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Abstract

We develop the relationship between quaternionic hyperbolic geometry and arithmetic

counting or equidistribution applications, that arises from the action of arithmetic groups

on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens count-

ing formula for the rational points over a definite quaternion algebra A over Q in the

light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem

of the set of rational points over A in quaternionic Heisenberg groups. 1

1. Introduction

The two main arithmetic results of this paper are a counting theorem and an equidistri-

bution theorem of rational points with error estimates in quaternionic Heisenberg groups,

see Theorems 1¨1 and 1¨2 below. The proofs use methods and results from quaternionic

hyperbolic geometry, arithmetic groups and ergodic theory of the geodesic flow in neg-

atively curved spaces. We refer for instance to [Bre, BeQ, Kim] for related results,

and especially to the introductions of [PaP3, PaP6] for motivations, going back to the

Mertens and Neville counting and equidistribution results of Farey fractions. The case

of the standard Heisenberg group has been treated in [PaP6], but new tools have to be

developped in this paper besides dealing with noncommutativity issues.

Let H be Hamilton’s quaternion algebra over R, with x ÞÑ x its conjugation, n : x ÞÑ xx

its reduced norm, tr : x ÞÑ x ` x its reduced trace. Let A be a definite (A bQ R “ H)

quaternion algebra over Q, with discriminant DA and class number hA. Let mA “ 24

if DA is even, and mA “ 1 otherwise. Let O be a maximal order in A. We denote

by Oxa, α, cy the left ideal of O generated by a, α, c P O. See [Vig] and Section 2 for

1 Keywords: counting, equidistribution, Mertens formula, quaternionic Heisenberg group,
Cygan distance, sub-Riemannian geometry, common perpendicular, quaternionic hyperbolic ge-
ometry. AMS codes: 11E39, 11F06, 11N45, 20G20, 53C17, 53C22, 53C55
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definitions. The 2-step nilpotent group

N pOq “ tpw0, wq P O ˆ O : trpw0q “ npwqu (1¨1)

with law

pw0, wqpw1
0, w

1q “ pw0 ` w1
0 ` ww1, w ` w1q (1¨2)

acts on O ˆ O ˆ O by the shears

pw0, wqpa, α, cq “ pa` wα ` w0 c, α ` w c, cq . (1¨3)

Theorem 1¨1. There exists κ ą 0 such that as s Ñ `8,

Card N pOqz
 

pa, α, cq P O ˆ O ˆ O : Oxa, α, cy “ O, trpa cq “ npαq, npcq ď s
(

“
23 ¨ 36 ¨ 5 ¨ 7 D 4

A

π8 mA |Oˆ|
ś

p|DA
pp´ 1qpp2 ` 1qpp3 ´ 1q

s5 p1 ` Ops´κqq .

The quaternionic Heisenberg group

Heis7 “ tpw0, wq P H ˆ H : tr w0 “ npwqu ,

with the group law defined by Equation (1¨2) is the Lie group of R-points of a Q-group

whose group of Q-points is Heis7 XpA ˆ Aq, and in which N pOq “ Heis7 XpO ˆ Oq is

a (uniform) lattice. We endow it with its Haar measure HaarHeis7 normalised in such

a way that the total mass of the induced measure on N pOqzHeis7 is
D2

A

4
. We will ex-

plain later on this normalisation. Theorem 1¨1 is a counting result of rational points

pac´1, αc´1q (analogous to Farey fractions) in Heis7, and the following result is a related

equidistribution theorem. In this paper, we denote by ∆x the unit Dirac mass at a point

x.

Theorem 1¨2. As s Ñ `8, we have

π8 mA |Oˆ|
ś

p|DA
pp´ 1qpp2 ` 1qpp3 ´ 1q

25 ¨ 36 ¨ 5 ¨ 7 D2
A

s´5 ˆ

ÿ

pa, α, cqPOˆOˆO, 0ănpcqďs
trpa cq“npαq, Oxa, α, cy“O

∆pac´1, αc´1q
˚

á HaarHeis7 .

We refer to Theorems 8¨2 and 8¨3 in Section 8 for more general results with added

congruence properties, and to Remark 8¨5 for counting and equidistribution results in

higher dimensional quaternionic Heisenberg groups.

The proof of the above arithmetic results strongly rely on quaternionic hyperbolic

geometry that we recall and develop in Sections 3 and 6 (see also for instance [All, KiP,

CaP1, Kim, Phi, CaP2, EmK]). Let q be the quaternionic Hermitian form on H3

defined by

qpz0, z1, z2q “ ´ trp z0 z2q ` npz1q .

Let PUq be its projective unitary group, which is the isometry group of the quaternionic

hyperbolic plane H
2
H, realized as the negative cone of q in the right projective plane

P2
r pHq, and normalised in order to have maximal sectional curvature ´1. The proofs of

Theorems 1¨1 and 1¨2 use the following two results of independent interests.

The subgroup PUqpOq “ P pGL3pOq X Uqq of PUq is an arithmetic lattice, and hence
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by a standard result of Borel-Harish-Chandra, the orbifold PUqpOqzH2
H has finitely many

ends (also called cusps). By adapting Zink’s method [Zin], we compute their number in

Section 4.

Theorem 1¨3. The number of ends of the quaternionic hyperbolic orbifold PUqpOqzH2
H

is equal to the class number hA of A.

Using Prasad’s formula [Pra] and adapting Emery’s Appendix in [PaP2], we compute

in Section 5 the volume of the quaternionic hyperbolic manifolds PUqpOqzH2
H. This

computation (equivalent by Hirzebruch’s proportionality theorem to the computation of

its Euler-Poincaré characteristic), is close to, and uses argument from, the paper [EmK]

of Emery-Kim.

Theorem 1¨4. The volume of the quaternionic hyperbolic orbifold PUqpOqzH2
H is

equal to

VolpPUqpOqzH2
Hq “

π4 mA

213 ¨ 35 ¨ 52 ¨ 7

ź

p|DA

pp´ 1qpp2 ` 1qpp3 ´ 1q .

The analytical tools for the proof of Theorems 1¨1 and 1¨2 are developped in Section 7,

where we give various computations of the measures that appear in the application of the

ergodic tools of [PaP5], see also [BrPP, Chap. 12] where these results are announced.

The Cygan distance on the quaternionic Heisenberg group, the Poisson kernel, the

Patterson measures introduced and computed in Section 7, and related quantities, should

be useful in potential theory on the quaternionic Heisenberg group and for the study of

the hypoelliptic Laplacian in sub-Riemannian geometry, see for instance [FS, Kra] for

the (complex) Heisenberg group.

In the subsequent paper [PaP7], we will give geometrical applications of this paper

to counting and equidistribution of quaternionic chains in the boundary at infinity of

the quaternionic hyperbolic plane. A quaternionic chain is the boundary at infinity of

a quaternionic geodesic line (as defined in Section 3). We will also prove a Cartan-type

theorem of rigidity for the bijections of B8H
n
H preserving the set of quaternionic chains.

2. A reminder on quaternion algebras

In this section, we recall the basic definitions and a few facts on quaternion algebras

(4-dimensional central simple algebras), quaternionic linear algebra, and the ideal theory

in maximal orders in quaternion algebras. Our main reference for this material is [Vig].

Given a skew field D and n P N, we denote by Pn
r pDq the right projective space of D

of dimension n, that is, the space of lines of the right vector space Dn`1 over D.2

Let H be Hamilton’s quaternion algebra over R, with x ÞÑ x its conjugation, n : x ÞÑ xx

its reduced norm, tr : x ÞÑ x ` x its reduced trace. Note that npxyq “ npxq npyq,

trpxq “ trpxq and trpxyq “ trpyxq for all x, y P H. Let

Im H “ tx P H : trx “ 0u

be the R-subspace of purely imaginary quaternions of H, so that every x P Im H satisfies

x “ ´x. For every x P H, let Im x “ x´ 1
2
trpxq “ 1

2
px´xq, which is a purely imaginary

quaternion.

2 For all x0, x1, . . . , xn P D, we have px1, . . . , xnqx0 “ px1x0, . . . , xnx0q.
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For every N P N ´ t0u, we consider the right vector space HN over H, on which the

group GLN pHq acts linearly on the left. For all w “ pw1, . . . , wN q and w1 “ pw1
1, . . . , w

1
N q

in HN , we denote by w ¨w1 “
řN

p“1 wp w
1
p their standard quaternionic Hermitian product,3

and we define npwq “ w ¨ w “
řN

p“1 npwpq. We endow HN with the standard Euclidean

structure pw,w1q ÞÑ 1
2
trpw ¨ w1q. In particular, H and Im H are endowed with the

Euclidean structure making their standard basis p1, i, j, kq and pi, j, kq orthonormal.

On the right vector space H ˆ Hn´1 ˆ H over H with coordinates pz0, z, znq, let q be

the nondegenerate quaternionic Hermitian form4

qpz0, z, znq “ ´ trp z0 znq ` npzq (2¨1)

of Witt signature p1, nq, and let Φ : Hn`1 ˆ Hn`1 Ñ H, defined by

Φ : ppz0, z, znq, pz1
0, z

1, z1
nqq ÞÑ ´z0 z

1
n ´ zn z

1
0 ` z ¨ z1 , (2¨2)

be the associated quaternionic sesquilinear form. An element x P Hn`1 is isotropic if

qpxq “ 0.

Throughout this paper, A is a quaternion algebra over Q, which is definite, that is,

AbQR is isomorphic with H. We fix an identification of AbQR and H and, accordingly,

consider A as a Q-subalgebra of H.

The reduced discriminant DA of A is the product of the primes p P N such that AbQQp

is a division algebra. Two definite quaternion algebras over Q are isomorphic if and only

if they have the same reduced discriminant, which can be any product of an odd number

of primes (see [Vig, page 74]).

A Z-lattice I in A is a finitely generated Z-submodule of A generating A as a Q-vector

space. An order in A is a unitary subring O of A which is a Z-lattice. It is invariant by

conjugation, since for every x P O, we have x “ ´x` trx and by [Vig, pages 19-20], we

have trO Ă Z Ă O since every element of O is integral over Z and O is a unitary subring.

It is contained in a maximal order (for the inclusion). The left order of a Z-lattice I is

OℓpIq “ tx P A : xI Ă Iu .

From now on, let O be a maximal order in A. It is well known that the trace map

tr : O Ñ Z is surjective (see, for instance, the proof of Prop. 16 in [ChP]). A left

fractional ideal of O is a Z-lattice of A whose left order is O. A left (integral) ideal of O

is a left fractional ideal of O contained in O. For any subset B of A, we denote by OxBy

the left fractional ideal of O generated by the elements of B. Right fractional ideals are

defined analogously. The inverse of a left fractional ideal m of O is the right fractional

ideal

m´1 “ tx P A : mxm Ă mu “ tx P A : mx Ă Ou .

For all u, v P O ´ t0u, we have

pOu` Ovq´1 “ u´1
O X v´1

O . (2¨3)

If M is a right O-module, then endowed with the pointwise multiplication by O on

3 We have wλ ¨ pw1µq “ λ pw ¨ w1qµ for all w,w1 P HN and λ, µ P H.
4 It satisfies qpxλq “ npλq qpxq for all λ P H and x P Hn`1, since trpuvq “ trpvuq for all

u, v P H.
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the left, the Z-module HomOpM,Oq (of morphisms of right O-modules from M to O) is

a left O-module. We denote by |M the left O-module equal to the Z-module M endowed

with the left multiplication by O defined by pλ, vq ÞÑ v λ. If m is a right fractional ideal of

O, then the map from m´1 to HomOpm,Oq defined by x ÞÑ ty ÞÑ xyu is an isomorphism

of left O-modules, see for instance [Rei, page 192].

Two left fractional ideals m and m1 of O are isomorphic as left O-modules if and only if

m1 “ mc for some c P Aˆ. A (left) ideal class of O is an equivalence class of left fractional

ideals of O for this equivalence relation. We will denote by OI the set of ideal classes

of O. The class number hA of A is the number of ideal classes of O. It is finite and

independent of the maximal order O.

We denote by Oˆ the group of invertible elements (or equivalently of norm 1 elements)

of O. Its order is 2, 4 or 6 except that |Oˆ| “ 24 when DA “ 2 and |Oˆ| “ 12 when

DA “ 3 (see [Eic, page 103] for a formula when hA “ 1).

By for instance [KO, Lem. 5.5], the covolume of the Z-lattice O in the Euclidean vector

space H is

VolpOzHq “
DA

4
. (2¨4)

3. Quaternionic hyperbolic space

In this section, we recall some background on the quaternionic hyperbolic spaces, as

mostly contained in [KiP], see also [Phi]. Note, however, that our conventions differ

from those of these references in the sesquilinearity properties of Hermitian products, in

the choice of the Hermitian form of Witt signature p1, nq, and in the normalisation of

the curvature.

We fix n P N´ t0, 1u. The Siegel domain model of the quaternionic hyperbolic n-space

H
n
H is

 
pw0, wq P H ˆ Hn´1 : tr w0 ´ npwq ą 0

(
,

endowed with the Riemannian metric

ds2
H

n
H

“
1

ptr w0 ´ npwqq2
`
npdw0 ´ dw ¨ wq ` ptr w0 ´ npwqq npdwq

˘
. (3¨1)

Note that this metric is normalised so that its sectional curvatures are in r´4,´1s, instead

of in r´1,´ 1
4

s as in [KiP] and [Phi]. This will facilitate in Section 8 the references to

works using that normalisation. Its boundary at infinity is

B8H
n
H “

 
pw0, wq P H ˆ Hn´1 : tr w0 ´ npwq “ 0

(
Y t8u .

A quaternionic geodesic line in H
n
H is the image by an isometry of H

n
H of the inter-

section of Hn
H with the quaternionic line H ˆ t0u. With our normalisation of the metric,

a quaternionic geodesic line is a totally geodesic submanifold of real dimension 4 and

constant sectional curvature ´4.

The Siegel domain H
n
H embeds in the right quaternionic projective n-space Pn

r pHq by

the map (using homogeneous coordinates)

pw0, wq ÞÑ rw0 : w : 1s .

By this map, we identify H
n
H with its image, which when endowed with the isometric

Riemannian metric, is called the projective model of H
n
H. Note that this image is the

negative cone of the quaternionic Hermitian form q defined in Equation (2¨1), that is
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rz0 : z : zns P Pn
r pHq : qpz0, z, znq ă 0

(
. This embedding extends continuously to the

boundary at infinity, by mapping the point pw0, wq P B8H
n
H ´ t8u to rw0 : w : 1s and

8 to r1 : 0 : 0s, so that the image of B8H
n
H in Pn

r pHq is the isotropic cone of q, that is 
rz0 : z : zns P Pn

r pHq : qpz0, z, znq “ 0
(
.

The distance between two points in the Siegel domain of Hn
H has an explicit expression

using the projective model: If pw0, wq, pw1
0, w

1q P H
n
H, with Φ defined in Equation (2¨2),

then

cosh2 dppw0, wq, pw1
0, w

1qq “
Φppw0, w, 1q, pw1

0, w
1, 1qq Φppw1

0, w
1, 1q, pw0, w, 1qq

qpw0, w, 1q qpw1
0, w

1, 1q
, (3¨2)

see for example [Mos] with the same normalisation of the metric as ours, [KiP, page 292]

and [Phi, Sect. 1.2] with a discussion of the different normalizations of the curvature.

For every N P N, let IN be the identity N ˆN matrix. Let

J “

¨
˝

0 0 ´1

0 In´1 0

´1 0 0

˛
‚ ,

which differs only up to signs with the matrix J in [KiP]. Given a quaternionic matrix

X “ pxp,p1 q1ďpďr, 1ďp1ďs P Mr,spHq, let X˚ “ px˚
p,p1 “ xp1,p q1ďpďs, 1ďp1ďr P Ms,rpHq be

its conjugate-transpose matrix. Let

Uq “ tg P GLn`1pHq : q ˝ g “ qu “ tg P GLn`1pHq : g˚J g “ Ju

be the unitary group of q. Its linear action on Hn`1 induces a projective action on Pn
r pHq

with kernel its center, which is reduced to t˘In`1u. The projective unitary group

PUq “ Uq {t˘In`1u

of q acts faithfully on Pn
r pHq, preserving H

n
H, and its restriction to H

n
H is the full isometry

group of Hn
H. The connected (almost-)simple real Lie groups Uq and PUq are also denoted

by Spp1, nq and PSpp1, nq, when the dependence on the choice of q is not important.

We identify any element of Hn´1 with its column matrix. If

X “

¨
˝
a γ˚ b

α A β

c δ˚ d

˛
‚P GLn`1pHq

is a matrix with a, b, c, d P H, α, β, γ, δ P Hn´1 and A P Mn´1,n´1pHq, then

JX˚J “

¨
˝
d ´β˚ b

´δ A˚ ´γ

c ´α˚ a

˛
‚ .

The matrixX belongs to Uq if and only ifX is invertible with inverse JX˚J . In particular,
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X belongs to Uq if and only if
$
’’’’’’’’’&
’’’’’’’’’%

c d´ δ˚δ ` d c “ 0

a b´ γ˚γ ` b a “ 0

´αβ˚ `AA˚ ´ βα˚ “ In´1

c b´ δ˚γ ` d a “ 1

αd´Aδ ` β c “ 0

α b´Aγ ` β a “ 0 .

(3¨3)

These equations are the same ones as in the complex hyperbolic case in [PaP1, §6.1], up

to being careful with the orders of the products; see also [CaP1, CaP2] with different

sign conventions.

By for instance [KiP] or the set of equations (3¨3), an element g P Uq fixes 8 P B8H
n
H

if and only if its p3, 1q entry vanishes, or, equivalently, if g is block upper triangular (this

is the reason, besides rationality problems, why we chose the quaternionic Hermitian

form q rather than a diagonal one). We denote by

Spp1q “ tx P H : npxq “ 1u

the subgroup of units (elements of norm one) of Hˆ, and

Sppn´ 1q “ tg P GLn´1pHq : g˚g “ In´1u

the compact symplectic group in dimension n´ 1. An easy computation shows that the

block upper triangular subgroup of Uq is

Bq “

#¨
˝
µ r ζ˚ 1

2r
pnpζq ` uqµ

0 U 1
r
U ζ µ

0 0 µ
r

˛
‚ :

ζ P Hn´1, u P Im H,

U P Sppn´ 1q, µ P Spp1q, r ą 0

+
.

Its image PBq “ Bq {t˘In`1u in PUq is equal to the stabiliser of 8 in PUq.

4. The number of cusps of PUqpOq

Let A be a definite quaternion algebra over Q, and let O be a maximal order in A. Let

q be the quaternionic Hermitian form defined in Equation (2¨1), whose associated quater-

nionic sesquilinear form Φ is defined by Equation (2¨2). Let UqpOq “ Uq XGLn`1pOq,

which is (see below) an arithmetic lattice in Uq, and let PUqpOq be its image in PUq.

The aim of this section is to describe precisely the structure of the set of ends of the

finite volume quaternionic hyperbolic orbifold PUqpOqzHn
H when n “ 2.

In this section and the following one, we will need to make explicit the arithmetic

structure of UqpOq. Since J has rational coefficients, we consider the linear algebraic

group G defined over Q, such that GpQq “ tg P GLn`1pAq : g˚J g “ Ju, and GpKq “

tg P GLn`1pAbQKq : g˚J g “ Ju for every commutative field K with characteristic 0.

In particular, GpRq “ Uq “ Spp1, nq and GpCq » Spn`1pCq.5

Note that the elements of GpQq automatically have reduced norm one in the right

A-algebra Mn`1pAq. The involution τ : x ÞÑ x of the central skew field A over Q is of

the first kind (that is τ |Q“ idQ) and second type (that is, Aτ “ Q : the fixed point set

of τ in A is its center Q). By [PlR, §2.3.3] and in particuliar Prop. 2.15 (1) of loc. cit.,

5 This group is sometimes denoted by Sp
2pn`1qpCq, for instance in [PlR].
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the algebraic group G is absolutely connected, (quasi-)simple, simply connected of type

Cn`1, and denoted by SUn`1pA,Φq in loc. cit. Note that here SU means having reduced

norm one. See also [EmK, Rem. 2.2].

Considering On`1 as a Z-lattice of Hn`1, we endow G with the natural Z-form such

that GpZq “ UqpOq and GpZpq “ tg P GLn`1pOpq : g˚Jg “ Ju for every prime p, where

Op “ O bZ Zp.

Let us recall a few facts that follow from the work of Borel and Harish-Chandra (see

for instance [Bor, Th. 1.10]). The discrete group GpZq is a lattice in GpRq. If P is a

minimal parabolic subgroup of G defined over Q (for instance the stabiliser of 8), then

the set Parq,O of parabolic fixed points of GpZq in GpRq{P pRq “ B8H
n
H is exactly

Parq,O “ GpQqP pRq “ B8H
n
H X Pn

r pAq .

This is the set of isotropic rational projective points in Pn
r pHq, on which GpZq acts with

finitely many orbits. In particular, the set of cusps PUqpOqzParq,O is in bijection with

GpZqzGpQq{P pQq.

For every right O-submodule M of On`1, with ΦA : An`1 ˆAn`1 Ñ A the restriction

over A of the (integral over O) sesquilinear form Φ over H, we denote by

MK “ ty P O
n`1 : @ x P M, ΦApx, yq “ 0u

the right O-submodule of On`1 orthogonal to M . Note that ΦApOn`1 ˆ On`1q “ O.

The Hermitian O-module pOn`1,ΦAq is unimodular, that is, the map

Θ : ­On`1 Ñ HomOpOn`1,Oq

z ÞÑ tz1 ÞÑ ΦApz, z1qu (4¨1)

is an isomorphism of left O-modules. It is indeed clearly an injective morphism of left O-

modules. Its surjectivity comes from the fact that the coordinate forms z1 ÞÑ z1
n, z1 ÞÑ z1

0,

z1 ÞÑ z1
i for 1 ď i ď n´ 1 are up to signs the images by Θ of the canonical basis elements

e0, en and ei for 1 ď i ď n´ 1 respectively.

For every x “ px0, x1, . . . , xnq P An`1, let Oxxy “ Ox0 ` Ox1 ` ¨ ¨ ¨ ` Oxn be the left

fractional ideal of O generated by x0, x1, . . . , xn. The proof of the following result adapts

arguments of [Zin], where O is replaced by the ring of integers of an imaginary quadratic

field.

Proposition 4¨1. Assume that n “ 2. For all nonzero isotropic elements x, x1 in

An`1, there exists an element in PUqpOq sending the image of x in Pn
r pAq to the one of

x1 if and only if the left fractional ideals Oxxy and Oxx1y have the same class.

We do not know whether the result remains valid when n ě 3.

Proof. The direct implication is immediate. Conversely, let x “ px0, . . . , xnq and x1 be

nonzero isotropic elements of On`1 such that Oxxy and Oxx1y are in the same left ideal

class. This means that there is some c P Aˆ such that Oxxy “ Oxx1yc “ Oxx1cy. In

particular, this implies that x1c P On`1. As we are interested in the images of x and x1

in Pn
r pAq, it is therefore sufficient to prove that there exists an element of UqpOq sending

x to x1 if Oxxy “ Oxx1y.

Let a “ ta P A : xa P On`1u and a1 “ ta P A : x1a P On`1u, which are (nonzero)

right fractional ideals of O, containing 1 since x, x1 P On`1. By Equation (2¨3), we have
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(omitting x ´1
i O and Oxi if xi “ 0)

a “ x ´1
0 O X ¨ ¨ ¨ X x ´1

n O “ pOx0 ` ¨ ¨ ¨ ` Oxnq´1 “ p Oxxy q´1 “ p Oxx1y q´1 “ a1 .

Composing the map Θ defined in Equation (4¨1) with the restriction map to xa, we

have a surjective morphism of left O-modules from ­On`1 to HomOpxa,Oq. Its kernel is

the orthogonal subspace pxaqK “ tz P On`1 : ΦApx, zq “ 0u, which contains xa since x

is isotropic.

Let y P A be such that ΦApx, yq ‰ 0, which exists since ΦA is nondegenerate. Up

to replacing y by yΦApx, yq´1, we may assume that ΦApx, yq “ 1. Let m be the right

fractional ideal of O such that On`1 “ pxaqK ‘ym. Composing the explicit isomorphisms

of right O-modules

m » ym » O
n`1{pxaqK » ~HomOpxa,Oq » ~HomOpa,Oq » qa ´1 ,

we have m “ qa ´1. Since xAX On`1 “ xa Ă pxaqK, there exists a right O-submodule M

of On`1 such that

O
n`1 “ xa ‘ y qa ´1 ‘M .

Note that the map tr : A Ñ Q is onto. Since ΦApy ` xλ, y ` xλq “ ΦApy, yq ` trλ, up

to replacing y by y ` xλ for some λ P A such that trλ “ ´ΦApy, yq, which is possible

since ΦApy, yq P AX R “ Q, we may assume that qpxq “ qpyq “ 0 and ΦApx, yq “ 1.

Since xa‘y qa ´1 is unimodular, we may take M “ pxa‘y qa ´1qK. Since n “ 2, we may

write M “ zb for some z P An`1 such that ΦApx, zq “ ΦApy, zq “ 0 and some (nonzero)

right fractional ideal b of O. Since pOn`1,ΦAq is unimodular and zb is orthogonal to

xa ‘ y qa ´1, we have ΦApzb, zbq “ b b qpzq contains 1 and is contained in O, hence is

equal to O. Therefore qpzq “ 1
npbq .

Similarly, we have On`1 “ x1a ‘ y1 qa ´1 ‘ z1b1 with

qpx1q “ qpy1q “ ΦApx1, z1q “ ΦApy1, z1q “ 0, ΦApx1, y1q “ 1 and qpz1q “
1

npb1q
.

In order to prove that b “ b1 by applying [Frö, Theo. 1], we need an idèlic interpretation

of the set IO of right fractional ideal classes, see for instance [Vig, §III.5.B]. For every

prime p ě 2, let Ap “ A bQ Qp and Op “ O bZ Zp. Let JpAq be the idèle group

of elements pxpqp P
ś

pA
ˆ
p such that xp P Oˆ

p for all but finitely many primes p. Its

subgroup JpOq “
ś

p Oˆ
p acts by translation on the right, and the multiplicative group

Aˆ acts by pointwise multiplication on the left. To every nonzero right fractional ideal

I corresponds an idèle pI “ pxpqp P JpAq, where I bZ Zp “ xpOp for every prime p,

well defined modulo multiplication on the right by an element of JpOq. The map I ÞÑ pI
induces a bijection between the set IO of right fractional ideal classes and the double

coset AˆzJpAq{JpOq. Note that On`1 is a free (hence locally free) O-module.

Now [Frö, Theo. 1 (ii)] implies that for all m ě 2 and all right fractional ideals

a1, . . . , am, b1, . . . , bm of O, the right O-modules a1 ‘ ¨ ¨ ¨ ‘ am and b1 ‘ ¨ ¨ ¨ ‘ bm are

isomorphic if and only if the products of idèles xa1 . . . xam and xb1 . . . xbm represent the

same ideal class. Now since xa ‘ y qa ´1 ‘ zb “ On`1 “ x1a ‘ y1 qa ´1 ‘ z1b1, the right

O-modules a‘ qa ´1 ‘b and a‘ qa ´1 ‘b1 are isomorphic, hence by cancellation, the right

fractional ideals b and b1 have the same ideal class. Up to changing b and b1 in their

equivalence class, we may assume that b “ b1, hence in particular qpzq “ qpz1q.

The map xa`yc`zb ÞÑ x1a`y1c`z1b for all a P a, c P qa ´1 and b P b is an isomorphism
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of right O-modules from On`1 to itself, preserving the quaternionic Hermitian form q

and sending x to x1, as wanted. l

From now on, we fix an integral ideal m of O, which is bilateral and stable by the

conjugation x ÞÑ x, as for instance m “ p1` iqO if O “ Zr 1`i`j`k
2

, i, j, ks is the Hurwitz

maximal order in the Hamilton quaternion algebra A “
`´1,´1

Q

˘
over Q. The quotient

Z-module O{m is then a ring endowed with an anti-involution again denoted by x ÞÑ x.

We denote by UqpO{mq the finite group of pn` 1q ˆ pn` 1q invertible matrices in O{m,

preserving the Hermitian form ´z0zn ´ znz0 `
řn´1

i“1 zizi on pO{mqn`1. Let BqpO{mq be

its upper triangular subgroup by blocks 1 ˆ pn ´ 1q ˆ 1. We denote by Γm the Hecke

congruence subgroup of UqpOq modulo m, that is, the preimage of BqpO{mq by the group

morphism UqpOq Ñ UqpO{mq of reduction modulo m. For every subgroup H of Uq, we

denote by PH its image in PUq.

Proposition 4¨2. If n “ 2, then

(1) the set of parabolic fixed points of PΓm is the set of points in B8H
n
H, which is the

isotropic cone of q in Pn
r pHq, having homogeneous coordinates that are elements

in O;

(2) the orbit PΓm ¨ 8 is the set of points in B8H
n
H having homogeneous coordinates

in Pn
r pHq of the form ra : α : cs with pa, α, cq P O ˆ mn´1 ˆ m, trpacq “ npαq and

Oxa, α, cy “ O;

(3) the map which associates to ra : α : cs P Pn
r pAq the class of the left fractional ideal

Oxa, α, cy generated by its homogeneous coordinates induces a bijection from the

set of cusps PUqpOqzParq,O of PUqpOq to the set of left ideal classes OI of O.

The number of cusps of PUqpOq is hence exactly the class number hA of A, and in

particular is equal to 1 if and only if DA “ 2, 3, 5, 7, 13 (see [Vig, page 155]). Since the

simple real Lie group PUq has rank one, the set of ends of the quaternionic hyperbolic

orbifold PUqpOqzHn
H is in bijection with the set of cusps of PUqpOq, and Theorem 1¨3 in

the Introduction follows.

Proof. (1) By the previously mentioned results of Borel and Harish-Chandra, the result

is true if m “ O, since any element in Pn
r pAq may be represented by an element of On`1.

As PΓm has finite index in PUqpOq, the general case follows since a discrete group and

a finite index subgroup have the same set of parabolic fixed points.

Since Ox1, 0, 0y “ O, the assertions (2) when m “ O and (3) follow from Assertion

(1) and Proposition 4¨1. Assertion (2) for any m follows by the definition of Γm, since

the image of p1, 0, 0q by a matrix in GL3pHq is its first column, and since a matrix¨
˝
a γ˚ b

α A β

c δ˚ d

˛
‚P UqpOq belongs to Γm if and only if α, c P m, by reducing modulo m the

equations (3¨3).

5. The covolume of PUqpOq

In this section, we prove Theorem 1¨4 in the Introduction, using Prasad’s volume

formula in [Pra] and arguments from [EmK].

Let P be the set of positive primes in Z. For every p P P, the order Op “ O bZ Zp is

a maximal order in the quaternion algebra Ap “ AbQQp over Qp (see for instance [Vig,
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page 84]). Let us denote by vp the p-adic valuation of Qp and by np the reduced norm

on Ap. For every p P P, recall that by the definition of the discriminant DA of A, if p

does not divide DA, then Ap is isomorphic to M2pQpq and otherwise Ap is the (unique

up to isomorphism) quaternion algebra over Qp that is a division algebra. Furthermore,

let us consider the discrete valuation νp “ 1
2
vp ˝ np on Ap (with value group 1

2
Z). It

coincides with vp on Qp, which is the reason of the factor 1
2
. The unique maximal order

Op is equal to the valuation ring of νp (see for instance [Vig, page 34], which does not

have the factor 1
2
, but this does not change the valuation ring tx P Ap : νppxq ě 0u). We

fix a uniformiser πp P Op for νp: we have nppπpq “ p and νppπpq “ 1
2
.

As in the beginning of Section 4, let G be the absolutely connected, (quasi-)simple,

simply connected algebraic group over Q, endowed with a Z-form, such that GpZq “

UqpOq and GpRq “ Uq. We assume that n “ 2 throughout Section 5.

Note that G is a Q-form of the split (hence quasi-split) algebraic group G “ Sp3 over

Q, whose type is C3, by [PlR, page 89], since the involution τ : x ÞÑ x is of the first kind

and second type, Φ is Hermitian and G “ SUn`1pA,Φq with the notation of loc. cit..

The Q-group G is an inner form of G since the type C3 has no symmetries in its diagram,

by [PlR, page 67].

Recall that (see for instance [Bou, §V.6.2]) the exponentsm1, . . . ,mr of an (irreducible,

finite) Coxeter system pW,Sq are the positive integers m such that e2iπ
m
h is an eigenvalue

of a Coxeter element of pW,Sq (the product of the elements of S, which has order h)

under the standard reflexion representation. The absolute rank r of G and the exponents

m1, . . . ,mr of the (irreducible, finite) Coxeter system pW,Sq having the same type as G

are given by

r “ 3 and m1 “ 1, m2 “ 3, m3 “ 5 (5¨1)

(see for instance [Pra, page 96] or the Cn tables of [Bou]). Note that (see for instance

[Pra, §1.5]) the dimension of G is

dimpG q “ r `
rÿ

i“1

mi “ 21 . (5¨2)

Let IG,Qp
be the Bruhat-Tits building of G over Qp (see for instance [Tit2, BrT2]

for the necessary background on Bruhat-Tits theory).

Recall that a subgroup of GpQpq is parahoric if it is the (full) stabiliser of a simplex of

IG,Qp
, and maximal parahoric if it is the stabiliser of a vertex of the building IG,Qp

. A

vertex x P IG,Qp
is special (see for instance [Tit2, §1.9]) if the affine Weyl group of an

apartment of IG,Qp
through x is the semidirect product of its translation subgroup and

the stabiliser of x in it. A vertex of IG,Qp
is hyperspecial (see for instance [Tit2, §1.10])

if is special and stays special in the building IG,Qp
for an unramified closure Qp of Qp

for which G splits. A maximal parahoric subgroup is special (resp. hyperspecial) if it is

the stabiliser of a special (resp. hyperspecial) vertex of IG,Qp

A coherent family of parahoric subgroups of G is a family pYpqpPP , where Yp is a

parahoric subgroup of GpQpq for every p and Yp “ GpZpq for p big enough. The principal

lattice associated with this family is (see [Pra, § 3.4]) the subgroup of GpQq consisting of

its elements which, when considered as elements of GpQpq, belong to Yp, for every p P P.

Let p P P. First assume that p does not divide DA. Then G is isomorphic to the

algebraic group G “ Sp3 over Qp. The vertices of the building IG ,Qp
are (see for instance

[BrT2] or [She]) the homothety classes of Zp-lattices in Qp
6 generated as Zp-module by
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the union B of the standard basis of three orthogonal hyperbolic planes, as for instance

with B the canonical basis for the standard symplectic form on Qp
6. The special vertices

of IG,Qp
are hyperspecial, and correspond to the endpoints of the Dynkin diagram of

type C3, see for instance [Tit2, page 60].

Lemma 5¨1. If p does not divide DA, then GpZpq is hyperspecial parahoric.

See also [EmK, Lem. 5.5] at least when p ‰ 2 : their hypothesis on pL “ O3, h “ Φq

is not satisfied here, since our form Φ is not diagonal, and making it diagonal requires

to invert 2 (which is possible in Qp if p ‰ 2), but their proof only uses the properties of

the pair pL bQ Qp, hq at the place p, that stay valid for the diagonalisation of our form

Φ (with matrix

¨
˝

´ 1
2

0 0

0 1 0

0 0 ´ 1
2

˛
‚).

Proof. In what follows, we denote by X ÞÑ tnX the transposition map of nˆn matri-

ces. Note that Ap “ M2pQpq and Op “ M2pZpq since p does not divide DA, and that the

conjugation map of the quaternion algebra M2pQpq is x “

ˆ
a b

c d

˙
ÞÑ xσ “

ˆ
d ´b

´c a

˙

(see for instance [Vig, page 3]). Let J0 “

ˆ
0 ´1

1 0

˙
, so that for every x P M2pQpq,

we have xσ “ J´1
0

t2xJ0. Let J1 “

¨
˝

0 0 ´I2
0 I2 0

´I2 0 0

˛
‚ and J2 “

¨
˝
J0 0 0

0 J0 0

0 0 J0

˛
‚. Con-

sidering 3 ˆ 3 matrices with coefficients in M2pQpq as 6 ˆ 6 matrices, an easy com-

putation shows that for every X in M3pM2pQpqq, with Xσ the matrix whose coeffi-

cients are the conjugates of the coefficients of X, we have t3Xσ “ J´1
2

t6X J2. Thus

X belongs to UqpApq, that is, t3Xσ J1 X “ J1, if and only if t6X J3 X “ J3 where

J3 “ J2J1 “

¨
˝

0 0 ´J0
0 J0 0

´J0 0 0

˛
‚. Note that J3 is (up to a harmless signed permutation of

the canonical basis) the matrix of the standard symplectic product defining G “ Sp3. We

hence have GpZpq “ UqpOpq “ Sp3pZpq, which is the stabiliser of the class of the stan-

dard Zp-lattice Zp
6. This class is a special vertex by [Tit2, §3.4.2], or since its stabilizer

in the affine Weyl group of the apartment defined by the standard symplectic basis of

pQ6
p, J3q is the spherical Weyl group of signed permutations of this standard symplectic

basis. Since special vertices are hyperspecial for the type C3, the result follows.

Now assume that p divides DA. Then GpQpq “ UqpApq has local type 2C3 in Tits’

classification, see [Tit2, page 67]. Note that SU “ U in our case, as mentioned in [EmK,

Rem. 2.2]. Its local index is shown below (see [Tit2, page 63]):

ˆ
s

3 2

s

hs

hs
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In particular, GpQpq has relative rank 1. By [Tit2, Ex. 2.7], the building IG,Qp
is a

biregular tree of degrees p3 ` 1 and p2 ` 1, and all its vertices are special. Hence all

maximal parahoric subgroups are special ones.

Lemma 5¨2. If p divides DA and p ‰ 2, then GpZpq is special parahoric.

See also [EmK, Lem. 5.6] with a different proof (and the same comment as previously

concerning the verification of the hypotheses), our proof being useful in order to deal

with the case p “ 2 |DA.

Proof. We will use the interpretation of IG,Qp
as the set of minimaximizing norms on

A 3
p (see [BrT1, BrT2], which uses a ´ logp version of them, in order to allow for infinite

residual fields).

With the notation of [BrT2, §1.2], we take K “ L :“ Qp, D :“ Ap (so that the center

of the quaternion algebra D is L), σ : x ÞÑ xσ :“ x the quaternion conjugation in Ap

(so that Lσ “ K), ε :“ `1, D0 “ tx P Ap : tr x “ 0u (so that D0 is the set of

elements ξ P D such that ξσ ` εξ “ 0), X :“ A 3
p considered as a right vector space

over Ap, and b : X ˆ X Ñ D the form induced by extension of scalars to Qp of the

restriction ΦA : A3 ˆ A3 Ñ A to A of the quaternionic sesquilinear form Φ defined in

Equation (2¨2) with n “ 2. Hence the form q : X Ñ D{D0 “ K of loc. cit. (defined by

qpxq “ bpx, xq `D0) coincides with the extension of scalars to Qp of our form q : A3 Ñ Q

over Q defined in Equation (2¨1).

With the notation of [BrT2, §1.15], we take ωL “ ω :“ vp, which is a discrete nor-

malised (that is, ωpKˆq “ Z) valuation on K “ L “ Qp (such that ωLpxσq “ wLpxq

for every x P L) and ωD “ νp, which is a discrete valuation (with value group 1
2
Z) on

D “ Ap extending vp (as explained at the beginning of Section 5).

Let λ ÞÑ |λ|p “ p´νppλq, which is a map from Ap to r0,`8r, be the unique extension

to Ap of the absolute value of Qp. A norm on the right Ap-vector space X “ A 3
p is a

map α : X Ñ r0,`8r such that

‚ αpxq “ 0 if and only if x “ 0

‚ αpxλq “ |λ|p αpxq for all x P X and λ P Ap,

‚ αpx` yq ď maxt αpxq, αpyq u for all x, y P X.6

Let f (keeping the notation of [BrT2, §1.2, Eq. (6)]) be the map from X ˆ X to Qp

defined by fpx, yq “ qpx ` yq ´ qpxq ´ qpyq. As defined in [BrT2, §2.1], a norm α on X

maximizes f if for all x, y P X, we have

|fpx, yq|p ď αpxqαpyq .

A norm α on X maximizes the pair pf, qq if it maximizes f and if furthermore, for

every x P X, we have |qpxq|p ď αpxq2. Note that if p ‰ 2 so that |2|p “ 1, since

fpx, xq “ 2 qpxq, then a norm α maximizes f if and only if it maximizes pf, qq. A norm

α on X minimaximizes the pair pf, qq if it is minimal among the norms that maximizes

pf, qq. The linear action of GpQpq “ UqpApq on X induces a left action on the set of

norms on X that are minimaximizing for pf, qq, by pg, αq ÞÑ α ˝ g´1.

A Witt basis of X is a basis pe´1, e0, e1q of the right Ap-vector space X such that

qpe˘1q “ fpe0, e˘1q “ 0, and qpe0q “ fpe1, e´1q “ 1 .

6 Compare with [BrT1, §1.1]: a map α : X Ñ r0,`8r is a norm as defined here if and only
if ´ logp α is a norm in the sense of [BrT1].
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By [BrT2, Theo. 2.12], there exists a GpQpq-equivariant bijection from the building

IG,Qp
to the set of norms on X that are minimaximizing for pf, qq. Moreover, by

[BrT2, §2.9, Prop.], using the fact that the value group of νp is 1
2
Z, for every Witt

basis pe´1, e0, e1q of X, the sequence pαnqnPZ of norms

αn :

1ÿ

i“´1

eiλi ÞÑ maxt p´ n
2 |λ´1|p, |λ0|p, p

n
2 |λ1|p u ,

for n P Z, is the sequence of norms that are minimaximizing for pf, qq associated with

the sequence of vertices pxnqnPZ along an apartment of IG,Qp
, such that α0 is associated

with x0. Furthermore, let

Xn “ e´1π
´n
p Op ` e0Op ` e1π

n
pOp

be the right Op-lattice generated by the Witt basis pe´1π
´n
p , e0Op, e1π

n
p q, which is the

unit ball of the norm αn, since |πp|p “ p´ 1

2 . Then by §3.9 page 180 of [BrT2], the smooth

affine group scheme Gx0
over Zp associated with the vertex x0 is the schematic closure of

G in the Zp-form of the general linear group GL3pApq over Qp defined by the Zp-lattice

X0, and Gx0
pZpq is the stabiliser of the vertex x0 in GpQpq.

Since p ‰ 2, the element ´2 is an invertible element of Zp hence of Op. If pe1
´1, e

1
0, e

1
1q

is the canonical basis of X “ A 3
p , which satisfies qpe1

˘1q “ fpe1
0, e

1
˘1q “ 0, qpe1

0q “ 1

and fpe1
1, e

1
´1q “ ´2, then pe´1, e0, e1q “ pe1

´1, e
1
0, e

1
1

1
´2

q is a Witt basis of X, and

generates the same right Op-lattice X0 as the canonical basis. Therefore, UqpOpq “

GpQpq X GL3pOpq “ Gx0
pZpq is maximal parahoric, hence special parahoric.

Remark 5¨3. When p divides DA and p “ 2, the group UqpOpq is not parahoric.

Indeed, again with pe1
´1, e

1
0, e

1
1q the canonical basis of X, since n2pπ2q “ 2, the basis

pe´1, e0, e1q “ pe1
´1π

´1
2 , e1

0,´e
1
1π

´1
2 q is a Witt basis of X. With the above notation, UqpO2q

is the subgroup of the stabiliser of the special vertex x0 in GpQ2q fixing the two edges with

origin x0 and endpoints x˘1, since X´1 X X1 “ e1
´1Op ` e1

0 Op ` e1
1 Op.

Thus, by definition, if DA is odd, the family pYpqpPP with Yp “ GpZpq for every p P P,

is a coherent family of (maximal) parahoric subgroups of G, and

UqpOq “ GpZq “ tg P GpQq : @p P P, g P GpZpqu

is its associated principal lattice. If DA is even, the family pYpqpPP with Yp “ GpZpq if

p ‰ 2 and Y2 the stabiliser in GpQ2q of the point x0 defined in Remark 5¨3, is a coherent

family of special parahoric subgroups of G. We will compute below the index of UqpOq

in the associated principal lattice when DA is even.

For every p P P,

‚ let yp (respectively yp) be the vertex of IG,Qp
(respectively IG ,Qp

) stabilised by

the subgroup UqpOpq (respectively Sp3pZpq), such that if DA is even, then y2 is the point

x0 defined in Remark 5¨3,

‚ let Mp (respectively M p) be the maximal reductive quotient, defined over the

residual field Fp “ Zp{pZp, of the identity component of the reduction modulo p of the

smooth affine group scheme over Zp associated with yp (respectively yp); see for instance

[Tit2, §3.5] with Ω “ tvu.

Note that Mp “ M p if p does not divide DA, and that for every p P P the algebraic

group M p is isomorphic to Sp3 (of type C3) over Fp. In particular M ppFpq “ Sp3pFpq
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and thus, for every p P P, by Equation (5¨2) and the orders of the finite groups of Lie

type being listed for example in [Ono, Table 1], we have

dim M p “ 21 and | M ppFpq | “ p9pp2 ´ 1qpp4 ´ 1qpp6 ´ 1q . (5¨3)

Assume now that p divides DA and p ‰ 2. Let us consider the pair pL “ O3, h “ ΦOq,

where ΦO : L ˆ L Ñ O is the restriction to L ˆ L of the map Φ defined by Equation

(2¨2) with n “ 2. Recall that O is a maximal order in A “ O bZ Q. The pair pL, hq

is a Hermitian right O-module with Witt signature p1, 2q, which is unimodular over

p (called regular over p in [EmK]). Recall that this means that the map from |O 3
p to

HomOp
pO 3

p ,Opq is an isomorphism of left Op-modules. This property is indeed satisfied

by [EmK, Lem. 5.1] since p ‰ 2. This restriction p ‰ 2 is needed since putting h in

diagonal form as in [EmK, Eq. (5.1)] requires to invert 2 in Op.

With the notation of [EmK, Lem. 4.1], let us consider k “ Q, v “ p, kv “ Qp, G “ G

(which does not split over p since p divides DA), and P 0
v “ UqpOpq, which is a special

parahoric group by Lemma 5¨2, with type the vertex of the Tits index 2C3 distinct from

one α0 coming from the hyperspecial vertices of the Tits index C3. See also [EmK,

Lem. 5.6], with the same caveat about the hypotheses as before. Then [EmK, Lem. 4.1,

Eq. (4.8)] says that

ppdim Mp´dim Mpq{2 | M ppFpq|

|MppFpq|
“ pp´ 1qpp2 ` 1qpp3 ´ 1q . (5¨4)

Assume finally that p “ 2 divides DA. The Tits index of Mp, as computed by the rule

of [Tit2, §3.5.2] is 2A2, and by [Tit2, §3.5.4], the link of the vertex yp in the tree IG,Qp

canonically identifies with the spherical building of Mp over Fp. By [Tit1, page 55], Mp

is hence the group UqpFp2q where the involution on Fp2 is its Frobenius automorphism

x ÞÑ x “ xp. The spherical building of Mp is the finite set of isotropic points in the

projective plane over Fp2 . The vertices of the link of y2 “ x0 corresponding to x´1 and

x1 with the notation of Remark 5¨3 are the projective points defined by the (isotropic) first

and last vectors of the canonical basis of pFp2q3. LetH be the intersection of the stabilisers

in UqpFp2q of the two isotropic points r1 : 0 : 0s and r0 : 0 : 1s. An easy computation shows

that H consists of the diagonal matrices

¨
˝
a 0 0

0 U 0

0 0 d

˛
‚, with a, U, d P F ˆ

p2 , d “ 1
a

“ a´p

and Up`1 “ U U “ 1. Since the multiplicative group Fˆ
p2 is isomorphic to the additive

cyclic group Z{ppp2´1qZq, which contains exactly p`1 elements x such that pp`1qx “ 0,

the order of H is equal to pp2 ´ 1qpp ` 1q. The center of UqpFp2q has order p ` 1, and

the quotient by its center is the finite group called the Steinberg group 2A2pp2q (which is

simple if p ‰ 2, and solvable if p “ 2), whose order is7

1

p3, p` 1q
p3pp2 ´ 1qpp3 ` 1q

Hence the index of H in UqpFp2q is 1
p3,p`1q p

3pp3 ` 1q. By Remark 5¨3 and since p “ 2,

we hence have that the index of UqpO2q in the parahoric subgroup Y2 is

rY2 : UqpO2qs “ rUqpF22q : Hs “ 24 . (5¨5)

7 See Table I on page 8 of [GLS ] where the group 2A2pp2q in our notation is denoted by
2A2pqq for q “ p.
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Now, let µ be the Haar measure on GpRq “ Uq “ Spp1, 2q normalized as in [Pra, §3.6].

The next lemma relates it to the Riemannian measure coming from the choice made in

Section 3 of the sectional curvature on H
2
H.

Lemma 5¨4. We have VolpPUqpOqq zH2
Hq “ π4

120
µpUqpOqq zUqq .

Proof. The proof is similar to the one in [Eme] or Emery’s appendix of [PaP2].

By the definition [Pra, §3.6 and §1.4] of µ, if w is the top degree exterior form on the

real Lie algebra of GpRq whose associated invariant differential form on GpRq defines the

measure µ and if Gu “ GupRq is the compact real form of GpCq, then the complexification

wC of w on the complex Lie algebra of GpCq “ GupCq defines a top degree exterior form

wu on the real Lie algebra of Gu, whose associated invariant differential form on Gu

defines a measure µu, and we require that µupGuq “ 1.

Let µ1 be the Haar measure on the noncompact real Lie group Spp1, 2q that disinte-

grates by the fibration Spp1, 2q Ñ Spp1, 2q{pSpp1q ˆ Spp2qq “ H
2
H with measures on the

fibers of total mass one and measure on the base the Riemannian measure dvolH2

H

of the

Riemannian metric with sectional curvatures contained in r´4,´1s, as in Section 3. In

particular,

VolpPUqpOqq zH2
Hq “ µ1pUqpOqq zUqq .

Let µ1
u be the Haar measure on the compact real Lie group Spp3q that disintegrates by

the fibration Spp3q Ñ Spp3q{pSpp1qˆSpp2qq “ P2
r pHq with measures on the fibers of total

mass one and measure on the base the Riemannian measure dvolP2
r

pHq of the Riemannian

metric with sectional curvatures contained in r1, 4s. By [BGM, page 112 and Ex.A.III.8],

this Riemannian metric is the standard Fubini-Study metric, and

µ1
upSpp3qq “ VolpP2

r pHqq “
π4

120
.

The duality between irreducible symmetric spaces of noncompact type endowed with a

left invariant Riemannian metric and the ones of compact type sends H2
H to P2

r pHq, with

opposite signs on the range of the sectional curvatures (see for instance [Hel, Ch. 5]),

and hence µ1 “ π4

120
µ. The result follows.

We now want to apply Prasad’s volume formula [Pra, Theo. 3.7]. For the notation of

this theorem, we take

‚ k “ Q

so that its set of infinite places is V8 “ t8u with associated completion k8 “ R, its set

of finite places is Vf “ P with associated (nonarchimedean) completions kv “ Qp for

every v “ p P Vf , with valuation ring ov “ Zp, maximal ideal mv “ pZp, and the order

qv of the residual field fv “ Zp{pZp “ Fp is p, and its set of places is V “ V8 Y Vf ,

‚ G “ G,

which is an absolutely quasi-simple, simply connected algebraic k-group, which is an

inner form of the absolutely quasi-simple, simply connected algebraic k-group G , which

is (quasi-)split over k, (and whose absolute rank r and exponents m1, . . . ,mr have been

recalled above), so that the integer spG q associated with G in [Pra, §0.4] is spG q “ 0

since G “ Sp3 splits over k “ Q, and the Tamagawa number of G is

τkpGq “ 1
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by page 109 of op. cit. since k is a number field, ℓ “ Q is a smallest splitting field of G

over Q (since G is split over Q), and the discriminants of k and ℓ over Q are Dk “ Dℓ “ 1,

‚ S “ t8u,

which is a finite set of places of k, containing all the Archimedean ones, such that GpRq “

Uq is non compact, so that GS “
ś

vPS Gpkvq “ Uq and Sf “ S X Vf is empty,

‚ µS “ µ,

which is the Haar measure on GS “ Uq normalized as in [Pra, §3.6], and

‚ Λ is the principal S-arithmetic lattice associated with the coherent family of special

(maximal) parahoric subgroups pYvqvPV ´S constructed after Remark 5¨3, which does

satisfy the assumptions of [Pra, §1.2], since when G splits over kv for v P Vf , then Yv is

hyperspecial by Lemma 5¨1.

With this notation, we may now state Prasad’s theorem in the special case when Sf

is empty, which is the case at hand. Theorem 3.7 of [Pra] says that

µSpΛzGSq “

D
1

2
dimG

k

´ Dℓ

D
rℓ:ks
k

¯ 1

2
spG q´ ź

vPS8

ˇ̌
ˇ

rź

i“1

pmiq!

p2πqmi`1

ˇ̌
ˇ
v

¯
τkpGq

ź

vRS

q
pdim Mv`dim Mvq{2
v

|Mvpfvq|
. (5¨6)

Assume first that DA is odd, so that Λ “ UqpOq. Equation (5¨6) hence gives, since

M p “ Mp if p does not divide DA and by Equation (5¨1) for the second equality,

µpUqpOqzUqq “
rź

i“1

pmiq!

p2πqmi`1

ź

pPP

ppdim Mp`dim Mpq{2

|MppFpq|

“
720

p2πq12

ź

pPP

pdim Mp

|M ppFpq|

ź

p|DA

| M ppFpq|

|MppFpq|
ppdimMp´dimMpq{2 . (5¨7)

Using Euler’s product formula ζpsq “
ś

pPP

1
1´p´s for Riemann’s zeta function, we have

by Equation (5¨3), since ζp2q “ π2

6
, ζp4q “ π4

90
and ζp6q “ π6

945
,

ź

pPP

pdim Mp

| M ppFpq|
“ ζp2q ζp4q ζp6q “

π12

510300
. (5¨8)

Thus Theorem 1¨4 in the Introduction when DA is odd follows from Equations (5¨7),

(5¨8), (5¨4), and from Lemma 5¨4.

Assume now that DA is even. The right hand side of Equation (5¨7) computes the

covolume of the principal lattice Λ associated with the coherent family pYpqpPP . By

construction, the group UqpOq is exactly the subgroup of elements in Λ which, when

considered in GpQ2q, belong to the finite index subgroup UqpO2q of Y2. Since Λ is dense

in Y2 and UqpOq is dense in UqpO2q, this proves that the index mA of UqpOq in Λ is equal

to the index of UqpO2q in Y2, which is mA “ 24 by Equation (5¨5). This proves Theorem

1¨4 of the introduction when DA is even.

6. Horospherical quaternionic hyperbolic geometry

In this section, we describe the geometry of the horospheres in the quaternionic hyper-

bolic space H
n
H (see also [KiP, Phi]). We introduce the quaternionic Heisenberg group

and discuss the geometry of its quaternionic contact structure (see for instance [Biq]).
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The horospherical coordinates pζ, u, tq P Hn´1 ˆ Im Hˆ r0,`8r, that we will use from

now on unless otherwise stated, of pw0, wq P H
n
H Y pB8H

n
H ´ t8uq are

pζ, u, tq “ pw, 2 Im w0, tr w0 ´ npwqq

hence pw0, wq “
´
npζq ` t` u

2
, ζ

¯
,

(6¨1)

so that the Riemannian metric of Hn
H is given by

ds2
H

n
H

“
1

4 t2

`
dt2 ` npdu´ 2 Im dζ ¨ ζq ` 4 t npdζq

˘
. (6¨2)

In horospherical coordinates, the geodesic lines from pζ, u, 0q P B8H
n
H ´ t8u to 8 are,

up to translations at the source, the maps s ÞÑ pζ, u, e2sq, by the normalisation of the

metric.

The Busemann cocycle of Hn
H is the map β : B8H

n
H ˆ H

n
H ˆ H

n
H Ñ R defined by

pξ, x, yq ÞÑ βξpx, yq “ lim
sÑ`8

dpξs, xq ´ dpξs, yq ,

where s ÞÑ ξs is any geodesic ray ending at ξ. It is invariant under the diagonal action

of the isometry group of Hn
H. The horosphere with centre ξ P B8H

n
H through x P H

n
H is

ty P H
n
H : βξpx, yq “ 0u, and ty P H

n
H : βξpx, yq ě 0u is the (closed) horoball centred at

ξ bounded by this horosphere.

Given two points x “ pζ, u, tq and x1 “ pζ 1, u1, t1q in H
n
H, the maps ξs : s ÞÑ pζ, u, e2sq

and ξ1
s : s ÞÑ pζ 1, u1, e2sq are geodesic lines in H

n
H through x and x1 respectively, converging

to 8 as s Ñ `8. The Riemannian length of the affine path from ξs to ξ1
s, whose last

coordinate is constant and equal to t “ e2s, is bounded by a constant times p t
t2

q
1

2 “ e´s,

hence limsÑ`8 dpξs, ξ
1
sq “ 0. Thus

β8px, x1q “
1

2
ln
t1

t
. (6¨3)

The closed horoballs centred at 8 P B8H
n
H are therefore the subsets

Hs “ tpζ, u, tq P H
n
H : t ě su “ tpw0, wq P H

n
H : trw0 ´ npwq ě su, (6¨4)

and the horospheres centred at 8 are their boundaries BHs, where s ranges in s0,`8r .

Note that, for every s ě 1, we have

dpBH1, BHsq “
ln s

2
. (6¨5)

The Cygan distance8on H
n
H Y pB8H

n
H ´ t8uq is (see for instance [KiP])

dCygppζ, u, tq, pζ 1, u1, t1qq “ n

`
npζ ´ ζ 1q ` |t´ t1| ` pu´ u1 ´ 2 Im ζ ¨ ζ 1q

˘1{4
. (6¨6)

The quaternionic Heisenberg group Heis4n´1 of dimension 4n´ 1 is the real Lie group

structure on Hn´1 ˆ Im H with law

pζ, uqpζ 1, u1q “ pζ ` ζ 1, u` u1 ` 2 Im ζ ¨ ζ 1q

and inverses pζ, uq´1 “ p´ζ,´uq. When we have n “ 2, using the change of coordinates

ζ “ w and u “ 2 Imw0 as explained in Equation (6¨1) with t “ 0, we recover the definition

given in the Introduction. The group Heis4n´1 identifies with B8H
n
H ´ t8u by the map

8 It is analogous to the Euclidean distance on the closure in Rn of the upper halfspace model
of Hn

R .
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pζ, uq ÞÑ pζ, u, 0q. It furthermore identifies with a subgroup of PBq Ă PUq by the map

pζ, uq ÞÑ ˘

¨
˚̋1 ζ˚ npζq`u

2

0 In´1 ζ

0 0 1

˛
‹‚, where ζ P Mn´1, 1pHq also denotes the column vector of

ζ P Hn´1. It acts on the space H
n
H Y pB8H

n
H ´ t8uq by the Heisenberg translations

pζ, uqpζ 1, u1, t1q “ pζ ` ζ 1, u` u1 ` 2 Im ζ ¨ ζ 1, t1q .

They are isometries for both the Riemannian metric and the Cygan distance, and they

preserve the horospheres centred at 8. For every u P Im H, the Heisenberg translation

by p0, uq is called a vertical translation.

It is easy to see that the Cygan distance on Heis4n´1 is the unique left-invariant

distance on Heis4n´1 with

dCygppζ, uq, p0, 0qq “ pnpζq2 ` npuqq
1

4 ,

or equivalently using Equation (6¨1) that if pw0, wq P B8H
n
H ´ t8u, then

dCygppw0, wq, p0, 0qq “ p4 npw0qq
1

4 .

We conclude this section with geometric lemmas that will be useful in Sections 7 and

8. See also [Kim, §3], with slightly different conventions, for a computation similar to

Lemma 6¨1. The proofs are analogous to those in the complex hyperbolic case with the

added ingredient of being careful with the noncommutativity of the multiplication in the

present quaternionic case.

Lemma 6¨1. For all points x “ pζ, u, tq and x1 “ pζ 1, u1, t1q in H
n
H, and for every

pξ, rq P Heis4n´1 “ B8H
n
H ´ t8u, we have

βpξ, rqpx, x1q “
1

2
ln
t1 dCygpx, pξ, rqq4

t dCygpx1, pξ, rqq4
.

Proof. It is easy to check that the map ι : pw0, wq ÞÑ pw ´1
0 , ww ´1

0 q is an isometric

involution of Hn
H sending p0, 0q P B8H

n
H to 8, induced by

¨
˝
0 0 1

0 In´1 0

1 0 0

˛
‚, which does

belong to Uq. Hence, with x “ pw0, wq and x1 “ pw1
0, w

1q, using Equations (6¨3) and (6¨1)

and the fact that dCygpx, p0, 0qq4 “ 4 npw0q and dCygpx1, p0, 0qq4 “ 4 npw1
0q, we have

βp0, 0qpx, x1q “ βιp0, 0qpιx, ιx1q “
1

2
ln

tr pw1
0q´1 ´ npw1pw1

0q´1q

trw ´1
0 ´ npww ´1

0 q

“
1

2
ln
t1 nppw1

0q´1q

t npw ´1
0 q

“
1

2
ln

t1 dCygpx, p0, 0qq4

t dCygpx1, p0, 0qq4
.

The Heisenberg translation τ by pξ, rq preserves the last horospherical coordinates and

the Cygan distances. We have βpξ, rqpx, x1q “ βp0, 0qpτ´1x, τ´1x1q, since τ is an isometry

of Hn
H. This proves Lemma 6¨1.

Lemma 6¨2. The orthogonal projection from B8H
n
H ´ tp0, 0q,8u to the geodesic line

in H
n
H with points at infinity p0, 0q and 8 is pw0, wq ÞÑ p2 npw0q

1

2 , 0q, that is, in horo-

spherical coordinates, pζ, u, 0q ÞÑ
`
0, 0, p npζq2 ` npuq q1{2˘.
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In particular, the point preimages by this orthogonal projection are the spheres of

center p0, 0q for the Cygan distance on Heis4n´1.

Proof. For every parameter a ranging in s0,`8r , consider the horosphere BHa centred

at 8. Its image by the isometric involution ι : pw0, wq ÞÑ pw ´1
0 , ww ´1

0 q is, using Equation

(6¨1), the horosphere t pξ, r, tq P H
n
H : t “ a

4

`
pnpξq ` tq2 ` nprq

˘
u centred at p0, 0q. The

image of this horosphere by the Heisenberg translation by pζ, uq is the horosphere

t pξ, r, tq P H
n
H : t “

a

4

`
pnpξ ´ ζq ` tq2 ` npr ´ u´ 2 Im ζ ¨ ξ

˘
q u

centred at pζ, uq. The orthogonal projection of pζ, uq on the geodesic line ℓ from p0, 0q to

8 is attained when the parameter a gives a double point of intersection p0, 0, tq between

this horosphere and ℓ. The quadratic equation

t “
a

4
ppnpζq ` tq2 ` npuqq

whose unknown is t has a double solution if and only if its reduced discriminant given

by ∆1 “ pnpζq ´ 2
a

q2 ´ pnpζq2 ` npuqq vanishes, that is, since a ą 0, if and only if

a “
2

pnpζq2 ` npuqq1{2 ` npζq
,

giving t “ pnpζq2 ` npuqq1{2. The result follows.

Lemma 6¨3. Let C be the quaternionic geodesic line tpw0, wq P H
n
H : w “ 0u. The

orthogonal projection from H
n
H to C is the map pw0, wq ÞÑ pw0, 0q. On B8H

n
H ´ B8C

endowed with the horospherical coordinates, this map extends as pζ, u, 0q ÞÑ p0, u, npζqq.

Proof. Let pw0, wq P H
n
H. It is easy to check that the distance given (see Equation

(3¨2)) by the formula

cosh2 dppw0, wq, pw1
0, 0qq “

npw0 ` w1
0q

´qpw0, w, 1q trw1
0

is minimised over pw1
0, 0q P C exactly when w1

0 “ w0.

Since C is totally geodesic, the closest point mapping from H
n
H to C coincides with the

orthogonal projection, which is hence pw0, wq ÞÑ pw0, 0q. The expression in horospherical

coordinates of the boundary extension follows from the equations in (6¨1).

Lemma 6¨4. For every pw0, wq P B8H
n
H ´ t8u with w0 ‰ 0, the map from R to H

n
H

defined by s ÞÑ pw0p1`2e2sw0q´1, wp1`2e2sw0q´1q P H
n
H is a geodesic line from pw0, wq

to p0, 0q.

Proof. The image of

¨
˝

1 0 0

ww´1
0 In´1 0

w´1
0 pww´1

0 q˚ 1

˛
‚ in PGLn`1pHq is the conjugate by the

isometric involution ι : pw1
0, w

1q ÞÑ pw1
0

´1
, w1w1

0
´1

q of the Heisenberg translation by

ιpw0, wq. Hence it belongs to PUq, fixes ιp8q “ p0, 0q and maps 8 to pw0, wq. It thus

sends the geodesic line from 8 to p0, 0q defined by s ÞÑ p0, 0, e´2s`ln 2q in horospherical

coordinates, hence by s ÞÑ re´2s : 0 : 1s in homogeneous coordinates by Equation (6¨1),

to a geodesic line from pw0, wq to p0, 0q. An easy computation gives that this geodesic

line is

s ÞÑ
`
w0p1 ` e2sw0q´1, wp1 ` e2sw0q´1

˘
,
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as wanted, after a time translation.

Lemma 6¨5. For all g P Uq and s ą 0 such that the horoballs Hs and gHs have

disjoint interiors, if cg is the p3, 1q-entry of the matrix g, then

dpHs, gHsq “
1

2
ln npcgq ` ln

s

2
.

Proof. We follow [PaP1, Lem. 6.3]. As seen in Section 3, if we had cg “ 0, then g would

fix 8 and would stabilise Hs, which contradicts the assumption. Thus cg ‰ 0. Multiplying

g on the left and right by elements of Heis4n´1 does not change cg or dpHs, gHsq. We

may hence assume that gp8q “ p0, 0q and g´1p8q “ p0, 0q (in the coordinates pw0, wq).

Writing g “

¨
˝
a γ˚ b

α A β

c δ˚ d

˛
‚, the first condition implies that a “ 0 and α “ 0, and the

second one that β “ 0 and d “ 0. The first and second equations of Formula (3¨3) then

imply that γ “ δ “ 0, the third one implies that A is unitary, and the fourth one gives

cb “ 1. Thus,

g “

¨
˝
0 0 c´1

0 A 0

c 0 0

˛
‚

with A P Sppn´ 1q. It is easy to check, using the properties of tr and n, that

gHs “ tpw0, wq P H ˆ Hn´1 : trw0 ´ npwq ě s npcq npw0qu .

The points of intersection of the geodesic line from p0, 0q to 8 with the horospheres

BHs (centred at 8) and g BHs (centred at p0, 0q) are p s
2
, 0q and p 2

s npcq , 0q. The distance

between them is as required by the statement.

7. Measure computations in quaternionic hyperbolic spaces

Let Γ be a nonelementary discrete group of isometries of Hn
H, let ΛΓ be its limit set

(the smallest closed nonempty Γ-invariant subset of B8H
n
H) and let δΓ be its critical

exponent, defined by

δΓ “ lim
nÑ`8

1

n
lnCard pΓx0q XBpx0, nq

for any x0 P H
n
H. We refer to [BrPP, Chap. 1] for the background definitions and infor-

mations on the notions of this section. In this section, we give proportionality constants

relating, on the one hand, Patterson, Bowen-Margulis and skinning measures associated

to some convex subsets and, on the other hand, the corresponding Riemannian measures,

in the quaternionic hyperbolic case. These results were announced in [BrPP, Chap. 7].

We start by briefly recalling the construction of these measures. Let pµxqxPHn
H

be a

Patterson density for Γ, that is a family pµxqxPHn
H

of nonzero finite (nonnegative Borel)

measures on B8H
n
H whose support is ΛΓ, such that γ˚µx “ µγx and

dµx

dµy

pξq “ e´δΓβξpx, yq

for all γ P Γ, x, y P H
n
H and (almost all) ξ P B8H

n
H.

For every v P T 1
H

n
H, let πpvq P H

n
H be its footpoint, and let v´, v` be the points
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at ´8 and `8 of the geodesic line defined by v. Let x0 P H
n
H be a basepoint. The

Bowen-Margulis measure rmBM for Γ on T 1
H

n
H is defined, using Hopf’s parametrisation

v ÞÑ pv´, v`, βv` px0, πpvqq q from T 1
H

n
H into B8H

n
H ˆ B8H

n
H ˆ R, by

drmBMpvq “ e´δΓpβv´
pπpvq, x0q`βv`

pπpvq, x0qq dµx0
pv´q dµx0

pv`q dt . (7¨1)

Note that in the right hand side of this equation, πpvq may be replaced by any point x1

on the geodesic line defined by v, since βv´ pπpvq, x1q`βv` pπpvq, x1q “ 0. We will use this

elementary observation in the proof of Lemma 7¨2 (ii). The measure rmBM is nonzero,

independent of x0, is invariant under the geodesic flow, the antipodal map v ÞÑ ´v and

the action of Γ. Thus, it defines a nonzero measure mBM on ΓzT 1
H

n
H which is invariant

under the geodesic flow of ΓzT 1
H

n
H and the antipodal map, called the Bowen-Margulis

measure on ΓzT 1
H

n
H.

Let D be a nonempty proper closed convex subset of Hn
H, with stabiliser ΓD in Γ, such

that the family pγDqγPΓ{ΓD
is locally finite in H

n
H. We denote by B1

˘D the outer/inner unit

normal bundle of BD, that is, the set of v P T 1
H

n
H such that πpvq P BD, v˘ P B8H

n
H´B8D

and the closest point projection on D of v˘ is πpvq. Using the endpoint homeomorphism

v ÞÑ v˘ from B1
˘D to B8H

n
H ´ B8D, we defined in [PaP4] (generalising the definition of

Oh and Shah [OhS, §1.2] when D is a horoball or a totally geodesic subspace in the real

hyperbolic space Hn
R) the outer/inner skinning measure rσ˘

D of Γ on B1
˘D, by

drσ˘
Dpvq “ e´δΓ βv˘

pπpvq, x0q dµx0
pv˘q . (7¨2)

The measure rσ˘
D is independent of x0. It is nonzero if ΛΓ is not contained in B8D, and

it satisfies rσ˘
γD “ γ˚rσ˘

D for every γ P Γ. The measure
ř

γPΓ{ΓD
γ˚rσ˘

D is a well defined

Γ-invariant locally finite measure on T 1
H

n
H. Hence, it induces a locally finite measure

σ˘
D on ΓzT 1

H
n
H, called the outer/inner skinning measure of D in ΓzT 1

H
n
H. Note that if

ι : v ÞÑ ´v is the antipodal map, then ι˚rσ´
D “ rσ`

D. In particular π˚rσ´
D “ π˚rσ`

D, and the

measures σ´
D and σ`

D have the same total mass.

We will denote the standard Lebesgue measures on the Euclidean spaces Hn´1 and

Im H by dζ and du respectively, so that the usual left Haar measure dλ4n´1 on the Lie

group Heis4n´1 is

dλ4n´1pζ, uq “ dζdu . (7¨3)

In horospherical coordinates, the volume form of Hn
H “ Heis4n´1 ˆ s0,`8r is9

d volHn
H

pζ, u, tq “
1

16 t2n`2
dζ du dt . (7¨4)

We begin by giving a lemma that relates the Riemannian volume of a Margulis cusp

neighbourhood with the Riemannian volume of its boundary, close to [KiP, Lem. 3.1].

Lemma 7¨1. Let D be a horoball in H
n
H and let Γ be a discrete group of isometries of

H
n
H preserving BD (hence D). Then VolpΓzBDq “ p4n` 2qVolpΓzDq.

Proof. Since the group of isometries of Hn
H acts transitively on the set of horospheres

of H
n
H, we may assume that D “ H1. The horosphere centred at 8 passing through

a point pζ, u, tq P H1 is equal to BHt and its orthogonal geodesic line at this point is

9 See also [KiP, page 301] with a different normalisation.
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s ÞÑ pζ, u, e2sq, hence

d volHn
H

pζ, u, tq “ d volBHt
pζ, u, tq

dt

2t
.

By Equation (7¨4), we hence have

d volBHt
pζ, u, tq “

1

8 t2n`1
dζ du (7¨5)

for every t ą 0, therefore d volBHt
pζ, u, tq “ 1

t2n`1 d volBH1
pζ, u, 1q. The homeomorphism

from BHt to BH1 defined by pζ, u, tq ÞÑ pζ, u, 1q commutes with the action of Γ. Thus,

VolpΓzH1q “

ż

ΓzH1

d volHn
H

pζ, u, tq “

ż `8

t“1

ż

ΓzBHt

d volBHt
pζ, u, tq

dt

2t

“

ż `8

t“1

ż

ΓzBH1

d volBH1
pζ, u, 1q

dt

2t2n`2
“

1

4n` 2
VolpΓzBH1q .

Let Γ be a lattice in IsompHn
Hq, that is, a discrete group of isometries of Hn

H such that

the orbifold ΓzHn
H has finite volume. Its critical exponent is

δΓ “ 4n` 2 (7¨6)

(see for instance [Cor, Theo. 4.4 (i)]). The Patterson density pµxqxPHn
H

of Γ is uniquely

defined up to a multiplicative constant, and is independent of Γ. We will choose the

normalisation as follows. Let µ8 be the Heis4n´1-invariant measure on B8H
n
H ´ t8u

defined (see for instance [BrPP, Eq. (7.5)]) by

µ8 “ lim
tÑ`8

eδΓt µρptq (7¨7)

where ρ is the geodesic ray starting from any point in BH1 and converging to 8. By

the uniqueness property of Haar measures on Heis4n´1, we may uniquely normalise the

Patterson density so that µ8 coincides with λ4n´1 on B8H
n
H ´ t8u “ Heis4n´1, that is

dµ8pξ, rq “ dλ4n´1pξ, rq “ dξ dr .

The various computations of Patterson, Bowen-Margulis and skinning measures are

gathered in the following statement.

Lemma 7¨2. Let Γ be a lattice in IsompHn
Hq, and let pµxqxPHn

H
be its Patterson density,

normalised as above. For all x “ pζ, u, tq and x1 “ pζ 1, u1, t1q in H
n
H, for all pξ, rq in

B8H
n
H ´ t8u and for all v in T 1

H
n
H such that v˘ ‰ 8, we have

(i) dµxpξ, rq “
t2n`1

dCygpx, pξ, rqq8n`4
dξ dr ;

(ii) using a Hopf parametrisation v ÞÑ pv´, v`, sq,

drmBMpvq “
dλ4n´1pv´q dλ4n´1pv`q ds

dCygpv´, v`q8n`4
;

(iii)

rmBM “
1

24n´4
volT 1H

n
H
,
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and in particular, if M “ ΓzHn
H, the total mass of the Bowen-Margulis measure of

ΓzT 1
H

n
H is

}mBM} “
π2n

24n´5 p2n´ 1q!
VolpMq ;

(iv) using the homeomorphism v ÞÑ v` from B1
`H1 to B8H

n
H ´ t8u “ Heis4n´1, we have

drσ`
H1

pvq “ dλ4n`1pv`q ;

for every horoball D in H
n
H, we have

π˚rσ˘
D “ 8 volBD ,

and the total mass of the skinning measure of D in ΓzT 1
H

n
H is

}σ˘
D} “ 16p2n` 1q VolpΓDzDq ;

(v) for every geodesic line D in H
n
H, we have

dπ˚rσ˘
D “

2n` 1

24n´2 p4n´ 1q
dπ˚ volB1

˘D

and, with m the order of the pointwise stabiliser of D in Γ,

}σ˘
D} “

π2n´1 p2n` 1q!

mn p4n´ 1q!
VolpΓDzDq ;

(vi) for every quaternionic geodesic line D in H
n
H, we have

dπ˚rσ˘
D “

1

24n´1
dπ˚ volB1

˘D

and, with m the order of the pointwise stabiliser of D in Γ,

}σ˘
D} “

π2n´2

m 24n´2 p2n´ 3q!
VolpΓDzDq .

Proof. In the computations below, it is useful to note that Lemma 6¨1 implies that

e´p4n`2q βpξ, rqpx, x1q “
t2n`1 dCygpx1, pξ, rqq8n`4

pt1q2n`1 dCygpx, pξ, rqq8n`4
. (7¨8)

(i) The geodesic line from pξ, rq to 8 goes through BH1 at the point pξ, r, 1q. For all

η P B8H
n
H ´t8u, let xH1, η be the intersection point with BH1 of the geodesic line from η

to 8. By the normalisation of dµ8 and by the definition of µ8 and the Radon-Nikodym

property of the Patterson density, we have

dµx

dµ8
pηq “ e´δΓβηpx, xH1, ηq ,

for all x P H
n
H and (almost all) η P B8H

n
H ´ t8u. Hence we have

dµx

dξ dr
pξ, rq “

dµx

dµ8
pξ, rq “ e´δΓ βpξ, rqpx, pξ, r, 1qq .

The result then follows from Equations (7¨6), (7¨8) and (6¨6).

(ii) Note that if x1 is on the geodesic line ℓ defined by v, since ℓ is asymptotic near v´
to the geodesic line from v´ to 8, an easy computation using Equation (6¨6) shows that
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dCygpx1, v´q2 „ t1 as x1 Ñ v´. Hence, by Equation (7¨1) and the comment following it,

by Equations (7¨6) and (7¨8), by Assertion (i), and by letting x1 converge to v´ on the

geodesic line defined by v, we have

drmBMpvq “ e´p4n`2qpβv´
px1, xq`βv`

px1, xqq dµxpv´q dµxpv`q ds

“
´ t1 dCygpx, v´q4 t1 dCygpx, v`q4 t2

t dCygpx1, v´q4 t dCygpx1, v`q4 dCygpx, v´q4 dCygpx, v`q4

¯2n`1

dλ4n´1pv´q dλ4n´1pv`q ds

“
1

dCygpv´, v`q8n`4
dλ4n´1pv´q dλ4n´1pv`q ds .

(iii) Recall that the Liouville measure volT 1H
n
H

(which is the Riemannian measure for

Sasaki’s metric on T 1
H

n
H) disintegrates under the fibration π : T 1

H
n
H Ñ H

n
H over the

Riemannian measure volHn
H

of Hn
H, with conditional measures the spherical measures on

the unit tangent spheres:

d volT 1H
n
H

pvq “

ż

xPHn
H

d volT 1
xH

n
H

pvq d volHn
H

pxq .

Let x “ pζ, u, tq P H
n
H. Since the group Ix of isometries of Hn

H fixing x acts transitively

on T 1
xH

n
H, since both µx and the Riemannian measure volT 1

xH
n
H

are invariant under Ix,

using the Ix-equivariant homeomorphism v ÞÑ v` from T 1
xH

n
H to B8H

n
H, we have, for all

v P T 1
xH

n
H such that v` ‰ 8, using Assertion (i) for the last equality,

d volT 1
xH

n
H

pvq “
VolpS4n´1q

}µx}
dµxpv`q “

VolpS4n´1q t2n`1

}µx} dCygpx, v`q8n`4
dλ4n´1pv`q . (7¨9)

By homogeneity, by Assertion (i), by Equation (6¨6) applied with pζ, u, tq “ p0, 0, 1q and

pζ 1, u1, t1q “ pξ, r, 0q, by using the spherical coordinates in the Euclidean spaces Hn´1 and

Im H of real dimensions 4n´4 and 3 so that dξ “ s4n´5ds d volS4n´5 and dr “ ρ2dρ d volS2 ,

and by using the changes of variables ρ ÞÑ ρ
s2`1

and s ÞÑ s2, we have

}µx} “ }µp0,0,1q} “

ż

Hn´1ˆIm H

dξ dr

ppnpξq ` 1q2 ` nprqq2n`1

“ VolpS4n´5qVolpS2q

`8ĳ

0

s4n´5ρ2 ds dρ

pps2 ` 1q2 ` ρ2q2n`1

“ π VolpS4n´5q

ż `8

´8

ρ2 dρ

p1 ` ρ2q2n`1

ż `8

0

s2n´3 ds

ps` 1q4n´1
.

By the residue formula at a pole of order 2n` 1 and by Leibniz formula, considering the

map f : z ÞÑ 1
pz`iq2n`1 which satisfies Bkf

Bzk “ p´1qkp2n`kq!
p2nq!pz`iq2n`k`1 for every k P N, we have

ż `8

´8

ρ2 dρ

pρ2 ` 1q2n`1
“ 2iπResz“i

z2

pz2 ` 1q2n`1
“ 2iπ

1

p2nq!

B2n

Bz2n

ˇ̌
ˇ
z“i

pz2fpzqq

“
2iπ

p2nq!

´
z2

B2nf

Bz2n
` 4n z

B2n´1f

Bz2n´1
` 2np2n´ 1q

B2n´2f

Bz2n´2

¯
z“i

“
π n p4n´ 2q!

24n´2pp2nq!q2
.
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By integration by parts and by induction, we have
ż `8

0

s2n´3 ds

ps` 1q4n´1
“

p2n´ 3q!

p4n´ 2q . . . p2n` 2q

ż `8

0

ds

ps` 1q2n`2
“

p2n´ 3q!p2nq!

p4n´ 2q!
.

Since VolpS4n´1q “ π2

p2n´1qp2n´2q VolpS4n´5q, we hence have

}µx} “
1

24n´1
VolpS4n´1q .

Hence, by Equations (7¨4) and (7¨9), using the homeomorphism v ÞÑ pv`, πpvq “ pζ, u, tqq

from T 1
H

n
H to B8H

n
H ˆ H

n
H, we have, for all v P T 1

H
n
H such that v` ‰ 8,

d volT 1H
n
H

pvq “
24n´5

t dCygppζ, u, tq, v`q8n`4
dλ4n´1pv`q dζ du dt . (7¨10)

Now, let us consider the map F : Heis4n´1 ˆR Ñ H
n
H defined by

pξ, r, sq ÞÑ
´
ζ “ ξ p1 ` pnpξq ` rq e2sq´1,

u “ Im
`
pnpξq ` rqp1 ` pnpξq ` rq e2sq´1

˘
,

t “
pnpξq2 ` nprqq e2s

np1 ` pnpξq ` rq e2sq

¯
.

Note that F p0, i, 0q “ p0, i
2
, 1
2

q. By Lemma 6¨4 and Equation (6¨1), the map s ÞÑ F pξ, r, sq

is a geodesic line in H
n
H starting from pξ, r, 0q and ending at p0, 0, 0q. On this geodesic line,

s and the time parameter in Hopf’s parametrisation differ only by an additive constant,

hence have the same differential.

Recall that by homogeneity, the two measures rmBM and volT 1H
n
H

are proportional.

Hence we compute their (constant) Radon-Nikodym derivative at the unit tangent vector

v P T 1
H

n
H such that v´ “ p0, i, 0q and πpvq “ p0, i

2
, 1
2

q, so that v is tangent to the

geodesic line s ÞÑ F p0, i, sq at s “ 0, hence v` “ p0, 0, 0q. By Assertion (ii) with pξ, r, 0q

parametrising v´ and by Equations (7¨10) and (6¨6), we have

d volT 1H
n
H

drmBM

“
24n´5 dCygpp0, i, 0q, p0, 0, 0qq8n`4

1
2
dCygpp0, i

2
, 1
2

q, p0, 0, 0qq8n`4

dζ du dt

dξ dr ds
p0, i, 0q

“ 26n´3 dζ du dt

dξ dr ds
p0, i, 0q .

Let us compute the Jacobian at p0, i, 0q of the map F : pξ, r, sq ÞÑ pζ, u, tq. Taking the

derivatives at the point p0, i, 0q, we have, using the canonical basis i, j, k of Im H in order

to write r “ r1i` r2j ` r3k and u “ u1i` u2j ` u3k,

Bζ

Bξ
“

1

1 ` i
IdHn´1 ,

Bζ

Br
“

Bζ

Bs
“ 0,

Bt

Bs
“

Bt

Bξ
“ 0 ,

Bu

Bξ
“ 0 ,

Bu

Br
“

¨
˝
0 0 0

0 1
2

0

0 0 1
2

˛
‚, Bu

Bs
“

¨
˝

´1

0

0

˛
‚, Bt

Br
“
`
1
2

0 0
˘
.

Since the Jacobian matrix of F at p0, i, 0q is block diagonal when the variables are sepa-

rated into the 4pn ´ 1q first ones and the last 4 ones, since the multiplication by 1
1`i

in

Hn´1 is a Euclidean homothety of ratio 1?
2
, and since the determinant of the 4ˆ4 matrix
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of the partial derivatives of u, t with respect to r, s has absolute value 1
8
, the Jacobian of

F at p0, i, 0q is equal to
`

1?
2

˘4pn´1q 1
8

“ 1
22n`1 . The first claim of Assertion (iii) follows.

The second claim follows from the facts that VolpT 1Mq “ VolpS4n´1q VolpMq and that

VolpS4n´1q “ 2π2n

p2n´1q! .

(iv) By the definition of the skinning measure rσ`
H1

in Equation (7¨2) and of the measure

µ8 in Equation (7¨7), we have

drσ`
H1

pvq “ dµ8pv`q

for every v P B1
`H1, since βv` pπpvq, ρptqq “ ´t ` op1q as t Ñ `8. The first claim of

Assertion (iv) follows by the normalisation of the Patterson density.

By Equation (7¨5), we have

d volBH1
pζ, u, 1q “

1

8
dζ du . (7¨11)

Hence π˚rσ˘
H1

“ 8 volBH1
, and by the transitivity of the isometry group of Hn

H on the set

of horoballs in H
n
H, the second claim of Assertion (iv) follows. Therefore, by Lemma 7¨1,

}σ˘
D} “ }π˚σ

˘
D} “ 8 VolpΓDzBDq “ 16p2n` 1q VolpΓDzDq .

(v) By the transitivity of the isometry group of Hn
H on the set of its geodesic lines, we

may assume that D is the geodesic line in H
n
H with points at infinity p0, 0q and 8. The

map from the full-measure open subset
 

pζ, uq P Heis4n´1 : ζ ‰ 0, u ‰ 0
(

in Heis4n´1

to the product manifold S4n´5 ˆ S2ˆ s0,`8r ˆ s0, π
2

r defined by

pζ, uq ÞÑ
´
σ “

ζ

npζq
1

2

, w “
u

npuq
1

2

, ρ “ pnpζq2 ` npuqq1{2, θ “ arctan
npuq1{2

npζq

¯
(7¨12)

is a diffeomorphism. Since

npζq “ ρ cos θ and npuq1{2 “ ρ sin θ , (7¨13)

we have

dζ du “
1

2
npζq2n´3 dpnpζqq d volS4n´5

´ ζ

npζq1{2

¯
npuq dpnpuq1{2q d volS2

´ u

npuq1{2

¯

“
1

2
cos2n´3 θ sin2 θ ρ2n d volS4n´5pσq d volS2pwq dρ dθ . (7¨14)

Using respectively in the following sequence of equalities

‚ the definition of the skinning measure in Equation (7¨2) with basepoint x0 “ p0, 0, 1q

and the homeomorphism sending v P B1
`D to v` “ pζ, uq P Heis4n´1 ´tp0, 0qu, Equation

(7¨6) and Lemma 6¨2,

‚ Equation (7¨8) and Assertion (i),

‚ Equation (6¨6), and

‚ Equations (7¨13) and (7¨14),
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we have

drσ`
Dpvq “ e´p4n`2q βpζ,uqp p0, 0, pnpζq2`npuqq1{2q, p0, 0, 1q q dµp0, 0, 1qpζ, uq

“
pnpζq2 ` npuqqp2n`1q{2

dCygpp0, 0, pnpζq2 ` npuqq1{2q, pζ, u, 0qq8n`4
dζ du

“
´ pnpζq2 ` npuqq1{2

pnpζq ` pnpζq2 ` npuqq1{2q2 ` npuq

¯2n`1

dζ du

“
cos2n´3 θ sin2 θ

22n`2 p1 ` cos θq2n`1
d volS4n´5pσq d volS2pwq

dρ

ρ
dθ .

Thus,

dπ˚rσ`
Dp0, 0, ρq “

c1
n VolpS4n´5qVolpS2q

22n`2

dρ

ρ
, (7¨15)

where, using the change of variable t “ tan θ
2
,

c1
n “

ż π
2

0

cos2n´3 θ sin2 θ

p1 ` cos θq2n`1
dθ “

1

22n´2

ż 1

0

p1 ´ t2q2n´3 t2 p1 ` t2q dt .

With Ip,q “
ş1

´1
t2pp1 ´ t2qq dt, we have by integration by parts and by induction

Ip,q “
22q`1 q! p2pq! pp` qq!

p! p2p` 2q ` 1q!
.

Hence c1
n “ 1

22n´1 pI1, 2n´3 ` I2, 2n´3q “
22n´1 p2n´ 3q! p2n´ 1q! p2n` 1q

p4n´ 1q!
.

The next step is to obtain an expression similar to Equation (7¨15) for the Riemannian

measure of the submanifold B1
`D of T 1

H
n
H (endowed with Sasaki’s metric). For every

x P D, let us denote by ν1xD the fiber over x of the normal bundle map v ÞÑ πpvq from

B1
`D to D. We endow ν1xD with the spherical metric induced by the scalar product of

the tangent space TxH
n
H at x. The Riemannian measure of B1

`D disintegrates under this

fibration over the Riemannian measure of D as

d volB1

`Dpvq “

ż

xPD
d volν1

xD
pvq d volDpxq .

By looking at the expression (6¨2) of the Riemannian metric of H
n
H in horospherical

coordinates, using the homeomorphism ρ ÞÑ x “ p0, 0, ρq from s0,`8r to D, we have

d volDpxq “
dρ

2ρ
.

Hence

dπ˚ volB1

`Dp0, 0, ρq “ VolpS4n´2q
dρ

2ρ
. (7¨16)

We have VolpS4n´2q “ 24n´1 π2n´1 p2n´1q!
p4n´2q! and VolpS4n´5q “ 2 π2n´2

p2n´3q! . Equations (7¨15) and

(7¨16) give the first claim of Assertion (v).

The second one follows, since pushforwards of measures preserve their total mass, and

since VolpΓB1

˘DzB1
˘Dq “ VolpS4n´2q

m
VolpΓDzDq.

(vi) By the transitivity of the isometry group of H
n
H on the set of its quaternionic



Counting and equidistribution in quaternionic Heisenberg groups 29

geodesic lines, we may assume that D is the quaternionic geodesic line

C “ tpw0, wq P H
n
H : w “ 0u

or, in horospherical coordinates, C “ tpζ, u, tq P H
n
H : ζ “ 0u.

Hence, using the homeomorphism from B1
`C to tpζ, uq P Heis4n´1 : ζ ‰ 0u sending a

normal unit vector v to its point at infinity v` “ pζ, uq, by the definition of the skinning

measure in Equation (7¨2) with basepoint x0 “ p0, 0, 1q, by Equation (7¨6), by Lemma

6¨3, by Equations (7¨8) and (6¨6), and by Assertion (i), we have

drσCpvq “ e´p4n`2q βpζ,uqp p0, u, npζqq, p0, 0, 1q q dµp0, 0, 1qpζ, uq “
1

24n`2
npζq2n`1

dζ du

“
1

24n`3
npζq4

dpnpζqq d volS4n´5

´ ζ

npζq1{2

¯
du .

In particular,

dπ˚rσCp0, u, npζqq “
VolpS4n´5q

24n`3
du

dpnpζqq

npζq4
.

For every x P C, let us denote by ν1xC the fiber over x of the normal bundle map

v ÞÑ πpvq from B1
`C to C, endowed with the spherical metric induced by the scalar

product of the tangent space TxH
n
H at x. The Riemannian measure of B1

`C disintegrates

under this fibration over the Riemannian measure of C as

d volB1

`Cpvq “

ż

xPC
d volν1

xC
pvq d volCpxq .

Using Equation (6¨2) and the homeomorphism pu, t “ npζqq ÞÑ x “ p0, u, tq from

Im Hˆ s0,`8r to C, we have

d volCpxq “
` 1

2 t

˘4
du dt “

1

24
du

dpnpζqq

npζq4
.

Hence

dπ˚ volB1

`Cpxq “ VolpS4n´5q d volCpxq “
VolpS4n´5q

24
du

dpnpζqq

npζq4
.

The result follows as in the end of the proof of the previous Assertion.

8. Equidistribution and counting in quaternionic hyperbolic geometry

In this section, we first use the general results of [PaP5] (see also [BrPP]) and the

computations of Section 7 to give explicit asymptotic counting and equidistribution re-

sults on the number of common perpendiculars that are shorter than a given bound

between two properly embedded locally convex proper closed subsets of ΓzHn
H, for any

lattice Γ in PUq. Using Sections 4 and 5, we then give two arithmetic applications, gen-

eralising Theorems 1¨1 and 1¨2 in the introduction. We refer to [PaP7] for geometric

applications.

Let Γ be a lattice in PUq. Let D´ and D` be nonempty proper closed convex subsets of

H
n
H, with stabilisers ΓD´ and ΓD` in Γ respectively, such that the families pγD´qγPΓ{Γ

D´

and pγD`qγPΓ{Γ
D`

are locally finite in H
n
H. With the measures defined at the beginning

of Section 7, let

cpD´, D`q “
}σ`

D´ } }σ´
D` }

δΓ }mBM}
.
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For all γ, γ1 in Γ, the convex sets γD´ and γ1D` have a common perpendicular if and

only if their closures γD´ and γ1D` in H
n
H Y B8H

n
H do not intersect. We denote by αγ, γ1

this common perpendicular, starting from γD´ at time t “ 0, and by ℓpαγ, γ1 q its length.

The multiplicity of αγ,γ1 is

mγ,γ1 “
1

CardpγΓD´γ´1 X γ1ΓD`γ1´1q
,

which equals 1 for all γ, γ1 P Γ when Γ acts freely on T 1
H

n
H (for instance when Γ is

torsion-free). For all s ą 0 and x P BD´, let

mspxq “
ÿ

γPΓ{Γ
D` : D´ X γD` “H, αe, γp0q“x, ℓpαe, γqďs

me,γ

be the multiplicity of x as the origin of common perpendiculars with length at most s

from D´ to the elements of the Γ-orbit of D`. For every s ą 0, let

ND´, D` psq “
ÿ

pγ, γ1qPΓzppΓ{Γ
D´ qˆpΓ{Γ

D` qq : γD´ X γ1D` “H, ℓpαγ, γ1 qďs

mγ,γ1 ,

where Γ acts diagonally on Γ ˆ Γ. When Γ has no torsion, ND´, D` psq is the number

(with multiplicities coming from the fact that ΓD˘ zD˘ is not assumed to be embedded

in ΓzHn
H) of the common perpendiculars of length at most s between the images of D´

and D` in ΓzHn
H.

Let us determine some constants before stating Theorem 8.1 giving the asymptotics of

ND´, D` psq as s Ñ `8, and its associated equidistribution claim. We assume from now

on that D´ is a horoball in H
n
H centred at a parabolic fixed point of Γ. We assume from

now on thatD` is one of the following three possibilities, we denote bym` the cardinality

of the pointwise stabiliser of D` in Γ and we compute cpD´, D`q using Lemma 7¨2 and

Equation (7¨6). If D` is also a horoball in H
n
H centred at a parabolic fixed point of Γ,

then

cpD´, D`q “
24n`1 p2n` 1q!

n π2n

VolpΓD´ zD´qVolpΓD` zD`q

VolpΓzHn
Hq

.

If D` is a geodesic line in H
n
H such that ΓD` zD` is compact, then

cpD´, D`q “
24n p2n´ 1q!p2n` 1q!

πm` p4nq!

VolpΓD´ zD´qVolpΓD` zD`q

VolpΓzHn
Hq

.

If D` is a quaternionic geodesic line in H
n
H such that ΓD` zD` has finite volume, then

cpD´, D`q “
2 pn´ 1q p2n´ 1q

π2m`
VolpΓD´ zD´qVolpΓD` zD`q

VolpΓzHn
Hq

.

Lemma 7¨2 (iv) also gives that

1

}σ`
D´ }

d π˚σ
`
D´ “

1

2 p2n` 1q VolpΓD´ zD´q
d volBD´ .

Recall that every lattice in PUq is arithmetic, by the works of Margulis, Corlette,

Gromov-Schoen, see [GS, Theo. 8.4]. The following counting and equidistribution result

of common perpendiculars follows from [PaP5, Theo. 15 (2)] (with the remark preceding

it concerning the proof by Kleinbock-Margulis and Clozel of the exponential mixing

property for the Sobolev regularity of the geodesic flow), see also [BrPP, §12.2-3]. We

denote by ∆x the unit Dirac mass at a point x.
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Theorem 8¨1. Let Γ, D´, D` be as above. There exists κ ą 0 such that, as s Ñ `8,

ND´, D` psq “ cpD´, D`q ep4n`2q s `1 ` Ope´κsq
˘
.

Furthermore, the origins of the common perpendiculars from D´ to the images of D`

under the elements of Γ equidistribute in BD´ to the induced Riemannian measure: as

s Ñ `8,

2 p2n` 1q VolpΓD´ zD´q

cpD´, D`q
e´p4n`2q s

ÿ

xPBD´

mspxq ∆x
˚

á volBD´ . l (8¨1)

For smooth functions ψ with compact support on BD´, there is an error term in the

equidistribution claim of Theorem 8¨1 when the measures on both sides are evaluated on

ψ, of the form Ope´κs }ψ}ℓq for some κ ą 0, where }ψ}ℓ is the Sobolev norm of ψ for

some ℓ P N.

We now apply Theorem 8¨1 in order to prove an analog of Mertens’s formula and

Neville’s equidistribution theorem in the quaternionic Heisenberg group. See for example

the Introduction of [PaP6] for an explanation of the name.

Let m be a nonzero bilateral ideal in O stable by conjugation. As defined in Equations

(1¨1)–(1¨3) in the Introduction, the action by shears on O ˆO ˆO of the nilpotent group

N pOq preserves O ˆ m ˆ m. We will study the asymptotic of the counting function Ψm,

where, for every s ě 0, the number Ψmpsq is the cardinality of

N pOqz
 

pa, α, cq P O ˆ m ˆ m : trpa cq “ npαq, Oxa, α, cy “ O, 0 ă npcq ď s
(
.

We endow the ring O{m with the involution induced by the quaternionic conjugation.

Let UqpO{mq be the finite group of 3ˆ3 matrices in O{m, preserving the Hermitian form

´z0 z2 ´ z2 z0 ` z1 z1 on pO{mq3. Let BqpO{mq be its upper triangular subgroup.

Theorem 8¨2. There exists κ ą 0 such that, as s Ñ `8,

Ψmpsq “
23 ¨ 36 ¨ 5 ¨ 7 D 4

A |BqpO{mq|

π8 mA |Oˆ|
ś

p|DA
pp´ 1qpp2 ` 1qpp3 ´ 1q |UqpO{mq|

s5 p1 ` Ops´κqq .

The particular case m “ O gives Theorem 1¨1 in the introduction. We will prove this

result simultaneously with the next one. We endow the Lie group Heis7 with its Haar

measure HaarHeis7 defined in the Introduction. The following result is an equidistribution

result of the set of Q-points (satisfying some congruence properties) in Heis7, seen as the

set of R-points of a Z-form of a Q-algebraic group with set of Q-points Heis7 XpAˆAq and

set of Z-points N pOq. The particular case m “ O gives Theorem 1¨2 in the introduction.

Theorem 8¨3. As s Ñ `8, we have

π8 mA |Oˆ|
ś

p|DA
pp´ 1qpp2 ` 1qpp3 ´ 1q |UqpO{mq|

25 ¨ 36 ¨ 5 ¨ 7 D2
A |BqpO{mq|

s´5 ˆ

ÿ

pa, α, cqPOˆmˆm, 0ănpcqďs
trpa cq“npαq, Oxa, α, cy“O

∆pac´1, αc´1q
˚

á HaarHeis7 .

As in Theorem 8¨1, for smooth functions ψ with compact support on Heis7, there is an

error term in this equidistribution result when the measures on both sides are evaluated

on ψ, of the form Ops´κ }ψ}ℓq for some κ ą 0, where }ψ}ℓ is the Sobolev norm of ψ for

some ℓ P N.
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Proofs of Theorem 8¨2 and Theorem 8¨3. We start by introducing the notation used

in these proofs.

We consider the quaternionic Hermitian form q defined in Equation (2¨1) with n “ 2.

For every subgroup G of Uq, we denote by G its image in PUq, and again by g the image

in PUq of any element g of Uq.

We consider the lattice Γ “ UqpOq in Uq defined in Section 4, so that Γ “ PUqpOq.

We denote by Γm the Hecke congruence subgroup of Γ modulo m, that is the preimage,

by the group morphism Γ Ñ UqpO{mq of reduction modulo m, of the upper triangular

subgroup BqpO{mq. Since ´ id P Γm, we have

r Γ : Γm s “ rΓ : Γms “
|UqpO{mq|

|BqpO{mq|
. (8¨2)

We denote by ΓH1
the stabiliser in Γm of the horoball H1 defined in Equation (6¨4).

It is equal to Bq XΓm where Bq has been defined in Section 3, since an element of Γ fixes

8 if and only if it preserves H1. The group ΓH1
is independent of m, by the definition

of Γm.

The projection map from ΓH1
to ΓH1

is 2-to-1 since ´ id P ΓH1
. We identify the

lattice N pOq of Heis7 with its image N pOq by the embedding of Heis7 in PUq defined

in Section 6. The description of Bq at the end of Section 3 gives

r ΓH1
: N pOq s “

1

2
rΓH1

: N pOqs “
1

2
|Oˆ|2 . (8¨3)

The following result gives in particular the computation of the volume of the cusp at

infinity for Γ.

Lemma 8¨4. The Haar measure λ7 on Heis4n´1 defined in Equation (7¨3) coincides

with the Haar measure HaarHeis7 defined in the introduction, that is, the total mass of

the measure induced by λ7 on N pOqzHeis7 is
D2

A

4
. Furthermore

Volp ΓH1
z H1q “

D2
A

160 | Oˆ|2
. (8¨4)

For instance, if DA “ 2 and O is the Hurwitz order 1`i`j`k
2

Z ` Zi ` Zj ` Zk, which

has 24 units and ImO “ Zi`Zj `Zk, then volpΓH1
zH1q “ 1

23040
, to be compared with

[KiP, Prop.5.8] for a related computation.

Proof. Note that tr : H Ñ R is a fibration, with fiber t
2

` ImH over t P R. The

Lebesgue measure of the Euclidean space H disintegrates by this fibration over the

Lebesgue measure of R, with conditional measures on the fiber 1{2 the Lebesgue mea-

sure of the fiber: dx0dx1dx2dx3 “ p 1
2
dx1dx2dx3qdp2x0q. Since the map tr is additive,

since it maps O onto Z with kernel ImO as recalled in Section 2, this implies that

VolpImO z ImHq “ 2VolpO zHq. Again by the surjectivity of tr : O Ñ Z, for every

w P O, the set tw0 P O : trw0 “ npwqu is a translate of ImO. Hence by Equations

(6¨1) and (2¨4), we have

λ7pN pOq zHeis7q “ 2VolpImO z ImHqVolpO zHq “ 4VolpO zHq2 “
D 2

A

4
.

This proves the first claim of Lemma 8¨4.
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Now, by Equation (8¨3), by Lemma 7¨1, by Equation (7¨11), we have

Volp ΓH1
z H1q “

2

|Oˆ|2
Volp N pOq z H1q “

1

5 |Oˆ|2
Volp N pOq z BH1q

“
1

40 |Oˆ|2
λ7pN pOq zHeis7q “

D 2
A

160 |Oˆ|2
.

We need one more notation before giving the proof of Theorem 8¨2. Consider an element

g P Γm such that gH1 and H1 are disjoint (there are only finitely many double classes

rgs P ΓH1
zΓm{ΓH1

for which this is not the case). We denote by ℓpδgq the length of the

common perpendicular δg between gH1 and H1. If

¨
˝
ag
αg

cg

˛
‚ is the first column of g, then

g ¨ 8 “ rag : αg : cgs.

We use the following facts in the system of equations below.

‚ For the first equality, note that the cardinality of each nonempty fiber of the pro-

jection map from
 

pa, α, cq P O ˆmˆm : Oxa, α, cy “ O
(

to P2
r pHq is |Oˆ| and that the

projection from N pOq to N pOq is injective.

‚ The second and third equalities follow from Proposition 4¨2 (2).

‚ The fourth equality follows from Lemma 6¨5.

‚ The fifth equality follows by Equation (8¨3) and by the definition of the counting

function NH1,H1
.

‚ The sixth equality follows from the first claim in Theorem 8¨1 with n “ 2, Γ “ Γm

and D´ “ D` “ H1.

‚ The last equality follows from Equations (8¨4) and (8¨2) and from Theorem 1¨4.

We hence have, for some κ ą 0 and for every s ą 0,

Ψmpsq “ |Oˆ| Card
N pOq z

!
ra : α : cs P P2

r pHq :

pa, α, cq P O ˆ m ˆ m,

Oxa, α, cy “ O,

trpa cq “ npαq, 0 ă npcq ď s

)

“ |Oˆ| Card
N pOq z

 
ra : α : cs P Γm ¨ 8 :

pa, α, cq P O ˆ m ˆ m,

Oxa, α, cy “ O, 0 ă npcq ď s

(

“ |Oˆ| Card
 

rgs P N pOq zΓm {ΓH1
: 0 ă npcgq ď s

(

“ |Oˆ| rΓH1
: N pOq s Card

 
rgs P ΓH1

zΓm {ΓH1
: ℓpδgq ď

ln s

2
´ ln 2

(
` Op1q

“
1

2
|Oˆ|3 NH1,H1

` ln s
2

´ ln 2
˘

` Op1q

“
15 |Oˆ|3

`
Volp ΓH1

z H1q
˘2

π4 Volp Γm zH2
Hq

s5 p1 ` Ops´κqq

“
23 ¨ 36 ¨ 5 ¨ 7 D 4

A |BqpO{mq|

π8 mA |Oˆ| |UqpO{mq|
ś

p|DA
pp´ 1qpp2 ` 1qpp3 ´ 1q

s5 p1 ` Ops´κqq .

This concludes the proof of Theorem 8¨2.

Let us prove now Theorem 8¨3. The orthogonal projection map f : B8H
2
H´t8u Ñ BH1

is the homeomorphism defined by rw0 : w : 1s ÞÑ pζ “ w, u “ 2 Imw0, 1q using the

homogeneous coordinates on B8H
2
H ´ t8u and the horospherical coordinates on BH1
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(see Equation (6¨1)). Let x P BH1 be the origin of a common perpendicular of length at

most s from H1 to a horoball γH1 for some γ P Γm not fixing 8. The point x is the

orthogonal projection on H1 of the point at infinity of this horoball γH1. This point

at infinity may be written rac´1, αc´1 : 1s for some triple pa, α, cq P O ˆ m ˆ m with

Oxa, α, cy “ O, trpa cq “ npαq and 0 ă npcq ď 4 e2s (using Lemma 6¨5). Such a writing

is not unique, there are exactly |Oˆ| such triples. Hence by the second claim of Theorem

8¨1 with Γ “ Γm and D´ “ D` “ H1, using the horospherical coordinates on BH1, we

have, as s Ñ `8,

π4 VolpΓm zH2
Hq

210 ¨ 3 |Oˆ| VolpΓH1
zH1q

e´10 sˆ

ÿ

pa, α, cqPOˆmˆm, 0ănpcqď4 e2s

trpa cq“npαq, Oxa, α, cy“O

∆pac´1, 2 Impαc´1q, 1q
˚

á volBH1
. (8¨5)

Recall that the Haar measure λ7 on Heis7 “ B8H
2
H ´ t8u, defined in Equation (7¨3),

coincides with the Haar measure HaarHeis7 by Lemma 8¨4. Its image by the above map

f is, by Equation (7¨5),

f˚ HaarHeis7 “ f˚ λ7 “ 8 volBH1
.

Using the change of variables s ÞÑ 4 e2s and the continuity of the pushforward by f´1 of

the measures on BH1 applied to Equation (8¨5), we hence have, as s Ñ `8,

8 π4 VolpΓm zH2
Hq

3 |Oˆ| VolpΓH1
zH1q

s´5
ÿ

pa, α, cqPOˆmˆm, 0ănpcqďs
trpa cq“npαq, Oxa, α, cy“O

∆pac´1, αc´1q
˚

á HaarHeis7 .

Finally, Theorem 8¨3 follows from this, from Equations (8¨4) and (8¨2) and from Theorem

1¨4.

Remark 8¨5. Theorems 8¨2 and 8¨3 have generalisations in higher dimension. Theo-

rem 8¨1 (which is valid in any dimension), applied with Γ “ PUqpOq and with D´ “ D`

the horoball of points in H
n
H with last horospherical coordinates at least 1, gives a count-

ing and equidistribution result of the orbit Γ ¨ 8 ´ t8u in B8Heis4n´1with error term.

The volume of ΓzHn
H could be computed using [EmK], up to computing the index of Γ

in a principal arithmetic subgroup containing it. The volume of the cusp corresponding

to 8 in ΓzHn
H may also be computed by the same method as for the proof of Equation

(8¨4).

Other counting and equidistribution results of arithmetically defined points in the

quaternionic Heisenberg group Heis4n´1 may be obtained by varying the cusp (when

n “ 2 and hA ‰ 1, there are at least two cusps by Theorem 1¨3), the integral quaternionic

Hermitian form q of Witt signature p1, nq and the arithmetic lattice Γ in Uq.
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