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Abstract

Given an imaginary quadratic extension K of Q, we give a classification of the
maximal nonelementary subgroups of the Picard modular group PSU1,2(OK) preserv-
ing a complex geodesic in the complex hyperbolic plane H2

C. Complementing work
of Holzapfel, Chinburg-Stover and Möller-Toledo, we show that these maximal C-

Fuchsian subgroups are arithmetic, arising from a quaternion algebra
( D ,DK

Q

)
for

some explicit D ∈ N−{0} and DK the discriminant of K. We thus prove the existence
of infinitely many orbits of K-arithmetic chains in the hypersphere of P2(C).
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1 Introduction

Let h be a Hermitian form with signature (1, 2) on C3. The projective special unitary Lie
group PSUh of h contains exactly two conjugacy classes of connected Lie subgroups locally
isomorphic to SL2(R). The subgroups in one class, isomorphic to SU(1, 1) ' SL2(R),
preserve a complex projective line for the projective action of PSUh on the projective
plane P2(C), and those of the other class, isomorphic to SO0(2, 1) ' PSL2(R), preserve a
totally real subspace. The groups PSL2(R) and PSUh act as the groups of holomorphic
isometries, respectively, on the upper halfplane model H2

R of the real hyperbolic space and
on the projective modelH2

C of the complex hyperbolic plane defined using the form h. If Γ is
a discrete subgroup of PSUh, the intersections of Γ with the connected Lie subgroups locally
isomorphic to SL2(R) are its Fuchsian subgroups, and the Fuchsian subgroups preserving
a complex projective line are called C-Fuchsian subgroups. We refer to Section 2 for more
precise definitions and comments on the terminology.

Let K be an imaginary quadratic number field, with discriminant DK and ring of
integers OK . We consider the Hermitian form h defined by

(z0, z1, z2) 7→ −z0 z2 − z2 z0 + z1z1 .

The Picard modular group ΓK = PSUh(OK) is a nonuniform arithmetic lattice of PSUh, see
for instance [Hol2, Chap. 5] and subsequent works of Falbel, Parker, Francsics, Lax, Xie-
Wang-Jiang, and many others, for information on these groups. In this paper, we classify

1Keywords: Picard group, ball quotient, Shimura curve, arithmetic Fuchsian groups, Heisenberg
group, quaternion algebra, complex hyperbolic geometry, chain, hypersphere. AMS codes: 11E39,
11F06, 11N45, 20G20, 53C17, 53C22, 53C55
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the maximal C-Fuchsian subgroups of ΓK , and we explicit their arithmetic structures. The
results stated in this introduction do not depend on the choice of the Hermitian form h of
signature (2, 1) defined over K, since the algebraic groups over Q whose groups of Q points
are PSUh(OK) depend up to commensurability only on K and not on h, see for instance
[Sto, § 3.1].

When G = PSL2(C), there is exactly one conjugacy class of connected Lie subgroups of
G isomorphic to PSL2(R). When Γ is the Bianchi group PSL2(OK), the analogous classifi-
cation is due to Maclachlan and Reid (see [Mac, MR1] and [MR2, Chap. 9]). They proved
that the maximal nonelementary Fuchsian subgroups of PSL2(OK) are commensurable up
to conjugacy in PSL2(C) with the stabilisers of the circles |z|2 = D for D ∈ N−{0}, when
PSL2(C) acts projectively (by homographies) on the projective line P1(C) = C∪{∞}, and
that all these subgroups arise from explicit quaternion algebras over Q. For information
on Bianchi groups, see for instance [Fin] and the references of [MR1].

More generally, given a connected semisimple real Lie group G with finite center and
without compact factor, there is a nonempty finite set of infinite conjugacy classes of con-
nected Lie subgroups of G locally isomorphic to SL2(R), unless G itself is locally isomorphic
to SL2(R). The structure of the set of these subgroups plays an important role for the
classification of the linear representations of G, and for the classification of the groups G
themselves, see for instance [Kna, Ser] among others. Given a discrete subgroup Γ of G,
it is again interesting to study the Fuchsian subgroups of Γ, that is, the intersections of Γ
with these Lie subgroups, to classify the maximal ones and to see, when Γ is arithmetic,
if its maximal Fuchsian subgroups are also arithmetic (see Proposition 3.1 for a positive
answer) with an explicit arithmetic structure. From now on, G = PSUh.

We first prove (see Proposition 3.2 and just after) that a nonelementary C-Fuchsian
subgroup Γ′ of ΓK preserves a unique projective point [z0 : z1 : z2] with z0, z1, z2 relatively
prime in OK . We define the discriminant of Γ′ as ∆Γ′ = h(z0, z1, z2). For any positive
integer D, let

ΓK,D = StabΓK
[−D : 0 : 1] .

In Section 3, we prove the following classification result (see [MR1, Thm. 1] and [MR2,
Thm. 9.6.2] in the Bianchi group case).

Theorem 1.1 Let D ∈ N − {0}. The set of ΓK-conjugacy classes of maximal nonele-
mentary C-Fuchsian subgroups of ΓK with discriminant D is finite and nonzero. Every
maximal nonelementary C-Fuchsian subgroup of ΓK with discriminant D is commensurable
up to conjugacy in PSUh with ΓK,2D.

In the course of the proof of this result (see Lemma 3.4 and Corollary 4.2), we prove a
criterion for when two groups ΓK,D for D ∈ N− {0} are commensurable up to conjugacy
in PSUh. A further application of this condition shows that every maximal nonelementary
C-Fuchsian subgroup of ΓK is commensurable up to conjugacy in PSUh with ΓK,D for a
squarefree natural number D.

Recall (see for instance [Gol]) that a chain 2 is the intersection of the Poincaré hyper-
sphere

HS = {[z] ∈ P2(C) : h(z) = 0}
with a complex projective line (if nonempty and not a singleton). It is K-arithmetic if its
stabiliser in ΓK has a dense orbit in it (see Section 3 for an explanation of the terminology).

2a notion attributed to von Staudt in [Car, footnote 3]
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Corollary 1.2 There are infinitely many ΓK-orbits of K-arithmetic chains in the hyper-
sphere HS .

The figure below shows part of the image under vertical projection in the Heisenberg
group of the orbit under ΓK of a K-arithmetic chain whose stabiliser has discriminant 10,
when K = Q[i].

We say that a subgroup of PSUh arises from a quaternion algebra A defined over Q if it
is commensurable in PSUh with σ(A(Z)1) for some Q-algebra morphism σ : A→M3(C),
where A(Z)1 is the group of norm 1 eleemnts in A(Z). In Section 4, we prove the following
result (see [MR2, Thm. 9.6.3] in the Bianchi group case).

Theorem 1.3 Every nonelementary C-Fuchsian subgroup of ΓK of discriminant D is con-
jugate in PSUh to a subgroup of PSUh arising from the quaternion algebra

(D,DK
Q
)
.

The classification of the quaternion algebras over Q then allows to classify, up to com-
mensurability and conjugacy in PSUh, the maximal nonelementary C-Fuchsian subgroups
of ΓK : two such groups, with discriminantD andD′ are commensurable up to conjugacy in
PSUh if and only if the quaternion algebras

(D,DK
Q
)
and

(D′, DK
Q

)
are isomorphic (see Corol-

lary 4.2). This holds for instance if and only if the quadratic forms DKx
2 +Dy2−DDKz

2

and DKx
2 +D′y2 −D′DKz

2 are equivalent over Q (see for instance [MR2, Coro. 2.3.5]).
The terminology of the following paragraph won’t be needed in this paper, and we

refer to the quoted references. The existence of a bijection between wide commensurability
classes of C-Fuchsian subgroups of ΓK and isomorphism classes of quaternion algebras
over Q unramified at infinity and ramified at all finite places which do not split in K/Q
is a particular case of a 2011 result of Chinburg-Stover (see Theorem 2.2 in version 3 of
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[CS1] and [CS2, Theo. 4.1]), which proves such a result for all arithmetic lattices of simple
type (which include the Picard modular groups) in SU2,1. In particular, the existence of
this bijection (and our Corollary 4.4) should be attributed to Chinburg-Stover (although
they say it was known by experts). Möller-Toledo in [MT] also give a description of
the quotients by the maximal C-Fuchsian subgroups of the real hyperbolic planes they
preserve, and more generally of all Shimura curves in Shimura surfaces of the first type
(which include the complex surfaces ΓK\H2

C). We believe that our precise correspondence
brings interesting effective and geometric information to the picture.

Acknowledgements: The first author thanks the Väisälä foundation and the FIM of ETH Zürich
for their support during the preparation of this paper. The second author thanks the Väisälä
foundation and its financial support for a fruitful visit to the University of Jyväskylä and the
nordic snows. This work is supported by the NSF Grant no 093207800, while the second author
was in residence at the MSRI, Berkeley CA, during the Spring 2015 semester. We thank Y. Benoist
and M. Burger for interesting discussions on this paper. We warmly thank M. Stover for informing
us (after we posted a first version of this paper on ArXiv) about the third version on ArXiv of
the paper [CS1] and many other references, including [MT]. We thank the referee for many very
helpful remarks and suggestions which improved a lot this paper.

2 The complex hyperbolic plane

Let h be the nondegenerate Hermitian form

h(z) = −z0 z2 − z2 z0 + |z1|2 = −2 Re(z0 z2) + |z1|2

of signature (1, 2) on C3 with coordinates (z0, z1, z2), and let 〈·, ·〉 be the associated
Hermitian product. The point z = (z0, z1, z2) ∈ C3 and the corresponding element
[z] = [z0 : z1 : z2] ∈ P2(C) (using homogeneous coordinates) is negative, null or posi-
tive according to whether h(z) < 0, h(z) = 0 or h(z) > 0. The negative/null/positive cone
of h is the subset of negative/null/positive elements of P2(C).

The negative cone of h endowed with the distance d defined by

cosh2 d([z], [w]) =
|〈z, w〉|2

h(z)h(w)

is the complex hyperbolic plane H2
C. The distance d is the distance of a Riemannian metric

with pinched negative sectional curvature −4 ≤ K ≤ −1. The linear action of the special
unitary group of h

SUh = {g ∈ SL3(C) : h ◦ g = h}

on C3 (where h ◦ g : z 7→ h(gz)) induces a projective action on P2(C) with kernel U3 Id,
where U3 is the group of third roots of unity. This projective action preserves the negative,
null and positive cones of h in P2(C), and is transitive on each of them. The restriction to
H2

C of the quotient group PSUh = SUh /(U3 Id) of SUh is the holomorphic isometry group
of H2

C. Note that the inclusion SUh → Uh induces a Lie group isomorphism PSUh → PUh.
The null cone of h is the Poincaré hypersphere HS , which is naturally identified with

the boundary at infinity of H2
C. The Heisenberg group

Heis3 = {[w0 : w : 1] ∈ C× C : 2 Rew0 = |w|2}
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acts isometrically on H2
C and simply transitively on HS − {[1 : 0 : 0]} by the action

induced by the matrix representation

[w0 : w : 1] 7→

1 w w0

0 1 w
0 0 1


of Heis3 in SUh. The projective transformations induced by these matrices are called
Heisenberg translations.

If a complex projective line meets H2
C, its intersection with H2

C is a totally geodesic
submanifold of H2

C, called a complex geodesic. The intersection of a complex projective
line in P2(C) with the Poincaré hypersphere is called a chain, if nonempty and not reduced
to a point. Each complex projective line L in P2(C) meeting H2

C (or its associated complex
geodesic L ∩ H2

C, or its associated chain L ∩ HS ) is polar to a unique positive point
PL ∈ P2(C), that is, 〈z, PL〉 = 0 for all z ∈ L (or equivalently z ∈ L∩H2

C or z ∈ L∩HS ).
This element PL is the polar point of the projective line L, of the complex geodesic L∩H2

C
and of the chain L∩HS . Conversely, for each positive point P , there is a unique complex
projective line P⊥ polar to P , the polar line of P . The intersection of P⊥ with H2

C is a
complex geodesic.

An easy computation (using for instance Equation (42) in [PP1]) shows that

StabSUh
[0 : 1 : 0] =

{ ζa 0 iζb
0 ζ−2 0
−iζc 0 ζd

 :
a, b, c, d ∈ R, ζ ∈ C
ad− bc = 1, |ζ| = 1

}
. (1)

In particular, StabSUh
[0 : 1 : 0] is isomorphic to (S1×SL2(R))/{±(1, id)}. It injects in PSUh

by the canonical projection SUh → PSUh. Hence StabPSUh
[0 : 1 : 0] is also isomorphic

to (S1 × SL2(R))/{±(1, id)}. More generally, by conjugation, if P = [z0 : z1 : z2] is a
positive point in P2(C), then the stabilizer of P in PSUh is the almost direct product
APBP , where AP is the unique Lie group embedding of SL2(R) in PSUh preserving the
complex geodesic polar to P , and BP is the group of complex reflections with fixed point
set the projective line polar to P . The group BP is isomorphic to S1 and centralizes AP .
We have BP ∩ AP = {±1}, and AP acts on the normal bundle of the complex geodesic
polar to P either by parallel translation or by its opposite.

The polar chain of P is

CP = {[w0 : w1 : w2] ∈ P2(C) : h(w0, w1, w2) = 〈(w0, w1, w2), (z0, z1, z2)〉 = 0} ,

that is CP ∩Heis3 is the set of [w0 : w : 1] ∈ Heis3 satisfying the equation

( |w|2
2

+ i Im w0

)
z2 − w z1 + z0 = 0 .

When z2 6= 0, in the coordinates (w, 2 Im w0) ∈ C × R of [w0 : w : 1] ∈ Heis3, this is the
equation of an ellipse, whose image under the vertical projection [w0 : w : 1] 7→ w is the

circle with center z1
z2

and radius
√
h(z0,z1,z2)

|z2| in C given by the equation

|w|2 − 2 Re
(
w
z1

z2

)
+ 2 Re

( z0

z2

)
= 0 .
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If z2 = 0, then CP ∩Heis3 is the vertical affine line over z1
z2
.

We refer to Goldman [Gol, p. 67] and Parker [Par] for the basic properties of H2
C. These

references use different Hermitian forms of signature (1, 2) to define the complex hyperbolic
plane, and the curvature is often normalised differently from our definitions. Our choices
are consistent with [PP1] and [PP2].

3 Classification of C-Fuchsian subgroups of ΓK

Before starting to study Fuchsian subgroups of discrete subgroups of PSUh, let us mention
that it is a very general fact that the maximal nonelementary (that is, not virtually cyclic)
Fuchsian subgroups of arithmetic subgroups of PSUh are automatically (arithmetic) lattices
of the copy of PSL2(R) containing them.

Proposition 3.1 Let G be a semisimple connected real Lie group with finite center and
without compact factor, and let Γ be a maximal nonelementary Fuchsian subgroup of an
arithmetic subgroup Γ̃ of G. Then Γ is an arithmetic lattice in the copy of the connected
Lie group locally isomorphic to SL2(R) containing it.

Proof. We refer for instance to [Zim, §3.1] for an elementary introduction to algebraic
groups and their Zariski topology. Let G be a semisimple connected algebraic group defined
over Q, let H be a connected algebraic subgroup of G defined over R locally isomorphic to
SL2, and assume that Γ = H(R) ∩ G(Z) is nonelementary in H(R). As a nonelementary
subgroup of a group locally isomorphic to SL2 is Zariski-dense in it, and as the Zariski-
closure of a subgroup of G(Z) is defined over Q (see for instance [Zim, Prop. 3.1.8], we hence
have that H is defined over Q. Therefore by the Borel-Harish-Chandra theorem [BHC,
Thm. 7.8], Γ = H(Z) is an arithmetic lattice in H(R). Since the copies of connected
Lie subgroups of G locally isomorphic to SL2(R) are algebraic (see for instance [Zim,
Prop. 3.1.6]), the result follows. �

One of the main points of the rest of the paper will be to determine explicitly the
arithmetic structure of Γ, that is the Q-structure thus constructed on the group locally
isomorphic to SL2(R) containing it, relating it to the arithmetic structure of Γ̃, that is the
given Q-structure on G.

LetK be an imaginary quadratic number field, with DK its discriminant, OK its ring of
integers, tr : z 7→ z+ z its trace and N : z 7→ |z|2 its norm. Recall (see for instance [Sam])
that there exists a squarefree positive integer d such that K = Q(i

√
d), that DK = −d

and OK = Z[1+i
√
d

2 ] if d ≡ −1 mod 4, and that DK = −4d and OK = Z[i
√
d] otherwise.

Note that OK is stable by conjugation, and that tr and N take integral values on OK . A
unit x in OK is an invertible element in OK . Since N : K× → R× is a group morphism,
we have N(x) = 1 for every unit x in OK .

The Picard modular group of K, that we denote by ΓK = PSUh(OK), consists of
the images in PSUh of matrices of SUh with entries in OK . It is a nonuniform arithmetic
lattice by the result of Borel and Harish-Chandra cited above. Note that every nonuniform
arithmetic lattice in PSUh is commensurable to a Picard modular group (see for instance
[Sto, § 3.1]).

A discrete subgroup Γ of PSUh is an extended C-Fuchsian subgroup if it satisfies one of
the following equivalent conditions
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(1) Γ preserves a complex projective line of P2(C) meeting H2
C,

(2) Γ fixes a positive point in P2(C),
(3) Γ preserves a chain.

Many references, see for example [FaP1], do not use the word “extended”. But as defined
in the introduction, in this paper, a C-Fuchsian subgroup is a discrete subgroup of PSUh

preserving a complex geodesic in H2
C and inducing the parallel transport or its opposite on

its unit normal bundle. It is the image of a Fuchsian group (that is, a discrete subgroup
of SL2(R)) by a Lie group embedding of SL2(R) in PSUh. The extended C-Fuchsian
subgroups are then finite extensions of C-Fuchsian subgroups by finite groups of complex
reflections fixing the projective line or positive point or chain in the definition above. In
particular, up to commensurability, the notions of extended C-Fuchsian subgroups and
of C-Fuchsian subgroups coincide. The C-Fuchsian lattices have been studied under a
different viewpoint than our geometric one, as fundamental groups of arithmetic curves
on ball quotient surfaces or Shimura curves in Shimura surfaces, by many authors, see for
instance [Kud, Hol1, Hol2, MT] and their references.

An element of ΓK is K-irreducible if it does not preserve a point or a line defined over
K in P2(C). An element of P2(C) is rational if it lies in P2(K). Note that the polar line
of a positive rational point of P2(C) is defined over K. The group PSUh(K), image of
SUh(K) = SUh ∩SL3(K) in PSUh, preserves P2(K), but in general its projective action
on P2(K) is transitive neither on the positive, nor on the null, nor on the negative points
of P2(K).

The Galois group Gal(C|K) acts on P2(C) by σ[z0 : z1 : z2] = [σz0 : σz1 : σz2], and
fixes P2(K) pointwise. Note that it does not preserve the positive, null, or negative cone
of h in P2(C). A positive point z ∈ P2(C) is Hermitian cubic over K if it is cubic over
K (that is, if its orbit under Gal(C|K) has exactly three points), and if its other Galois
conjugates z′, z′′ over K are null elements in the polar line of z.

The following result, analog to [MR2, Prop. 9.6.1] in the Bianchi group case, strengthens
one direction of [MT, Lem. 1.2].

Proposition 3.2 A nonelementary extended C-Fuchsian subgroup Γ of ΓK fixes a unique
rational point in P2(C). This point is positive and it is the polar point of the unique complex
geodesic preserved by Γ.

Proof. If α ∈ PSUh is loxodromic, let α−, α+ ∈ ∂∞H2
C be its repelling and attracting

fixed points, and let α0 be its positive fixed point. Since the two projective lines tangent to
the hypersphere HS at α− and α+ are invariant under α, their unique intersection point
is fixed by Γ, therefore is equal to α0. In particular, α0 is polar to the complex projective
line through α−, α+ (see also [Par, Lemma 6.6] for a more analytic proof).

Let L be the complex projective line preserved by Γ, which meets H2
C. As Γ is a non

elementary discrete group of isomeries of a proper CAT(−1) space (see for instance [BrH]),
there are loxodromic elements α, β ∈ Γ such that their sets of fixed points in ∂∞H2

C∩L are
disjoint. Since L passes through α−, α+ as well as through β−, β+, and by the uniqueness
of the polar point to L, we hence have α0 = β0.

As α and β have infinite order, one of them cannot be K-irreducible. Otherwise, if both
were K-irreducible, then by [PP2, Prop. 18], the point α0 = β0 would be Hermitian cubic
and its orbit under Gal(C|K) would be {α−, α+, α0} = {β−, β+, β0}, a contradiction.
Assume then for instance that α preserves a line or a point defined over K. As any
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projective subspace preserved by α is a combination of α−, α+ and α0, and as α− and α+

are not defined over K, it follows that α0 is rational. �

Let Γ be a nonelementary extended C-Fuchsian subgroup of ΓK . By the previous
proposition, Γ fixes a unique rational point PΓ in P2(C), which may be written PΓ =
[z0 : z1 : z2] with z0, z1, z2 ∈ OK relatively prime. Such a writing is unique up to the
simultaneous multiplication of z0, z1, z2 by a unit in OK . Since the units in OK have norm
1, and since the trace and norm of K take integral values on the integers of K, the number

∆Γ = h(z0, z1, z2) = N(z1)− tr(z0 z2) ∈ Z

is well defined, we call it the discriminant of Γ (by analogy with the case of PSL2(OK),
see [MR1, Def 3.2], and as it discriminates Γ up to finite error by Theorem 1.1). As P is
positive, we have ∆Γ ∈ N−{0}. The radius of the vertical projection of the polar chain of
PΓ is hence

√
∆Γ

|z2| . The discriminant of Γ depends only on the conjugacy class of Γ in ΓK :
for every γ ∈ ΓK , since by uniqueness we have PγΓγ−1 = γPΓ, we have

∆γΓγ−1 = ∆Γ .

A chain C is (K-)arithmetic if its stabiliser in ΓK has a dense orbit in C. The following
result along with Proposition 3.2 justifies this terminology. This result is well known, and
it is the other direction of [MT, Lem. 1.2], see also [Hol1, Prop. 1.5,§III.1] and [Kud, §3].
We give a proof, which is a bit different, for the sake of completeness. In Section 4, we
give an explicit construction based on quaternion algebras that implies this result.

Proposition 3.3 The stabiliser StabΓK
P of any positive rational point P ∈ P2(K) is a

maximal nonelementary extended C-Fuchsian subgroup of ΓK , whose invariant chain is
arithmetic.

Proof. Let G be the linear algebraic group defined over Q, such that G(Z) = PSUh(OK)
and G(R) = PSUh. We endow P2(C) with the Q-structure X whose Q-points are P2(K)
so that the action of G on X is defined over Q.

As seen in Section 2, the set of real points of the stabilizer StabG P is isomorphic
to (S1 × SL2(R))/{±(1, id)} as a real Lie group. The group StabG P is reductive and
it has a (semisimple) Levi subgroup H defined over Q, such that H(R) is isomorphic to
SL2(R). By a theorem of Borel-Harish-Chandra [BHC, Theo. 7.8], the group H(Z) is an
arithmetic lattice inH(R), which (preserves the projective line polar to P and) is contained
in StabΓK

P . As H(Z) is a lattice in H(R), the group StabΓK
P is nonelementary and has

a dense orbit in the chain P⊥ ∩HS . �

Recall that in the coordinates (w,−2 Im w0) of Heis3, the chains are ellipses whose
images under the vertical projection are Euclidean circles (see also [Gol, §4.3]). The figure
in the introduction is the vertical projection of part of the orbit under ΓK of the chain [−5 :
0 : 1]⊥ ∩HS when K = Q[i], so that ΓK is the Gauss-Picard modular group, and we use
the generating set of ΓK given by [FFP]. The figure shows the square |Re z|, | Im z| ≤ 1.5 in
C with projections of chains whose diameter is at least 1. In the figures below (contrarily
to the introduction where K = Q(i), so that the apparent symmetries are different),
K = Q[ω], where ω is a primitive third root of unity, so that ΓK is the Eisenstein-Picard
modular group, and we use the generating set of ΓK [FaP2]. These two pictures illustrate
the difference between D odd and D even in the coming proof of Theorem 1.1 (note in
particular the difference around the origin).
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The first figure shows part of the orbit of [−1 : 0 : 1]⊥ ∩HS and the second figure
shows part of the orbit of [−2 : 0 : 1]⊥∩HS . They both show the square |Re z|, | Im z| ≤ 1
in C with projections of chains whose diameter is at least 0.5 in the first figure and at least
0.75 in the second.
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The first part of Theorem 1.1 in the introduction concerns the classification up to
conjugacy in ΓK of the maximal nonelementary extended C-Fuchsian subgroups of ΓK .
Consider the set FC of maximal nonelementary C-Fuchsian subgroups of ΓK , on which
the group ΓK acts by conjugation. We will prove that the discriminant map Γ 7→ ∆Γ

on FC induces a finite-to-one map from ΓK\FC onto N− {0}. Since every maximal non
elementary C-Fuchsian subgroup Γ of ΓK is contained in a unique maximal non elementary
extended C-Fuchsian subgroup Γ̂ of ΓK , and since two maximal non elementary C-Fuchsian
subgroups Γ,Γ′ of ΓK are conjugate if Γ̂, Γ̂′ are conjugate, this implies the first part of
Theorem 1.1.

The second part of Theorem 1.1 concerns the classification up to commensurability and
conjugacy in PSUh. Given a group G and a subgroup H of G, recall that two subgroups
Γ,Γ′ ofH are commensurable if Γ∩Γ′ has finite index in Γ and in Γ′, and are commensurable
up to conjugacy in G (or commensurable in the wide sense) if there exists g ∈ G such that
Γ′ and gΓg−1 are commensurable. Two groups A and B are abstractly commensurable if
they contain finite index subgroups A′ and B′ respectivey that are isomorphic.

For any positive integer D, let

ΓK,D = StabΓK
[−D : 0 : 1] .

The group ΓK,D is, by Proposition 3.3, a maximal nonelementary extended C-Fuchsian
subgroup, which preserves the projective line [−D : 0 : 1]⊥. Its discriminant is 2D. We
will prove that every element of FC with discriminant D is commensurable up to conjugacy
in PSUh with ΓK,2D.

Proof of Theorem 1.1. (1) Let D ∈ N− {0} and let

FC(D) = {Γ ∈ FC : ∆Γ = D} .

Let

PD =


[−D

2 : 0 : 1] if D is even
[0 : 1 : 0] if D = 1

[−D−1
2 : 1 : 1] if D > 1 is odd .

By Proposition 3.3, the stabiliser in ΓK of the positive rational point PD is a maximal
nonelementary extended C-Fuchsian subgroup of ΓK , with discriminant D. Hence FC(D)
is nonempty.

Let G be the connected semisimple linear algebraic group defined over Q such that
G(Z) = SUh(OK) and G(R) = SUh. Let π : G → GL(V ) be the rational representation
such that V (Z) = (OK)3, V (R) = C3 and π|G(R) is the linear action of SUh on C3. Let
XD be the closed algebraic submanifold of V with equation h = D. In particular, XD is
defined over Q, and XD(R) is homogeneous under G(R) = SUh, by Witt’s theorem. The
map

XD(Z) = XD ∩ V (Z) = {(z0, z1, z2) ∈ (OK)3 : h(z0, z1, z2) = D} → FC ,

which to (z0, z1, z2) associates the stabiliser of [z0 : z1 : z2] in ΓK (which is the image
of G(Z) by the canonical map G(R) = SUh → PSUh), is well defined by Proposition 3.3
and G(Z)-equivariant, and its image contains FC(D). Hence the finiteness of ΓK\FC(D)
follows from the finiteness of the number of orbits of G(Z) on XD(Z), see [BHC, Thm. 6.9].
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(2) Let Γ ∈ FC, and let D ∈ N−{0} be its discriminant. By Propositions 3.2 and 3.3,
and by maximality, there is a unique positive rational point P = [z0 : z1 : z2] with z0, z1, z2

relatively prime in OK such that Γ = StabΓK
P and D = h(z0, z1, z2).

Claim. There exists γ ∈ PSUh(K) such that γP = [−2D : 0 : 1].

Assuming this claim for the moment, we conclude the proof of the second part of
Theorem 1.1: The groups γΓγ−1 and ΓK,2D are commensurable, since

γ
(

StabΓK
P
)
γ−1 ∩ ΓK,2D = StabγΓKγ−1∩ΓK

γP = γ
(

StabΓK∩γ−1ΓKγ P
)
γ−1

and since PSUh(K) is contained in the commensurator of ΓK = PSUh(OK) in PSUh by a
standard argument of reduction to a common denominator. �

The following result, useful for the proof of the above claim, also gives a natural condi-
tion for when two such groups ΓK,D for D ∈ N− {0} are commensurable up to conjugacy
in PSUh. A necessary and sufficient condition when D is even will be given in Corollary
4.2.

Lemma 3.4 If D,D′ ∈ N − {0} satisfy D′ ∈ DN(OK), then ΓK,D and ΓK,D′ are com-
mensurable up to conjugacy in PSUh(K).

Proof. Let D ∈ N − {0} and N ∈ N(OK) − {0}. As seen above, we only have to prove
that there exists γ ∈ PSUh(K) such that γ[−D : 0 : 1] = [−DN : 0 : 1].

Assume first that DK ≡ 0 mod 4, so that OK = Z+
√
DK
2 Z. Since N ∈ N(OK), there

exists x, y ∈ Z such that N = x2 − DK
4 y2. It is easy to check using Equation (1) and the

fact that K = Q + i
√
|DK |Q that the matrix

γ =

 x 0 − i
2

√
|DK |Dy

0 1 0

− i
2

√
|DK | yDN 0 x

N


belongs to SUh(K). Let γ be its image in PSUh(K). It is easy to check that as wanted
γ[−D : 0 : 1] = [−DN : 0 : 1].

If DK ≡ 1 mod 4, so that OK = Z + 1+
√
DK

2 Z, the same argument works when γ in
the above proof is replaced by the matrix x+ y

2 0 − i
2

√
|DK |Dy

0 1 0

− i
2

√
|DK | yDN 0

x+ y
2

N


and the equation N = x2 + xy + 1−DK

4 y2 with x, y ∈ Z. �

Proof of the claim. As the lattice ΓK does not preserve the complex geodesic with
equation z2 = 0, we may assume that z2 is nonzero, up to replacing P by an element in its
orbit under ΓK , which does not change the discriminant D of Γ. Let γ1 be the Heisenberg
translation by the element[

w0 =
|z1|2

2 |z2|2
− i Im

z0

z2
: w = −z1

z2
: 1
]
∈ Heis3 ,
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which belongs to PSUh(K). An easy computation shows that

γ1[z0 : z1 : z2] = [−D : 0 : 2N(z2)] .

Let γ2 be the image in PSUh(K) of the diagonal element

2N(z2) 0 0
0 1 0
0 0 1

2N(z2)

 in SUh(K).

Then γ2γ1 maps P to [−2DN(z2) : 0 : 1]. By the previous lemma, there exists γ3 ∈
PSUh(K) such that γ3[−2DN(z2) : 0 : 1] = [−2D : 0 : 1]. Hence the claim follows with
γ = γ3γ2γ1. �

4 Quaternion algebras

We refer to [Vig] and [MR2] for generalities on quaternion algebras. Let a, b ∈ Z with
a > 0 and b < 0. The quaternion algebra A =

(a,b
Q
)
is the 4-dimensional central simple

algebra over Q with standard generators i, j, k satisfying the relations i2 = a, j2 = b and
ij = −ji = k. The (reduced) norm of an element of A is

n(x0 + x1i+ x2j + x3k) = x2
0 − ax2

1 − bx2
2 + abx2

3 .

The group of elements in A(Z) = Z + iZ + jZ + kZ with norm 1 is denoted by A(Z)1.

Lemma 4.1 The map σ = σa,b : A→M3(C) defined by

(x0 + x1i+ x2j + x3k) 7→

 x0 + x1
√
a 0 (x2 + x3

√
a)
√
b

0 1 0

(x2 − x3
√
a)
√
b 0 x0 − x1

√
a


is a morphism of Q-algebras and σ(A(Z)1) is a discrete subgroup of the stabiliser of [0 : 1 : 0]
in SUh.

Proof. It is well-known (and easy to check), see for instance [Kat, MR2], that the map
σ′ : A→M2(R) defined by

(x0 + x1i+ x2j + x3k) 7→
(

x0 + x1
√
a (x2 + x3

√
a)
√
|b|

−(x2 − x3
√
a)
√
|b| x0 − x1

√
a

)
is a morphism of Q-algebras and that the image of A(Z)1 is a discrete subgroup of SL2(R).
The map

ι :

(
a b
c d

)
7→

 a 0 ib
0 1 0
−ic 0 d


is a morphism of Q-algebras, sending SL2(R) into the stabiliser of [0 : 1 : 0] in SUh (see
Equation (1)). The claim follows by noting that σ = ι ◦ σ′. �

Proof of Theorem 1.3. By Theorem 1.1, we only have to prove that the maximal
C-Fuchsian subgroup FD of ΓK stabilising [−2D : 0 : 1] (which has finite index in the
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extended C-Fuchsian subgroup ΓK,2D) arises from the quaternion algebra
(D,DK

Q
)
. It is

easy to check that the element

γ0 = − 1√
2


√
D

√
2D

√
D

1 0 −1
1

2
√
D
− 1√

2D
1

2
√
D


belongs to SUh and maps [0 : 1 : 0] to [−2D : 0 : 1]. Hence, using Equation (1), a matrix
M ∈ SUh(OK) has its image (by the canonical projection SUh → PSUh) in FD if and only

if there exists a, d ∈ R and b, c ∈ iR with ad − bc = 1 such that M = γ0

a 0 b
0 1 0
c 0 d

 γ−1
0 .

A straightforward computation gives

M =


1
4(a+ b+ c+ d+ 2)

√
D
2 (a− b+ c− d) D

2 (a+ b+ c+ d− 2)
1

4
√
D

(a+ b− c− d) 1
2(a− b− c+ d)

√
D
2 (a+ b− c− d)

1
8D (a+ b+ c+ d− 2) 1

4
√
D

(a− b+ c− d) 1
4(a+ b+ c+ d+ 2)

 .

This matrix has entries in OK if and only if
a+ b+ c+ d− 2 ∈ 8DOK ,

a+ b− c− d ∈ 4
√
DOK ,

a− b+ c− d ∈ 4
√
DOK ,

a− b− c+ d ∈ 2OK .

Let u = a+ d, v = 1
2
√
D

(a− d), s′ = b+ c and t′ = 1
2
√
D

(b− c). Then M has entries in OK

if and only if 
u+ s′ − 2 ∈ 8DOK ,

v + t′ ∈ 2OK ,

v − t′ ∈ 2OK ,

u− s′ ∈ 2OK .

(2)

Let D′K = DK
4 if DK ≡ 0 mod 4 and D′K = DK otherwise (so that K = Q(

√
D′K),

see Section 3). Recall that OK ∩ R = Z and OK ∩ iR = Z
√
D′K . The equations (2)

imply in particular that u, v, s′, t′ ∈ OK . Note that a, d ∈ R is equivalent to u, v ∈ R, and
c, b ∈ iR is equivalent to s′, t′ ∈ iR. Hence u, v ∈ Z and there exists s, t ∈ Z such that
s′ = s

√
D′K , t

′ = t
√
D′K . Therefore

γ−1
0 FD γ0 =


 u

2 + v
√
D 0 ( s2 + t

√
D)
√
D′K

0 1 0

( s2 − t
√
D)
√
D′K 0 u

2 − v
√
D

 :

u, v, s, t ∈ Z
v + t

√
D′K ∈ 2OK

v − t
√
D′K ∈ 2OK

u− s
√
D′K ∈ 2OK

u+ s
√
D′K − 2 ∈ 8DOK

 .

The group γ−1
0 FD γ0 is contained in σD,D′K (A(Z)1), since the parameters u and s have

to be even as a consequence of the defining equations of γ−1
0 FD γ0. Furthermore, γ−1

0 FD γ0

contains σD,D′K (O1), where O is the order of A defined by

O = {x0 + ix1 + jx2 + kx3 ∈ A(Z) : x1, x2, x3 ≡ 0 mod 4D} .
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Indeed, if x0 + ix1 + jx2 + kx3 ∈ O1, then with u = 2x0, s = 2x2, v = x1, t = x3, we have,
since x0 ≡ 1 mod 4D by the condition n(x0 + ix1 + jx2 + kx3) = 1,

v ± t
√
D′K ∈ 2Z + 2

√
D′K Z ⊂ 2OK

u− s
√
D′K ∈ 2Z + 2

√
D′K Z ⊂ 2OK

u− 2 + s
√
D′K = 2(x0 − 1) + 2x2

√
D′K ∈ 8DZ + 8D

√
D′K Z ⊂ 8DOK .

Since σD,D′K (O1) has finite index in σD,D′K (A(Z)1) (see for instance [Vig], Coro. 1.5 in
Chapt. IV), the groups γ−1

0 FD γ0 and σD,D′K (A(Z)1) are commensurable.

Since
(D,D′K

Q
)

=
(D,DK

Q
)
as D′K and DK differ by a square factor, the result follows. �

Observe that, by Theorem 1.3, a maximal nonelementary C-Fuchsian subgroup of ΓK
of discriminant D is cocompact (in its copy of SL2(R)) if and only if

(D,DK
Q
)
is a division

algebra (see for instance [Kat, Thm. 5.4.1]).

Corollary 4.2 Let D,D′ ∈ N−{0}. The subgroups ΓK,2D and ΓK,2D′ are commensurable
up to conjugacy in PSLh if and only if the quaternion algebras

(D,DK
Q
)
and

(D′, DK
Q

)
are

isomorphic.

Proof. We have seen in the previous proof that ΓK,2D arises from the quaternion algebra(D,DK
Q
)
. The result hence follows from the fact that two arithmetic Fuschian groups

are commensurable up to conjugacy in SL2(R) if and only if their associated quaternion
algebras are isomorphic (see [Tak]). �

The following corollaries follow from the arguments in [Mac], pages 309 and 310. Corol-
lary 1.2 of the introduction follows from Corollary 4.4 below. We refer for instance to [MR2]
for the unexplained terminology below.

Proposition 4.3 Let A be an indefinite quaternion algebra over Q. There exists an arith-
metic C-Fuchsian subgroup of ΓK whose associated quaternion algebra is A if and only if
the primes at which A is ramified are either ramified or inert in K. �

Corollary 4.4 (Chinburg-Stover) Every Picard modular group ΓK contains infinitely many
wide commensurability classes in PSUh of maximal nonelementary C-Fuchsian subgroups.
�

Corollary 4.5 Any arithmetic Fuchsian group whose associated quaternion algebra is de-
fined over Q has a finite index subgroup isomorphic to a C-Fuchsian subgroup of some
Picard modular group ΓK . �

Corollary 4.6 For all quadratic irrational number fields K and K ′, there are infinitely
many abstract commensurability classes of arithmetic Fuchsian subgroups with representa-
tives in both Picard modular groups ΓK and ΓK′ . �
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