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Introduction

Motivation Data Set

Data :
X I Interaction between individuals

(advice . . . )
XO Interaction between organizations

(contract . . . )
A Affiliation of the individuals to the

organizations
Aij = 1 if i is affiliated to j
Only one affiliation per individual

Objectives

Joint probabilistic model on X = {X I ,XO} given A
Evaluate the influence of the inter-organizational level on the
inter-individual level
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Modelling

Modelling of a Multilevel SBM
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Stochastic Block Model (SBM)a

aSnijders and Nowicki, 1997

Mixture model for graphs

Latent variables on vertices

Model heterogeneity of connection
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Modelling

Modelling of a Multilevel SBM
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Inter-organizational Level

nO laboratories into QO clusters

Latent variables are independent

ZO
j = l ⇔ j ∈ l , l ∈ {1, . . . ,QO}

P(ZO
j = l) = πO

l

Connectivity is independent given the
latent variables

P(XO
jj′ = 1|ZO

j = l ,ZO
j′ = l ′) = αO

ll′
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Modelling of a Multilevel SBM
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Inter-individual Level

nI researchers into QI clusters

A researcher’s cluster depends on his
laboratory’s cluster
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Inter-individual Level

nI researchers into QI clusters
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Modelling

Independence Between Levels
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αO
∗∗
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αO
∗∗αO

∗∗ πO is a probability vector

Each column of γ as well

If γkl = γkl′ ∀l , l ′

L(X I ,XO |A) = L(X I )L(XO)

Each level of the multilevel network is
a SBM with πI = γ·1

Organisational structure has no
influence on the connectivity of
individuals
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Modelling

Identifiability

Proposition
The multilevel model is identifiable up to label switching under the
following assumptions:
(i) All coefficients of αO · πO are distinct
(ii) All coefficients of αI · γ · πO are distinct
(iii) nI ≥ 2QI

(iv) nO ≥ max{2QO ,QI + QO − 1}
(v) At least 2QI organizations contain one individual or more.

Proof derived from Celisse et al., 2012
S-C Chabert-Liddell Multilevel Network 7 / 20



8/20

Inference

Outline

1 Modelling

2 Inference

3 Model Selection

4 Simulation Studies

5 Application to Real Dataset

S-C Chabert-Liddell Multilevel Network 8 / 20



9/20

Inference

Maximum Likelihood Inference

Objective Joint clustering of Z = {Z I ,ZO} and estimates of
θ = {πO , γ, αO , αI}

Method Maximum likelihood of the observed data
Idea Calculate the complete likelihood and integrate on the

latent variables
Problem Intractable, sum of QnR

R × QnL
L terms

Solution EM algorithm
Problem L(Z|X) also intractable
Solution Variational approach of the EM algorithm

Daudin et al., 2008
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Inference

Variational EM

Maximise a lower bound of the observed data likelihood

`θ(X) ≥ `θ (X)− KL (R(Z)‖Pθ(Z|X))

= ER [`θ (X,Z)] +H (R(Z))
= Iθ(R(Z))

R(Z) is a mean-field approximation of Z|X
H is the entropy

VEM algorithm
2 steps iterative algorithm
VE Maximise Iθ(R(Z)) w.r.t. R(Z)
M Maximise Iθ(R(Z)) w.r.t. θ
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Inference

Parameters update

VE-Step : variational
parameters

τ̂Ojl ∝π
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∏
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∏
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∑
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Model Selection

Model Selection for the number of clusters

Penalized criterion for choosing the number of clusters

ICLMultilevel(QI ,QO) = max
θ
`θ(X

I ,XO , Ẑ I , ẐO |A)

−1
2
QI (QI + 1)

2
log

nI (nI − 1)
2︸ ︷︷ ︸

αI

− QO(QI − 1)
2

log nI︸ ︷︷ ︸
γ

−1
2
QO(QO + 1)

2
log

nO(nO − 1)
2︸ ︷︷ ︸

αO

− QO − 1
2

log nO︸ ︷︷ ︸
πO

Step-wise procedure with relevant local initialization of VEM to
optimise the ICL

Biernacki et al., 2000
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Model Selection

Model selection for independence

ICL can be used to state on the independence between levels
New penality term for γ

penγ =
QI − 1

2
log nI

ICLind(QI ,QO) = ICLISBM(QI ) + ICLOSBM(QO)

We decide that levels are interdependent if

ICLind(QI ,QO) < ICLMultilevel(QI ,QO)
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Simulation Studies

Simulation Studies
QO = 3 QI = 3 nO = 20 ∗ QI nI = 3 ∗ nO πO =

[ 1
3

1
3

1
3

]
αI = d ∗

1 + ε 1 1
1 1 + ε 1
1 1 1 + ε

αO =

.5 .1 .1
.1 .5 .1
.1 .1 .5

 γ =

.8 .1 .1
.1 .8 .1
.1 .1 .8



50 simulations on each dot
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Simulation Studies

Simulation Studies
QO = 3 QI = 3 nO = 20 ∗ QI nI = 3 ∗ nO πO =

[ 1
3

1
3

1
3

]
αI = d ∗

1 + 2 1 1
1 1 + 2 1
1 1 1 + 2

αO =

.5 .1 .1
.1 .5 .1
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 γ =

 δ 1− δ
2 1− δ

2
1− δ

2 δ 1− δ
2

1− δ
2 1− δ

2 δ



50 simulations on each dot
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Application to Real Dataset

Application to a Television Program Trade Fair Dataset4

128 individuals with directed interactions (advice) and 109 organizations
with undirected interactions (deal).

4Brailly, 2016
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Application to Real Dataset

Dataset analysis

4 blocks of individuals and 3 blocks of organizations
Levels are interdependent
The structure of connection between individuals do not replicate the
structure of connections between organizations

S-C Chabert-Liddell Multilevel Network 19 / 20



20/20

Conclusion

Preprint available on arXiv: https://arxiv.org/abs/1910.10512
R package available at
https://chabert-liddell.github.io/MLVSBM/

Simulates and infers multilevel networks
Includes handling of missing data on X I and XO

Prediction on missing dyads, missing links and spurious links
Works with multi-affiliation datasets
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