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General context

Epidemics → fast increase (number of new cases/unit of time)
of a disease incidence in a given place at given time

Understanding and predicting the epidemic dynamics → ma-
jor role of mechanistic dynamical models to describe epidemic
processes

Here: epidemic dynamics modeled by stochastic processes

Main issue: how to deal with partially observed epidemics (in-
complete and noisy) for estimating the key parameters of the
models ?
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A simple mechanistic model for one outbreak: SIR

Compartmental model where S , I ,R = numbers of susceptible,
infectious, recovered individuals

N: population size known and fixed

Key parameters:

λ : transmission rate

γ : recovery rate ; d = 1
γ : infectious period

R0 = λ
γ : basic reproduction number
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Deterministic and stochastic models

Deterministic model


ds(t) = −λs(t)i(t)dt

di(t) = (λs(t)i(t)− γi(t))dt

(s(0), i(0)) = (s0, i0)

Bidimensional Markov jump process on {0, . . . ,N}2

(S , I )→ (S − 1, I + 1) at the rate λSI
N

(S , I )→ (S , I − 1) at the rate γI
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Observations

Observations in practice:

→ number of infectious (or newly infected individuals)

→ daily or weekly observations

→ with measurement errors (reporting and diagnostic errors, etc.)

SIR model:

→ only one compartment is observed: I

→ discretized

→ noisy

=⇒ the inference of parameters is not direct
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State of the art and objective

Sophisticated existing inference methods (Maximum Iterated
Filtering (Ionides et al. 2006); Approximate Bayesian Com-
putation based on sequential Monte Carlo (Sisson et al. 2007);
Particle Markov Chain Monte Carlo (Andrieu et al. 2010)) per-
form well but have some limitations in practice:

- rely on data completion via computer simulations

- substantial computation times

- numerous tuning parameters

Objective: propose a generic inference method easily practicable
and able to deal with discrete, incomplete and noisy outbreak
data

Originality: approach based on a diffusion approximation with
small variance coefficient + observation errors

7/23 Romain NARCI



Introduction
First part of my PhD: inference based on Kalman filtering

Evaluation of performances on numerical experiments
Second part of my PhD: inference in mixed effects models

Our approach

Two-stage Gaussian approx.

1) Gaussian approximation of the epidemic density-dependent
Markovian jump process (Ethier & Kurtz (2005), Guy & al.
2015), using a diffusion based approach, with small coefficient
(population size N → +∞) on a fixed interval [0,T ]

→ Convergence of the normalized Markov jump process (LLN) to
an explicit ODE solution and then, to a Gaussian process (CLT)

2) Gaussian approximation of the observation model accounting
for systematic noise

Interest:

− use of Kalman filter approaches to compute the log-likelihood
of the observations

− estimate model parameters
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Gaussian approximation of the state model

Diffusion approximation of the multidimensional normalized
Markov jump process XN(t) := X (t)/N:

dXN(t) = b(XN(t))dt + N−1/2σ(XN(t))dB(t); XN(0) = ξ

Proposition. (Gaussian approximation) Taylor expansion
(Freidlin & Wentzell (1978)) of XN(t):

XN(t) = x(t) + N−1/2g(t) + N−1/2RN(t),

where supt‖RN(t)‖ → 0 in probability as N → +∞

x(.) = ODE solution

g(.) = Gaussian process depending on b(.) and σ(.)
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Gaussian approximation of the observation model

Observations O:

discrete observations of I at times tk = k∆, k = 0, . . . , n where
n = number of observations and ∆ = sampling interval

noisy: use of a Binomial distribution with parameter p (reporting
rate) for modeling the measurement errors
O(tk) ∼ B(I (tk), p)

Derivation of a conditional Gaussian approximation of the ob-
servation model taking into account the measurement errors
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Kalman framework

Vector of parameters θ = (λ, γ, p, s0, i0)

Linear Gaussian state space model:

Xk = Fk(θ,∆) + Ak−1(θ,∆)Xk−1 + N−1/2Ck(θ,∆)Uk

→ Fk(θ,∆) = x(θ, tk)− Φ(θ, tk , tk−1)x(θ, tk−1)

→ Ak−1(θ,∆) = Φ (θ, tk , tk−1); Φ = resolvent matrix

→ Ck(θ,∆) ≈
√

∆σ(θ, x(θ, tk)) for ∆ small enough

Approximate observation model:

Yk = pIN(tk) +
√
N−1p(1− p)i(θ, tk)Vk ,

{Uk}k≥0, {Vk}k≥0: independent standard Gaussian random
variables
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log-likelihood computation

Approximate log-likelihood of the observations y0, . . . , yn given
by:

L(y0, . . . , yn; θ) = log f (y0; θ) +
n∑

i=1

log f (yi |y0:i−1; θ)

Computing L(y0, . . . , yn; θ) requires an expression for each term
log f (. . . , θ)

The distributions Yi |Y0:i−1; θ are Gaussian distributions with
mean and variance computable using conditional moments
E (Xi |Y0:i−1; θ) and V (Xi |Y0:i−1; θ) (Cappé, Moulines & Ry-
dén, 2005)

The Kalman filter is diverted to compute recursively the condi-
tional densities log f (. . . , θ)
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Simulation setting

Exact simulation (Gillespie algorithm) of the Markov jump pro-
cess associated to the SIR model: X (t) = (S(t), I (t))

Simulation of the observations: Ok ∼ B(I (tk), p)/N

Parameters values: λ = 1, γ = 1/3, s0 = 0.99, i0 = 0.01

500 runs on [0,T ], T depending on the scenario

N (population size): 1000, 2000, 10000

n (number of observations): 10, 30, 100

p (reporting rate): 0.3, 0.8

For each scenario (N, n, p): point estimators

13/23 Romain NARCI



Introduction
First part of my PhD: inference based on Kalman filtering

Evaluation of performances on numerical experiments
Second part of my PhD: inference in mixed effects models

Simulated data: λ = 1, γ = 1/3, s0 = 0.99, i0 = 0.01

Population size N = 2000 and number of observations n = 30
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Comparison with Maximum Iterated Filtering (MIF)

1) Inference method (Ionides et al. (2006, 2011, 2015)) in the
general framework of the partially observed Markov processes,
implemented in the R package POMP (King et al. (2017)):

- maximizes the likelihood obtained by Sequential Monte Carlo,
also known as the particle filter

- provides a Monte Carlo estimation of the maximum likelihood

- requires the setting of several tuning parameters (number of
particles, number of iterations, etc.)

2) Comparison:

Point estimators for each parameter (not shown here)

Boxplot of the relative bias for each parameter
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Numerical results (relative bias) on 500 epidemics: λ = 1

Figure: Relative bias of λ̂ for the Kalman (•) and MIF (•) inference
methods as a function of (N, n).
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Numerical results (relative bias) on 500 epidemics: γ = 1/3

Figure: Relative bias of γ̂ for the Kalman (•) and MIF (•) inference
methods as a function of (N, n).
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Partial conclusion

Advantages of our approach:

- accounting for specificities of the available data

- can be extended to other mechanistic models

- yields promising results: easy to implement and satisfying per-
formances

Pre-print available on HAL:
https://hal.archives-ouvertes.fr/hal-02475936

Application of our inference method on real data in progress
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Context

Recurrent outbreaks:

Figure: Numbers of new cases developing flu symptoms in Ile-de-France
(Réseau Sentinelles, http://www.sentiweb.fr/)

Multisite outbreaks: Covid-19 in various regions in France

Main issue: take directly into account the variability between
epidemic events by mixed effects models in order to estimate
key parameters
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Framework

Notations: observations y = (yu, 1 ≤ u ≤ U), unobserved
individual parameters Φ = (Φu, 1 ≤ u ≤ U) and a vector of
parameters θ (variability intra- and inter-population)

Example (noisy ODE):

Yu,k |Φu ∼ N (iu(tk), σ2)

λu ∼ N (λpop, ω
2
λ)

γu ∼ N (γpop, ω
2
γ)

where u is the epidemic index, iu(tk) is the ODE solution (in-
fectious) at time tk for an epidemic u, Φu = (λu, γu) and
θ = (λpop, γpop, ωλ, ωγ , σ)
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Issue

Objective: estimate θ by maximizing the log-likelihood of the
observations

L(y ; θ) = log p(y ; θ) =

∫
p(y ,Φ; θ) dΦ

Problem: as Φ is not observed, the expression of the log-likelihood
of the observations is not explicit

When the relationship between observations y and individual
parameters Φ is linear: EM algorithm

If not: SAEM algorithm→ needs to compute the joint distribu-
tion and to simulate from the conditional distribution p(.|y ; θ)
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Numerical results

U = 50 epidemics

Initial values of the proportion
of susceptibles/infectious
s0 = 0.95, i0 = 0.01

Parameters values: λpop = 1,
γpop = 1/3, ωλ = 0.25,
ωγ = 0.15, σ = 0.01

Vector of the observation
times:
(1, 3, 5, 7, 9, 12, 16, 20, 24, 28,
32, 36) days
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Perspectives

Applications on real data in progress

Perform inference when the observations are partially observed
and noisy (first part of my PhD) by mixing the inference based
on the Kalman filter with the SAEM algorithm:

→ take into account the small variance coefficient in the SAEM
algorithm

→ investigate the theoretical properties in such a framework
(convergence speed, etc.)
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Real data set

Influenza outbreak in a Britain boarding school in the north of
England in January, 1978
N = 763 boys were at risk and one boy from Hong-Kong became
infectious from 15 to 18 January =⇒ S(0) = 762 and I (0) = 1
Observations: number of infectious boys over 14 days with one
observation per day =⇒ I (tk), k = 0, . . . , 14 and n = 14
observations (SIR model)
Estimate parameters : λ, γ and p
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Results: post predictive check

λ̂ = 1.72; γ̂ = 0.48; p̂ = 1.00 λ̂ = 1.71; γ̂ = 0.45; p̂ = 0.95

Kalman MIF
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Solution

When the relationship between observations y and individual param-
eters Φ is:

linear → EM algorithm: given some initial values θ0, iteration
k updates θEMk−1 to θEMk with the following steps:

- E-step: Evaluate the quantity

QEM
k (θ) = E

[
log p(y ,Φ; θ)|y ; θEMk−1

]
- M-step: Update the estimation of θ:

θEMk = arg maxθQ
EM
k (θ)

nonlinear → Monte Carlo EM (MCEM) ; Stochastic Approx-
imation EM (SAEM)
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A first mixed effects model (SIR)

Model description:

Yu,v |Φu ∼ N (iu(tv ), σ2)

λu ∼ N (λpop, ω
2
λ)

γu ∼ N (γpop, ω
2
γ)

where u is the pop. index, iu(tv ) is the ODE sol. (infectious) at time
tv for an epidemic u, Φu = (λu, γu) and θ = (λpop, γpop, ωλ, ωγ , σ)

Nonlinear relationship between obs. y and individual parameters Φ
=⇒ use of the SAEM algo. which replaces the E-step by:

Simulation step: For u = 1, 2, ...,U, draw Φ
(k)
u from the

conditional distribution p(Φu|yu; θk−1)
Stochastic approx.: Update Qk−1(θ) according to
Qk(θ) = Qk−1(θ) + γk

(
log p(y ,Φ(k); θ)− Qk−1(θ)

)
where

(γk) is a decreasing seq. of positive numbers such that γ1 = 1
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