À propos de l'exponentielle

Dans ce qui suit, on note \mathbf{R} le corps des nombres réels et \mathbf{U} le groupe multiplicatif des nombres complexes de module 1.

Théorème 1. On considère une fonction $f: \mathbf{R} \to \mathbf{U}$ telle que :

- i) f est continue,
- ii) f n'est pas constante,
- iii) f est un homomorphisme de groupes de $(\mathbf{R}, +)$ sur (\mathbf{U}, \times) .

Alors, f est surjective, de noyau une partie $K \subset \mathbf{R}$ de la forme $\alpha \mathbf{Z}$ (pour α un certain nombre réel non nul).

Démonstration. (de la surjectivité)

On prouve d'abord deux lemmes concernant U:

Lemme 2. Soit $a \in U$. L'application $\varphi_a : z \mapsto az$ est un homéomorphisme de U sur U. La restriction de φ_a à $U - \{1\}$ est un homéomorphisme de $U - \{1\}$ sur $U - \{a\}$.

Lemme 3. L'application $\pi: \mathbf{R} \to \mathbf{U} - \{-1\}$ qui à t associe $\frac{1-t^2}{1+t^2} + i\frac{2t}{1+t^2}$ est un homéomorphisme, de réciproque donnée par $x + iy \mapsto \frac{y}{x+1}$.

Le lecteur averti aura reconnu le paramétrage en $\tan \theta/2$. Le point positif c'est qu'il n'y a pas besoin de θ pour avoir ce paramétrage, il suffit de couper le cercle par une droite de pente t passant par le point d'affixe -1.

Corollaire 3. Pour tout $a \in \mathbf{U}$ l'espace topologique $\mathbf{U} - \{a\}$ est homéomorphe à \mathbf{R} par $\pi_a = \varphi_a \circ \pi$.

On peut alors prouver l'assertion de surjectivité du théorème. On montre d'abord que l'image I (qui est connexe) contient un ouvert non vide de \mathbf{U} . C'est clair si cette image est \mathbf{U} . Sinon I est contenue dans $\mathbf{U} - \{a\}$ et non réduite à un point. On considère $\pi_a^{-1}(I)$ qui est un connexe de \mathbf{R} donc un intervalle non réduit à un point. Il contient un intervalle ouvert J de \mathbf{R} donc I contient l'ouvert $\pi_a(J)$ de $\mathbf{U} - \{a\}$ donc de \mathbf{U} .

On en déduit que I est ouverte. En effet, si Ω est un ouvert contenu dans I et contenant a, et si x est dans I, comme I est un sous-groupe $xa^{-1}\Omega$ est un ouvert contenu dans I qui contient x.

Il en résulte que I est égale à \mathbf{U} car I est aussi fermé dans \mathbf{U} . C'est un lemme général :

Lemme 4. Soit G un groupe topologique et H un sous-groupe ouvert de G. Alors H est aussi fermé.

Démonstration. En effet, le complémentaire de H est réunion des translatés aH pour $a \notin H$, donc il est ouvert.

Montrons maintenant que f n'est pas injective. Cela revient à prouver :

Théorème 5. Il n'existe pas d'application continue bijective de R sur U.

Démonstration. Je suis sans doute bête, mais ça ne me semble pas évident. Voilà une solution :

Lemme 6. Deux intervalles de **R**, non réduits à un point, sont homéomorphes si et seulement si ils sont de même nature (fermés, ouverts ou semi-ouverts).

Démonstration. C'est un argument de connexité.

Lemme 7. Soit $f: I \to \mathbf{R}$ une fonction définie sur un intervalle de \mathbf{R} non réduit à un point. On suppose f injective et continue. Alors f est un homéomorphisme sur son image qui est un intervalle de même nature (cf. lemme 6).

 $D\acute{e}monstration$. C'est un classique des exposés de CAPES : f est monotone bijective, donc f^{-1} aussi, donc continue.

On peut alors prouver le th. 5. Posons a = f(0) et soit φ un homéomorphisme de $\mathbf{U} - \{a\}$ sur \mathbf{R} (cf. ci-dessus). Soient I_1 et I_2 les intervalles $]-\infty,0[$ et $]0,+\infty[$ et soient J_1 et J_2 leurs images par φf , de sorte que \mathbf{R} est réunion disjointe de J_1 et J_2 . Mais, J_1 et J_2 sont des connexes de \mathbf{R} , donc des intervalles. On considère la restriction de φf à I_k . C'est une bijection continue de I_k sur J_k , donc un homéomorphisme (Lemme 7), donc J_k est un intervalle ouvert (Lemme 6) et cela contredit la connexité de \mathbf{R} .