
Counting orbits of integral pointsin families of a�ne homogeneous varietiesand diagonal �owsAlexander Gorodnik Frédéri PaulinOtober 25, 2011AbstratIn this paper, we study the distribution of integral points on parametri familiesof a�ne homogeneous varieties. By the work of Borel and Harish-Chandra, the setof integral points on eah suh variety onsists of �nitely many orbits of arithmetigroups, and we establish an asymptoti formula (on average) for the number of theorbits indexed by their Siegel weights. In partiular, we dedue asymptoti formulasfor the number of inequivalent integral representations by deomposable forms and bynorm forms in division algebras, and for the weighted number of equivalene lasses ofintegral points on setions of quadrati surfaes. Our arguments use the exponentialmixing property of diagonal �ows on homogeneous spaes. 11 IntrodutionLet L be a redutive linear algebrai group de�ned and anisotropi over Q, let π : L →
GL(V) be a rational linear representation of L de�ned over Q and let Λ be a Z-lattie in
V(Q) invariant under L(Z). For every v ∈ V(Q) whose orbit Xv under L is Zariski-losedin V, Borel-Harish-Chandra's �niteness theorem [BHC, Theo. 6.9℄ says that the numberof orbits of L(Z) in Xv ∩ Λ is �nite. The aim of this paper is to study the asymptotibehaviour of this number as v tends to ∞ in V(Q), in appropriate averages (for instanein order to take into aount the fat that Xv ∩ Λ ould be empty). We will ount theorbits using appropriate weights. For every u ∈ Xv(Q) with stabiliser Lu in L, de�ne theSiegel weight of u as

wL,π(u) =
vol

(
Lu(Z)\Lu(R)

)

vol
(
L(Z)\L(R)

) ,using Weil's onvention for the normalisation of the measures on Lu(R) (depending on thehoie of a left Haar measure on L(R) and of a L(R)-invariant measure on Xv(R), seeSetion 2). These weights generalise the ones ouring in Siegel's weight formula when L isan orthogonal group (see for instane [Sie, ERS℄, and [Vos, Chap. 5℄ for general L) and areused in many works (see for instane [BR, Oh1℄; ontrarily to the last two referenes, wewill also need the redutive non semisimple ase for our appliations). We do not assume
Xv(R) to be an a�ne symmetri spae, ontrarily to [DRS℄ and many other referenes.1Keywords: integral point, homogeneous variety, Siegel weight, ounting, deomposable form, normform, diagonalisable �ow, mixing, exponential deay of orrelation. AMS odes: 37A17, 37A45, 14M17,20G20, 14G05, 11E20 1



In order to motivate the statement of our main result, let us give two appliations usingthe above setting.The �rst one is an asymptoti estimate on the number of inequivalent representationsof integers by deomposable forms. Reall that a deomposable form F (x1, . . . , xn) is apolynomial in n variables with oe�ients in Q whih is the produt of d linear forms withoe�ients in Q. In partiular, a norm form is a deomposable form NK/Q(α1x1 + · · · +
αnxn) where α1, . . . , αn are �xed elements in a number �eld K of degree d and x1, . . . , xnare rational variables. We will work only with d = n. The aim is not to study the existeneof integral solutions to one equation F (x) = m (see for instane [CTX℄, building on work ofJ. Sansu, J.-L. Colliot-Thélène, D. Harari, R. Heath-Brown, A. Skorobogatov, M. Borovoi,C. Demarhe and others for the existene of rational solutions, see for instane [Pey℄), butto onsider the inequality |F (x)| ≤ m whih goes around the existene problem. There aremany works on integral solutions to deomposable form inequalities, and in partiular fornorm forms, by W. M. Shmidt, K. Györy, J.-H. Evertse, H. P. Shlikewei, J. Thunder,Z. Chen, M. Ru, see for instane [Sh, Gyö, Thu, Ko℄ and their referenes. But, besidesthe frequent assumption that d > n, most of these referenes work under a hypothesis(nondegenerate as in [Sh, Gyö℄ or of �nite type as in [Thu℄) whih is not satis�ed in oursituation, sine the number of our solutions might be in�nite. As explained in [Sh℄, anatural approah is to ount the solutions by families of them, in our ase by orbits ofnaturally ating arithmeti groups. Another approah, formulated by Linnik and Sarnak,and espeially developed in [EO, GO1, Oh1℄, is to use dilations of relatively ompatsubsets. For the �niteness of this number of orbits, see for instane [Ko, Theo. 2.14.1,page 63℄.Theorem 1 Let n ≥ 2, let F ∈ Q[x1, . . . , xn] be a rational polynomial in n variables, whihis irreduible over Q, splits as a produt of n linearly independant over C linear forms withoe�ients in Q, and satis�es F−1(]0,+∞[) 6= ∅. Let ΓF = {g ∈ SLn(Z) : F ◦ g = F},and for every k ∈ Q, let Σk be the set of x ∈ Zn suh that F (x) = k. Then there exist
c = c(F ) > 0 and δ = δ(n) ∈ ]0, 1[ suh that, as r → +∞,

∑

k∈[1,r]

Card
(
ΓF\Σk

)
= c r +O

(
rδ
)
.With L the stabiliser of F in SLn(C), V = Cn, Λ = Zn and π the inlusion of L in

GL(V), this result �ts into the above program, sine ΓF = L(Z), the algebrai torus Lis anisotropi over Q (see Lemma 19) and ats simply transitively on the a�ne subva-riety of V with equation F (x) = k if k 6= 0, noting that the Siegel weights wL,π(u) =
1/ vol

(
L(Z)\L(R)

) are then onstant. We will expliit c in Setion 3.1.When K is a number �eld of degree n with ring of integers OK , taking an integral basis
(α1, . . . , αn) of K, and F (x1, . . . , xn) the partiular norm form NK/Q(α1x1 + · · ·+ αnxn),we reover the well-known ounting result of the number of nonzero integral ideals of OKwith trivial ideal lass and norm at most s (see for instane [Lan, Theorem 3, page 132℄),giving

{a ideal in OK : NK/Q(a) ≤ s} =
2r1(2π)r2RKhK

ωK

√
|DK |

s+O(s1−ǫ) , (1)where r1 and r2 are the numbers of real and omplex onjugate embeddings of K, RK isthe regulator of K, hK is the ideal lass number of K, ωK is the number of roots of unityof OK , DK is the disriminant of K and ǫ = 1/n.2



The seond appliation is an asymptoti estimate on the (weighted) number of inequiv-alent integral points on hyperplane setions of a�ne quadrati surfaes. See for instane[Sie, DRS, ERS, BR, EMS, GO1, Oh1, EO, GO2℄, as well as the surveys [Bab, Oh2℄, forounting results of integral or rational points in a�ne homogeneous varieties. Our resultis quite di�erent, sine we are ounting whole orbits, weighted by the Siegel weights, ofintegral points. Another approah to properties of sums of Siegel weights is to expressthem as produt of loal densities, using the Siegel weight formula as in [Sie, ERS, Oh1℄.But we believe that our results do not follow from this formula in any obvious way, ando�er a really new approah to the asymptoti of Siegel weights.Theorem 2 Let n ≥ 3, let q : Cn → C be a nondegenerate rational quadrati form,whih is isotropi over Q, let ℓ : Cn → C be a nonzero rational linear form, and let
L = {g ∈ SLn(C) : q ◦ g = q, ℓ ◦ g = ℓ}. For every k ∈ Q, let Σk be the set of primitive
x ∈ Zn suh that q(x) = 0 and ℓ(x) = k. Assume that the restrition of q to the kernel of ℓis nondegenerate and anisotropi over Q. Then there exist c = c(q, ℓ) > 0 and δ = δ(q) > 0suh that, as r → +∞,

∑

k∈[1,r]

∑

[u]∈(L(Z)∩L(R)0)\Σk

vol
(
(Lu(Z) ∩ L(R)0)\(Lu ∩ L(R)0)

)
= c rn−2 +O

(
rn−2−δ

)
.This result also �ts into the above program (up to a slight modi�ation of the Siegelweights, see Setion 2), by taking V = Cn, Λ = Zn, and π : L → GL(V) the inlusionmap, noting that L is semisimple, and de�ned and anisotropi over Q as a onsequene ofthe assumptions (see Setion 3.2 for details, where we also expliit c).We will prove the above two results in Setion 3. As another appliation of our mainresult, we also give there an asymptoti formula for the number of orbits under the groupof integral units of the integral points of given norm in a division algebra over Q.A partiular ase of the main result of this paper is the following one.Theorem 3 Let G be a simply onneted redutive linear algebrai group de�ned over Q,without nontrivial Q-haraters. Let P be a maximal paraboli subgroup of G de�ned over

Q, and let P = AMU be a relative Langlands deomposition of P, suh that A(R)0 is aone-parameter subgroup (as)s∈R, with λ = log det (Ad a1)|U > 0, where U is the Lie algebraof U(R). Let ρ : G → GL(V) be a rational representation of G de�ned over Q suhthat there exists v0 ∈ V(Q) whose stabiliser in G is MU. Let L be a redutive algebraisubgroup of G de�ned and anisotropi over Q. Assume that LP is Zariski-open in G andthat for every s ∈ R, the orbit Xs = ρ(Las)v0 is Zariski-losed in V.Let Λ be a Z-lattie in V(Q) invariant under G(Z), and let Λprim be the subset ofindivisible elements of Λ. Assume ρ to be irreduible over C. Then there exist c, δ > 0suh that, as t tends to +∞,
∑

0≤s≤t

∑

[x]∈L(Z)\(Xs∩Λprim)

wL,ρ|L(x) = c eλt +O(e(λ−δ)t) .More preisely, let G,P,A,M,U,V,L, ρ, v0, (as)s∈R be as above (ρ not neessarilyirreduible). Endow G(R) with a left-invariant Riemannian metri, for whih the Liealgebras of MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is ontained in the Lie algebra of L(R).3



Theorem 4 There exists δ > 0 suh that, as t tends to +∞,
∑

0≤s≤t

∑

[x]∈L(Z)\(ρ(L(R)as)v0∩ρ(G(Z))v0)

wL,ρ|L(x)

=
vol

(
MU(Z)\MU(R)

)
vol(aZ1\A(R)0)

λ vol(G(Z)\G(R)
eλt +O(e(λ−δ)t) .We will prove a more general version of this result in Setion 2 without the maximalityondition on P, involving the more elaborate root data of P, and without the simpleonnetedness assumption on G (up to a slight modi�ation of the Siegel weights), seeTheorem 6 and Theorem 16. We are using the proof of the main result of [PP1℄ as aguideline.Another main di�erene with the ounting results of [EMS, Oh1, EO, GO2℄ is thatthese papers are using the dynamis of unipotent �ows, as instead we are using here themixing property with exponential deay of orrelations of diagonalisable �ows, in the spiritof [KM1℄ (see also [EM, BO℄).Aknowledgment. We thank Jean-Louis Colliot-Thélène for disussions of our deomposableform result. The seond author thanks the University of Bristol for a very fruitful short stay wherethis paper was oneived. The �rst author thanks the University Paris-Sud 11 for a month ofinvited professor where this paper was ompleted.2 Counting Siegel weightsHere are a few notational onventions. By linear algebrai group G

′ de�ned over a sub�eld
k of C, we mean a subgroup of GLN (C) for some N ∈ N whih is a losed algebrai subsetof MN (C) de�ned over k, and we de�ne G

′(Z) = G
′ ∩GLN (Z). For every linear algebraigroup G

′ de�ned over R, we denote by G
′(R)0 the identity omponent of the Lie group ofreal points of G′. We denote by log the natural logarithm.Let us �rst reall Weil's normalisation of measures on homogeneous spaes. Let G′be a unimodular real Lie group, endowed with a transitive smooth left ation of G′ on asmooth manifold X ′, with unimodular stabilisers. A triple (νG′ , νX′ , (νG′

x
)x∈X′) of a leftHaar measure νG′ on G′, a left-invariant (Borel, positive, regular) measure νX′ on X ′ andof a left Haar measure νG′

x
on the stabiliser G′

x of every x ∈ X ′, is ompatible if, for every
x ∈ X ′, for every f : G′ → R ontinuous with ompat support, with fx : X ′ → R the map(well) de�ned by gx 7→

∫
h∈G′

x
f(gh) dνG′

x
(h) for every g ∈ G, we have

∫

G′

f dνG′ =

∫

X′

fx dνX′ .Weil proved (see for instane [Wei, �9℄) that, for every left-invariant measure νX′ on X ′,then
• for every left Haar measure νG′ on G′, there exists a unique ompatible triple

(νG′ , νX′ , (νG′
x
)x∈X′).

• for every x0 ∈ X ′, for every left Haar measure ν0 on G′
x0
, there exists a uniqueompatible triple (νG′ , νX′ , (νG′

x
)x∈X′) with νG′

x0
= ν0.The following remark should be well-known, though we did not found a preise refer-ene. 4



Lemma 5 If (νG′ , νX′ , (νG′
x
)x∈X′) is a ompatible triple, then for every ℓ ∈ G′ and x ∈ X ′,with iℓ : h 7→ ℓhℓ−1 the onjugation by ℓ, we have

νG′
ℓx

= (iℓ)∗νG′
x
.Proof. Let x ∈ X ′, ℓ ∈ G′, H ′ = G′

x and H ′′ = G′
ℓx = ℓH ′ℓ−1. Using the left invarianeof νX′ for the �rst inequality and the bi-invariane of the Haar measure on G′ for the lastone, we have, for every f : G′ → R ontinuous with ompat support,

∫

g′ℓx∈X′

∫

h′′∈H′′

f(g′h′′) d(iℓ)∗νG′
x
(h′′) dνX′(g′ℓx)

=

∫

g′ℓx∈X′

∫

h′′∈H′′

f(ℓg′h′′) d(iℓ)∗νG′
x
(h′′) dνX′(g′ℓx)

=

∫

g′ℓx∈X′

∫

h′∈H′
f(ℓg′ℓh′ℓ−1) dνG′

x
(h′) dνX′(g′ℓx)

=

∫

gx∈X′

∫

h′∈H′
f ◦ iℓ(gh

′) dνG′
x
(h′) dνX′(gx)

=

∫

G′

f ◦ iℓ dνG′ =

∫

G′

f dνG′ .The result then follows by uniqueness. �In order to deal with non simply onneted groups, we introdue a modi�ed version ofthe Siegel weights.Let L
′ be a redutive linear algebrai group de�ned and anisotropi over Q, let π :

L
′ → GL(V′) be a rational linear representation of L′ de�ned over Q, let v ∈ V

′(Q) besuh that its orbit X
′
v under L

′ is Zariski-losed in V
′, let u ∈ X

′
v(Q) and let L

′
u be thestabiliser of u in L

′. We de�ned the modi�ed Siegel weight of u as
w′

L′,π(u) =
vol

(
(L′

u(Z) ∩ L
′(R)0)\(L

′
u ∩ L

′(R)0)
)

vol
(
(L′(Z) ∩ L′(R)0)\L′(R)0

) , (2)using Weil's onvention for the normalisation of the measures on L
′
u(R) (depending on thehoie of a left Haar measure on L

′(R) and of a L
′(R)-invariant measure on X

′
v(R)). Notethat the denominator of the standard Siegel weight wL′,π(u) is an integral multiple (de-pending only on L

′) of the denominator of the modi�ed one, sine (L′(Z)∩L
′(R)0)\L

′(R)0is a onneted omponent of L′(Z)\L′(R). But the ratio of the numerator of the Siegelweight by the numerator of the modi�ed one may depend on u.Let us now desribe the framework of our main result. Let G be a onneted redutivelinear algebrai group de�ned over Q. Let P be a (proper) paraboli subgroup of Gde�ned over Q (see for instane [BJ, �III.1℄, [Spr, �5.2℄)). Reall that a linear algebraigroup de�ned over Q is Q-anisotropi if it ontains no nontrivial Q-split torus.Reall that there exist a (nontrivial) maximal Q-split torus S in G (ontained in P andunique modulo onjugation by an element of P(Q)), suh that if ΦC = Φ(G,S) is the rootsystem of G relative to S (seen ontained in the set of haraters of S), if gCβ is the rootspae of β ∈ ΦC, then there exist a unique set of simple roots ∆ = ∆P in ΦC and a uniqueproper subset I = IP of ∆, suh that, with ΦC
+ the set of positive roots of ΦC de�ned by5



∆ and ΦC
I the set of roots of Φ that are linear ombinations of elements of I, if A is theidentity omponent of ⋂

α∈I

kerα ,whih is a Q-split subtorus of S, if U is the onneted algebrai subgroup of G de�nedover Q whose Lie algebra is
uC =

⊕

β∈ΦC
+−ΦC

I

gCβ ,then P is the semi-diret produt of its unipotent radial U and of the entraliser of A in
G. Note that A is one-dimensional if P is a maximal (proper) paraboli subgroup of Gde�ned over Q (that is, if ∆− I is a singleton).Let g be the Lie algebra of G(R). Using the multipliative notation on the group ofharaters of S, for every α ∈ ∆, we de�ne mα = mα,P ∈ N by

∏

β∈ΦC
+−ΦC

I

β dimR(g
C

β
∩g) =

∏

α∈∆

αmα .Let (α∨)α∈∆−I in A(R)0
∆−I be suh that log β(α∨) is equal to 1 if α = β and to 0otherwise. Let Λ∨ be the lattie in A(R)0 generated by {α∨ : α ∈ ∆ − I}. For everyelement T = (tα)α∈∆−I of [0,+∞[∆−I , let

AT = {a ∈ A(R)0 : ∀ α ∈ ∆− I, 0 ≤ log(α(a)) ≤ tα} .Reall that by the de�nition of a relative Langlands deomposition of the parabolisubgroup P de�ned over Q, there exists a onneted redutive algebrai subgroup M of
P de�ned over Q without nontrivial Q-haraters suh that AM is the entraliser of A in
G. In partiular, AM is a Levi subgroup of P de�ned over Q, A entralises M and is thelargest Q-split subtorus of the entre of AM, AM normalises U, and

P = AMU .For every Lie group G′ endowed with a left Haar measure, for every disrete subgroup
Γ′ of G′, we endow Γ′\G′ with the unique measure suh that the anonial overing map
G′ → Γ′\G′ loally preserves the measures.In what follows, we will need a normalisation of the Haar measures, whih behavesappropriately when passing to some subgroups. We will start with a Riemannian metrion G(R), take the indued Riemannian volumes on the real points of the various algebraisubgroups of G de�ned over Q that will appear, whih will give us the hoies neessaryfor using Weil's normalisation to de�ne the Siegel weights.The main result of this paper is the following one.Theorem 6 Let G be a onneted redutive linear algebrai group de�ned over Q, withoutnontrivial Q-haraters. Let G = G(R)0 and Γ = G(Z)∩G. Let P be a paraboli subgroupof G de�ned over Q, and let P = AMU be a relative Langlands deomposition of P. Let
ρ : G → GL(V) be a rational representation of G de�ned over Q suh that there exists
v0 ∈ V(Q) whose stabiliser in G is H = MU. Let L be a redutive algebrai subgroup of
G de�ned and anisotropi over Q. 6



Assume that LP is Zariski-open in G and that for every a ∈ A, the orbit ρ(La)v0 isZariski-losed in V. Endow G(R) with a left-invariant Riemannian metri, for whih theLie algebras of H(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of
P(R) is ontained in the Lie algebra of L(R).Then there exists δ > 0 suh that, as T = (tα)α∈∆−I ∈ [0,+∞[∆−I and minα∈∆−I tαtends to +∞, ∑

a∈AT

∑

[x]∈(L(R)0∩Γ)\(ρ(L(R)0a)v0∩ρ(Γ)v0)

w′
L,ρ|L(x) =

vol
(
(H ∩ Γ)\(H ∩G)

)
vol(Λ∨ \A(R)0)

vol(Γ\G)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminα∈∆−I tα)

)
.Proof. Let us start by �xing the notation that will be used throughout the proof ofTheorem 6, and by making more expliit the above-mentionned onventions about thevarious volumes that our in the asymptoti formula.Consider the onneted real Lie group G = G(R)0, its (losed) Lie subgroups

A = A(R)0, H = H ∩G, L = L(R)0, M = M ∩G, P = P ∩G, U = U(R) .We have H =MU and P = AMU =MUA, sine A and U are onneted. Note that L isalso onneted, but H and M are not neessarily onneted. We denote by
a, g, h, l, m, p, uthe Lie algebras of the real Lie groups A,G,H,L,M,P,U respetively, endowed with therestrition of the salar produt on g de�ned by the Riemannian metri of G. Sine L is

Q-anisotropi, so is L ∩ P. Sine the map L ∩P → P/H ≃ A is de�ned over Q and A isa Q-split torus, this implies that the identity omponent of L ∩ P is ontained in H. Inpartiular
l ∩ h = l ∩ p . (3)Note that g = l+ p sine LP is Zariski-open in G. We have assumed that a is orthogonalto h and that the orthogonal p⊥ of p is ontained in l. In partiular, with q the orthogonalof l ∩ h in h, we have the following orthogonal deompositions

g = p⊥
⊥
⊕ (l ∩ h)

⊥
⊕ q

⊥
⊕ a, h = (l ∩ h)

⊥
⊕ q, l = p⊥

⊥
⊕ (l ∩ h), p = h

⊥
⊕ a . (4)The left-invariant Riemannian metri on G indues a left Haar measure ωG on G, and aleft-invariant Riemannian metri on every Lie subgroup G′ of G, hene a left Haar measure

ωG′on G′ (whih is the ounting measure if G′ is disrete). Note that A,G,H,L,M,U,L ∩Hare unimodular: indeed A,G,L,M are redutive and U is unipotent; furthermore, L ∩His the stabiliser of v0 in L, the orbit of v0 under L is a�ne and hene L ∩H is redutiveby [BHC, Theo. 3.5℄. But P is not unimodular.The map A ×M × U → P de�ned by (a,m, u) 7→ amu is a smooth di�eomorphism(see for instane [BJ, page 273℄). We will denote by dωAdωH the measure on P whih is7



the push-forward of the produt measure by the di�eomorphism (a, h) 7→ ah. Sine A nor-malises H, the measure dωAdωH is left-invariant by P , so that dωP (ah) and dωA(a)dωH(h)are proportional. Sine these measures are indued by Riemannian metris, and sine aand h are orthogonal, we hene have
dωP (ah) = dωA(a)dωH(h) .Sine A normalises U , the group A ats on the Lie algebra U of U by the adjoint repre-sentation. The roots of this linear representation of A are exatly the restritions to Aof the elements β in ΦC

+ − ΦC
I , with root spaes gCβ ∩ g and a set of simple roots is theset of restritions of the elements of ∆ − I to A (see for instane [BJ, Rem. III.1.14℄).Sine A is onneted, these roots have value in ]0,+∞[ . The map A → R∆−I de�ned by

a 7→ (log(α(a)))α∈∆−I is hene a smooth di�eomorphism. We will denote by ∏
α∈∆−I dtαthe measure on A whih is the push-forward of the produt Lebesgue measure by theinverse of this di�eomorphism. By invariane, there exists a onstant cA > 0 suh that

dωA = cA
∏

α∈∆−I

dtα .By the de�nition of Λ∨, we have cA = Vol(Λ∨\A).Let Γ = G(Z) ∩ G, whih is a disrete subgroup of G ating isometrially for theRiemannian metri of G by left translations. Let YG = Γ\G and let π : G → YG = Γ\Gbe the anonial projetion, whih is equivariant under the right ations of G. Then YGis a onneted Riemannian manifold (for the unique Riemannian metri suh that π is aloal isometry) endowed with the transitive right ation of G by translations on the right.To simplify the notation, for every Lie subgroup G′ of G, de�ne
YG′ = π(G′) ,whih is a injetively immersed submanifold in YG, endowed with the Riemannian metriindued by YG, and identi�ed with (G′ ∩ Γ)\G′ by the map indued by the inlusion of G′in G. Note that YL and YU are onneted, but YH and YM are not neessarily onneted.For every Lie subgroup G′ of G, let

µG′be the Riemannian measure on YG′ , whih loally is the push-forward of the left Haarmeasure ωG′ .Sine G and the identity omponent of MU have no nontrivial Q-harater, the Rie-mannian manifolds YG and YH have �nite volume (see [BHC, Theo. 9.4℄) and YH is losedin YG (see for instane [Rag, Theo. 1.13℄). Sine L is redutive and Q-anisotropi, the sub-manifold YL is ompat (see [BHC, Theo. 11.6℄). Sine U is unipotent, the submanifold
YU is ompat (see for instane [BHC, � 6.10℄).For every Lie subgroup G′ of G suh that YG′ has �nite measure (that is, suh that
Γ ∩G′ is a lattie in G′), we denote by

µG′ =
µG′

‖µG′‖the �nite measure µG′ normalised to be a probability measure. In partiular, µG, µH , µL,
µU are well de�ned. 8



For every T = (tα)α∈∆−I and T ′ = (t′α)α∈∆−I in [0,+∞[∆−I , let
A[T,T ′] = {a ∈ A : ∀ α ∈ ∆− I, tα ≤ log(α(a)) ≤ t′α} .and P[T,T ′] = UMA[T,T ′]

−1 = HA[T,T ′]
−1. De�ne YP[T,T ′]

= π(P[T,T ′]), whih is a subman-ifold with boundary of YG, invariant under the right ation of H, sine A normalises H.To shorten the notation, we de�ne
AT = A[0,T ] , PT = P[0,T ] = HAT

−1 and YPT
= YP[0,T ]

= π(PT ) = YHA
−1
T ,as well as minT = minα∈∆−I tα ≥ 0, whih measures the omplexity of T and will onvergeto +∞. We will need to estimate the volume of π(PT ) for µP .Lemma 7 For every T = (tα)α∈∆−I in [0,+∞[∆−I , we have

µP (YPT
) = vol(Λ∨ \A(R)0) ‖µH‖

∏

α∈∆−I

emαtα

mα
.Proof. Denote by duβ the Lebesgue measure on the Eulidean spae gβ = gCβ ∩ g. Forany order on ΦC

+ − ΦC
I , the map from ∏

β∈ΦC
+−ΦC

I
gβ to U de�ned by (uβ)β∈ΦC

+−ΦC

I
7→∏

β∈ΦC
+−ΦC

I
expuβ is a smooth di�eomorphism, and there exists cU > 0 suh that dωU isthe push-forward by this di�eomorphism of the measure cU ∏

β∈ΦC
+−ΦC

I
duβ .For every a ∈ A, if ia : g 7→ aga−1 is the onjugation by a, then for every uβ ∈ gβ, wehave ia(exp uβ) = exp((Ad a)(uβ)) = exp(β(a)uβ). Hene

(i−1
a )∗(ωU ) =

∏

β∈ΦC
+−ΦC

I

β(a)dim gβωU =
∏

α∈∆−I

α(a)mαωUby the de�nition of (mα)α∈∆ and sine the elements of I are trivial on A. Sine A ommuteswith M , we hene have (i−1
a )∗(ωH) =

∏
α∈∆−I α(a)

mαωH .We have, sine A is unimodular,
dωP (ha

−1) = dωP (a
−1aha−1) = dωA(a

−1)dωH(aha−1) = dωA(a)d((i
−1
a )∗ωH)(h) .Sine Γ ∩ P = Γ ∩H (see for instane the lines following Proposition III.2.21 in [BJ, page285℄) and A ∩H = {e}, we have π(Ha) 6= π(Ha′) if a 6= a′. Hene

µP (YPT
) =

∫

y∈YH

∫

a∈AT

dµP (ya
−1) =

∫

AT

∏

α∈∆−I

α(a)mαdωA(a)

∫

YH

dµH (5)
= ‖µH‖ cA

∏

α∈∆−I

∫ tα

0
emαs ds .Sine mα > 0, the result follows. �To simplify the notation, we write ρ(g)x = gx for every g ∈ G and x ∈ V, we de�ne

va = av0 for every a ∈ A, and we denote by Lx = Gx ∩L the stabiliser of x in L for every
x ∈ V(R).Sine we have a left Haar measure ωL on L and ωL∩H on L ∩H, Weil's normalisationgives a L-invariant measure on the homogeneous spae L/(L ∩H), and hene a left Haar9



measure on the stabilisers ℓ(L∩H)ℓ−1 for every ℓ in L, as explained above. As announed,the modi�ed Siegel weights w′
L,ρ|L(·) are de�ned using this Weil's normalisation, as follows.For every ℓ ∈ L and a ∈ A, if x = ℓav0, sine H = MU is normalised by A and is thestabiliser of v0 in G, we have

Lx = L ∩ StabG x = L ∩ (ℓHℓ−1) = ℓ(L ∩H)ℓ−1 . (6)Note that
L(R)0 ∩ L(Z) = L(R)0 ∩G(Z) = L(R)0 ∩G(R)0 ∩G(Z) = L ∩ Γ , (7)and similarly L(R)0 ∩ Lx(Z) = Lx ∩ Γ for every x ∈ Lva ∩ Γv0. Hene the denominatorof the modi�ed Siegel weight w′

L,ρ|L(x) is equal to vol
(
(L ∩ Γ)\L

)
= vol(YL), using themeasure µL on YL indued by the Haar measure ωL on L. Its numerator vol ((Lx∩Γ)\Lx

)is de�ned by using the measure on (Lx ∩ Γ)\Lx indued by the left Haar measure on
Lx = ℓ(L ∩H)ℓ−1 given by Weil's normalisation.We now proeed to the proof of Theorem 6.Step 1. The �rst step of the proof is the following group theoreti lemma, whih relatesthe ounting funtion of modi�ed Siegel weights to the ounting funtion of volumes oforbits of L∩H. We denote with square brakets the (left or right) appropriate orbit of anelement.Lemma 8 For every a ∈ A, there exists a bijetion between �nite subsets

Θa : (L ∩ Γ)\(Lva ∩ Γv0) −→ (YL ∩ YHa
−1)/(L ∩H)suh that for every x ∈ Lva ∩ Γv0, if [y] = Θa([x]), then

vol
(
(Lx ∩ Γ)\Lx

)
= vol

(
y(L ∩H)

)
. (8)In partiular, for every T ∈ [0,+∞[∆−I , we have

∑

a∈AT

∑

[x]∈(L∩Γ)\(Lva∩Γv0)

w′
L,ρ|L(x) =

∑

a∈AT

∑

[y]∈(YL∩YHa−1)/(L∩H)

vol
(
y(L ∩H)

)

vol(YL)
.Proof. Fix a ∈ A. First note that the groups L ∩ Γ and L ∩H do preserve the subsets

Lva ∩ Γv0 of V (R) and YL ∩ YHa
−1 of Y respetively for their left and right ation, sine

A normalises H. The �niteness of the set (L ∩ Γ)\(Lva ∩ Γv0) follows from Borel-Harish-Chandra's �niteness theorem as in the introdution. Also reall that H = MU is thestabiliser of v0 in G.De�ne
Θa : [ℓva] 7→ [π(ℓ)] .Let us prove that this map is well de�ned and bijetive. Let ℓ, ℓ′ ∈ L.We have ℓva ∈ Γv0 if and only if there exists γ ∈ Γ suh that ℓav0 = γv0, that is,if and only if there exist γ ∈ Γ and h ∈ H suh that ℓ = γha−1, that is, if and onlyif π(ℓ) ∈ YL ∩ YHa

−1. This proves that Θa has values in (YL ∩ YHa
−1)/(L ∩ H) and issurjetive. 10



Let us prove that Θa does not depend on the hoie of representatives and is injetive.We have [ℓ′va] = [ℓva] if and only if there exists γ ∈ L ∩ Γ suh that ℓ′av0 = γℓav0, heneif and only if there exist γ ∈ L ∩ Γ and h ∈ H suh that ℓ′a = γℓah. Note that thisequation implies that aha−1 ∈ L if and only if γ ∈ L. Sine A normalises H, we henehave [ℓ′va] = [ℓva] if and only if ℓ′ ∈ Γℓ(L ∩H), that is if and only if [π(ℓ)] = [π(ℓ′)].To prove the seond assertion, let ℓ ∈ L be suh that x = ℓva ∈ Γv0 and let y = π(ℓ), sothat Θa([x]) = [y]. The orbit of y under L∩H in YG is the image by the loally isometrimap π of the Riemannian submanifold ℓ(L ∩ H) of G. The left translation by ℓ−1 is anisometry (hene is volume preserving) from ℓ(L ∩H) to (L ∩H). By Lemma 5, the map
g 7→ ℓgℓ−1 from L ∩H to ℓ(L ∩H)ℓ−1, whih is equal to Lx by Equation (6), is measurepreserving. Therefore the map ϕ : [z] 7→ [zℓ] from (Lx ∩ Γ)\Lx to y(L ∩H) is a measurepreserving bijetion. This proves the volume equality of Equation (8).The last laim follows from the other ones, sine the numerator of the modi�ed Siegelweight w′

L,ρ|L
(x) is vol ((Lx ∩ Γ)\Lx

). �Step 2. The seond step of the proof is an equidistribution result, in the spirit of [KM1℄,saying that the piee YPT
of orbit of P equidistributes in YG as minT → +∞.For every smooth Riemannian manifold Z and q ∈ N, we denote by C

q
c (Z) the normedvetor spae of Cq maps with ompat support on Z, with norm ‖ · ‖q.Proposition 9 There exist q ∈ N and κ > 0 suh that for every f ∈ C
q
c (YG) and T =

(tα)α∈∆−I ∈ [0,+∞[∆−I , we have, as minT tends to +∞,
1

µP (YPT
)

∫

YPT

f dµP =

∫

YG

f dµG +O
(
e−κminT ‖f‖q

)
.To prove the proposition, we will use the disintegration formula already seen in theproof of Lemma 7

∫

YPT

f dµP =

∫

AT

( ∫

YH

f(ya−1) dµH(y)
)( ∏

α∈∆−I

α(a)mα

)
dωA(a) .This formula indiates that the proposition would follow from (an averaging of) the equidis-tribution of the translates YHa−1, whih is established in Proposition 10 below. To statethis proposition, we need to introdue additional notation.The linear algebrai group G deomposes as an almost diret produt

G = Z(G)G1 · · ·Gswhere Z(G) is the entre ofG, andG1, . . . ,Gs are Q-simple onneted algebrai subgroupsof G. The maximal Q-split torus S deomposes as an almost diret produt
S = S1 · · ·Sswhere Si is a maximal Q-split torus in Gi. We also get an almost diret produt deom-position

G = Z(G)G1 · · ·Gs, (9)11



where Z(G) is the entre of G (whih is equal to Z(G)0 sine G is onneted and Gis Zariski-dense in G) and Gi = Gi(R)0 for 1 ≤ i ≤ s. Sine G has no nontrivial Q-harater, and sine M is the entraliser of A, this gives orresponding almost diretprodut deompositions of the Lie groups A = A1 . . . As (this one being a diret produt),
U = U1 . . . Us, M = Z(G)M1 . . .Ms, H = Z(G)H1 . . . Hs. The set of simple roots ∆deomposes as a disjoint union

∆ = ∆1 ⊔ · · · ⊔∆swhere ∆i is a set of simple roots of Gi relatively to Si, and the positive (losed) Weylhamber A+ in A assoiated to ∆ deomposes as
A+ = A+

1 · · ·A+
s ,where A+

i is the positive (losed) Weyl hamber in A ∩Gi assoiated to ∆i.For 1 ≤ i ≤ s and a ∈ Ai, we de�ne
Ei(a) = exp

(
−

(
max

α∈∆i−I
log α(a)

))
> 0 (10)if ∆i − I 6= ∅, and Ei(a) = 0, otherwise. For every κ > 0, we also de�ne

Eκ(a) =
s∑

i=1

Ei(ai)
κfor every a ∈ A+ with a1 ∈ A+

1 , · · · , as ∈ A+
s and a = a1 · · · as.Proposition 10 There exist q ∈ N and κ > 0 suh that for all f ∈ C

q
c (YG) and a ∈ A+,

∫

YH

f(ya−1) dµH(y) =

∫

YG

f dµG +O
(
Eκ(a) ‖f‖q

)
.Given a Lie subgroup D of G suh that Γ ∩ D is a lattie in D, we denote by νDthe normalised right invariant measure on (Γ ∩D)\D. Reall that YD = π(D) is a losedsubmanifold of YG, and that µD is the invariant measure on YD indued by the Riemannianmetri, with normalised measure µD.We identify (Γ ∩H)\H with YH using the (well de�ned) map h 7→ Γh (denoting againby h ∈ H a representative of a oset h ∈ (Γ ∩H)\H). Sine the groups Z(G),H1, · · · ,Hsommute, we also have the map

(Γ ∩ Z(G))\Z(G) × (Γ ∩H1)\H1 · · · × (Γ ∩Hs)\Hs → YHwell de�ned by (h0, h1, . . . , hs) 7→ Γh0h1 · · · hs (using onventions similar to the aboveone for oset representatives). Then the normalised invariant measures µH , µH1
, . . . , µHssatisfy, for all f ∈ Cc(YG),

∫

YH

f(y) dµH(y) =

∫

(Γ∩H)\H
f(Γh)dνH(h)

=

∫

(Γ∩Z(G))\Z(G)×···×(Γ∩Hs)\Hs

f(Γh0h1 · · · hs)dνZ(G)(h0) · · · dνHs(hs). (11)12



We will prove Proposition 10 by using an indutive argument on the number of fators.We start by analysing the distribution of YUi
a−1 in Lemma 11 and then the distributionof YHi

a−1 in Lemma 12.Let D be a produt of almost diret fators of G in the deomposition (9). For every
f ∈ C 0

c (YG), we de�ne a map PDf : YG → C by
(PDf)(Γg) =

∫

(Γ∩D)\D
f(Γdg) dνD(d)whih does not depend on the hoie of the representative of Γg, by the right invariane of

νD under D. Note that PDf is ontinuous and invariant under the right ation of D.Lemma 11 There exist q ∈ N and κ1 > 0 suh that for every i ∈ {1, . . . , s} with Ai 6= {1},for every f ∈ C
q
c (YG) and a ∈ A+

i ,
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ1‖f |YGi
‖q
)
.Proof. For 1 ≤ i ≤ s, we onsider the unitary representation of the group Gi on theorthogonal omplement of the spae of Gi-invariant (hene onstant on YGi
) funtions inthe Hilbert spae L2(YGi

, µGi
), whose salar produt we denote by 〈·, ·〉YGi

(using the nor-malised measure µGi
). We note that for every f ∈ Cc(YG), the funtion f |YGi

−(PGi
f)(Γe)belongs to this spae.We say that a unitary representation of a onneted real semisimple Lie group G′ hasthe strong spetral gap property if the restrition to every nonompat simple fator of G′is isolated from the trivial representation for the Fell topology (see for instane [Cow℄,[BHV, Appendix℄, [KM2, Appendix℄ for equivalent de�nitions and examples, and omparefor instane with [Nev, KS℄ for variations on the terminology). We laim that the aboveunitary representation of Gi has the strong spetral gap property. Indeed, if Gi is simplyonneted and Γi is a ongruene subgroup in Gi, then the strong spetral gap property on

Γi\Gi is a diret onsequene of the property τ proved in [Clo℄, see Theorem 3.1 therein.By [KM2, Lemma 3.1℄, this also implies, when Gi is simply onneted, the strong spetralproperty on Γi\Gi for subgroups Γi that are ommensurable with ongruene subgroups,and, in partiular, for arithmeti subgroups of Gi. Now let pi : G̃i → Gi be a simplyonneted over of Gi, and let G̃i = G̃i(R). Then YGi
≃ p−1

i (Γ ∩ Gi)\G̃i, and the strongspetral gap property for L2(YGi
, µGi

) follows from the above arguments.Applying [KM1, Theorem 2.4.3℄, we dedue that there exist q ∈ N and κ′1, C > 0 suhthat for every i ∈ {1, . . . , s} suh that Ai 6= {e}, for every φ ∈ C
q
c (YGi

) and a ∈ A+
i ,

〈
(f |YGi

− (PGi
f)(Γe)) ◦ a−1, φ

〉
YGi

≤ C Ei(a)
κ′
1 ‖f |YGi

‖q ‖φ‖q , (12)where Ei(a) is de�ned in Equation (10).Let P−
i denote the paraboli subgroup in Gi opposite to Ui. The produt map Ui ×

P−
i → Gi is a di�eomorphism between neighbourhoods of the identities. Sine YUi

= π(Ui)is ompat, if ǫ > 0 is small enough, there exists an open ǫ-neighbourhood Ωǫ of the identityin P−
i suh that the produt map YUi

×Ωǫ → YGi
is a di�eomorphism onto its image YUi

Ωǫ.We have (see also Lemma 14)
∀ y ∈ YUi

, ∀ p ∈ Ωǫ, dµGi
(yp) = dµUi

(y)dω(p),13



for a suitably normalised smooth measure ω on Ωǫ. There exists σ > 0 (depending on q)suh that for every ǫ > 0 small enough, there exists a nonnegative funtion ψǫ ∈ C
q
c (Ωǫ)satisfying ∫

Ωǫ

ψǫ dω = 1 and ‖ψǫ‖q = O(ǫ−σ) .De�ne a Cq funtion φǫ : YGi
→ [0,+∞[ supported on YUi

Ωǫ by
∀ y ∈ YUi

, ∀ p ∈ Ωǫ, φǫ(yp) = ψǫ(p) .Then ∫

YGi

φε dµGi
= 1 and ‖φǫ‖q = O(ǫ−σ) .Sine for all a ∈ A+

i and p ∈ Ωǫ,
d(apa−1, e) = O(ǫ),we obtain

〈
f |YGi

◦ a−1, φǫ
〉
YGi

=

∫

YUi
×Ωǫ

f(ypa−1)ψǫ(p) dµUi
(y)dω(p)

=

∫

YUi

f(ya−1) dµUi
(y) + O

(
ǫ‖f |YGi

‖1
)
.Sine PGi

f is Gi-invariant,
〈
PGi

f, φǫ
〉
YGi

= (PGi
f)(Γe)

( ∫

YGi

φε dµGi

)
= (PGi

f)(Γe).Combining these estimates with (12) (we may assume that q ≥ 1), we onlude that
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
(ǫ+ Ei(a)

κ′
1ǫ−σ) ‖f |YGi

‖q
)
.Finally, taking ǫ = Ei(a)

κ′
1/(1+σ) whih is small if a lies outside a ompat subset of A+

i ,we dedue that
∫

YUi

f(ya−1) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ′
1/(1+σ)‖f |YGi

‖q
)
,as required. �Lemma 12 There exist q ∈ N and κ2 > 0 suh that for every f ∈ C

q
c (YG) and a ∈ A+

i ,for every i ∈ {1, . . . , s}, we have
∫

YHi

f(ya−1) dµHi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ2‖f |YGi
‖q
)
.

14



Proof. We �rst observe that if Ai = {e}, then Hi = Gi, and the laim of the lemma isobvious. Now we assume that Ai 6= {e} in whih ase Lemma 11 applies.Let Ni = (Γ ∩ Mi)\Mi. The spae YHi
= π(UiMi) is a bundle over Ni with �bresisomorphi to YUi

, and the invariant measure µHi
on YHi

deomposes with respet to thisstruture. Expliitly, for every m ∈Mi, the integrals ∫YUi

f(ym) dµUi
(y) for all f ∈ Cc(YG)de�ne a Ui-invariant probability measure on YUi

m, whih depends only on the oset n = [m]of m in Ni = (Γ ∩Mi)\Mi, and the Hi-invariant probability measure on YHi
is given by∫

Ni

( ∫
YUi

f(ym) dµUi
(y)

)
dνMi

([m]) for all f ∈ Cc(YG). Hene, denoting again by n anyrepresentative of a oset n in Ni, sine A entralises M ,
∫

YHi

f(ya−1) dµHi
(y) =

∫

Ni

∫

YUi

f(yna−1) dµUi
(y) dνMi

(n)

=

∫

Ni

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n) .For m ∈ Mi and f ∈ Cc(YG), we onsider the funtion fm : YG → C de�ned by
y 7→ f(ym). We note that there exist c1, C ′ > 0 suh that for every f ∈ C

q
c (YG), we have

‖fm|YGi
‖q ≤ C ′ec1d(e,m)‖f |YGi

‖q .Hene, by Lemma 11, for every f ∈ C
q
c (YG) and m ∈ Mi, sine PGi

fm = PGi
f byinvariane under Gi,∫

YUi

f(ya−1m) dµUi
(y) = (PGi

f)(Γe) + O
(
Ei(a)

κ1ec1 d(e,m)‖f |YGi
‖q
)
. (13)We �x n0 ∈ Ni and for R > 0, we set

(Ni)R = {n ∈ Ni : d(n0, n) ≤ R} ,where d(·, ·) denotes the distane on Ni with respet to the indued Riemannian metri.We shall use the following estimate on the volumes of the �usp�: there exists c2 > 0 suhthat for every R > 0,
νMi

(Ni − (Ni)R) = O(e−c2R). (14)To prove this estimate, we may pass to an equivalent Riemannian metri and to a �niteindex subgroup of Γ∩Mi. This way, we redue the proof to the ase whenMi is semisimple,
Γ ∩Mi is an nonuniform lattie in Mi, and the Riemannian metri on Mi is bi-invariantunder a maximal ompat subgroup in Mi. Then Equation (14) follows from [KM2, �5.1℄(whih notes that the irreduible assumption on Γ ∩Mi is not neessary).Equation (14) implies that

∫

Ni−(Ni)R

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n) = O
(
e−c2R ‖f |YGi

‖0
)
. (15)Given m ∈Mi suh that (Γ∩Mi)m ∈ (Ni)R, there exists m′ ∈Mi suh that (Γ∩Mi)m =

(Γ ∩Mi)m
′ and d(e,m′) ≤ R. Therefore, it follows from Equation (13) that

∫

(Ni)R

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n)

= νMi
((Ni)R)(PGi

f)(Γe) + O
(
Ei(a)

κ1ec1 R ‖f |YGi
‖q
)

= (PGi
f)(Γe) + O

(
(e−c2R + Ei(a)

κ1ec1R) ‖f |YGi
‖q
)
. (16)15



Finally, ombining (15) and (16), we obtain that
∫

Ni

∫

YUi

f(ya−1n) dµUi
(y) dνMi

(n)

= (PGi
f)(Γe) + O

(
(e−c2R + Ei(a)

κ1ec1R) ‖f |YGi
‖q
)
.Taking R = logEi(a)

−
κ1

c1+c2 , we dedue the laim of Lemma 12 with κ2 = κ1c2
c1+c2

. �Proof of Proposition 10. For a subsemigroup D whih deomposes as a produt
D = Dp · · ·Dq and p ≤ i ≤ q, we write

D≤i = Dp · · ·Di and D>i = Di+1 · · ·Dq.We show indutively on i ∈ {0, . . . , s} that for every a = a1 . . . ai ∈ A+
≤i (by onvention

a = e if i = 0) and g ∈ G>i, we have
∫

YH≤i

f(ya−1g) dµH≤i
(y) = (PG≤i

f)(Γg) +

i∑

j=1

O
(
Ej(aj)

κ‖f‖q
) (17)with κ = κ2 and q as in Lemma 12. Sine H≤0 = G≤0 = Z(G), this is obvious for i = 0.To get this estimate for i = 1, we apply Lemma 12 to the funtion fg(y) = (PG≤0

f)(yg)with g ∈ G>1. Sine G1 ommutes with G≤0 and G>1, we have
‖fg|YG1

‖q ≤ ‖f‖q and (PG1PG≤0
f)(Γg) = (PG≤1

f)(Γg) .This proves Equation (17) with i = 1.Now suppose that Equation (17) is proved at rank i. As in Equation (11), for f ∈
Cc(YG),

∫

YH≤i+1

f(y) dµH≤i+1
(y) =

∫

(Γ∩Hi)\Hi

∫

YH≤i

f(yh) dµH≤i
(y) dνHi

(h) .Hene, for every a′ = a1 . . . ai ∈ A+
≤i, ai+1 ∈ A+

i+1 and g ∈ G>i+1, with a = a′ai+1, by theright invariane of νHi+1 under Hi+1 and by Equation (17), we have
∫

YH≤i+1

f(ya−1g) dµH≤i+1
(y)

=

∫

(Γ∩Hi+1)\Hi+1

∫

YH≤i

f(y(a′)−1ha−1
i+1g) dµH≤i

(y) dνHi+1(h)

=

∫

(Γ∩Hi+1)\Hi+1

(PG≤i
f)(Γha−1

i+1g) dνHi+1(h) +

i∑

j=1

O
(
Ej(aj)

κ‖f‖q
)
.Applying Lemma 12 to the funtions fg : y 7→ (PG≤i

f)(yg) on YG, we obtain
∫

(Γ∩Hi+1)\Hi+1

(PG≤i
f)(Γha−1

i+1g) dνHi+1(h)

= (PGi+1fg)(Γe) + O
(
Ei+1(ai+1)

κ ‖f g|YGi+1
‖q
)

= (PG≤i+1
f)(Γg) + O

(
Ei+1(ai+1)

κ ‖f‖q
)
.16



This ompletes the proof of Equation (17). Sine
(PG≤s

f)(Γe) =

∫

YG

f dµG,the proposition follows. �Proof of Proposition 9. Sine
∫

YPT

f dµP =

∫

AT

( ∫

YH

f(ya−1) dµH(y)
)( ∏

α∈∆−I

α(a)mα

)
dωA(a) ,it follows from Proposition 10 and from Equation (5) that

∫

YPT

f dµP = µP (YPT
)

∫

YG

f dµG +O
(
‖f‖q

∫

AT

Eκ(a)
( ∏

α∈∆−I

α(a)mα

)
dωA(a)

)
.For every i ∈ {1, . . . , s} suh that ∆i − I 6= ∅, let β ∈ ∆i − I. For every bi ∈ Ai, we have

Ei(bi) ≤ e− log β(bi).Hene, by Lemma 7, we have, assuming that κ < minα∈∆−I mα (whih is possible),
∫

AT

Ei(ai)
κ
( ∏

α∈∆−I

α(a)mα

)
dωA(a) ≤ cA

( ∏

α∈∆−I−{β}

∫ tα

0
emαs ds

)∫ tβ

0
e(mβ−κ)s ds

= O
(
µP (YPT

) e−κtβ
)
.Therefore, sine Eκ(a) =

∑
1≤i≤s : ∆i−I 6=∅Ei(ai)

κ, we have
1

µP (YPT
)

∫

YPT

f dµP =

∫

YG

f dµG +O(e−κminT ‖f‖q),as required. �Step 3. In this last step of the proof of Theorem 6, we will di�use the orbits of L ∩Hwe want to ount using bump funtions, and apply the equidistribution result given byProposition 9 in Step 2 to infer our main theorem.Before starting this program, we rewrite the sum whose asymptoti we want to studyin a more onise way. Let T, T ′ ∈ [0,+∞[∆−I . By transversality (see for instane [Hir,p. 22, Theo. 3.3℄), the intersetion
Z[T,T ′] = YL ∩ YP[T,T ′]is a ompat Riemannian submanifold of YG, invariant under the right ation of L ∩ H,and for every x ∈ Z[T,T ′], we have TxZ[T,T ′] = (TxYL) ∩ (TxYP[T,T ′]

). Sine l ∩ p = l ∩ h byEquation (3), the Lie group L ∩H has open orbits in Z[T,T ′]. Hene the ompat subset
Z[T,T ′] is a �nite union of orbits of L∩H (see the piture below when A is 1-dimensional).17



YHa
−1
T

YHa
−1
T ′

YP[T,T ′]

YL

Z[T,T ′] =
⊔

i yi(L ∩H)

We will denote by µZ[T,T ′]
the Riemannian measure on Z[T,T ′]. Using Riemannianvolumes, we hene have

µZ[T,T ′]
(Z[T,T ′]) =

∑

[y]∈(YL∩YP
[T,T ′]

)/(L∩H)

vol
(
y(L ∩H)

)

=
∑

a∈A[T,T ′]

∑

[y]∈(YL∩YHa−1)/(L∩H)

vol
(
y(L ∩H)

)
.By Lemma 8 in Step 1, the quantity µZ[0,T ]

(Z[0,T ]), when divided by vol(YL), is the sumwhose asymptoti we want to study.We �rst start by studying the supports of the bump funtions we will de�ne: they willbe appropriate neighbourhoods of YL and Z[T,T ′]. Fix ǫ > 0, whih will be appropriatelyhoosen small enough later on. Consider the open ball B(0, ǫ) of enter 0 and radius ǫ inthe orthogonal omplement q⊕ a of l∩ p in p, and let Oǫ = expB(0, ǫ), whih is ontainedin P .Sine L is ompat, if ǫ is small enough, the right ation of G on YG indues a map YL×
Oǫ → YG, with (y, g) 7→ yg, whih is a smooth di�eomorphism onto an open neighbourhood
YLOǫ of the submanifold YL in YG. Similarly, if ǫ is small enough, then for every T, T ′ ∈
[0,+∞[∆−I , the map Z[T,T ′]×Oǫ → YP de�ned by (y, g) 7→ yg is a smooth di�eomorphismonto an open neighbourhood Z[T,T ′]Oǫ of the submanifold Z[T,T ′] in YP . If η ∈ R and
T ′′ = (t′′α)α∈∆−I ∈ [0,+∞[∆−I , we denote T ′′ + η = (t′′α + η)α∈∆−I .Lemma 13 There exists c > 0 suh that if ǫ > 0 is small enough, for every T, T ′ ∈
[0,+∞[∆−I , then

Z[T+cǫ,T ′−cǫ]Oǫ ⊂ YLOǫ ∩ YP[T,T ′]
⊂ Z[T−cǫ,T ′+cǫ]Oǫ .Proof. We �rst laim that there exists c > 0 suh that

P[T+cǫ,T ′−cǫ] ⊂ P[T,T ′]Oǫ ⊂ P[T−cǫ,T ′+cǫ] .Sine the produt map (h, a) 7→ ha is a di�eomorphism from H × A to P , sine Oǫ isontained in P , and sine the distanes are Riemannian ones, there exists c1 > 0 suh thatif ǫ > 0 is small enough, then for every g ∈ Oǫ, there exist h ∈ H and a ∈ A with g = haand d(a, e) ≤ c1ǫ. Sine the Riemannian distane on A is equivalent to the image by expof the distane on a de�ned by the norm ‖x‖ = maxα∈∆−I | log(α(exp x))|, there exists
c2 > 0 suh that | log α(a)| ≤ c2d(a, e) for every a ∈ A.18



Let g ∈ Oǫ, h ∈ H and a ∈ A be suh that g = ha and d(a, e) ≤ c1ǫ. Sine Anormalises H, we have HA−1
[T,T ′]g = HA−1

[T,T ′]ha = HA−1
[T,T ′]a. Hene HA−1

[T,T ′]g is ontainedin HA−1
[T−c1c2ǫ,T ′+c1c2ǫ]

and ontains HA−1
[T+c1c2ǫ,T ′−c1c2ǫ]

. This proves the �rst laim.Now, let y ∈ YL, g ∈ Oǫ and p ∈ P[T,T ′] be suh that yg = π(p). Then y = π(pg−1).Sine Oǫ is invariant by taking inverses, pg−1 belongs to P[T,T ′]Oǫ, hene by the �rst laim,
yg ∈ Z[T−cǫ,T ′+cǫ]Oǫ. The left inlusion is proven similarly. �We now study the properties of the Riemannian measures on the neighbourhoods YLOǫand Z[T,T ′]Oǫ.Lemma 14 For every ǫ > 0 small enough, there exist smooth measures ν and ν̃ on Oǫ suhthat the produt maps YL × Oǫ → YG and Z[T,T ′] × Oǫ → YP send the produt measures
µL ⊗ ν and µZ[T,T ′]

⊗ ν̃ to the restrited measures µG|YLOǫ
and µP |Z[T,T ′]Oǫ

, respetively.Furthermore, dν̃
dν (e) = 1.Proof. Sine the measure µG|YLOǫ

(respetively µP |Z[T,T ′]Oǫ
) is Riemannian, it disintegrateswith respet to the trivialisable �bration YLOǫ → YL (respetively Z[T,T ′]Oǫ → Z[T,T ′] withmeasure on the basis µL (respetively µZ[T,T ′]

), and onditional measures νy (respetively
ν̃y on the �bers yOǫ for all y ∈ YL (respetively y ∈ Z[T,T ′]). By left invariane of themeasures ωL and ωL∩H , there exist smooth measures ν (respetively ν̃) on Oǫ suh thatthe maps Oǫ → yOǫ de�ned by g 7→ yg send ν (respetively ν̃) to νy (respetively ν̃y) forall y ∈ YL (respetively y ∈ Z[T,T ′]). This proves the �rst laim.Sine q+ a is orthogonal to l (respetively l ∩ h) by Equation (4), the manifold yOǫ isorthogonal to YL (respetively Z[T,T ′]) at every y ∈ YL (respetively y ∈ Z[T,T ′]). Hene anyorthonormal frame F of Ty(yOǫ) at a given y ∈ Z[T,T ′] may be ompleted to an orthonormalframe whose last vetors form a basis of TyYL, whose �rst vetors form a basis of TyZ[T,T ′].By desintegration, the orthogonal frame F has the same in�nitesimal volume for ν and ν̃.The last assertion follows. �Let us now de�ne our bump funtions. By the standard onstrution of bump funtionson manifolds, for every q ∈ N, there exists κ′ > 0 suh that for every ǫ > 0 small enough,there exists a Cq map ψǫ from Oǫ to [0,+∞[ , with ompat support, suh that ∫ ψǫ dν = 1and ‖ψǫ‖q = O(ǫ−κ′

). Sine dν̃
dν = 1 + O(ǫ) on Oǫ by Lemma 14, we have

∫

Oǫ

ψǫ dν̃ = 1 + O(ǫ) .For every ǫ > 0 small enough, de�ne fǫ : YG → [0,+∞[ by fǫ(y) = 0 if y /∈ YLOǫ and
fǫ(yg) = ψǫ(g) for every y ∈ YL and g ∈ Oǫ. Note that fǫ is Cq with ompat support,sine YL is ompat. We have

∫

YG

fǫ dµ =

∫
YLOǫ

fǫ dµG

vol(YG)
=

∫
g∈Oǫ

∫
y∈YL

ψǫ(g) dµL(y)dν(g)

vol(YG)
=

vol(YL)

vol(YG)
,and ‖fǫ‖q = O(ǫ−κ′

).
19



Sine the support of fǫ is ontained in YLOǫ, by Lemma 14, and by the right inlusionin Lemma 13, we have, for every T ∈ [0,+∞[∆−I ,
∫

YPT

fǫ dµP ≤

∫

Z[−cǫ,T+cǫ]Oǫ

fǫ dµP

=

∫

g∈Oǫ

∫

y∈Z[−cǫ,T+cǫ]

ψǫ(g) dµZ[−cǫ,T+cǫ]
(y)dν̃(g)

= vol(Z[−cǫ,T+cǫ])
(
1 + O(ǫ)

)
. (18)Similarly, sine fǫ ≥ 0 and by the left inlusion in Lemma 13, we have, for every T ∈

[0,+∞[∆−I ,
∫

YPT

fǫ dµP ≥

∫

Z[cǫ,T−cǫ]Oǫ

fǫ dµP = vol(Z[cǫ,T−cǫ])
(
1 + O(ǫ)

)
. (19)Finally, we apply Step 2 to our bump funtions. By Proposition 9, we have the equality

1
µP (YPT

)

∫
YPT

fǫ dµP =
∫
YG
fǫ dµG +O

(
e−κminT ‖fǫ‖q

). Hene, by the properties of fǫ,
∫

YPT

fǫ dµP =
vol(YL)µP (YPT

)

vol(YG)

(
1 + O(ǫ−κ′

e−κminT )
)
. (20)Let δ = κ

κ′+1 > 0 and ǫ = e−δminT (whih tends to 0 as minT tends to +∞). Then
ǫ−κ′

e−κminT = e(κ
′δ−κ)minT = e−δminT . By the equations (19) and (20), and by Lemma7, we have, as minT tends to +∞,

vol(Z[cǫ,T−cǫ]) ≤
(∫

YPT

fǫ dµP

)(
1 + O(e−δminT )

)

=
vol(YL)µP (YPT

)

vol(YG)

(
1 + O(e−δminT )

)

=
Vol(Λ∨\A) vol(YL) vol(YH)

vol(YG)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminT )

)
.Sine ex = 1 + O(x) as x tends to 0, we have ec e−δminT

∑
α∈∆−I mα = 1 + O(e−δminT )as minT tends to +∞. Sine Z[0,cǫ] is bounded, we hene have, as minT tends to +∞,

vol(Z[0,T ]) ≤
Vol(Λ∨\A) vol(YL) vol(YH)

vol(YG)

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminT )

)
.The onverse inequality is proven similarly, using Equation (18) instead of Equation (19)Sine ∑

a∈AT

∑
[x]∈(L∩Γ)\(Lva∩Γv0)

w′
L,ρ|L(x) =

vol(Z[0,T ])

vol(YL)
as said in the beginning ofStep 3, this ends the proof of Theorem 6. �Remark 15 Let G,P,A,M,U,L,V, ρ, v0 be as in the statement of Theorem 6, andassume furthermore that G is simply onneted. Then we have the following ountingresults using the standard Siegel weights. 20



There exists δ > 0 suh that, as T = (tα)α∈∆−I ∈ [0,+∞[∆−I and minα∈∆−I tα tendsto +∞, ∑

a∈AT

∑

[x]∈L(Z)\(ρ(L(R)a)v0∩ρ(Γ)v0)

wL,ρ|L(x) =

vol
(
MU(Z)\MU(Z)

)
vol(Λ∨ \A(R)0)

vol(G(Z)\G(R))

( ∏

α∈∆−I

emαtα

mα

)(
1 + O(e−δminα∈∆−I tα)

)
.The proof is the same as the one of Theorem 6, with the following modi�ations. Sine

G is simply onneted, G(R) is onneted (see for instane [PR, �7.2℄). Hene with theprevious notation, we have G = G(R) and Γ = Γ(Z) (and the onnetedness of G wasuseful). Now take L = L(R) instead of L = L(R)0 (whih is still ontained in G, butwould not have been if G was only taken to be G(R)0 while G(R) is not onneted).Though L and YL may be no longer onneted, the proof stays valid.To end this setion, we give two slightly di�erent versions of Theorem 6 when P ismaximal.Theorem 16 Let G be a onneted redutive linear algebrai group de�ned over Q, withoutnontrivial Q-haraters. Let P be a maximal (proper) paraboli subgroup of G de�ned over
Q, and let P = AMU be a relative Langlands deomposition of P, suh that A(R)0 is aone-parameter subgroup (as)s∈R, with λ = log det (Ad a1)|U > 0, where U is the Lie algebraof U(R). Let ρ : G → GL(V) be a rational representation of G de�ned over Q suhthat there exists v0 ∈ V(Q) whose stabiliser in G is MU. Let L be a redutive algebraisubgroup of G de�ned and anisotropi over Q. Assume that LP is Zariski-open in G andthat for every s ∈ R, the orbit Xs = ρ(Las)v0 is Zariski-losed in V.(1) Endow G(R) with a left-invariant Riemannian metri, for whih the Lie algebrasof MU(R) and A(R) are orthogonal, and the orthogonal of the Lie algebra of P(R) isontained in the Lie algebra of L(R). Let G = G(R)0 and Γ = G(Z) ∩ G. There exists
δ > 0 suh that, as t ≥ 0 tends to +∞,

∑

0≤s≤t

∑

[x]∈(L(R)0∩Γ)\(ρ(L(R)0as)v0∩ρ(Γ)v0)

w′
L,ρ|L(x)

=
vol

(
(MU ∩ Γ)\(MU ∩G)

)
vol(aZ1\A(R)0)

λ vol(Γ\G)
eλt +O(e(λ−δ)t) .(2) Let Λ be a Z-lattie in V(Q) invariant under G(Z), and let Λprim be the subset ofindivisible elements of Λ. Assume ρ to be irreduible over C. Then there exist c, δ > 0suh that, as t ≥ 0 tends to +∞,

∑

0≤s≤t

∑

[x]∈(L(Z)∩L(R)0)\(Xs∩Λprim)

w′
L,ρ|L

(x) = c eλt +O(e(λ−δ)t) .Proof. (1) In this ase, ∆−I onsists of one simple root α0. Changing the parametrisationof the one-parameter subgroup (as)s∈R appearing in Theorem 16 by multiplying s by apositive onstant does not hange the asymptoti formula in the statement of Theorem 16(1). Hene we may assume that a1 = (α0)
∨, hene that the group aZ1 generated by a1 isequal to the lattie Λ∨. The onstant λ de�ned in Theorem 16 is then equal to mα0 . The�rst part of Theorem 16 hene follows from Theorem 6.(2) We start by proving two lemmas. 21



Lemma 17 If ρ is irreduible, then the stabiliser of Cv0 in G is P and there exists χ ∈ Rsuh that asv0 = eχsv0 for every s ∈ R.Proof. Let T be a maximal torus of G ontaining S, and let ∆T be a set of primitiveroots of G relative to T, whose set of nonzero restritions to S is ∆ (see for instane [Bor3,�21.8℄. Then the unipotent subgroup U
+
T
, whose Lie algebra is the sum of the positive rootspaes of G relative to T, is ontained in MU. By the properties of the highest weights,if ρ is irreduible, the spae {v ∈ V : U

+
T
v = v} is one-dimensional, hene equal to

Cv0. Sine A normalises MU, hene U
+
T
, it preserves Cv0, and the result follows, by theonnetedness of A. �Lemma 18 There exist v1, . . . , vk in Λprim suh that Λprim ∩Gv0 =

⊔k
i=1 Γvi.Proof. By [Bor3, Prop. 20.5℄, the natural map G(Q) → (G/P)(Q) is onto. Sine Gv0 ≃

G/MU, this implies that every x ∈ (Gv0)(Q) may be written as x = gpv0 for some
g ∈ G(Q) and p ∈ P. Hene by Lemma 17,

(Gv0)(Q) ⊂ C×
G(Q)v0.By [Bor2, Prop. 15.6℄, there exists a �nite subset F of G(Q) suh that G(Q) = ΓFP(Q).Hene,

(Gv0)(Q) ⊂ C×ΓFv0.In partiular, we onlude that there exist v1, . . . vk in Λprim suh that
Λprim ∩Gv0 ⊂

k⊔

i=1

C×Γvi.Sine for every v ∈ Λprim,
C×v ∩ Λprim = {±v},this implies the lemma. �Now, sine the identity omponent L of L(R) has �nite index in L(R), there exist

ℓ1 . . . , ℓk′ in L(R) suh that L(R) =
⊔k′

j=1 L ℓj . Hene, sine v0 belongs to V(R) and
Xs ⊂ Gv0, by Lemma 17 and Lemma 18, we have

Xs ∩ Λprim = (L(R)eχsv0) ∩ (Λprim ∩Gv0) =
⊔

1≤i≤k , 1≤j≤k′

eχsL ℓjv0 ∩ Γvi . (21)If L ℓjv0∩Γvi is nonempty, �x vi,j ∈ Lℓjv0∩Γvi. In partiular, there exist γ ∈ Γ and ℓ ∈ Lsuh that vi,j = ℓ ℓjv0 = γvi. Sine vi ∈ V(Q), we have vi,j ∈ V(Q). Hene the stabiliser
Pi,j of vi,j in G is an algebrai subgroup de�ned over Q. Sine vi,j is in the G-orbit of
v0, the stabilisers of v0 and of vi,j are onjugate, hene Pi,j is a paraboli subgroup of
G. Sine two paraboli subgroups of G, whih are de�ned over Q and onjugate in G,are onjugated by an element of G(Q) (see for instane [Bor4, Theo. 20.9 (iii)℄), thereexists αi,j ∈ G(Q) suh that Pi,j = αi,jPα

−1
i,j . Furthermore, using Lemma 17, we have

Cvi,j = Cαi,jv0. A relative Langlands deomposition of Pi,j is Pi,j = Ai,jMi,jUi,j where
Ai,j = αi,jPα

−1
i,j , Mi,j = αi,jMα−1

i,j , Ui,j = αi,jUα
−1
i,j .22



We have Ai,j(R)0 =
(
ai,js = αi,jasα

−1
i,j

)
s∈R

and the Lie algebra of Ui,j(R) is Ui,j =

Adαi,j(U). Hene ai,js vi,j = eχsvi,j for every s ∈ R and
log det(Ad ai,j1 )|Ui,j

= λ ,for every i, j with L ℓjv0 ∩ Γvi 6= ∅.By Assertion (1) of Theorem 16 applied to the (maximal) paraboli subgroup Pi,jde�ned over Q, there exist ci,j , δi,j > 0 (with ci,j expliit) suh that, as t ≥ 0 tends to +∞,
∑

0≤s≤t

∑

[x]∈(L∩Γ)\(Lai,js vi,j∩Γvi,j)

w′
L,ρ|L(x) = ci,j e

λt +O(e(λ−δi,j )t) .Hene, using the equations (7) and (21), with δ = mini,j δi,j and c = ∑
i,j ci,j , we have, as

t ≥ 0 tends to +∞,
∑

0≤s≤t

∑

[x]∈(L(Z)∩L(R)0)\(Xs∩Λprim)

w′
L,ρ|L(x)

=
∑

1 ≤ i ≤ k

1 ≤ j ≤ k′

Lℓjv0 ∩ Γvi 6= ∅

∑

0≤s≤t

∑

[x]∈(L∩Γ)\(Lai,js vi,j∩Γvi,j )

w′
L,ρ|L(x)

= c eλt +O(e(λ−δ)t) .This ends the proof of Assertion (2) of Theorem 16. �Remark. Using Remark 15 instead of Theorem 6 in the above proof gives Theorem 4 andTheorem 3 in the introdution.3 Appliations3.1 Counting inequivalent representations of integers by norm formsIn this subsetion, we �x n ≥ 2, an algebrai losure Q of Q in C, and F ∈ Q[x1, . . . , xn]a rational polynomial in n variables, whih is irreduible over Q and splits as a produt of
n linearly independant linear forms with oe�ients in Q. We assume that F−1(]0,+∞[)is nonempty.Remarks. (1) With the notation of Theorem 1, for every k ∈ R, de�ne N(k) =
Card

(
ΓF\Σk

). If Σk is not empty and if e is the least ommon multiple of the denominatorsof the oe�ients of F , then k ∈ 1
eZ. In partiular, there are only �nitely many k in anyompat interval of R suh that N(k) 6= 0 (and moreover these numbers k are rational,and even integral if F has integral oe�ients). In partiular, the sum in the left handside of the asymptoti formula in Theorem 1 is a �nite sum.(2) If n = 2, Theorem 1 is well known. It is easy to see that

F (x1, x2) = a(x1 + αx2)(x1 + αx2)where a ∈ Q and α is a quadrati irrational with Galois onjugate α. Theorem 1 followsfrom Equation (1) when α is an algebrai integer, where K = Q(α). When the binary23



quadrati form F is inde�nite, we refer to [Coh, page 164℄ for an algebrai proof and to[PP1, Coro. 1.3℄ for a geometri proof of the main term (and [PP2℄ for the error term), andthese last two papers for geometri extensions to higher dimensional hyperboli manifolds.(3) By for instane [Ko, Theo. 2.3.3, page 38℄, any polynomial F as in the beginningof this subsetion is a rational multiple of a norm form. Let us give a quik proof forompleteness.The absolute Galois group Gal = Gal(Q/Q) naturally ats on the Q-vetor spae
Q[x1, . . . , xn]. Let L1, . . . , Ln ∈ Q[x1, . . . , xn] be linear forms suh that F =

∏n
i=1 Li. Bythe uniqueness property of irreduible deompositions, the group Gal preserves the set oflines {QL1, . . . ,QLn}. If this ation is not transitive, and {QLk1 , . . . ,QLkm} is an orbit,then the nonzero polynomial ∏m

i=1 Lki has its oe�ients that are invariant by Gal up tomultipliation by an element of Q. Dividing ∏m
i=1 Lki by one of its nonzero oe�ients, wehene get an element of Q[x1, . . . , xn] (with degree di�erent from 0 and n) whih divides

F . This ontradits the irreduibility of F over Q.We may assume that one of the oe�ients of L1 is 1 (up to dividing L1 by one of itsnonzero oe�ients, and multiplying L2 by it). Hene the stabiliser of QL1 in Gal is equalto the stabiliser Gal1 of L1, whih is equal to the Galois group GalK = Gal(Q/K) where
K is the number �eld generated by the oe�ients of L1. Hene there exists a ∈ Q suhthat

F = a
∏

σ∈Gal /Gal1

σL1 = a
∏

σ∈Gal /GalK

σL1 = a NK/Q ◦ L1 .Sine NK/Q takes rational values on K, this proves that F is a rational multiple of a normform.(4) The assumption that the polynomial F is irreduible over Q is essential for Theorem1. For instane, onsider F (x) = x1 · · · xn. Then the ardinality of F−1(k)∩Zn is nonzeroif and only if k ∈ Z, and, for every ǫ > 0, there exists κ > 0 suh that for every k ∈ Z,
Card(F−1(k) ∩ Zn) ≤ d(k)n ≤ κ kǫ ,where d(k) denotes the number of divisors of k (see for instane [Apo, page 296℄).(5) Let O be an order in the ring of integers OK of a number �eld K of degree n.Generalizing the ase of O = OK (see Equation (1)), with α1, . . . , αn a Z-basis of O,applying Theorem 1 to the norm form F (x) = NK/Q(α1x1 + · · · + αnxn), we prove ina dynamial way that there are onstants c, δ > 0 suh that Card

(
O×\{x ∈ O : 1 ≤

|NK/Q(x)| ≤ r}
)
= c r +O(r1−δ) as r → ∞.Proof of Theorem 1. In order to apply Theorem 3, let us �rst de�ne the objetsappearing in its statement.Let G = SLn(C) whih is a (Q-split) quasi-simple simply onneted linear algebraigroup without nontrivial Q-haraters. Let V = Cn, Λ = Zn (whih is a Z-lattie in V(Q)invariant under G(Z)), (e1, . . . , en) the anonial basis of V and ρ : G → GL(V) themonomorphism mapping a matrix x to the linear automorphism of V whose matrix in theanonial basis is x, whih is an irreduible rational representation over C. To simplifythe notation, we denote ρ(g)v = gv for every g ∈ G and v ∈ V. Let P be the stabiliserin G of the line generated by e1, whih is a maximal (proper) paraboli subgroup of Gde�ned over Q. With Ik the identity k × k matrix and s ∈ R, let U =

{(1 u
0 In−1

)
: u ∈24



M1,n−1(C)
}, as = (e s

n 0

0 e
− s

n(n−1) In−1

), and M =
{(1 0

0 m

)
: m ∈ SLn−1(C)

}. With Athe entraliser of M in G, we have that P = AMU is a relative Langlands deompositionof P over Q, and the identity omponent of A(R) is the one-parameter subgroup (as)s∈R.With U the Lie algebra of U(R), an immediate omputation gives
λ = log det(Ad a1)|U = 1 > 0 . (22)Sine F is homogeneous, as F takes a positive value (and equivalently), there exists

v0 ∈ Zn suh that F (v0) > 0. We may assume that v0 is primitive up to resaling it,and after an integral linear hange of variable (whih does not hange the set of integralrepresentations of a real number by F ), we may assume that v0 = e1. Note that thestabiliser of v0 in G is then preisely MU.We denote by L the stabiliser of F in G and by π : L → GL(V) the restrition of ρ to
L. By the linear independene over C assumption, L is a maximal algebrai torus de�nedover Q in G (hene L is redutive, but not semisimple). For every z ∈ C−{0}, the group Lats simply transitively on the a�ne hypersurfae F−1(z). Hene, with vs = asv0 = e

s
n v0,the orbit

Xs = Lvs = F−1(F (vs)) = F−1(esF (v0)) (23)(sine F is homogeneous of degree n) is Zariski-losed in V.Let us now hek in two lemmas that the hypotheses of Theorem 3 are satis�ed bythese objets.Lemma 19 The algebrai torus L is anisotropi over Q.Proof. As seen in Remark (3) above, there exist a ∈ Q − {0} and linearly independantlinear forms ℓ1, . . . , ℓn on Cn with oe�ients in Q suh that F = a
∏n

i=1 ℓi and the absoluteGalois group Gal(Q/Q) ats transitively on the set {ℓ1, . . . , ℓn}. Let B be the basis of Cnwhose dual basis is (ℓ1, . . . , ℓn). The algebrai torus L is the subgroup of the elements of
G whose matrix in the basis B is diagonal. For 1 ≤ i ≤ n, let χi be the harater (de�nedover Q) of L whih assoiates to an element of L the i-th diagonal element of its matrix in
B. Note that Gal(Q/Q) ats transitively on the set {χ1, . . . , χn}. Any harater of L maybe uniquely written ∏n

i=1 χ
ki
i with k1, . . . , kn ∈ Z. Any Q-harater ∏n

i=1 χ
ki
i of L, beinginvariant under Gal(Q/Q), should have k1 = · · · = kn by transitivity, hene is trivial. Theresult follows, sine an algebrai torus de�ned over Q without nontrivial Q-haraters isanisotropi over Q, that is, it ontains no nontrivial Q-split torus (see for instane [Bor3,page 121℄, though this referene uses a di�erent meaning of anisotropi). �Lemma 20 The intersetion L ∩P is �nite and LP is Zariski-open in G.Proof. Let us prove that the algebrai group L ∩ P is �nite. Sine an algebrai grouphas only �nitely many omponents, we only have to prove that its identity omponent

S = (L ∩ P)0 is trivial. The algebrai torus S is de�ned over Q, hene is ontained in amaximal torus of P de�ned over Q. By [Bor3, Theo. 19.2℄, two maximal tori of P de�nedover Q are onjugated over Q. Sine G splits over Q, this implies that L ∩ P splits over
Q. Sine L is anisotropi over Q by Lemma 19, this implies that S is trivial, and provesthe �rst laim. 25



Now, the homogeneous spaeG/P is identi�ed with the omplex projetive spae P(Cn)by the map g 7→ Cge1. We write e1 = ∑n
i=1 ciwi where B = (wi)1≤i≤n is a diagonalisationbasis of V for the ation of the algebrai torus L, as in the proof of Lemma 19. Sinethe Galois group Gal(Q/Q) ats transitively on {w1, . . . wn} and �xes e1, it follows thatthe oe�ients ci are all di�erent from 0. Hene L(Ce1) = {C

∑n
i=1 biwi : bi 6= 0}, whihimplies the seond laim. �To onlude the proof of Theorem 1, we relate the two ounting funtions in the state-ments of Theorem 1 and Theorem 3.For every s > 0 and p ∈ N − {0}, let A(p)

s be the set of integral points of Xs whoseoe�ients have their greatest ommon divisor equal to p. Note that A(1)
s = Xs ∩ Λprimis the set of primitive integral points of Xs. With N

(p)
s = Card(L(Z)\A

(p)
s ), we have

Card(L(Z)\Xs(Z)) =
∑+∞

p=1N
(p)
s , and N

(p)
s = N

(1)
s−ln(pn), sine Xs−log(pn) = 1

pXs by thehomogeneity of F and Equation (23).Sine L ats simply transitively on eah Xs, the stabiliser Lx of every x ∈ Xs is trivial,hene the Siegel weight wL,π(x) is onstant, equal to 1
vol(L(Z)\L(R) . By Theorem 3 andEquation (22), there exist δ > 0, that we may assume to be in ]0, 1 − 1

n [, and c > 0 suhthat, as t ≥ 0 and t→ +∞,
∑

s∈[0,t]

N (1)
s = c et +O(et(1−δ)) .For every r ≥ F (v0)+1, by setting t = log r

F (v0)
≥ 0 and by using the hange of variables

k = esF (v0) (see Equation (23)), we have, with Σk = F−1(k) ∩ Zn and ζ Riemann's zetafuntion,
∑

k∈[F (v0),r]

Card(L(Z)\Σk) =
∑

s∈[0,t]

Card(L(Z)\Xs(Z)) =
∑

s∈[0,t]

+∞∑

p=1

N (p)
s

=

+∞∑

p=1

∑

s∈[0,t]

N
(1)
s−ln(pn) =

+∞∑

p=1

c p−n et +O(pn(δ−1)et(1−δ))

= c ζ(n) et +O
(
et(1−δ)

)
=
c ζ(n)

F (v0)
r +O

(
r1−δ

)
.Note that ∑k∈[min{1,F (v0)},max{1,F (v0)}]

Card(L(Z)\Σk) is �nite. The result follows. �3.2 Counting inequivalent integral points on hyperplane setions of a�nequadrati surfaesLet n ≥ 3, let q : Cn → C with q(x) =
∑n

i=1 qijxixj for every x = (x1, . . . , xn) be anondegenerate quadrati form in n variables with oe�ients qij in Q, and let ℓ : Cn → Cwith ℓ(x) = ∑n
i=1 ℓixi for every x = (x1, . . . , xn) be a nonzero linear form in n variableswith oe�ients ℓi in Q.The aim of this setion is to ount the number of orbits of integral points on thesetions, by the hyperplanes parallel to the kernel of ℓ, of the isotropi one q−1(0) of q.26



ℓ = k v0

q = 0

v0

ℓ = k

ℓ = ℓ(v0)

ℓ = 0

ℓ = 0

q = 0

For K = R or Q, reall that q is isotropi (or inde�nite when K = R) over K orrepresents 0 over K if there exists x ∈ Kn−{0} suh that q(x) = 0, and that q is anisotropiover K otherwise. For instane, x2 + 2y2 − 7z2 is anisotropi over Q, but inde�nite over
R. By A. Meyer's 1884 result (see for instane [Ser, page 77℄), if n ≥ 5, then q is isotropiover Q if and only if q is inde�nite over R.Proof of Theorem 2. In order to apply Theorem 16 (2), let us �rst de�ne the objetsappearing in its statement.Let G = Oq be the orthogonal group of the nondegenerate rational quadrati form q,whih is a onneted semisimple linear algebrai group de�ned over Q, hene is redutivewithout nontrivial Q-haraters. Let V = Cn and let ρ : G → GL(V) be the monomor-phism mapping a matrix x to the linear automorphism of V whose matrix in the anonialbasis is x, whih is an irreduible rational representation over C. Let Λ = Zn, whih is a
Z-lattie in V(Q) invariant under G(Z). To simplify the notation, we denote ρ(g)v = gvfor every g ∈ G and v ∈ V.Sine q is assumed to be isotropi over Q, there exists v0 in Λ−{0} suh that q(v0) = 0and we assume that ℓ(v0) ≥ 0 up to replaing v0 by −v0. Sine the restrition of q to thekernel of ℓ is assumed to be anisotropi over Q, we have ℓ(v0) > 0. Let P be the stabiliserin G of the line generated by v0, whih is a maximal (proper) paraboli subgroup of Gde�ned over Q sine this line is isotropi. Let B = (e1, . . . , en) be a basis of V over Qsuh that e1 = v0, (e1, e2) is a standard basis of a hyperboli plane over Q for q, whih isorthogonal for q to the vetor subspae V

′ generated by B′ = (e3, . . . , en). In partiular,the matrix of q in the basis B is Q =




0 1 0
1 0 0
0 0 Q′


 with Q′ the (rational symmetri)matrix in the basis B′ of the restrition q′ of q to V
′. Denoting in the same way a vetor

v (resp. u) of V (resp. V′) and the olumn vetor of its oordinates in B (resp. B′), wehave q(v) = tvQv (resp. q′(u) = tuQ′u). With Ik the identity k × k matrix and s ∈ R,de�ne
as =



es 0 0
0 e−s 0
0 0 In−2


 , A =







a 0 0
0 a−1 0
0 0 In−2


 : a ∈ C∗



 ,27



M =








1 0 0
0 1 0
0 0 m


 : m ∈ Oq′



 and U =








1 −q′(u)/2 − tuQ′

0 1 0
0 u In−2


 : u ∈ V

′



 .It is easy to hek that P = AMU is a relative Langlands deomposition of P, that theidentity omponent of A(R) is the one-parameter subgroup (as)s∈R, and that the stabiliserof v0 = e1 inG is exatlyMU. With U the Lie algebra ofU(R), an immediate omputationgives (sine n ≥ 3)

λ = log det(Ad a1)|U = n− 2 > 0 . (24)We denote by L = {g ∈ G : ℓ ◦ g = ℓ} the stabiliser of ℓ in G, whih is a linearalgebrai group de�ned over Q. Let W be the kernel of ℓ and W
⊥ be its orthogonal for

q. Sine q|W is assumed to be nondegenerate, W⊥ is a line, V = W
⊥ ⊕W, and the blomatrix of q in this deomposition is diagonal.Let us now hek in the next lemma that the hypotheses of Theorem 16 are satis�edby these objets.Lemma 21 (1) The linear algebrai group L is redutive and anisotropi over Q.(2) For every s ∈ R, if k = esℓ(v0) and Xs = Lasv0, then Xs = {v ∈ V : q(v) =

0, ℓ(v) = k}. In partiular, Xs is Zariski-losed in V.(3) The subset LP is Zariski-open in G.Proof. (1) For every g ∈ GL(V), if ℓ ◦ g = ℓ, then g preserves W. If furthermore
g ∈ G = Oq , then g preserves W

⊥. Sine W
⊥ is a line, there exists λ ∈ C suh that gats by x 7→ λx on W

⊥. As ℓ|W⊥ is nonzero and g preserves ℓ, we have λ = 1. Hene theelements of L are exatly the elements of GL(V) whose blo matrix in the deomposition
V = W

⊥ ⊕W has the form (1 0
0 g′

) with g′ ∈ Oq|W . In partiular, the linear algebraigroup L, isomorphi overQ to the orthogonal group of the nondegenerate rational quadratiform q|W, is semisimple hene redutive.It is well-known (see for instane [Bor1℄[BJ, page 270℄) that theQ-rank of the orthogonalgroup Oq′′ of a nondegenerate rational quadrati form q′′ is zero (or equivalently that Oq′′ isanisotropi over Q) if and only if q′′ does not represents 0 over Q. For instane, this followsfrom the fat that the spherial Tits building over Q of Oq′′ is the building of isotropi�ags over Q. Hene by assumption, L is anisotropi over Q.(2) Note that by the de�nition of as, we have asv0 = esv0, hene by the linearity of
ℓ, we may assume that s = 0. Reall that q(v0) = 0 and ℓ(v0) > 0. By the de�nition of
L, the orbit X0 = Lv0 is ontained in {v ∈ V : q(v) = 0, ℓ(v) = ℓ(v0)}. To prove theopposite inlusion, write v = v′ + v′′ the deomposition of any v ∈ V in the diret sum
V = W

⊥ ⊕W. If ℓ(v) = ℓ(v0) and q(v) = 0, then v′ = v′0 and q(v′′) = −q(v′) = −q(v′0),and in partiular q(v′′) = q(v′′0 ). By Witt's theorem, there exists g′ ∈ Oq|W suh that
v′′ = g′v′′0 . Hene the linear transformation of V whih is the identity on W

⊥ and is equalto g′ on W, is an element of L sending v = v′ + v′′ to v0 = v′0 + v′′0 . The seond assertionfollows.(3) The algebrai group G = Oq ats transitively on the projetive variety of isotropilines in V, the stabiliser of the line generated by v0 being P by de�nition. As we haveseen in (2), the orbit under L of the line generated by v0 is hene the Zariski-open subset28



of G/P onsisting of the isotropi lines not ontained in W. The last laim of Lemma 21follows. �To onlude the proof of Theorem 2, we relate the two ounting funtions in the state-ments of Theorem 2 and Theorem 16 (2). Let L = L(R)0 and Γ = G(R)0 ∩G(Z).We have ℓ(v0) > 0 by the de�nition of v0. For every r ≥ ℓ(v0) + 1, let t = ln r
ℓ(v0)

> 0.With Σk as in the statement of Theorem 2, using the hange of variables k = esℓ(v0) andLemma 21 (2), by the de�nition of the modi�ed Siegel weights in Equation (2), we have
∑

k∈[ℓ(v0),r]

∑

[u]∈(L(Z)∩L)\Σk

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

vol
(
(L ∩ Γ)\L

) ∑

s∈[0,t]

∑

[u]∈(L(Z)∩L)\Xs∩Λprim

w′
L,ρ|L(u) . (25)By Theorem 16 (2) and Equation (24), there exist c, δ > 0 suh that as t → +∞, thequantity (25) is equal to

c e(n−2)t +O
(
e(n−2−δ)t

)
=

c

ℓ(v0)n−2
rn−2 +O

(
rn−2−δ

)
.Note that ∑k∈[min{1,ℓ(v0)},max{1,ℓ(v0)}]

∑
[u]∈(L(Z)∩L)\Σk

vol
(
(Lu(Z)∩L)\(Lu∩L)

) is �nite.This onludes the proof of Theorem 2. �Remarks (1) If n ≥ 6, sine q is isotropi over Q and the restrition of q to the kernel of
ℓ is anisotropi over Q, then the signature of q over R is (1, n− 1) or (n− 1, 1), and L(R)is ompat (see the above piture on the right); hene L(Z) is �nite, and our result allowsto ount integral points on the quadrati hypersurfae q−1(0) (see the referenes given inthe introdution for related works).(2) If n ≥ 4, then we have a result similar to Theorem 2 where we onsider all theintegral points and not only the primitive ones: under the other assumptions of Theorem2 and with c as above, we have, for every r ≥ 1 with r → +∞,

∑

k∈[1,r]

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)

=
c ζ(n− 2)

ℓ(v0)n−2
rn−2 +O

(
rn−2−δ

)
.The proof is similar to the one at the end of Setion 3.1. For every s ∈ R and p ∈ N−{0},we denote by A(p)

s the set of integral points of Xs whose greatest ommon divisor of theiroe�ients is p. We note that by Lemma 21 (2), the map from A
(p)
s to A(1)

s−ln p de�ned by
x 7→ x

p is a bijetion suh that Lx
p
= Lx for every x ∈ A

(p)
s . Hene with

N (p)
s =

∑

[u]∈(L(Z)∩L)\A
(p)
s

vol
(
(Lu(Z) ∩ L)\(Lu(R) ∩ L)

)
,we have N (p)

s = N
(1)
s−ln p and

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

∞∑

p=1

N (p)
s ,29



and one onludes as in the end of Setion 3.1.When n = 3, the same argument gives
∑

k∈[1,r]

∑

[u]∈(L(Z)∩L)\(q−1(0)∩ℓ−1(k)∩Zn)

vol
(
(Lu(Z) ∩ L)\(Lu ∩ L)

)
=

c

ℓ(v0)
r log r +O

(
r
)
.3.3 Counting inequivalent integral points of given norm in entral divi-sion algebrasLet n ≥ 2, let D be a entral simple algebra over Q of dimension n2, let N : D → Q be itsredued norm, and let O be an order in D (that is, a �nitely generated Z-submodule of D,generating D as a Q-vetor spae, whih is a unitary subring). We refer for instane to [Rei℄and [PR, Chap. I, �1.4℄) for generalities. The aim of this setion is to use our main resultto dedue asymptoti ounting results of elements of O (modulo units) of given norm.Theorem 22 If D is a division algebra over Q, then there exist c = c(D,O) > 0 and

δ = δ(D) > 0 suh that, for every r ≥ 1 with r → +∞,
Card O×\{x ∈ O : 1 ≤ |N(x)| ≤ r} = c rn

(
1 + O

(
r−δ

))
.Proof. In order to apply Theorem 3, let us �rst de�ne the objets appearing in itsstatement.Let V be the vetor spae over Q suh that V(K) = D ⊗Q K for every harateristizero �eld, with the integral struture suh that Λ = V(Z) = O, whih is (for the extendedmultipliation) a entral simple algebra over C. Let D

1 be the group of elements of(redued) norm ±1 in V.We take G = SL(V) (whih is onneted, simply onneted, semisimple, de�ned over
Q, hene redutive without nontrivial Q-haraters) and ρ the inlusion of G in GL(V)(whih is an irreduible rational representation). To simplify the notation, we denote
ρ(g)v = gv for every g ∈ G and v ∈ V.Let L be the algebrai subgroup of G whih is the image of D1 into G by the (left)regular representation d 7→ {v 7→ dv}. Note that the linear algebrai groups L and D

1 arede�ned over Q and are isomorphi by this representation. We have
L(Z) = D

1 ∩ O = O
× . (26)We take v0 ∈ V to be the identity element in D. The stabiliser of the line Cv0 in G is a(maximal) paraboli subgroup P of G de�ned over Q. We note that dim(P) = dim(D)2 −

dim(D) − 1 and dim(L) = dim(D) − 1. We have a relative Langlands deomposition
P = AMU with MU the stabiliser of v0 in G, and we may write A(R)0 = (as)s∈R suhthat asv0 = e

s
n v0. An easy omputation gives

λ = log det(Ad a1)|U = n > 0 . (27)Let us now hek that the hypotheses of Theorem 3 are satis�ed by these objets.We laim that the group L ∩ P is �nite. The ation of this group on v0 de�nes a
Q-harater of L ∩P. Sine L ≃ D

1 is anisotropi over Q (see for instane [PR, Chap. II,�2.3℄), this harater must be trivial on (L∩P)0, and (L∩P)0v0 = v0. Sine StabL(v0) =30



{e}, it follows that (L ∩ P)0 = {e}, whih proves the laim. Comparing dimensions, wededue that LP is Zariski-open in G.For every s ∈ R, we have
Xs = Lasv0 = e

s
nLv0 = e

s
nD

1 . (28)Hene Xs is Zariski-losed in V.To onlude the proof of Theorem 22, we relate the two ounting funtions in thestatements of Theorem 22 and Theorem 3.Sine L ats simply transitively on the orbit of v0, the Siegel weights are onstant, equalto 1
vol(L(Z)\L(R)) . For every k ∈ N− {0}, denote by O(k) the subset of nonzero elements of

O whose greatest ommon divisor of their oe�ients in a Z-basis of O is k. In partiular,sine the norm is a homogeneous polynomial of degree n and by Equation (28), we have
Xs ∩ Λprim = {x ∈ O

(1) : N(x) = es} .Note that the map x 7→ x
k is a bijetion from O(k) to O(1). Hene, using Equation (26) andTheorem 3, there exist δ > 0, that we may assume to be in ]0, 1[ , and c > 0 suh that, as

r ≥ 1 and r → +∞,
Card O×\{x ∈ O : 1 ≤ |N(x)| ≤ r} =

+∞∑

k=1

Card O×\{x ∈ O
(k) : 1 ≤ |N(x)| ≤ r}

=
+∞∑

k=1

Card O×\{x ∈ O
(1) : 1 ≤ |N(x)| ≤

r

kn
}

=

+∞∑

k=1

∑

0≤s≤log r
kn

Card
(
L(Z)\

(
Xs ∩ Λprim

))

=

+∞∑

k=1

c
( r
kn

)n(
1 + O

(( r
kn

)−δ))

= c ζ(n2) rn
(
1 + O(r−δ)

)
.This ends the proof of Theorem 22. �Referenes[Apo℄ T. Apostol. Introdution to analyti number theory. Undergrad. Texts Math., SpringerVerlag, 1976.[Bab℄ M. Babillot. Points entiers et groupes disrets : de l'analyse aux systèmes dynamiques. in"Rigidité, groupe fondamental et dynamique", Panor. Synthèses 13, 1�119, So. Math.Frane, 2002.[BHV℄ B. Bekka, P. de la Harpe, and A. Valette. Kazhdan's property T. New Math. Mono. 11,Cambridge Univ. Press, 2008.[BO℄ Y. Benoist and H. Oh. E�etive equidistribution of S-integral points on symmetri vari-eties. To appear in Annales de L'Institut Fourier.[Bor1℄ A. Borel. Ensembles fundamentaux pour les groupes arithmétiques. in �Colloque sur laThéorie des Groupes Algébriques�, CBRM, Bruxelles, 1962, pp. 23�40.31



[Bor2℄ A. Borel. Introdution aux groupes arithmétiques. Hermann, 1969.[Bor3℄ A. Borel. Linear algebrai groups. 2nd Enlarged Ed., Grad. Texts Math. 126, SpringerVerlag, 1991.[Bor4℄ A. Borel. Redution theory for arithmeti groups. in �Algebrai Groups and DisontinuousSubgroups�, A. Borel and G. D. Mostow eds, Pro. Sympos. Pure Math. (Boulder, 1965),pp. 20�25, Amer. Math. So. 1966.[BHC℄ A. Borel and Harish-Chandra. Arithmeti subgroups of algebrai groups. Ann. of Math.75 (1962) 485�535.[BJ℄ A. Borel and L. Ji. Compati�ations of symmetri and loally symmetri spaes.Birkhäuser, 2006.[BR℄ M. Borovoi and Z. Rudnik. Hardy-Littlewood varieties and semisimple groups. Invent.Math. 119 (1995) 37�66.[Clo℄ L. Clozel. Démonstration de la onjeture τ . Invent. Math. 151 (2003) 297�328.[Coh℄ H. Cohn. A seond ourse in number theory. Wiley, 1962, reprinted as Advaned numbertheory, Dover, 1980.[CTX℄ J.-L. Colliot-Thélène and F. Xu. Brauer-Manin obstrution for integral points of homo-geneous spaes and representation by integral quadrati forms. Compositio Math. 145(2009) 309�363.[Cow℄ M. Cowling. Sur les oe�ients des représentations unitaires des groupes de Lie simples.in "Analyse harmonique sur les groupes de Lie" (Sém. Nany-Strasbourg 1976�1978), II,pp. 132�178, Let. Notes Math. 739, Springer Verlag, 1979.[DRS℄ W. Duke, Z. Rudnik, and P. Sarnak. Density of integer points on a�ne homogeneousvarieties. Duke Math. J. 71 (1993) 143�179.[EM℄ A. Eskin and C. MMullen. Mixing, ounting, and equidistribution in Lie groups. DukeMath. J. 71 (1993) 181�209.[EMS℄ A. Eskin, S. Mozes, and N. Shah. Unipotent �ows and ounting lattie points on homo-geneous varieties. Ann. of Math. 143(1996) 253�299.[EO℄ A. Eskin and H. Oh. Representations of integers by an invariant polynomial and unipotent�ows. Duke Math. J. 135 (2006) 481�506.[ERS℄ A. Eskin, Z. Rudnik, and P. Sarnak. A proof of Siegel's weight formula. Internat. Math.Res. Noties 5 (1991) 65�69.[GO1℄ W. T. Gan and H. Oh. Equidistribution of integer points on a family of homogeneousvarieties: a problem of Linnik. Compositio Math. 136 (2003) 323�352.[GO2℄ A. Gorodnik and H. Oh. Rational points on homogeneous varieties and equidistributionof adeli periods. Geom. Funt. Anal. 21 (2011) 319�392.[Gyö℄ K. Györy. On the distribution of solutions of deomposable form equations. in "Numbertheory in progress", Vol. 1 (Zakopane-Ko± ielisko, 1997), 237�265, K. Györy, H. Iwanie,J. Urbanowiz ed., de Gruyter, 1999.[Hir℄ M. Hirsh. Di�erential topology. Grad. Texts Math. 33, Springer Verlag, 1976.[KS℄ D. Kelmer and P. Sarnak. Strong spetral gaps for ompat quotients of produts of
PSL(2,R). J. Euro. Math. So. 11 (2009) 283�313.[KM1℄ D. Kleinbok and G. Margulis. Bounded orbits of nonquasiunipotent �ows on homoge-neous spaes. Sinai's Mosow Seminar on Dynamial Systems, 141�172, Amer. Math.So. Transl. Ser. 171, Amer. Math. So. 1996.32



[KM2℄ D. Kleinbok and G. Margulis. Logarithm laws for �ows on homogeneous spaes. Invent.Math. 138 (1999) 451�494.[Ko℄ H. Koh. Number theory : algebrai numbers and funtions. Grad. Stud. Math. 24, Amer.Math. So. 2000.[Lan℄ S. Lang. Algebrai number theory. Grad Texts Math. 2nd ed., Springer Verlag, 1994.[Nev℄ A. Nevo. Exponential volume growth, maximal funtions on symmetri spaes, and ergoditheorems for semi-simple Lie groups. Erg. Theo. Dyn. Syst. 25 (2005) 1257�1294.[Oh1℄ H. Oh. Hardy-Littlewood system and representations of integers by an invariant polyno-mial. Geom. Funt. Anal. 14 (2004) 791�809.[Oh2℄ H. Oh. Orbital ounting via mixing and unipotent �ows. in "Homogeneous �ows, modulispaes and arithmeti", M. Einsiedler et al eds., Clay Math. Pro. 10, Amer. Math. So.2010, 339�375.[Pey℄ E. Peyre. Obstrutions au prinipe de Hasse et à l'approximation faible. Exp. No. 931,Séminaire Bourbaki, Vol. 2003/2004, Astérisque 299 (2005) 165�193.[PP1℄ J. Parkkonen and F. Paulin. Équidistribution, omptage et approximation par irrationnelsquadratiques. Preprint [arXiv:1004.0454℄.[PP2℄ J. Parkkonen and F. Paulin. Equidistribution of equidistant submanifolds in negativeurvature. In preparation.[PR℄ V. Platonov and A. Rapinhuk. Algebrai groups and number theory. Aademi Press,1994.[Rag℄ M. Raghunathan. Disrete subgroups of Lie groups. Springer Verlag, 1972.[Rei℄ I. Reiner. Maximal orders. Aademi Press, 1972.[Sh℄ W. M. Shmidt. Norm form equation. Ann. of Math. 96 (1972) 526�551.[Ser℄ J.-P. Serre. Cours d'arithmetique. Press. Univ. Frane, Paris, 1970.[Sie℄ C. L. Siegel. On the theory of inde�nite quadrati forms. Ann. of Math. 45 (1944)577�622.[Spr℄ T. A. Springer. Linear algebrai groups. In "Algebrai geometry IV", A. Parshin,I. Shavarevih eds., Eny. math. Sien. 55, Springer Verlag, 1994.[Thu℄ J. L. Thunder. Deomposable form inequalities. Ann. of Math. 153 (2001) 767�804.[Vos℄ V. E. Voskresenskii. Algebrai groups and their birational invariants. Transl. Math.Mono. 179, Amer. Math. So., 1998.[Wei℄ A. Weil. L'intégration dans les groupes topologiques et ses appliations. Hermann, 1965.Shool of MathematisUniversity of BristolBristol BS8 1TW, United Kingdome-mail: a.gorodnik�bristol.a.ukDépartement de mathématique, UMR 8628 CNRS, Bât. 425Université Paris-Sud 11, 91405 ORSAY Cedex, FRANCEe-mail: frederi.paulin�math.u-psud.fr 33


