¢;. Hence by convexity,

(-37-) d(yh,7) < d(X,7) + do < d(X,y) + 6o < do+ C1 .
Note that
d(x, ) = fc, (") > hi > hy > W (eo, do + C1)

by the definition ofh] and by the inequalities 86 -). Hence, by Lemma.6if ey # oo
and by Lemm&.12otherwise, the geodesic lingentersC,, at a pointx, and exits it
at a pointy, such that

(-38-) d(Yn, %) < C3(e0)d(¥n, 7) Or d(Xq,Yn) = d(Xn. ¥r) -

Let us prove by absurd that(]do, +oo[) meetsC,. Otherwise, sincey~%(y) > 0, by
convexity, and by Lemma.3if ¢y # oo or Lemma2.9if ¢g = oo, we have

(-39-) d(X', %) < d(X',y) + do + d(Yn, X;) < €1 + do + €1 (co) -

By the definition ofh] and sincecs(eg) > 2 by Equation {6-) if ¢ # oo, and by
Equation { 11 -) otherwise, we have

d(X’,X:]) > d(x;,)/n)—éo > hg_/—(go > hg_—l—Z((go—l—Cl)—FC&(Eo)—(So > C1—|—50—|—C3_(€0) .
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This contradicts the inequalities39 -).

Assume first that the second of the inequalitie3§(-) holds. Asd(x;,y,) > hi, this
contradicts the construction ef. Hence the first of the inequalities38 -) is satisfied,
and by Equation-(37 -), we have

d(¥n, %) < Ca(e0)d(Yn, 7) < C(e0)(do + C1) -
But then, by the triangular inequality and by the definitidrh),

d(Xm Yn) 2 d(X:w }/n) - d(Xn, YB) - d(Ym X:1) > th/ - C,3(60)(60 + Cl) - C&(GO) = th )
which contradicts the construction of O

5 Prescribing the penetration of geodesic lines

In this section, we apply Propositigh10to prove a number of results on the geodesic
flow of negatively curved Riemannian manifolds.

The following constants appear in the theorems, depending®R* U {oo},d, x >
0.

o CU(e,6, k) = max{2,(e) + 26 + x. My(e. 8, hole, b, &, (o)) )
e Cy(e) = c{(¢€,0,0) + ¢j(o0) + 2¢1, wherecy = ¢j(e) if € # oo, andc; = 1/19

otherwise. Note that}(cc) = h)(oc, 0, ho(co, 0, € (0))) + Cj(oc) + 2¢1 ~
8.3712 by the definition ot/ (¢, 4, k) and the approximation {7 -).

Recall that the constant§(e) are given by Lemma2.3and2.9, and thath(-, -, -) and
hi(-,-,-) are given in the list of constants in the beginning of Sutiseet.2.

5.1 Climbing in balls and horoballs

In this subsection, we construct geodesic rays or linesngaprescribed penetration
properties in a ball or a horoball, while essentially avegda family of almost disjoint
convex subsets. Let us consider the penetration heightaed projection penetration
maps first in horoballs and then in balls. Note that in thesesaffo = phc,, then
Ifo — phc,llec = 0 and iffg = ippc,, then||fo — pbhc, |lo < Ci(o0) by Section3.1

Theorem 5.1 Lete € R U {oo}, 6,x > 0; let X be a complete simply connected
Riemannian manifold with sectional curvature at medt and dimension at lea&;
let &9 € XU 050X, let Cy be a horoball such thah ¢ Cp U 05Co; let fo = phe,
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or fo = ippc,; let (Co)nen—{0y b€ a family ofe-convex subsets ok; for everyn €
N — {0} such thatty ¢ CnU 0xCn, letfn : T X — [0,+0c] be ax-penetration
map inCy. If diamCy N Cy) < 6§ for all nym in N with n % m, then, for every
h > c(e, 4, [[fo — pbe,|l), there exists a geodesic ray or linestarting froméo and
enteringCo at time0, such thafo(y) = h andfa(y) < (e, 4, [|fo — phe, [lo) + # for
everyn > 1 such thaty(]9, +oc[) meetsCy,.

Proof. Leth > ¢f = c/(e, 9, [|fo — phc,|l=0)- In Order to apply Propositios. 10, define
€0 = €,00 = 0, kg = Cy(00) = 2log(1+ /2) andhyy = ho(eo, do, Ko). Recall thatphc,
and ippc, are ro-penetration maps fo€y by Lemma3.3. For everyn € N — {0}
such thatty ¢ C, U d,Cy, let us apply Propositio.7 Case (1) taC = Cp, C' = C,,
f =fo, ' = (c,, I = hj, so thath™" = 2¢}(e) + 25 + ||fo — phc, ||« andhin = 25.
Note thathi" < hy, as

hy > H(e, Sinh@ + ¢1)) > 2sinh@ + cy) > 25,

by the definitions ofhy and of '(-,-). As h > ¢/ > h™" by the definition ofc],
Proposition3.7 Case (1) hence implies thaC{)ncn satisfies the Local prescription
property (v). Thus by Propositiod.10, there exists a geodesic ray or linestarting
at &o such thatfa(y) = h and (¢, (y) < h(eo, do, ho(eo, do, ko)), Which implies that
fa(y) < c] + &, for everyn > 1 such thaty(]9, +oc[) meetsC,. O

The proof of the corresponding result wh€g is a ball of radiusk > ¢ is the same,
using Case (2) of Propositiod.7 instead of Case (1). This requirds < hM& —
2R — 2¢)(€) — |fo — pbc, [l - TO be nonempty, the following result requires

R 2> ci(e, 0, [[fo — pbe,lloc)/2 + ci(e) + [[fo — pbc,loo/2 -

Theorem 5.2 Lete > 0, 6,k > 0, let X be a complete simply connected Riemannian
manifold with sectional curvature at mosiL. and dimension at lea8t let Cy be a ball

of radiusR > ¢; let §o € (XUDxxX) —Co, letfo = phc, orfo = ippc,; et (Cn)nen—{o}

be a family ofe -convex subsets of; for everyn € N—{0} such thaty ¢ ChU0~Ch,

let f, : Tflox — [0, <] be ax-penetration map i, . If diam(C, N Cy) < § for all
n,m in N with n £ m, then, for every

h & [¢4(e:6, o — P, llc), 2R~ 265(0) — [fo — byl | -

there exists a geodesic ray or linestarting from&y and enterindCq at time0, such
thatfo(y) = h andfa(y) < (e, 4, [[fo — pbe,lleo) + = for everyn > 1 such that
v(]6, +oo[) meetsC,. O
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Varying the family Cn)nen—goy Of e-convex subsets appearing in Theorensand
5.2, among balls of radius at least horoballs,e-neighbourhoods of totally geodesic
subspaces, etc, we get several corollaries. We will onkg $teo of them, Corollaries
5.3and5.5 which have applications to equivariant families. The psoaf these re-
sults are simplified versions of the proof of Corollal 1, giving better (though very
probably not optimal) constants.

Corollary 5.3 Let X be a complete simply connected Riemannian manifold with sec
tional curvature at most1 and dimension at lea& and let(Hn),_, be a family of
horoballs inX with pairwise disjoint interiors. Then, for evety > c¢{(cc,0,0) ~
6.5032 there exists a geodesic ling such thatph, (') = h andpby (v') <

¢y (o0) ~ 8.3712 for everyn > 1.

Proof. Let ¢/ = c/(c0,0,0) andcj = cj(c0). Let Co = Hp and let{ be a point in
OsoX — 05cCp. We apply Theoremd.1lwith e = 00, 6 =0,k =0,& =&, Cy = Hp
foreverynin N, fo = phc,, andf, = /¢, for everyn # 0 such that ¢ CnU0xCh.
Note that for evenyn € N — {0}, the mapf, is ax-penetration map i€,. Ash > cf,
there exists a geodesic ling starting from¢ and enteringCy at time 0, such that
phc,(7) = hand /¢, (v) < cf for everyn € N — {0} such thaty meetsC, at a
positive time.

Let ¢’ be the other endpoint of. This point is not ind,,Cy. Applying Theorenb.1

again, as above except that ngw = &', we get that there exists a geodesic lifle
starting from¢’ and enteringCo at time 0, such thaphc, (') = h and/c,(v') < ¢f

for everyn € N — {0} such thaty’ meetsC, at a positive time.

Assume by absurd that there exists& N — {0} such thatphc (7') > ¢ > 0. Then
/' entersCy at the pointx;,, exiting it at the pointy;, at a nonpositive time, as; > c/.
In particular, if X = +/(0) is the entering point of/ in Co, thenx,y;,, x;,,&" are in
this order omy’ (see the picture in the proof of Corollagy11).

Let y be the exiting point ofy out of Hy. With ¢; = 1/19, as in the proof of Lemma
4.6, sincephc,(v) andphc,(y') are equal to

h > ¢] > hj(co, 0, ho(oc, 0, €1(0))) > ho(o0, 0, €1 (c0)) = N (o0, sinhcy)
by the definition ofcy, h, ho, we haved(X',y) < c;.

Let &, be the point at infinity oH,,. Let p’ be the point in X, y,] the closest t&,,, so
that

d(p', ¥n) = Be,(Yn, P') = pbc,(7))/2 > c5/2.
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Let p be the point ofy the closest tq’. By convexity and the definition of;, we
have

d(p’,p) = d(p’,7) < d(X,7) <d(X,y) <c1<cy/2.

Hencep belongs to the interior o€,. If p € ]£,y], then the closest point t& on v
lies in )¢, p[ and by convexity,

¢ /2 < d(p,yn) < d(p’,x) < d@p,p)+ d(p,X) < d(p,p) +d(y,x) < 2c,

a contradiction, as by the definition df, of ¢{ and oftY (¢, ) (see the equations§ -)
and ¢ 11-), we have

¢y > ¢ +2¢; > W(e, sinhcy) + 2¢; > 2sinhe; + 2¢; > 4¢; .

Hencep € 1y,&[ € (0, +oc[), so thaty meetsC, at a positive time. But, by
Lemma3.3and the definition ot/

le,(7) = phe, () — €i(00) > 26¢, (Vn, P) — C1(c0)
> 2(Be,(Yn, P') — d(p, P')) — ch(c0) > 2(c5/2 — ¢1) — Ci(o0) = ¢f .

This contradicts the construction of O

Let M be a complete nonelementary geometrically finite Riemanmanifold with
sectional curvature at mostl (see for instanceBow] for a general reference). Recall
that acuspof M is an asymptotic class of minimizing geodesic ray§iralong which
the injectivity radius converges to 0. M has finite volume, then the set of cusps of
M is in bijection with the (finite) set of ends &fl, by the map which associates to a
representative of a cusp the endMftowards which it converges. Let : M — M

be a universal Riemannian covering Mf, with covering groupl’. If e is a cusp of
M, and pe @ minimizing geodesic ray in the classasM is geometrically finite and
nonelementary, there exists a horotallin M centered at the point at infinitge of a
fixed lift e Of pe in M, such thatyHe andHe have disjoint interiors ify € I' does not
fix & (see for instanceBK, Bow, HPY)). This horoball is unique if maximal (for the
inclusion). The imagé&/e of He in M is called aVargulis neighbourhood of ,eand the
maximal Margulis neighbourhood ofie He is maximal. In this SectioB, we assume
that He is maximal, and thape starts from the boundary d¢fe. Let hi, : M — R be
the map defined by

hte(x) = fim (t — d(pe(t), ) .
called theheight function with respect to. ¢ et maxhg : T*M — R be defined by
maxht(y) = suphte(y(t)) .
teR
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Themaximum height spectruof the pair (M, €) is the subset of } oo, +o0] defined

by
MaxSpM, ) = maxht(TM) .

Corollary 5.4 LetM be a complete, nonelementary geometrically finite Rienamni
manifold with sectional curvature at most. and dimension at lea8t and lete be a
cusp ofM. ThenMaxSpM, ) contains[c;(oc)/2, +oc].

Note thatc)(o0)/2 ~ 4.1856, hence Theoreth?2 of the introduction follows.

Proof. With the above notations, leH)nen be thel'-equivariant family of horoballs
in M with pairwise disjoint interiors such thay = He. Apply Corollary 5.3 to
this family to get, for evenh > ¢4(c0) > ¢/(c0,0,0), a geodesic ling in M with
phy,(¥) = h andphy (7) < c5(occ) for everyn > 1. Lety be the locally geodesic
line in M image byr of 7. Observe that Qor = gy, in Hy and thatphy (7) =
2 SURcRr OH,(Y(1)) (see SectiorB.1). Hence supy hte(y(t)) = h/2 and the result
follows. O

Schmidt and SheingorrSH treated the case of two-dimensional manifolds of con-
stant curvature-1 (hyperbolic surfaces) with a cusp. They showed that in ¢hae
MaxSpM, €) contains the interval [log 108-cc] ~ [4.61, +oc]. This paper §9
was a starting point of our investigations, although thehoétwe use is quite differ-
ent from theirs.

Let & be a (necessarily finite) nonempty set of cuspdvaf For everye in &2,
choose a maximal horobatle, with point at infinity £, as above Corollar$.4. The
horoballs of the familygﬂHe)gep/pée _ec» May have intersecting interiors. But &b
is geometrically finite and nonelementary, there existe (B&, Bow]) t > 0 such
that two distinct elements irg(—|e[t])g€1~/p€e _ec» have disjoint interiors. Lets, be
the lower bound of all suckis. For everyy € T'M, define

maxht(v) = mizxmaxhg(fy) and MaxSpil, &) = maxhtgz(TlM) .
ee//

Remark. Let %" be the set of all cusps &fl. Under the same hypotheses as in Corol-
lary 5.4, the following two assertions hold, by applying Corolldrto the family of
horoballs gHé)gep/Fée/ ecy With H, = He if € = e, andH], = He/[t] for somet

big enough otherwise, for the first assertion, and to thteaﬁgHe[tgz])gep/pée ecp

for the second one.
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(1) For every cus of M, there exists a constaht> 0 such that for everia > t, there
exists a locally geodesic ling in M such that maxRi{y) = h and maxht(v) <'t for
every cuspe’ # ein M.

(2) Let &2 be a nonempty set of cuspsidf. Then MaxSp¢l, &?) contains the halfline
[c5(00)/2 + tz, +o<].

Now, we prove the analogs of Corollari&s8and5.4for families of balls with disjoint
interiors. Let

R — 7 sinhc)(c0) + gc’l(oo) ~ 224431

Corollary 5.5 Let X be a complete simply connected Riemannian manifold with
sectional curvature at mostl and dimension at lea&, and let(Bn), ., be a family

of balls in X with disjoint interiors such that the radit®y of By is at leasRj". For
everyh € [c/(R™",0,0), 2R, — 2¢;(RY™™)], there exists a geodesic linein X with
pbg,(v) = h andphg (7) < c5(RG™) foralln> 1.

Proof. We start by some computations. Let- 0. With ¢; = ¢j(¢) andcs = cs(e, 0)
as in Subsectiod.2, we havecs > 6 sinhc; sincec;(e) > 3 by the definition ofc(e)
in Equation ¢6-). By the definition ofhy in Subsectior.2 and of b’ in Equation
(-5-), we havehg(e, 0, ¢j(00)) > K (e, sinhcy) > 2sinhc;. Hence, by the definitions
of &;(e), ¢/ (¢, 0,0), h] and asc — c/(e) is decreasing,

& (e) = ¢1(€,0,0) + cy(00) +2¢1
= max{2cy, ho(e, 0, ¢j(00)) + 2¢s} + ¢j(00) + 2¢1
> 2sinhc; + 12 sinhc; + ¢;(c0) + 2¢; > 14 sinhc) (00) + 3¢ (c0) .

Define nowe = RJ'™M, so that 2 < ¢j(e) andRy > . For everyn # 0, let R, be the
radius of the balB,. If for somen # 0 we have R, < c;(e), thenphg (7) < c5(e)
and the last assertion of Corollaby5 holds for thisn. Hence up to removing balls,
we may assume tha, > c¢;(e)/2 > ¢ for everyn # 0, so that the balls inBy)nen
are e-Convex.

The end of the proof is now exactly as the proof of Corollar§, with the following
modifications: ¢ = RI™; ¢/ = ¢/(¢,0,0); ¢5 = ci(e); £ is any point indxX;
C, = B, for everyn in N; we apply Theorenb.2 instead of Theorend.l, which
is possible by the range assumption lonwe take nowc; = c;(e), so that we still
haved(x,y) < c; by Proposition2.3; &, is now the center 0By, and 3¢ (u,v) =
d(u, &) — d(v, &) (see Sectior.1). Besides that, the proof is unchanged. O
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A heavy computation shows that
¢y (R ~ 1.7627,¢7 (RS, 0,0) ~ 1014169 andcy(RY™™ ~ 1067051.

Note that the above corollary is nonempty onlyRf > c/(RM", 0,0)/2 + ¢, (R"") ~
52.4712. The constants in the following corollary are not opinTheoreml.3in the
introduction follows from it.

Corollary 5.6 LetM be a complete Riemannian manifold with sectional curvadtire
most—1 and dimension at lea&, let (x)ic| be a finite or countable family of points
in M with ri = injy, X, such thatl(x;, %) > ri +rj if i # | and such that;, > 56 for
someig € |. Then, for everyd € [2,ri, — 54], there exists a locally geodesic line
passing at distance exactlyfrom x;, at timeQ, remaining at distance greater than
from x;, at any nonzero time, and at distance at least56 from x; for everyi # ig.

In particular,

mind(y(0). x,) = d.

Proof. Let 7 : M — M be a universal covering dfl, with covering groupl’, and
fix a lift X of x for everyi € I. Let B; be the ballBy (X, ri). Apply Corollary5.5to
the family of balls § B)ger,ic1 in X = M, which have pairwise disjoint interiors by
the definition ofr; and the assumption ou(x;, ;). Note thatrj, > 56 > R{)“i” (see
the definition ong“i”). Let h = 2(rj, — d), which belongs to [10&r;, — 4], which

is contained in ¢ (R, 0, 0), 2r;, — 2¢;(RY"™)] by the previous computations. Then
Corollary5.5implies t'hat there exists a geodesic lifien M such thauohBio(ﬁ) =nh
and phyg () < (R < 108 for all @,i) # (1,ip). Parametrizey such that its
closest point tax, is at timet = 0. Lety = 7 o7, then the result follows by the
definition of ph (see Subsectio8.1). O

5.2 Spiralling around totally geodesic subspaces

In this subsection, we apply PropositidriOand Corollary4.11whenCy is a tubular
neighbourhood of a totally geodesic submanifold. We onlie @i few of the various
possible applications, others can be obtained by varyiagtijects Cn)nen—10y, @s

well as the various subcases in Propositon(3) and (4).

Theorem 5.7 Lete > 0, § > 0. Let X be a complete simply connected Riemannian

manifold with sectional curvature at mostl and dimension at leag. LetL be a
complete totally geodesic submanifold Xfwith dimension at leas2, different from
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X, andCo = AL. Let (Cr)nen—{0y be a family ofe-convex subsets iX such that
diamCn N Cy) < 0§ for all n # min N. Let eitherfo = ftp, or fo = (4, with X
having constant curvature in this second case. Let

hE) = ho(60,5o, max{|[fo — £_s.L|locs 2|fo — ftp || co + 26 — 80&(6)})
andh > ha_ = ha_(e, 6, h6)

o Forevery¢ € (XU 0-xX) — (Co U 05 Co), there exists a geodesic ray or line
starting from¢ and entering #¢L at timeO with fo(y) = h, and with{c,(v) <
h; for everyn # 0 such thaty(]9, +oc[) meetsCy.

e There exists a geodesic linein X with fo(~) = h, and with
ley(7) < by + c4(e) (6 + €4(€)) + Ci(e)
forall n #£ 0.

Note that if /¢, (v) < c, thenf(y) < c+ & for any x-penetration map in C,.

Proof. We apply Propositiod.10and Corollary4.11with £ = &, eg = €, dp = 0,

ko = max{|[fo — €_sL|loo: 2||fo — ftpL||oo + 2¢ — 8Cy(€)},

andhy = ho(eo, do, ko). In particular,fy is a continuous:o-penetration map iCy. As
L is a complete totally geodesic submanifold of dimension @rimension at least
1, there does exist a geodesic ling in X starting from¢&g such thatfp(vg) = h.
Let i = 5o and ™" = 4¢)(€) + 2¢ + & + 2|[fo — ftp.|loo- By the definitions of
M, -, ), ho(-, -, ), cs(-, ) in Subsectiort.2 we have

hyy = ho(eo, do, ko) > do = A" |
and

h > h = ho(eo, do, K0) + 2Cs(€o, do) > ko + 12 sinh€)(eo) + do)
> ko + 12¢4(e) + 6 > h™n |

The family Cn)nen hence satisfies the Local prescription propeity oy Proposition
3.7(3). Therefore, the result follows from PropositidriOand Corollary4.11 O

Remark 5.8 If the C,’s are disjoint from.4;L (and§ = 0), then the same result as
Theoremb.7 also holds wherk has dimension 1, by replacing Propositi®s (3) by
Proposition3.7 (4) in the above proof ant™ = 5o by hJ'" = 0.
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Theorem 5.9 Lete > 0, § > 0. Let X be a complete simply connected Riemannian
manifold with sectional curvature at mostl and dimension at lea&. Let (Ln)nen

be a family of geodesic lines M, such thadiam(/:L, N AcLy) < 9§ foralln #m

in N. Let eitherfo = ftp, orfo = £ 4., if X has constant curvature, &y = ctp

if the metric spheres for the Hamenstéadt distances{gi — {¢} for any & € 0,X)

are topological spheres. Let

o = max{5¢;(€)+5¢+4, ho(e, &, max{|[fo — £_s.L, |0 Ifo — ftp, oo +2¢—8C1(€)})}
andh > M, = M,(e, 5,h).

« Foreverys € (XUOxoX)—(AeLoUOxLo) (@nd§ € 00X —0xLo If fo = ctp ),
there exists a geodesic ray or linestarting fromé and entering#¢Lq at time0O
with fo(vy) = h, such that . ,(v) < h} for everyn # 0 such thaty(]9, +oc)
meets. L.

« There exists a geodesic linein X such thaffo(v) = h, and, ifn # 0, then
Cora(7) < 1+ &5(e) (0 + €4(€)) + ().

Note that if¢_s;.,(v) < c, thenf(y) < ¢+ « for any x-penetration mag in .#Lp.

Proof. As in the previous proof, we apply Propositidril0and Corollary4.11 with
Cn:Ji/EthEO:E!éO:(S!gO:g!

wio = Max{|[fo — £sLo[loos [[fo — FtpLy[loo + 26 — 8Ci(e)} -

For everyn # 0, lethD'™" = 3¢/ (e) + 3¢ + 6 + ||€sL, — ftpL, [|loo @ANANMM = 4 () +
2¢ + 0+ ||fo — ftp ||oo - In particular,hy) > 5¢}(e) + 5¢ + § > hJ'"" by Lemma3.4. As
in the end of the previous proof, the familZ{)ncn hence satisfies the propertiy)(
by Propositior3.7 (4), and the result follows. O

Let M be a complete Riemannian manifold with sectional curvasinmost—1 and
dimensionn > 3. Fix a universal coveM — M of M. Fore > 0, § >0, a
(possibly not connected, but such that any two components bgqual dimension)
immersed complete totally geodesic submanifbldof dimension at least 1 and at
mostn — 1) will be called ¢, ¢)-separatedf the diameter of the intersection of the
e-neighbourhoods of two lifts td of two components of. is at mosts.

Examples. (1) If L is compact and embedded, then there exists O such that_

is (¢,0)-separated. For instance, a finite family of disjoint denglosed geodesics is
(e, 0)-separated foe small enough.
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(2) If L is compact, and it is self-transverséi.e. if the tangent spaces at every double
point of L are transverse), then for every> 0 small enoughl is (¢, 1)-separated. In
particular, a finite family of closed geodesics (possiblysimple) is €, 1)-separated
for e small enough.

(3) The lift of a locally geodesic ling : R — M to the unit tangent bundl&M is

the mapy : R — TM (or by abuse its image) given By(t) = (y(t), 7/ (t)) for every

t € R. For everyp > 0, if the p-neighbourhood (for the standard Riemannian metric
of TIM) of the lift of v to T'M is a tubular neighbourhood, then there exigjs) > 0
such thaty is (p, (p))-separated. Indeed, if the intersection of fha@eighbourhoods

of two different lifts to a universal cover of has diameter big enough (depending
only on p), then by arguments similar to the ones in the proof of Leniatwo
subsegments of the two lifts will follow themselves clostdy some time, hence the
tangent vectors at two points on these two lifts will be cidsan p.

Let L be an ¢, 9)-separated immersed complete totally geodesic submdnifoet
(Lo)acey be the family of (connected) complete totally geodesic satifolds of M,
that are the lifts toM of the components of.. Note that in particular, the family
(AN (Lo))aes is locally finite.

Let f be one of the symbolg, bp, ftp, ctp and assume that has dimension 1 if
f = ctp. Let st be respectively 0, & (), 2¢;(e) + 2¢, 2¢(e) + 2¢;(o0) + 2.
For everya ¢ o, letf, = € 4., by, ftp. ,cctp  respectively, which is a -
penetration map inf.L, by Subsectior8.1 For every locally geodesic ling in M,
consider a lifty of v to M.

The family ¢.(7))ac.s Will be called the family ofspiraling timesof v alongL with
respect tof (andlength spiraling timesfellow-traveling timeor crossratio spiraling
timesif f = 7, ftp, ctp respectively). Up to permutation of/, it does not depend
on the choice of the lifty of v. The entering times ofy in the sets.#.L, with
f.(%) > 0 + ki, Wherea varies ing7, form a discrete subset (with multiplicity one)
of R, as.#L,N#Lg has diameter at mostif o # 3. We will only be interested in
the corresponding spiraling times. Itis also then posstader these spiraling times
using the order given by the parametrisationjgrbut we will not need this here.

Corollary 5.10 LetM be a complete Riemannian manifold with sectional curvature
at most—1 and dimensiom > 3. Lete > 0, 6 > 0. LetL be an(e, §)-separated
immersed complete totally geodesic submanifold (of dintenat leastl and at most
n—1). Letf be one of the symbol$, ftp,ctp, and ki = max{0,6e — 4c;(c)},
2c)(e) + 2¢, 2c)(e) + 2¢ + 2¢;(o0) respectively. Iff = ¢, assume tha¥l has constant
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curvature. Iff = ctp, assume thadt has dimensiorl and that the metric spheres for
the Hamenstadt distances (on the punctured boundary ofvarsal cover oM ) are
topological spheres.

For every
h>h)= h’l(e,é, max{5¢(e) + 5¢ + &, ho(e, 5, mé)}),

there exists a locally geodesic linein M having one spiraling time with respectfto
exactlyh, and all others being at molst + c4(e) (6 + ¢y () + cy(e).

If furthermoreM is nonelementary and geometrically finite, then for evergpaiof
M, we may also assume that the locally geodesiclirdoes not enter too much into
the maximal Margulis neighbourhood ef i.e. thaty satisfies

Maxhb(y) < SUPie() + € + %( L+ GO0 + ca(e)) + e(e)) -

Proof. Let 7 : M — M be a universal cover dfl, with covering grouf. With g the
constant in the proofs of Theoreb? if the dimension ofL is at least 2, and Theorem
5.9 otherwise, it is easy to check, using Sectl®f, that x; > g for every case of
f. Note thatho(-,-,-) andh/(-,-,-) are non-decreasing in the third variable, by their
definitions at the beginning of sectidm2 The first assertion follows from Theoresd
applied to the family I(,), of the lifts of the components df to M, if the dimension

of L is 1, and from TheorerB.7 otherwise.

To prove the last assertion, with the notations of Sedidnlet te = sup, hte(X) +¢.
We add to the family of convex subsets in Theorgmif dim L > 2, and in the proof
of Theorem5.9 otherwise, the family of horoballsHg[tg] for ~ in T' (modulo the
stabilizerI'¢,). Note that these horoballs have pairwise disjoint intsriand that their
interiors are disjoint from the-neighbourhood of every lift of a component bf so
that Propositior8.7 (4) does apply when the dimensionlofis 1. O

Theoreml.4in the introduction follows from this one, by the above ex#ar(f).

Remark. (1) If we wanted to have the same locally geodesic linéor every cusp
e of M in the second assertion of Corollabyl0 we should add the bigger family of
horoballs (He[te])\er/r,, , ecw, and replace therg by maxty, maxey te}, Where
% is the set of cusps d¥l, andty is the greatest lower bound of> 0 such that
two distinct elements im(l—|e[t]),yep/p£e _ecw have disjoint interiors (see the definition
above Corollanb.5), in order for the new horoballs to have disjoint interiors.
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(2) With M and L as above, lef be one of the symbolg, by, ftp, ctp. Define, for
every locally geodesic ling in M,

maxspt ¢(7) = supfa(y) ,
acd

the least upper bound of the spiraling timesyohroundL with respect td . Let
MaxSp (M) = {maxspt ¢(y) : v € T'"M}

be themaximum spiraling spectrumiaxSp (M) aroundL with respect tof . Theo-
remb5.10gives, in particular, sufficient conditions for the maximapiraling spectrum
to contain a rayd, +oc].

5.3 Recurrent geodesics and related results

In this subsection, wheNl is geometrically finite, we construct locally geodesic éine
that have a prescribed height in a cusp neighbourhoad oénd furthermore satisfy
some recurrence properties. We will use the notation inired in Sectiorb.1 con-
cerning the cusps, and the objects ktVe, He, &e.

Corollary 5.11 Let M be a complete, nonelementary, geometrically finite Rieman-
nian manifold with compact totally geodesic boundary, vg#ttional curvature at
most—1 and dimension at lea8t Lete be a cusp oM. Then there exists a constant
¢ = C4(e, M) such that for everyY > ¢, there exists a locally geodesic linein M

with maxht(y) = I, such that the spiraling length times-pfalong the boundargM

are at most;..

Up to changing the constamf;, we may also assume thatstays away from some
fixed (small enough) cusp neighbourhood of every cusp diffefrome. Note that, up

to changing the constauf, the last assertion of the corollary does not depend on the
choice off = ¢, bp, ftp, ctp, with respect to which the spiraling times are computed,
and we will usef = /¢.

Proof. As OM is compact, there exists € ]0,1[ such that the’-neighbourhood
of the geodesic boundar§M is a tubular neighbourhood @M. By definition of
manifolds with totally geodesic boundary, there exists mglete simply connected
Riemannian manifoldV, a nonelementary, torsion-free, geometrically finite kit
subgroupl’ of isometries ofM, a I'-equivariant collection L(;f)keN of pairwise dis-
joint open halfspaces with totally geodesic boundam), such thatM is isometric
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with T\(M — Uyen L) - We will identify M andT'\(M — Uy Li") by such an isom-
etry from now on. Note thatu(l/ezL;)keN is a family of pairwise disjoint’-convex
subsets irM.

Let tepm = max{0, maxesm hte(X)} > 0, which exists sincéM is compact. Note
that the family gHe[te om + 1])ger /Tes is aI'-equivariant family of pairwise disjoint
horoballs inM, which are disjoint from4, L for all n € N. Let us relabel this
family of horoballs asKk)ken such thatHy = He[te om + 1]. Note that the horoballs
Hk, k € N, are€’-convex.

Define
¢z = hi(€,0,ho(€’, 0, ¢1(00))) + team + 1+ Ci(€)(ca(€) + 1) .

and leth’ > ¢§. We apply Corollaryd.11with X = M; ¢ = ¢; do = 0; kg =
cy(0); Co = Ho; fo = phe,; hy = ho(eo, do, k0); Carr = ALy; Cox = Hy;

h =2 — 2(teom + 1). Note thatfy is a xo-penetration map i€y by Lemma3.3,
and thath > h/(eo, do, hpy), ash’ > cf. As M is a manifold of dimension at least 2,
there does exist a geodesic ling in X with fp(yo) = h. The family Cp)nen, Whose
elements have pairwise disjoint interiors, satisfies tlserion {ii). It also satisfies
(iv), by Proposition3.7 Case (1), ah > 2c5 — 2(teom + 1) > 2¢j(¢'). Hence, by
Corollary4.11 there exists a geodesic linein X with ph, (7) = h and

le,(7) < hy = M (eo, do, hp) + Ci(eo)(Ca(e0) + 1) < c3
forall n# 0.

As (c,,,,(¥) is finite, the geodesi§ does not cross the boundarylgf , hence it stays
in M — Uen L - Letm 1 M — Uy L — M be the canonical projection, and let
v = mo7. Hence, the length spiraling times ofare at most;.

Note that
pb.(7) = pbc,(3) + 2(teom + 1) = h+ 2(teom + 1) = 2N,

by the paragraph above Lemr8z8. Furthermore, ifg € (I' — I'g,)/T¢,, then there
existsk in N — {0} such that

Phgr.(3) = Phc, (3) + 2(teom + 1) < Ly (7) + €1(00) + 2(teom + 1)
< h + ci(o0) + 2(teom + 1) < 2¢f < 2K .

Therefore maxh{y) = i by the same proof as in the end of the proof of Corollary
5.4 O
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Let M be a compact, connected, orientable, irreducible, aaytiak] atoroidal, bound-
ary incompressible 3-manifold with nonempty boundary (Eeenstance MT] for
references on 3-manifolds and Kleinian groups)hyerbolic structureon a mani-
fold is a complete Riemannian metric with constant secticnavature—1. A cusp
e of a geometrically finite hyperbolic structure nisaximalif the maximal Margulis
neighbourhood oé is a neighbourhood of an end of the manifold. Bebe the union
of the torus components @M, and¥.# (M) = 4.7 (M, P) be the (nonempty) space
of complete geometrically finite hyperbolic structuresha interior ofM whose cusps
are maximal, up to isometries isotopic to the identity. Hdebat ¢.% (M) is homeo-
morphic to the Teichmdller space 66M = OM — P.

For everyo in ¢4.% (M), the cusps obr are in one-to-one correspondence with the
torus components oM, as any minimizing geodesic ray representing a cusp con-
verges to an end of the interior & corresponding to a torus componentad . If e

is a torus component @M, let maxht ¢(y) denote the maximum height of a locally
geodesic liney in o with respect to the cusp correspondingetorheconvex coref a
structures in 4.% (M) is the smallest closed convex subset of the interidvipivhose
injection in the interior ofM induces an isomorphism on the fundamental groups.

The following result generalizes Theordnbin the introduction to the case of several
cusps.

Corollary 5.12 LetM be a compact, connected, orientable, irreducible, aaytakl
atoroidal, boundary incompressib®manifold with boundary, and le¢ be a torus
component ol®M. For every compact subsBt in ¥.% (M), there exists a constant
c, = ¢4(K) such that for evenh > c; and everyc € K, there exists a locally
geodesic liney contained in the convex core of such thatmaxht, (y) = h, and
maxht, ¢ (v) < ¢, for every torus componer # e of OM.

Proof. For a subseA of 000Hﬂ3g. we denote by Cor the hyperbolic convex hull of
Ain Hf{. A subgroupI’ of mM is called aboundary subgrouff there are an element
~v € mM, a componenC of 9yM, and a poinx € C such thatl’ = ~ Im(wl(C, X) —
wl(M,x)) ~v~1. Let (Thnen be the collection of boundary subgroups ofM. Let
(T'nen be the collection of maximal (rank 2) abelian subgroupsrgl, with 'y
conjugate tore.

Let p, : MM — IsomQH[fg) be a holonomy representation corresponding ta K,
appropriately normalized to depend continuouslysorBy assumption]” = p,(71M)
is a (particular) web group (see for instanééV[]). More precisely, for alln € N,
po(p) is a quasifuchsian subgroup of stabilizing a connected, simply connected
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component)y, , of the domain of discontinuity op,m1M, such that2, , and Qpm,
have disjoint closures ifi # m, and thato), , contains no parabolic fixed points of
I'. Let (Hko)ken be a maximal family of horoballs with pairwise disjoint irt&'s
such thatHy , is p.(I'})-invariant (such a family is unique i has only one torus
component). To make this family canonical o7 (M), we may fix an ordering
€ = &e,...,en of the torus components ¢iM, and take by inductiorHy ,, for
the k’s in N such thatl’, is conjugate tori(e), to be equivariant and maximal with
respect to having pairwise disjoint interiors as well adimgtheir interior disjoint with
the interior ofHy, -, for thek,’s in N such thaflj is conjugate tari(g) with j <.
Note that theHy ,’s, besides the ones such thg is conjugate torie, are not the
maximal horospheres that allow to define the height funstidt this changes their
values only by a constant (uniform dg).

Hence, axK is compact, there exisis > 0 such that for every € K, the 1-convex
subsets #1(Conv (2, ;) andHy , for n,k € N meet pairwise with diameter at most

The claim follows as in Corollar$.11by applying Corollary4.11to X = H3, ¢g =
1,00 = 0, ko = €y(o0), Co = Hoo, fo = pbe,, Ny = ho(eo, do, K0), Cony1 =
41(Conv ), Con = Hn» to get a geodesic ling in X with prescribed penetration
in Cp, and penetration bounded by a constanCinfor n # 0. The finiteness of the
intersection lengthgc,, ,(7) for n € N implies thaty stays in the convex hull of the
limit set of I". O

Remark. The fact that a locally geodesic line stays in the convex obtke manifold
and does not converge (either way) to a cusp is equivalett twvé locally geodesic
line being two-sided recurrent.

5.4 Prescribing the asymptotic penetration behaviour

Let X be a proper geodesic CAF() metric space and lgt € X U 0, X. Lete €

R* U {oo}, §,k > 0. Let (Cy)acy be a family of e-convex subsets oK which
satisfies the Almost disjointness conditian )(with parametery. For eacha € <7,

let f, be ax-penetration map irfC,,. Let v be a geodesic ray or line, with 0 in the
domain of definition ofy (as we are only interested in the asymptotic behaviour, the
choice of time 0 is unimportant). These assumptions gueeatitat the set’, of
timest > 0 such thaty enters in some&C,, at timet with f,(y) > § + x is discrete

in [0, +oo[, and thatar = o is then unique. The sef, may be finite, for instance

if f3(y) = +oo for somef3. Henceé, = (ti)ic.» for some initial segment/” in N,
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with t < tiyq fori,i 4+ 1in 47, With g(y) = f,, (7), the (finite or infinite) sequence
(ai(7)) ., Will be called the (nonnegativgenetration sequenas ~ with respect to
(Ca,Ta)ace - In this section, we study the asymptotic behaviour of thpeseetration
sequences. We will only state some results whenGhis are balls or horoballs, but
similar ones are valid, for instance ferneighbourhoods of geodesic linesXn(see
for instance PP3 Section 5]). We may also prescribe the asymptotic peretrat
one cusp, while keeping the heights in the other cusps (umif9 bounded.

In the following results, we show how to prescribe the asytiptoehaviour of the
penetration sequence of a geodesic ray or line with respdwtroballs and their pene-
tration height functions. First, we prove a general result we give the more explicit
result for Riemannian manifolds as Corolldryi 4

Theorem 5.13 Let X be a proper geodestieAT(—1) metric space, witld. X infinite.
Let (H.)acor be a family of horoballs with pairwise disjoint interiors.sgume that
there existK € [0, +oo[ and a dense subs¥tin 0.,X such that, for every geodesic
ray v in X with v(+o0) € Y, we have

lim inf d(y(0), g Ha) < K.
Let ¢ € XU doX andc,c > 0. Assume that for everit > ¢ anda € </ such that
¢ ¢ H, UH,[oc], there exists a geodesic ray or linestarting from¢ and entering
H, attimet = 0 with pby_ () = h, and withphy ,(7) < c forevery in of —{«a}
such thaty(10, +oc[) meetsHg. Let (a(7')),. , be the penetration sequence of a
geodesic ray or line’ with respect tdH,, phy_)acw -

Then, for every
h > h, = max{c, ¢ + 3c¢j(c0) + 10°°},
there exists a geodesic ray or linestarting from¢ such that

limsup a(y) =h.

|——+00

Proof. To simplify notation, letf, = phy_, c. = ¢ + 3¢j(c0) + 107>, so that
h., = max{c,,c}. If a geodesic ray or liney starting from¢ meetsH,, such that
¢ ¢ Hy UH,[oq], let t;, (v) andt? (y) be the entrance and exit times.

Let h > h,, and letag € < such that{ ¢ H,, U H,,[oo], which exists by the
assumptions. A&t > h, > c, there exists a geodesic ray or ling starting from¢,

enteringH,,, at time 0, such that,,(v0) = h, andf, () < ¢’ for everya # ag such
that yo(]0, +oc[) meetsH,,.
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We construct, by induction, sequenceg)cn Of geodesic rays or lines starting from
€, (aken Of elements ofe, and )wen— oy Of elements in [0+oo[ converging to
~+00, such that for everk € N,
(1) ~« enters the interior oH,,, at time 0, withd(yk(0), 1x—1(0)) < Elg if k>1;
(2) ~w entersH,,, & ¢ Hq, UHg,[oo], andf,, () = h;
(3) if0 <j < k-1, then(]O, +oc[) enters the interior oH,, before entering
Ha, with t5 (1) <t =t3, () < t3, (s
(4) if k> 1, then for everyn such thaty(]0, +oc[) meetsH,,, we have|f, (1) —
fa(k-1)| < §1|z if t (W) < t, andf,(nw) < ¢ if te < t7(w) <t (), and
foa () < € if t, () >t () -

Let us first prove that the existence of such sequences impleorem5.13 By
the assertion (1), ask(0) stays at bounded distance from(0), up to extracting a
subsequence, the sequene)ry converges to a geodesic ray or ling, starting
from &, entering inH,, at timet = 0, by continuity of the entering point in ast
convex subset. Let us prove that limsup ., ai(7-.) = h.

The lower bound limsyp,, ., a(yx) > his immediate by a semicontinuity argu-
ment. Indeed, for everlg > i in N, we have by the assertions (2), (3) and (4),
k—1 14
’fozi (’Yk) - h’ = ‘fozi (’Yk) - fai (’Yi)‘ < Z ‘fai (7j+1) - fai (’Yj)‘ < Z ﬁ <
J=l j=i

1
5 .

Hence by continuity of,,;, we have the inequalit, (7-) > h — % whose right side
converges tdh asi tends to+oo, which proves the lower bound, &s> c¢/(co) and
fo is @acj(co)-penetration map i, (see Sectio3.1).

To prove the upper bound, assume by absurd that there exis® such that for every
A > 0, there existsx = a(\) € &7 such thaty,, entersH,, with f,(v~) > h+ ¢ and
ty (o) > A+ 2¢;(c0). Take Ao = max{tit1 : 3 > 5}, anda = a(Ao)

By continuity off,, if k is big enough, we havg, () > h+5 > h, > ¢, > ¢. Thus,
1 meetsH, ash, > 0. The entry time is positive, a¥{x(0), 7 (0)) < ¢;(cc) and
the entrance points ofy and~., in H, are at distance at mos}(cc), both by Lemma
2.3 and as the entrance time 9f, in H,, is strictly bigger than & (). Hence, by
the assertion (4), we havg (1) < tk. Leti < k— 1 be the minimum element of
N such that forj = i,...,k — 1, the geodesie;j; meetsH,, at a positive time with
t, (7j+1) < tj+1. By the triangular inequality, we have

It (i) — tg (Yoo)| < d(Miga(ty (i41))s Yooty (150))) + d(7i42(0), 7oc (0))
< 2¢)(0) .
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Hence
tit1 > to (hit1) > 15 (Y00) — 2€1(00) > Ao + 2¢1(00) — 2€3(00) = Ao

By the definition of \g, we hence hav% < 5. By the definition ofi and by the
assertion (4), we have

k-1 k—1
o) = T + X (o) — falojen) = ht 5 = o0y
j=i j=i
1

€
>ht<-=>h>h,,
>h+5-5=h>

and in particular by the same argument as4prabove,~; entersH, at a positive
time andt; (1) < t;. This contradicts the minimality af. This completes the proof,
assuming the existence of a sequence with properties {1)—(4

Haqﬁ, Hﬁa‘kfl Hao \ o/ / :

SN N 4 o
w(0) | ] | | (b Ti—1(SK) -
W@, o) Watd, ,O-1) +A)

Let us now construct the sequenceg)fen, (akken, (tkken—{oy- We have defined
70, ap, and they satisfy the properties (1)—(4). Uet> 1, and assume thafi_1,
ox—1, as well a4 if k > 2, have been constructed.

As Y is dense ind.. X, for every A > 0, there exists a geodesic ray or ling ;
starting from¢ with +,_,(4+00) € Y, entering inH,, at timet = 0, which is very
close tovyk_1 on [0, tZ{k,l(Vk—l) + A]. By the definition ofK, let s¢ be the first time
t> t;fk,l(w—l) + A such that there exists in .7 with d(v;_;(t),H,) < K+ 1, and
let ax be such anv with d(;_;(s), Ho) minimum. Letpy be the closest point dfi,,,

to 1y_4(sk). Note that¢ ¢ H,, U Hg,[oc], if Ais big enough (in particular compared
to K), asH,, andH,, have disjoint interiors.

By the hypothesis, letx be a geodesic ray or line starting frognwith f,, (1) = h
(which proves the assertion (2) at rakkash > 0) andf, () < ¢ for every «
such thaty(]t,, (1), +oc[) entersH, . As a CAT(-1) metric space is log(* V2)-
hyperbolic, the geodesi& ]p.] is contained in the log(% v/2)-neighbourhood of the
union ¥, v_1(891 U [9_1(80, . By Lemma2.3, we haved(yi(t;, (1)), 16, pe]) <
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ci(c0), and therefore g (ty, (1))] is contained in the ¢ (cc) + log(1 + V2))-
neighbourhood ofg, ~_;(s)] U[k_1(S«), p]. Up to choosingA big enough, we may
hence assume thak is very close toy_1 between the times 0 artgkfl(fyk_l) + 1.
Using this and properties (1) and (3) at raak 1, we have

« ~ does enter the interior dfl,,, at a time that we may assume to be 0, with
d(7x(0), 1%-1(0)) < ilg (this proves the assertion (1) at rakk

- for0<j<k-—1,asy_1 passes intheinterior cHiC,j at atime strictly between
0 andtgkil(yk_l), by the inductive assertions (3)kf£ 1 andj < k— 2, or (1)

if k=21or(2)ifj = k—1, so does the geodesic ray or ling this allows, in

particular, to definey = tf,  (y«), which satisfiegy <t (w) < tf, () and

(-40-) d(yk(t), w1ty _,(w-1))) < 10°°/4
if Ais big enough; this proves the assertion (3) at rnk

« for every o such thaty(]0, +oc[) meetsH,, andt; (1x) < tk, we may assume
by continuity that/f, () — fa(yk-1)| < -

Hence, to prove the assertion (4) at rdnkwe considera € o7 such thaty, meets
Ho with t < t5 () < t;, (), and we prove that, (1) < c.. We may assume that
f.(7k) > 0. Letv be the highest point ofk in H,,, which, by disjointness, belongs to

I3 (0d), w(ts, ()L Let u be a pointin §, v 1(s)] U [%_1(S), pe] at distance
at mostc} (c0) + log(1+ v2) = 2 ¢} (c0) from v.

Assume first thati € [y, _,(s),pk]. Note that by the minimality assumption arx
and sincea # o, the pointu then does not belong th,. As c, > 3cj(x), this
implies thatf, () < 2d(u,v) < c,.

Assume now thati = v, (t) with t € [t;fkil(vk_l) + A, s[ . Then by the minimality
of s, the pointu again does not belong td,, (it is in fact at distance at leagt + 1

from H,). Hence similarlyf,,(v) < c..

Finally, assume that = ~;_,(t) with t <t&  (y-1) + A. Let U = y1(t), which

Qk—1
satisfiesd(u, u') < 107°/4 (as~_1 and 71 Were assumed to be very close on that

range). Assume by absurd tHa{+x) > c.. In particular,

d(v, () > d(v, w(ty (W) > fal(w)/2 > c./2.

Let &, be the point at infinity oH, andx, = «(t, (1)) the entrance point ofy in
H.. Sinced(v, u) < d(v,u) + d(u,u) < %c’l(oo) +107°/4, we hence have

Zﬁﬁa (U/, Xa) = zﬁfu (U/, V) + Zﬁﬁa (Vv Xa)
> fo () — 2d(v,u) > ¢, — 3¢)(c0) +107°/2>¢ >0,
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by the definition ofc,. Henceu € H, andf,(w-1) > 206, (U, %,) > ¢'. Further-
more,t > tT  (y_1), since otherwise, and by Equatiord( -),

Qk—1

(), V) < d(v, ) + d( el M1 (t, () < ; d(o0) +10°5/2 < ¢, /2

by the definition ofc,, a contradiction. Hence, by convexity and sirtég andH,,
have disjoint interiors, we have, (w-1) > t& _ (-1). Sincef,(-1) > ¢/, this

contradicts the inductive hypothesis (4) @n 1. This proves the result. O

Remark.  There exists an analogous statement, with an analogous, prben
(Ha)aew is a family of balls of radiusR > 0, replacingcy(oo) by ¢j(R), and as-
suming both in the hypothesis and in the conclusion khatc” for somec”.

Corollary 5.14 Let X be a complete simply connected Riemannian manifold with
sectional curvature at mostl and dimension at lea8t and Iet(Ha)a .., be afamily

of horoballs inX with disjoint interiors. Assume that there existsc [0, +oo[ and

a dense subset in 0,,X such that, for every geodesic rgyin X with v(+o0) € Y,

we haveliminfy_ . d(y(t), U,c Ha) < K. Then, for ever € XU 0,.X and

h > ¢/(c0,0,0) + 4¢)(c0) + 107> ~ 135542

there exists a geodesic ray or linestarting from¢ such that, with(a(y))ne.» the
penetration sequence ofwith respect tqH,, pby_ )ac.s ,» We have

limsup g(y) =h.

i—+4o00
Proof. Let ¢ = ¢{(c0,0,0), ¢ = ¢{(c0,0,0) + ¢j(cc). We apply Theoren®.1
with € = 00, § = 0, k = ¢j(), & = &, Co = H, Wherea € & satisfies
€ ¢ Ho UHa[oc], fo = phey, (Codnz1is (Hp)ses—(a} (UP to indexing).fy = phc,
for everyn € N such thatt ¢ C,U d,,C,,. Then the assumptions of Theor&i3are
satisfied. An easy computation bf in Theoremb.13then yields the result. O

Remark. Using Theorenb.2instead of TheorerB.], there is an analogous statement
when Hy)aer is a family of balls of radiuR > 0, for h € [¢](R,0,0) + 4c;(R) +
107, 2R - ¢;(R)].

As in Section5.1, we consider a complete, nonelementary, geometricalliefiRie-
mannian manifoldM, ande an end ofM. Theasymptotic height spectruof the pair
(M, e is
LimsupSpW, €) = { lim suphte(y(t)) : v € T'M} .
t—oo
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In classical Diophantine approximation, thagrange spectruris defined as the subset
of [0, +o0[ consisting of theapproximation constants(x) of an irrational real number
x by rational numberp/q, defined by
oo 2 p
c(x) = Ilmgf |g]“|x — a\.
Using the well known connection between the Diophantine@pmation of real num-
bers by rational numbers and the action of the modular grdgp, () on the upper
halfplane model of the real hyperbolic plane, the asymptodight spectrum of the
modular orbifold PSMZ)\H% is the image of the Lagrange spectrum by the map
t — —log 2t (see for instanceHP3 Theo. 3.4]). Hall Hall, HalZ] showed that the
Lagrange spectrum contains an intervaldOfor somec > 0. The maximal such
interval [0, 1] (which is closed as the Lagrange spectrum is closed, byckesie-
sult, see for instanceClF]), called Hall's ray, was determined by Freimafig (see
also [Slo] where the mag — 1/t has to be applied). The geometric interpretation of
Freiman’s result in our context is that LimsupSp(R&) \H ﬁ) contains the maximal
interval [c, +o0] with
491993569

c=-1lo = —log2
9() g <2221564096F 283748/462

The following result is the asymptotic analog of Coroll&y, and has a completely
similar proof. Theorend.6in the introduction follows, sincec{(cc, 0, 0)+ 4 ¢} (c0) +
107°)/2 ~ 6.7771. The result proves the existence of Hall's ray in oungetoic con-
text, which is much more general than the above particukse;dhere is no assumption
of arithmetic nature, nor of constant curvature naturetHaumore, we obtain a uni-
versal constant (though we do not know the optimal ongYBL which is not too far
from the geometric Freiman constan807.

> ~ 0.817.

Corollary 5.15 Let M be a complete, nonelementary, geometrically finite Rieman-
nian manifold with sectional curvature at mest and dimension at lea8 and lete
be a cusp oM. ThenLimsupSpM, €) contains the interval

[(¢](c0,0,0) + 4¢)(00) +107°)/2,+00] . O
6 Applications to Diophantine approximation in negatively
curved manifolds

In this section, we consider a number of arithmetically defiexamples, illustrating
the last result, Corollar$.15 But we need first to recall some properties and do some
computations in the real and complex hyperbolic spaces.
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6.1 On complex hyperbolic geometry and the Heisenberg group

To facilitate computations, we identify elementsGA~— with their coordinate column
matrices. We will denote bj* = A the adjoint matrix of a complex matrik. In par-
ticular, the standard Hermitian scalar productofv € C™*isw* w = S wiwl.
We also use the notatiow|?> = w* w.

Let Hy: be the Siegel domain model of the complex hyperbokspace, whose under-
lying set is
HY = {(wWo,w) € C x C"1 : 2Rewp — |W|? > 0},
and whose Riemannian metric is
dg = 4 ((dwo — dw* w)(dwp — W* dw) + (2 Rewp — |w|?) dw" dw)
(2Rewp — |w|2)? ’
(see for instancedol, Sect. 4.1]). The complex hyperbolic space has constant hol

morphic sectional curvature-1, hence its real sectional curvatures are bounded be-
tween—1 and—%. Its boundary at infinity is

OsoHY = {(Wo, W) € C x C"1 : 2Rewp — |w|? = 0} U {0} .
The horoballs centered ab in Hf are the subsets
A= {(Wo,w) € C x C" : 2Rewp — |w|? > s},

for s > 0. Note that the subséfll. = {(wo,w) € HY : w = 0} is the right
halfplane model of the real hyperbolic plane with constanvature —1, and it is
totally geodesic irH}.. In particular, the (unit speed) geodesic line startingnfrso,

ending at (00) € 0, Hf. and meeting the horosphefe’; at timet = 0 is the map
Co : R — HY defined bycy : t — (7', 0).

Let g be the nondegenerate Hermitian forrzgz, — 2,2 + |2 of signature (1n) on
C x C" 1 x C with coordinates %, z, z,). This is not the form considered iGpl,
page 67], hence we need to do some computations with it, lsuibétter suited for our
purposes. The Siegel domadiff. embeds in the complex projectivespaceP(C) by
the map (using homogeneous coordinates)

(Wo, W) — [wo:w:1].

Its image is the negative cone qf thatis{[z : z: z)] € Py(C) : q(@,z2z) <
0}. This embedding extends continuously to the boundary atiipfiby mapping
(Wo, W) € O HE — {oco} to [wp : w: 1] andoo to [1 : 0 : O], so that the image of
OxoHP: is the null cone ofy, that is{[z : z: z)] € Pn(C) : o(z0.z z,) = 0}. We use
matrices by blocks in the decompositiGhx C"~1 x C.
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Let

0 0 -1
(-41-) Q( o 10 )
-10 0

be the matrix ofg. If

then

d -g° b
QIXQ=| -0 A — |.
T —-aof a
If Ugq is the group of f + 1) x (n+ 1) invertible matrices with complex coefficients
preserving the Hermitian formg, then X belongs to 4 if and only if X is invertible

with inverseQ~1X*Q. In particular, if X belongs to ), then
cd—d*6+dc=0
ab—~y*y+ba=0

—af* + AA* — a* = |
cb—d*y+da=1
do—AS+T3=0
ba —Ay+3a3=0.

(-424)

\

The group 4 acts projectively orP,(C), preserving the negative cone @fhence it
acts onH¢.. We will denote in the same way the actiond§ on Hf. and the action
of Ug on the image off{. in Pp(C). Itis well known (see for instancesfol]) that Ug
preserves the Riemannian metricléf..

The Heisenberg group Hejs 1 is the real Lie group with the underlying spaG&—1x
R and the group law

((aV)(C/>\/) = (C + </7V+ \/ —21Im C*C/) .
It has a Lie group embedding indJ) defined by

1 ¢ Py
CV)—uy=10 1 ¢ :
o0 1

whose image preserves the pointas well as each horoball centerecbat as an easy
computation shows.
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The Cygan distancdgsee [5ol, page 160]) on Hejgs_1 is the unique left-invariant
distancedcyg such that

deyg((0,0), (¢, V) = (I¢I* +VA)M*.

We introduce themodified Cygan distance’cgg as the unique left-invariant distance
deyg SUch that

deyg((0,0), (¢, V) = ((I¢|* + VA2 + [¢HY2.

It is straightforward to check thaﬂ’Cyg is indeed a distance, in the same way as the
Cygan distance, see for instan¢&R], page 320], and that it is equivalent to the Cygan
distance,

dcyg < dé:yg < \/é dCyg .

Hence, its induced length distance is equivalent to the @aCarathéodory distance
on the Heisenberg group Heis1 (see {Gol, page 161)).

As the action of Heig_1 on 0, H. — {oo} is simply transitive dcyg and d’Cyg define
distances o). H. — {oo}, which are invariant under the action of Hgis;. We also
call these distances theygan distanceind themodified Cygan distanceand again

denote them bylcyg and d’Cyg. Explicitly, these distances are given by
dCyg(UC,v(Q 0)7 uC’,V’ (07 0)) = dCyg((Ca V)7 (</7 \/)) )

and the similar expression for the modified Cygan distance.

Lemma6.1 The distancelcyy (respectivelyd(:yg ) is the unique distance an Hg. —
{oo} invariant under the action dfeis,_1 such thatdcyg((Wo, W), (0, 0)) = /2|wo|
(respectivelyde, ((Wo, W), (0,0)) = /2wo| + |w]?).

Proof. For every (o, w) in 0H¢ — {oo}, note that {o, w) = u¢ (0, 0) if and only
if v=—2Imwp and( = w, and that 2 Revy = |w|2. Hence

Cyg(Uc v(0, 0), (0,0)) = (4 RE Wo + 4 Im? wo)/? + [w|?) /2 = /2 wo| + [w? .
A similar proof gives the result for the Cygan distance. O

In particular, ifn = 2, thendg, 4 is indeed defined as in the statement of Theoten
in the introduction.

Let dgn be the Riemannian distance &ff., and dﬁ{?: = 3 dun be the Riemannian

distance of the Riemannian metricHf. renormalized to have maximal real sectional
curvatures—1.
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Proposition 6.2 For every¢, &' in O HE — {oo}, for everysy > 0, the distance
¢’ for the renormalized Riemannian distardie, between the horobalk#, and the
horoball centered & and tangent to the geoJesic line betweenand¢’ is, if these
horoballs are disjoint,
¢ = —10gdeygl6. €) + 5 10g(D) .

Proof. By invariance of the modified Cygan distance, of each hotaealtered ato,
and of the normalized Riemannian distance, under the acfitire Heisenberg group,
we may assume that = (0,0). Let ((,v) € Heisp—1 such thatf’ = uc(§). As
Uc,v Sends geodesic lines to geodesic lines, and fixeghe geodesic lines (foun )
starting fromoo and ending at’ are time translates ai, y o ¢p, which by an eésy
computation is

UeyoCottim (€7 + (I¢1F =v)/2,0) .

The matrix

1
(-43-) Xo( 0)
100

belongs toUq, as Q‘lng = Xp = Xo‘l, and the corresponding isometry Hi
sendsco € O, Hg to (0,0) € 0. HE.. HenceXq sends the horoballs centeredatto
the horoballs centered at,(@. Lets > 0, an easy computation shows that

Xo e = {(Wo,W) € C x C"1 : 2Rewp — [W|2 > slwp|?} .
For everyt in IR, the pointu, y o Co(t) belongs to the horosphed&d.77; if and only if
2Re €'+ ([¢1* = v)/2) — ¢ = sle™ + (I¢* — i) /2,
that is, if and only if
se? 4 (S22t + L (I +vA) = 0.

The horoballXo7Z; is hence tangent to the geodesic lug, o ¢o if and only if the
above quadratic equation with unknown' has a double solution, that is, if and only
if its discriminantA is 0. An easy computation givesA = s?Vv2 + 4s|¢|?> — 4. Thus,
the horoballXq.7 is tangent tau, y o Co if and only if

2
(-44-) S= .
VICI*+ V24 I¢J?
As the geodesic lineg passes through the point at infinity of both horobaitg, and
Xo#% (which have disjoint interiors ifsy is big enough), the Riemannian distance
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between them is the length of the subsegmentiygbining them. Note thaty meets
X00.7 at (2,0). Hence, by an easy computationlif,

(= dly (o, Xo ) = 3 i (i Xo ) = 5 i (2.0).(2.0)

= §(|Og§ —log g) .
By Equation {44 -), the result follows. O

For everyX in Ug, we will denote byc = ¢(X) its (3, 1)-coefficient in its matrix by
blocks. Note thaiX fixes co if and only if c = 0, by the equations- 42 -). Equiva-

lently, by the same set of equations, a matrix fixesf and only if it is upper triangular
by blocks (this is the main reason why we chose the Hermitiam fj rather than the
one in [Gol]). The following lemma is completely analogous to Progosit3.14 of

[HP4], but as we are using a different quadratic form, we needve giproof.

Lemma 6.3 ForeveryX in Ug and everys > 0 such that the horoballsts andX. 7%
have disjoint interiors, we have

s
dign (75, X5) = log [c| + log 5

Proof. As 7 and X.7Z have disjoint interiorsX does not fixoo, hencec # 0. Left
and right multiplication ofX by an element , for some (, V) in Heip,_; does not
change the coefficiert of X, nor does it changd; n (A, X)) = L dHn (748, XF43),
as ucy preserves the dlstanaﬁ{n and each horosphere centeredoat Hence, as
Heisn_1 acts transitively oro HC — {o0}, we may assume thatco = (0,0) and
that X "1oo = (0,0). As Xoo = (0,0), the coefficientsa, « of X are 0, and hence
by the second equation of42-), the coefficienty is 0. As X~1co = (0,0), the
coefficientsd, o of X are 0, and hence by the fifth equation o42 -), the coefficient
B is 0. Therefore, by the third and fourth equation 4% -), the matrixX has the

c 0O
already did withXg, shows that

0 01
C
form ( 0 AO ) , with A unitary. An easy computation, similar to the one we

X = {(Wo,w) € C x C"1 : 2Rewp — |w|? > s/c|?|wo|?} .
Hence, as above, sincgaz sl—éz as the horoballsZ and X7 have disjoint interiors,
1 1 S
dign (S, X5) = —dHn(%,X%) _dJHI (( ,0), (53 sc ’2, 0)) =|09!C\+|09§ -0
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Let m be a squarefree positive integer, Kt ,, = Q(i/m) be the corresponding
imaginary quadratic number field, and lét_, be the ring of integers oK_n,. An
order & in K_p, is a unitary subring oV, which is a freeZ-module of rank 2. We
use for instanceqox, chap. 7] for a general reference on these objects. An exampl
of an order inK_p, is Z[iy/m], and &_, is the maximal order oK _p,. In particular,

¢ contains aQ-basis ofK_y,, and the field of fractions o’ is K_p,. Let w be an
element of&’ with Imw > 0 such that? = Z[w] = Z + wZ.

As 0 is stable by complex conjugation, the subset

SUg(0) = SUg N #n11(0)
is a discrete subgroup of the semi-simple connected reagtdep Sl = Ug N
SLn+l((C)-

Let .# be a non-zero ideal of’. We denote by'c_» the preimage, by the group mor-
phism SWy(&) — SLy1(0/.#) of reduction modulas, of the parabolic subgroup
of matrices whose first column has all its coefficients 0 ektepfirst one. Asw’/.7

is finite (.# is nonzero),I'c , is a finite index subgroup of §YO). In particular, if
g =70, thenF(CJ = P({Lﬁ = SUQ(@)

Recall that a horobali centered at a poirgtin a CAT(—1) metric spac& is precisely
invariant under a group of isometriek if for every g € I' that does not fix¢, the

intersectiong IS| N H is empty.

Lemma6.4 Forv=2Imuw if Rew € Z, andv = 4 Im w otherwise, the horoball
S, is precisely invariant undérc . Furthermore, ity = 0 = 0_,, then; is
the maximal horoball centered & which is precisely invariant undéic .

Proof. With v as in the statement, the elemeniv/2 belongs to, asi Im w =

w — Rew belongstod if Rew € Z,and 2 Im w = w — @ belongs to& (which is
stable by conjugation). Henaeg, belongs td’c, . It follows for instance fromiiP1,
Prop. 5.7] (which is an easy consequence of the complex hgfeiShimizu inequal-

ity of Kamiya [Kam] and ParkerPal) that the horoballZ%, is precisely invariant (the
Hermitian formq in [HP]] is not the same one as the one above, but it is equivalent
by a permutation of coordinates, hence we may indeed ap{iy,[Prop. 5.7]).

If ¥/ =0 = 0_41, thenXq defined in Equation-@3 -) belongs tol'c » and Imw =
1, Rew € Z. By Lemma6.3 we haved(s72, Xo.7¢2) = 0, hence the last assertion
follows. O

For every &,a,c) € 0 x 0" 1 x 0, let (a, o, c) be the ideal of¢’ generated by, ¢
and the components af.

“eometry & 0pology XX (20XX)



Prescribing the behaviour of geodesics in negative cumeatu 1099

Proposition 6.5 If n=2 and? = 0_n, then

(1) forevery.7, the set of parabolic fixed points Bt is exactly the set of points
in 0. HE: having homogeneous coordinatesPif(C) that are elements i _p,;

(2) the orbitT'c, - oo is exactly the set of points ifi,.H. having homogeneous
coordinates irP,(C) of the form[a: « : ¢] with (a,a,¢) € 0 x "1 x .7,
2 Reat = |af? and(a, a,C) = O;

(3) ifm=1,23,7,11,19,43,67,163 and.¥ = 0, thenI'c , has only one orbit
of parabolic fixed points.

Proof. (1) If .# = &, then the first result is due to Holzapfélgll], see Hol2, page
280]. AsI'c,» has finite index in SY(¢), and as a discrete group and a finite index
subgroup have the same set of parabolic fixed points, thelaish follows.

(2) A result of Feustelfey (see Hol2, page 280], Zin]) says that the map which
associates to a parabolic fixed point of §&') the fractional ideal generated by its
homogeneous coordinates #i_, induces a bijection from the set of orbits under
SUq(&) of parabolic fixed points of Sg(&) to the set of ideal classes &f_,. As

oo corresponds to [1 : 0 : 0] whose coordinates generate thaltfractional ideal,
and asK_p, has class number one if and onlynif=1,2,3,7,11 19,43,67,163 (see
[Cox, Thm. 7.30]), the second claim follows i# = &, as well as claim (3).

1 a a
If M ec I'c s andM(O) = (a),then<a) is the first column of the
0 C C

matrix M, so that the second claim i # ¢ follows by the definition ofl'c . O

6.2 Quaternions and5-dimensional real hyperbolic geometry

Let H be Hamilton’s quaternion algebra ov&, generated as a real vector space
by the standard basis, i1j, k, with productsk = ij = —ji, i? = —1,j% = -1
and unit 1. Recall that theonjugateof the quaterniorz = x; + Xoi + X3j + X4K is

Z = X1 — %ol — Xa] — X4k, which satisfiezw = wz, and that theabsolute valuef z

(or the square root of its reduced norm) is

17 = N@ =VZ=VZz= /X + X5+ X3 + X2 .

The Dieudonné determinar{see Die] and [Asl]) A is the group morphism from the
group GLy(H) of invertible 2x 2 matrices with coefficients ifil to R* , given by

A( a b - lad —acalb| ifa#0
c d/)’ | |cb—cacld| ifc#0
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We will denote by Sk(H) the group of 2x 2 quaternionic matrices with Dieudonné
determinant 1. We refer for instance td]l] for more information on Sg(H). Note
that this notation is different from, hence should not befesed with, the notation
SL(2,C,) for n = 3 andC3 = H of Vahlen and Ahlfors Ahl], see also MWW],
giving a description of the isometry group of the real hyjpéid(n + 1)-space using
the 2'-dimensional real Clifford algebr&,,.

The group Sk(H) acts on the Alexandrov compactificatiéhuU {oo} of H by

(az+ b)(cz+d)™t if z# 00, —c7id

ab _ ~1 TR
<c d>-z{ac if z=o00,c#0

00 otherwise

Itis well known (see for instanc&El]) that PSLy(H) = SLy(H)/{£Id} is the orienta-
tion preserving conformal group of the 4-sphéfe {oo} with its standard conformal
structure defined by the 4-dimensional Euclidean spéte (|). In the upper half-
space modeH]% of the 5-dimensional real hyperbolic space with constantature
—1, consider the coordinateg, () with z € H andt > O (called thevertical coordi-
nate), so thatd..H3, identifies with the union off (for t = 0) and of {cc}. By the
Poincaré extension procedure (see for instaB@a[Sect. 3.3]), the group PS(H)
hence identifies with the group of orientation preservirgristries ofHﬂi. We will
denote the Riemannian distance A by Oygs -

Lemma 6.6 [Hel, Theo. 1.-2)] For eveng = ( 2 b > in SLy(H), and(zt) in

d
H?, the vertical coordinate af(zt) is

t
|cz+ d|2 + |c[2t2

Proof. As [Hel] is an announcement, we give a proof for the sake of compsten
The proof is an adaptation of the proof for §C) in [Beg page 58], the main problem
consists of being careful with the noncommutativitytbf We may assume that=£ O,
as the mag — az6 + ~ for o, 8, in H* x H* x H is a Euclidean similitude of
ratio |o3|. Define theisometric spheref g to be the spher&; of center—c—1d and
radius‘—i| in the Euclidean spacdl( | - |). By the definition of a Euclidean reflection
with respect to a sphere in this Euclidean space, the map

L L+ 1 z+cld
o.Z— — —S T
Ic|2|z+ c1d|?
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is the Euclidean reflection with respect to the sphgyeAn easy computation shows
that the mapp = goo is

z— (b—acld)(zc+d)+ac?,
which is a Euclidean isometry, as— z is, and|cb — cac™*d| = 1. The Poincaré
extension ofy preserves the vertical coordinates, and the Poincarésatenf o is
the Euclidean reflection with respect to the spheré{[@ whose equator i§;. As
g = p o o, the result follows by an easy computation. O

The horoballs centered ab in H% are the subsets# for s > 0, where

e ={(z,t) € Hx]O,4+o0[: t>s}.

Lemma 6.7 For everyg = < 2 b > in SLy(H), and everys > 0 such that the

d
horoballs andg.7# have disjoint interiors, we have

d(/%, 97%) = 2log|c| + 2logs .

Proof. As 77 and g7 have disjoint interiors, we have# 0. The mapg sends the

geodesic line betweenc1d and o to the geodesic line betweern andac™t, hence

the point (-c~1d, s) of intersection of the first line with/# is sent tog(—c~1d, s),

which is the point of intersection of the second line wgtb¢Z. The vertical coordinate
1

of g(—c1d,s) is o% by the previous lemm@.6. Hence the result follows by an easy

computation of hyperbolic distances. O

We will use [Vig] and MR, Section 2] as general references on quaternion algebras.
Let A(Q) be a quaternion algebra ov@r, which isramifiedover R, that is, the real
algebraA(Q) ®q R is isomorphic to Hamilton’s algebrél. We identify A(Q) ®g R

and H by any such isomorphism. Lef’ be anorder of A(Q), that is an unitary
subring which is a finitely generatéfi-module generating th@-vector spaceA(Q).

For instance, if

AQ) = {x1 + Xl +Xa] +xak € H 1 Xq,%2,%3, % € Q},
we can take
0" = {Xg + %ol + %3] + X4k € H : Xq1,%2,X3, X4 € Z},
or the Hurwitz ring
1+i+j+Kk

0 =
xa 5

+ Xol 4 Xg] + Xak € H © X1,X2,X3, X4 € Z}

“eometry & 0pology XX (20XX)



1102 Jouni Parkkonen and Frédéric Paulin

which is a maximal order. Let#’ be a non-zero two-sided ideal in the riag.

We denote byl" »/ the preimage in the group morphism $&’) — GLy(0"/.9") of
reduction modula#’ of the subgroup of upper triangular matrices. &5 .#" is finite
(-’ is nonzero) ' , is a finite index subgroup of S(2).

Lemma 6.8 The horoball# is precisely invariant undér .. Furthermore, it?' =
0', thens# is the maximal horoball centered &t which is precisely invariant under
T .

Proof. The element< é 1 > belongs tal” . It follows 1091]Kel2 that the horoball

7] is precisely invariant.

If .#" = ¢’,theng = ( 1 é > belongstd’ ,/, and by Lemm&®.7, d(4, 974) =

0, hence the last assertion follows. O

6.3 On arithmetic lattices

The following result follows from the work of Borel and Hani€Chandra BHC] and

of Borel [Bor2, Theo. 1.10] (seeHor1] for an elementary presentation of semisimple
algebraic groups). Two subgroupsandB of a groupC are said to beommensurable
in this theorem ifA N B has finite index in botA andB.

Theorem 6.9 [BHC, BorZ] Let G be a connected semisimple algebraic group defined
overQ of R-rank one and® be a minimal parabolic subgroup Gf defined overQ,

let G = G(R)g andP = G N P(R), let I" be a subgroup o commensurable to
G(Z) N G, thenT is a lattice inG, and the set of parabolic fixed pointsofon G/P

is G(Q)P. O

Such a subgroup' will be called anarithmetic latticein G. Note that theR-rank
assumption is equivalent to the fact that for every (or egjaivtly any) maximal com-
pact subgrougK of the Lie groupG, the associated symmetric spae= G/K may
be endowed with &-invariant Riemannian metric with sectional curvature atstn
—1. Such a metric is then unique up to multiplication by a pesitonstant, andP
is the stabilizer of a point in the boundary at infinilix, X. The orbital map at this
point hence induces &-equivariant homeomorphism betwe&jiP and d,,X. Note
that there is a terminology problem: by a parabolic elemest,mean an isometry
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of X having a unique fixed point (calledparabolic fixed poifton X U 0., X, that
belongs tod,. X, but the set of real points of a parabolic subgrougsoélso contains
nonparabolic elements !

Examples. In (1) and (2) below, letm be a squarefree positive integer, and let
# be a non-zero ideal in an order in the ring of integers&_y, of the imaginary
quadratic number fiel&K_,, = Q(iv/m). Let (L, w) be a basis oV as aZ-module.

It is also a basis oK_, as aQ-vector space, and of as anR-vector space. If
X1,...,%, Y1, ..,Yn are real numbers, as is a quadratic integer, note that

n
H(XI +WY|) = P(X17' . ,XmYL- . 7y|’l) +WQ(X1, e 7X|'17y17 e 7y|’l)
i=1
whereP and Q are polynomials irnxs, ..., Xn, Y1, . .., Yo With integer coefficients.
(1) By writing each coefficient of @ x n complex matrixX in the basis (lv) over
R, the equation deX = 1 gives a system of two polynomial equations with integer
coefficients, with unknown the coordinates of the coeffitsesf X in (1, w).

Hence, there exists an algebraic gra@plefined overQ such thatG(Z) = SLy(0),
G(Q) = SLy(K_n) and G(R) = SLy(C). As the Lie groupG(R) is connected and
semisimple, with associated symmetric space the real hgper3-space, the alge-
braic groupG is connected, semisimple witR-rank one. LetP be the algebraic
subgroup ofG corresponding to the upper triangular subgroup of 2 matrices, so
that P is the stabilizer of the point at infinitgo in the upper halfspace model Hﬁ’é.

Let I'r » be the finite index subgroup of the group 54), which is the preimage,
by the group morphism Si(0) — SLy(&'/.#) of reduction modulos, of the sub-

group of upper triangular matrices. By Theorér8, the subgroud’'r »~ is a lattice in

SL,(C), and its set of parabolic fixed points is

‘@FR,] - SLZ(K_m) 00 = K_m U {OO},

aS( (1) _ol ) and< X X(_)l >’f0reveryxin K-m—{0}, are elements of SUKm)

sendingoo to 0 andx respectively.

Note that if ¥ = 0 = O_p, thenT'g » = PSLy(0_p) is a Bianchi group, which
is well-known to be a lattice in PSIC) (see for instanceMR]). The fact that
L@pRﬁim = K_mU{oo} is also proven inEGM, Prop. 2.2, page 314].

(2) Recall thatN(w) = ww and Tr{wv) = w + @ = 2 Rew are integers, as is an
algebraic integer. Ik, y, X,y are real numbers, note that

X+ @Y)(X 4+ wy) = (XX + N(w) yY + Tr(w) yX) + w(xy —yX) .
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Recall that the matrixQ (introduced in Equation-@1-)) has integer coefficients.
Hence by writing each coefficient of a ¢ 1) x (n + 1) complex matrixX in the
basis (1w) over R, the system of equations given by dét= 1 andX* QX = Q
becomes a system of B({- 1) + 1) polynomial equations with integer coefficients,
with unknown the coordinates of the coefficientaoin (1, w).

Therefore there exists an algebraic gr@eplefined overQ such thatG(Z) = SUq(0),
G(Q) = SUg(K_m) and G(R) = SUq. As the Lie groupG(R) is connected and
semisimple, with associated symmetric space the compleerbylic n-space, the
algebraic groupG is connected, semisimple witR-rank one. LetP be the alge-
braic subgroup ofG corresponding to the upper triangular by blocks subgroup of
(n+ 1) x (n + 1) matrices, so thaP is the stabilizer of the point at infinityo in

the Siegel domain model @&, or of the point [1 : 0 : O] in the projective model.

By Theorem6.9, the groupl'c, » defined in Sectio.1is a lattice in Slg, and its set
of parabolic fixed points is#r. , = SUg(K-m) - co. By Witt's theorem, Slg(K_m)

acts transitively on the isotropic lines K_,"** for the Hermitian formg. Hence
Pre, =:2:2] € Py(Kom) @ A(20,22) =0}. If n=2and0 = 0_n, we

recover Propositios.5(1).

(3) Let.#’ be a non-zero two-sided ideal in an ord@t of a quaternion algebra(Q)
over Q such thatA(Q) ®p R = H. For every fieldK containingQ, defineA(K) =
AQ) ®g K. Let (e1, e, e3,e4) be a basis o/’ as aZ-module. It is also a basis of
A(K) as aK-vector space for every field containingQ.

If X = X1 + X2l + X3 + X4K is an element irHl, written in the standard basis, {1}, k),
let Trx = 2x; be its reduced trace, amd(X) = X2 + x3 + x2 + x4 be its reduced norm.

A 2 x 2 matrix X = ( i b > with coefficients inH has Dieudonné determinant 1

d
if and only if

(-45-) N(ad) + N(bc) — Tr(acdb) = 1

(see for instanceel, page 1085]). The mag&* — R defined by X1, X2, X3, X4) —

N(x1€1 + X2€2 + X3€3 + Xa€4) AN K1, X2, X3, Xa) — Tr(X1€1 + X2€2 + X3€3 + X4€4) are
polynomial maps irxy, o, X3, X4 With rational coefficients.

By writing each coefficienta, b,c,d of a 2 x 2 matrix X with coefficients inA(K)
in the basis &, e, e3, &4) for any fieldK, the equation-(45 -) becomes a polynomial
equation with coefficients i), with unknown the coordinates of the coefficientsxof

in (er, e, €3,€4).
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Hence there exists an algebraic groBpdefined overQ such thatG(Z) = SLy(0”)
and G(K) = SLy(A(K)) for every fieldK containing@Q. As the Lie groupG(R) =
SLy(H) is connected and semisimple, with associated symmetaicesihe real hyper-
bolic 5-space, the algebraic gro@pis connected, semisimple witR-rank one. Let

P be the algebraic subgroup & corresponding to the upper triangular matrices, so
that P is the stabilizer of the point at infinitgo in the upper halfspace model E]f’{.

Let ", be the group introduced in Sectiér®, which has finite index in Si(¢”). By
Theorem6.9, the subgroufd” » is a lattice in Sk(H), and its set of parabolic fixed
points is Zr ,, = SLa(A(Q)) - co. As A(Q) is a division algebra, the same argument
as for example (1) shows thatr ,, = A(Q) U {oo}.

6.4 The ubiquity of Hall rays

In this subsection, we give applications of our geometriiits from Sectiorb to the
framework of Diophantine approximation in negatively eeaivmanifolds, introduced
in [HP3 HP4], to which we refer for notation and background. In pari@écuve will
consider arithmetically defined examples. See also thequewvorks of For, Sel,
among many others.

Let M be a complete, nonelementary, geometrically finite Rienaanmanifold with
sectional curvature at most1 and dimension at least 3. Let: M — M be a
universal Riemannian covering, with covering grolip Let e be a cusp oM, and,
as in Sectiorb.l, let Ve be a fixed Margulis neighbourhood ef He a horoball in
M with 7(He) = Ve and & the point at infinity ofHe. Note thatVe is a Margulis
neighbourhood iH¢ is precisely invariant unddr. In the previous worksHP3 HP4],

it was required that/, is the maximal Margulis neighbourhood, as this makes the
constructions independent of the choice\gf. But since it is not always easy to
determine the maximal Margulis neighbourhood of a cusp,aifl is not necessary
for the statements, we will fix some choice @ (or equivalentlyHg) which is not
necessarily maximal.

Three (classes of) examples. Many of these examples are in fact orbifolds rather
than manifolds, but the extension to this context is obvidMe use the same notation
as in the examples of Subsectiér3.

(1) LetI'g » be the finite index subgroup of the group £4&), which is the preim-
age, by the group morphism gl&) — SlLy(¢/.#) of reduction modulo.#, of the
subgroup of upper triangular matrices. The quotidnt FRJ\H% is a finite volume
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real hyperbolic orbifold. Letr : Hf{ — M be the canonical projectiorg the cusp
of M corresponding t&e = oo, and letHe be the horoball of points of Euclidean

height at least 1. Az{ é i > belongs tal'g ~, itis well known thatHe is precisely
invariant unded’r . Furthermore, if.¥ = &, then _01 0 belongs tol'g .~

henceHe is maximal. For more details, seldP3, end of Section 5.

(2) LetI'c, » be the finite index subgroup of $UY) introduced in Sectio®.1, that
acts by isometries on the Siegel domain mdHgl of the complex hyperbolin-space
with (constant) holomorphic sectional curvaturel. Let M be the finite volume
complex hyperbolic orbifold'c ,\H, which is endowed with the quotient of the
renormalized Riemannian dlstandgrIn in order for its sectional curvatures to be at
most—1. Letw : HX — M be the canonical projectiorg be the cusp oM corre-
sponding toée = oo, and letHe be the horoball’ ., if Rew € Z, and 724 im.
otherwise, which is precisely invariant undeg , by Lemma6.4 (and maximal if
I =0 = 0_1).

(3) Let.#’ be a non-zero two-sided ideal in an ord@t of a quaternion algebra(Q)

over Q such thatA(Q) ®g R = H, andI" »» be the finite index subgroup of ${&”)

introduced in SectioB.2, that acts by isometries on the upper halfspace mH%ebf

the real hyperbolic 5-space with (constant) sectionalature —1. LetM be the finite
volume real hyperbolic orbifold” ,/\H3, 7 : Hi — M the canonical projectiorg
the cusp ofM corresponding t&. = oo, and letHe be the horoball’7i, which is
precisely invariant under ,» by Lemma6.8 (and maximal if.#’ = ¢").

Let thelink of e in M, Lke = Lke(M), be the space of locally geodesic lines (up
to translation at the source) starting froenin M that are nonwandering (i.e. such
that each of them accumulates in some compact subddf) of et Rat be the space
of locally geodesic lines starting from and converging te. Normalize the locally
geodesic lines in LURat so that their first intersection withVe is at time 0. Endow
Lke U Rat with the compact-open topology. L&l ¢ 9..M be the limit set ofl",
Zr C AT the set of parabolic fixed points @f, and letl", be the stabilizer ofe in

I'. Then the map$ée — {{e} — Rat and AT’ — & — Lke, which associate t& the
projection inM by 7 of the geodesic line starting frofy and ending ak, induce a
bijection ', \(I'ée — {&e}) — Rat and a homeomorphism

T \(AT — 2r) — Lke .

We identify these spaces by these maps. Note thatLRat is compact if and only
if M has only one cusp, and that Ras dense in Lk U Rat (as I'¢ is dense in
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AT'"). Diophantine approximation it (see HP3 HP4, HPY) studies the rate of
convergence of sequences of points ingRatgiven points in LK.

For everyr in Rat, let D(r), called thedepthof r, be the length of the subsegment of
r between the first and the last meeting points wiltfy.

Examples. (1) ConsiderM = T’y ,\H3. Then Pry , C CU{oo} is exactly
K_mU{oo}, by the example (1) of Sectidh3. Thus, Lk(M) = (I'r_.s)oc \(C—K_m).
In a commutative unitary rindR, we denote by(ps,...,px) the ideal generated by
P1,---,Pk € R. Itis easy to prove (see for instandeGM, Lem. 2.1, page 314]) that
Rat is the set of elements= p/q (modulo {'r,»)) With (p,q) € & x .# such that
(p,q) = 0. Furthermore (seeHP3 Lem. 2.10])

D(r) = 2log|q| -

(2) ConsiderM = TI'c ,\H. Let 2(R) be the real quadrid, Hf — {oc}. By

considering a basis d{_, over Q, it is easy to see tha®(R) is the set ofR -points

of a quadric2 defined overQ (which depends om), whose set2(Q) of Q-points is
QR)N(K_m X KETnl). We have Lk = (I'c, 7)o \(Z(R) — Zr. ). By the example
(2) of Sectior6.3, we haveZr, , = 2(Q) U {oo}.

Then Rat is the quotient modulol{c, )~ of the subset 0f2(Q) of points of the form

(a/c, a/c) with (a, o, €) € 0 x "1 x .7 such that there exidt, d, 3, v, §, A matrices
a ~" b

of the appropriate size such th(t a A 0§ ) belongs tol'c . By Proposition
c ¢ d

6.5 (2), this existence requirement is equivalent to the reguant thatg(a, o, ¢) =

0 and (a,a,c) = 0, if n = 2 and¢ = 0_n. By Proposition6.5 (3), Rat =

(e, 7)e\2(Q)ifN=2,9=0=0_nandm=1,2,3,7,11, 19,43 67, 163.

If r € Rat is of the form @/c,a/c) (modulo (¢, ~)~) as above, then by Lemma

6.3, we have
log Imw if Rew € Z,

D(r) = log|c]| +{ log(2 Imw) otherwise

(3) ConsiderM = T ,/\H3. We haveZr ., = A(Q) U {oc}, by the example (3) of
Section6.3. Hence Lk = (I' »/) oo \(H — A(Q)).

It is easy to see that Rats the set of elements = pg~! (modulo " s)s) With
(p,q) € 0" x (#' — {0}) such that there exists s € ¢’ with |gqr — qpq's| = 1.
Furthermore, by Lemm@.7, we have

D(r) = 2loglq] -
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Thecuspidal distance /gy, ') of ~,~" in Lke U Rat is the minimum of theds(¥, /)

for 5,~' two lifts of v,~/ to M starting from&e, whered,(7,~) is the greatest lower
bound ofr > 0 such that the horosphere centeredybtoo), at signed distance
—log 2r from &He on the geodesic linec}, 7(+o0)[, meetsy’ (see HP3 Sect. 2.1]).
Though not necessarily an actual distarldzei,s equivalent to the Hamenstadt distance
(see SubsectioB.1and HP3 Rem. 2.6]).

Examples. (1) If M has constant curvaturel, if one identifies Lk U Rat with

a subset ofoHe by the first intersection point, thed, is the induced Riemannian
distance ondHe, which is Euclidean (seeHP3 Sect. 2.1]); in particular, iM =

I'r ~\H3 or M = I' ,,\H2, thend; is the quotient of the standard Euclidean distance
on Lke U Rat identified with a subset ofl{z +)\C or (I s/)o \H.

(2) If M is Hermitian with constant holomorphic sectional curvaturl, thend; is
no longer Riemannian, but by Propositiér?, it is a multiple of the modified Cygan
distancedg,,. In particular, ifM = I'c_»\Hg, thend is the quotient by T(c .»)
acting ond,.H. of the distances

{ 57 doyg  If ReweZ
1 / i
eI deyg Otherwise.

Remark. The claim in the first paragraph of Section 3.11P4] (where the authors
only considered the case= 1 and.¥ = ¢ = ¢_1) that the cuspidal distance coin-
cides with the Hamenstéadt distance is incorrect. But evatgment remains correct.
Since the Cygan distance and the modified Cygan distanceqareatent, this does
not change the statement of the main results, Theorems.2,13.3, and 3.5 ofiP4.
Sincedg,, < v/2 deyg andd, = 3dg, by the above displayed formula with = i,
so thatdcyg > V2 d.,, Theorem 3.6 of fiP4 also remains correct, using in its proof
the inequalitydcyq > v/2 d, instead of the equalitdcyg = v/2 d., mentionned there.

With M as in the beginning of this subsection, for evarin Lke, define theapproxi-
mation constant ) of x as

= liminf d. e
C(X) reRalbn,]I%(r)—»oo e(X, r)

TheLagrange spectrurof M with respect tce is the subset §p4(M, €) of R consist-
ing of the constants(x) for x in Lke. It is shown in HPJ that

e C(x) is well defined for any in Lke (as Rag is dense in LkURat and{D(r) :
r € Rat} is a discrete subset @& with finite multiplicities),
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e C(x) is finite for anyx in Lke (asx is nonwandering). (Note that ¥fis a locally
geodesic line starting frore in M that converges into a cusp ™, then the
same formula would yield(y) = +o0.)

o the least upper bound of Sp(M, €), denoted byKy ¢ and called theHurwitz
constantof (M, e), is finite.

In particular, Sp,g(M, €) C [0,Kw ¢]. The following result tells us that the Lagrange
spectrum contains a nontrivial initial interval, [}, with a universal lower bound oa
(whose optimal value we do not know).

Theorem 6.10 LetM be a complete, nonelementary, geometrically finite Rienzamn
manifold with sectional curvature at mostl and dimension at lea&, and lete be
a cusp oM. The Lagrange spectrup ,4(M, €) contains the intervd0 , 0.00057]
In particular,Ky e > 0.00057.

Proof. By [HPJ, the maph — %e—h maps the asymptotic height spectrum bijectively
onto the Lagrange spectrum. We apply Corollar¥5and the computation above it.
O

A precise version of this theorem is stated as corollaire i3 when M is a real
or complex hyperbolic manifold. Note that the constantof [PPJ, which satisfies
c, = e /2 with h, ~ 6.7771, is approximatively .00057, and not 0337 as
indicated by mistake inHP3. Theoreml.7 in the introduction follows immediately,
by the first example discussed in this section. By varyingtleauniform) arithmetic
lattices in the isometry group of a negatively curved synmimspace (see for instance
[MR, MWW]), other arithmetic applications are possible. We onlyestavo of them
in what follows, see alsdFP3.

Let .#’ be a non-zero two-sided ideal in an ord&rof a quaternion algebra(Q) over
Q ramifying overR, and letN be the reduced norm oA(R) = A(Q) ®g R (see for
instance Yig], and Sectior6.2). For everyx € A(R) — A(Q), define theapproximation
constantof x by

o(x) = lim inf N(QNX — pq 1)z |

(p,a) € 0" x.#" . r,5€0’ N(ar—qgpq—1s)=1, N(q)—oo

and theHamilton-Lagrange spectrutfor the approximation of elements &f by ele-
ments of¢”.#'~1 as the subset @& consisting of thee(x) for x € A(R) — A(Q). Note
that c(x) is finite if x ¢ A(Q), as thenx is not a parabolic fixed point df ». Apply
Theorem6.10to M =T \H]% with the above discussions of the third example to get
the following result.
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Theorem 6.11 The Hamilton-Lagrange spectra contain the intef9al0.00057] [

In the case when?’ = ¢’ and ¢’ is the Hurwitz maximal order in Hamilton’s quater-
nion algebraA(Q) C H (see SubsectioB.2), A. Schmidt Bch3 proved that the
Hamilton-Lagrange spectrum contaig& Sp, where Sp is the classical Lagrange
spectrum for the approximation of real numbers by rationahbers. As Sg con-
tains [Q x] where 1 is Freiman’s constant (see the end of Subsedid)) this proves
that the Hamilton-Lagrange spectrum in this case conthmsiterval [00.312]. Note
that the fact that our approximation constant coincideh thi¢ inverse of A. Schmidt’'s
approximation constant follows fronsghl Thm.5]

Let m be a squarefree positive integer, 1€t be a non-zero ideal in an ordér in the
ring of integers&_p, of the imaginary quadratic number fie(@(i\/m), and letw be
an element of0_p,, with Imw > 0 such thatd’ = Z + wZ. Let &4 » be the set of
a ~" b
(a «,C) in 0 x #" 1 x 7 such that there exists a matrix of the foqma A j3
c ¢ d
that belongs td'c, . If n=2 and& = 0_p,, then, as seen previously,

o ={@ 0,00 c0x It x 7 ql@a0=0, (aac) =0}.

We do not know if this is the case for eveny.7, & as above. For every ¢ 2(R) —
2(Q), define theapproximation constartf x by

= lim inf dt

c(x) agomint |c| deyg(%, (a/c, a/0)) ,

and theHeisenberg-Lagrange spectrurior the approximation of elements ¢?(R)
by elements of (a/c,/c) : (a,a,C) € & »} C 2(Q), as the subset dk consist-
ing of thec(x) for x € 2(R) — 2(Q). Note thatc(x) is finite if x ¢ 2(Q), as thenx
is not a parabolic fixed point df ¢ . Our last result follows from Theore@10and
the previous discussions of the second example.

Theorem 6.12 The Heisenberg-Lagrange spectra contain the inte{ﬁ/al\o/'%] if
Rew € Z and[0, 299%8] ptherwise. O

Vvimw

Theoreml.8in the introduction follows from this one (and from Lem®\d) by taking
m=1,n=2,¥ =0 = 0_q,as then Imv = 1.
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