# Convergence d'une suite récurrente

## Théorème 1.

Soit  $f:[a,b] \to [a,b]$  une fonction de classe  $C^2$ . On suppose qu'il existe l>0 tel que  $|f'(x)| \le l < 1$  pour tout  $x \in [a,b]$ . Soit  $u_0 \in [a,b]$  et soit  $u_n$  la suite définie par récurrence par  $u_{n+1} = f(u_n)$ . Alors, la suite  $u_n$  converge vers l'unique point fixe  $\alpha$  de f. De plus, si  $f'(\alpha)$  est  $\neq 0$ , il existe  $\lambda \neq 0$  tel que l'on ait  $u_n - \alpha \sim \lambda f'(\alpha)^n$ .

#### Démonstration.

Quitte à faire le changement de variables  $x \mapsto x - \alpha$  on se ramène au cas  $\alpha = 0$ . L'inégalité des accroissements finis montre alors qu'on a  $|f(x)| \leq l |x|$  pour tout  $x \in [a,b]$  et on en déduit, par récurrence,  $|u_n| \leq l^n |u_0|$ , ce qui montre que  $u_n$  converge vers 0.

Posons k = f'(0), on a donc  $0 < |k| \le l < 1$ . On peut écrire, sur [a, b],  $f(x) = kx + x^2w(x)$  où w est continue, donc bornée en valeur absolue sur [a, b] par un nombre M > 0. (On pose, pour  $x \ne 0$ ,  $w(x) = \frac{f(x) - xf'(0)}{x^2}$  et, comme w(x) tend vers  $\frac{f''(0)}{2}$  quand x tend vers 0 par Taylor-Lagrange, on prolonge w par continuité en 0.)

Il s'agit de montrer que  $u_n$  est équivalente à  $\lambda k^n$ , ou encore, en posant  $v_n = \frac{u_n}{k^n}$ , que  $v_n$  a une limite finie non nulle.

En posant  $w_n = w(u_n)$  on a la relation  $u_{n+1} = ku_n + u_n^2 w_n$  et la suite  $w_n$  est bornée par M. On en déduit :  $v_{n+1} = v_n \left(1 + \frac{u_n w_n}{k}\right)$  ce qui montre que  $v_n$  a un signe constant pour n grand.

On a ensuite  $\ln |v_{n+1}| - \ln |v_n| = \ln |1 + \frac{u_n w_n}{k}|$ . Comme on a  $\frac{|u_n||w_n|}{|k|} \le \frac{M l^n |u_0|}{|k|}$ , la série de terme général  $\frac{|u_n||w_n|}{|k|}$  est convergente, de sorte que la série  $\ln |v_{n+1}| - \ln |v_n|$  converge absolument. Il en résulte que la suite  $\ln |v_n|$  admet une limite finie c, donc que  $|v_n|$  a pour limite  $e^c > 0$ , et, puisque  $v_n$  est de signe constant,  $v_n$  a bien une limite non nulle  $\lambda$ , cqfd.

Remarque 2. Si f admet un point fixe  $\alpha$  vérifiant  $0 < |f'(\alpha)| < 1$ , on sait qu'il existe un réel l et un intervalle [a,b] stable par f sur lequel la condition  $|f'(x)| \le l < 1$  est réalisée.

On va maintenant améliorer le théorème 1 en donnant la suite du développement asymptotique de  $u_n$ .

#### Théorème 3.

On reprend les notations et les hypothèses du théorème 1 et on suppose  $f''(\alpha) \neq 0$ . On a alors

$$u_n = \alpha + \lambda f'(\alpha)^n + \mu f'(\alpha)^{2n} + o(f'(\alpha)^{2n}),$$

avec  $\lambda$  et  $\mu \neq 0$ .

Démonstration. On peut supposer  $\alpha = 0$  et on pose encore k = f'(0). En vertu du théorème 1, on peut écrire  $u_n = \lambda k^n + v_n$  où la suite  $v_n$  est un  $o(k^n)$ . Par Taylor-Young on écrit f(x) sous la forme  $f(x) = kx + mx^2 + g(x)$  où  $m = \frac{1}{2}f''(0)$  et où g(x) est un  $o(x^2)$ . On a donc la relation  $u_{n+1} = ku_n + mu_n^2 + g(u_n)$  et en remplaçant  $u_n$  par sa valeur en fonction de  $v_n$  on obtient  $v_{n+1} = kv_n + mu_n^2 + g(u_n)$ . Posons  $w_n = \frac{v_n}{k^n}$ . On obtient, pour  $n \geq 0$ :

$$w_{n+1} = w_n + \frac{mu_n^2}{k^{n+1}} + \frac{g(u_n)}{k^{n+1}} = w_n + s_{n+1}.$$

Comme  $u_n$  est équivalent à  $\lambda k^n$  et comme g(x) est un  $o(x^2)$ , on voit que  $s_n$  est équivalent à  $m\lambda^2 k^{n-1} = Ck^{n-1}$  avec  $C \neq 0$ . La série de terme général  $s_n = w_n - w_{n-1}$  est donc convergente. De plus, puisqu'on a  $\sum_{p=0}^n s_p = w_n$  (en posant  $s_0 = w_0$ ), la somme de la série en question est égale à la limite de  $w_n$ , c'est-à-dire à 0 puisque  $v_n$  est un  $o(k^n)$ . Il en résulte que  $w_n$  est l'opposé du reste de la série :

$$w_n = -\sum_{p=n+1}^{+\infty} s_p.$$

Mais on a le lemme suivant :

### Lemme 4.

Si le terme général d'une série  $s_p$  est équivalent à  $Ck^{n-1}$  avec |k| < 1, le reste  $R_n$  de la série est équivalent à  $\frac{C}{1-k}k^n$ .

Avec ce lemme on a donc  $w_n \sim -\frac{C}{1-k}k^n$ , d'où  $v_n \sim -\frac{C}{1-k}k^{2n}$  ce qui achève de prouver le théorème 3.

Démonstration du lemme 4. Posons  $s_n = Ck^{n-1} + t_n$  où  $t_n$  est un  $o(k^{n-1})$ . Soit  $\epsilon > 0$ . Pour n assez grand on a  $|t_n| \le \epsilon |k|^{n-1}$ . On a alors

$$R_n = \sum_{p=n+1}^{+\infty} s_n = \sum_{p=n+1}^{+\infty} Ck^{n-1} + \sum_{p=n+1}^{+\infty} t_n = S_n + T_n.$$

La première somme vaut  $S_n = C \frac{k^n}{1-k}$  et on a  $|T_n| \leq \sum_{p=n+1}^{+\infty} \epsilon |k|^{n-1} = \epsilon \frac{|k|^n}{1-|k|}$ .

Il en résulte que  $R_n$  est équivalent à  $\frac{C}{1-k}k^n$ .

Remarques 5.

- 1) Le théorème 3 montre qu'on peut appliquer la méthode d'Aitken pour accélérer la convergence de la suite  $(u_n)$ .
- 2) Si f''(0) est nul, la même méthode montre que  $v_n$  est encore un  $O(k^{2n})$  et on peut encore appliquer Aitken.
- 3) Si on suppose f de classe  $C^{\infty}$  on a pour tout r>0 un développement asymptotique de la forme

$$u_n = \alpha + \lambda_1 f'(\alpha)^n + \lambda_2 f'(\alpha)^{2n} + \dots + \lambda_r f'(\alpha)^{rn} + o(f'(\alpha)^{rn}).$$