Un petit théorème sur les graphes

Daniel PERRIN

1 Introduction

Un outil important pour l'étude des chemins dans les graphes est la matrice d'adjacence A du graphe, ainsi que ses puissances, voir [DP]. Lorsqu'on travaille avec un graphe connexe, il arrive souvent que les coefficients de A^n tendent vers l'infini, ce qui signifie que le nombre de chemins de longueur n d'un point à un autre croît indéfiniment. Le but de ce texte est de donner une condition nécessaire et suffisante pour qu'il en soit ainsi.

2 Le résultat

- **2.1 Définition.** Si $A = (a_{ij})$ est une matrice carrée $r \times r$ à coefficients réels on pose $m(A) = \text{Min}(a_{ij})$. On dit que A est $\geq m$ (resp. > m) pour $\in \mathbf{R}$, si l'on a $m(A) \geq m$ (resp. > m). Si (A_n) est une suite de matrices, on dit que A_n tend vers $+\infty$ si $m(A_n)$ tend vers $+\infty$.
- **2.2 Théorème.** Soit G un graphe connexe d'ordre $r \geq 2$ et soit A sa matrice d'adjacence. Il existe un entier N tel que l'on ait $A^n > 0$ pour tout $n \geq N$ si et seulement si G contient un cycle d'ordre impair ≥ 3 . La suite A^n tend alors vers l'infini quand n tend vers l'infini.

 $D\acute{e}monstration.$ On commence par un lemme qui donne en particulier le deuxième point :

- **2.3 Lemme.** Soit A une matrice $r \times r$ à coefficients entiers avec $A \geq 0$.
- 1) S'il existe N tel que $A^N > 0$, la matrice A n'a pas de colonne nulle, la suite $m(A^n)$ est croissante et on a $A^n > 0$ pour tout $n \ge N$.
- 2) La suite A^n tend vers l'infini si et seulement si il existe N tel que $A^N > 0$.

Démonstration. (du lemme)

- 1) Si A a une colonne nulle, elle correspond à un vecteur de base qui est dans le noyau de A, donc aussi de A^N , ce qui est absurde. En écrivant $A^{n+1} = A^n A$, on en déduit que la suite $m(A^n)$ est croissante.
- 2) La condition est évidemment nécessaire. Pour prouver la réciproque, on montre, par récurrence sur k, qu'on a $m(A^{kN}) \ge r^{k-1}$ pour $k \ge 1$. C'est

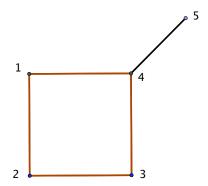
vrai pour k=1 et si l'on note a_{ij} les coefficients de A^N , b_{ij} ceux de A^{kN} et c_{ij} ceux de $A^{(k+1)N}$, on a $c_{ij} = \sum_{k=1}^r b_{ik} a_{kj}$. Comme les a_{kj} sont ≥ 1 et les $b_{ik} \geq r^{k-1}$ on a bien le résultat. Comme r est ≥ 2 , on voit que $m(A^{kN})$ tend vers l'infini avec k, donc aussi $m(A^n)$ avec n, grâce à la croissance.

Revenons au théorème. S'il existe N tel que $A^N > 0$, on peut supposer N impair en vertu du point 1) du lemme et on a donc un chemin de longueur impaire du sommet 1 au sommet 1, donc un cycle d'ordre impair.

Inversement, soit C_p un cycle d'ordre p impair et k un point de ce cycle. Si i,j sont deux entiers compris entre 1 et r il existe un chemin de longueur $n(i,j) \geq 2$ joignant i et j et passant par k en vertu de la connexité 1 de G. Soit n un entier supérieur ou égal à tous les n(i,j). Alors N=n+p convient. En effet, si i,j sont deux points du graphe, on a un chemin de longueur $n(i,j) \leq n \leq N$ joignant i à j et passant par k. Quitte à faire des allers et retours entre j et l après être arrivé en j, on a un tel chemin de longueur n(i,j)+2q pour tout $q \in \mathbb{N}$. Si N est de même parité que n(i,j) on a donc un chemin de longueur N joignant i et j. Sinon, on intercale dans le chemin de longueur n(i,j) le cycle d'ordre p entre k et k. On obtient un chemin de longueur n(i,j)+p qui joint i à j, avec $n(i,j)+p \leq N$ et $n(i,j)+p \equiv N$ (mod 2). On est ramené au cas précédent.

3 Discussion

Il y a de nombreux exemples de graphes ne comportant pas de cycles d'ordre impair, un cycle d'ordre pair, un graphe biparti, ou encore le graphe suivant :



dont voici la matrice d'adjacence :

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

^{1.} Comme |G| est ≥ 2 , si i=j=k, on peut augmenter la longueur du chemin en faisant un aller et retour le long d'une arête

On vérifie qu'il n'y a pas de chemin de longueur impaire allant de 1 à 1.

1 Question. Peut-on traduire la condition A^n tend vers l'infini en termes de valeurs propres? En tous cas, l'existence d'une valeur propre > 1 ne suffit pas comme le montre l'exemple du carré (les sommets 1, 2, 3, 4 de la figure

précédente), avec la matrice
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
. Le vecteur $(1, 1, 1, 1)$ est

propre pour la valeur propre 2 mais les puissances de A^n ont toujours des zéros.

4 Références

[DP] Perrin Daniel Quelques éléments de théorie des graphes http://www.math.u-psud.fr/~perrin/CAPES/graphes/graphes.pdf