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Effective equidistribution of lattice points

in positive characteristic

par TAL HORESH et FREDERIC PAULIN

RESUME. Etant donné une place w d’un corps de functions global
K sur un corps fini, d’anneau des fonctions affines associé R, et
de complétion K, le but de ce texte est de donner un résultat
d’équidistribution jointe effectif pour les points entiers primitifs
renormalisés (a, b) € R,,? du plan K2, et pour les solutions renor-
malisées de ’équation du pged azx + by = 1. Les outils principaux
sont les techniques de Gorodnik et Nevo sur le comptage de points
entiers dans des familles de parties bien arrondies. Ceci donne
un résultat plus précis en caractéristique positive d’un resultat de
Nevo et du premier auteur sur I’équidistribution des points entiers
primitifs de Z2.

ABSTRACT. Given a place w of a global function field K over a
finite field, with associated affine function ring R,, and completion
K, the aim of this paper is to give an effective joint equidistri-
bution result for renormalized primitive lattice points (a,b) € R,,?
in the plane K, and for renormalized solutions to the ged equa-
tion ax + by = 1. The main tools are techniques of Gorodnik
and Nevo for counting lattice points in well-rounded families of
subsets. This gives a sharper analog in positive characteristic of a
result of Nevo and the first author for the equidistribution of the
primitive lattice points in Z2.

1. Introduction

This paper has two motivations. The first one is the following result of
Dinaburg-Sinai [7]. Given two coprime positive integers a,b with a < b,
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let (xo,yo) be a shortest solution (with respect to the supremum norm
[(z,y)|ec = max{|z|,|y|}) to the equation |az + by| = 1 with unknown
(z,y) € Z2. Dinaburg-Sinai proved that the quotients of norms

[ (0, o)l
(@, 6) [0

equidistribute in the interval [0, 1] as |(a,b)|s tends to +o0. A key idea
in the approach of this paper, as well as the one for [19, 18], is due to
Risager-Rudnick [24], who translate the above problem in terms of the
equidistribution of the real parts of points of an SLo(Z)-orbit in the Poincaré
upper-half plane, and give a solution different from the one of [15] (which
uses spectral theory of automorphic forms).

The second motivation is the well-studied Linnik problem of equidistri-
bution on the unit sphere S"~! of the directions of integral vectors in the
Euclidean space R™ for n > 2. See for instance [8, 27, 9, 10, 12, 4, 13, 1, 2]
as well as the joint works of the first author [19, 18]. Let us denote by

prim the set of primitive integral vectors, by Lebgn—1 the spherical mea-
sure on S™~! renormalized to be a probability measure, and by A, the unit
Dirac mass at any point x in any measurable space. A simple version of this
equidistribution phenomenon is the now well-known fact that, as N — +oo,
we have
1 *
G ez o<V 2 A Lebgi,

prim VELD i ¢ VSN

where = denotes the weak-star convergence of measures, here on the com-
pact space S”!. Actually, as considered in the above references and pointed
out by the referee, a much stronger result holds when considering the prim-
itive integral vectors on a sphere with appropriate large radius (instead of
in a ball with large radius). This will be the case also in this paper, though
the ultrametric properties makes this restriction to spheres much easier to
handle, and without restrictions on the radius. A connection between the
two motivations is that when n = 2, an integral vector (a,b) is primitive if
and only if there exists an integral vector (x,y) with |ax + by| = 1.

The goal of this paper is to address analogous questions in local fields
with positive characteristic. In this introduction, we describe our results in
the special following case.

Let IF, be a finite field of order a positive power ¢ of some positive prime,
and let K = Fy(Y) be the field of rational functions in one variable Y
over F,. Let R = F,[Y] be the ring of polynomials in Y over F,, let

K = F,((Y~1)) be the non-Archimedean local field of formal Laurent series
in Y~! over F, and let & = F,[[Y!]] be the local ring of K (consisting
of formal power series in Y1 over F,). We denote by | - | the complete
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non-Archimedean absolute value on K such that |P| = ¢%&” for every
PeR. R
We endow K with its Haar measure pz standardly normalized so that

pp(0) = 1, and the quotient IA(/R with the induced measure MR and

the quotient distance. We also endow the plane K2 with the product
measure and with the supremum norm. We denote by S., the (compact-
open) unit sphere of K 2 that we equip with the restriction Ksi, of the
product measure. R .

Given v = (a,b) € K2 — {(0,0)}, we denote by ||v]|. = max{|al,|b|} € ¢*
its supremum norm. We denote by z, = a if |a|] = |b|, and z, = b otherwise,
the component of v with maximum absolute value. We also denote by
U= (a y ~logg vl jy—log, ””“00) the vector v canonically renormalised to
be in the unit sphere Sl of which we think as the direction of v.

We let R2,; denote the set of elements v = (a,b) in the standard
R-lattice R? of the plane K 2 that are primitive, that is, satisfy aR+bR = R.
Let w, = (—y',2’) be such that (2/,7') is a solution to the ged equation
ax + by = 1 of v, with unknown (z,y) € R2. We could for instance take the
shortest one, that is, the one with the smallest supremum norm (see Section
5 for the existence and uniqueness). We then think of w, as a normalized
“rotated” version of v (or generating the “orthogonal” R-lattice in analogy
with [1, 2]). What follows is actually independent of the choice of wy,.

The following result is a joint equidistribution theorem, with error term,
for the direction and renormalized ged solution of the primitive lattice
points in the non-Archimedean plane K 2.

Error terms in equidistribution results usually require smoothness prop-
erties on test functions. The appropriate smoothness regularity of functions
defined on totally disconnected spaces like KN for N € Nis the locally con-
stant one. For every metric space F and € > 0, a bounded map f: EF - R
is e-locally constant if it is constant on every closed ball of radius € in E.
Its e-locally constant norm is || f|e = L sup,ep | f(2)].

Theorem 1.1. For the weak-star convergence of measures on the compact
space St x (K/R), we have, as n — +00,

1 _9 #
2a-11 ! > Ay @Azww.p = pgt, O Ugp -
’UGRgrim s v]lo=¢™
Furthermore, there exists T € |0, %] such that for all €,6 > 0, there is
a mutiplicative error term of the form 1 + Oz(q** =7+ | flc lgle) when
evaluated on pairs (f,g) for all e-locally constant maps f : S, — R and

g:K/R—R.
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The factor m ¢~2" in front of the above sum is a renormalization
factor, needed in order to have a convergence to the natural finite measure

on the right hand side (whose total mass q2q§1 will be computed in Section

2.1). The constant 7 is described in terms of representation-theoretic data
for the locally compact group SLQ(I? ), but it is not explicit, as it relies
in particular on a nonexplicit spectral constant (see the proof of Theorem
4.1).

We will actually prove a more general version of this result, when K is
replaced by any (global) function field in one variable over a finite field and
when congruence properties are added, see Theorem 4.5. See also Corollary
4.6 for a counting corollary of primitive lattice points.

We begin in Subsection 2.1 by recalling basic facts about functions fields
over finite fields. In Subsection 2.2, we define the various closed subgroups
of the totally disconnected locally compact group SLy(K) which will be
useful in order to transfer arithmetic information on lattice points in the
plane to group-theoretic information. We will also discuss the properties
of their Haar measures. In Section 3, we give a precise correspondence
between primitive lattice points and elements in the Nagao-Weyl modular
group SLa(F,[Y]). We adapt in Section 4 the results of Gorodnik-Nevo [16]
(building on works of [11, 14]) on counting lattice points in well-rounded
subsets of semi-simple Lie groups, and check that a family of nice compact-
open subsets coming from a mixture of the LU and Iwasawa decompositions
of SLy(K) is indeed well-rounded. Finally, in Section 5, we give an applica-
tion to the distribution properties of the continued fraction expansions of
elements in F,(Y'), thus giving an analogue to the result of Dinaburg-Sinai
in [7] described in the beginning of this introduction.

2. Background on function fields and their modular groups

2.1. Global function fields. We refer for instance to [17, 25] and [5,
Chap. 14] for the content of this Section.

Let IF, be a finite field of order g, where ¢ is a positive power of a positive
prime. Let K be a (global) function field over [, that is, the function
field of a geometrically connected smooth projective curve C over F,, or
equivalently an extension of [F, of transcendance degree 1, in which FF is
algebraically closed. We denote by g the genus of the curve C.

There is a bijection between the set of closed points of C and the set
of (normalised discrete) valuations w of its function field K, where the
valuation of a given element f € K is the order of the zero or the opposite
of the order of the pole of f at the given closed point. We fix such a
valuation w from now on.
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We denote by K, the completion of K for the valuation w, and by
Oy,={xe K, : w() =0}

the valuation ring of (the unique extension to K,) of w. Let us fix a
uniformiser m, € K, of w, that is, an element in K, with w(m,) = 1.
We denote by g, the order of the residual field &,,/7, 0, of w, which is a
(possibly proper) power of q. We normalize the absolute value associated
with w as usual: for every z € K,,, we have the equality

|z = (qcu>_w(z) .

Finally, let R, denote the affine algebra of the affine curve C — {w},
consisting of the elements of K whose only poles (if any) are at the closed
point w of C. Its field of fractions is equal to K.

The case in the introduction corresponds to C = P! (so that g = 0) and
W = wy the valuation associated with the point at infinity [1 : 0]. Then

o K =T,(Y) is the field of rational functions in one variable Y over I,

® wy is the valuation defined, for all P,@Q € F,[Y], by

woo (P/Q) = deg Q — deg P

e R, =TF,[Y] is the (principal) ring of polynomials in one variable ¥’
over Fg,

e K,, =F,((Y1)) is the field of formal Laurent series in one variable
Y~ over Fyq,

e 0,, = F,[[Y7!]] is the ring of formal power series in one variable
Y~ over F, m,, = Y ! is the usual choice of a uniformizer, and q,,, = q.

Recall (see for instance [28, I1.2, Notations]) that R, is a Dedekind ring,
not principal in general. We have (see for instance [5, Eq. (14.2)]) that

(2.1) R,n0O,=T,.

Lemma 2.1. For all elements a,b,c,d € R, —IF, such that ad—bc = 1 and
la|w = |blw, we have | ¢y, = |d]w.

Proof. The equality ad — bc = 1 implies that w(ad — bc) = 0. We have
w(ad) < 0 and w(be) < 0 since the only elements of R,, which have nonneg-
ative valuations are the elements in the ground field F, by Equation (2.1).
Therefore w(ad) = w(bc) and

w(e) —w(d) = w(a) —w(d) .

The left hand side is nonpositive, since the right hand side is. This proves
the result. O
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The (absolute) norm of a nonzero ideal I of the ring R, is defined by
N(I) = [Ry : I] = |Rw/I|. Dedekind’s zeta function of K is (see for instance
[17, §7.8] or [25, §5])

1
(K(S) = Z]: N(I)s

where the summation runs over the nonzero ideals I of R,. By (for
instance) [25, §5], it is a rational function of ¢~* with simple poles at
s = 0,s = 1. In particular, when K = F,(Y), then (see [25, Theo. 5.9] with
g=0)

1
2.2 )= ———
( ) CFQ(Y)( ) (q — 1)(q2 — 1)
We denote by
2 2. —
Rw,prim = {(aa b) € Rw . aRw + bRw = Rw}

the set of primitive elements in the lattice R,,? in the plane K. Note that
since R, is not always principal, not every point of R,? is an R,-multiple

of an element of RZ) prim

For every v e K, — {(0,0)}, we write v = (z,,¥,), and define

(2.3) 2z, = Lo %f | Zolw = [ Yolw and Z; _ ) Y ?f | Z|w = | Yolw
Yo if [Zulw < |Yolw Ty i | Zylw < | Yolw

as well as
(2.4)

L log, (Jv]w
[0 = max{| Zolw, | golo}, 05 = (o, —20) and ¥ =m0y

We denote the unit sphere in the plane K% endowed with the supremum
norm || - |, by
SL={ve K,?:|v]|, =1} .

Note that v* has the same norm as v and belongs to Riprim if v does,
and that S, = {¥ : v € K,2 — {(0,0)}}. We think of ¥ as the direction
(or renormalisation) of v, it is a preferred element in the intersection of the
unit sphere S, with the vector line defined by v.

We denote by |[|i| the total mass of any finite measure . We denote by
ik, the Haar measure of the (abelian) locally compact topological group
(K, +), normalised so that px,(0,) = 1. This measure scales as follows
under multiplication: for all A\, z € K, we have

(2.5) dpk, (Az) = [Aw duk,, (2) -

We denote by p,, /g, the induced Haar measure on the compact additive
topological group K, /R,. Using the above scaling for the first equation
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and [5, Lem. 14.4] for the second one, for every m € N, we have the equality
(2.6) pr, (7 0,) = ™ and | g r,| = a8

We endow K2 with the product pr, ® pk, of the Haar measures on
each factor. Note that the unit ball of K,,2 is €,,%, so that for every k € Z,
the measure of any ball in K, of radius ¢*, which is of the form v+n %02
for some v € K2, is equal to ¢2*.

We denote by g1 the restriction to the compact-open subset SL of K,?
of the product measure. Since

(2.7) 1, (0F) =k, (Op — 10y) =1 — q;l
by Equation (2.6), and since S}, = (6 x 0,,) U (O, x OX), the total mass

of pgy 1s

g —1
q?

(2.8) sl = (1—g; )+ (1 —qz") = (1—q;")* =

2.2. The modular group. The aim of this section is to introduce the
various closed subgroups of the special linear group of the plane K,? that
will be useful in order to transfer arithmetic information concerning lattice
points in R,? into group-theoretic information. We will also discuss the
properties of their Haar measures.

Let G = SLy(K,,), which is a totally disconnected locally compact topo-
logical group. The modular group T' = SLy(R,,) is a non-uniform lattice in
G. When C = P! and w = wy as in the introduction, then up to finite
index, it is called Nagao’s lattice (see [22, 30]). For every nonzero ideal I
of R, we denote by I'g[I] the Hecke congruence subgroup of I' modulo I:

Do[Il={(43)el:bel}.
By [5, Lem. 16.5], the index of I'g[/] in I is

(2.9) [T:To1]] = N ] (1 + th)) .
plI

where the product ranges over the prime factors p of the ideal I.

For every commutative ring S, we denote by .#5(S) the S-module of
2 x 2 matrices with coefficients in S. For every closed subgroup H of G,
we denote by H(0,,) the compact-open subgroup H n .#(0,,) of H, and
by pp the (left) Haar measure of H normalized so that

/‘H(H(ﬁw)) =1.

Note that G is unimodular. For every lattice I' of G, we denote by pirng
the measure on I"\G induced by pg. By Exercice 2e) in [28, I1.2.3] (which
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normalizes the Haar measure of G so that the mass of G(0,) is q, — 1),
the total mass of up\q is

(2.10) lpnal = (e (=1) .
Let Z be the diagonal subgroup of G, let U~ and U™ be its lower and
upper unipotent triangular subgroups, and let P~ = U~ Z be its lower

triangular Borel subgroup. We also consider the Cartan subgroup A =

{(7233 ,rgn) ‘N e Z} of G, whose centralizer in G is Z.

Since A(0,) = {id} has measure one for the measure p4 with the above
normalisation, the Haar measure u4 on A is exactly the counting measure:

(2.11) pa= Y, Ay
geA
The maps from K, to U~ and U™, defined by a — u™ () = (i (1)) and
o — ut(a) = (§¢) respectively, are homeomorphisms (and even abelian
group isomorphisms). They send &, to UX(&,,), and the Haar measure of
(K., +) to the Haar measure of U%: namely, for (almost) all a € K, we
have

(2.12) dpyrs (u* (o)) = dur, (@) -

Similarly, the map from the multiplicative group K} to the diagonal group
Z, defined by a — (g a91 ), is a homeomorphism (and even an abelian
group isomorphism). It sends & to Z(0,,), and the restriction to K5 of
the Haar measure ux, to a multiple of the Haar measure of Z: namely, for

(almost) all « € K, by Equation (2.7), we have
qu — 1 o

qu

(2.13)

Let

which is a compact-open subset of the plane K,,2. The map from S}jﬁ to
P~(0,) defined by (o, ) — p~(a, ) = (gagl) is a homeomorphism.

Let us prove that it sends the restriction to SL* of the measure psy, to a

multiple of the Haar measure of P~(&,,). First note that for (almost) every
a € 0} and € 0, since |a|, = 1, the action by conjugation of (8‘ a91 ) on
U~ (0.), which satisfies (§ a91 = (8)(§ agl )_1 = u~(a?B), preserves the
Haar measure ji;/-(¢,) by Equations (2.12) and (2.5). Hence the measure

dv(p~ (e, B)) = d,uU—(ﬁw)(u_(ﬁ)) d,uz(ﬁw)((g‘ agl)) is a Haar measure on
P~(0y). Since pip—(g,), Hu-(o,) and fiz(g,) are probability measures, we
have (this will be extended in Lemma 2.2)

dpip-(6,)(0™ (@, B)) = dpy—(6,) (W (8)) dpzo,)((§ 21)) -
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By Equations (2.12) and (2.13), we thus have, for (almost) every o € &
and B € O,
(2.14)

ditp- (o) (P (@, ) = —2— dpue, () dprc, (B) = —— dpgy (@, B) .

qu—1 g —1

We will need the following refined LU decomposition of elements of the
special linear group G. Let g = (g }) € G with a # 0. Then there are
unique elements ur € U, m, € Z(0,,) and a, € A such that

g
g =u; myagul
Indeed, the existence of such a decomposition follows by taking
_ (1 0 . (1 2
(20 1)

a

(215) N (I?T;w(a) 0 " Wz(a) 0
g 0 a_lﬂg(a) T 0 Tr(;w(a) .

In order to prove the uniqueness of this decomposition, if g = u~ m a u™
where ut € U+, m € Z(0,) and a € A is another such writing, then the
equality

()t u, =maut(mgagul)!
between a unipotent lower triangular matrix and an upper triangular matrix
implies that u™ = u; and that (m a)~" mg a; = u( uf)~'. This last

equality between a diagonal matrix and a unipotent upper triangular matrix
gives ut = ul and m a = my a,, which in turns give m = my and a = q,
since A n Z(0,,) = {id}. We also consider

—w(a)
(2.16) Py = u; my = (a“ 0 ) e P .

BW;w(a) a—lm"j(a)

Note that if w(a) < w(f), or equivalently if |«|, = |5 ]o, then we have
pge P~ (0,) =U"(0,)Z(0,), so that p, belongs to the maximal compact
subgroup G(0,,) of G. In particular, the writing g = p, a4 u; is an Iwasawa
decomposition of g.

We conclude this section by providing the expression for the Haar mea-
sure of GG in the refined LU decomposition. The composition map from the
product U~ x Z(0,) x A x UT to G is an homeomorphism onto an open-
dense subset with full Haar measure in GG, and the following result says
that the Haar measure of GG is absolutely continuous with respect to the
product of the Haar measures of the factors. The main point of its proof is
to compute the Radon-Nikodym derivative. We denote by x : Z — K/ the
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standard character (aa ' g) — . It is well known (by the standard action
of a split torus on its root groups) that for all 3 € Z and a € K,,, we have

(217)  su(a); =u (x(3)%a) and 3 uF(a);=u(x()*q).
Lemma 2.2. For pug-almost every g € G, we have

qu
quw + 1

duc(g) = |X(ag)|;2 dpr- (u;) dﬂZ(ﬁw)(mg> dua(ag) dug+ (u;) :
Proof. By [20, §IIL.1], since G and U™ are unimodular, there exists a con-
stant ¢; > 0 such that dug(p~ut) = ¢1 dup-(p~) duy+(u™) for (almost)
every p~ € P~ and ut € U™, using the product map P~ x Ut — G. Note
that U~ is unimodular and that Z normalizes U~ as made precise in Equa-
tion (2.17). Hence there exists a constant co > 0 such that, for (almost)
every u~ € U™ and z € Z, we have

X(2)l? duy-(u™) dpz(2) = e2 dpp-(u”2) .

This indeed follows by uniqueness from the fact that the left hand side
defines a left Haar measure on P~ using the product map (u™,2) — u™ 2
from U™ x Z to P~ (which is an homeomorphism), by Equations (2.5) and
(2.12). Since Z = Z(0,,) A with A and Z(0,,) abelian and commuting, this
proves that there exists a constant c3 > 0 such that
(2.18) duc(9) = 3 |x(ag)ly” dup—(uy) dpgo,)(mg) duaag) dpg+ (ug) -
In order to compute the constant c3, we evaluate the measures on both
sides on the compact-open subgroup

H = {(3}) eG(0O,) a0l +m,0,, B,v€Em,0,}.

This group, being the kernel of the reduction modulo 7,0, has index
|SLa(Fy,)| = qu(¢® — 1) in G(0,). Since uc(G(0,,)) = 1, the group H
has Haar measure ug(H) = m. By Equation (2.15), the refined LU
decomposition identifies H with the product space Hy- x Hz x Hy+ in

U~ x Z x U*, where

Hy- = {(é’(l]) :pemnOu}, Hy = {(3a91) rael+m,0,},

Hy+ ={(§7) 1 v €m0} .

These groups have index respectively q,,, |0 /(1 +m,, ﬁw)’ =|Fy|=q —1
and q, in U (0,), Z(0,) and Ut (0,). Hence the measure of H for the
measure on the right hand side of Equation (2.18) is equal to %. This

dw
qu+17’

as wanted. O

implies that c3 =
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3. Primitive lattice points seen in the modular group

Recalling the relevant notation from Subsection 2.1, let K be a function
field over [y, let w be a (normalized discrete) valuation of K, let K, be the
associated completion of K, and let R,, be the affine function ring associated
with w. The aim of this section is to naturally associate elements in the
modular group I' = SLy(R,,) to primitive lattice points in R,,2.

We start by introducing subsets of the plane K% and of the group G =
SLo(K,,) which will be technically useful. Let

G'={(33)€G : |al,>|Bl.} and I'¥=TnG*,

Kfjﬁ _ {((I,b) e Kw2 : |a|w > |b|w} and R2’ti = R? N Kz’ﬁ .

w,prim w,prim
We identify any element v = (x,%) € K,,? with the column matrix v = (g)
of its components, and thus write 2 x 2 matrices of elements of K, as 1 x 2
matrices of elements of K,,2. For all measurable subsets © of S}, and &’ of
K, and for every n € Z, let

PG ={(v w)eP (0,):v €6},
An= (5" 2} e A
Ui = {()7) €Ut e 7).

By Lemma 2.2 and the various explicitations of Haar measures in Equations
(2.14), (2.11) and (2.12), we have

— qu qu n| —2
16(Po AnUg) = 2 i (6) (Il ™) pacu (7
q2n+2

The following result gives a precise 1-to-1 correspondence between primi-

tive lattice points in Ri”ﬁprim
Ir.

and appropriate matrices in the modular group

Proposition 3.1. Let Z be a fized (strict) fundamental domain for the

lattice R, acting by translations on K,. There exists a unique bijection
from Ri’ﬁorim to I* A (P~ UJ) of the form v — v, = (v wy) (where w,
will be defined in the following proof) such that for every n in Z, for all
measurable subsets © of SY, and ' of 9, and for every nonzero ideal I of

Ry, the following two assertions are equivalent:

(1) the lattice point v satisfies |v|w = q7, yp € I, V€ © and % e,
(2) the modular matriz vy, belongs to the Hecke congruence subgroup T'o[I]
and satisfies v, € Pg Ay U;,.
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Proof. Let v = (a,b) € R

oprim- 10 particular a # 0 and |[v], = |al,. Let
us define

Solgp = {(z,y) € R.?:ax+by = 1},

which is the set of solutions in R,? to the equation ax + by = 1.
Given wg = (9, yo) € Sol, 4, we claim that

Solyp = {wo + Aot he R.},
where w — w' is defined in Section 2.1. Indeed, we clearly have
{wo + vt : Xe Ry} < Solay -

Conversely, let (z,y) € Sol,;, be a solution different from (x¢, yo). We have
a(x — xo) = b(yo — y). We may assume that b # 0, since otherwise a € R}
and vt = (0, —a) so that the result is clear. Then z # o and y # o,
so that the nonzero principal ideal (a), being coprime with the principal
ideal (b) in the Dedekind ring R,,, divides the principal ideal generated by
Yo — ¥, and y — yo is a multiple of —a, which implies that z — zq is the same
multiple of b.

Let w, be the unique element of R,? such that (wy)— is the unique
element of Sol,; with z% € 9. AS Ty, = —Y(u,)L, this is possible since,
by the above, the subset of K, consisting of the elements —%, where y
varies over the second components of elements of Sol, 3, is exactly one orbit
by translation under R, (without repetition).

Let us define ~, = (v wv) = Z gw“ . We have v, € I since (w,

Wy
belongs to Sol,; so that det~, = 1. Furthermore, we have v, € I'* since

v e R¥ Let ¢ = v,. By Equation (2.16), the first column of pg is

w,prim”*

(aﬂ_;w(a)’ bﬂ_;w(a)) _ ﬂ_Jquw lalw

)J_

)L

v = U, so that p, € Pg if and only if ¥ € ©.

Since |[v]w = |a |y = 3” and by Equation (2.15), we have a4 € A,, if and

only if |v], = ¢}. Again by Equation (2.15), we have u/ € U, if and only

e Twy . Twy /
if oo = =w e

The map v — 7, from Ri’ﬁ)rim to IT'% is clearly injective. Its image is
I'* A (P7UY), since if (v w) € T A (P~U}) and v = (a,b), then v

27ﬂ

w.prim and w™ is an element of Sol, ; such that by Equation

belongs to R

(2.15) we have —wal = T e 9, hence w = w, by uniqueness. We clearly
have y, = b€ I if and only if , € I'y[I]. This proves the result. O

4. Joint equidistribution of primitive lattice points

The aim of this section is to prove the main result of this paper, The-
orem 4.5, establishing the effective joint equidistribution of directions and
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renormalized solutions to the associated gcd equations for primitive lattice
points, generalizing Theorem 1.1 in the introduction to any function field.

The main tool for this result is an adaptation of two theorems of Gorod-
nik and Nevo [16], that we now state, after the necessary definitions.

Let G’ be an absolutely connected and simply connected semi-simple
algebraic group over K, which is almost K-simple. Let G’ = G'(K,,) be
the locally compact group of K,-points of G’. Let IV be a non-uniform!
lattice in G’, and let pe be any (left) Haar measure of G’. Note that
G’ = G and IV = T'y[I] satisfy these assumptions for every nonzero ideal I
of R,,.

Let p > 0. Let (#)e=0 be a fundamental system of neighborhoods of the
identity in G’, which

e is symmetric (that is, x € 7/ if and only if =% € ¥/),

e is nondecreasing with e (that is, 7/ ¢ ¥/ if € < €’), and

e has upper local dimension p, that is, there exist my,e; > 0 such that
pe (V) = my el for every e € 10, €] .

Let C = 0. Let (%n)nen be a family of measurable subsets of G'. We
define

(Bo)™ =V BV, = | 9Buh and (Ba) = ()| 9Buh.
g,he?! g,he?!
The family (%8 )nen is C-Lipschitz well-rounded with respect to (¥)eo if
there exists ¢y > 0 and ng € N such that for all € € |0, ¢[ and n = ng, we
have

16 (B) ™) < (1+C ) per(Z) ) -
1

Theorem 4.1. For every p > 0, there exists 7(I") € 0, m] such that
for every C = 0, for every symmetric nonincreasing fundamental system
(¥ )e=o of neighborhoods of the identity in G' with upper local dimension
p, for every family (B )nen of measurable subsets of G' that is C-Lipschitz
well-rounded with respect to (¥.)e=0, and for every § > 0, we have that, as

n — +o,

Card(#, AT') = — ” e (%a)| = O (e (%) 7).

e
where the function O(-) depends only on G',T",6,C, (V) e=0, p-

Proof. The proof is a simple adaptation of a particular case of results of
Gorodnik-Nevo [16], which are phrased for algebraic number fields and not
for function fields.

By the assumptions on G’ and I, and by [3, Theo. 2.8], the regular
representation 70 of G’ on LZ(G’/I") has a spectral gap. By [6] (see [3,
Theo. 2.7]), since 7° has a spectral gap, there exists p > 2 such that 7°

IThis implies that G’ is isotropic over K, as part of the assumptions of [16].



14 Tal Horesh, Frédéric Paulin

is strongly IL? (called LP* in [16, Def. 3.1]). We do not know what is the
smallest such p. As in [16, Eq. (3.1)], let n.(p) = 1 if p = 2 and otherwise
let ne(p) = [5] € N—{0,1}. Since 7 is strongly LL?, by [16, Theo. 4.5], for
every measurable subset B of G’ with finite and positive Haar measure, if
B = m (ner)p and 7°(3) is the operator on L3(G'/I") defined by

(@) = — o | fa7 ) dner o)

for all f € L3(G'/T’) and almost all x € G’/T”, then we have that, for every
n >0,

[7°(B)]l = Ogr.rvy (e (B)) 7@ ™) .

Actually, Theorem 4.5 of [16] is stated in characteristic zero. But its
proof has two ingredients, a spectral transfer principle, which is valid for
any locally compact second countable group by [6, Theo. 1], and a Kunze-
Stein phenomenon, which is valid even in positive characteristic by [29,
Theo. 1].

Now, by [16, Theo. 1.9] where a = 1, which is valid for any locally
compact second countable group, and whose assumptions we just verified,
we have

Card(%, nT") 1
picr (Bn) el

Theorem 4.1 follows with 7(I") =

(—m+n)(p71_1)) ]

= OG/,1.Cop (1) (Bt (PBn)

1
PRI .

The main result that will allow us to use Theorem 4.1 is the following
proposition. We will use, as a fundamental system of neighborhoods of the
identity element in G, a family of compact-open subgroups of G(0,,) given
by the kernels of the morphisms of reduction modulo 7’0, for n € N. For
every € > 0, let N, = [— log,,, eJ so that N, > 1 if and only if € < q%. Let

Ye=G(0,) if e > q% and otherwise let
Ve = ker(G(0,) — G(O,/n)0.,))

1+7lea  wle
:{( NEB 1+ ]’3;65>EG( ) 7/677566}

The family (¥#¢)e=o is indeed nondecreasing and we have (.., % = {id}.
Note that for all €1,...,€e; > 0, we have
min{N,, - - } > min{—log, €1, -+, —log, ex} —1

= — long (61 + -+ Ek) -1= qu(€1+'”+€k) )
hence
(4.1) Ve Vey Ve < 7/qw(61+---+6k) :
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Proposition 4.2. For all metric balls © in S., and 2" in K, with radius
less than 1, the family (P(g A, U%',)%N is 0-Lipschitz well-rounded with
respect to (Y¢)e>0-

Proof. We will actually prove (as allowed by the ultrametric situation) the
stronger statement that given © and 2’ as above, if € is small enough, then
for every n € N, we have

(PoAnUL) " = PoAnUg, = (Po AnUZ) ™"

We start the proof by some elementary linear algebra considerations. For
every subgroup H of G, let ¥ = ¥, n H. We endow .#>(K,,) with its
supremum norm | - [, defined, for every element X € .#5(K,) — {0}, by
1 Xl = max{|X; j|w: 1 <i,j <2} € g’ The unit ball of | - ||, is #2(0,).
We denote the operator norm of a linear operator ¢ of .#5(K,,) by

14(X) [l

€], = max{m X e Mo(K.) — {0}} e g% U0},

so that ((.#4(0,,)) < Ma(7w 80 HZHW@’UJ). For every g € G, recall that Ad g
is the linear automorphism z ~— grg~! of .#5(K,,).

Lemma 4.3. For all € > 0 and g € G, we have
9%97" < Vgnage s Vo=t I and A=y 7
a3

q;—1
that p = 3 is an upper local dimension of the family (¥¢)eso-

Furthermore, we have pg(Ve) = e for every € > 0 small enough, so

Proof. Let I be the identity element in GG. The first claim follows from the
fact that
9Veg ' =L+ n)ga:(0.)g7"

Ne—log,,, [Adg|
c Ir + 7y B w.//Q(ﬁw) :%HAdgHw .

The second and third claims follow from the fact that by Equations (2.15)
and (2.16), if g € ¥¢ then a, = I, u} € YU* and m, € V2.
Let us now apply Lemma 2.2 and the decomposition ¥% = %V~ ¥ Z yU":
4w -
pa(4e) = =g - O ) w0 1o (7))

By Equation (2.12) applied twice, by the left part of Equation (2.6), and
since Ne = |—log, €|, we have that for e < q%,

pa(9) = g e, (w1 00) |07 /(4 w0 () 0.)

qw 1 2N > 92 3
Gu +1 (Qw—l)qujye_l ¢ qg*l
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This proves the final claim of Lemma 4.3. U

The main ingredient in the proof of Proposition 4.2 is the following ef-
fective refined LU decomposition.

Lemma 4.4. With ¢ : G — ]0,4+o[ the continuous function defined by
h — [|Adh |y, for every g € G with |x(ag)|w < 1, we have
— o P” U+ +
Ve g e = Pa Vo eloy et e O Y atelin )+ 2e(ud e o -

Proof. Tn order to simplify notation, let a = ag, p = p; and u = uf, so that
g =pau. For every h e G, let ¢, = | Adh |,. In the following sequence of
equalities and inclusions, we use

e the first claim of Lemma 4.3, for the first inclusion,

e the second claim of Lemma 4.3, for the second equality,

e the fact that

avl =avY V2

Ccu€ Cu€ Cu€

S Y

_ wyP™
Ccu€ ﬂj/cue ac %uﬁ a

by the third claim of Lemma 4.3, by the left hand side of Equation (2.17)
with x(a) € 0, and since a and Z commute, for the second inclusion,

e the facts that 7;,. is a normal subgroup of G(&,,) and that the inclusion
”I/Cg: c G(0,) holds, for the third equality,

e again the second claim of Lemma 4.3, and the right hand side of
Equation (2.17) with x(a) € 0, for the last inclusion.

We thus have
VegVe=pp Fpautuu c p¥cau
= o5V v w < oD A Veea VT

cpe 7 cpe cue cue cpe 7 cpe
P- Ut Ut P~ P~ Ut Ut Ut
= p 7/cpe %lle 7/cpe aﬂj/cue u < p 7/cpe ﬂj/cue a%116 ﬂj/cpe 7/cue u.
Lemma 4.4 now follows from Equation (4.1). O

Now, in order to prove Proposition 4.2, we write @ = vy + 7} .2 and
9 = x9 + qunlﬁw, for some m, m’ € N — {0}, 29 € K, and vy € S.. Let

¢ = max{q.(c(p) + 2¢(u)) : pe Py, ue UJ,},

which is finite since Pg and U, ;, are compact. Let ¢y = %q; m'—m 0, so
that we have N > max{m,m'} > 1 if € < €.
Let us fix € € 0, ¢g[. We claim that

(4.2) Py P =pP5 and ¥V UL =US,
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Indeed, the inclusion of the right hand sides into the left hand sides of these
equalities are immediate. If p € Py and p’ € ¥, we may write

b= <xv0 + 0 >

Yoo T+ Ty B (xvo + nga)_l

r 1 + WLVCCO/ O
and p’ = ( WU]JV“B’ (1+7Tivcéa/)f1

for some o, 8,a/, 3 € O, so that
;T + T+ e 0
PP = (yvo + 7B 4 alee g (2 + T+ W‘{JV“O//)1>
for some o, 8" € 0, (since xy,, Yy, € O,,). The first claim of Equation (4.2)
then follows from the fact that N.. > m. The inclusion ¥V U, 5 c U,

follows from a similar and even easier computation.
Now for every n € N, we have by Lemma 4.4 and Equation (4.2) that

(PoAnUs) " = Y Po An UL Ve € P ¥il An Vel UL, = Po AnUZ,
Since the converse inclusion is immediate, we have
— =+ —
(P A UL =P5A U, .
Since ¢ is symmetric, this implies that g Pg A, U, ;5, h > PgA,U ;r, for all

g,h € ¢ so that (P(; A, U T,)fe o Py A,,UZ,. Since the converse inclusion
is immediate, this concludes the proof of Proposition 4.2. O

The main result of this paper is the following one. Recall that z,, z, and
¥ for v in K, — {(0,0)} have been defined in Equations (2.3) and (2.4).
If v =(a,b) e R‘%’prim, we denote by w, any element of Riprim such that
(wy)* = (z,y) is a solution to the equation axz + by = 1. As seen in the
proof of Proposition 3.1 if |a|, = |b|,, and by symmetry otherwise, the
class % + R, of Z;’Lv in the quotient K,,/R,, does not depend on the choice
of w,. For every nonzero ideal I of R, let

(02 = 1) Cx (1) N (D) [Ty (1+ wt)
a2

Theorem 4.5. For every nonzero ideal I of R,,, for the weak-star conver-
gence on the compact space S}, x (K, /R,,), we have, as n — +00,

(4.3) cr =

cr q;*" 2 Ay @Az g, S gt @ e, /R, -

veR?

w,prim : H’UHW:qgv Z»/UEI

Furthermore, there exists T € |0, %] such that for all €,6 > 0, there is
a multiplicative error term in the above equidistribution claim of the form
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1+ Ous1 (qin(_ﬂr(s) If]le |gle) when evaluated on (f,g) for all e-locally con-
stant maps f: S, — R and g : K,,/R, — R:

cr q;”" > f(lv})g(zzﬂ+Rw)

2
UERu,prim

= ([, ams) (], ommosm) (15 Ousr (@2 U1l lol))

When C = P!, w = wy and I = R, we recover Theorem 1.1 in the
introduction by using Equations (4.3), (2.9) and (2.2), as well as the fact
that g, = ¢. Note that up to changing the constant c;, the same result
holds when v ranges over the elements in Ri,prim with [|v]e, < ¢ rather
than |v], = ¢ and 2] € I. But as said in the introduction, ranging on
spheres rather than balls gives much stronger result, in fit adequation with
the number theoretic results on Linnik’s problem. Also note that in the
statement of Theorem 4.5, the measures gy and p,, /g, are not normalized
to be probability measures, see Equations (2.8) and (2.6) if a normalization
is useful, as for instance in Corollary 4.6.

Given a nonzero (possibly nonprincipal) ideal J of R,,, an effective joint
equidistribution result similar to the one of Theorem 4.5 is possible when
the elements v = (a,b) € R,,? are not assumed to be primitive, but instead
to satisfy the property that a and b generate the ideal J.

Hvlw=a3, zel

Proof. Let I be a nonzero ideal of R,,. Let 7 = 7(I'o[I]) € ]0, £] be as in
Theorem 4.1 applied with G’ = G and IV = I'g[I], and with (¥/)e=0 =
(7¢)e=0 which has upper local dimension p = 3 according to the final claim
of Lemma 4.3. Let 6 € |0,7]. Fix a compact-open strict fundamental
domain & for the action by translations of R, on K, such that for all
zo € 2 and m/ € N — {0}, we have B(zg,q;™) = zg + 7" O, < 2. This is
possible since R, N7, 0, = {0} by Equation (2.1). Note that for all vy € S},
(respectively vg € Si,’ﬁ) and m € N — {0}, the ball B(vo,¢;™) = vo + 770>
is contained in S}, (respectively Soljﬁ).

Let us prove that for all m,m’ € N — {0}, 2o € 2 and vy € S}, if
0 = v+ 70,2 and 2' = xy + 1 O, then, as n — 4+

Card{v e R? prim ¢ e =q, 2z, €1, T€O, Fw ¢ 7'}
bl ZU
1 n n(—7 m+m’
(4.4) = 62" 51, (©) prc, (Z') (1 + Ousr (a2 g07™))

Since the characteristic functions lg and 14 of © and 2’ are respectively

q,™- and q;m'—locally constant, and by a finite additivity argument, this

proves Theorem 4.5.
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We first claim that in order to prove the counting result of elements

in R?u,prim stated in Equation (4.4), we only have to prove an analogous
counting result of elements in Ri’ﬁprim, namely that for all m,m’ e N— {0},

for all zg € & and vy € Sijﬁ, ift@ =uvy+n 2 and 2’ = x +7TZ"/@J, then,
as n — +o0

Card{ve R ¢ |v|o=q" yoel, 50O, 2 c 7'}

w,prim T
v
1

(4.5) -

2" 151 (©) purc, (2') (1 + Ogg (¢2 7 gmtm)

Indeed, by Lemma 2.1 and Equation (2.3), since det (v wv) = 1, we have

Zwy . Twy 2,4
= when v belongs to R} orim

involutive linear map ¢+ = (? (1)) of exchange of coordinates

except finitely many of them. The

e preserves the subsets Rf}’prim and S}, of the plane K2,

e sends the compact-open set S}, — S}Jﬁ into S}Jﬂ,

3 27ﬁ 3 2=
e sends an element v in Riprim — R%prixm to the element ¢(v) in Rwﬁ)rim
such that z, = 2,,) = Y, () and z;’;“ = ﬁ(”)) again by Lemma 2.1 and
Equation (2.3), and
e sends vy + 17 0,% to 1(vg) + TO2.
Hence Equation (4.4) follows from Equation (4.5).
Now according to Proposition 4.2, the family (Pé A, U ;,)neN is 0-Lip-

schitz well-rounded in G with respect to (7¢)c~0. Note that
I'n(Py Ay US) =T%n (P Ay US)

since © is contained in S&jﬁ. In the following sequence of equalities, we use
respectively

e Proposition 3.1,

e Theorem 4.1 applied with G' = G, T" = Ty[I] and (Bn)nen =
(P@_ An U%_/)nENa

e Equation (3.1),

e the fact that © is a metric ball of radius g
2" a metric ball of radius ¢, ™" in the line K,,.

m

in the plane K, and
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We thus have
Card{ve R¥ . : |v]o=q" yoel, 5O, 2 c @'}
X

w,prim
v

= Card(To[I] n (Pg AnUZ))

lrormal
2n+2

/%) /
— 1(O© 9D
@ D) i) P56 (©) ()

+ Ousr (6215 (©) e, (27) 70
q2n+2
— w sy (©) nwe, (7))

(a2 = 1) |promal
x (14 Ougr ("m0 =) .
Since by Equations (2.10) and (2.9) we have

luromall = lural [T To[T1] = Cx (=) N(I) [T (1 +
plZ

+ Ousr ((na(Pg AnUL)) ™)

N

and since T < £ (so that 2m(r — 6) < m and m/(T — 6) < m’), this proves
Equation (4.5) and completes the proof of Theorem 4.5. O

We conclude this section by stating a counting result, which follows from
the equidistribution claim of Theorem 4.5 by integrating on the pairs of con-
stant functions with value 1 on S}, and on K, /R,,, and by using Equations
(2.8) and (2.6).

Corollary 4.6. There exists T € |0, %] such that for every § > 0, we have

Card {v € sz,prim 2 vlw = q7, 2 eI}
qgil 2n 2n(1—7+96)
= 2 + Osr1 (45 -
Cx(=1) N(I) Tz (1 + xy) ( )

5. Application to the distribution of continued fraction
expansions

In this section, we assume that C = P! and w = wy, so that the notation
in Section 2.1 coincides with the notation of the introduction: K = Fy(Y),

R, = R =F,[Y], Ko, = K = F(Y)), Ou, = 6 = Fy[[Y '] and

Woo
oo = |- 1 R
Let us recall elementary facts on the continued fraction expansions in K,
similar to the ones in R, see for instance the surveys [21, 26], and [23] for

a geometric interpretation. Any element f € K may be uniquely written
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f =1[f]+ {f} with [f] € R (called the integral part of f) and {f} e Y10
(called the fractional part of f). The Artin map ¥ : Y10 —{0} - Y10 is
defined by f — {%} Any f € K — R has a unique finite continued fraction
expansion

1
f:a0+ )

a1 +
as +
2 1

an

1

with ap = [f] € R and a; = [M] a nonconstant polynomial for
1 < i < n (called the coefficients of the continued fraction expansion of f),
where n € N — {0} is such that ¥"(f — ap) = 0.
Two finite sequences of polynomials (P;)_1<i<n and (Q;)—1<i<n in R are
defined inductively as follows

Py=1 Fy=ap, P;= P 1a; + P2
Q-1=0 Qo=1, Qi=Qi10;+ Qi
for 1 < i < n. The elements P;/Q; for 0 < i < n — 1 are called the

convergents of f, and P,/Q, = f. The convergents have the following
characterisation (see for instance [26, p. 140]): for all P,@ € R such that

deg ) < deg @,
1
2

(5.1) if |f—P/Q| < |Q7 then P/Q is a convergent.

For 0 <i<n—1, we have

B 1
5.2 s
(5:2) ’ / Qi | Qi Qi
by for instance [26, Eq. (1.12)]), and
(5.3) Qi1 P — Pr1Qi = (-1)"*.

Since dega; = 1 if i = 1, we have degQ; > degQ;—1 for 1 < ¢ < n. If
feY™ 10, then ag = 0 and P;/Q; € Y10, or equivalently |P;| < |Q;|, for
1<i<n.

The following result relates the shortest solutions to an equation of the
form ax + by = 1 with the continued fraction expansion of a/b.

Lemma 5.1. Let a,b € R — {0} be two coprime polynomials such that
a/b € Y710, Let (Pi/Q:)o<i<n be the sequence of convergents of a/b.
Then there exists a unique A\ € Fy such that (a,b) = (A Py, AQn), and
(—(=D)"A 1 Qu_1, (=1)"A7L P, 1) is the unique shortest solution to the
equation ax + by = 1.
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Note that this result implies that for all a,b € R — {0}, the equation
ax + by = 1 has one and only one shortest solution, up to exchanging a and
b if [a| > [b| and to replacing (a,b) by (a — \'b,b) for the unique X' € Fy
such that deg(a — \'b) < degb if |a| = |b|.

Proof. We may assume that a ¢ IF;, otherwise the result is immediate with
AN=asinceay =0, a1 =a'b,n=1 P =0 Q =1, P, =1 and
Q1 = a~'b.

Since P, and @,, are coprime polynomials by Equation (5.3) and since

P,/Qn = a/b, there exists A € F* such that a = AP, and b = A\Q,. Let

4= —fyx )n)\andb—( 17 LetSol~~—{a:y)eR2 da+by =1}

We have & = (—1)"P, and b = (—1)"Q,. Again by Equation (5.3), this
implies that (—Qp—1, Pr—1) € Sol~~.

Let (Zo,%0) be another elernent of Sol; 3. Since we have 13| < |b], it

follows from Lemma 2.1 that |Zo| = |7ol, So that [(Zo,90) o = |To|- We
have |[(—=Qn-1,Pn-1)|w = |Qn_1] since P,_1/Qn_1 € Y10. In order to
prove that (—Q,—1, P,—1) is the unique shortest element of SOI&,Z? let us
assume that |Zo| < |@p—1|, and prove that (Zo, 7o) = (—Qn—1, Pn—1).
Since |§O| < |Qn71| < |Qn|a we have
gO Pn 1 1

= = — < — .
—Xo Qn |.%'0‘ ’Qn’ | - 1'0’2

Hence by Equation (5.1), ch)0 is a convergent of %, that is, there exists

i€{0,...,n— 1} such that _yT%O = % This implies in particular that there
exists A" € F ¢ such that (go, —Zo) = (N'P;, N'Q;). Using Equation (5.2) for
the last equality, we have
1 _ 1 _ 70 _ #
1Qil |@n| o] |Qn] T —T0 Qn |Qi| [Qit1]
Since |Qit1] < |Qn] if i < n —1, thls implies that ¢ = n — 1. Since
(To, o) belongs to Sol,y and by Equation (5.3), we have " = 1. Hence

(%0, —%o) = (Pn—1,Q@Qn—1) as wanted.
Since the pair (xo, o) is a solution to the equation ax+by = 1 if and only

if the pair ((—1)"Axo, (—1)"Ayo) is a solution to the equation az +by = 1,
the result follows. O

The following result is an analogue in the field of formal Laurent series
to the main result of [7] in the real field. It gives an application of Theorem

1.1 to the distribution properties of the continued fraction expansions of
elements of K. For every v = (a,b) € Rznm, we denote by (SZ((Z))) .

the sequence of convergents of § and by A, € F the unique element such
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that v = (A\yPp, (v), \yQn, (v)). We denote by p1y-1, the Haar measure of
the compact additive group Y ~'¢, normalized to be a probability measure.

Corollary 5.2. Let Py, = l_[le m; be a nonzero polynomaial in the Euclidean

: k
] ] ] q1+deg Pre Hi:l (l_qdelgwi)
ring R, with prime factors m,..., m,. Let cp, = =17 .

For the weak-star convergence of measures onY ~1O, we have, as n — +o0,

—2n *
cpy q 2 Acymgn, 10 = py-1g-

v=(P,Q)eR?,  :degP<degQ=n, Py |P 22 Qny (v)

prim

Furthermore, there ezists T € |0, %] such that for all €,6 > 0, there is

a mutiplicative error term in the above equidistribution claim of the form
1+ Os, p, (¢2"=7+9) | g|c) when evaluated on g for every e-locally constant
map g: Y10 — R.

Proof. The result follows by applying the joint equidistribution Theorem

deg Py TTF 1
q * Hizl (1 qdeg‘rri)

4.5 with C = P!, w = wy and I = Py R (so that c; = 2T
by Equations (4.3) and (2.2)) to the characteristic function of the set

SL —SY = {(z,y) e K?: |z| < |y| = 1}

on the left factor, using the following remarks.

o Let v = (a,b) € Rf)rim be such that |a| < |b| (or equivalently such
that ¥ e SL — Sgo’ﬁ), and let (P;/Q;)—1<i<n, be the sequence of convergents
of a/b. Lemma 5.1 (actually Equation (5.3) is sufficient) says that we may
take w, = (—(=1)" A, 1Py, -1, —(=1)™A\;1Qp,—1). Since |P;| < |Q;] for
0 <17 < ny, we have

Zwy _ Ywy _(_1)%)‘;162%—1 _ —(=1)"Qn,—1

W Y Ao@n,  XQa,
e The map from Y10 to K /R defined by f — f+ R is a homeomorphism

and an isomorphism of additive groups, which maps the probability measure
Hy-10 10 q fig g, since Hi /R has total mass % by Equation (2.6).

e The map from Y1 to itself defined by f — — f is an homeomorphism
preserving iy —14-.

e We have MS&(S(%O — S;;ﬁ) —pupQupY 1o x0*) =
so that

—1

q—1
sy, (S5 = Sof) dpige (= + B) = = 5= duy-10(f)

for (almost) every fe Y~ 10. O
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Remark. A change of variable (by multiplication by an appropriate

element of Fy, which preserves the measures) in the finitely many clopen

subsets of v € SL — S&F such that the data (ny mod 2, \,), varying in the
finite set (Z/2Z) x F, is constant, allows to prove that

—2n %
P Z Agu, 1) — fy-ig-
v=(P, Q)eRirim :deg P <degQ=n, Py | P Qny (v)
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