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Motivation

Source: nilearn.github.io

Tuan-Binh Nguyen Aggregation of Multiple Knockoffs June 03, 2020



Introduction to False Discovery Rate

Introduced by Benjamini and Hochberg (1995).

False Discovery Proportion (FDP): How many False Discoveries made
among all discoveries?

False Discovery Rate (FDR): the expected value of FDP.

Source: stats.stackexchange.com
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Problem settings

X ∈ Rn×p, y ∈ Rn. Example: X is MRI data, y outcome.

Linear model assumption y = Xβ∗ + σε with εi ∼ N (0, 1) .

Support set S := {i : β∗i 6= 0} and its estimate Ŝ.

False Discovery Proportion – FDP

FDP =
card(Ŝ ∩ Sc)
card(Ŝ) ∨ 1

False Discovery Rate – FDR

FDR = E[FDP]
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Multivariate Statistical Inference

n > p: Ordinary Least Square (OLS)

β̂OLS = argmin
β∈Rp

1

2
‖y −Xβ‖22

−→ β̂OLS = (XTX)−1XTy→ test score, p-value, confidence interval.

n < p: No closed form solution – XTX not invertible

Solution: : Lasso, Ridge, Elastic Net → p-value, confidence interval for
variable selection?

−→ Knockoff Inference: Multivariate Variable Selection for
High-dimensional settings.
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Knockoff Variables: Definition

Definition (?)

X̃ = (x1, . . . ,xp) is model-X knockoffs of X = (x1, . . . ,xp) if and only if:

1 ∀ subset K ⊂ {1, . . . , p}: (X, X̃)swap(K)
d
= (X, X̃)

2 X̃ ⊥ y | X
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Knockoff Variables: Intuition

X̃ is noisy copies of original variables X:

Share same ‘structure‘ with original design matrix, but

Has to be null variables.
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Knockoff Sampling: Second-order Knockoffs

Shares the same first 2 moments - mean and covariance:

E[X̃] = E[X] = µ, E[X̃T X̃] = Σ and E[X̃TX] = Σ− diag{s}
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Knockoff Sampling: Second-order Knockoffs

diag{s} is perturbation matrix that makes the joint covariance
cov(X, X̃) matrix positive definite:
−→ Equi-correlated formula: sj = 2λmin(Σ) ∧ 1 (Candès et al.,
2018)

In practice: Estimation of Σ is required.

Assumption

(Xi1, . . . Xip, yi)
i.i.d∼ FXY , ∀i = 1, . . . , n, and FX is known.

Assumption: X has Gaussian design

x̃j | xj ∼ N (µ,V)

V = 2diag{s} − diag{s}Σ−1diag{s}
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Knockoff Statistic

Definition (Candès et al. (2018))

A knockoff statistic W = {Wj}j∈[p] is a measure of feature importance
that satisfies the two following properties:

1 Depends only on X, X̃ and y

W = f(X, X̃,y), and

2 Swapping the original variable column xj and its knockoff column x̃j
will switch the sign of Wj iff j is in the support set S:

Wj([X, X̃]swap(S), y) =

{
Wj([X, X̃],y) if j ∈ Sc
−Wj([X, X̃], y) if j ∈ S
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Knockoff Statistic

Assumption (Null Distribution of Knockoff Statistic)

Under the Null hypothesis, the Knockoff Statistics defined above,
i.e. {Wj}j∈Sc , follow the same distribution.

Remark

From Barber and Candès (2015): this Null distribution is symmetric
around 0.
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Knockoff Inference (Barber and Candès, 2015)

Step 1

Construct knockoff variables, concatenate [X, X̃] ∈ Rn×2p

Step 2

Calculate knockoff test-statistics: Lasso coefficient-difference, obtain

β̂ = min
w∈R2p

1

2
‖y − [X, X̃]β‖22 + λ‖β‖1

then take the difference: Wj =
∣∣∣β̂j(λ)

∣∣∣− ∣∣∣β̂j+p(λ)
∣∣∣ for each j
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Knockoff Inference (Barber and Candès, 2015)

Step 3 – FDR controlling threshold

For given t > 0, False Discoveries Proportion can be estimated as:

F̂DP(t) =
1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t}

then, for FDR level α ∈ (0, 1), calculate the threshold τ > 0

τ = min
{
t > 0 : F̂DP(t) ≤ α

}
Step 4

Select the variables: Ŝ(τ) = {j : Wj ≥ τ | j = 1, . . . , p}
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FDP estimation with Knockoff Statistic

0

Figure: Distribution of Knockoff Statistic {Wj}pj=1

Tuan-Binh Nguyen Aggregation of Multiple Knockoffs June 03, 2020



FDP estimation with Knockoff Statistic

0 t

Figure: Distribution of Knockoff Statistic {Wj}pj=1
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FDP estimation with Knockoff Statistic

0 t

Figure: Distribution of Knockoff Statistic {Wj}pj=1
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FDP estimation with Knockoff Statistic

t-t 0

Figure: Distribution of Knockoff Statistic {Wj}pj=1
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Knockoff Inference: Theoretical Guarantee FDR control

Theorem (Barber and Candès, 2015; Candès et al., 2018)

FDR(τ) = E

[
card(Ŝ(τ) ∩ Sc)
card(Ŝ(τ)) ∨ 1

]
≤ α

Proof: Using martingale theory (optional stopping time theorem).
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Instability of knockoff procedure

Settings for Simple Scenario Simulation: 3 simulation parameters: ρ, snr
and sparsity.

n = 500 , p = 1000.

X ∼ N (0,Σ) symmetric Toeplitz matrix.

ρ ∈ [0, 1) : Σ =


ρ0 ρ1 ρ2 . . . ρp−1

ρ1 ρ0 ρ1 . . . ρp−2

... . . .
. . . . . .

...
ρp−2 ρp−3 . . . ρ0 ρ1

ρp−1 ρp−2 ρp−3 . . . ρ0


y = Xβ∗ + σε, εi ∼ N (0, 1).

σ =
‖Xβ∗‖2

snr× ‖ε‖2

sparsity =
card(S)

p
∈ [0, 1]
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Instability of knockoff procedure
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Figure: 100 runs of knockoff inference on the same simulation
n=500, p=1000, snr=3.0, ρ = 0.7, sparsity = 0.06
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Solution: Knockoffs Statistic conversion

t-t 0

Introduce the intermediate p-values: convert Knockoff statistic Wj to πj :

πj =


1 + #{k : Wk ≤ −Wj}

p
if Wj > 0

1 if Wj ≤ 0
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Solution: Knockoffs Statistic conversion

- 0

Introduce the intermediate p-values: convert Knockoff statistic Wj to πj :

πj =


1 + #{k : Wk ≤ −Wj}

p
if Wj > 0

1 if Wj ≤ 0
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Aggregation of Multiple Knockoffs

Step 1: For b = 1, 2, . . . , B the number of bootstraps:

Run knockoff sampling, calculate test statistic
{
W

(b)
j

}
j∈[p]

Convert the test statistic W
(b)
j to π

(b)
j :

π
(b)
j =


1 + #{k : W

(b)
k ≤ −W (b)

j }
p

if W
(b)
j > 0

1 if Wj ≤ 0
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Aggregation of Multiple Knockoffs

Step 2 – Quantile Aggregation of p-values (Meinshausen et al., 2009)

π̄j = min

{
qγ(π

(b)
j )

γ
, 1

}
∀j ∈ [p]

For γ ∈ (0, 1) with qγ(·) the empirical γ-quantile function.
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Aggregation of Multiple Knockoffs

Step 3 – FDR control with π̄

Order π̄j ascendingly: π̄(1) < π̄(2) · · · < π̄(p)

Given FDR control level α ∈ (0, 1), find largest k such that:

π̄(k) ≤ kα/p (Benjamini and Hochberg, 1995), or

π̄(k) ≤
kα

p
∑p

i=1 1/i
(Benjamini and Yekutieli, 2001)

−→ FDR threshold: τ = π̄(k)

ŜAKO = {j : π̄j ≤ τ | j ∈ [p]}
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Theoretical Results

Assumption (Null Distribution of Knockoff Statistic)

Under the Null hypothesis, the Knockoff Statistics defined above,
i.e. {Wj}j∈Sc , follow the same distribution.

Lemma (Non-asymtotical validity of Intermediate p-Values)

Under the above assumption , and furthermore assume |Sc| ≥ 2, the
empirical p-value πj satisfies

∀t ∈ (0, 1),P(πj ≤ t) ≤
κp

|Sc|
t

for all j ∈ Sc = {j = 1, . . . , p : β∗j = 0} and where κ =

√
22− 2

7
√

22− 32
≤ 3.24
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Theoretical Results - Main theorem

Theorem (Non-asymtotic guarantee for FDR control with AKO)

If the above assumption holds, and if |Sc| ≥ 2, then for an arbitrary
number of bootstraps B, the output ŜAKO of Aggregation of Multiple
Knockoff (AKO) controls FDR under predefined level α ∈ (0, 1) in
asymptotic regime:

E

[
|ŜAKO ∩ Sc|
|ŜAKO| ∨ 1

]
≤ κα

where κ =

√
22− 2

7
√

22− 32
≤ 3.24.

Tuan-Binh Nguyen Aggregation of Multiple Knockoffs June 03, 2020



Experimental Results - Synthetic Data

Same settings: Simple Scenario with

n = 500 , p = 1000.

X ∼ N (0,Σ)

y = Xβ∗ + σε, εi ∼ N (0, 1). with Σ symmetric Toeplitz matrix.

3 simulation parameters: ρ, snr and sparsity.
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Experimental Results - Synthetic Data

Figure: Histogram of FDP & Power for 100 runs of Original Knockoff (top)
vs. Aggregated Knockoff (bottom) under the same simulation.

SNR = 3.0, ρ = 0.5, sparsity = 0.06.
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Empirical Analysis for the choice of B and γ
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Figure: FDR and Averaging Power for 30 simulations with fixed
SNR = 3.0, ρ = 0.7, sparsity = 0.06 while varying B and γ
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Experimental Results - Synthetic Data

Vary each of the three simulation parameters while keeping the others
unchanged at default value: SNR = 3.0, ρ = 0.5, sparsity = 0.06

Benchmarking methods:

Aggregation of Multiple Knockoffs (AKO)
Vanilla Knockoff (KO) (Candès et al., 2018)
Debiased Lasso (DL-BH) (Javanmard and Javadi, 2019)
Simultaneous Knockoff (KO-GZ) (Gimenez and Zou, 2019)
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Experimental Results - Synthetic Data
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Experimental Results - Genome Wide Association Study

Data: Flowering Phenotype of Arabidopsis Thaliana –
n = 166, p = 9938

Objective: detect association of 174 candidate genes with phenotype
FT GH that dictates flowering time (Atwell et al., 2010).

Preprocessing: dimension reduction following Slim et al. (2019)
p = 9938 −→ p = 1500.
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Experimental Results - Genome Wide Association Study

Method Detected Genes
AKO+ AT2G21070, AT4G02780, AT5G47640
KO+ AT2G21070

KO-GZ+ AT2G21070
DL-BH —

Figure: List of detected genes associated with phenotype FT GH. Empty
line (—) signifies no detection.

Confirmation from previous studies:

AT2G21070 (Kim et al., 2008)

AT4G02780 (Silverstone et al., 1998)

AT5G47640 (Cai et al., 2007)
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Experimental Results - Brain Imaging

Data: Human Connectome Project

Objective: predict the experimental condition per task given brain
activity

n = 900 subjects, p ≈ 212000

Preprocessing: dimension reduction by clustering
p = 212000 −→ p = 1000

Tuan-Binh Nguyen Aggregation of Multiple Knockoffs June 03, 2020



Experimental Results - Brain Imaging

Figure: Detection of significant brain regions for HCP data (900 subjects).
Selected regions in a reaction with Emotion images task.

Orange: brain areas with positive sign activation.
Blue: brain areas with negative sign activation
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Experimental Results - Brain Imaging
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Experimental Results - Brain Imaging
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Figure: Jaccard index measuring the Jaccard similarity between the KO/AKO
solutions and the DL solution over 7 tasks of HCP900
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Conclusion

Conclusion:

Knockoff:

Versatile (different loss functions, different test statistics)
But unstable, depends on quality of knockoff variables.

Aggregation of Multiple Knockoffs
−→ increases stability
−→ theoretically control FDR
−→ higher power

Tuan-Binh Nguyen Aggregation of Multiple Knockoffs June 03, 2020



Perspective

Future work:

Knockoff Sampling Scheme for scaling to very large dimension:
promising methods include Deep Knockoffs Machine (Romano et al.,
2018) – Generative adversarial knockoff networks (Jordon and Yoon,
2019)

Further analysis on Theoretical Properties of AKO: relax assumptions
about knockoff statistics
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Questions?

Main Reference: Nguyen, T.B., Chevalier, J-A, Arlot, S., and Thirion, B.
(2020) Aggregation of Multiple Knockoffs. To appear at the 37th
International Conference on Machine Learning (ICML 2020).
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