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Introduction : why distributions ?

The notion of a distribution arose during the twentieth century as a powerful tool in the study of partial
differential equations. Important contributors are J. Leray, S. Sobolev and L.Schwartz, who gave the
formal definition. Here are three simple motivations for introducing distributions.

Deriving non differentiable functions

In differential calculus, one encounters immediately the unpleasant fact that not every function is
differentiable. The purpose of distribution theory is to remedy this flaw. Recall that, given a function
f on an open interval I of R, the derivative function f ′ is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

as soon as this limit exists at every point x ∈ I. Let us mention a classical elementary application of
this notion. If f ′ exists, f is a nondecreasing function on I if and only its derivative f ′(x) ≥ 0 for
every x in I. However, there are many examples of non decreasing functions such that f ′ cannot be
defined on the whole of I. A typical example is the Heaviside function,

H(x) =

{
1 if x ≥ 0

0 if x < 0

Of course, H admits a derivative at every point x ̸= 0, and this derivative is 0. But this is not
sufficient to conclude that H is nondecreasing, since the derivative of −H enjoys the same property !
It is therefore necessary to extend the derivative in a way which takes into account the discontinuity of
H or −H at x = 0. In fact, to every locally integrable function f , we shall associate a mathematical
object — a distribution — called its derivative, with the property that f is nondecreasing if and only if
its derivative is nonnegative as a distribution .

Fourier series

In his famous memoir Théorie analytique de la chaleur (1822), Joseph Fourier introduced, for every
“reasonable” 2π periodic function f , the coefficients

cn(f) =
1

2π

∫ 2π

0
f(x) e−inx dx , n ∈ Z
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and stated that

f(x) =

+∞∑
n=−∞

cn(f) einx .

Throughout the nineteenth and the early twentieth century, many mathematicians tried to give a
general meaning to this statement. Though it has been proved by Dirichlet if f is a C1 function,
a striking observation of Kolmogorov is that there exists locally integrable functions f such that the
above Fourier series is divergent for every x ∈ R ! However we shall see that the above series is
convergent is a different sense. In fact, we shall define, for every general mathematical object called
a 2π– periodic distribution u, a sequence of Fourier coefficients such that the corresponding series is
always convergent in the sense of distributions, and so that its sum is always u. Furthermore, the
derivative of u can be obtained by summing the series of derivatives, which is the reason why Fourier
introduced this remarkable tool.

Electrostatics

If f is a function on R3 which represents a charge distribution, the Poisson equation

−∆u = f

is satisfied by the corresponding electric potential u. If f is smooth enough – say C1— and small
enough at infinity, — say it cancels outside a ball — one can prove that there exists a unique C2

solution u of this equation which goes to 0 at infinity. Moreover, u is given by the formula

u(x) =
1

4π

∫
R3

f(y)

|x− y|
dy .

However, the latter formula has a meaning for instance if f is just bounded and cancels outside a ball,
though u is nomore C2 in that case. It is therefore tempting to look for an interpretation of the Poisson
equation in this case. Furthermore, in Physics, charge distributions can be more general, say supported
by surfaces, curves, points, dipoles... In all these cases, the latter formula makes sense, so what is
the meaning of the Poisson equation ? In fact it is possible to interpret Poisson equation in all these
cases, in the sense of new mathematical objects called distributions. This context of Electrostatics is
precisely the historical origin of the word “distributions”.

Lecture Notes, Fall 2019 Patrick Gérard



Chapter 1

Distributions in one space dimension

This chapter is devoted to basic calculus of distributions. We have chosen to begin with distributions
of one variable to explore the basic ideas of the theory. That way, the reader has not to cope at the
same time with several variables calculus.

1.1 Background on differential calculus

We recall here elementary facts about smooth functions of one real variable.

A smooth function on an open interval I ⊂ R is a function φ : I → C whose derivatives of any
order φ′, φ′′, . . . , φ(k), . . . exist and are continuous on I. A linear combination of smooth functions is
a smooth function, and we denote C∞(I) the vector space of smooth functions.

If φ ∈ C∞(I), and J is an open subset of I, the function defined on J by x 7→ φ(x) is a smooth
function on J , that we denote φ|J . This function is called the restriction of φ to J .

It is true that the product of two smooth functions is smooth, and we have the so-called Leibniz formula

(φ1φ2)
(k) =

k∑
j=0

(
k

j

)
φ
(j)
1 φ

(k−j)
2 .

A smooth function φ : I → C satisfies the Taylor formula

∀x0 ∈ I , φ(x) =
m∑
k=0

(x− x0)k

k!
φ(k)(x0) +

(x− x0)m+1

m!

∫ 1

0
(1− s)mφ(m+1)(x0 + s(x− x0))ds,

that one can prove integrating by parts the last term on the right.

Exercise 1.1.1 Prove Hadamard’s lemma: if φ ∈ C∞(I) satisfies φ(x0) = 0, there exists a
function ψ ∈ C∞(I) such that φ(x) = (x− x0)ψ(x) for any x ∈ I.
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1.1.1 Support of a continuous function

If f is continuous on I, and J is an open subset of I, we say that f vanishes on J if it vanishes at
any point of J , or, equivalently, if f|J is the null function.

Definition 1.1.2 Let f : I → C a continuous function. The support of f is the complementary
of the union of all the open sets in I where f vanishes. This set is denoted by supp f .

Note that the support of f is a closed set. It is also the closure of the set of x ∈ I such that f(x) ̸= 0.
The following characterization is often useful:

x0 /∈ supp f ⇐⇒ ∃V neighborhood of x0 such that f|V = 0.

Exercise 1.1.3 Show
supp(f1f2) ⊂ supp f1 ∩ supp f2.

Are these two sets equal?

Of course, if φ ∈ C∞(I) vanishes on an open set J ⊂ I, all its derivatives vanish as well on J , and,
therefore, for all integer k,

suppφ(k) ⊂ suppφ.

1.2 Test functions

Let I be an open interval of R.

Definition 1.2.1 We denote by D(I) = C∞0 (I) the vector space of functions which are C∞
on I, and whose support is a compact subset of I. Equivalently, a smooth function belongs
to D(I) if it vanishes outside some segment [a, b] ⊂ I.

If J is an open subinterval of I, one may identify a function φ ∈ D(J) with the function φ̃ ∈ D(I),
defined as

φ̃(x) = φ(x) for x ∈ J, φ̃(x) = 0 for x ∈ I \ J.

Indeed, φ̃ is smooth and with compact support on I for φ ∈ D(J). On the other hand, a function
φ ∈ C∞0 (R), can be identified with its restriction φ|I ∈ D(I) for any open interval I that contains its
support.
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Exercise 1.2.2 Let f and φ be two functions in ∈ L1(R). Show that the convolution f ∗ φ of f
and φ, given by

f ∗ φ(x) =
∫
f(x− y)φ(y)dy,

is defined almost everywhere, and is an L1 function.

Suppose moreover that φ ∈ C∞0 (R), show that f ∗ φ is smooth. At last if f is also continuous,
show that

supp f ∗ φ ⊂ supp f + suppφ.

Answer: First of all, f ∗ φ is an almost everywhere defined and L1 function. Indeed, using Fubini’s
theorem for non-negative functions,∫

|f ∗ φ(x)|dx ≤
∫∫
|f(x− y)φ(y)|dydx

≤
∫
|φ(y)|

( ∫
|f(x− y)|dx

)
dy ≤ ∥φ∥L1∥f∥L1 < +∞

Therefore f ∗ φ is finite almost everywhere, and belongs to L1.

Suppose now that φ is smooth with compact support. Changing variable we have

f ∗ φ(x) =
∫
f(y)φ(x− y)dy.

Thus f ∗ φ is also smooth thanks to the Lebesgue theorem, since

- the function x 7→ f(y)φ(x− y) is smooth for all y, and

∂kx(f(y)φ(x− y)) = f(y)φ(k)(x− y),

- we have the domination

|f(y)φ(k)(x− y)| ≤ |f(y)| sup |φ(k)| ∈ L1.

Eventually suppose that f is continuous. If x /∈ supp f + suppφ, then for any y ∈ supp f , x− y does
not belong to suppφ, thus

f ∗ φ(x) =
∫
f(y)φ(x− y)dy = 0.

It is not immediately clear that D(I) is not reduced to the null function. One knows for example that
the only compactly supported analytic function on R is this null function, due to the principle of isolated
zeroes. However,

Proposition 1.2.3 The set D(I) is not trivial. More precisely, for every x0 ∈ I and r > 0 such
that [x0 − r, x0 + r] ⊂ I, there exists φx0,r ∈ C∞(I) such that supp(φx0,r) = [x0 − r, x0 + r].
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Proof.— First of all, the function φ : R→ R given by

φ(t) =

{
e−1/t as t > 0,
0 as t ≤ 0,

is smooth on R. Indeed, it is easily seen to be C∞ on R∗, with φ(k)(t) = 0 for t < 0. On the other
hand, for t > 0, one can prove by induction that

∀k ∈ N, φ(k)(t) = Pk

(
1

t

)
e−1/t

where Pk is a polynomial of degree 2k. Therefore, for any k ≥ 1, φ(k)(t) → 0 as t → 0+, so
that φ(k−1)(t) is C1 on R. Now let x0 ∈ I, and r > 0 such that [x0 − r, x0 + r] ⊂ I. We denote
φx0,r : I → R+ the function given by

φx0,r(x) = φ(r2 − |x− x0|2).

This function is smooth, with suppφx0,r = [x0 − r, x0 + r]. In particular it belongs to D(I).

As a matter of fact, we can even prove the

Proposition 1.2.4 Let I ⊂ R an open set, and a segment [a, b] ⊂ I. There exists a function
ψ ∈ D(I) such that

i) ψ = 1 on [a, b],

ii) ∀x ∈ I , ψ(x) ∈ [0, 1].

Such a function is called a ”plateau function” - from the French word plateau, which means a flat, high
region. The usual English name for such functions is ”cut-off” functions.

Proof.— First of all, we prove that, for every α < β, there exists χα,β ∈ C∞(R) such that

i) χα,β = 0 on ]−∞, α],

ii) ∀x ∈ R , χα,β(x) ∈ [0, 1],

iii) χα,β = 1 on [β,+∞[.

Let φx0,r ∈ C∞(R) be the function defined above with

x0 =
α+ β

2
, r =

β − α
2

.

Then it is easy to check that

χα,β(x) =

∫ x
−∞ φx0,r(t) dt∫ +∞
−∞ φx0,r(t) dt

satisfies the required properties.
Coming back to [a, b] ⊂ I, select a′, b′ ∈ I such that a′ < a < b < b′. Then just choose

ψ(x) = χa′,a(x)(1− χb,b′(x))
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Proposition 1.2.5 (Partitions of unity) Let φ ∈ C∞0 (I). Assume I1, . . . , In are open subinter-
vals of I such that

supp(φ) ⊂ I1 ∪ · · · ∪ In .

Then there exist φ1 ∈ C∞0 (I1), . . . , φn ∈ C∞0 (In), such that

φ = φ1 + · · ·+ φn .

Proof.— We start with an elementary observation.

Lemma 1.2.6 (“Shrinking lemma”) Under the assumptions of Proposition 1.2.5, for every
compact subset K of I such that

K ⊂ I1 ∪ · · · ∪ In ,

there exist segments [a1, b1] ⊂ I1, . . . , [an, bn] ⊂ In such that

K ⊂]a1, b1[∪ · · · ∪]an, bn[ .

We proceed by induction on n. For n = 1, K is a compact subset of the open interval I1, hence
there exists a segment [α1, β1] ⊂ I1 such that K ⊂ [α1, β1]. For instance, one may choose α1 =
min supp(φ) , β1 = max supp(φ). Then just choose a1, b1 ∈ I such that a1 < α1 < β1 < b1.
Assume the result is true for n− 1 with n ≥ 2, and prove it for n. Consider

K ′ = K \ In .

Then K ′ is closed and included in K, hence it is a compact subset of I, and

K ′ ⊂ I1 ∪ · · · ∪ In−1 .

Applying the induction assumption, there exists segments [a1, b1] ⊂ I1, . . . , [an−1, bn−1] ⊂ In−1 such
that

K ′ ⊂]a1, b1[∪ · · · ∪]an−1, bn−1[ .

Now consider the compact subset

K ′′ = K \ (]a1, b1[∪ · · · ∪]an−1, bn−1[) ⊂ In .

Applying the result for n = 1, there exists a segment [an, bn] ⊂ In such that

K ′′ ⊂]an, bn[ .

This yields
K ⊂]a1, b1[∪ · · · ∪]an, bn[ ,

as announced.
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Let us come back to the proof of Proposition 1.2.5. Let [a1, b1], . . . , [an, bn] be as in the lemma.
Choose plateau functions ψ1 ∈ C∞0 (I1), . . . , ψn ∈ C∞0 (In) such that ψ1 = 1 on [a1, b1],…,ψn = 1 on
[an, bn]. We define

φ1 = φψ1 ,

φ2 = φψ2(1− ψ1) ,

. . .

φn = φψn(1− ψn−1) . . . (1− ψ1) .

Then φ1 ∈ C∞0 (I1), . . . , φn ∈ C∞0 (In),, and

φ− (φ1 + · · ·+ φn) = φ(1− ψ1 − ψ2(1− ψ1)− · · · − ψn(1− ψn−1) . . . (1− ψ1))

= φ(1− ψ1)(1− ψ2 − · · · − ψn(1− ψn−1) . . . (1− ψ2))

= φ(1− ψ1) . . . (1− ψn)
= 0 .

Indeed, by construction, (1−ψ1) . . . (1−ψn) is identically 0 on [a1, b1]∪· · ·∪ [an, bn], which contains
the support of φ.

1.2.1 Convergence in D(I)

The natural notion of convergence for continuous functions is that of uniform convergence, since it is
the simplest one for which the limit of a sequence of continuous functions is continuous. For smooth,
compactly supported functions, the correct notion is given by the next definition.

Definition 1.2.7 Let (φj) be a sequence of functions in D(I), and φ ∈ D(I). We say that
(φj) tends to φ in D(I) (or in the D(I)-sense), when

i) There exits a segment [a, b] ⊂ I such that suppφj ⊂ [a, b] for all j.

ii) For all k ∈ N, ∥φ(k)
j − φ(k)∥∞ := sup |φ(k)

j − φ(k)| → 0 as j → +∞.

In that case we may write
φ = D − lim

j→+∞
φj .

Remark 1.2.8 Notice that, under the conditions of the above definition, we always have supp(φ) ⊂
[a, b].

Exercise 1.2.9 Let φ ∈ D(R), and, for t ̸= 1, denote by ψt ∈ D(R) the function given by

ψt(x) =
φ(tx)− φ(x)

t− 1
·

Show that the family (ψt) converges in D(R) as t tends to 1.
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1.3 Definitions and examples

1.3.1 Definitions

Definition 1.3.1 Let I ⊂ R an open subset, and T a complex valued linear form on D(I).
One says that T is a distribution on I if, for every segment [a, b] ⊂ I,

∃C > 0,∃m ∈ N, ∀φ ∈ C∞0 (I)with suppφ ⊂ [a, b] , |T (φ)| ≤ C
∑
α≤m

sup |φ(α)|.

We denote by D′(I) the set of distributions on I, and for T ∈ D′(I), φ ∈ D(I), we denote
⟨T, φ⟩ := T (φ).

Proposition 1.3.2 A linear form T on D(I) is a distribution on I if and only if T (φj)→ T (φ)
for any sequence (φj) of functions in D(I) that converges to φ in the D(I)-sense.

Proof.— Let T be a distribution on I, and (φj) a sequence in D(I) which converges to φ in D(I).
There is a segment [a, b] ⊂ I such that suppφj ⊂ [a, b] for all j ∈ N, and suppφ ⊂ [a, b]. There
exist C > 0 and m ∈ N such that

∀ψ ∈ C∞(I), with suppψ ⊂ [a, b], |T (ψ)| ≤ C
∑
α≤m

sup |ψ(α)|.

In particular, for any j ∈ N,

|T (φj)− T (φ)| = |T (φj − φ)| ≤ C
∑
α≤m

sup |φ(α)
j − φ

(α)|.

Therefore T (φj)→ T (φ) as j → +∞, and we have proved the only if part of the proposition.

Suppose now that for any sequence (φj) of functions which converges in D(I), we have T (φj) →
T (φ), where φ = D − limφj . Suppose that the linear form T is not a distribution, that is

∃[a, b] ⊂ I, ∀C > 0,∀m ∈ N, ∃φ ∈ C∞0 (Ω)with suppφ ⊂ [a, b]  such that |T (φ)| > C
∑
α≤m

sup |φ(α)|.

Then for any j ∈ N, choosing C = m = j, there is a function φj ∈ C∞0 (I) such that suppφj ⊂ [a, b]
and

|T (φj)| > j
∑
α≤j

sup |φ(α)
j |.

Let ψj ∈ C∞0 (I) given by ψj = φj/|T (φj)|. One has |T (ψj)| = 1, with suppψj ⊂ [a, b] and

D − limψj = 0,

Lecture Notes, Fall 2019 Patrick Gérard



CHAPTER 1. DISTRIBUTIONS IN ONE SPACE DIMENSION 14

since for all j ≥ α,

sup |ψ(α)
j | ≤

∑
α≤j

sup |ψ(α)
j | <

1

j
·

This is a contradiction, since one should have T (ψj)→ 0.

Remark 1.3.3 As a set of continuous linear forms, D′(I) is of course a vector space on C: if
T1, T2 ∈ D′(I) and λ1, λ2 ∈ C, then λ1T1 + λ2T2 is the distribution given by

⟨λ1T1 + λ2T2, φ⟩ := λ1⟨T1, φ⟩+ λ2⟨T2, φ⟩.

For T ∈ D′(I), we may also denote T̄ or T ∗ the distribution given by

⟨T̄ , φ⟩ = ⟨T, φ⟩.

Then, any distribution T can be written T = T1+ iT2 where T1 and T2 are real distributions, that
is such that ⟨T, φ⟩ ∈ R for any real-valued function φ. Indeed, this relation holds with

T1 =
1

2
(T + T̄ ) = Re(T ) and  T2 =

1

2i
(T − T̄ ) = Im(T ).

1.3.2 Distributions defined by locally integrable functions

If f ∈ L1
loc(I), the function fφ is integrable for any φ ∈ D(I), and

Tf : φ→
∫
I
f(x)φ(x) dx

is a linear form. Moreover, if [a, b] ⊂ Ω is a segment of I, for any φ ∈ C∞0 (I) supported in [a, b], one
has

|Tf (φ)| ≤ ∥f∥L1([a,b]) sup |φ|,

which shows that Tf is a distribution on I.

As a matter of fact, one can identify L1
loc(I) to a part of D′(I), that is identify f with Tf . This is the

content of the

Proposition 1.3.4 The linear map

f ∈ L1
loc(I) 7−→ Tf ∈ D′(I)

is one to one.

Remark 1.3.5 The statement f = g for f, g ∈ L1
loc(I) should be understood in the sense of

classes for the equivalence on functions : f ∼ g if f(x) = g(x) a.e. In other words, if f is a locally
integrable function, Tf = 0 if and only if f = 0 almost everywhere. However, in the special case
f ∈ C0(I), this is equivalent to f = 0 everywhere. Indeed, the only open set with zero Lebesgue
measure is the empty set.
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Proof.— Assume Tf = 0. It is enough to prove that f = 0 on every segment of I, or equivalently
that ψf = 0 for every ψ ∈ C∞0 (I). Let ρ ∈ C∞0 (R), non negative, supported in [−1, 1], and such that∫

R
ρ(x) dx = 1 .

Consider, for every ε > 0 ,

ρε(x) =
1

ε
ρ
(x
ε

)
,

so that the integral of ρε is 1, and ρε ∈ C∞0 (R) is supported in [−ε, ε].

Lemma 1.3.6 Let g ∈ L1(R). Then the convolution product

gε = g ∗ ρε

converges to g in L1(R) as ε tends to 0.

Indeed, we have

|gε(x)− g(x)| ≤
∣∣∣∣∫ g(y)ρε(x− y)dy − g(x)

∣∣∣∣
≤
∣∣∣∣∫ g(x− εz)ρ(z)dz − g(x)

∣∣∣∣ ≤ ∫ |g(x− εz)− g(x)|ρ(z)dz
Then by Fubini-Tonelli,

∥gε − g∥L1 ≤
∫ ( ∫

|g(x− εz)− g(x)|ρ(z)dz
)
dx ≤

∫
ρ(z)∥τεzg − g∥L1dz,

where τag denotes the translation of the function f given by τag(x) = g(x− a). The result is then a
direct consequence of the dominated convergence theorem, taking into account the continuity of the
translations in the Lp spaces for p ∈ [1,∞[, that is, here,

∥τεzg − g∥L1 → 0 as ε→ 0 .

Indeed we have the domination

∥τεzg − g∥L1ρ(z) ≤ 2∥g∥L1ρ(z).

Coming back to the proof of the proposition, we have

(ψf) ∗ ρε(x) =
∫
f(y)ψ(y)ρε(x− y)dy = ⟨Tf , ψρε(x− .)⟩ = 0,

since y 7→ ψ(y)ρε(x − y) belongs to C∞0 (I). Applying the lemma to g = ψf ∈ L1, we conclude
ψf = 0 in L1, which completes the proof.
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1.3.3 The Dirac mass

For x0 ∈ I, we denote by δx0 : D(I)→ C the linear form given by

δx0(φ) = φ(x0).

For any function φ ∈ C∞0 (I), one has

|δx0(φ)| ≤ sup  |φ|,

so that δx0 is a distribution on I. It is called the Dirac mass at x0.

The Dirac mass at x0 cannot be defined by a locally integrable function f . Indeed, otherwise we would
have, for any function φ ∈ D(I) such that x0 /∈ suppφ,

φ(x0) = 0 =

∫
f(x)φ(x)dx.

so that f = 0 a.e. by Proposition 1.3.4. In particular, for a plateau function ψ such that ψ(x0) = 1,
we would have

1 = ψ(x0) = ⟨Tf , ψ⟩ =
∫
fψ = 0,

which is a contradiction.

1.3.4 A distribution involving an infinite number of derivatives

Let I =]0, 1[. Consider a sequence (xn) of points of ]0, 1[ converging to 0 as n tends to infinity. Let
(an) a sequence of complex numbers. For every φ ∈ C∞0 (I), we claim that

⟨T, φ⟩ =
∞∑
n=0

anφ
(n)(xn)

defines a distribution on I. Indeed, let a < b be points in ]0, 1[ such that supp(φ) ⊂ [a, b]. Then there
exists an integer N such that, for every n > N , xn < a, so that

∞∑
n=0

anφ
(n)(xn) =

N∑
n=0

anφ
(n)(xn)

is well defined. For the same reason, if φk tends to φ in C∞0 (I), then, for N large enough,

⟨T, φk⟩ =
N∑
n=0

anφ
(n)
k (xn)→

N∑
n=0

anφ
(n)(xn) = ⟨T, φ⟩ .

Notice that it is crucial that (xn) does not have an accumulation point in I, otherwise sequence (an)
should satisfy quite stringent conditions !
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1.3.5 Cauchy’s principal value of 1/x

Let us consider the linear form T : C∞0 (R)→ C given by

T (φ) = lim
ε→0+

∫
|x|>ε

φ(x)

x
dx.

This limit exists for any φ ∈ C∞0 (R). Indeed, for such a function, we have∫
|x|>ε

φ(x)

x
dx =

∫ +∞

ε

φ(x)

x
dx+

∫ −ε

−∞

φ(x)

x
dx

=

∫ +∞

ε

φ(x)− φ(−x)
x

dx −→
ε→0

∫ +∞

0

φ(x)− φ(−x)
x

dx .

where we have used that the function

x ∈ R 7→ φ(x)− φ(−x)
x

is C∞ and compactly supported.
Now we show that the well-defined linear form T is a distribution on R. Let φ ∈ C∞0 (R) . Then∣∣∣∣φ(x)− φ(−x)x

∣∣∣∣ ≤ 2 sup |φ′|

and, if suppφ ⊂ [−A,A], ∣∣∣∣∫ +∞

0

φ(x)− φ(−x)
x

dx

∣∣∣∣ ≤ 2A sup |φ′| .

This shows that T satisfies the estimate in Definition 1.3.1. It is important to notice that the constant
C in the estimate is here 2A, that does indeed depend on the support of φ.

This distribution is called (Cauchy’s) principal value of 1/x, 1 and we denote it by

⟨pv

(
1

x

)
, φ⟩ = lim

ε→0+

∫
|x|>ε

φ(x)

x
dx =

∫ +∞

0

φ(x)− φ(−x)
x

dx .

There are many other examples of extensions of functions near a singular point (Hadamard finite
parts,…)

1.4 Derivatives of distributions

This section introduces one of the most important operation on distributions, namely the derivative.
In order to understand the definition below, let us notice that, if f ∈ C1(I), a simple integration by
parts yields

∀φ ∈ C∞0 (I), ⟨Tf ′ , φ⟩ =
∫
I
f ′(x)φ(x)dx = −

∫
I
f(x)φ′(x)dx = −⟨Tf , φ′⟩ .

This suggest the following definition.

1. In French, it is called “valeur principale de 1/x”, hence denoted as vp
(
1
x

)
.
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Proposition 1.4.1 Let T ∈ D′(I). The linear form on D(I) defined by

φ 7→ −⟨T, φ′⟩

is a distribution, that we call the derivative of T , and that we denote by T ′.

Proof.— Let [a, b] ⊂ I be a segment, and C > 0, m ∈ N the constants given by the fact that
T ∈ D′(I). For φ ∈ C∞0 (I), supported in [a, b], we have

|⟨T ′, φ⟩| = |⟨T, φ′⟩| ≤ C
∑
α≤m

sup |φ(1+α)| ≤ C
∑

α≤m+1

sup |φ(α)|,

which shows that T ′ is a distribution.

Of course the above calculation gives immediately

Proposition 1.4.2 If T = Tf with f ∈ C1(I), then T ′ = Tf ′ .

The next examples are much more interesting.

Example 1.4.3 Let H : R → C denote the Heaviside function, namely H(x) = 1R+(x). The
function H belongs to L1

loc(R), and we can denote T = TH the associated distribution. For
φ ∈ C∞0 (R),

⟨T ′, φ⟩ = −⟨T, φ′⟩ = −
∫ +∞

0
φ′(x)dx = φ(0),

so that T ′
H = δ0.

Example 1.4.4 Let f ∈ L1
loc(I) and a ∈ I. Consider

F (x) =

∫ x

a
f(t) dt .

A classical application of the dominated convergence theorem claims that F is continuous on I.
In particular, F is locally integrable. We claim that

Proposition 1.4.5
T ′
F = Tf .

Proof.— Introduce, for every t ∈ I,

I<t = {x ∈ I : x < t} , I>t = {x ∈ I : x > t} .
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Let us compute, for every φ ∈ C∞0 (I),

⟨T ′
F , φ⟩ = −⟨TF , φ′⟩ = −

∫
I

(∫ x

a
f(t) dt

)
φ′(x) dx

=

∫
I<a

(∫
]x,a[

f(t) dt

)
φ′(x) dx−

∫
I>a

(∫
]a,x[

f(t) dt

)
φ′(x) dx .

Let us apply the Fubini theorem to both integrals in the right hand side. Notice that, if the
support of φ is included into [α, β] with a ∈ [α, β], the integrand of both integrals is supported
by [α, β]× [α, β] and is bounded by

|f(t)||φ′(x)|

which is integrable on [α, β] × [α, β]. Hence the Fubini theorem allows us to interchange the
orders of integration. This yields

⟨T ′
F , φ⟩ =

∫
I<a

f(t)

(∫
I<t

φ′(x) dx

)
dt−

∫
I>a

f(t)

(∫
I>t

φ′(x) dx

)
dt

=

∫
I<a

f(t)φ(t) dt+

∫
I>a

f(t)φ(t) dt

=

∫
I
f(t)φ(t) dt = ⟨Tf , φ⟩ .

Remark 1.4.6 (Going further than Lebesgue !) Lebesgue proved that F is almost everywhere
derivable, with a derivative equal to f . However, the almost everywhere derivation does not allow
to recover the initial function. There exist continuous functions with almost everywhere derivative
equal to 0 on [0, 1], which are not constants on [0, 1]. This uncomfortable phenomenon does not
happen with distributional derivatives, as we shall see below in Proposition 1.4.8.

Example 1.4.7 Let f ∈ L1
loc(R) be the function given by f(x) = ln(|x|), and T = Tf ∈ D′(R) be

the associated distribution. We want to compute T ′; it seems reasonable that T ′ is related to the
function x 7→ 1/x, but this one is not in L1

loc(R). However, let φ ∈ C∞0 ([−A,A]). We compute

⟨T ′, φ⟩ = −
∫
R

ln |x| φ′(x) dx = − lim
ε→0

∫
|x|>ε

φ′(x) ln(|x|) dx

= lim
ε→0

∫
|x|>ε

φ(x)

x
dx+ lim

ε→0
(φ(ε)− φ(−ε)) ln(ε)

and the second limit in the right hand side is 0, since φ is smooth. We conclude that

T ′ = pv(1/x),

as introduced in the previous paragraph.

The only functions with an identically null derivative on an interval are constant functions. For distri-
butions, the same result holds true.
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Proposition 1.4.8 If T ∈ D′(I) satisfies T ′ = 0, then T is associated with a constant function.

Proof.— We start the proof by a remark that may be useful in other contexts. A function φ ∈ C∞0 (I)
is the derivative of a function ψ ∈ C∞0 (I) if and only if

∫
I φ = 0. Indeed, if φ = ψ′ for ψ supported

in [a, b] ⊂ I, then ∫
I
φ(x)dx =

∫ b

a
ψ′(x)dx = [ψ(x)]ba = 0 .

Conversely, if
∫
I φ = 0, the function ψ : x 7→

∫
I∩]−∞,x[ φ(t)dt is compactly supported, with support

included in any compact interval containing that of φ, and satisfies ψ′ = φ.

Now let χ ∈ C∞0 (I) a function such that
∫
I χ = 1. For φ ∈ C∞0 (I), we have

φ = φ1 + φ2  with φ1 = φ−
(∫

I
φ

)
χ, and φ2 =

(∫
I
φ

)
χ,

and ⟨T, φ⟩ = ⟨T, φ1⟩+ ⟨T, φ2⟩. Since
∫
I φ1 = 0, there exists ψ ∈ C∞0 (I) such that φ1 = ψ′. Thus

⟨T, φ⟩ = ⟨T, ψ′⟩+
(∫

I
φ

)
⟨T, χ⟩ = −⟨T ′, ψ⟩+

(∫
I
φ

)
⟨T, χ⟩ = C

∫
I
φ = ⟨TC , φ⟩,

where C = ⟨T, χ⟩ is a constant, independent of φ.

Note that Proposition 1.4.2 says in particular that the derivative of a regular distribution associated
to a constant function is null. Therefore, the above statement is an equivalence. Another important
consequence is

Corollary 1.4.9 Let f ∈ L1
loc(I). The distributions T ∈ D′(I) such that

T ′ = Tf

are given by T = TF , where

F (x) =

∫ x

a
f(t) dt+ c , a ∈ I , c ∈ C .

Proof.— Let a ∈ I and

F1(x) =

∫ x

a
f(t) dt .

By Proposition 1.4.5, T ′
F1

= Tf = T ′. Then just apply Proposition 1.4.9 to T − TF1 .

Using arguments from the proof of Proposition 1.4.8, we can establish the surjectivity of the mapping
T 7→ T ′ on D′(I).
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Proposition 1.4.10 If S ∈ D′(I), there exists T ∈ D′(I) such that T ′ = S.

Proof.— The identity T ′ = S is equivalent to

∀φ ∈ D(I) , ⟨T, φ′⟩ = −⟨S, φ⟩ .

In view of the beginning of the proof of Proposition 1.4.8, this imposes the value of T on test functions
ψ on I such that ∫

I
ψ dx = 0 .

Fix χ ∈ D(I) such that ∫
I
χdx = 1 .

Given ψ ∈ D(I), we define

P (ψ)(x) =

∫
t<x

[
ψ(t)−

(∫
I
ψ(s) ds

)
χ(t)

]
dt .

This defines a linear mapping
P : D(I)→ D(I) ,

such that
supp[P (ψ)] ⊂ supp(ψ) ∪ supp(χ) .

Consequently, if ψn converges to ψ in D(I), then P (ψn) converges to P (ψ) in D(I). Therefore we
can define T ∈ D′(I) by

∀ψ ∈ D(I) , ⟨T, ψ⟩ = −⟨S, P (ψ)⟩ .
Since P (φ′) = φ for every φ ∈ D(I), this completes the proof.

Since T ′ is a distribution, it can be derivated. Iterating this idea, one can define the successive
derivatives T (k) of T for all k ∈ N. This means that distributions can be derivated at all order, with
the formula

⟨T (k), φ⟩ = (−1)k⟨T, φ(k)⟩.
For instance,

⟨δ(k)x0 , φ⟩ = (−1)kφ(k)(x0) .

1.5 Product by a smooth function

Following the same approach as for defining the derivative of a distribution, we introduce the following
definition.

Proposition 1.5.1 Let T ∈ D′(I), and f ∈ C∞(I). The linear form

φ 7→ ⟨T, fφ⟩

is a distribution, and we denote it fT .
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Proof.— Suppose (φj) is a sequence of functions in C∞0 (I), that converges to 0 in the D(I)-sense.
There is a segment [a, b] ⊂⊂ I such that suppφj ⊂ [a, b] for all j, which implies supp fφj ⊂ [a, b]
for all j. Moreover, for any α ∈ N,

(fφ)(α) =
∑
β≤α

(
α

β

)
f (β) φ(α−β).

so that if we denote
M = max

β≤α
sup
[a,b]
|f (β)|,

we see that

sup |(fφj)(α)| ≤M
∑
β≤α

(
α

β

)
sup |φ(α−β)

j |.

Since each of the terms in the sum tends to 0 as j → +∞, we have (fφj)(α) → 0 inD(I). Therefore,
since T is a distribution, ⟨T, fφj⟩ → 0. Proposition 2.3.4 shows that fT is a distribution on I.

Exercise 1.5.2 For f ∈ C∞(Rd), show that fδ0 = f(0)δ0.

Exercise 1.5.3 For f ∈ C∞(Rd) and g ∈ L1
loc(Rd), show that fTg = Tfg.

Exercise 1.5.4 Show that x pv(1/x) = 1.

Exercise 1.5.5 For f, g ∈ C∞(Rd), show that f(gT ) = (fg)T .

As for the product of two smooth functions, there is a Leibniz formula for the product of a distribution
by a function. We leave the proof of the following result to the reader.

Proposition 1.5.6 For f ∈ C∞(I), and T ∈ D′(I), we have

∀α ∈ N, (fT )(α) =
∑
β≤ α

(
α

β

)
f (β) T (α−β).

Our next statement in this subsection is an important converse of the elementary identity

(x− x0)δx0 = 0 .

Proposition 1.5.7 Let x0 ∈ I and let T ∈ D′(I) such that

(x− x0)T = 0 .

Then there exists a constant c ∈ C such that T = cδx0 .
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Proof.— Let χ ∈ C∞0 (I) such that χ(x0) = 1. For every φ ∈ C∞0 (I), we write, by Hadamard’s
lemma,

partitionsofunityφ(x) = φ(x0) + (x− x0)ψ(x) , ψ ∈ C∞(I) ,

= φ(x0)χ(x) + (x− x0)
(
1− χ(x)
x− x0

φ(x0) + ψ(x)

)
= φ(x0)χ(x) + (x− x0)θ(x) ,

where θ ∈ C∞(I) from the explicit expression, and θ is compactly supported since φ − φ(x0)χ is.
We infer

⟨T, φ⟩ = ⟨T, χ⟩φ(x0) + ⟨(x− x0)T, θ⟩ = ⟨T, χ⟩φ(x0) ,

whence T = cδx0 with c := ⟨T, χ⟩.

Example 1.5.8 Here is an example of a linear first order differential equation with non regular
solutions. Let us look for solutions T ∈ D′(R) of

xT ′ + T = 0 .

By the Leibniz formula, this equation is equivalent to

(xT )′ = 0 .

Using Proposition 1.4.8, this is equivalent to

xT = Tc1

for some c1 ∈ C. Since c1 pv(1/x) is a solution of this equation, we get equivalently

x

(
T − c1 pv

(
1

x

))
= 0 .

Finally, using Proposition 1.5.7, we obtain the general solution of this differential equation,

T = c1 pv

(
1

x

)
+ c2δ0 , (c1, c2) ∈ C2 .

Notice that existence of non smooth solutions — in this case, all of them except 0 — is due to
the fact that the coefficient of the highest derivative cancels at some point of the interval.

Finally, we use elements of the proof of Proposition 1.5.15 to prove the surjectivity of the mapping
T 7→ (x− x0)T on D′(I).

Proposition 1.5.9 Given S ∈ D′(I) and x0 ∈ I, there exists T ∈ D′(I) such that

(x− x0)T = S .

Remark 1.5.10 Of course, if x0 ̸∈ I, the statement trivially holds.
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Proof.— We proceed similarly to the proof of Proposition 1.4.10. Indeed, (x− x0)T = S reads

∀φ ∈ D(I) , ⟨T, (x− x0)φ⟩ = ⟨S, φ⟩ ,

which, in view of Hadamard’s lemma, imposes the value of T on test functions which vanish at x0.
As in the proof of Proposition 1.5.15, let χ ∈ C∞0 (I) such that χ(x0) = 1. For every ψ ∈ D(I), we
define

Q(ψ)(x) =
ψ(x)− ψ(x0)χ(x)

x− x0
=

∫ 1

0
[ψ′(tx+ (1− t)x0)− ψ(x0)χ′(tx+ (1− t)x0)] dt .

This defines a linear mapping Q : D(I)→ D(I), with the properties

suppQ(ψ) ⊂ supp(ψ) ∪ supp(χ) ,

and, if ψn converges to ψ in D(I), then Q(ψn) converges to Q(ψ) in D(I). We can then define
T ∈ D′(I) by

∀ψ ∈ D(I) , ⟨T, ψ⟩ = ⟨S,Q(ψ)⟩ .

Since, for every φ ∈ D(I),
Q((x− x0)φ) = φ ,

the proof is complete.

Exercise 1.5.11 Prove that, for every S ∈ D′(I), there exists T ∈ D′(I) such that

xT ′ + T = S .

Corollary 1.5.12 If x0 ∈ I and m is a positive integer, the mapping T ∈ D′(I) 7→ (x−x0)mT ∈
D′(I) is surjective, and its kernel is the m-dimensional vector space generated by δ

(j)
x0 , for

j = 0, 1, . . . ,m− 1.

Proof.— We proceed by induction on m. The case m = 1 has been solved in Propositions 1.5.9 and
1.5.7. Assume m ≥ 2 and that the statement is true for m − 1. The surjectivity of the mapping
T ∈ D′(I) 7→ (x−x0)mT ∈ D′(I) follows immediately from the similar property for m−1 and from
Proposition 1.5.9. As for the kernel, the identity

(x− x0)mT = 0

is equivalent to

(x− x0)T =

m−2∑
j=0

cjδ
(j)
x0 .

Let us find an explicit solution to the above equation. For this, we need the following lemma.

Lemma 1.5.13
(x− x0)δ(k)x0 = −kδ(k−1)

x0 .
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Indeed, for every test function φ, we have

⟨(x− x0)δ(k)x0 , φ⟩ = (−1)k((x− x0)φ)(k)(x0) = (−1)kkφ(k−1)(x0) = −k⟨δ(k−1)
x0 , φ⟩ .

Coming back to the proof of Proposition 1.5.12, we have

(x− x0)T = −(x− x0)
m−2∑
j=0

cj
j + 1

δ(j+1)
x0

and applying Proposition 1.5.7 to the distribution

T +

m−2∑
j=0

cj
j + 1

δ(j+1)
x0

completes the proof.

Using the above corollary, one easily obtains the following result.

Corollary 1.5.14 Let P be a non identically zero polynomial function. Then the mapping

T ∈ D′(I) 7→ PT ∈ D′(I)

is surjective, and its kernel is the vector space generated by

δ(j)a

where a describes the zeroes of P inside I, and j = 0, 1, . . . ,m(a) − 1, m(a) denoting the
multiplicity of a as a zero of P .

We leave the easy proof to the reader.

Finally, we solve a (very simple) differential equation in D′(R).

Proposition 1.5.15 Let I ⊂ R be an open interval, and a ∈ C∞(I). The distributions in D′(I)
that satisfy the differential equation

T ′ + aT = 0

are exactly the C1 solutions, that is the regular distributions Tf with f : x 7→ Ce−A(x), for some
constant C ∈ C, where A is primitive of a in I.

In other words, the distribution solutions of this differential equation coincide with the classical solu-
tions. Notice that this is not always the case if the coefficients of the highest derivative vanishes —
see example 1.5.8 below.

Proof.— Let A be a primitive of a on I. For T ∈ D′(I), we have, using Leibniz formula,

(eAT )′ = aeAT + eAT ′ = eA(T ′ + aT ).
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Thus
T ′ + aT = 0 ⇐⇒ (eAT )′ = 0⇐⇒ eAT = TC ⇐⇒ T = e−ATC = TCe−A .

Exercise 1.5.16 Solve in D′(I) the inhomogeneous equation T ′ + aT = f , for f ∈ L1
loc(I).

Furthermore, prove that, if S ∈ D(I), there exists T ∈ D′(I) such that

T ′ + aT = S .

1.6 Restriction and support

1.6.1 Definitions

Definition 1.6.1 Let T ∈ D′(I), and J ⊂ I an open subinterval of I. The restriction of T to
J is the distribution T|J ∈ D′(J) defined as

∀φ ∈ D(J) , ⟨T|J , φ⟩ = ⟨T, φ⟩ ,

where φ denotes the extension of φ by 0 on I \ J .

We say that T vanishes in J if T|J = 0.

Let us state without proof the following elementary properties of restriction with respect to derivation
and multiplication by a smooth function.

(T|J)
′ = T ′

|J , (fT )|J = f|JT|J .

As a first application of this important notion, let us state a very useful result.

Proposition 1.6.2 Let (In)n∈N be a sequence of intervals in I such that In =]an, bn[, [an, bn] ⊂
In+1 for every n, and ∪

n∈N
In = I .

Suppose we are given for every n ∈ N, a distribution Tn on In such that

∀n ∈ N , Tn+1|In = Tn .

Then there exists a unique distribution T on I such that

∀n ∈ N , T|In = Tn .
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Proof.— The key of the proof is the following elementary fact. For every segment [a, b] included in I,
there exists n such that [a, b] ⊂ In. Indeed, from the assumptions, the sequence (an) is decreasing,
tending to the left extremity of I, while the sequence (bn) is increasing, tending to the right extremity
of I. This fact is also a consequence of the Borel–Lebesgue property for the compact set [a, b].

If such a distribution T exists, for every φ ∈ D(I), there exists n such that supp(φ) ⊂ In, and
therefore we should have

⟨T, φ⟩ = ⟨Tn, φ⟩ .

This proves the uniqueness of T , and suggests a way of constructing it. Indeed, given φ ∈ D(I),
the assumption Tn+1|In = Tn implies that, for every n such that supp(φ) ⊂ In, the quantity ⟨Tn, φ⟩
does not depend on n. We can therefore define

⟨T, φ⟩ = ⟨Tn, φ⟩

for every such n. This clearly defines a linear form on D(I). Furthermore, if φj converges to φ in
D(I), then there exist n such that,

∀j , supp(φj) ⊂ In .

Therefore
⟨T, φj⟩ = ⟨Tn, φj⟩

and, because Tn is a distribution on In, ⟨T, φj⟩ tends to ⟨T, φ⟩.

Let us state a first consequence of Proposition 1.6.2.

Corollary 1.6.3 Let f ∈ C∞(I) admitting only finite order zeroes in I, namely, if f(a) = 0,
there exists m ≥ 1 such that f (m)(a) ̸= 0. Then the mapping T ∈ D′(I) 7→ fT ∈ D′(I) is
surjective.

Proof.— If f(a) = 0 and m is the smallest integer such that f (m)(a) ̸= 0, the Taylor formula yields

f(x) =
(x− a)m

(m− 1)!

∫ 1

0
(1− t)m−1f (m)(a+ t(x− a)) dt .

From the continuity of f (m), we infer that there exists an open interval Ja ⊂ I containing a such that
f(x) ̸= 0 for every x ∈ Ja \ {a}. If [α, β] is a segment of I, we conclude that the compact set of
zeroes of f in [α, β] is covered by the family of open intervals Ja’s, hence – from the Borel–Lebesque
property — by a finite subfamily of Ja’s, hence this set is finite. Consequently, in ]α, β[, we can write

f = Pg ,

where P is a polynomial and g is a smooth function which does not have any zero in ]α, β[. Conse-
quently, the mapping

T ∈ D′(]α, β[) 7→ fT ∈ D′(]α, β[)

is surjective, and its kernel consists of finite linear combinations of Dirac masses in zeros of f in ]α, β[
and of some of their derivatives. In particular, any distribution in this kernel is the restriction of some
distribution on I, the product of which with f is 0 on I.
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Let us now construct a sequence (In)n∈N as in Proposition 1.6.2. Let S ∈ D′(I). In view of the above
observation, there exists T0 ∈ D′(I0) such that f|I0T0 = S|I0 , and there exists T̃1 ∈ D′(I1) such

that f|I1 T̃1 = S|I1 . Denote by T̃1,0 the restriction of T̃1 to I0. Of course,

f|I0(T̃1,0 − T0) = 0 ,

and from the above observation, there existsU1 ∈ D′(I1) such that U1|I0 = T̃1,0−T0 and f|I1U1 = 0.
If we set

T1 = T̃1 − U1 ∈ D′(I1) ,

we observe that
T1|I0 = T0 , f|I1T1 = S|I1 .

By induction, we can therefore construct, for every n ∈ N, a distribution Tn on In such that

Tn+1|In = Tn , f|InTn = S|In .

Applying Proposition 1.6.2, there exists T ∈ D′(I) such that, for every n, T|In = Tn. Consequently,

∀n ∈ N , (fT )|In = f|InTn = S|In ,

hence, by the uniqueness part of Proposition 1.6.2, we conclude that

fT = S .

We now introduce a crucial notion.

Definition 1.6.4 The support of a distribution T ∈ D′(I) is the complement of the union of
all the open subintervals on which the restriction of T is 0. We denote it by suppT .

Notice that suppT is closed, and the following characterizations are convenient.

• x0 /∈ suppT if and only if there is an open neighborhood J of x0 such that T|J = 0.

• x0 ∈ suppT if and only if for any open neighborhood J of x0, one can find φ ∈ C∞0 (J) such
that ⟨T, φ⟩ ̸= 0.

Example 1.6.5 i) Let T = δ0. If J is an open interval that does not contain {0}, then
⟨T, φ⟩ = φ(0) = 0 for any φ ∈ C∞0 (R) such that suppφ ⊂ J . Thus suppT ⊂ {0}. On the
other hand, if J is an open subinterval that contains 0, we can find a plateau function ψ
over [−r, r] in C∞0 (J), and for this function we have ⟨T, ψ⟩ = ψ(0) = 1. Therefore we have
0 ∈ suppT and finally suppT = {0}.
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ii) If T = Tf for some f ∈ C0(I), with I an open interval of R, we have

suppT = supp f = {x ∈ I, f(x) ̸= 0} .

Indeed, suppose that x0 /∈ supp f . There is an open neighborhood J of x0 such that f|J = 0.
For φ ∈ C∞0 (J), we have thus ⟨Tf , φ⟩ = 0, so that Tf vanishes on J , and x0 /∈ suppTf .
Conversely, if x0 /∈ suppTf , there is a neighborhood J of x0 such that, for all φ ∈ C∞0 (J),
we have

∫
fφdx = ⟨Tf , φ⟩ = 0. We have seen in Proposition 1.3.4 that this implies f = 0

in J , thus x0 /∈ supp f .

iii) If T = Tf for some f ∈ L1
loc(I), the same argument leads to

supp(f) = {x0 ∈ I, ∀r > 0,meas{x ∈ [x0 − r, x0 + r], f(x) ̸= 0} > 0} .

1.6.2 Some properties

Lemma 1.6.6 Let I ⊂ R be an open set, and T ∈ D′(I).

i) For k ∈ N, suppT (k) ⊂ suppT .

ii) For f ∈ C∞(I), supp fT ⊂ supp f ∩ suppT .

Proof.— Let x0 /∈ suppT . There exists a neighborhood V of x0 such that for all ψ ∈ C∞0 (V ),
⟨T, ψ⟩ = 0. But if φ ∈ C∞0 (V ), ψ = φ(k) ∈ C∞0 (V ), thus

⟨T (k), φ⟩ = (−1)k⟨T, φ(k)⟩ = 0.

Therefore x0 /∈ suppT (k), which proves i). Now we prove the second point. If x0 /∈ supp f ∩ suppT ,
x0 either belongs to (supp f)c or to (suppT )c. In the first case, there exists a neighborhood V of
x0 such that f|V = 0. For φ ∈ C∞0 (V ), we have ⟨fT, φ⟩ = ⟨T, fφ⟩ = 0, thus x0 /∈ supp(fT ).
In the latter case, there exists a neighborhood V of x0 such that, for all ψ ∈ C∞0 (V ), ⟨T, ψ⟩ = 0.
For φ ∈ C∞0 (V ), fφ is a smooth function, which vanishes out of a compact set included in V . Thus
⟨fT, φ⟩ = ⟨T, fφ⟩ = 0, and x0 /∈ supp fT .

The following result is fundamental.

Proposition 1.6.7 Let φ ∈ C∞0 (I) and T ∈ D′(I). If suppφ ∩ suppT = ∅, then ⟨T, φ⟩ = 0.

Proof.— Let x ∈ suppφ. We have, by assumption, x /∈ suppT , thus there is an open subinterval
Jx containing x on which T vanishes. From the covering of the compact subset suppφ with the open
sets Jx, one can extract a finite covering

suppφ ⊂
n∪
j=1

Jxj .
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By Proposition 1.2.5, one can find φj ∈ C∞0 (Jxj ) for j = 1, . . . , n such that

φ = φ1 + · · ·+ φn .

Therefore

⟨T, φ⟩ =
n∑
j=1

⟨T, φj⟩ = 0 .

Caution: one may have φ = 0 on suppT and ⟨T, φ⟩ ̸= 0. For example, this is the case for T = δ′0
and φ ∈ C∞0 (R) such that φ(0) = 0, φ′(0) = 1.

An immediate consequence of Proposition 1.6.7 is the following important fact.

Corollary 1.6.8 The only distribution with empty support is 0.

We conclude this section by the important characterisation of distributions T ∈ D′(I) supported by a
point.

Proposition 1.6.9 Let T ∈ D′(I), with T ̸= 0, and x0 ∈ I. If suppT ⊂ {x0}, there exists
m ∈ N and m+ 1 complex numbers ak for 0 ≤ k ≤ m such that

T =

m∑
k=0

akδ
(k)
x0 .

Proof.— We write the proof for x0 = 0. Let [a, b] be a segment of I containing 0 in its interior, and
χ ∈ C∞0 (]a, b[) a plateau function above a smaller segment containing 0 in its interior. Since T is a
distribution, there exist C > 0, m ∈ N such that

∀ψ ∈ C∞0 (I), suppψ ⊂ [a, b]⇒ |⟨T, ψ⟩| ≤ C
∑

|α|≤m

sup |ψ(α)|,

and from now on we denote by m the smallest integer for which this property holds. For any function
φ ∈ C∞0 (I), since supp(φ− χφ) ∩ suppT = ∅, we have

⟨T, φ⟩ = ⟨T, χφ⟩+ ⟨T, φ− χφ⟩ = ⟨T, χφ⟩.

Since supp(χφ) ⊂ [a, b], we have

|⟨T, φ⟩| ≤ |⟨T, χφ⟩| ≤ C
∑

|α|≤m

sup |(χφ)(α)|.

At last, the Leibniz formula gives

sup |(χφ)(α)| = sup
[a,b]
|(χφ)(α)| ≤ C

∑
β≤α

sup
[a,b]
|φ(β)|,
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We first claim that, if φ ∈ C∞
0 (I) satisfies φ(k)(0) = 0 for every k ≤ m, then ⟨T, φ⟩ = 0. Indeed,

let χ be a plateau function on
[
−1

2 ,
1
2

]
, with supp(χ) ⊂ [−1, 1]. For ε > 0 small enough, set

χε(x) = χ
(x
ε

)
.

Since φ− χεφ vanishes in a neighborhood of 0, we have

⟨T, φ⟩ = ⟨T, χεφ⟩ .

By the Taylor formula and the assumption on φ

φ(x) = xm+1ψ(x)

for some ψ ∈ C∞0 (I). Hence

χεφ(x) = χ
(x
ε

)
xm+1ψ(x) = εm+1ρ

(x
ε

)
ψ(x) ,

where we introduced the notation ρ(y) = ym+1χ(y) . By the Leibniz formula, we have

sup
k≤m

sup
x

∣∣∣∣(ρ(xε)ψ(x))(k)
∣∣∣∣ ≤ B

εm

and therefore
|⟨T, φ⟩| = |⟨T, χεφ⟩| ≤ C sup

k≤m
sup |χεφ(k)| ≤ CBε .

As ε tends to 0, we obtain
⟨T, φ⟩ = 0 .

Let us now study the general case of φ ∈ C∞0 (I). Applying the Taylor formula, we have

φ(x) =
∑
k≤m

xk

k!
φ(k)(0)χε0(x) + r(x),

where ε0 > 0 is small enough so that [−ε0, ε0] ⊂ I, and r ∈ C∞0 (I) satisfies

r(α)(0) = 0 , α ≤ m .

We can therefore apply the above statement to r, and get

⟨T, φ⟩ =
∑
k≤m

φ(k)(0)⟨T, x
k

k!
χε0(x)⟩.

This is precisely what we have claimed, if we set ak = ⟨T, x
k

k! χε0⟩.
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1.7 Sequences of distributions

1.7.1 Convergence in D′

Definition 1.7.1 Let (Tj) be a sequence of distributions in D′(I). We say that (Tj) converges
to T ∈ D′(I) when, for any function φ ∈ C∞0 (I), the sequence of complex numbers (⟨Tj , φ⟩)
converges to ⟨T, φ⟩. In this case, we write Tj → T in D′(I).

Example 1.7.2 If (fj) is a sequence of locally integrable functions on I such that, for some
f ∈ L1

loc(I),

∀[a, b] ⊂ I ,
∫ b

a
|fj(x)− f(x)| dx→ 0 ,

then
Tfj → Tf

in D′(I). Indeed, for every test function φ on I with suppφ ⊂ [a, b],

⟨Tfj , φ⟩ − ⟨Tf , φ⟩ =
∫
I
fj(x)φ(x) dx−

∫
I
f(x)φ(x) dx

so that ∣∣⟨Tfj , φ⟩ − ⟨Tf , φ⟩∣∣ ≤ sup |φ(x)|
∫ b

a
|fj(x)− f(x)| dx

which tends to 0 as j tends to the infinity.

Notice that a special case of this is the following situation. The sequence fj converges to f almost
everywhere on I, and there exists a locally integrable function h on I such that supj |fj | ≤ h
almost everywhere on I. Indeed, the connection to the above condition of L1 convergence is
provided by the dominated convergence theorem.

Example 1.7.3 Let ρ ∈ L1(R) such that
∫
R ρ(x) dx = 1, and (ρε) the sequence of functions

defined by
ρε(x) = ε−1ρ(

x

ε
).

We also denote (Tε) = (Tρε) the associated family of distributions. For φ ∈ C∞0 (R), we have

⟨Tε, φ⟩ =
∫
R
ρε(x)φ(x)dx =

∫
R
ρ(y)φ(εy) dy.

By the dominated convergence theorem, ⟨Tε, φ⟩ → φ(0) as ε→ 0. Therefore the sequence (Tρε)
converges to δ0 in D′(R).

Exercise 1.7.4 Let (fj) be a sequence of L1 functions on I such that

sup
j

∫
I
|fj | dx <∞ ,

∫
I
fjdx→ c , supp(Tfj ) ⊂ [x0 − εj , x0 + εj ] , εj → 0 .

Prove that
Tfj → cδx0 .
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Exercise 1.7.5 Let

fε(x) =


1
ε2

if x ∈]0, ε[
−1
ε2

if x ∈]− ε, 0[
0 if |x| > ε

Prove that
Tfε −→

ε→0
−δ′0 .

Exercise 1.7.6 Let
fε(x) =

x

x2 + ε
, ε > 0 .

Prove that
Tfε −→

ε→0
pv

(
1

x

)
in D′(R).

The operations that we have defined on distributions are continuous with respect to the notion of
convergence. More precisely,

Proposition 1.7.7 If (Tj) converges to T in D′(I), then

i) For any k ∈ N, (T (k)
j ) converges to T (k).

ii) For any f ∈ C∞(I), (fTj) converges to fT .

iii) For any open subinterval J ⊂ I, (Tj)|J converges to T|J .

Proof.— Let φ ∈ C∞0 (I). We have clearly

⟨∂αTj , φ⟩ = (−1)|α|⟨Tj , ∂αφ⟩ → (−1)|α|⟨T, ∂αφ⟩ = ⟨∂αT, φ⟩,

and
⟨fTj , φ⟩ = ⟨Tj , fφ⟩ → ⟨T, fφ⟩ = ⟨fT, φ⟩.

The last statement is trivial.

Exercise 1.7.8 Show that if (fj) converges to f in C∞(I), in the sense of the uniform convergence
of all derivatives on every compact subset, then (fjT ) converges to fT in D′(I).

1.7.2 The Uniform Boundedness Principle

Let us motivate the main statement of this paragraph by the following questions.

• Assume that, for a sequence (Tj) of distributions, and for every φ ∈ D(I), the sequence
(⟨Tj , φ⟩) has a limit L(φ). This clearly defines a linear form L on D(I). Is it true that L is a
distribution ?
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• Assume Tj → T in D′(I) and fj → f in C∞(I) in the sense of the uniform convergence of all
derivatives on every compact subset, does it imply that fjTj → fT ? In order to to prove such
a result, we write

⟨fjTj , φ⟩ − ⟨fT, φ⟩ = ⟨Tj , (fj − f)φ⟩+ ⟨Tj , fφ⟩ − ⟨T, fφ⟩ .

The second term in the right hand side tends to 0 in view of the assumption. In the first term,
we notice that ψj = (fj − f)φ converges to 0 in D(I), but it is seems difficult to conclude that
⟨Tj , ψj⟩ → 0 without a bound on the action of Tj which is uniform with respect to j.

We state below, without proof, an important theoretical result, which is a ”distributional version” of
the Banach-Steinhaus theorem, and which provides such a uniform bound.

Proposition 1.7.9 Let (Tj) be a sequence in D′(I), and [a, b] ⊂ I a segment. If, for any
function φ ∈ C∞0 (I) with support in [a, b],

sup
j
|⟨Tj , φ⟩| < +∞,

then there exists C > 0 and m ∈ N, independent of j, such that

∀φ ∈ C∞0 (I), suppφ ⊂ [a, b]⇒ |⟨Tj , φ⟩| ≤ C
∑

|α|≤m

sup |φ(α)|.

As a consequence, we get the following somewhat surprising result.

Corollary 1.7.10 Let (Tj) be a sequence of distributions on I. If, for all functions φ ∈ C∞0 (I),
the sequence (⟨Tj , φ⟩) converges in C, then there exists a distribution T ∈ D′(I) such that
Tj → T in D′(I).

Proof.— Let T : C∞0 (I)→ C be the linear form given by

T (φ) = lim
j→+∞

⟨Tj , φ⟩.

We want to show that T is a distribution. So pick a segment [a, b] ⊂ I . Proposition 1.7.9 ensures that
there is a constant C > 0 and a natural numberm such that, for any φ ∈ C∞0 (I) with suppφ ⊂ [a, b],
we have

|⟨Tj , φ⟩| ≤ C
∑

|α|≤m

sup |φ(α)|.

Then we can pass to the limit j → +∞, and we get the required estimate.

The second motivation can also be addressed successfully. The proof is left to the reader.
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Corollary 1.7.11 Let (Tj) be a sequence of distributions on I which converges to T in D′(I).
Then, for every sequence (ψj) which converges to ψ in D(I), we have ⟨Tj , ψj⟩ → ⟨T, ψ⟩. In
particular, if fj → f in C∞(I) in the sense of the uniform convergence of all derivatives on
every compact subset, then fjTj → fT .

A proof of the uniform boundedness principle as well as other applications will be given in the next
chapter.

1.8 An introduction to Sobolev spaces

In this section, we give a short overview of some functional spaces, introduced by the Russian mathe-
matician Sergei Sobolev (1908-1989), which allowed to solve differential equations in a wide context.
Here we concentrate on a very special case in one variable. A more general presentation will be
provided in the next chapters.

1.8.1 Generalised derivatives.

Definition 1.8.1 Let I be an open interval of R, and let u ∈ L1
loc(I). We shall say that

u admits a generalised derivative if there exists f ∈ L1loc(I) such that, in the sense of
distributions in I,

T ′
u = Tf .

The element f ∈ L1
loc(I) is then unique, is called the generalised derivative of u, and is denoted

by f = u′.

Notice that uniqueness of f immediately follows from Proposition 1.3.4, and that the notation f = u′

is precisely made for leading to following generalised integration by parts formula, which is nothing
but a reformulation of T ′

u = Tf ,

∀φ ∈ C∞0 (I) ,

∫
I
u(x)φ′(x) dx = –

∫
I
u′(x)φ(x) dx .

From Corollary 1.4.9, we infer the following useful statement.

Proposition 1.8.2 Assume u ∈ L1
loc(I) admits a generalised derivative u′ ∈ L1

loc(I). Let x0 ∈ I.
Then there exists c ∈ C such that

u(x) =

∫ x

x0

u′(t) dt+ c a.e.

In particular, u is almost everywhere equal to a continuous function.
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Notice that, as a consequence of the Proposition 1.8.2, if the generalised derivative u′ of u turns out
to be a continuous function, then u is a C1 function, and u′ is merely its derivative in the usual sense.

1.8.2 The Sobolev space H1(I).

Definition 1.8.3 Let I be an open interval of R. We denote by H1(I) the subspace of
u ∈ L2(I) which admit a generalised derivative u′ ∈ L2(I).

We endow the space H1(I) with the following inner product,

(1.8.1) (u, v)H1 =

∫
I
u′(x)v′(x) dx+

∫
I
u(x)v(x) dx , u ∈ H1(I) , v ∈ H1(I) .

The following proposition shows how the notion of convergence in D′(I) is useful in this context.

Proposition 1.8.4 Endowed with the inner product (1.8.1), the space H1(I) is a Hilbert space.

Proof.— Let (uj) be a Cauchy sequence in H1(I) for the norm associated to (1.8.1). This precisely
means that (uj) and (u′j) are Cauchy sequences of L2(I). Since L2(I) is a Hilbert space, there exist

u, v in L2(I) such that
uj → u , u′j → v

in L2(I). Since the convergence in L2(I) implies the convergence on L1(]a, b[) for every segment
[a, b] ⊂ I, we infer that, in D′(I),

Tuj → Tu , Tu′j → Tv .

But, by definition of a generalised derivative, and using the continuity of derivation for the convergence
of distributions,

Tu′j = T ′
uj → T ′

u .

This implies T ′
u = Tv, in other words u admits v as a generalised derivative, u′ = v ∈ L2(I), which

means that u ∈ H1(I) and
uj → u , u′j → u′ .

This precisely means that uj tends to u in H1(I). Hence H1(I) is a complete normed vector space.

1.8.3 The special case of a bounded interval

In this section, I =]a, b[, a, b ∈ R, is an open bounded interval. In this case, we get more information
from Proposition 1.8.2 .
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Proposition 1.8.5 If u ∈ H1(]a, b[), then u is almost everywhere equal to a continuous function
on [a, b], and we have the Sobolev inequality,

∥u∥L∞ ≤ C∥u∥H1 ,

where C is a constant depending only on b− a.

Proof.— We start from the identity in Proposition 1.8.2,

u(x) =

∫ x

x0

u′(t) dt+ c a.e.

Since L2(]a, b[) ⊂ L1(]a, b[), we infer that the right hand side has a limit as x tends to a and as x
tends to b. Hence u is almost everywhere equal to a continuous function on [a, b]. Furthermore, by
the Cauchy-Schwarz inequality, ∣∣∣∣∫ x

y
u′(t) dt

∣∣∣∣ ≤ √b− a∥u′∥L2 .

Consider

mu =
1

b− a

∫ b

a
u(y) dy .

By the Cauchy–Schwarz inequality,

|mu| ≤
1√
b− a

∥u∥L2 .

On the other hand,

u(x)−mu =
1

b− a

∫ b

a
(u(x)− u(y)) dy =

1

b− a

∫ b

a

(∫ x

y
u′(t) dt

)
dy .

Therefore

|u(x)−mu| ≤
1

b− a

∫ b

a

∣∣∣∣∫ x

y
u′(t) dt

∣∣∣∣ dy ≤ √b− a∥u′∥L2 .

Summing up, we obtain

∥u∥L∞ ≤ ∥u−mu∥L∞ + |mu| ≤ (b− a)−1/2∥u∥L2 + (b− a)1/2∥u′∥L2 ≤ C∥u∥H1 .

Our next step is the introduction of an important closed subspace of H1(]a, b[).

Definition 1.8.6 We denote by H1
0 (]a, b[) the closure of C∞0 (]a, b[) in H1(I).

Recall from Proposition 1.8.5 that u 7→ u(a) and u 7→ u(b) are continuous linear forms on H1(]a, b[).
A remarkable fact is that H1

0 (]a, b[) can be characterised by these linear forms.
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Proposition 1.8.7 Given u ∈ H1(]a, b[), u belongs to H1
0 (]a, b[) if and only if u(a) = u(b) = 0.

Proof.—Since elements of H1(]a, b[) are continuous functions on [a, b] and the H1 norm controls the
L∞ norm on [a, b] from Proposition 1.8.5, any element u of the H1 closure of test functions can be
uniformly approximated on [a, b] by test functions. This immediately implies u(a) = u(b) = 0.

Conversely, consider u ∈ H1(]a, b[) such that u(a) = u(b) = 0. For ε > 0 small enough, we consider
a function χε ∈ C∞

0 (I), supported into [a+ ε, b− ε], and such that χε = 1 on [a+ 2ε, b− 2ε], with
the estimate

∥χ′
ε∥L∞ = O

(
1

ε

)
,

as ε→ 0. An example of such a family of functions is

χε(x) = χ

(
x− a
ε

)
χ

(
b− x
ε

)
,

where χ ∈ C∞(R) satisfies

χ(t) =

{
0 if t ≤ 1

1 if t ≥ 2.

Then we claim that χεu → u in H1(]a, b[) as ε → 0. Indeed, χεu → u in L2(]a, b[) by dominated
convergence, and

(χεu)
′ = χεu

′ + χ′
εu .

We are therefore reduced to proving that χ′
εu→ 0 in L2(]a, b[). We have

∥χ′
εu∥L2 ≤ O

(
1

ε

)(∫ a+2ε

a
|u(x)|2 dx+

∫ b

b−2ε
|u(x)|2 dx

) 1
2

,

and, for a ≤ x ≤ a+ 2ε,

|u(x)| =

∣∣∣∣u(a) + ∫ x

a
u′(t) dt

∣∣∣∣ = ∣∣∣∣∫ x

a
u′(t) dt

∣∣∣∣
≤
√
2ε

(∫ a+2ε

a
|u′(x)|2 dx

) 1
2

,

with a similar inequality on [b− 2ε, b]. Finally,

∥χ′
εu∥L2 ≤ O(1)

(∫ a+2ε

a
|u′(x)|2 dx+

∫ b

b−2ε
|u′(x)|2 dx

) 1
2

→ 0 .

Summing up we have proved that u can be approximated in H1 by compactly supported elements.
The proof is completed by observing that any compactly supported element of H1(]a, b[) can be ap-
proximated by a sequence of C∞0 (]a, b[). This relies on the following regularisation argument. Let
v ∈ H1(]a, b[) such that supp(v) ⊂ [α, β] ⊂]a, b[. We extend v by 0 as an element of H1(R)
supported in [α, β]. Let ρ ∈ C∞0 (R) of integral 1, and

ρε(x) =
1

ε
ρ
(x
ε

)
.
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Then ρε ∗ v ∈ C∞0 (R), is compactly supported in ]a, b[ if ε is small enough, and ρε ∗ v → v in L2 as ε
tends to 0. Furthermore, by the Leibniz rule,

(ρε ∗ v)′(x) =
∫
R
ρ′ε(x− y) v(y) dy =

∫
R
− d

dy
[ρε(x− y)] v(y) dy =

∫
R
ρε(x− y) v′(y) dy ,

by definition of the generalised derivative. In other words,

(ρε ∗ v)′ = ρε ∗ v′

and therefore (ρε ∗ v)′ → v′ in L2 as ε tends to 0. Summing up, we have proved that ρε ∗ v → v in
H1.

Proposition 1.8.7 implies an important inequality for elements of H1
0 (]a, b[).

Proposition 1.8.8 (The Poincaré inequality) For every u ∈ H1(]a, b[) such that u(a) = 0 or
u(b) = 0, we have

(1.8.2) ∥u∥L2 ≤ (b− a)∥u′∥L2 .

In particular,

(u, v)H1
0
=

∫ b

a
u′(x) v′(x) dx

is an inner product on H1
0 (]a, b[), which is equivalent to the H1 inner product.

Proof.— Again we refer to Proposition 1.8.2,

u(x) =

∫ x

x0

u′(t) dt+ c .

Assume for instance u(a) = 0. Then making x tend to a, we infer

c =

∫ x0

a
u′(t) dt

and consequently

u(x) =

∫ x

a
u′(t) dt .

Inequality (1.8.2) then follows from the Cauchy–Schwarz inequality. In view of Proposition 1.8.7,
inequality (1.8.2) applies in particular to elements of H1

0 (]a, b[), so that

∥u∥2L2 ≤ (b− a)2(u, u)H1
0
.

Since (u, u)H1 = (u, u)H1
0
+ ∥u∥2L2 , we conclude that the inner products (u, v)H1 and (u, v)H1

0
are

equivalent on H1
0 .

The Hilbert structure onH1
0 leads to a very efficient strategy for solving second order linear differential

equations with homogeneous boundary conditions.
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Theorem 1.8.9 Let q ∈ L1(]a, b[) such that q ≥ 0, and let f ∈ L1(]a, b[). There exists a
unique u ∈ H1(]a, b[) such that u′ admits a generalised derivative u′′ satisfying

−u′′ + qu = f , u(a) = u(b) = 0 .

Proof.— Notice that qu is well defined in L1 since q ∈ L1 and u ∈ L∞. Decomposing f into its real
and imaginary parts, we may assume f is real valued, so that u is to be real valued as well. So we
shall work in the real Hilbert space made of real valued elements of H1. This simple reduction allows
to avoid the complex conjugation in the inner product, so that the connection with the distribution
bracket is clearer.

In view of Proposition 1.8.7, the above problem is equivalent to

−T ′
u′ + Tqu = Tf , u ∈ H1

0 (]a, b[) ,

or, for every φ ∈ C∞0 (]a, b[),∫ b

a
u′φ′ dx+

∫ b

a
quφ dx =

∫ b

a
fφ dx , u ∈ H1

0 (]a, b[) .

Since the left hand side and the right hand side of the above identity are continuous linear forms of φ
for the H1 norm, and since H1

0 is the closure of C∞0 in H1, we infer that the problem is equivalent to
finding u ∈ H1

0 (]a, b[) such that

∀v ∈ H1
0 (]a, b[) ,

∫ b

a
u′v′ dx+

∫ b

a
quv dx =

∫ b

a
fv dx .

Now observe that the left hand side is an inner product on the real space H1
0 , which is equivalent to

the H1 inner product. Indeed,

(u, u)H1
0
≤
∫ b

a
(u′)2 dx+

∫ b

a
qu2 dx ≤

∫ b

a
(u′)2 dx+

(∫ b

a
q dx

)
∥u∥2L∞

≤ max

(
1, C2

(∫ b

a
q dx

))
(u, u)H1

in view of Proposition 1.8.5. Hence, from Proposition 1.8.2, the real space H1
0 (]a, b[) endowed with

(u, v)q =

∫ b

a
u′v′ dx+

∫ b

a
quv dx

is a (real) Hilbert space. Since, in view of Proposition 1.8.5, the linear form

v 7→
∫ b

a
fv dx

is continuous on this Hilbert space, the theorem follows from the Riesz representation theorem.

Remark 1.8.10 Since u′′ belongs to L1(]a, b[), we infer that u′ extends as a continuous function
on [a, b]. Furthermore, if q, f are continuous functions on [a, b], then u′′ is continuous on [a, b],
which means that u is C2 on [a, b], so that the differential equation is satisfied in the usual sense.
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1.9 Further properties

1.9.1 Characterisation of Lipschitz functions

Definition 1.9.1 Let k be a positive number and I be an open interval. A function u : I → C
is k–Lipschitz if, for every x, y ∈ I,

|u(x)− u(y)| ≤ k|x− y| .

A typical example of a k–Lipschitz function is a C1 function u such ∥u′∥∞ ≤ k. Of course, there are
Lipschitz functions which are not derivable, like function x 7→ |x|. The following result give a complete
description of k–Lipschitz functions.

Theorem 1.9.2 A function u : R → C is k–Lipschitz if and only if there exists f ∈ L∞(R)
such that

(1.9.3) ∀x ∈ R , u(x) = u(0) +

∫ x

0
f(t) dt .

Remark 1.9.3 A similar result holds on any open interval I, from an adaptation of the proof
below on R.

Proof.— If ∀x ∈ R , u(x) = u(0) +
∫ x
0 f(t) dt , we have

|u(x)− u(y)| =
∣∣∣∣∫ x

y
f(t) dt

∣∣∣∣ ≤ ∥f∥∞|x− y| .
Conversely, let u be a k–Lipschitz function. We are going to prove that u admits a generalised deriva-
tive f with ∥f∥∞ ≤ k. According to Proposition 1.8.2, this will imply property (1.9.3).
As a first step, we are going to prove the following inequality,

(1.9.4) ∀φ ∈ C∞0 (I) , |⟨T ′
u, φ⟩| ≤ k∥φ∥L1 .

Indeed, we have,

⟨T ′
u, φ⟩ = −

∫
R
u(x)φ′(x) dx = −

∫
R
u(x) lim

h→0

φ(x+ h)− φ(x)
h

dx

= − lim
h→0

∫
R
u(x)

φ(x+ h)− φ(x)
h

dx ,
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by using either dominated convergence or uniform convergence. Next we decompose the integral as
follows, ∫

R
u(x)

φ(x+ h)− φ(x)
h

dx =
1

h

(∫
R
u(x)φ(x+ h) dx−

∫
R
u(x)φ(x) dx

)
=

1

h

(∫
R
u(y − h)φ(y) dy −

∫
R
u(x)φ(x) dx

)
=

∫
R

u(y − h)− u(y)
h

φ(y) dy ,

and, by the Lipschitz property of u, the modulus of the latter expression is bounded by k∥φ∥L1 . This
leads to inequality (1.9.4). At this stage we appeal to the following functional analytic lemma.

Lemma 1.9.4 Let E be a normed vector space, and let D be a dense vector subspace of E . Let
L : D → C be a linear form, which is continuous for the norm on E . Then L admits a unique
continuation L̃ as a continuous linear form on E , and ∥L̃∥ = ∥L∥ .

Applying Lemma 1.9.4 to E = L1(R), D = D(R) and L = T ′
u, we infer that T ′

u extends as a
continuous linear form on L1(R), of norm at most k. From the L1−L∞ duality theorem, there exists
f ∈ L∞(R) such that

∀φ ∈ C∞0 (I) , ⟨T ′
u, φ⟩ =

∫
R
f(x)φ(x) dx ,

and ∥f∥∞ ≤ k. This precisely means that f is the generalised derivative of u, whence (1.9.3).

1.9.2 Derivation and integration under the bracket

This paragraph provides two very useful rules of calculations which turn out be crucial when dealing
with convolution of distributions — see the next paragraph.

Proposition 1.9.5 (Derivation under the bracket) Let I, J be open intervals, ψ : I × J → C
be a C∞ function such that there exists a segment [a, b] ⊂ I for which

∀z ∈ J , suppψ(., z) ⊂ [a, b] ,

where we have set ψ(., z) : x ∈ I → ψ(x, z) ∈ C . Define

g(z) = ⟨T, ψ(., z)⟩ , z ∈ J .

Then g ∈ C∞(J) and
∀z ∈ J , g′(z) =

⟨
T,
∂ψ

∂z
(., z)

⟩
.

Proof.— Let us first prove that g is derivable on J . We calculate, for z ∈ J and h ̸= 0 small enough,

g(z + h)− g(z)
h

=

⟨
T,
ψ(., z + h)− ψ(., z)

h

⟩
.
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Now we observe that, since ψ ∈ C∞(I × J),

∀x ∈ I , ψ(x, z + h)− ψ(x, z)
h

−→
h→0

∂ψ

∂z
(x, z) .

We claim that the convergence takes place in C∞0 (I). Indeed, we already know that the left hand side
is a smooth function of x which is supported in [a, b]. We claim that it converges uniformly on I to the
right hand side. Indeed,

ψ(x, z + h)− ψ(x, z)
h

=

∫ 1

0

∂ψ

∂z
(x, z + th) dt .

Fix ε0 > 0 such that |h| ≤ ε0. Then the continuous function ∂ψ
∂z is uniformly continuous on the compact

subset [a, b]× [z − ε0, z + ε0]. Consequently,

sup
x∈[a,b]

∣∣∣∣∫ 1

0

∂ψ

∂z
(x, z + th) dt− ∂ψ

∂z
(x, z)

∣∣∣∣ −→h→0
0 .

The same argument holds for every derivative in x,

ψ(k)(x, z + h)− ψ(k)(x, z)

h
−→
h→0

∂ψ(k)

∂z
(x, z)

uniformly for x ∈ I.
Using the continuity property of T , we infer

g(z + h)− g(z)
h

−→
h→0

⟨
T,
∂ψ

∂z
(., z)

⟩
,

which shows that g is derivable with the claimed formula for g′(z). Finally, by applying this result, one
easily proves by induction on n that g is n times derivable with

g(n)(z) =

⟨
T,
∂nψ

∂zn
(., z)

⟩
.

This completes the proof.

Proposition 1.9.6 (Integration under the bracket) Let I, J be open intervals, ψ : I×J → C
be a C∞ function such that there exists segments [a, b] ⊂ I and [c, d] ⊂ J for which

∀(x, z) /∈ [a, b]× [c, d] , ψ(x, z) = 0 .

Then ∫
J
⟨T, ψ(., z)⟩ dz =

⟨
T,

∫
J
ψ(., z) dz

⟩
.

Proof.— Consider

ψ̃(x, z) =

∫
t∈J,t<z

ψ(x, t) dt .
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Then ψ̃ satisfies the assumptions of Proposition 1.9.5, and

∂ψ̃

∂z
(x, z) = ψ(x, z) .

Applying this proposition leads to

d

dz
⟨T, ψ̃(., z)⟩ = ⟨T, ψ(., z)⟩ .

We integrate both sides on J . This gives

⟨T, ψ̃(., d)⟩ − ⟨T, ψ̃(., c)⟩ =
∫
J
⟨T, ψ(., z)⟩ dz .

In view of the assumptions on ψ, we have

⟨T, ψ̃(., d)⟩ =
⟨
T,

∫
J
ψ(., z) dz

⟩
, ⟨T, ψ̃(., c)⟩ = 0 .

This completes the proof.

1.9.3 Convolution and regularisation

In this section, we generalise the convolution with a test function to a distribution.

Definition 1.9.7 Let T ∈ D′(R) and φ ∈ D(R). For every x ∈ R, we denote by φ(x− .) the
element of D(R) which maps y ∈ R to φ(x− y) ∈ C . We set

T ∗ φ(x) = ⟨T, φ(x− .)⟩ .

Notice that, if T = Tf for f ∈ L1
loc(R), we have

Tf ∗ φ(x) =
∫
R
f(y)φ(x− y) dy = f ∗ φ(x) ,

in the usual sense of convolution of functions.

Proposition 1.9.8 For every (T, φ) ∈ D′(R)×D(R), T ∗ φ ∈ C∞(R), and

(T ∗ φ)′ = T ∗ φ′ = T ′ ∗ φ .

Proof.— It is enough to prove that T∗φ is smooth on every finite open interval ]α, β[. If suppφ ⊂ [a, b]
and x ∈]α, β[, we have suppφ(x− .) ⊂ [α− b, β − a], so that the assumptions of Proposition 1.9.5
are fulfilled with I = R, J =]α, β[ and

ψ(y, x) = φ(x− y) .
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Consequently, T ∗ φ ∈ C∞(R), and

(T ∗ φ)′(x) = ⟨T, ∂xφ(x− .)⟩ = ⟨T, φ′(x− .)⟩ = T ∗ φ′(x) .

Furthermore, we have
φ′(x− y) = −∂yφ(x− y) ,

so that
(T ∗ φ)′(x) = ⟨T,−∂yφ(x− .)⟩ = ⟨T ′, φ(x− .)⟩ = T ′ ∗ φ(x) .

Let us come to regularisation. Let ρ ∈ C∞0 (R) with∫
R
ρ(x) dx = 1 .

For every ε > 0, we set

ρε(x) =
1

ε
ρ
(x
ε

)
.

It is well known that, if φ ∈ C∞0 (R),
ρε ∗ φ −→

ε→0
φ

in D(R). We set fε = T ∗ ρε.

Proposition 1.9.9 For every T ∈ D′(R),

Tfε −→
ε→0

T .

Proof.— We have to prove that

(1.9.5) ∀φ ∈ D(R) ,
∫
R
fε(x)φ(x) dx −→

ε→0
⟨T, φ⟩ .

Note that ∫
R
fε(x)φ(x) dx =

∫
R
⟨T, ρε(x− .)⟩φ(x) dx =

∫
R
⟨T, ρε(x− .)φ(x)⟩ dx ,

and that
ψ(y, x) := ρε(x− y)φ(x)

satisfies the assumption of Proposition 1.9.6 on R×R. Indeed, if supp ρ ⊂ [−C,C], suppφ ⊂ [a, b],
then

∀(y, x) /∈ [a− εC, b+ εC]× [a, b] , ψ(y, x) = 0 .

Applying Proposition 1.9.6, we obtain∫
R
⟨T, ρε(x− .)φ(x)⟩ dx =

⟨
T,

∫
R
ρε(x− .)φ(x) dx

⟩
= ⟨T, ρ̃ε ∗ φ⟩

where ρ̃(z) = ρ(−z). Since ρ̃ satisfies the same assumption as ρ, we have ρ̃ε ∗ φ −→
ε→0

φ in D(R),
and consequently ∫

R
fε(x)φ(x) dx −→

ε→0
⟨T, φ⟩ .
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1.9.4 Positive distributions and increasing functions

Definition 1.9.10 A distribution T on I is said positive (we note T ≥ 0) if, for every φ ∈ D(I)
valued in [0,+∞[, we have ⟨T, φ⟩ ∈ [0,+∞[.

For instance, it is easy to check that, if f ∈ L1
loc(I), Tf ≥ 0 if and only f ≥ 0 a.e. Another example

is T = cδx0 with c ≥ 0 and x0 ∈ I. On the other hand, whatever c ̸= 0 is, it is clear that cδ′x0 cannot
be positive. In fact, we have the following general result.

Proposition 1.9.11 If T is a positive distribution, then T has order 0, namely

∀[a, b] ⊂ I , ∃C > 0 , ∀φ ∈ D(I), suppφ ⊂ [a, b]⇒ |⟨T, φ⟩| ≤ C∥φ∥∞ .

Proof.— Let [a, b] ⊂ I and χ ∈ D(I) be a plateau function on [a, b]. Let φ ∈ D(I) be real valued
and such that suppφ ⊂ [a, b]. Then

−χ∥φ∥∞ ≤ φ ≤ χ∥φ∥∞ .

Consequently, the positivity of T implies ⟨T, φ⟩ ∈ R and

−⟨T, χ⟩∥φ∥∞ ≤ ⟨T, φ⟩ ≤ ⟨T, χ⟩∥φ∥∞ ,

and therefore
|⟨T, φ⟩| ≤ ⟨T, χ⟩∥φ∥∞ .

If φ is complex valued with suppφ ⊂ [a, b], we decompose

φ = Re(φ) + iIm(φ)

and we conclude
|⟨T, φ⟩| ≤ 2⟨T, χ⟩∥φ∥∞ .

Remark 1.9.12 Since any compactly supported (positive) continuous function on I can be ap-
proximated uniformly by a sequence of (positive) test functions supported in a fixed segment of
I, the above proposition implies that any positive distribution extends as a positive linear form on
compactly supported continuous functions. Hence, according to the Riesz representation theorem,
there exists a positive Borel measure µ on I, finite on segments, such that

∀φ ∈ D(I) , ⟨T, φ⟩ =
∫
I
φ(x) dµ(x) .
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Let us come to the main result of this paragraph, which characterises increasing functions. For sim-
plicity, we state and prove this result on R, but a similar result holds on any open interval. Recall that
an increasing function on R is a function f : R→ R such that

∀x ≥ y , f(x) ≥ f(y) .

(sometimes such functions are called nondecreasing functions).

Theorem 1.9.13 If f : R → R is an increasing function, then T ′
f ≥ 0 . Conversely, if

T ∈ D′(R) is such that T ′ ≥ 0 and ⟨T, φ⟩ ∈ R for every real valued test function φ, then
there exists an increasing function f on R such that Tf = T .

Proof.— Let f : R→ R be an increasing function. Note that f is bounded on every segment, hence
it is locally integrable, and it makes sense to consider Tf . Let φ ∈ D(R), valued in [0,+∞[. Let us
calculate

⟨T ′
f , φ⟩ = −

∫
R
u(x)φ′(x) dx = −

∫
R
f(x) lim

h→0

φ(x+ h)− φ(x)
h

dx

= − lim
h→0

∫
R
f(x)

φ(x+ h)− φ(x)
h

dx

= lim
h→0

∫
R

f(y − h)− f(y)
h

φ(y) dy ,

by the same arguments as in subsection 1.9.1. It yields ⟨T ′
f , φ⟩ ≥ 0, hence T ′

f is positive.
Conversely, let T ∈ D′(R) such that T ′ ≥ 0. Choose ρ ∈ D(R), supported in R+, satisfying

0 ≤ ρ ,
∫
R
ρ(x) dx = 1.

Recall that, from Proposition 1.9.9, the smooth function

fε = T ∗ ρε

is such that Tfε → T in D′(R). Notice moreover that, since T takes real values on real valued test
functions, fε is real valued. Our strategy is to prove that, for an appropriate choice of ρ, fε is an
increasing function and converges for the simple convergence to a function f , with local dominated
convergence. This will imply that Tfε → Tf , hence T = Tf .
Let us first prove that fε is increasing. We know that

f ′ε = T ′ ∗ ρε

which is ≥ 0 because T ′ ≥ 0 and ρε ≥ 0. Therefore fε is an increasing function on R.
We claim that moreover fε is an decreasing function of ε. In fact, applying Proposition 1.9.5 of
derivation under the bracket, we have that fε(x) is a C∞ function of ε > 0, and that

d

dε
fε(x) = ⟨T,

∂

∂ε
ρε(x− .)⟩ .
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Observe that

∂

∂ε
ρε(x− y) =

∂

∂ε

[
1

ε
ρ

(
x− y
ε

)]
= − 1

ε2

[
ρ

(
x− y
ε

)
+
x− y
ε

ρ′
(
x− y
ε

)]
=

1

ε2
∂

∂y

[
(x− y)ρ

(
x− y
ε

)]
Consequently,

d

dε
fε(x) = −

1

ε

⟨
T ′,

(x− .)
ε

ρ

(
x− .
ε

)⟩
≤ 0 ,

because T ′ ≥ 0 and zρ(z) ≥ 0 in view of the assumptions on ρ.
Now we claim that, as ε → 0, for every x ∈ I, fε(x) is bounded from above. Indeed, consider
ψ ∈ D(I), valued in [0,+∞[, supported in [x,+∞[, and such that∫

R
ψ(y) dy = 1 .

Then, because fε(y) is an increasing function of y,

fε(x) = fε(x)

∫
R
ψ(y) dy ≤

∫
R
fε(y)ψ(y) dy −→

ε→0
⟨T, ψ⟩

because of Proposition 1.9.9. Since fε(x) is increasing as ε decreases to 0, we conclude that

fε(x) −→
ε→0

f(x)

where f is an increasing function on R. Furthermore, if x ∈ [a, b] ⊂ R

f(x) ≥ fε(x) ≥ fε(a) −→
ε→0

f(a) .

Therefore we can apply the dominated convergence theorem and conclude that, for every φ ∈ D(R),∫
R
fε(x)φ(x) dx −→

ε→0

∫
R
f(x)φ(x) dx .

Summing up, applying again Proposition 1.9.9, we have proved

⟨T, φ⟩ =
∫
R
f(x)φ(x) dx ,

hence T = Tf .

Remark 1.9.14 The first point of Theorem 1.9.13 says that, if f is increasing, T ′
f is a positive

distribution, hence is given by a positive Borel measure, finite on segments. This measure is called
the Stieltjes measure associated to f , and the formula for the integral of a compactly supported
continuous function with respect to this measure is an extension of the definition of the usual
integral of a continuous function by using Riemann sums. More precisely, if suppφ ⊂ [a, b],

⟨T ′
f , φ⟩ = lim

N→∞

N−1∑
j=0

φ

(
a+ j

b− a
N

)[
f

(
a+ (j + 1)

b− a
N

)
− f

(
a+ j

b− a
N

)]
.

For instance, if f : R → R is the repartition function of a random variable on R, then T ′
f is

nothing but the law of this random variable.
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1.9.5 The structure of distributions

Recall that, by Proposition 1.4.10, every distribution T has a primitive S. Furthermore, as can be
observed from the proof of 1.4.10, if T is real, then one can choose S real. Now, if T is positive,
then S satisfies the assumption of Theorem 1.9.13, and there exists an increasing function f such
that Tf = S, or T = T ′

f . In other words, any positive distribution is the derivative of Tf , where f is
increasing. This statement extends to any distribution of order 0 as follows.

Theorem 1.9.15 Any distribution of order 0 on R is of the form T ′
f , where f ∈ L∞

loc(R).

Proof.— Let us come back to the proof of Proposition 1.4.10. Let χ ∈ D(R) supported in ]− 1, 1[ and
satisfying ∫

R
χ(y) dy = 1 .

For every ψ ∈ D(R), we set

P (ψ)(x) =

∫ x

−∞

[
ψ(t)− χ(t)

∫
R
ψ(y) dy

]
dt .

Notice that P (ψ) ∈ D(R) and, if supp(ψ) ⊂]− n, n[ for some n ≥ 1, then supp(P (ψ)) ⊂]− n, n[.
Since P (φ′) = φ, we infer that the distribution S defined by

⟨S, ψ⟩ = −⟨T, P (ψ)⟩

satisfies S′ = T . Since T is of order 0, for every n ≥ 1, there exists Cn > 0 such that

∀φ ∈ D(]− n, n[) , |⟨T, φ⟩| ≤ Cn∥φ∥∞ .

Consequently, if ψ ∈ D(]− n, n[),

|⟨S, ψ⟩| = |⟨T, P (ψ)⟩| ≤ Cn∥P (ψ)∥∞ ≤ CnB∥ψ∥L1 .

Arguing as in proof of Theorem 1.9.2, we infer that there exists fn ∈ L∞(]− n, n[) such that

S|]−n,n[ = Tfn .

Therefore we have constructed a sequence (fn)n≥1 of functions fn ∈ L∞(]− n, n[) such that

Tfn+1 |]−n,n[ = (S|]−n−1,n+1[)|]−n,n[ = S|]−n,n[ = Tfn .

Hence fn+1|]−n,n[ = fn and we infer that there exists f ∈ L∞
loc(R) such that

∀n ≥ 1 , f|]−n,n[ = fn .

Since
S|]−n,n[ = Tf |]−n,n[
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for every n ≥ 1, we conclude S = Tf , and T = S′ = T ′
f .

Let us now consider the case of distributions of finite order. Let m be a nonnegative integer. We shall
say that T ∈ D′(I) is of order ≤ m if

∀[a, b] ⊂ I , ∃C > 0 , ∀φ ∈ D(I) , supp(φ) ⊂ [a, b]⇒ |⟨T, φ⟩| ≤ C sup
0≤k≤m

∥φ(k)∥∞ .

Theorem 1.9.16 i) If T ∈ D′(R) is of order ≤ m, there exists f ∈ L∞
loc(R) such that

T = T
(m+1)
f .

ii) If T ∈ D′(R) is arbitrary, there exists a sequence (fn)n≥1 of L∞(R) such that on every
segment of R, fn vanishes for n large enough, and

T =

∞∑
n=1

T
(n)
fn

.

Proof.— The first statement follows from an induction argument on m, based on Theorem 1.9.15 and
on the following lemma.

Lemma 1.9.17 If T ∈ D′(R) is of order ≤ m with m ≥ 1, there exists S ∈ D′(R) of order
≤ m− 1 such that S′ = T .

The proof of this lemma is straightforward, taking into account the formula ⟨S, ψ⟩ = −⟨T, P (ψ)⟩ and
the fact that, for every m ≥ 1 and ψ ∈ D(]− n, n[),

sup
0≤k≤m

∥P (ψ)(k)∥∞ ≤ B∥ψ∥L1 + sup
0≤k≤m−1

∥ψ(k)∥∞ ≤ Bn sup
0≤k≤m−1

∥ψ(k)∥∞ .

Let us prove statement ii). For every integer j ≥ 1, there exists an integermj such that T|]−j−1/2,j+1/2[

is of order ≤ mj . Furthermore, we may impose without loss of generality that mj+1 > mj .
We are going to construct a sequence (gj)j≥1 of L∞ functions on R such that, for every j ≥ 1,
supp(Tgj ) ⊂ [−j,−j + 1] ∪ [j − 1, j], and(

T −
j∑
ℓ=1

T (mℓ+1)
gℓ

)
|]−j,j[

= 0 .

Let us first construct g1. Since T is of order≤ m1 on ]−3/2, 3/2[, property i) (adapted to an interval)
implies that there exists h1 ∈ L∞

loc(]− 3/2, 3/2[) such that

T = T
(m1+1)
h1

.
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Then g1 := 1]−1,1[h1 ∈ L∞(R) and satisfies(
T − T (m1+1)

g1

)
|]−1,1[

= 0 , supp(Tg1) ⊂ [−1, 1] .

Assuming g1, . . . , gj are constructed, let us construct gj+1. Since the sequence mj is increasing, the
distribution

T̃j+1 =

(
T −

j∑
ℓ=1

T (mℓ+1)
gℓ

)
|]−j−3/2,j+3/2[

is of order ≤ mj+1 + 1. Furthermore, the restriction of T̃j+1 to ]− j, j[ is 0. Therefore, using again
property i), there exists hj+1 ∈ L∞

loc(]− j − 3/2, j + 3/2[) such that

T̃j+1 = T
(mj+1+1)
hj+1

.

Furthermore, the restriction of T
(mj+1+1)
hj+1

to ]− j, j[ is 0, which implies from Corollary 1.4.9 that hj+1

coincides with a polynomial function pj+1 on ]− j, j[. We consider

gj+1 := 1|]−j−1,j+1[(hj+1 − pj+1) .

Then gj+1 ∈ L∞(R), Tgj+1 is supported in [−j − 1,−j] ∪ [j, j + 1], and(
T̃j+1 − T

(mj+1+1)
gj+1

)
|]−j−1,j+1[

= 0 .

Coming back to the expression of T̃j+1, we have checked the induction assumption at rank j + 1, so
that the sequence (gj)j≥1 is constructed by induction on j.
In view of the properties of the supports of Tgj , for every j, only the terms of rank ℓ ≤ j of the series

∞∑
ℓ=1

T (mℓ+1)
gℓ

have a nonzero restriction to ]−j, j[. This proves that this series is convergent inD′(R). Furthermore,
by the construction of the gj , the sum of this series coincides with T on every interval ]−j, j[, therefore

T =
∞∑
ℓ=1

T (mℓ+1)
gℓ

.

Setting fn := gℓ if there exists ℓ ≥ 1 such that n = mℓ + 1, and fn := 0 otherwise, we end up with

T =

∞∑
n=1

T
(n)
fn

.
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Chapter 2

Distributions in several variables

2.1 A brief review of several variables differential calculus

2.1.1 Scalar product, norm, distance, topology

From now on we shall work on the vector space Rd, with typical elements

x =


x1
.
.
xd


with x1, . . . , xd ∈ R. We denote by (e1, . . . , ed) the canonical basis, so that

x =
d∑
j=1

xjej .

This canonical basis is an orthonormal basis for the canonical scalar product

x.y =
d∑
j=1

xjyj ,

defining the Euclidean norm

|x| =
√
x.x =

 d∑
j=1

x2j

 1
2

.

This norm classically defines the distance

d(x, y) = |x− y| ,

and a topology —independent of the chosen norm — for which a set Ω is open if and only if for every
a ∈ Ω, there exists r > 0 such that B(a, r) ⊂ Ω. Here, B(a, r) denotes the open ball

{x ∈ Rd, d(x, a) < r} .
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As in every metric space, a compact subsetK of Rd can be equivalently defined by the Borel–Lebesgue
covering property, or by the Bolzano–Weierstrass extraction property for every sequence in K. Since
we are in a finite dimensional vector space, compact subsets of Rd coincide with closed bounded
subsets.

If F is a nonempty closed subset of Rd, we shall often use the distance function to F ,

d(x, F ) = inf
z∈F

d(x, z) .

Notice that d(x, F ) = 0 if and only if x ∈ F , and that, by the Bolzano–Weierstrass property for
closed bounded subsets, this infimum is attained at some z ∈ F . Furthermore, the function d(., F ) is
continuous on Rd. In fact, by the triangle inequality, it is 1–Lipschitz continuous,

|d(x, F )− d(y, F )| ≤ d(x, y) .

If K is a compact subset of Rd and δ > 0, the set

Kδ = {x ∈ Rd, d(x,K) ≤ δ}

is a compact subset containing K in its interior. The following lemma will be of constant use.

Lemma 2.1.1 If K is a compact subset of an open subset Ω of Rd, then

inf
x∈K

d(x,Ωc) = δ0 > 0 .

For every δ ∈]0, δ0[, Kδ is contained in Ω.

Proof.— The first statement follow from the continuity of d(.,Ωc), which consequently attains its
minimum on K, and from the assumption K ∩ Ωc = ∅. The second statement is an elementary
consequence of the triangle inequality, since, for every z ∈ Ωc, y ∈ K,

d(x, z) ≥ |d(y, z)− d(x, y)|

hence, if x ∈ Kδ, choosing y ∈ K such that d(x, y) = d(x,K), d(x,Ωc) ≥ δ0 − δ > 0 .

Finally, we denote by C0(Ω) the space of continuous functions f : Ω→ C.

2.1.2 Partial derivative, C1 functions, differential, gradient

Definition 2.1.2 Given f : Ω → C and a ∈ Ω, j ∈ {1, . . . , d}, we say that f admits a j-th
partial derivative at a if the function t 7→ f(a+ tej), locally defined for t in a neighbourhood
of 0 in R, has a derivative at t = 0. We set

d

dt
f(a+ tej)|t=0 =

∂f

∂xj
(a) = ∂jf(a) .

We say that f is a C1 function on Ω if it admits a j–th partial derivative for every j ∈
{1, . . . , d} at every point a ∈ Ω, and if the functions ∂jf are continuous on Ω. We denote by
C1(Ω) the space of C1 functions on Ω.
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If f ∈ C1(Ω), one can prove that f is differentiable at every point a ; using the mean value theorem,

f(a+ h) = f(a) + La(h) + o(|h|) as h→ 0

where

La(h) =
d∑
j=1

∂jf(a)hj .

The linear map La : Rd → C is called the differential of f at point a, and usually denoted as

La = daf .

If f is real valued, daf is a linear form on the Euclidean space Rd, hence it can be represented by the
scalar product with a vector, called the gradient of f at a, and denoted by ∇f(a),

daf(h) = ∇f(a).h , ∇f(a) =

∂1f(a). .
∂df(a)

 .

Notice that the mapping ∇f : Ω→ Rd is continuous.

2.1.3 The Chain rule

Proposition 2.1.3 Let Ω ⊂ Rd, Ω′ ⊂ Rp be open sets, and ψ : Ω→ Ω′, ψ = (ψ1, ψ2, . . . , ψp),
a function of class Cm, m ≥ 1. Let f : Ω′ → C be a Cm function.

Then f ◦ ψ is Cm on Ω. Moreover

dx(f ◦ ψ) = dψ(x)f.dxψ = ∇ψ(x) · ∇f(ψ(x),

or, for any j ∈ {1, . . . , n},

∂j(f ◦ ψ)(x) =
p∑

k=1

∂kf(ψ(x))∂jψk(x).

2.1.4 Higher order partial derivatives

More generally, for m ≥ 2, we denote by Cm(Ω) the vector space of functions f ∈ C1(Ω) whose
partial derivatives ∂1f, ∂2f, . . . , ∂df belong to Cm−1(Ω). Moreover, C∞(Ω) is the intersection of all
Cm(Ω).

In general, the order in which one computes repeated partial derivatives matters, but this is not the
case for C2 functions:

Proposition 2.1.4 (Schwarz Lemma) If f ∈ C2(Ω), then, for any j, k ∈ {1, . . . , d},

∂j(∂kf) = ∂k(∂jf)
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In particular for C∞ functions, one can compute partial derivatives of f in any order. It is therefore
very convenient to use multi–indices.

2.1.5 Multi–indices

Let f ∈ C∞(Ω), and α = (α1, α2, . . . , αd) ∈ Nd a multiindex. We denote ∂αf the function

∂αf = ∂α1
1 ∂α2

2 · · · ∂
αd
d f.

The number
|α| = α1 + α2 + · · ·+ αd,

is the order of the partial derivative, and it is called the length of α. The context usually avoids any
confusion with the Euclidean norm ! We also set

α! = α1!α2! . . . αd!

and, for β ∈ Nd such that βj ≤ αj for all j, which we will write β ≤ α,(
α

β

)
=

α!

β! (α− β)!
=

(
α1

β1

)(
α2

β2

)
. . .

(
αd
βd

)
.

With these notations, the Leibniz formula for the derivatives of a product of functions easily extends
to the case of partial derivatives of functions of several variables. Its proof is exactly the same.

Proposition 2.1.5 Let f and g be functions in C∞(Ω), and α ∈ Nd a multiindex. We have

∂α(fg) =
∑

β∈Nd, β≤α

(
α

β

)
∂βf ∂α−βg.

Proof.— We prove the result by induction over |α|. If |α| = 1, ∂α = ∂j for some j ∈ {1, . . . , d}, and

∂j(fg) = (∂jf)g + f(∂jg),

which is the above formula. Suppose then that the formula is true for all multiindices of length ≤ m.
Let α ∈ Nd such that |α| = m+ 1. There exists j ∈ {1, . . . , d} et β ∈ Nd of length m such that

α = β + 1j ,

where 1j = (0, . . . , 0, 1, 0, . . . , 0) with a 1 as j-th coordinate. With these notations

∂α(fg) = ∂β+1j (fg) = ∂β(∂j(fg)) = ∂β((∂jf)g) + ∂β(f(∂jg)).

Since β is of length m, the induction assumption gives

∂α(fg) =
∑
γ≤β

(
β

γ

)
∂γ(∂jf) ∂

β−γg +
∑
γ≤β

(
β

γ

)
∂γf ∂β−γ(∂jg)

=
∑
γ≤β

(
β

γ

)
∂γ+1jf ∂β−γg +

∑
γ≤β

(
β

γ

)
∂γf ∂β+1j−γg

=
∑
γ≤β

(
β

γ

)
∂γ+1jf ∂α−(γ+1j)g +

∑
γ≤β

(
β

γ

)
∂γf ∂α−γg
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We change the multiindex in the first sum: γ ← γ + 1j , and we get

∂α(fg) =
∑

1j≤γ≤α

(
β

γ − 1j

)
∂γf ∂α−γg +

∑
γ≤β

(
β

γ

)
∂γf ∂α−γg

= ∂αf g +
∑

1j≤γ≤β

(( β

γ − 1j

)
+

(
β

γ

))
∂γf ∂α−γg + f∂αg

= ∂αf g +
∑

1j≤γ≤β

(
β + 1j
γ

)
∂γf ∂α−γg + f∂αg,

which is the required result.

We can continue the analogy with the 1 variable case: if x = (x1, x2, . . . , xd) ∈ Rd, we denote by
xα the monomial

xα = xα1
1 xα2

2 · · ·x
αd
d .

Then we can show, the same way as for the Leibniz formula, that for x, y ∈ Rd and α ∈ Nd,

(x+ y)α =
∑
β≤α

(
α

β

)
xβyα−β.

With these notations, Taylor’s formula can be written as

Proposition 2.1.6 Let f : Ω ⊂ Rd → C a function of class Cm+1. Let a, b ∈ Ω, such that the
segment [a, b] is included in Ω. We have

f(b) =
∑

|α|≤m

(b− a)α

α!
∂αf(a) + (m+ 1)

∑
|α|=m+1

(b− a)α

α!

∫ 1

0
(1− t)m∂αf(a+ t(b− a))dt.

Proof.— We have already seen that if φ : R→ C is smooth, we have

φ(1) =
m∑
k=0

1

k!
φ(k)(0) +

1

m!

∫ 1

0
(1− s)mφ(m+1)(s)ds.

We shall use this result for the function φ : t 7→ f(a+ t(b− a)). Notice that

φ′(t) =

d∑
j=1

(b− a)j(∂jf)(a+ t(b− a))

and more generally that

φ(k)(t) =
d∑

j1,j2,...,jk=1

(b− a)j1 . . . (b− a)jk(∂j1 . . . ∂jkf)((a+ t(b− a)).
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This sum only contains terms of the form (b−a)α(∂αf)(a+ t(b−a)) with α ∈ Nd of length |α| = k.
Therefore we can write, for some coefficients cα ∈ R,

d∑
j1,j2,...,jk=1

(b−a)j1 . . . (b−a)jk(∂j1 . . . ∂jkf)((a+ t(b−a)) =
∑
|α|=k

cα(b−a)α(∂αf)(a+ t(b−a)).

Denoting x = b− a, this equality between two polynomials in x implies that the cα are given by

cα = #{(j1, j2, . . . , jk) ∈ {1, . . . , d}k, xα1
1 xα2

2 . . . xαd
d = xj1 . . . xjk}.

thus

cα =

(
k

α1

)(
k − α1

α2

)
. . .

(
k − α1 − · · · − αn−1

αn

)
=
k!

α!
·

Indeed, one has to choose first α1 numbers among j1, . . . jk that should be 1, then α2 among the
k − α1 numbers left that should be 2, …

Since a+ t(b− a)|t=0
= a, and a+ t(b− a)|t=1

= b, we obtain the stated formula.

Exercise 2.1.7 Show that, for k ∈ N and (x1, x2, . . . , xd) ∈ Rd, we have

(x1 + x2 + · · ·+ xd)
k =

∑
|α|=k

k!

α!
xα.

Applying the Taylor formula, we immediately obtain.

Corollary 2.1.8 (Hadamard’s formula) Let f ∈ Cm+1(Ω), where Ω is a convex open subset
of Rd. If a ∈ Ω and f(a) = 0, there exist d functions g1, g2,…gd of class Cm(Ω) such that

f(x) =
d∑
j=1

(xj − aj)gj(x).

Notice that the convexity assumption of Ω plays a role, since we need that [a, x] ⊂ Ω. In practice, we
shall use this lemma when Ω is a ball.

2.2 Test functions

2.2.1 Definitions. Examples

If f ∈ C0(Ω), the support of f is the closure of {x ∈ Ω, f(x) ̸= 0} for the topology induced on Ω.
This is a closed subset of Ω, denoted by supp(f). If m ∈ N ∪ {∞}, we denote by Cm0 (Ω) the space
of functions in Cm(Ω) with a compact support. Notice that a compact set for the induced topology
in Ω is also a compact subset of Rd contained in Ω. In particular, elements of D(Ω) = C∞0 (Ω) are
called test functions on Ω. As in one space dimension, if V ⊂ Ω is an open subset, every element φ
of D(V ) can be extended as an element φ of D(Ω) by setting φ = 0 in Ω \ V . This allows to identify
D(V ) as the subspace of D(Ω) defined by supp(φ) ⊂ V . We shall often make this identification.
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Proposition 2.2.1 i) For every a ∈ Rd, for every r > 0, there exists φ ∈ D(Rd) such that
φ(x) ≥ 0 for every x ∈ Rd and supp(φ) = B(a, r) .

ii) For every compact subset K of Ω, there exists χ ∈ D(Ω), valued in [0, 1], such that χ = 1
on K.

Proof.— The proof of the first statement is quite similar to its one dimensional analogue. Recall that
the function f defined by

f(t) =

{
e−

1
t if t > 0

0 if t ≤ 0

is a C∞ function. Then the function φ defined by

φ(x) = f(r2 − |x− a|2)

satisfies the requirements.

The second statement requires a little more work. Let φ be as in the first statement with a = 0 and
r = 1. Since φ ≥ 0 and is not identically 0, its integral on Rd is > 0. Up to dividing φ by this number,
we may assume that ∫

Rd

φ(x) dx = 1 .

Then, by Lemma 2.1.1, we may choose δ > 0 such that K2δ ⊂ Ω. Set

χ(x) =

∫
Kδ

φ

(
x− y
δ

)
dy

δd
.

By the Leibniz rule of derivation under the
∫

sign, χ ∈ C∞(Rd). Since φ ≥ 0, we have χ ≥ 0 and

χ(x) ≤
∫
Rd

φ

(
x− y
δ

)
dy

δd
=

∫
Rd

φ(z) dz = 1 ,

after performing the change of variable y = x − δz. Hence χ is valued in [0, 1]. If x ∈ K and
y ∈ (Kδ)

c, then |x−y| > δ, hence (x−y)/δ ̸∈ supp(φ) and the integrand cancels at y. Consequently,

∀x ∈ K , χ(x) =

∫
Rd

φ

(
x− y
δ

)
dy

δd
= 1 .

Finally, if x ̸∈ K2δ, y ∈ Kδ, |x − y| > δ, and the integrand identically vanishes, so that χ(x) = 0.
Hence the support of χ is included in K2δ, which is contained in Ω, so that χ ∈ C∞0 (Ω).

Remark 2.2.2 Functions χ as in Proposition 2.2.1 are called plateau functions on K in Ω. It may
happen that we need plateau functions on a compact neighborhood of K in Ω, for instance Kε

for ε > 0 enough, according to Lemma 2.1.1. We shall call these functions plateau functions on a
neighborhood of K in Ω.

We now come to the contruction of partitions of unity, which turns out to be particularly useful in
several variables, through the so–called “gluing principle”.
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2.2.2 Partitions of unity

Proposition 2.2.3 (Partition of unity) Let K be a compact covered by a finite collection
Ω1, . . . ,Ωn of open subsets of Ω. There exist χ1 ∈ C∞0 (Ω1), . . . , χn ∈ C∞0 (Ωn), valued in
[0, 1], such that

χ1 + · · ·+ χn = 1 on K .

In particular, if φ ∈ C∞0 (Ω) is supported in Ω1 ∪ · · · ∪ Ωn, then one can find functions
φ1 ∈ C∞0 (Ω1), . . . , φn ∈ C∞0 (Ωn), such that

φ1 + . . . φn = φ .

Proof.— It is very similar to the one dimensional analogue. First, one proves the

Lemma 2.2.4 (Shrinking Lemma) If K ⊂ Ω1 ∪ · · · ∪Ωn, there exists open subsets U1, . . . , Un
such that, for every j ∈ {1, . . . , n}, U j ⊂ Ωj is compact, and

K ⊂ U1 ∪ · · · ∪ Un .

As in the one dimensional case, the proof proceeds by induction on n ≤ 1. The case n = 1 follows
from Lemma 2.1.1.
Once the shrinking lemma is proved, set

χ1 = ψ1, χ2 = ψ2(1− ψ1) , . . . , χn = ψn(1− ψn−1) . . . (1− ψ1) ,

where, for every j ∈ {1, . . . , n}, ψj s a plateau function on U j in Ωj .
Finally, the last assertion follows by writing φj = χjφ, where the χj ’s are associated to the covering
of supp(φ) by Ω1, . . . ,Ωn.

2.3 Distributions on an open subset of Rd

2.3.1 Définitions. Examples

Definition 2.3.1 Let (φj) be a sequence of functions in D(Ω), and φ ∈ D(Ω). We say that
(φj) tends to φ in D(Ω) (or in the D(Ω)-sense), when

i) There exits a compact subset K ⊂ Ω such that suppφj ⊂ K for all j.

ii) For all α ∈ Nd, sup |∂αφj − ∂αφ| → 0 as j → +∞.

In that case we may write
φ = D − lim

j→+∞
φj .
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Remark 2.3.2 Notice that, under the conditions of the above definition, we have supp(φ) ⊂ K.

Definition 2.3.3 Let Ω ⊂ Rd an open subset, and T a complex valued linear form on D(Ω).
One says that T is a distribution on Ω if, for every compact set K ⊂ Ω,

∃C > 0,∃m ∈ N,∀φ ∈ C∞0 (Ω)with suppφ ⊂ K , |T (φ)| ≤ C
∑

|α|≤m

sup |∂αφ| = C∥φ∥Cm .

We denote by D′(Ω) the set of distributions on Ω, and for T ∈ D′(Ω), φ ∈ D(Ω), we set
⟨T, φ⟩ := T (φ).

Proposition 2.3.4 A linear form T on D(Ω) is a distribution on Ω if and only if T (φj)→ T (φ)
for any sequence (φj) of functions in D(Ω) that converges to φ in the D(Ω)-sense.

The proof is similar to the one dimensional case, as well as the following examples.

Locally integrable functions.

Given f ∈ L1
loc(Ω), the formula

⟨Tf , φ⟩ =
∫
Ω
f(x)φ(x) dx

defines a distribution on Ω. Furthermore, the linear mapping

f ∈ L1
loc(Ω) 7→ Tf ∈ D′(Ω)

is one to one. In the sequel, we shall identify f to Tf .

Dirac masses.

Given a ∈ Ω, the formula
⟨δa, φ⟩ = φ(a)

defines a distribution δa on Ω, called the Dirac mass at a. It is not of the form f for f ∈ L1
loc(Ω).

As in the previous chapter, one can define finite order distributions, and the corresponding notion of
order. In particular, distributions of order ≤ m can be extended to continuous linear forms on Cm(Ω),
non-negative distributions are of order 0 — hence are positive measures, and distributions of order 0
are finite linear combinations of non-negative distributions.

We now come to the important notion of support, for which we shall be a little more specific than we
were in Chapter 1.
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2.3.2 Restriction and support

Definition 2.3.5 Let T ∈ D′(Ω), and V ⊂ Ω an open subset. The restriction of T to V is
the distribution T|V ∈ D′(V ) defined as

∀φ ∈ D(V ) , ⟨T|V , φ⟩ = ⟨T, φ⟩ ,

where φ denotes the extension of φ by 0 on Ω \ V .

We say that T vanishes in V if T|V = 0.

Definition 2.3.6 The support of a distribution T ∈ D′(Ω) is the complement of the union of
all the open subsets where T vanishes. We denote it by suppT .

Notice that suppT is closed, and the following characterizations are convenient.

• x0 /∈ suppT if and only if there is an open neighborhood V of x0 such that T|V = 0.

• x0 ∈ suppT if and only if for any open neighborhood V of x0, one can find φ ∈ C∞0 (V ) such
that ⟨T, φ⟩ ̸= 0.

As in the one dimensional case, one can characterize distributions supported in one point a, as given
by

⟨T, φ⟩ =
∑
α

cα∂
αφ(a) ,

where (cα)α∈Nd is a family of complex numbers which vanish except for a finite set of multi–indices.

Proposition 2.3.7 Let φ ∈ C∞0 (Ω) and T ∈ D′(Ω). If suppφ ∩ suppT = ∅, then ⟨T, φ⟩ = 0.
In particular, if supp(T ) = ∅, then T = 0.

In view of Lemma 2.2.3, the proof is similar to the one dimensional case. We now emphasize the
following corollary, which is very useful.

Corollary 2.3.8 (The gluing principle) Assume

Ω =
∪
j∈J

Ωj
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for some collection (Ωj)j∈J of open subsets. Suppose we are given, for every j ∈ J , a distribution
Tj on Ωj , so that we have the following property : for every j, k ∈ J such that Ωj ∩ Ωk ̸= ∅,
then

(Tj)|Ωj∩Ωk
= (Tk)|Ωj∩Ωk

.

Then there exists a unique T ∈ D′(Ω) such that, for every j ∈ J , T|Ωj
= Tj .

Proof.— The uniqueness of T follows from Proposition 2.3.7. Let us prove the existence of T . Given
φ ∈ D(Ω), we want to define ⟨T, φ⟩. From Proposition 2.2.3, one can decompose

φ =
∑
j∈J

φj

where φj ∈ D(Ωj) and φj = 0 except for a finite set of j’s. In such a situation, if T exists, one must
have

⟨T, φ⟩ =
∑
j∈J
⟨T, φj⟩ =

∑
j∈J
⟨Tj , φj⟩ .

Therefore it is natural to establish the following lemma.

Lemma 2.3.9 For every decomposition

φ =
∑
j∈J

φj

where φj ∈ D(Ωj) and φj = 0 except for a finite set of j’s, the complex number∑
j∈J
⟨Tj , φj⟩

only depends on φ, not on the decomposition.

Let us prove the lemma. Consider the set

K =
∪
j∈J

supp(φj) .

Since supp(φj) is compact and is empty except for a finite set of j’s, K is a compact subset of Ω.
Apply Proposition 2.2.3 to a finite covering

K ⊂
∪
r∈R

Ωr

extracted from the covering of K by the Ωj ’s. The family (χr)r∈R satisfies

supp(χr) ⊂ Ωr ,
∑
r∈R

χr = 1 on K .
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In particular, for every j ∈ J , φj =
∑

r∈R χrφj , therefore

⟨Tj , φj⟩ =
∑
r∈R
⟨Tj , χrφj⟩ .

For any r ∈ R, we claim that ⟨Tj , χrφj⟩ = ⟨Tr, χrφj⟩. Indeed, either Ωj∩Ωr = ∅, and χrφj = 0, so
both sides of this equality cancel. Or Ωj ∩Ωr ̸= ∅, and, since supp(χrφj) ⊂ Ωj ∩Ωr, the assumption
merely says that

⟨Tj , χrφj⟩ = ⟨Tr, χrφj⟩.
Consequently, ∑

j∈J
⟨Tj , φj⟩ =

∑
j∈J

∑
r∈R
⟨Tr, χrφj⟩ =

∑
r∈R
⟨Tr, χr(

∑
j∈J

φj)⟩

=
∑
r∈R
⟨Tr, χrφ⟩ .

This proves the lemma. Indeed, given any other decomposition φ =
∑

j∈J φ̃j , just apply the above
construction with

K =
∪
j∈J

supp(φj) ∪
∪
j∈J

supp(φ̃j) ,

and we see that ∑
j∈J
⟨Tj , φj⟩ =

∑
r∈R
⟨Tr, χrφ⟩ =

∑
j∈J
⟨Tj , φ̃j⟩.

Let us complete the proof of Proposition 2.3.8. For every decomposition φ =
∑

j∈J φj as in the
lemma, we define

⟨T, φ⟩ =
∑
j∈J
⟨Tj , φj⟩ .

It is clear that T is a linear form on D(Ω). To check it is a distribution, let K a compact subset of Ω
and (χr)r∈R be a partition of unity associated to a finite covering of K extracted from K ⊂ ∪j∈JΩj .
Then, for every test function φ supported in K, we have, from the lemma,

⟨T, φ⟩ =
∑
r∈R
⟨Tr, χrφ⟩ .

Since Tr ∈ D′(Ωr), we have

|⟨T, χrφ⟩| ≤ Cr∥χrφ∥Cmr ≤ C ′
r∥φ∥Cmr .

Then, with m = maxr∈Rmr, we obtain

|⟨T, φ⟩| ≤

(∑
r∈R

C ′
r

)
∥φ∥Cm ,

so that T ∈ D′(Ω). Finally, if φ ∈ D(Ωj) for some j ∈ J , we can write the decomposition φ =∑
k∈J φk, with φj = φ and φk = 0 if k ̸= j. Using the lemma, we infer ⟨T, φ⟩ = ⟨Tj , φ⟩. In other

words, T|Ωj
= Tj .

Let us close this paragraph by a number of additional remarks concerning Proposition 2.3.8.

i) If every Tj is a nonnegative distribution, then so is T . Indeed, the elements χr of the partitions
of unity can be chosen to be nonnegative.

ii) If every Tj is a Cm function, then so is T .
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2.3.3 Multiplication by a smooth function

Definition 2.3.10 Given q ∈ C∞(Ω) and T ∈ D′(Ω), we define qT ∈ D′(Ω) by

∀φ ∈ D(Ω) , ⟨qT, φ⟩ = ⟨T, qφ⟩ .

Of course, if T ∈ L1
loc(Ω), the definition coincides with the usual product. Let us just mention the

following generalization of Proposition 1.5.7 in Chapter 1.

Proposition 2.3.11 Let T ∈ D′(Ω) and a ∈ Ω such that

∀j ∈ {1 . . . , d} , (xj − aj)T = 0 .

Then there exists c ∈ C such that T = cδa .

Proof.— In view of what we did in Chapter 1, the proof reduces to the following lemma.

Lemma 2.3.12 (Hadamard lemma on an arbitrary open set) If φ ∈ C∞0 (Ω) satisfies φ(a) =
0, there exists ψ1, . . . , ψd in C∞0 (Ω) such that

φ(x) =

d∑
j=1

(xj − aj)ψj(x) .

Let us prove the lemma. Let r > 0 such that B(a, r) ⊂ Ω, and let χ be a plateau function on
B(a, r/2), supported in B(a, r). From Corollary 2.1.8 — Hadamard’s formula on a convex subset —
we can write, for x ∈ B(a, r),

φ(x) =
d∑
j=1

(xj − aj)fj(x) ,

with fj ∈ C∞(B(a, r) for every j. This implies χφ =
∑d

j=1(xj − aj)χfj . On the other hand,

(1− χ(x))φ(x) =
d∑
j=1

(xj − aj)
(xj − aj)(1− χ(x))

|x− a|2
φ(x) .

Summing both above identities, the lemma follows with

ψj(x) = χ(x)fj(x) +
(xj − aj)(1− χ(x))

|x− a|2
φ(x) .
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2.3.4 Derivation

As in one space dimension, we first consider the case of a C1 function. In this case, we have the
following elementary lemma.

Lemma 2.3.13 Let f ∈ C1(Ω), φ ∈ C10(Ω), and j ∈ {1, . . . , d}.∫
Ω
∂jf(x)φ(x) dx = −

∫
Ω
f(x) ∂jφ(x) dx .

Proof.— Let χ be a plateau function on a neighborhood of the support of φ. It is easy to check that

∂j(χf)φ = ∂jf φ , χf∂jφ = f∂jφ .

Furthermore, χf can be extended as a C1 function on Rd, vanishing outside of Ω. Therefore we are
reduced to prove the lemma with Ω = Rd. This is an immediate consequence of the Fubini theorem
and of integration by parts in the xj variable.

On the basis of Lemma 2.3.13, we introduce the following definition.

Definition 2.3.14 Let T ∈ D′(Ω) and j ∈ {1, . . . , d}. We define ∂jT ∈ D′(Ω) by

⟨∂jT, φ⟩ = −⟨T, ∂jφ⟩ , φ ∈ D(Ω) .

Similarly, for every α ∈ Nd, we define ∂αT ∈ D′(Ω) by

⟨∂αT, φ⟩ = (−1)|α|⟨T, ∂αφ⟩ , φ ∈ D(Ω) .

At this stage, it is natural to ask for the multidimensional analogue of the identity H ′ = δ0 proved
in Chapter 1. A natural statement would be a formula for ∂j(1U ), where U is an open subset of Ω
and 1U is the indicator – or characteristic — function of U , equal to 1 on U and to 0 outside of U .
However, open subsets in Rd are complicated enough so that no such formula exists without additional
assumptions on U . A relatively general formula of this kind will be the purpose of the next section,
devoted to superficial measures and to the jump formula. At this stage, let us just consider two very
simple examples in R2.

i) Half–spaces. Consider Ha = {(x1, x2) ∈ R2 : x1 > a} ⊂ R2 for some a ∈ R. Then an
elementary calculation gives

⟨∂1(1Ha), φ⟩ =
∫
R
φ(a, x2) dx2 , ∂2(1Ha) = 0 .

ii) The unit disc. ConsiderD = {(x1, x2) ∈ R2, x21+x
2
2 < 1} ⊂ R2. Then using polar coordinates,

one easily checks that

⟨∂1(1D), φ⟩ = −
∫ 2π

0
cos θ φ(cos θ, sin θ) dθ , ⟨∂2(1D), φ⟩ = −

∫ 2π

0
sin θ φ(cos θ, sin θ) dθ .
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Notice that, in all the above examples, ∂j(1U ) is a distribution of order 0, supported by the boundary
∂U of U . This fact will be generalized in the next section.

2.3.5 Convergence

Definition 2.3.15 A sequence (Tn) of elements of D′(Ω) converges to T ∈ D′(Ω) if

∀φ ∈ D(Ω) , ⟨Tn, φ⟩ → ⟨T, φ⟩ .

If f ∈ L1(Rd) satisfies ∫
Rd

f(x) dx = 1 ,

then
1

εd
f
(x
ε

)
−→
ε→0

δ0 .

This observation leads to the following notion of regularization. Fix ρ ∈ C∞0 (Rd), supported in the unit
ball, such that ∫

Rd

ρ(x) dx = 1 ,

and consider

ρε(x) =
1

εd
ρ
(x
ε

)
.

Given an open subset Ω in Rd, set

Ωε := {x ∈ Ω, d(x,Ωc) > ε} .

If x ∈ Ωε, the function
ρε(x− .) : y 7→ ρε(x− y)

is supported in the closed ball of radius ε centered at x, which is included in Ω. Hence this function
belongs to C∞0 (Ω), and we may define

F ε(x) = ⟨T, ρε(x− .)⟩ .

Proposition 2.3.16 The function F ε is smooth on Ωε, with

∂αF ε(x) = ⟨T, ∂αρε(x− .)⟩ , α ∈ Nd ,

and, for every φ ∈ D(Ω), ∫
Ω
F ε(x)φ(x) dx −→

ε→0
⟨T, φ⟩ .
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Notice that, given a compact subset K in Ω, the integral
∫
Ω F

ε(x)φ(x) dx is well defined for ε small
enough and every φ supported in K. The proof of Proposition 2.3.16 is a consequence of the following
two results, which will be frequently used throughout the course, and are generalisations to several
variables of Propositions 1.9.5 and 1.9.6 from Chapter 1.

Proposition 2.3.17 (Derivation under the bracket) Let Ω ⊂ Rd, Z ⊂ Rp be open sets, and
T ∈ D′(Ω). Let also φ ∈ C∞0 (Ω× Z). The function

G : z ∈ Z 7→ ⟨T, φ(·, z)⟩

is C∞, and, for α ∈ Np,
∂αG(z) = ⟨T, ∂αz φ(·, z)⟩

Remark 2.3.18 i) We have written ⟨T, φ(·, z)⟩ in place of ⟨T, φz⟩, where φz ∈ C∞0 (Ω) is the
function given by φz(x) = φ(x, z).

ii) If T = f ∈ L1
loc(Ω), we have G(z) =

∫
Ω f(x)φ(x, z)dx, so that, under the above as-

sumptions, we get G ∈ C∞(Z) and we recover the Leibniz rule of derivation under the
∫

sign,
∂αG(z) =

∫
Ω
f(x)∂αz φ(x, z)dx.

Proof.— Denote by K the projection of the support of φ onto Ω. Let z0 ∈ Z and x ∈ Ω. For h ∈ Rq,
Taylor’s formula at order 1 gives

φ(x, z0 + h) = φ(x, z0) +

p∑
j=1

∂zjφ(x, z0)hj + r(x, z0, h),

with r(x, z0, h) = 2
∑
|α|=2

hα

α!

∫ 1

0
(1− t)∂αz φ(x, z0 + th)dt.

Since x 7→ r(x, z0, h)) is C∞ with support in K,

|⟨T, r(x, z0, h)⟩| ≤ C
∑
|β|≤k

sup |∂βx r(x, z0, h)|

for a constant C > 0 and an integer k ∈ N independent of z0 and h. But for |h| ≤ 1,

|∂βx r(x, z0, h)| ≤ 2
∑
|α|≤2

hα

α!

∫ 1

0
(1− t)∂βx∂αz φ(x, z0 + th)dt ≤ C|h|2

∑
|α|≤2

sup
K×B(0,1)

|∂βx∂αz φ(x, z)|,

Thus
|⟨T, r(x, z0, h)⟩| = O(|h|2).

and,

G(z0 + h) = G(z0) +

q∑
j=1

⟨T, ∂zjφ(x, z0)⟩hj +O(|h|2),
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which shows that G is differentiable at z - in particular G is continuous, and that

∂jG(z) = ⟨T, ∂zjφ(x, z)⟩.

Then one can replace φ(x, z) by ∂zjφ(x, z) in the above discussion. We see that for all j, ∂jφ is
differentiable, thus in particular continuous. So G is C1, and the statement of the proposition is true
for any |α| = 1. One can easily get the general case by induction.

Remark 2.3.19 In view of the proof above, the assumption φ ∈ C∞0 (Ω×Z) is too strong. What
we need is indeed that

supp(φ) ⊂ K × Z

for some compact subset K of Ω.

Proposition 2.3.20 (Integration under the bracket) Let Ω ⊂ Rd be an open set, and T ∈
D′(Ω). Let also φ ∈ C∞0 (Ω× Rp). Then∫

Rp

⟨T, φ(·, z)⟩dz =
⟨
T,

∫
Rp

φ(·, z)dz
⟩

Proof.— We start with the case p = 1. Let φ ∈ C∞0 (Ω × R). We choose A > 0 and a compact set
K ⊂ Ω such that suppφ ⊂ K × [−A,A]. We denote by ψ : Ω× R→ C the function given by

ψ(x, z) =

∫
t<z

φ(x, t)dt.

The function ψ belongs to C∞(Ω × R), and for any z, supp(ψ) is included into K × R. Therefore
Proposition 2.3.17— with Remark 2.3.19— applies. The function

G(z) = ⟨T, ψ(x, z)⟩ =
⟨
T,

∫
t<z

φ(x, t)dt

⟩
is smooth, and

G′(z) = ⟨T, ∂yψ(x, z)⟩ = ⟨T, φ(x, z)⟩.

Integrating, we get⟨
T,

∫
t<z

φ(x, t)dt

⟩
= G(z) =

∫
t<z

G′(t)dt =

∫
t<z
⟨T, φ(x, t)⟩dt .

This gives the proposition, taking z = A for example.

For p > 1, we proceed by induction on p. Let φ ∈ C∞0 (Ω × Rp). Using the result in the case p = 1,
we get, for every z′ ∈ Rp−1,⟨

T,

∫
R
φ(x, z′, t)dt

⟩
=

∫
R
⟨T, φ(x, z′, t)⟩dt.

It remains to apply the induction assumption to φ̃ ∈ C∞0 (Ω× Rp−1) defined by

φ̃(x, z′) =

∫
R
φ(x, z′, t) dt .
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The proof is completed by using the Fubini theorem.

Finally we come back to the proof of Proposition 2.3.16. Fix φ ∈ C∞0 (Ω). Applying Proposition 2.3.17
— derivation under the bracket— to

φ(x)F ε(x) = ⟨T, φ(x)ρε(x− .)⟩ ,

we infer φF ε ∈ C∞(Ω) and

∀α ∈ Nd , ∂α(φF ε)(x) = ⟨T, ∂αx (φ(x)ρε(x− .))⟩ .

Choosing φ a plateau function near a point x0 ∈ Ω, we get the first statement of the proposition,

∀α ∈ Nd , ∂αF ε(x0) = ⟨T, ∂αρε(x0 − .))⟩ .

As for the second statement, we apply Proposition 2.3.20 — integration under the bracket — to obtain∫
Ω
φ(x)F ε(x) dx = ⟨T, φε⟩ , φε(y) :=

∫
Rd

φ(x)ρε(x− y) dx .

Notice that a simple change of variables x = y + εz provides

φε(y) =

∫
Rd

φ(y + εz)ρ(z) dz .

Since ρ is supported in the unit ball, we observe that φε is supported in a fixed compact subset of Ω
is ε is small enough. Furthermore, the standard derivation under the integral yields φε ∈ C∞0 (Ω) and

∀α ∈ Nd , ∂αφε(y) =
∫
Rd

∂αφ(y + εz)ρ(z) dz .

Passing to the limit as ε tends, to 0, ∂αφε converges uniformly to ∂αφ. We conclude that φε converges
to φ in C∞0 (Ω). Consequently,

⟨T, φε⟩ −→
ε→0
⟨T, φ⟩ .

The proof of Proposition 2.3.16 is complete.

Corollary 2.3.21 Every distribution on Ω is the limit of a sequence of test functions in D′(Ω).

Proof.— For every j ≥ 1, define

Kj =

{
x ∈ Ω : d(x,Ωc) ≥ 1

j
, |x| ≤ j

}
.

Then Kj is a compact subset pof Ω, Kj ⊂ K̊j+1 and∪
j≥1

Kj = Ω .

Choose χj ∈ C∞0 (K̊j+1) a plateau function near Kj and consider a sequence (εj) tending to 0 such
that

(Kj+1)εj ⊂ Ω .
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Then define
Fj(x) = χj(x)⟨T, ρεj (x− .)⟩ .

By Proposition 2.3.16 and by the above support information, we know that Fj ∈ C∞0 (Ω). Furthermore,
if φ ∈ C∞0 (Ω), the support ofφ is covered by a finite union of the open subsets K̊j ’s, hence is contained
into some Kj0 . Then, for j ≥ j0,∫

ω
φ(x)Fj(x) dx =

∫
Ω
φ(x)⟨T, ρεj (x− .)⟩ dx ,

which converges to ⟨T, φ⟩ by Proposition 2.3.16. Therefore Fj → T .

Corollary 2.3.22 Let T ∈ D′(Ω) such that, for every j ∈ {1, . . . , d}, ∂jT ∈ C0(Ω). Then
T ∈ C1(Ω).

Remark 2.3.23 The proof below is significantly more intricate than its analogue in dimension 1.
Indeed, the analogue of the integral formula used in Corollary 1.4.9 in Chapter 1 is much more
complicated in several space dimensions, so we prefer to proceed differently. Moreover, let us
mention that, on the contrary to the one dimensional case, the assumptions ∂jT ∈ L1

loc(Ω), j =
1, . . . , d, do not lead to T ∈ C0(Ω), but only to T ∈ Lploc(Ω) for p = d

d−1 (Sobolev estimates).

Let us prove Corollary 2.3.22. By the gluing principle, it is enough to prove it locally, so we may
assume that Ω is a ball B. For every j, denote by fj ∈ C0(B) the continuous function defining ∂jT .
As above, we define, on the ball Bε, the smooth function

F ε(x) = ⟨T, ρε(x− .)⟩ .

Notice that

∂jF
ε(x) = ⟨T, ∂xjρε(x− .)⟩ = −⟨T, ∂yj (ρε(x− .))⟩ = ⟨∂jT, ρε(x− .)⟩ =

∫
Ω
fj(y)ρε(x− y) dy .

Fix any ball B′ ⊂⊂ B and ε0 > 0 such that B′ ⊂ Bε0 . Then the family (∂jF
ε)ε<ε0 converges

uniformly to fj on B′ as ε tends to 0. Furthermore, picking χ ∈ C∞0 (B′) of integral 1, we have

F ε(x)−
∫
B
χ(y)F ε(y) dy =

∫
B
χ(y)(F ε(x)−F ε(y)) dy =

d∑
j=1

∫ 1

0

∫
B
χ(y)(xj−yj)∂jF ε(y+t(x−y)) dy dt,

and the right hand side converges uniformly on B′. On the other hand, by Proposition 2.3.16,∫
B
χ(y)F ε(y) dy −→

ε→0
⟨T, χ⟩ ,

so we infer that F ε converges uniformly on B′ to some function F . Since each ∂jF ε is uniformly
convergent on B′, we conclude that F ∈ C1(B′). But we also know by Proposition 2.3.16 that
T|B′ = F . Since B′ is arbitrary, this completes the proof.

A very useful property of the convergence of distributions is the following lemma, which is a conse-
quence of the principle of uniform boundedness which is proved at the end of this chapter.
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Lemma 2.3.24 (Bicontinuity of the bracket) Let (Tn) be sequence in D′(Ω) and (φn) be a
sequence in D(Ω). We assume that Tn → T in D′(Ω) and φn → φ in D(Ω). Then

⟨Tn, φn⟩ → ⟨T, φ⟩ .

We close this subsection by a useful remark on the gluing principle for convergence of sequences of
distributions.

Proposition 2.3.25 Let (Tn) be a sequence of distributions on Ω. Assume

Ω =
∪
j∈J

Ωj

for some collection (Ωj)j∈J of open subsets, and that, for every j ∈ J , (Tn)|Ωj
converges to

some T (j) ∈ D′(Ωj). Then Tn is convergent in D′(Ω).

Proof.— Let K be a compact subset of Ω. From Proposition 2.2.3 let (χj)j∈J be a family of test
functions, which are identically 0 except for a finite set of indices j, and such that

supp(χj) ⊂ Ωj ,
∑
j∈J

χj = 1 on K .

Then, for every test function φ supported in K, we have

⟨Tn, φ⟩ =
∑
j∈J

= ⟨Tn, χjφ⟩ →
∑
j∈J
⟨T (j), χjφ⟩ .

Since each T (j) is a distribution, the right hand side is estimated by C∥φ∥Cm for some C > 0 and
m ∈ N only depending on K. Hence Tn is convergent in D′(Ω).

2.4 Superficial measures and the jump formula

2.4.1 Motivation

In this section, we come back to the problem of identifying the partial derivatives of the characteristic
function of an open set U . It is easy to check that these derivatives are distributions supported by
the boundary ∂U of U . Under suitable assumptions on U , we shall show that these distributions
are of order 0, and can be expressed in terms of a positive measure supported by ∂U , called the
superficial measure of ∂U as an hypersurface. Thus we first need to define the superficial measure on
an hypersurface, which is the purpose of the next subsection. An intuitive way to define a superficial
measure of a subset of an hypersurface is to thicken this subset with a thickness ε, and to to take the
limit, as ε tends to 0, of the ratio to ε of the Lebesgue measure of this thickened subset. The next
construction tries to make rigorous this intuitive definition.
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2.4.2 Preliminaries on non–negative distributions

Definition 2.4.1 We say that T ∈ D′(Ω) is a non-negative distribution when ⟨T, φ⟩ ∈ R+ for
any function φ ∈ C∞0 (Ω) with values in [0,+∞).

Proposition 2.4.2 If T ∈ D′(Ω) is non-negative, then it is of order 0.

Proof.— LetK ⊂ I be a compact subset, and χ ∈ C∞0 (I) a plateau function aboveK. Forφ ∈ C∞0 (Ω)
supported in K with real values, one has

∀x ∈ Ω, −χ sup |φ| ≤ φ(x) ≤ χ sup |φ|,

thus
⟨T, φ+ χ sup |φ|⟩ ≥ 0 and ⟨T, χ sup |φ| − φ⟩ ≥ 0.

This gives
|⟨T, φ⟩| ≤ ⟨T, χ⟩ sup |φ|.

Ifφ ∈ C∞0 (Ω) is supported inK and is complex valued, we writeφ = φ1+iφ2 with φ1, φ2 real-valued,
and, with what we have seen before,

|⟨T, φ⟩| = |⟨T, φ1 + iφ2⟩| ≤ |⟨T, φ1⟩|+ |⟨T, φ2⟩| ≤ C sup |φ1|+ C sup |φ2| ≤ C sup |φ|,

and this concludes the proof of the proposition.

From Proposition 2.4.2 — and the fact that convenient regularisation processes conserve non-negative
functions —, non-negative distributions therefore extends as non-negative linear forms on C00(Ω). By
the Riesz representation theorem, non-negative linear forms on C00(I) correspond to positive Borel
measures on I which are finite on compact subsets. In other words,

Theorem 2.4.3 For every non-negative distribution T on I there exists such a unique Borel
measure µ, finite on compact subsets, such that

∀φ ∈ C00(Ω) , ⟨T, φ⟩ =
∫
Ω
φdµ .

2.4.3 The measure δ(f) and the superficial measure associated to {f = 0}.

Let Ω be open subset of Rd, and let f : Ω→ R be a C1 function. We assume the following property,

(2.4.1) ∀x ∈ Ω , f(x) = 0⇒ ∇f(x) ̸= 0 .

We denote by Σ the set of points x ∈ Ω such that f(x) = 0.
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Theorem 2.4.4 There exists a positive distribution δ(f), supported by Σ, such that, for every
compactly supported function h ∈ C0(R) such that∫

R
h(z) dz = 1 ,

the family of functions µε defined on Ω by

µε(x) :=
1

ε
h

(
f(x)

ε

)
converges in D′(Ω) to δ(f) as ε tends to 0. Furthermore, if g : Ω→ R is another C1 function
which satisfies (2.4.1) and Σ = {x ∈ Ω, g(x) = 0}, then

(2.4.2) |∇g| δ(g) = |∇f | δ(f) .

Proof.— By the gluing principle for convergence of distributions — Proposition 2.3.25—, it is enough
to prove that every point a of Ω has an open neighborhood on which µε has a limit in the sense of
distributions. Moreover, the gluing principle shows that the positivity of this limit near each point a
implies that this limit is a positive distribution on Ω — see the remark after Proposition 2.3.8.
Let a ∈ Ω. If f(a) ̸= 0, then the continuity of f implies that |f | ≥ c > 0 on some neighborhood of a,
so that, since h is compactly supported in R, µε is identically zero on this neighborhood if ε is small
enough. Hence µε tends to 0 in a neighborhood of a.
Now assume f(a) = 0. By assumption (2.4.1), ∇f(a) ̸= 0, so there exists j ∈ {1, . . . , d} such that
∂jf(a) ̸= 0. Let us assume for instance that j = 1, and write elements of Rd as x = (x1, y), with
x1 ∈ R and y ∈ Rd−1. Then, by the implicit function theorem, there exists an open interval I ⊂ R
and an open subset W ⊂ Rd−1 such that a = (a1, b) ∈ I ×W ⊂ Ω, and a C1 function q : W → I
such that

∀(x1, y) ∈ I ×W , f(x1, y) = 0 ⇐⇒ x1 = q(y) .

By the Taylor formula in the x1 variable, we can write

∀(x1, y) ∈ I×W , f(x1, y) = f(q(y), y)+(x1−q(y))
∫ 1

0
∂1f(q(y)+t(x1−q(y), y) dt = m(x1, y)(x1−q(y)) ,

with m1(q(y), y) = ∂1f(q(y), y) ̸= 0 . Given φ ∈ C00(I ×W ), we compute∫
I×W

φ(x)µε(x) dx =

∫
W

∫
I
φ(x1, y)

1

ε
h

(
m(x1, y)(x1 − q(y))

ε

)
dx1 dy .

Extending φ by 0 to R×W , we can write the inner integral as∫
R
φ(x1, y)

1

ε
h

(
m(x1, y)(x1 − q(y))

ε

)
dx1 =

∫
R
φ(q(y) + εz, y)h(m(q(y) + εz, y)z) dz

→
(∫

R
h(m(q(y), y)z) dz

)
φ(q(y), y) =

φ(q(y), y)

|m(q(y), y)|

=
φ(q(y), y)

|∂1f(q(y), y)|
.
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Passing to the uniform limit under the integral in the y variable, we infer∫
I×W

φ(x)µε(x) dx→
∫
W

φ(q(y), y)

|∂1f(q(y), y)|
dy .

Furthermore, notice that the denominator of the above integrand can be rewritten in terms of |∇f | as
follows. Taking the derivative with respect to y ∈ W of the equation f(q(y), y) = 0, we obtain, by
the chain rule,

∇yf(q(y), y) + ∂1f(q(y), y)∇q(y) = 0 ,

so that

∇f(q(y), y) = ∂1f(q(y), y)

(
1

−∇q(y)

)
, |∇f(q(y), y)| = |∂1f(q(y), y)|

(
1 + |∇q(y)|2

) 1
2 .

Finally, we obtain∫
I×W

φ(x)µε(x) dx→ ⟨δ(f), φ⟩ =
∫
W
φ(q(y), y)

(
1 + |∇q(y)|2

) 1
2

|∇f(q(y), y)|
dy .

Thus on W we get a positive distribution δ(f), hence a distribution of order 0, so we can multiply it
by the continuous function |∇f |, and obtain, if φ is supported into I ×W ,

⟨|∇f | δ(f), φ⟩ =
∫
W
φ(q(y), y)

(
1 + |∇q(y)|2

) 1
2 dy .

If g is another C1 function which satisfies (2.4.1) and Σ = {x ∈ Ω, g(x) = 0}, we take the derivative
of g(q(y), y) = 0, and obtain

∇g(q(y), y) = ∂1g(q(y), y)

(
1

−∇q(y)

)
, |∇g(q(y), y)| = |∂1g(q(y), y)|

(
1 + |∇q(y)|2

) 1
2 ,

so that the same computation as above yields

⟨|∇g| δ(g), φ⟩ =
∫
W
φ(q(y), y)

(
1 + |∇q(y)|2

) 1
2 dy .

In particular, |∇g| δ(g) = |∇f | δ(f) in I ×W , and, by the gluing principle,

|∇g| δ(g) = |∇f | δ(f)

in Ω.

From this proposition, we infer that the positive distribution |∇f | δ(f) does not depend on the choice
of the function f satisfying (2.4.1) and such that Σ = {f = 0}. Therefore this positive distribution is
intrinsically associated to Σ.

Definition 2.4.5 The superficial measure of Σ is the positive distribution

σ = |∇f | δ(f) ,

where f is any C1 function satisfying (2.4.1) and such that Σ = {f = 0}.
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Let us retain from the above definition and from the proof of Theorem 2.4.4 the following two important
facts about the superficial measure on Σ.

i) If Σ = {f = 0} where f satisfies (2.4.1), then, for every φ ∈ C00(Ω),∫
Ω

1

ε
h

(
f(x)

ε

)
φ(x) dx→

∫
Ω
φ(x)

dσ(x)

|∇f(x)|
.

ii) If Σ ∩ (I ×W ) = {(q(y), y), y ∈ W} where q : W → I is a C1 function, then, for every
continuous function φ supported into I ×W ,

(2.4.3)

∫
I×W

φ(x) dσ(x) =

∫
W
φ(q(y), y)

(
1 + |∇q(y)|2

) 1
2 dy .

Example 2.4.6 (The superficial measure on a sphere) Let r > 0. Then the function
fr : Rd \ {0} → R

x 7→ |x| − r

is C1 and fr(x) = 0 is the equation of the sphere Sr of radius r centered at 0. Notice that

∇fr(x) =
x

|x|
,

hence |∇fr(x)| = 1. For instance, the intersection of Sr with the open set ]0,+∞[×Rd−1 is given
by the equation x1 = q(y), where

q(y) =
√
r2 − |y|2 , |y| < r .

Notice that
∇q(y) = −y√

r2 − |y|2
, 1 + |∇q(y)|2 = r2

r2 − |y|2
,

so that the superficial measure σr on Sr is given by σr = δ(fr), and, if φ is compactly supported
in ]0,+∞[×Rd−1,∫

]0,+∞[×Rd−1

φ(x) dσ(x) =

∫
|y|<r

φ
(√

r2 − |y|2, y
) rdy√

r2 − |y|2
.

Notice that we have a simple connection between σr and σ1,

(2.4.4) ∀φ ∈ C00(Rd) ,
∫
Rd

φ(x) dσr(x) = rd−1

∫
Rd

φ(ry) dσ1(y) .

Indeed, using the definition,∫
Rd

φ(x) dσr(x) = lim
ε→0

1

ε

∫
Rd

h

(
|x| − r
ε

)
φ(x) dx

= lim
ε→0

r

ε
rd−1

∫
Rd

h

(
r(|y| − 1)

ε

)
φ(ry) dy

= rd−1

∫
Rd

φ(ry) dσ1(y) ,

using the change of variables x = ry in Rd and the new small parameter ε′ = ε
r .

Finally, it is easy to check that, if d = 2,∫
R2

φ(x) dσr(x) = r

∫ 2π

0
φ(r cos θ, r sin θ) dθ .
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2.4.4 Integration on level sets : the smooth coarea formula

The above definition of the superficial measure easily leads to an important formula of integral calculus.
Let f = Ω→ R be a C1 function such that

(2.4.5) ∀x ∈ Ω , ∇f(x) ̸= 0 .

It is easy to prove that the set f(Ω) := {f(x), x ∈ Ω} is an open subset of R – hence is an open
interval if Ω is connected. Indeed, if t0 = f(a) with a ∈ Ω, and if, say, ∂1f(a) ̸= 0, then, on a small
neighborhood I ×W of a = (a1, b), we have ∂1f ̸= 0, hence the function x1 ∈ I 7→ f(x1, b) is
strictly monotone, and consequently its range is an open interval of R.
For every t ∈ f(Ω), denote by Σt the set of equation f(x) = t, and by σt the superficial measure on
Σt.

Proposition 2.4.7 For every φ ∈ C00(Ω),∫
Ω
φ(x) dx =

∫
f(Ω)

(∫
Σt

φ(x)
dσt(x)

|∇f(x)|

)
dt .

Proof.— Fix h ∈ C00(R) of integral 1. For every x ∈ Ω, we observe that, for every ε > 0,

1 =
1

ε

∫
R
h

(
f(x)− t

ε

)
dt .

We plug this identity in the x integral and apply the Fubini theorem,∫
Ω
φ(x) dx =

∫
R

(∫
Ω

1

ε
h

(
f(x)− t

ε

)
φ(x) dx

)
dt .

We now pass to the limit inside the inner integral as ε tends to 0. We obtain

Iε(t) =

∫
Ω

1

ε
h

(
f(x)− t

ε

)
φ(x) dx→

{
0 if t ̸∈ f(Ω)∫
Σt
φ(x) dσt(x)

|∇f(x)| if t ∈ f(Ω) .

Then the formula follows from the interversion of the integral in t and of the limit as ε tends to 0. In
order to justify this interversion, we apply the dominated convergence theorem. First we notice that,
because φ and h are compactly supported, Iε(t) is supported into a compact subset of R. So we just
have to prove that Iε(t) is uniformly bounded. By the gluing principle — partitions of unity again —,
it is enough to assume that the test function φ is supported in a small open subset V of Ω. Assuming
that ∂1f ̸= 0 on V , the implicit function theorem shows that, if V = I ×W is small enough, the
equation f(x1, y) = t in V , for t close to some value t0, is equivalent to x1 = q(y, t), where q is a C1
function. Then we can reproduce the proof of Theorem 2.4.4 with the additional parameter t, writing

Ie(t) =

∫
W

∫
I

1

ε
h

(
m(x1, y, t)(x1 − q(y, t))

ε

)
φ(x1, y) dy dx1

=

∫
W

∫
R
h(m(q(y, t) + εz, y)z)φ(q(y, t) + εz, y) dz dy ,

which is uniformly bounded since φ is compactly supported, and |m| ≥ c > 0. This completes the
proof.
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Corollary 2.4.8 (Integration on spherical level sets) For every φ ∈ C00(Rd \ {0}), we have∫
Rd\{0}

φ(x) dx =

∫ ∞

0

∫
S1

φ(rω) dσ1(ω) r
d−1dr .

Proof.— Combine Proposition 2.4.7 applied to f : x ∈ Rd \ {0} 7→ |x| with the change of variable
formula (2.4.4).

2.4.5 Superficial measure on a closed hypersurface and the jump formula for a reg-
ular open subset

We first need a number of definitions.

Definition 2.4.9 Let Ω be an open subset of Rd. A closed C1 hypersurface of Ω is a closed
subset Σ ⊂ Ω with the following property : every a ∈ Σ has an open neighborhood V in Ω
such that there exists a C1 function f : V → R with

Σ ∩ V = {x ∈ V, f(x) = 0} , ∀x ∈ Σ ∩ V,∇f(x) ̸= 0 .

Essentially this definition is the one we used in the previous subsection, except that one does not
impose that the existence of a global equation f for Σ. This naturally leads to the following

Proposition 2.4.10 Let Σ be a closed C1 hypersurface of Ω. There exists a unique positive
distribution σ supported in Σ such that, for every open subset V ⊂ Ω anf f ∈ C1(V,R) such
that

Σ ∩ V = {x ∈ V, f(x) = 0} , ∀x ∈ Σ ∩ V,∇f(x) ̸= 0 ,

we have, in V ,
|∇f | δ(f) = σ .

Furthermore, suppσ = Σ.

Proof.— Existence and uniqueness of σ follow from Theorem 2.4.4 and from the gluing principle.
Indeed, given a ∈ Σ, consider Va ⊂ Ω and fa : Va → R as in the definition above. We define
σa ∈ D′(Va) as

σa = |∇fa| δ(fa) .

Moreover, we consider σ̃ = 0 in D′(Ω \ Σ). By Theorem 2.4.4 and the gluing principle applied to the
open covering

Ω = (Ω \ Σ) ∪
∪
a∈Σ

Va ,
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we infer the existence of σ ∈ D′(Ω). Uniqueness also follows from the gluing principle and Theorem
2.4.4. The last statement follows from the local expression of σ given in (2.4.3). Notice that the
closedness of Σ is crucial in this proof.

Definition 2.4.11 Measure σ is called the superficial measure on the closed hypersurface Σ.

We now come to the important notion of a regular open set.

Definition 2.4.12 Let U be an open subset of Ω. We say that U is a regular open subset of
Ω of class C1 if every point a ∈ ∂U has an open neighborhood V in Ω such that there exists
a C1 function f : V → R with

U ∩ V = {x ∈ V, f(x) > 0} , ∀x ∈ ∂U ∩ V,∇f(x) ̸= 0 .

In such a situation, it easy to check that ∂U is a closed C1 hypersurface of Ω. Indeed, with the notation
of the above definition, one verifies that

∂U ∩ V = {x ∈ V, f(x) = 0} .

However, a regular open set is not only an open set whose boundary is a closed hypersurface. The
above definition also imposes that the open subset U is locally on the same side of this hypersurface
! For instance U = Rd \ {x1 = 0} is not a regular subset of Rd, though its boundary is the closed
hypersurface {x1 = 0}.

Definition 2.4.13 Let Ω be an open subset of Rd.

• If Σ is a closed C1 hypersurface of Ω and a ∈ Σ, the normal line to Σ at a is the line
R∇f(a), where f is any function as in Definition 2.4.9.

• If U is a regular open subset of Ω of class C1, the inward unit normal vector to U at
a ∈ ∂U is the unit vector

N int(a) =
∇f(a)
|∇f(a)|

,

where f is any function as in Definition 2.4.12. The outward unit normal vector to U
at a ∈ ∂U is

N ext(a) = −N int(a) .
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These definitions make sense because of the independence of the objects with respect to function f . In
the case of a closed hypersurface, we already checked, in the proof of Theorem 2.4.4, that the vectors
∇f(a) are all proportional, so they define the same line. In the case of a regular open subset, there
exist only two unit vectors on the normal line to ∂U at a ∈ ∂U , which can be identified as follows.
For ε > 0 small enough, a+ εN int(a) ∈ U , while a+ εN ext(a) ∈ (U)c.
Finally, notice that the mapping N int : ∂U → Rd is continuous,. We call it the inward unit normal
vector field to U . A similar definition holds for the outward unit normal vector field to U .

Theorem 2.4.14 (The jump formula) Let U be a regular open subset of Ω of class C1. De-
note by σ the superficial measure on the closed hypersurface ∂U , and by N int : ∂U → Rd the
inward unit normal vector field to U . Then, in D′(Ω),

∀j ∈ {1, . . . , d} , ∂j(1U ) = N int
j σ .

Proof.— By the gluing principle, it is enough to prove this identity near every point a ∈ Ω. If a ̸∈ ∂U ,
then 1U is a constant function in a neighborhood of a, so that ∂j(1U ) = 0 in this neighborhood, which
is also the case of σ.
Assume a ∈ ∂U , and let f : V → R be a function near a as in Definition 2.4.12. Denote by χ : R→ R
a C1 function such that

χ(z) =

{
0 if z < 0

1 if z ≥ 1 .

Then it is easy to check that

∀x ∈ V , 1U (x) = lim
ε→0

χ

(
f(x)

ε

)
.

Furthermore, since the right hand side is uniformly bounded, the dominated convergence theorem
implies that this convergence also holds in D′(V ). Therefore, in D′(V ), we have

∂j(1U ) = lim
ε→0

∂j

(
χ

(
f(x)

ε

))
= lim

ε→0

∂jf

ε
χ′
(
f(x)

ε

)
.

The function h = χ′ belongs to C00(R) and satisfies∫
R
h(z) dz =

∫ ∞

0
χ′(z) dz = 1 .

Consequently, for every φ ∈ C00(V ),∫
Ω
φ(x)

1

ε
χ′
(
f(x)

ε

)
dx→ ⟨δ(f), φ⟩ ,

so that

∂j(1U ) = ∂jfδ(f) =
∂jf

|∇f |
σ = N int

j σ .
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Corollary 2.4.15 (The Gauss–Green formula) Let U be regular open subset of class C1 in Ω.
For every φ ∈ C10(Ω),

∀j ∈ {1, . . . , d} ,
∫
U
∂jφ(x) dx =

∫
∂U
N ext
j (x)φ(x) dσ(x) .

Proof.— First assume φ ∈ C∞0 (Ω). In D′(Ω), we apply the jump formula and get∫
U
∂jφ(x) dx = −⟨∂j(1U ), φ⟩ = −⟨N int

j σ, φ⟩ =
∫
∂U
N ext
j (x)φ(x) dσ(x) .

The general case φ ∈ C10(Ω) follows by approximation. Let us come to
the special case where U is a bounded regular open subset Rd. In this case, we denote by C1(U) the
space of restrictions to U of C1 functions on Rd.

Corollary 2.4.16 (The Gauss–Green formula, compact form) Let U be a regular open subset
of class C1 in Rd such that U is compact . For every φ ∈ C1(U),

∀j ∈ {1, . . . , d} ,
∫
U
∂jφ(x) dx =

∫
∂U
N ext
j (x)φ(x) dσ(x) .

Proof.—
If φ ∈ C1(U), let φ̃ ∈ C1(Ũ) be an extension of φ to an open neighborhood Ũ of U . Let χ be a plateau
function on U compactly supported in Ũ . The first formula follows from applying the Gauss–Green
formula to χφ̃ ∈ C10(Rd).
Remark 2.4.17 Both corollaries above combined with the Leibniz formula imply the following
multidimensional integration by parts formula.

∀j ∈ {1, . . . , d} ,
∫
U
∂jφ(x)ψ(x) dx =

∫
∂U
N ext
j (x)φ(x)ψ(x) dσ(x)−

∫
U
φ(x)∂jψ(x) dx .

2.5 Sobolev spaces in an open set

We recall that, from now on, we identify a locally integrable function f with the associated distribution
Tf .

2.5.1 Definition and general facts

Definition 2.5.1 Let Ω ⊂ Rd be an open set, and s ∈ N. A distribution u ∈ D′(Ω) belongs
to Hs(Ω) if for all α ∈ Nd such that |α| ≤ s, it holds that ∂αu ∈ L2(Ω). We denote by
(·|·)Hs the sesquilinear form defined on Hs(Ω)×Hs(Ω) by

(u|v)Hs =
∑
|α|≤s

(∂αu|∂αv)L2 .
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We also introduce the associated Hs norm

∥u∥Hs = (u|u)
1
2 =

∑
|α|≤s

∥∂αu∥2L2

 1
2

,

so that convergence of un to u in Hs is equivalent to the convergence of ∂αun to ∂αu in L2 for every
|α| ≤ s.

Notice that H0(Ω) = L2(Ω). The structure of Hilbert space of L2(Ω) is transferred to Hs(Ω), as
shown by the next proposition.

Proposition 2.5.2 The sesquilinear form (·, ·)Hs is a Hermitian scalar product, which makes
Hs(Ω) a Hilbert space.

Proof.— The only non trivial fact is completeness of Hs(Ω) with respect to the Hs norm. Let (uj) be
a Cauchy sequence in Hs(Ω). For all |α| ≤ s, the sequence (∂αuj) is Cauchy in L2, thus converges
to a vα ∈ L2. In particular, uj → v0 in D′(Ω), so that ∂αuj → ∂αv0 = vα ∈ L2(Ω), and (uj)→ v0
in Hs(Ω) .

Notice that, for s ≥ 1, u ∈ Hs(Ω) if and only if u ∈ H1(Ω) and, for every j = 1, . . . , d − 1,
∂ju ∈ Hs−1(Ω). By induction on s, this reduces many properties of Hs(Ω) to the special case s = 1,
on which we are going to focus in what follows.

2.5.2 Variational formulation of some elliptic problems

Definition 2.5.3 Given an arbitrary open subset Ω of Rd, we denote by H1
0 (Ω) the closure of

C∞0 (Ω) in H1(Ω).

Note that H1
0 (Ω) is a closed subspace of the Hilbert space H1(Ω), hence it si a Hilbert space with the

inner product ( .| .)H1 defined in athe previous section.

In what follows, we are going to use the Laplacian differential operator, defined on D′(Ω) by

∆T =

d∑
j=1

∂2j T .
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Theorem 2.5.4 Let Ω be an arbitrary open subset of Rd. For every f ∈ L2(Ω), there exists
u ∈ H1

0 (Ω) unique such that

(2.5.6) −∆u+ u = f

in D′(Ω).

Proof.— Equation (2.5.6) in D′(Ω) exactly means

∀φ ∈ C∞0 (Ω) , ⟨−∆u+ u, φ⟩ =
∫
Ω
fφ dx .

Since we are looking for u ∈ H1
0 (Ω), we know in particular that u ∈ L2(Ω) and ∂ju ∈ L2(Ω) for

j = 1, . . . , d. Therefore the left hand side reads

⟨−∆u+ u, φ⟩ =
d∑
j=1

∫
Ω
∂ju∂jφdx+

∫
Ω
uφdx = (φ|u)H1 .

Summing up, we are looking for some u ∈ H1
0 (Ω) such that

∀φ ∈ C∞0 (Ω) , (φ|u)H1 =

∫
Ω
fφ dx .

Since both sides of the above equation are linear forms of φ which are continuous for the H1 norm,
the problem is equivalent to finding u ∈ H1

0 (Ω) such that

∀v ∈ H1
0 (Ω) , (v|u) =

∫
Ω
fv dx .

By the Riesz representation theorem, the continuous linear form

v ∈ H1
0 (Ω) 7→

∫
Ω
fv dx

can be represented by the inner product with a unique element w ∈ H1
0 (Ω). Therefore the problem

is solved by setting u = w — notice that the conjugate of a function in H1
0 (Ω) is still in H1

0 (Ω).
Let us complete this subsection by some remarks about the possible extensions of Theorem 2.5.4

Remark 2.5.5 i) The L2 function f can be replaced more generally by any distribution which
extends as a continuous linear form on H1

0 (Ω). The space of such distributions is denoted
by H−1(Ω).

ii) If q ∈ L∞(Ω) and there exists m > 0 such that

q(x) ≥ m
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almost everywhere on Ω, the sesquilinear form

(2.5.7) (u|v)q =
d∑
j=1

(∂ju|∂jv)L2 +

∫
Ω
quv dx

is an inner product on H1(Ω), inducing a norm which is equivalent to the H1 norm. There-
fore H1(Ω) and H1

0 (Ω) are Hilbert spaces for this new inner product, and one can solve
similarly the equation

(2.5.8) −∆u+ qu = f

in D′(Ω), for every f ∈ H−1(Ω).

iii) The above assumption on q can be relaxed for special cases of open sets Ω, in particular if
Ω is bounded.

Lemma 2.5.6 Let Ω be a bounded open subset of Rd. For every j ∈ {1, . . . , d}, there
exists C > 0 such that, for every φ ∈ H1

0 (Ω),

∥φ∥L2 ≤ C∥∂jφ∥L2 .

By density, it is enough to prove this inequality for φ ∈ C∞0 (Ω). Let us prove Lemma 2.5.6
with j = 1, say. We write x = (x1, y) ∈ R× Rd and

|φ(x1, y)|2 = −
∫ ∞

x1

∂t(|φ(t, y)|2) dt = −2
∫ ∞

x1

Re(∂tφ(t, y)φ(t, y)) dt .

Using the Cauchy–Schwarz inequality, we infer

|φ(x1, y)|2 ≤ 2

(∫
R
|∂tφ(t, y)|2 dt

) 1
2
(∫

R
|φ(t, y)|2 dt

) 1
2

.

Assuming Ω ⊂]a, a+ L[×Rd−1, we conclude, again by Cauchy–Schwarz, that∫
R×Rd−1

|φ(x1, y)|2 dx1 dy ≤ 2L ∥∂tφ∥L2∥φ∥L2 .

This completes the proof of the lemma, with C = 2L.

In view of Lemma 2.5.6, if Ω is bounded, the sesquilinear form ( .| .)q defined in (2.5.7) is
still an inner product on H1

0 (Ω), with a norm equivalent to the H1 norm, if q ∈ L∞(Ω) is
just non–negative — including q identically 0. Hence, under this more general assumption,
it still possible to solve equation (2.5.8) on Ω bounded. In particular, if Ω is bounded, for
every f ∈ H−1(Ω), there exists u ∈ H1

0 (Ω) unique such that

−∆u = f

in D′(Ω). We will come back to this equation at the end of this paragraph, in the particular
case where Ω is regular. We will see that, in this case, the subspace H1

0 (Ω) of H1Ω) can
be described in a more explicit way.
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2.5.3 Approximation by smooth functions

Let us start with the special case Ω = Rd.

Proposition 2.5.7 C∞0 (Rd) is dense into H1(Rd). In other words, H1
0 (Rd) = H1(Rd).

Proof.— We proceed by cut off and regularisation. Let χ ∈ C∞
0 (Rd) such that χ(x) = 1 on the unit

ball. For n ≥ 1, set

χn(x) = χ
(x
n

)
.

Given v ∈ L2(Rd), we already know that χnv tends to v in L2 as n → ∞. Let u ∈ H1(Rd). Let
us prove that χnu → u in H1 as n → ∞. It is equivalent to establish that χnu → u in L2, which
is laready known, and that for every j = 1, . . . , d, ∂j(χnu) → ∂ju . From the Leibniz formula for
distributions,

∂j(χnu) = χn∂ju+ (∂jχn)u ,

so we just have to prove that (∂jχn)u→ 0 in L2. This follows from u ∈ L2 and

∥∂jχn∥∞ = O

(
1

n

)
.

As a second step, we prove that, if u ∈ H1(Rd) is compactly supported, then u can be approximated
by a sequence of compactly supported smooth functions. Let ρ ∈ C∞0 (Rd), supported in the unit ball
B, and such that ∫

Rd

ρ(z) dz = 1 .

Consider, for ε > 0,

uε(x) = ρε ∗ u(x) =
∫
Rd

1

εd
ρ

(
x− y
ε

)
u(y) dy .

Then uε ∈ C∞
0 (Rd), with supp(uε) ⊂ supp(u) + εB. We already know that uε → u in L2 as ε→ 0.

Furthermore, for j = 1, . . . , d,

∂juε(x) =

∫
Rd

∂jρε(x− y)u(y) dy = −
∫
Rd

∂yj [ρε(x− y)]u(y) dy = ρε ∗ ∂ju(x) .

Therefore ∂juε → ∂ju as ε→ 0. Summing up, uε → u in H1 as ε→ 0, and the proof is complete.
Notice that the second step of the above proof implies the following useful result.

Proposition 2.5.8 Every compactly supported element u of H1(Ω) is the limit of a sequence
of C∞0 (Ω) supported in an arbitrarily small neighbourhood of supp(u).

Next we deal with the main result of this subsection, which concerns the special case of a bounded
regular open subset of Rd.
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Proposition 2.5.9 Let Ω be a bounded regular open subset of Rd with a C∞ boundary. Then
C∞(Ω) is dense in H1(Ω).

Proof.— Given a ∈ ∂Ω, there exists an open neighbourhood Va of a such that Ω ∩ Va is the strict
epigraph of a smooth function. Since the Va cover the compact subset ∂Ω of : Rd, we may extract a
finite covering

∂Ω ⊂
N∪
k=1

Vk

and we consider a partition of unity χ0, . . . , χN associated to the covering

Ω ⊂ Ω ∪
N∪
k=1

Vk ,

so that χ0 ∈ C∞0 (Ω), χk ∈ C∞0 (Vk for k = 1, . . . , N , and

χ0 + χ1 + · · ·+ χN = 1

on Ω. In particular, on Ω, we have

u = χ0u+
N∑
k=1

χku .

We may apply Proposition 2.5.8 to χ0u. Therefore it remains to prove that, for every k = 1, . . . , N ,
χku can be approximated in H1(Ω) by a sequence of C∞(Ω).

We drop the index k for simplicity, and we consider an open subset V = I ×W of Rd = Rx1 ×Rd−1
y

and a smooth function q :W → R such that

V ∩ Ω = {(x1, y) ∈ I ×W,x1 > q(y) } ,

and χ ∈ C∞0 (V ). For (z, y) ∈]0,∞[×W , we set

v(z, y) = (χu)(z + q(y), y) .

Notice that, for some compact subset K of W and some a > 0,

supp(v) ⊂]0, a]×K .

We need a couple of results concerning this function v.

Lemma 2.5.10 The function v belongs to H1(]0,∞[×W ), with

∂zv(z, y) = ∂z(χu)(z+q(y), y) , ∂yjv(z, y) = ∂yj (χu)(z+q(y), y)+∂yjq(y)∂z(χu)(z+q(y), y) .
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Let us prove Lemma 2.5.10. First of all, v ∈ L2(]0,∞[×W ), since, by the change of variables formula,∫
W

∫ ∞

0
|v(z, y)|2 dz dy =

∫
W

∫ ∞

q(y)
|(χu)(x1, y)|2 dx1 dy < +∞ .

Let φ ∈ C∞0 (]0,∞[×W ). Let us calculate, using the fact that χu ∈ H1(Ω),

−
∫
W

∫ ∞

0
v(z, y)∂zφ(z, y) dz dy = −

∫
W

∫ ∞

q(y)
(χu)(x1, y)∂zφ(x1 − q(y), y) dx1 dy

= −
∫
Ω
(χu)(x1, y)

∂

∂x1
[φ(x1 − q(y), y)] dx1 dy

=

∫
Ω

∂

∂x1
[(χu)(x1, y)]φ(x1 − q(y), y) dx1 dy

=

∫
W

∫ ∞

0
∂x1(χu)(z + q(y), y)φ(z, y) dz dy .

Similarly,

−
∫
W

∫ ∞

0
v(z, y)∂yjφ(z, y) dz dy = −

∫
W

∫ ∞

q(y)
(χu)(x1, y)∂yjφ(x1 − q(y), y) dx1 dy

= −
∫
Ω
(χu)(x1, y)

∂

∂yj
[φ(x1 − q(y), y)] dx1 dy

−
∫
Ω
(χu)(x1, y)∂yjq(y)

∂

∂x1
[φ(x1 − q(y), y)] dx1 dy

=

∫
Ω
[∂yj + ∂yjq(y)∂x1 ](χu)(x1, y)φ(x1 − q(y), y) dx1 dy

=

∫
W

∫ ∞

0
[∂yj + ∂yjq(y)∂x1 ](χu)(z + q(y), y)φ(z, y) dz dy .

Since the functions

(z, y) ∈]0,∞[×W 7→ ∂x1(χu)(z + q(y), y)

(z, y) ∈]0,∞[×W 7→ [∂yj + ∂yjq(y)∂x1 ](χu)(z + q(y), y)

belong to L2(]0,∞[×W ) by change of variables again, this completes the proof of Lemma 2.5.10.

Lemma 2.5.11 Given v ∈ H1(]0,∞[×W ), define ṽ ∈ L2(R×W ) by

ṽ(z, y) =

{
v(z, y) if z > 0

v(−z, y) if z < 0

Then ṽ ∈ H1(R×W ) .

Let us prove Lemma 2.5.11. First we observe that

∥ṽ∥2L2(R×W ) = 2∥ṽ∥2L2(]0,∞[×W ) <∞
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so ṽ ∈ L2(R×W ) indeed. Let φ ∈ C∞0 (R×W ). Let us calculate

−
∫
R

∫
W
ṽ(z, y)∂yjφ(z, y) dz dy = −

∫ +∞

0

∫
W
v(z, y)∂yjφ(z, y) dz dy −

∫ 0

−∞

∫
W
v(−z, y)∂yjφ(z, y) dz dy

= −
∫ ∞

0

∫
W
v(z, y)[∂yjφ(z, y) + ∂yjφ(−z, y)] dz dy

In order to use the information v ∈ H1(]0,∞[×W ), we need to reduce to test functions compactly
supported in ]0,∞[×W . We introduce χ ∈ C∞(R) such that χ(t) = 0 for t ≤ 1

2 and χ(t) = 1 for
t ≥ 1, and we set, for ε > 0,

χε(z) = χ
(z
ε

)
.

The χε(z)→ 1]0,∞[(z) as ε→ 0, and

−
∫
R

∫
W
ṽ(z, y)∂yjφ(z, y) dz dy = − lim

ε→0

∫ ∞

0

∫
W
v(z, y)∂yj [χε(z)(φ(z, y) + φ(−z, y))] dz dy

= lim
ε→0

∫ ∞

0

∫
W
∂yjv(z, y)χε(z)(φ(z, y) + φ(−z, y)) dz dy

=

∫ ∞

0

∫
W
∂yjv(z, y)(φ(z, y) + φ(−z, y)) dz dy

=

∫
R

∫
W
fj(z, y)φ(z, y) dz dy ,

where

fj(z, y) :=

{
∂yjv(z, y) if z > 0

∂yjv(−z, y) if z < 0

defines an L2 function on R×W . Similarly,

−
∫
R

∫
W
ṽ(z, y)∂zφ(z, y) dz dy = −

∫ +∞

0

∫
W
v(z, y)∂zφ(z, y) dz dy −

∫ 0

−∞

∫
W
v(−z, y)∂zφ(z, y) dz dy

= −
∫ ∞

0

∫
W
v(z, y)∂z[φ(z, y)− φ(−z, y)] dz dy

= − lim
ε→0

∫ ∞

0

∫
W
v(z, y)∂z[χε(z)(φ(z, y)− φ(−z, y))] dz dy

+ lim
ε→0

∫ ∞

0

∫
W
v(z, y)χ′

ε(z)(φ(z, y)− φ(−z, y))] dz dy

= lim
ε→0

∫ ∞

0

∫
W
∂zv(z, y)χε(z)(φ(z, y)− φ(−z, y)) dz dy

+ lim
ε→0

O

(
1

ε

)∫ ε

ε
2

|v(z, y)|O(z) dz dy

=

∫ ∞

0

∫
W
∂zv(z, y)(φ(z, y)− φ(−z, y)) dz dy

=

∫
R

∫
W
g(z, y)φ(z, y) dz dy ,

where where

g(z, y) :=

{
∂zv(z, y) if z > 0

−∂zv(−z, y) if z < 0
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defines an L2 function on R×W . Finally, we get ṽ ∈ H1(R×W ) with

∂yj ṽ = fj , ∂z ṽ = g .

This completes the proof of Lemma 2.5.11.
Let us complete the proof of Proposition 2.5.9. Applying Lemma 2.5.11 to

v(z, y) = (χu)(z + q(y), y) ,

we observe that ṽ ∈ H1(R ×W ) and supp(ṽ) ⊂ [−a, a] × K, a compact subset of R ×W . Now
we appeal to Proposition 2.5.8 and obtain that there exist ṽε ∈ C∞0 (R ×W ) such that supp(ṽε) ⊂
[−(a + ε, a + ε] × Kε and ṽε → ṽ in H1(R ×W ). Then the restriction vε of ṽε to ]0,+∞[×W
converge to v in H1(]0,∞[×W ), and

uε(x1, y) = vε(x1 − q(y), y)

is a family of functions in C∞(Ω) which, in view of the formulae for derivatives established in Lemma
2.5.10, converges to χu in H1(Ω) as ε→ 0.

2.5.4 The trace theorem

Theorem 2.5.12 Let Ω be a bounded regular open subset of Rd, with a C∞ boundary. Denote
by σ the superficial measure on ∂Ω and by N ext the exterior unit normal on ∂Ω. There exists
a unique linear mapping

γ0 : H
1(Ω)→ L2(∂Ω, σ)

such that, for every φ ∈ C∞(Ω),
γ0φ = φ|∂Ω .

Furthermore, γ0 satisfies the following identity,
(2.5.9)

∀j ∈ {1, . . . , d} , ∀u, v ∈ H1(Ω) ,

∫
Ω
u ∂jv dx =

∫
∂Ω
γ0u γ0v N

ext
j dσ −

∫
Ω
∂ju v dx .

Furthermore, Ker γ0 is the closure H1
0 (Ω) of C∞0 (Ω) in H1(Ω).

Proof.— From Corollary 2.4.16 and Remark 2.4.17, we have, for every φ,ψ ∈ C∞(Ω),

(2.5.10) ∀j ∈ {1, . . . , d} ,
∫
Ω
φ∂jψ dx =

∫
∂Ω
φψN ext

j dσ −
∫
Ω
∂jφψ dx .

Consider the mapping
γ0 : φ ∈ C∞(Ω) 7−→ φ|∂Ω ∈ L2(∂Ω, σ) .

We claim that this mapping is continuous if C∞(Ω) is endowed with the H1 norm. Indeed, this is
equivalent to proving the estimate

(2.5.11) ∥φ∥L2(∂Ω,σ) ≤ C∥φ∥H1(Ω) .
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Using a partition of unity associated to a finite open covering of the compact set ∂Ω, it is enough to
prove the above inequality when φ is supported in the intersection of Ω with a small neighbourhood
of some point of ∂Ω. On such a neighbourhood, we may assume that, for some j,

|N ext
j | ≥ c

for some c > 0. Then (2.5.11) follows from (2.5.10) with ψ = φ and the Cauchy–Schwarz inequality.

At this stage, we appeal to Proposition 2.5.9. Since γ0 is a continuous linear mapping from a dense
subspace of H1(Ω) into the Banach space L2(∂Ω, σ), it admits a unique linear continuous extension
from H1(Ω) to L2(∂Ω, σ), still denoted by γ0. Since both sides of (2.5.9) are continuous bilinear
maps on H1(Ω)×H1(Ω) and coincide on the dense subspace C∞(Ω)× C∞(Ω) in view of (2.5.10),
we infer that (2.5.9) holds.
Finally, let us characterise the kernel of γ0. If φ ∈ C∞0 (Ω), we have γ0φ = φ|∂Ω = 0, therefore

Ker γ0 contains the closure H1
0 (Ω) of C∞(Ω) in H1(Ω). Conversely, let us assume that u ∈ Ker γ0.

For every f ∈ L2(Ω), denote by f ∈ L2(Rd) the extension of f by 0 to Rd. From identity (2.5.9)

with v = φ|Ω, φ ∈ C∞0 (Rd), we infer, in D′(Rd),

∂j(u) = ∂ju+ γ0uN
int
j σ = ∂ju .

Therefore u ∈ H1(Rd). Using the same partition of unity (χk) as in the proof of Proposition 2.5.9,
we are reduced to prove that, for every k ≥ 1,

χku ∈ H1
0 (Ω) .

Notice that χku = χku ∈ H1(Rd). Let us drop again the index k and consider

v(z, y) = (χu)(z + q(y), y) , (z, y) ∈]0,∞[×W .

Then
χu(z + q(y), y) = v(z, y) ,

where v denotes the extension of v from]0,∞[×W to R ×W by 0, and so we infer, by the same
argument as in Lemma 2.5.10, that v ∈ H1(R×W ). Then we consider, for ε > 0,

vε(z, y) = v(z − ε, y) .

Of course vε ∈ H1(R × W ) and supp(vε) ⊂ [ε, a + ε] × W , a compact subset of ]0,∞[×W .
Furthermore, the continuous action of translations on L2 implies that

∥vε − v∥2H1 =

∫ ∞

0

∫
W

|v(z − ε, y)− v(z, y)|2 +∑
j

|∂jv(z − ε, y)− ∂jv(z, y)|2
 dz dy

tends to 0 as ε→ 0. We conclude that vε → v in H1(]0,∞[×W ), and, again by Lemma 2.5.10, that
the family uε defined by

uε(x1, y) = vε(x1 − q(y), y)

converges to χu in H1(Ω). Since, for every ε > 0, uε is supported into a compact subset of Ω,
Proposition 2.5.8 implies that vε ∈ H1

0 (Ω). Consequently, χu ∈ H1
0 (Ω).
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2.5.5 Solving the Dirichlet problem

Theorem 2.5.13 Let Ω be a bounded regular open subset of Rd with a C∞ boundary. For
every f ∈ L2(Ω), there exists a unique u ∈ H1(Ω) such that{

−∆u = f in Ω ,

γ0u = 0 in ∂Ω .

Proof.— This is an immediate consequence of Remark 2.5.5 (iii) and of Theorem 2.5.12.

Remark 2.5.14 One can prove in fact that, under the assumptions of Theorem 2.5.13, u ∈ H2(Ω),
so that the mapping

∆ : H2(Ω) ∩H1
0 (Ω)→ L2(Ω)

is an isomorphism if Ω is a regular bounded open subset. Furthermore, more regularity on f
implies more regularity on u, typically : if f ∈ Hm(Ω) for some m ∈ N, then u ∈ Hm+2(Ω) ; if
f ∈ C∞(Ω), then u ∈ C∞(Ω). The latter statement is a consequence of the previous one and of∩

m∈N
Hm(Ω) = C∞(Ω) .

2.6 The uniform boundedness principle

In this section, we prove an important result about families of distributions, which implies Lemma
2.3.24.

Theorem 2.6.1 Let (Tn) be a family if distributions on Ω such that, for every φ ∈ D(Ω),

sup
n
|⟨Tn, φ⟩| < +∞ .

Then, for every compact subset K of Ω, there exist C > 0 and m ∈ N such that, for every
φ ∈ D(Ω) with suppφ ⊂ K,

sup
n
|⟨T, φ⟩| ≤ C∥φ∥Cm .

In other words, if for instance a sequence Tn is such that ⟨Tn, φ⟩ has a limit for every φ ∈ D(Ω),
one gets a uniform estimate on the action of the sequence Tn. Let us show how this implies Lemma
2.3.24. If Tn → T , then the assumption of Theorem 2.6.1 is fulfilled. If φn → φ in D(Ω), let K
be a compact subset which contains the support of φn for every n, and hence the support of φ. By
Theorem 2.6.1, we have, for some C,m independent of n,

|⟨Tn, φn − φ⟩| ≤ C∥φn − φ∥Cm → 0 .
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Then
⟨Tn, φn⟩ = ⟨Tn, φn − φ⟩+ ⟨Tn, φ⟩ → ⟨T, φ⟩ .

This completes the proof of Lemma 2.3.24.

In the rest of this section, we give a proof of Theorem 2.6.1 in three steps. For every compact subset
K of Ω, we denote by DK the subspace of D(Ω) of test functions φ such supp(φ) ⊂ K.

2.6.1 Step1. Realizing DK as a complete metric space

Lemma 2.6.2 There exists a distance function d on DK having the following properties.

i) If φn, φ ∈ DK then φn → φ in D if and only if d(φn, φ)→ 0.

ii) The metric space (DK , d) is complete.

iii) For every φ,ψ, θ ∈ DK , d(φ+ θ, ψ + θ) = d(φ,ψ) .

iv) For every ε > 0, there exist m ∈ N and r > 0 such that the set {φ ∈ DK : ∥φ∥m ≤ r} is
contained into the closed ball for d centered at 0 and of radius ε.

Proof.— For φ,ψ ∈ DK , we set

d(φ,ψ) =

∞∑
m=0

min
(
2−m, ∥φ− ψ∥Cm

)
.

It is clear that d takes values in [0,∞[, and that d(φ,ψ) = 0 ⇐⇒ φ = ψ. The symmetry
d(φ,ψ) = d(ψ,φ) is trivial, as well item iii) of the Theorem. Finally, the triangle inequality is a
consequence of the elementary inequality

min(a, x+ y) ≤ min(a, x) + min(a, y) , a ≥ 0, x ≥ 0, y ≥ 0 .

Let us prove item i). If φn, φ ∈ DK , the statement φn → φ in D is equivalent to

(2.6.12) ∀m ∈ N, ∥φn − φ∥Cm → 0 .

Since d(φn, φ) ≥ min (2−m, ∥φn − φ∥Cm), it is clear that (2.6.12) is implied by d(φn, φ) → 0.
Conversely, (2.6.12) implies that every term of the series defining d(φn, φ) tends to 0. Since this
series is normally convergent, this implies d(φn, φ)→ 0.

Let us prove item ii). Let (φn) be a Cauchy sequence in the metric space (DK , d),

∀ε > 0, ∃N(ε) ∈ N : ∀n, p ≥ N(ε), d(φn, φp) ≤ ε .

Let m ∈ N and ε > 0 be such that ε < 2−m. Since d(φn, φp) ≥ min (2−m, ∥φn − φp∥Cm), we
conclude that, for n, p ≥ N(ε), ∥φn − φp∥Cm ≤ ε. In other words, (φn) is a Cauchy sequence
in the Banach space CmK of Cm functions supported in K. Hence there exists φ[m] ∈ CmK such that
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∥φn − φ[m]∥Cm → 0. Since this is true for every m ∈ N, and since convergence in Cm+1
K implies

convergence in CmK , we conclude that

φ[m] = φ ∈
∩
m∈N
CmK = DK ,

and that φn → φ in D, which, by item i), means d(φn, φ)→ 0. Hence (DK , d) is a complete metric
space.

Finally, let us prove item iv). Let m ∈ N be such that 2−m ≤ ε
2 , and let r > 0 be such that

(m+ 1)r ≤ ε
2 . If ∥φ∥Cm ≤ r, we have

d(φ, 0) =

∞∑
q=0

min
(
2−q, ∥φ∥Cq

)
≤

m∑
q=0

∥φ∥Cq +

∞∑
q=m+1

2−q

≤ (m+ 1)r + 2−m ≤ ε .

This completes the proof.

2.6.2 Step 2. The Baire lemma

Lemma 2.6.3 Let (E , d) be a complete metric space. Every countable intersection of open
dense subsets of E is dense in E . Every countable union of closed subsets of E with empty
interior has empty interior.

Proof.—The second statement is equivalent to the first one, since the complement of an open set is a
closed set, and the complement of a dense set has an empty interior.
Let us prove the first statement. Denote by B(φ, r) and Bf (φ, r) respectively the open and the
closed balls of radius r centered at φ ∈ E . Let (Ok)k∈N be a sequence of dense open subsets of E .
Fix φ0 ∈ E and ε > 0. We want to prove that

B(φ0, ε) ∩
∩
k∈N
Ok ̸= ∅ .

Since O0 is dense, B(φ0, ε) ∩ O0 contains some element φ1. Since B(φ0, ε) ∩ O0 is open, there
exists r1 > 0 such that

Bf (φ1, r1) ⊂ B(φ0, ε) ∩ O0 ,

moreover we may assume that r1 ≤ ε
2 .

Since O1 is dense, B(φ1, r1) ∩ O1 contains some element φ2. Since B(φ1, r1) ∩ O1 is open, there
exists r2 > 0 such that

Bf (φ2, r2) ⊂ B(φ1, r1) ∩ O1 ,
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moreover we may assume that r2 ≤ ε
22

.
Continuing that way, we define a sequence (φk)k≥1 of elements of E and a sequence (rk)k≥1 of
positive numbers such that

∀k ≥ 1 Bf (φk+1, rk+1) ⊂ B(φk, rk) ∩ Ok , rk ≤
ε

2k
.

In particular, the sequence of closed balls (Bf (φk, rk))k≥1 is decreasing, with a radius tending to 0.
Moreover,

Bf (φk, rk) ⊂ Ok ∩ · · · ∩ O0 ∩B(φ0, ε) .

Hence we are reduced to prove that
∞∩
k=1

Bf (φk, rk) ̸= ∅ .

We observe that (φk)k≥1 is a Cauchy sequence in E . Indeed, if ℓ ≥ 0, φk+ℓ ∈ Bf (φk, rk), hence

d(φk+ℓ, φk) ≤ rk ,

which tends to 0 as k tends to∞. Since E is a complete metric space, φk has a limit φ ∈ E . Passing
to the limit as ℓ tends to infinity in the above inequality, we get, for every k ≥ 1,

d(φ,φk) ≤ rk ,

so that

φ ∈
∞∩
k=1

Bf (φk, rk).

This completes the proof.

2.6.3 Step 3. Proof of Theorem 2.6.1

Let us use the notation of Theorem 2.6.1. We set, for every k ∈ N,

Fk = {φ ∈ DK : ∀n, |⟨Tn, φ⟩| ≤ k} .

Since each Tn is continuous on DK , Fk is a closed subset of DK . Furthermore, the assumption of
Theorem 2.6.1 precisely means that ∪

k∈N
Fk = DK .

Let endow DK with a distance function as in Lemma 2.6.2. By Baire’s lemma, we infer that there
exists k0 such that Fk0 has a nonempty interior, which means that there exists some φ0 ∈ DK and
ε > 0 such that

Bf (φ0, ε) ⊂ Fk0 .

By item iii) of Lemma 2.6.2, we know that

Bf (0, ε) = −φ0 +Bf (φ0, ε),

so that, for every ψ ∈ Bf (0, ε), for every n,

|⟨Tn, ψ⟩| ≤ |Tn,−φ0⟩|+ k0 ≤ A ,
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for some A > 0. Using item iv) of Lemma 2.6.2, we infer that there exists m ∈ N and r > 0 such
that every ψ ∈ DK such that ∥ψ∥Cm ≤ r belongs to Bf (0, ε), hence satisfies

sup
n
|⟨Tn, ψ⟩| ≤ A .

Given φ ∈ DK \ {0}, we may apply this fact to

ψ = r
φ

∥φ∥Cm
,

and we conclude that

sup
n
|⟨Tn, φ⟩| ≤

A

r
∥φ∥Cm .

The proof is complete.

Remark 2.6.4 The above theorem is an adaptation of the Banach–Steinhaus theorem to the case
of vector spaces admitting a distance enjoying Lemma 2.6.2. Such spaces are called Fréchet
spaces.
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Chapter 3

The Fourier Transformation

The Fourier transform of a function f ∈ L1(Rd) is the function F(f) ∈ L∞(Rd) given by

F(f)(ξ) =
∫
Rd

e−ix·ξf(x)dx, with ∥F(f)∥L∞ ≤ ∥f∥L1 .

The important role played by the Fourier transform in PDE’s theory is mainly due to the fact that, when
these objects are well-defined,

F(∂jf)(ξ) = iξjF(f)(ξ).

Otherwise stated, F transforms the action of a differential operator with constant coefficients to that
of the product by a polynomial. This would be worthless without an inversion formula giving back the
function f in terms of F(f), as

f(x) =
1

(2π)d

∫
Rd

eix·ξF(f)(ξ)dξ,

Unfortunately, this formula only makes sense whenF(f) ∈ L1(Rd), and this is not the case in general
for f ∈ L1. In this chapter, we are going to introduce a subspace of distributions on Rd, which contains
L1(Rd), and a Fourier transformation on this space which sastifies the two above identity.

3.1 The Schwartz space

3.1.1 Definitions and examples

Definition 3.1.1 A function f : Rd → R is said to be rapidly decreasing if, as |x| → ∞,

∀α ∈ Nd, xαf(x)→ 0 .

Notice that, if f is rapidly decreasing and continuous, all the functions xαf are bounded on Rd.
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Definition 3.1.2 We denote S(Rd) the set of functions φ ∈ C∞(Rd) which are rapidly de-
creasing as well as all their derivatives. In other words,

∀(α, β) ∈ Nd, xα∂βφ(x)→ 0

as |x| → ∞. The set S(Rd) is a vector space; it is called the Schwartz space.

Example 3.1.3 i) C∞0 (Rd) ⊂ S(Rd).

ii) For z ∈ C such that Re z > 0, the functionφ(x) = e−z|x|
2 belongs to S(Rd).

iii) If φ1, φ2 ∈ S(Rd), then φ1φ2 ∈ S(Rd).

iv) No rational function (even smooth ones) belongs to S(Rd).

The topology on S(Rd) we will work with is that given by the family of norms (Np)p∈N given by

Np(φ) = sup
|α|,|β| ≤p

sup |xα∂βφ(x)|.

It is clear that for φ ∈ C∞(Rd), we have the equivalence

φ ∈ S(Rd)⇐⇒ ∀p ∈ N, Np(φ) < +∞.

Proposition 3.1.4 If φ ∈ S(Rd) then xα∂βφ ∈ S(Rd) for every α, β ∈ Nd.

Proof.— This follows immediately from the fact that

(3.1.1) Np(x
α∂βφ) = sup

|λ|,|µ|≤p
sup |xλ∂µ(xα∂βφ(x))| ≤ Cp,α,βNp+q(φ)

when |α|, |β| ≤ q.

3.1.2 Convergence in S(Rd) and density results

Definition 3.1.5 Let (φn) be a sequence of functions in S(Rd). One says that (φn) converges
to φ in S(Rd) when, for every α, β ∈ Nd, xα∂βφn(x) → xα∂βφ(x) uniformly in x ∈ Rd.
Equivalently, for all p ∈ N,

Np(φn − φ)→ 0 as j → +∞.
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Remark 3.1.6 Let α ∈ Nd. It follows from (3.1.1) that, if (φn) converges to φ in S(Rd),
then (xαφn) converges to xαφ and (∂αφn) converges to (∂αφ) in S(Rd). Otherwise stated,
multiplication by a polynomial and derivation are continuous operations in S(Rd).

We already know that S ⊂ L∞, with ∥φ∥L∞ = N0(φ). The next proposition states a similar property
for L1.

Proposition 3.1.7 S(Rd) ⊂ L1(Rd), and there exists Cd > 0 such that

∀φ ∈ S(Rd) , ∥φ∥L1 ≤ CdNd+1(φ) .

Proof.— We have

(1 + |x|2)d+1 = (1 + x21 + · · ·+ x2d)
d+1 =

∑
|α|≤d+1

cα,d(x
α)2 ,

hence
(1 + |x|2)d+1|φ(x)|2 ≤ BdNd+1(φ)

2 .

Consequently, ∫
Rd

|φ(x)| dx ≤
√
BdNd+1(φ)

∫
Rd

dx

(1 + |x|2)(d+1)/2
≤ CdNd+1(φ) ,

since x 7→ (1 + |x|2)−(d+1)/2 is integrable on Rd.

Remark 3.1.8 For every q ∈ N, one can establish similarly

∀φ ∈ S(Rd) , ∀x ∈ Rd , (1 + |x|q)|φ(x)| ≤ Cq,dNq(φ) .

Since C∞0 (Rd) is dense in the Lp(Rd) spaces for p ∈ [1,+∞[, we get the

Corollary 3.1.9 The set S(Rd) is dense in all the Lp(Rd) for p ∈ [1,+∞[.

We also have the important

Proposition 3.1.10 The space C∞0 (Rd) is dense in S(Rd): for any φ ∈ S(Rd), there is a
sequence (φn) of functions in C∞0 (Rd) which converges to φ in S(Rd).

Proof.— Let φ ∈ S(Rd), and let χ ∈ C∞0 (Rd) be a plateau function over B(0, 1). We set φn(x) =
φ(x)χ(x/n). The functions φn are smooth with compact support, and equal φ in B(0, n). By the
Leibniz formula, we obtain

∂β(φ− φn)(x) = ∂βφ(x)(1− χ(x/n)) +
∑

|γ|≥1,γ≤β

Cγβ
1

n|γ|
∂β−γφ(x)(∂γχ)(

x

n
).

Lecture Notes, Fall 2019 Patrick Gérard



CHAPTER 3. THE FOURIER TRANSFORMATION 98

Thus, as n→ +∞,

∥xα∂β(φ− φn)(x)∥∞ ≤ sup
|x|≥n

|xα∂βφ(x)|+ C

n

∑
γ≤β
∥xα∂β−γφ∥∞ → 0.

3.2 The Fourier transformation in S(Rd)

3.2.1 Definition and first properties

For φ ∈ S(Rd) we have φ ∈ L1(Rd), so that F(φ) is well defined ans belongs to L∞(Rd).

Definition 3.2.1 For φ ∈ S(Rd), we denote φ̂, F(φ) or even Fx→ξ(φ(x)) the function in
L∞(Rd) given by

φ̂(ξ) = F(φ)(ξ) = Fx→ξ(φ(x)) =

∫
Rd

e−ix·ξφ(x)dx.

The linear map F : φ 7→ φ̂ is called the Fourier transformation.

Here follows some of the properties of the Fourier transform on S(Rd) that we have asked for in the
introduction.

Proposition 3.2.2 Let φ ∈ S(Rd). Then φ̂ ∈ S(Rd). More precisely,

i) For all j ∈ {1, . . . , n} Fx→ξ(xjφ(x)) = i∂jF(φ)(ξ).

ii) For all j ∈ {1, . . . , n}, we have F(∂jφ)(ξ) = iξjF(φ)(ξ).

iii) For a ∈ Rd, Fx→ξ(φ(x− a)) = e−ia·ξF(φ)(ξ).

iv) For a ∈ Rd, Fx→ξ(e
ia·xφ(x)) = F(φ)(ξ − a).

v) For all integrer p ≥ 0, Np(φ̂) ≤ Cp,dNp+d+1(φ) .

Proof.— i) The function (x, ξ) 7→ e−ix·ξφ(x) is C1 on Rd, et

|∂ξj (e
−ix·ξφ(x))| = | − ixje−ix·ξφ(x)| = |xjφ(x)| ∈ L1(Rd).

By Lebesgue theorem, we see that F(φ) is C1 and

∂ξjF(φ)(ξ) =
∫
Rd

−ixje−ix·ξφ(x) = F(−ixjφ(x)).
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ii) Let us first write the proof for j = 1. Integrating by parts, we get∫
R
∂1φ(x)e

−ix·ξdx1 = iξ1

∫
R
φ(x)e−ix·ξdx1

Now we integrate with respect to the variable x′. By Fubini, since φ, ∂1φ ∈ S(Rd) ⊂ L1(Rd), we
have ∫

Rd

∂1φ(x)e
−ix·ξdx = iξ1

∫
Rd

φ(x)e−ix·ξdx.

To get (iv), we only have to write

Fx→ξ(e
ia·xφ(x)) =

∫
Rd

e−ix·ξeia·xφ(x)dx =

∫
Rd

e−i(ξ−a)·xφ(x)dx = F(φ)(ξ − a).

Eventually, performing a change of variable, we have

Fx→ξ(φ(x− a)) =
∫
Rd

e−ix·ξφ(x− a)dx =

∫
Rd

e−i(x+a)·ξφ(x)dx = e−ia·ξF(φ)(ξ),

and this is property (iii).

Iterating properties i), ii), we obtain that φ̂ ∈ S(Rd), and, using Proposition 3.1.7, that

Np(φ̂) = sup
|α|,|β|≤p

∥ξα∂βφ̂∥L∞ = sup
|α|,|β|≤p

∥F(∂α(xβφ))∥L∞

≤ sup
|α|,|β|≤p

∥∂α(xβφ)∥L1 ≤ Bd sup
|α|,|β|≤p

Nd+1(∂
α(xβφ))

≤ Cp,dNp+d+1(φ) .

Because of the presence of a factor i =
√
−1 in (i) and (ii), it is sometimes convenient to use the

notation

Dj =
1

i
∂j .

Then, for example, (ii) becomes F(Djφ) = ξjF(φ), and (i) is DjF(φ) = −F(xjφ). Summing up,
we have {

D̂jφ = ξjφ̂,

x̂jφ = −Djφ̂.

Notice also that, by (i), F(φ) is C∞ since xαφ ∈ S for all α ∈ Nd.

3.2.2 Gaussians

For λ > 0, we set

Gλ(x) = e−λ
|x|2
2 , x ∈ Rd .

Proposition 3.2.3

Ĝλ =

(
2π

λ

) d
2

G 1
λ
.
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Proof.— Since Gλ(x1, . . . , xd) = Gλ(x1) . . . Gλ(xd), it is enough to prove the case d = 1, which we
now assume. Then we observe that

G′
λ(x) = −λxGλ(x) ,

hence by properties i) and ii) of Proposition 3.2.2, we infer

iξĜλ(ξ) = −iλ
d

dξ
Ĝλ(ξ) .

Solving this differential equation leads to Ĝλ(ξ) = Ĝλ(0) e−
ξ2

2λ , and the proof is completed by the
Gauss integral identity

Ĝλ(0) =

∫
R

e−λ
x2

2 dx =

√
2π

λ
.

Exercise 3.2.4 Compute Fx→ξ(e
−λx2) by calculating

∫
Im ζ=ξ

e−λζ
2
dζ using the Cauchy integral

formula for holomorphic functions.

3.2.3 The Inversion formula

Theorem 3.2.5 Let φ ∈ S(Rd). Then

φ(x) =
1

(2π)d

∫
Rd

eix.ξφ̂(ξ) dξ .

Proof.— We first observe that it is enough to prove this identity for x = 0. Indeed, in view of property
(iii) of Proposition 3.2.2, the general statement follows from applying the formula

ψ(0) =
1

(2π)d

∫
Rd

ψ̂(ξ) dξ

to the function ψx defined by ψx(y) = φ(x+ y).
Consider the linear form

L : ψ ∈ S(Rd) 7→
∫
Rd

ψ̂(ξ) dξ

We claim that, if ψ(0) = 0, then L(ψ) = 0. Indeed, applying the Hadamard lemma 2.3.12 and its
proof, we infer

ψ(x) =
d∑
j=1

xjψj(x) ,

where ψ1, . . . , ψd ∈ S(Rd). Taking the Fourier transform of both sides and applying property (i) of
Proposition 3.2.2, we infer

ψ̂(ξ) =
d∑
j=1

i∂jψ̂j(ξ) .
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Integrating both sides on Rd, we conclude∫
Rd

ψ̂(ξ) dξ = 0 .

Hence we have proved that the kernel of the linear form ψ 7→ ψ(0) on S(Rd) is contained in the
kernel of L. Consequently, there exists c ∈ C such that, for every ψ ∈ S(Rd),

L(ψ) = cψ(0) .

Applying this identity to ψ = G1, we infer, in view of Proposition 3.2.3,

c = (2π)d .

In order to reformulate this important theorem, we introduce the symmetry σ : S → S defined by

σφ(x) = φ̌(x) := φ(−x) ,

and observe that
σ ◦ F = F ◦ σ =: F̌ .

Corollary 3.2.6 The Fourier transformation is an isomorphism on the vector space S(Rd). Its
inverse F−1 is given by

F−1 = (2π)−dF̌ .

Equivalently, we have

(3.2.2) F ◦ F = (2π)dσ .

Remark 3.2.7 As an immediate consequence of (3.2.2), F4 = (F ◦ F)2 = (2π)2dI .

3.2.4 The “change of head” lemma

The following proposition is elementary but crucial for the whole chapter.

Proposition 3.2.8 Let φ,ψ ∈ S(Rd). Then∫
Rd

φ̂(ξ)ψ(ξ) dξ =

∫
Rd

φ(x)ψ̂(x) dx .

Proof.— By Fubini’s theorem,∫
Rd

φ̂(ξ)ψ(ξ) dξ =

∫
Rd

(∫
Rd

e−ix.ξφ(x) dx

)
ψ(ξ) dξ

=

∫
Rd

φ(x)

(∫
Rd

e−ix.ξψ(ξ) dξ

)
dx =

∫
Rd

φ(x)ψ̂(x) dx .
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We now come to some important identities which easily follow from the inversion formula.

3.2.5 The Plancherel identity

Proposition 3.2.9 (Plancherel formula) Let φ and ψ be two functions in S(Rd). Then∫
Rd

φ(x)ψ(x) dx = (2π)−d
∫
Rd

φ̂(ξ)ψ̂(ξ) dξ

Proof.— We first observe the following identity,

(3.2.3) φ̂ = σ
(
φ̂
)
,

which is merely a reformulation of

φ̂(ξ) =

∫
Rd

eix.ξφ(x) dx .

Then, applying Proposition 3.2.8, we obtain∫
Rd

φ̂ψ̂ =

∫
Rd

φ
ˆ̂
ψ .

But, combining identity (3.2.3) with identity (3.2.2),

ˆ̂
ψ = σ

ˆ̂
ψ = (2π)dσσψ = (2π)dψ .

This completes the proof.

In terms of the Hermitian scalar product in L2(Rd,C), the above identity can be written as

(φ,ψ)L2 =
1

(2π)d
(φ̂, ψ̂)L2 .

In particular, for ψ = φ, we obtain the famous Plancherel formula in S(Rd):

Corollary 3.2.10 (Plancherel) For any φ ∈ S(Rd), it holds that

∥φ∥L2(Rd) = (2π)−d/2∥φ̂∥L2(Rd).

3.3 The space S ′(Rd) of tempered distributions

3.3.1 Definition, examples
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Definition 3.3.1 A distribution T ∈ D′(Rd) is said to be (a) tempered (distribution) when
there exists C > 0 and p ∈ N such that, for all test function φ ∈ C∞0 (Rd),

|⟨T, φ⟩ ≤ CNp(φ).

Notation. We denote by S ′(Rd) the space of tempered distributions on Rd.

Example 3.3.2 If T ∈ E ′(Rd), there is C > 0, m ∈ N, such that for any φ ∈ C∞(Rd),

|⟨T, φ⟩ ≤ C
∑

|α|≤m

sup |∂αφ| ≤ CNp(φ).

Thus E ′(Rd) ⊂ S ′(Rd), that is compactly supported distributions are tempered.

Example 3.3.3 For p ∈ [1,+∞], we have Lp(Rd) ⊂ S ′(Rd). Indeed, if f ∈ Lp(Rd) and φ ∈
C∞0 (Rd), and for q ∈ [1,+∞] such that 1/p+ 1/q = 1, we have

|⟨Tf , φ⟩| ≤ |
∫
f(x)φ(x)dx| ≤ ∥f∥Lp∥φ∥Lq ≤ C∥f∥LpNn+1(φ),

thanks to Proposition 3.2.2. In particular, in view of Proposition 3.1.7, S(Rd) ⊂ S ′(Rd).

Example 3.3.4 Let f ∈ L1
loc(Rd) be such that, for some C > 0 and p ∈ N,

∀R > 0,

∫
|x|≤R

|f(x)| dx ≤ C(1 +R)p.

. Then we claim that f is a tempered distribution. Indeed, if φ ∈ C∞
0 (Rd), we have∣∣∣∣∫

Rd

fφ

∣∣∣∣ ≤ ∫
Rd

|f(x)||φ(x)| dx =

∫
|x|<1

|f(x)||φ(x)| dx+
∞∑
k=0

∫
2k≤|x|<2k+1

|f(x)||φ(x) dx

≤ 2pCN0(φ) + C
∞∑
k=0

(1 + 2k+1)p sup
2k≤|x|≤2k+1

|φ(x)|

≤ C ′

(
N0(φ) +

∞∑
k=0

2−k sup
2k≤|x|≤2k+1

|x|p+1|φ(x)|

)
≤ C ′′Np+1(φ) .

Example 3.3.5 The previous example admits the following partial converse. If f ∈ L1
loc(Rd) has

nonnegative values and is a tempered distribution, then, for some C > 0 and p ∈ N,

∀R > 0,

∫
|x|≤R

f(x) dx ≤ C(1 +R)p.
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Indeed, if f is tempered, we have, for some A > 0 et p ∈ N,

∀φ ∈ C∞
0 (Rd),

∣∣∣∣∫
Rd

f(x)φ(x) dx

∣∣∣∣ ≤ ANp(φ) .

Let χ ≥ 0 be a plateau function over the unit ball centered at 0, supported into the ball of radius
2 centered at 0. Then

0 ≤
∫
|x|≤R

f(x) dx ≤
∫
Rd

f(x)χ
( x
R

)
dx ≤ ANp

(
χ
( ·
R

))
≤ C(1 +R)p.

In particular, ex is not tempered on R, since, for every p ∈ N,

R−p
∫ R

0
ex dx −→

R→∞
+∞ .

We conclude this first paragraph with a simple observation.

Proposition 3.3.6 If T ∈ S ′(Rd), then xα∂βT ∈ S ′(Rd) for all α, β ∈ Nd.

Proof.— It is sufficient to show that xjT and ∂jT are tempered distributions when T is. Since
φ ∈ S(Rd), ⟨xjT, φ⟩ = ⟨T, xjφ⟩ and ⟨∂jT, φ⟩ = −⟨T, ∂jφ⟩, the proposition follows directly from
(3.1.1).

Exercise 3.3.7 Show that the function x 7→ exeie
x is not bounded by a polynomial, but belongs

to S ′(R). Hint: it is the derivative of a tempered distribution.

The multiplication of a tempered distribution by a smooth function does not always yield a tempered
distribution. However, it is the case when the function has moderate growth, in the following sense.

Definition 3.3.8 A function f ∈ C∞(Rd) has moderate growth when for any β ∈ Nd, there
is Cβ > 0 and mβ ∈ N such that

|∂βf(x)| ≤ Cβ(1 + |x|)mβ .

We denote OM (Rd) the set of such functions.

Proposition 3.3.9 If T ∈ S ′(Rd) and f ∈ OM (Rd), then fT ∈ S ′(Rd).

Proof.— Let φ ∈ S(Rd), and α, β ∈ Nd. The Leibniz formula gives

|xα∂β(fφ)| ≤
∑
γ≤α

(
β

γ

)
|xα∂γf | |∂β−γφ| ≤ Cγ

∑
γ≤α

(
β

γ

)
(1 + |x|)mγ |∂β−γφ|.
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Then, as in (3.1.1), we obtain
Np(fφ) ≤ CNp+M (φ),

where M = max|γ|≤pmγ . Thus, for φ ∈ C∞0 (Rd), we obtain

|⟨fT, φ⟩| = |⟨T, fφ⟩| ≤ CNp(fφ) ≤ C ′Np+M (φ),

and this means that fT is a tempered distribution.

Exercise 3.3.10 Show that vp(1/x) ∈ S ′(R).

3.3.2 The fundamental characterization of S ′

Proposition 3.3.11 If T is a tempered distribution, then T extends in a unique way as a linear
form T̃ on S(Rd) continuous in the following sense: if φn → φ in S(Rd), then ⟨T̃ , φn⟩ → ⟨T̃ , φ⟩.

Proof.— Let φ ∈ S(R). There is a sequence (φj) in C∞0 (Rd) such that φj → φ in S(Rd). The
sequence (⟨T, φj⟩)j is a Cauchy sequence in C since T is tempered:

(3.3.4) |⟨T, φj − φk⟩| ≤ CNp(φj − φk).

Its limit does not depend on the choice of the sequence (φj), since when φj , ψj → φ, we have

|⟨T, φj − ψj⟩| ≤ CNp(φj − ψj)→ 0.

Thus we can let T̃ be the linear form on S(Rd) given by

⟨T̃ , φ⟩ = lim
j→+∞

⟨T, φj⟩,

where (φj) is any sequence in C∞0 (Rd) which converges to φ. Since Np is a continuous function on
S, passing to the limit in

|⟨T, φj⟩| ≤ CNp(φj),

we get
|⟨T̃ , φ⟩| ≤ CNp(φ).

for any φ ∈ S(Rd). So T̃ is continuous.

Finally, if T1 is another continuous extension of T to S(Rd), we should have

⟨T1, φ⟩ = ⟨T1, φ− φj⟩+ ⟨T1, φj⟩ → 0 + ⟨T̃ , φ⟩,

so that T1 = T̃ .

Remark 3.3.12 For simplicity, we shall drop the tilde in the sequel, and set T in place of T̃ .
Notice that, conversely, every continuous linear form on S(Rd) satisfies a bound of the form

∀φ ∈ S, |⟨T, φ⟩| ≤ C Np(φ)

hence its restriction to C∞0 (Rd) is a tempered distribution. Summing up, tempered distributions
identify to continuous linear forms on the Schwartz space S. This explains the notation S ′. We
shall use this identification systematically.
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3.3.3 Convergence in S ′(Rd)

Definition 3.3.13 Let (Tn) be a sequence of tempered distributions. One says that (Tn)
tends to T in S ′(Rd) when for any function φ ∈ S(Rd), it holds that ⟨Tn, φ⟩ → ⟨T, φ⟩.

As it is the case in D′(Rd), this notion of convergence, a weak one, implies a stronger one. We admit
the following result.

Proposition 3.3.14 If Tn → T in S ′, there exists C > 0 and p ∈ N such that

∀φ ∈ S , ∀n , |⟨Tn, φ⟩| ≤ C Np(φ) .

As we did for the convergence in D′, the above proposition relies on a uniform boundedness principle,
which follows from identifying the convergence on S as the one on a complete metric space.

Remark 3.3.15 When Tn → T in S ′(R), it is true that Tn → T in D′(R) since C∞0 (Rd) ⊂ S(Rd).
The converse is not true in general, as shown by the following example: for any sequence (an) of
complex numbers, the sequence (anδn) tends to 0 in D′(R). However it only converges (necessarily
to 0) in S ′(Rd) if (an) has moderate growth, i.e. there is C > 0, p ∈ N such that

∀n , |an| ≤ C(1 + n)p.

Remark 3.3.16 If fn → f in Lp(Rd), then fn → f in S ′(Rd). If Tn → T in S ′(Rd), then
fTn → fT in S ′(Rd) for all f ∈ OM (Rd).

3.4 The Fourier Transformation in S ′(Rd)

3.4.1 Definition

Let T ∈ S ′(Rd) be a tempered distribution. The linear form on S(Rd) given by φ 7→ ⟨T, φ̂⟩ is a
tempered distribution since there exist C > 0 and p ∈ N such that

|⟨T, φ̂⟩| ≤ CNp(φ̂) ≤ C ′Np+d+1(φ),

thanks to Proposition 3.2.6.

Definition 3.4.1 For T ∈ S ′(Rd), we denote by T̂ = F(T ) the tempered distribution given
by

⟨T̂ , φ⟩ = ⟨T, φ̂⟩,  φ ∈ S(Rd).
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Example 3.4.2 i) For f ∈  L1, we have by Fubini’s theorem,

⟨f̂ , φ⟩ =

∫
Rd

f(x)φ̂(x) dx =

∫
Rd

f(x)

(∫
Rd

φ(ξ) e−ix.ξ dξ

)
dx

=

∫
Rd

(∫
Rd

f(x) e−ix.ξ dx

)
φ(ξ) dξ =

∫
Rd

f̂(ξ)φ(ξ)dξ,

so that T̂f = Tf̂ . The Fourier transformation on S ′ restricts to the classical Fourier trans-
formation on L1 (see also Proposition 3.4.5 below).

ii) For φ ∈ S(Rd), ⟨δ̂0, φ⟩ =
∫
φ(x)dx, thus δ̂0 = 1.

Proposition 3.4.3 The Fourier Transform F is an isomorphism on S ′(Rd). Its inverse is F−1 =
(2π)−dF̌ . Moreover F and F−1 are continuous on S ′(Rd), in the following sense: if Tn → T ∈
S ′(Rd), then F(Tn)→ F(T ) in S ′(Rd).

These results follow immediatlely form the above definition and Proposition 3.2.6. The same way,
transfering to S ′(Rd) the properties of the Fourier transform on S(Rd), we obtain easily the following
identities in S ′(Rd):

F(DjT ) = ξj T̂ , F(xjT ) = −Dj T̂ ,F(τaT ) = e−ia.ξF(T ),F
(
eia.xT

)
= τaF(T ) .

Example 3.4.4 1̂ = F ◦ F(δ0) = (2π)d δ0

̂
= (2π)dδ0.

3.4.2 The Fourier Transformation on L1 and L2

Here we briefly sum up the main properties of the Fourier transform of a tempered distribution given
by an L1 or an L2 function.

Proposition 3.4.5 If T = f ∈ L1(Rd), then F(T ) = f̂ . More precisely

i) F(T ) is the continuous function given by F(T )(ξ) =
∫
e−ix·ξf(x)dx, and F(T )(ξ)→ 0

when |ξ| → +∞.

ii) If moreover F(T ) belongs to L1(Rd), then F−1(F(T )) = T almost everywhere.

Proof.— The fact that f̂ is a continuous function follows easily from Lebesgue theorem of continuity
for integral with parameters,and the fact that f̂ goes to 0 at infinity is called the Riemann-Lebesgue
lemma. For φ ∈ S(Rd) we have

⟨T̂ , φ⟩ = ⟨T, φ̂⟩ =
∫
f(ξ)φ̂(ξ)dξ =

∫
f(ξ)

(∫
e−ix·ξφ(x)dx

)
dξ.
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Since the function (x, ξ) 7→ f(ξ)e−ix·ξφ(x) belongs to L1(Rdx × Rdξ), we have

⟨T̂ , φ⟩ =
∫
φ(x)(

∫
e−ix·ξf(ξ)dξ)dx = ⟨f̂ , φ⟩,

and this ends the proof of (i). We also know that F−1(f̂) = f in S ′(Rd). If f̂ ∈ L1(Rd), we thus
have F−1(f̂) = f in D′(Rd), and this implies that F−1(f̂) = f almost everywhere.

Proposition 3.4.6 The map T ∈ S ′(Rd) 7→ (2π)−d/2F(T ) ∈ S ′(Rd) induces a bijective isom-
etry on L2(Rd).

Proof.— Let f ∈ L2(Rd). For every φ ∈ S(Rd), we have

⟨f̂ , φ⟩ =
∫
Rd

f(x)φ̂(x) dx

and therefore, by the Cauchy–Schwarz inequality and the Plancherel identity (Corollary 3.2.10),

|⟨f̂ , φ⟩| ≤ ∥f∥L2∥φ̂∥L2 = (2π)
d
2 ∥f∥L2∥φ∥L2 .

By the Riesz representation theorem, this implies that ∈̂L2(Rd) and

∥f̂∥L2 ≤ (2π)
d
2 ∥f∥L2 .

Applying this inequality to f̂ and using the inversion formula from Proposition 3.4.3, we infer

(2π)d∥f∥L2 = ∥ ˆ̂f∥L2 ≤ (2π)
d
2 ∥f̂∥L2

so that, eventually,

∥f∥L2 = (2π)−
d
2 ∥f̂∥L2 .

Since it is clear from Proposition 3.4.3 that F is bijective on L2, the proof is complete.

Remark 3.4.7 There are functions f in L2(Rd) such that x 7→ e−ix·ξf(x) is not integrable
whatever the value of ξ is (for example, for d = 1, f(x) = (1 + |x|)−3/4). Nevertheless, for
R > 0, the function gR given by

gR(ξ) =

∫
|x|<R

e−ix·ξf(x) dx

tends to f̂ in L2(Rd) thanks to the Proposition 3.4.6, since f1|x|<R → f in L2(Rd). Thus, for
f ∈ L2(Rd),

f̂(ξ) = lim
R→+∞

∫
|x|<R

e−ix·ξf(x) dx

in the L2 sense.
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3.4.3 The Fourier Transform of compactly supported distributions

The Fourier transformation exchanges the speed of decay at infinity of a function with the regularity
of its image, as shown by example by the following inequality

∥Dαφ̂∥L∞ = ∥F(xαφ)∥L∞ ≤ ∥xαφ∥L1 , φ ∈ S(Rd).

The best speed of decay at infinity for a function is achieved for compactly supported ones ; the result
of this subsection explores this phenomenon more precisely.

Proposition 3.4.8 If T ∈ D′(Rd) is compactly supported, its Fourier transform F(T ) is the
smooth function on Rd given by

F(T )(ξ) = ⟨Tx, e−ix·ξ⟩.

Moreover, there is an integer m ∈ N such that, for all α ∈ Nd, there is a Cα > 0 satisfying

|∂αF(T )(ξ)| ≤ Cα(1 + |ξ|)m.

Proof.— Differentiating under the bracket, we see that the function v(ξ) given by

v(ξ) = ⟨Tx, e−ix·ξ⟩

is a C∞ function (as a matter of fact, one should write v(ξ) = ⟨Tx, χ(x)e−ix·ξ⟩, for some plateau
function χ ∈ C∞0 (Rd) above the support of T , and then apply the theorem). We also have

∂αv(ξ) = ⟨Tx, (−ix)αe−ix·ξ⟩,

where, for some constant C > 0, an integer m ∈ N and a compact set K that depend only on T ,

|∂αv(ξ)| ≤ C
∑

|β|≤m

sup
x∈K
|∂βx
(
(−ix)αe−ix·ξ

)
| ≤ Cα(1 + |ξ|)m

Last, we have T̂ = v. Indeed, for φ ∈ C∞0 (Rd), thanks to the result about integrating under the
bracket,

⟨T̂ , φ⟩ = ⟨Tx, χ(x)
∫
e−ix·ξφ(ξ)dξ⟩ =

∫
⟨Tx, χ(x)e−ix·ξ⟩φ(ξ)dξ,

where T̂ (ξ) = ⟨Tx, χ(x)e−ix·ξ⟩.

3.4.4 Fourier characterization of Sobolev spaces on Rd

We recall that Sobolev spaces Hs(Ω) were introduced in Chapter 2 for s ∈ N and Ω an open subset of
Rd. In this subsection, we use the Fourier transform to provide more information about these spaces
when Ω = Rd.

For ξ ∈ Rd, we set ⟨ξ⟩ =
√
1 + |ξ|2. The function ξ 7→ ⟨ξ⟩ is smooth on Rd, and there is a constant

C > 0 such that, for |ξ| ≥ 1,
1

C
|ξ| ≤ ⟨ξ⟩ ≤ C|ξ|.
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Thus, ⟨ξ⟩ is a regularized version of |ξ|, in the sense that it has the same behavior at infinity. Fur-
thermore, since this function is smooth and since all its derivatives have growth at most polynomial at
infinity, it acts on S ′(Rd) by multiplication.

Proposition 3.4.9 Let s ∈ N and u ∈ S ′(Rd). Then u ∈ Hs(Rd) if and only if ⟨ξ⟩sû ∈ L2(Rd).
Furthermore, there exists Cs > 0 such that

∀u ∈ Hs(Rd) , C−1
s ∥⟨ξ⟩sû∥L2 ≤ ∥u∥Hs ≤ Cs∥⟨ξ⟩sû∥L2 .

Proof.— If u ∈ Hs(Rd), then ∂αu ∈ L2(Rd) for |α| ≤ s. By the Plancherel theorem, this means

ξαû ∈ L2(Rd) , |α| ≤ s .

Now observe that
⟨ξ⟩2s = (1 + ξ21 + · · ·+ ξ2d)

s =
∑
|α|≤s

cαξ
2α

for some positive constants cα. Consequently,

⟨ξ⟩2s|û(ξ)|2 =
∑
|α|≤s

cαξ
2α|û(ξ)|2 ∈ L1(Rd) ,

whence ⟨ξ⟩sû ∈ L2(Rd).

Conversely, if ⟨ξ⟩sû ∈ L2(Rd), then, for |α| ≤ s, ξα⟨ξ⟩−s is bounded on Rd and we have

ξαû = ξα⟨ξ⟩−s ⟨ξ⟩sû ∈ L2(Rd),

which precisely means that ∂αu ∈ L2(Rd).

The inequality follows from these considerations and from the Plancherel formula.

Proposition 3.4.9 suggests to extend the definition of Hs(Rd) to every real number s as follows.

Definition 3.4.10 Let s ∈ R. A tempered distribution u ∈ S ′(Rd) belongs to Hs(Rd) if
⟨ξ⟩sû ∈ L2(Rd).

Example 3.4.11 i) δ0 ∈ Hs(Rd) if and only if s < −d
2 . Indeed δ̂0 = 1, so that ⟨ξ⟩sδ̂0 ∈ L2(Rd)

if and only if 2s < −d.

ii) Constant functions do not belong to Hs(Rd), since 1̂ = (2π)dδ0 is not in L1
loc.

Here follows another illustration of the fact thatHs contains elements that are more and more singular
as s decreases.
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Proposition 3.4.12 Let T ∈ E ′(Rd) be a compactly supported distribution, with order m ≥ 0.
Then T ∈ Hs(Rd)for any s < −m− d

2 ·

Proof.— For T ∈ E ′(Rd), we know that T̂ ∈ C∞. Moreover

|⟨ξ⟩sT̂ (ξ)| = |⟨ξ⟩s⟨Tx, e−ix·ξ⟩| ≤ C⟨ξ⟩s
∑

|α|≤m

sup |∂αx (e−ix·ξ)| ≤ C⟨ξ⟩s+m

Thus T ∈ Hs(Rd) when 2(s+m) < −d, as stated.

We close this subsection by proving a connection between Hs regularity and Ck regularity.

We denote by Ck→0(Rd) the space of Ck functions on Rd that tends to 0 at infinity, as well as all their
derivatives of order ≤ k.

Proposition 3.4.13 (Sobolev embedding) If s > d
2+k, then every element of Hs(Rd) belongs

to Ck→0(Rd), and the embedding Hs(Rd)→ Ck→0(Rd) is continuous.

Proof.— Let u ∈ Hs(Rd). For α ∈ Nd such that |α| ≤ k, we have ξαû ∈ L1. Indeed,

|ξαû(ξ)| ≤ |ξ|
|α|

⟨ξ⟩s
⟨ξ⟩s|û(ξ)| ≤ ⟨ξ⟩k−s⟨ξ⟩s|û(ξ)|,

and ⟨ξ⟩k−s ∈ L2(Rd) since −2(k − s) > d. By the Cauchy-Schwarz inequality, we thus get

(3.4.5) ∥ξαû∥L1 ≤ Cs,n∥u∥Hs .

Therefore ∂αu = F−1((iξ)αû) ∈ C0→0 by Proposition 3.4.5, and the fact that the identity from
Hs(Rd) to Ck→0(Rd) is continuous is just a way to read the inequalities

∀|α| ≤ k, ∥∂αu∥L∞ ≤ ∥ξαû∥L1 ≤ Cs,n∥u∥Hs .

Another interesting consequence of Proposition 3.4.9 is that we recover Theorem 2.5.4 on Rd in a
very general way, with optimal regularity of the solution.

Proposition 3.4.14 For every s ∈ Rd, the mapping u ∈ Hs(Rs) 7→ u−∆u ∈ Hs−2(Rd) is an
isomorphism.

Proof.— Indeed, this mapping is conjugated through Fourier transform to the mapping

û 7→ ⟨ξ⟩2û

so that the statement becomes trivial in view of Proposition 3.4.9 or the subsequent definition of
Hs(Rd).

Combining the above three propositions, we obtain he following extension of Theorem 1.9.16 to several
dimensions.
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Theorem 3.4.15 For every distribution T on Rd with compact support, there exist p ∈ N and
a family (fα)|α|≤p of continuous functions on Rd such that

T =
∑
|α|≤p

∂α(fα) .

Proof.— From Proposition 3.4.12, we know that, for some s ∈ R, T ∈ Hs Let q be a positive integer
such that

s+ 2q >
d

2
.

By Proposition 3.4.14 applied q times, there exists g ∈ Hs+2q unique such that

(I −∆)qg = T .

By Proposition 3.4.13, we know that g is continuous. It remains to write

T = (I −∆)qg =

1−
d∑
j=1

∂2j

q

g =
∑
|β|≤q

cβ∂
2βg

and the proof is complete.

Finally, we introduce spaces of distributions in an arbitrary open set of Rd which will be very useful in
studying local regularity of solutions of partial differential equations.

Definition 3.4.16 Let Ω be an open subset of Rd and let s ∈ R. We denote by Hs
loc(Ω) the

space of distributions T ∈ D′(Ω) such that, for any χ ∈ C∞0 (Ω), the extension to Rd by 0 of
the compactly supporetd distribution χu belongs to Hs(Rd.

We notice the following important regularity theorem.

Proposition 3.4.17 ∩
s∈R

Hs
loc(Ω) = C∞(Ω) .

Proof.— If u ∈ C∞(Ω), then, for any χ ∈ C∞0 (Ω), χu ∈ C∞0 (Ω), so that its extension to Rd by 0 is
such that χ̂u belongs to S(Rd), and consequently χu ∈ Hs for every s.
Conversely, if u ∈ Hs

loc(Ω) for every s ∈ R, then, any χ ∈ C∞0 (Ω), χu ∈ Hs(Rd) for every s, hence,
from Proposition 3.4.13, χu ∈ Ck→0(Rd) for every k, in particular χu ∈ C∞(Rd). Since this holds for
any χ ∈ C∞0 (Ω), this completes the proof.
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3.5 Some applications

3.5.1 Partial differential equations with constant coefficients

Let p ∈ C[X1, . . . , Xd] be a polynomial of n variables with complex coefficients,

p(X) =
∑

|α|≤m

aαX
α, X ∈ Rd,

with aα ∈ C. The integer m ∈ N is the degree of P . Given an open subset Ω of Rd, we denote by
p(∂) the operator on D′(Ω) given by

D′(Ω) ∋ T 7→ p(∂)T =
∑

|α|≤m

aα∂
αT ∈ D′(Ω).

Those operators are called linear partial differential operators with constant coefficients. The equation

p(∂)u = f,

where f ∈ D′(Ω) is given, and u ∈ D′(Ω) is the unknown, is called a Partial Differential Equation
(PDE) of order m with constant coefficients. When f ̸= 0, it is said to be inhomogeneous, or with
source term f .

Remark 3.5.1 For d = 1, the equation p(∂)u = f is a linear differential equation of order m with
constant coefficients, that can be explicitly solved. For d > 1, the situation is drastically different
and it may even be very difficult to show existence of solutions.

Example 3.5.2 If p(X1, . . . , Xd) = X2
1 + · · ·+X2

d , then

p(∂)T = ∂21T + · · ·+ ∂2dT = ∆T .

We already encountered operator ∆ which is called the Laplacean, and equation ∆u = f is called
the Laplace (or Poisson) equation. A specificity of ∆ is that it is invariant by the rotations of Rd.
Moreover, one can show that every linear partial differential operator with constant coefficients
on Rd which is invariant by rotations, is of the form

P = Q(∆)

where Q is a polynomial of one variable. This invariance property explains why the Laplacean
appears so frequently in many areas of Mathematical Physics.

The following proposition is an easy consequence of properties of the Fourier transform on S ′(Rd)

Proposition 3.5.3 Let p ∈ C[X1, . . . , Xd] and P = p(∂) be the corresponding differential
operator. For every u ∈ S ′(Rd), we have

P̂ u = p(iξ)û .

The importance of the above proposition appears through the multiplicity of its consequences. We
shall draw some of them in the next subsections.
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3.5.2 Local results

Let P = p(∂) be a linear partial differential operators with constant coefficients. In this section, we
study some properties of P on D′(Ω), where Ω is an open subset of Rd. We start with a very natural
statement.

Proposition 3.5.4 If P is a linear partial differential operators with constant coefficients of
order ≤ m and s ∈ R, then P : Hs

loc(Ω)→ Hs−m
loc (Ω).

Proof.— It is based on the following lemma.

Lemma 3.5.5 If P is a linear partial differential operators with constant coefficients of order
≤ m and φ ∈ C∞0 (Ω), there exists functions φβ ∈ C∞0 (Ω), |β| ≤ m − 1, such that, for every
u ∈ D′(Ω),

P (φu) = φPu+
∑

|β|≤m−1

∂β(φβu) .

Let us prove this lemma. By linearity, it is enough to prove it for P = ∂α. We proceed by induction
on |α|. If α = 0, the formula trivially holds. Assume it is true for |α| ≤ m− 1, and let us prove it for
|α| = m. By the Leibniz formula,

∂α(φu) = φ∂αu+
∑

β≤α,β ̸=α

(
α

β

)
∂α−βφ∂βu .

Using the induction hypothesis, we may write each term in the second part of the right hand side as a
sum of terms ∂γ(ψγu), with |γ| ≤ m− 1. This completes the proof of Lemma 3.5.5.
Coming back to the proof of Proposition 3.5.4, we use Lemma 3.5.5 to write

P (φu) = φPu+
∑

|β|≤m−1

∂β(φβu) .

If u ∈ Hs
loc(Ω), then φu, φβu ∈ Hs(Rd) and thus

P (φu) ∈ Hs−m(Rd) , ∂β(φβu) ∈ Hs−m+1(Rd) .

This leads to φPu ∈ Hs−m(Rd), so that Pu ∈ Hs−m
loc (Rd).

A classical problem is the local regularity of solutions u ∈ D′(Ω) of equation p(∂)u = f , knowing the
local regularity of f . It is possible to give a general answer to this question under some assumption
on p, which we now define.

Definition 3.5.6 Operator p(∂) =
∑

|α|≤m aα∂
α is called elliptic of order m if the highest

homogeneous part pm =
∑

|α|=m aαX
α of polynomial p satisfies

∀ξ ∈ Rd \ {0} , pm(ξ) ̸= 0 .
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For instance, the Laplace operator is elliptic, while the operator ∂21 − ∂22 is not.

Theorem 3.5.7 Let P be a linear partial differential operators with constant coefficients,
elliptic of order m, and let Ω be an open subset of Rd. If u ∈ D′(Ω) satisfies Pu ∈ Hs

loc(Ω)
for some s ∈ R, then u ∈ Hs+m

loc (Ω). In particular, if Pu ∈ C∞(Ω), then u ∈ C∞(Ω).

Proof.— Let us first prove the result under the additional assumption that u ∈ Hσ
loc(Ω) for some

σ ∈ R. Since p is elliptic and since the unit sphere is compact, there exists c > 0 such that, for every
ξ ∈ Rd with |ξ| = 1,

|pm(iξ)| ≥ c .

By homogeneity, this implies
∀ξ ∈ Rd , |pm(ξ)| ≥ c|ξ|m .

Since
p(iξ)− impm(iξ) = O

(
|ξ|m−1

)
as |ξ| → ∞, we infer that there exits R > 0 such that, for every ξ ∈ Rd with |ξ| ≥ R,

(3.5.6) |p(iξ)| ≥ c

2
|ξ|m .

Let χ ∈ C∞
0 (Rd) be a plateau function on the ball B(0, R). The function

q(ξ) =
1− χ(ξ)
p(iξ)

is C∞ on Rd and satisfies, due to estimate (3.5.6),

|q(ξ)| = O(⟨ξ⟩−m) .

Therefore we can define an operator Q : Hτ (Rd)→ Hτ+m(Rd) for every τ ∈ R by

Q̂(T ) = qT̂ .

Now let u ∈ Hσ
loc(Ω) such that Pu ∈ Hs

loc(Ω). For every φ ∈ C∞0 (Ω), Lemma 3.5.5 yields

P (φu) = φPu+
∑

|α|≤m−1

∂α(φαu) ,

where φα ∈ C∞0 (Ω). Consequently,

QP (φu) = Q(φPu) +
∑

|α|≤m−1

Q(∂α(φαu)) .

In the right hand side, the first term belongs toHs+m(Rd) while the other terms belong toHσ+1(Rd).
By Proposition 3.5.3, QP (φu) = φu−R(φu), where

R̂v = χv̂ ,
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so that R(φu) ∈ Hτ (Rd) for every τ ∈ R. We infer that φu ∈ Hmin(s+m,σ+1)(Rd), and so

u ∈ Hmin(s+m,σ+1)
loc (Ω) .

If σ+1 < s+m, we iterate this result replacing σ by σ+1, and, after a sufficient number of iterations,
we conclude

u ∈ Hs+m
loc (Ω) .

Now let u ∈ D′(Ω) such that Pu ∈ Hs
loc(Ω). Let V be an open subset of Ω such that V ⊂ Ω

is compact. If ψ ∈ C∞
0 (Ω) is a plateau function on V , Proposition 3.4.12 implies that there exists

σ ∈ R such that ψu ∈ Hσ(Rd). The following lemma implies that

u|V ∈ Hσ
loc(V ) .

Lemma 3.5.8 If σ ∈ R, v ∈ Hσ(Rd) and φ ∈ C∞0 (Rd), then φv ∈ Hσ(Rd).

Assuming this lemma, we can apply to u|V the first part of the proof and conclude that u ∈ Hs+m
loc (V ).

Since V is an arbitrary open subset of Ω such that V ⊂ Ω is compact, we conclude that u ∈ Hs+m
loc (Ω).

Let us prove Lemma 3.5.8. We have, from Proposition 3.4.8,

φ̂v(ξ) = ⟨v, φe−ix.ξ⟩.

Using the inversion formula and the properties of the Fourier transform on S,

⟨v, φe−ix.ξ⟩ = ⟨v̂, φ̂(ξ − .)⟩ =
∫
Rd

v̂(η)φ̂(ξ − η) dη .

This leads to

⟨ξ⟩σφ̂v(ξ) = ⟨ξ⟩σ
∫
Rd

v̂(η)φ̂(ξ − η) dη = ⟨ξ⟩σ
∫
Rd

v̂(ξ − η)φ̂(η) dη,

and we have to prove that the right hand side is square integrable in ξ on Rd. We decompose the
integral into two parts, corresponding to the domains |η| ≤ |ξ|/2 and |η| > |ξ|/2. Using the rapid
decay of φ̂, the second integral is rapidly decreasing in ξ. As for the first integral, we apply the
Cauchy–Schwarz inequality,

⟨ξ⟩2σ
∣∣∣∣∣
∫
|η|≤|ξ|/2

v̂(ξ − η)φ̂(η) dη

∣∣∣∣∣
2

≤
(∫

Rd

|φ̂(η)| dη
)(∫

|η|≤|ξ|/2
⟨ξ⟩2σ|v̂(ξ − η)|2|φ̂(η)| dη

)
.

Since |η| ≤ |ξ|/2, we have ⟨ξ⟩ ≤ A⟨ξ − η⟩ for some constant A > 0, and therefore the right hand
side is bounded by

B

∫
Rd

⟨ξ − η⟩2σ|v̂(ξ − η)|2|φ̂(η)| dη ,

whose integral with respect to ξ is finite by Fubini’s theorem. This completes the proof.
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3.5.3 Global results

We start with solutions of homogeneous equations.

Corollary 3.5.9 With the notation of Proposition 3.5.3, we have

i) If p(iξ) ̸= 0 for every ξ ∈ Rd, then the only tempered solution u of Pu = 0 is u = 0.

ii) If p(iξ) ̸= 0 for every ξ ∈ Rd\{0}, then every tempered solution of Pu = 0 is a polynomial
function.

Proof.— If u ∈ S ′ satisfies Pu = 0, then p(iξ)û = 0, which implies that the distribution û is
supported in the set

{ξ ∈ Rd, p(iξ) = 0}

If this set is empty, this implies û = 0, hence u = 0, whence (i).

If this set is {0}, this implies, from the structure of the distributions supported at one point only, that
û is a finite linear combination of derivatives of δ0. Applying F−1, we conclude that u is a polynomial
function, which is (ii).

Remark 3.5.10 A consequence of Corollary 3.5.9 is that, under assumption ii), bounded solutions
of Pu = 0 on Rd are constants. Indeed, since L∞(Rd) ⊂ S ′(Rd), this follows from the elementary
fact claiming that a polynomial function which is bounded on Rd is constant. This is trivial if
d = 1, but less trivial if d ≥ 2. Let us sketch a proof of it. Let p ∈ C[X1, . . . , Xd] be such that
function x ∈ Rd 7→ p(x) ∈ C is bounded. For every y ∈ Rd, consider

py(t) = p(ty) , t ∈ R .

Function py is a one variable polynomial function, which is bounded, hence it is a constant.
Writing

p(X) =
∑

|α|≤m

aαX
α,

this implies, for every r = 1, . . . ,m, for every y ∈ Rd,∑
|α|=r

aαy
α = 0 .

Taking the ∂α derivative of the left hand side, we infer aα = 0.

Example 3.5.11 • Case (i) is fulfilled by P = ∆+ λ if λ ∈ C \ R+.

• Case (ii) is fulfilled by P = ∆ on Rd. Consequently, tempered harmonic functions on Rd
are polynomial functions. In particular, we infer the strong Liouville theorem : any bounded
harmonic function on Rd is a constant.
Case (ii) is also fulfilled by P = ∂1 + i∂2 on R2. In other words, the only tempered entire
functions on C are polynomial, and again (Liouville), we recover that the only bounded
entire functions are constant.
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The second application concerns fundamental solutions.

Definition 3.5.12 Let P = p(∂) be a linear partial differential operators with constant coef-
ficients. One says that E ∈ D′(Rd) is a fundamental solution of P when PE = δ0.

Notice that in Physics, fundamental solutions are often called Green functions. The importance of
fundamental solutions is provided by the following remark.

Proposition 3.5.13 If P has a fundamental solution E ∈ D′(Rd), then for all φ ∈ C∞0 (Rd),
the equation Pu = φ has a solution given by u = E ∗ φ.

Proof.— In chapter 2, we saw that ∂j(T ∗ φ) = T ∗ ∂jφ = ∂jT ∗ φ, hence

P (E ∗ φ) = (PE) ∗ φ = δ ∗ φ = φ,

so that u = E ∗ φ is a solution of Pu = φ.

Using a convenient definition of convolution of distributions, it is in fact possible to extend the above
proposition to any right hand side which is a compactly supported distribution. We shall see an example
of this in Theorem 3.5.17 below.

B. Malgrange and L. Ehrenpreis have proved, independently in 1954/1955, that any non trivial linear
partial differential operator with constant coefficients has a fundamental solution. It is fact possible to
prove that one can choose this distribution to be tempered. The proofs of these results are beyond the
scope of these lectures. In what follows, we rather study the important case of the Laplace operator.

Proposition 3.5.14 Let d ≥ 3, and let Ed ∈ D′(Rd) be the L1
loc(Rd) function given by

Ed(x) =
1

(d− 2)σ(Sd−1)|x|d−2
.

Then
−∆Ed = δ0 .

Proof.— We are going to use Fourier transformation. Indeed, by Proposition 3.5.3, in S ′(Rd), the
equation

−∆E = δ0

is equivalent to
|ξ|2Ê = 1 .
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Since d ≥ 3, the function 1/|ξ|2 is locally integrable in Rd. More precisely, by decomposing it as the
sum of the contributions for |ξ| ≤ 1 and for |ξ| > 1, one shows that this function is the sum of an L1

function and of an L∞ function. As a consequence, 1/|ξ|2 belongs to S ′(Rd), and therefore

Ed := F−1

(
1

|ξ|2

)
is a tempered fundamental solution of−∆. It remains to calculate Ed. Since−∆Ed = 0 on Rd \{0},
we know from Theorem 3.5.7 that Ed is a C∞ function on Rd \ {0}. We claim that this function is of
the form

Ed(x) =
cd
|x|d−2

for some constant cd. This is equivalent to the following statement : for every rotation R of Rd, for
every λ > 0, for every x ∈ Rd \ {0},

Ed(λRx) = λ2−dEd(x) ,

or equivalently, for every φ ∈ C∞
0 (Rd \ {0}),

(3.5.7)

∫
Rd

Ed(λRx)φ(x) dx = λ2−d
∫
Rd

Ed(x)φ(x) dx .

Let Ax := λRx and φA(x) := | detA|−1φ(A−1x). We have∫
Rd

Ed(Ax)φ(x) dx =

∫
Rd

Ed(x)φA(x) dx

= (2π)−d
∫
Rd

φ̂A(ξ)

|ξ|2
dξ∫

Rd

Ed(x)φ(x) dx = (2π)−d
∫
Rd

φ̂(ξ)

|ξ|2
dξ .

Furthermore,

φ̂A(ξ) =

∫
Rd

| detA|−1φ(A−1x)e−ix.ξ dx =

∫
Rd

φ(x)e−iAx.ξ dx = φ̂(tAξ) .

Consequently, ∫
Rd

φ̂A(ξ)

|ξ|2
dξ =

∫
Rd

φ(tAξ)

|ξ|2
dξ = | detA|−1

∫
Rd

φ(ξ)

|tA−1ξ|2
dξ .

Since tA−1 = λ−1R, we conclude∫
Rd

φ̂A(ξ)

|ξ|2
dξ = λ2−d

∫
Rd

φ̂(ξ)

|ξ|2
dξ

and identity (3.5.7) is proved.
In order to calculate cd, it is enough to check against the Gaussian function G1,

cd

∫
Rd

G1(x)

|x|d−2
dx = (2π)−d

∫
Rd

Ĝ1(ξ)

|ξ|2
dξ .
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Since Ĝ1(ξ) = (2π)d/2G1(ξ), we infer

cd

∫
Rd

e−|x|2/2

|x|d−2
dx = (2π)−d/2

∫
Rd

e−|ξ|2/2

|ξ|2
dξ .

Passing in spherical coordinates, this reads

cd

∫ ∞

0
re−r

2/2 dr = (2π)−d/2
∫ ∞

0
rd−3e−r

2/2 dr ,

or

cd = (2π)−d/22(d−4)/2

∫ ∞

0
t(d−4)/2e−t dt =

1

4
π−d/2Γ

(
d

2
− 1

)
Recall that, by applying the integration formula on spherical level sets from Corollary 2.4.8 to a Gaus-
sian function, one gets

σ(Sd−1) =
2πd/2

Γ(d/2)
=

4πd/2

(d− 2)Γ(d/2− 1)

so that

cd =
1

(d− 2)σ(Sd−1)
.

Remark 3.5.15 The value of cd can also be determined by applying the Gauss–Green formula to
the integral of |x|2−d∆φ(x) outside a ball of radius ε.

Remark 3.5.16 It is possible to extend Proposition 3.5.14 to d = 1, 2. For d = 1, it is easy to
check that

E1(x) = −
1

2
|x|

is a fundamental solution of −∂2. The case d = 2 is more delicate. The above approach by
Fourier analysis has to be slightly modified, because 1/|ξ|2 is not locally integrable in R2. A good
way to do this is to consider the operator

P = ∂1 + i∂2 .

Since 1/(ξ1 + iξ2) ∈ L1
loc(R2), the distribution E ∈ S ′(R2) such that

Ê =
1

i(ξ1 + iξ2)

satisfies PE = δ0. Furthermore, from Theorem 3.5.7, E is a holomorphic function outside {0},
and the above proof shows that it is homogeneous of degree −1. This finally leads to

E(x) =
1

2π(x1 + ix2)

and, observing that
E = (∂1 − i∂2)[(4π)−1 log(x21 + x22)]

in D′(R2), we conclude that
E2 = −

1

2π
log |x|

is a fundamental solution of −∆ on R2.
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Our next and final step is to study equation −∆u = f when f is an arbitrary compactly supported
distribution on R2. Notice that, from Theorem 3.5.7, every solution u of this equation is a C∞ function
on the complement of supp(f). For simplicity, we shall restrict ourselves to the case d = 3, for which
this equation is the Poisson equation of electrostatics.

Theorem 3.5.17 For every compactly supported distribution f on R3, there exists a unique
distribution u on R3 satisfying −∆u = f and u(x) → 0 as x → ∞. Furthermore, for
x /∈ supp(f), u(x) is given by

(3.5.8) u(x) =

⟨
f,

χ

4π|x− .|

⟩
,

for every χ ∈ C∞0 (R3) equal to 1 in a neighbourhood of supp(f) and equal to 0 near x.

Proof.— The uniqueness of u is immediate in view of the Liouville theorem for harmonic functions
– see Example 3.5.11. For the existence, we look for u in S ′(R3), and Proposition 3.5.3 leads to
equation

|ξ|2û = f̂ .

Since f̂ is smooth on R3 with moderate growth and 1/|ξ|2 is the sum of an L1 function near ξ = 0
and of an L∞ function near infinity, we can define u by

û(ξ) =
f̂(ξ)

|ξ|2
.

Our task is now to prove identity (3.5.8), since it implies that u(x) → 0 as x → ∞. As a first step,
we are going to prove this identity if f = φ ∈ C∞0 (R3). In this case, denote by g the inverse Fourier
transform of

φ̂

|ξ|2
.

Since ĝ is integrable on R3 and rapidly decaying at infinity, we know that g is smooth and tends to 0
at infinity. Consider the following smooth function ,

E3 ∗ φ(x) =
∫
R3

φ(y)

4π|x− y|
dy .

Then
−∆(E3 ∗ φ) = φ = −∆g

and it is clear on the above expression that E3 ∗ φ(x) → 0 as x → ∞. Therefore, by the Liouville
theorem, g = E3 ∗ φ.

Let us come to the general case of a compactly supported distribution f . Let ρ ∈ C∞(R3) with integral
1, and, for every ε > 0,

ρε(x) =
1

ε3
ρ
(x
ε

)
.
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Then ρε ∗ f = fε ∈ C∞0 (R3) and converges to f in D′(R3) as ε→ 0. In fact, as we already observed
in similar cases, fε is supported into a small neighbourhood of supp(f), so that f̂ε(ξ)→ f̂(ξ) with a
uniform moderate bound (1+ |ξ|)m for some m. Let uε = E3 ∗ fε. We know from the above identity
that

ûε =
f̂ε
|ξ|2

and the right hand side converges to û in S ′(R3). Hence uε converges to u in S ′(R3), and for every
test function φ ∈ C∞0 (R3),

⟨u, φ⟩ = lim
ε→0
⟨uε, φ⟩ = lim

ε→0

∫
R3

E3 ∗ fε(x)φ(x) dx

= lim
ε→0

∫ ∫
R3×R3

E3(x− y)fε(y)φ(x) dx dy

= lim
ε→0

∫
R3

fε(y)E3 ∗ φ(y) dy

= ⟨f, χ(E3 ∗ φ)⟩

for every χ ∈ C∞0 (R3) equal to 1 in a neighbourhood of supp(f). Notice that

χ(y)E3 ∗ φ(y) =
∫
R3

χ(y)

4π|x− y|
φ(x) dx .

If supp(φ)∩ supp(χ) = ∅, we can apply Proposition 2.3.20 of integration under the bracket to obtain

⟨u, φ⟩ = ⟨f, χ(E3 ∗ φ)⟩ =
∫
R3

φ(x)

⟨
f,

χ

4π|x− .|

⟩
dx

and this yields formula (3.5.8).

Remark 3.5.18 Notice that formula (3.5.8) leads to a complete expansion of u(x) as x→∞. In
particular,

u(x) =
q

4π|x|
+O

(
1

|x|2

)
where q = ⟨f, χ⟩ for every χ ∈ C∞0 (R3) equal to 1 in a neighbourhood of supp(f). This expansion
supports the well known fact in Physics that any charge distribution f with nonzero total charge
(q = ⟨f, 1⟩ ̸= 0) can be seen at infinity as a point distribution with charge q.

We conclude this subsection by a remark about the generalization of the above approach to partial
differential equations with non constant coefficients.

Remark 3.5.19 There are several directions where Fourier transformation can be used to study
solutions of partial differential equations with non constant coefficients.

i) The first and most direct topic concerns equations with affine coefficients. Indeed, the
Fourier transform converts such equations into first order linear equations with polynomial
coefficients, which can be solved in general. A famous example in dimension d = 1 is the
Airy differential equation,

u′′(x) = xu(x)
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on R. It is well known from the classical theory of differential equations that the space of
solutions of this equation is contained into C∞(R) and is two–dimensional. Let us look for
solutions u which are moreover tempered. Then the equation satisfied by û is

(iξ)2û = i
d

dξ
û,

or
dû

dξ
= iξ2û .

The solutions in D′(R) are given by

û(ξ) = c ei
ξ3

3 , c ∈ C ,

which are indeed tempered distributions, since in L∞(R). Consequently, the space of tem-
pered solutions of the Airy differential equation is one dimensional, generated by the Airy
function,

Ai(x) = F−1

(
ei

ξ3

3

)
.

ii) The second and much more general topic concerns the regularity theory of distribution
solutions to partial differential equations with arbitrary smooth coefficients in arbitrary open
subsets of Rd, using cutoff functions in a smart way. This is the starting point of the theory
of pseudo–differential operators, which is beyond the scope of this course.

3.6 Fourier series

In this subsection, we show how the theory of Fourier series can be considered as a special case of the
Fourier transformation on tempered distributions. We start with a very natural definition. Recall that,
for a ∈ Rd and T ∈ D′(Rd), we have defined τa(T ) ∈ D′(Rd) by

∀φ ∈ D(Rd) , ⟨τa(T ), φ⟩ = ⟨T, τ−a(φ)⟩ ,

and τb(φ)(x) := φ(x− b) .

Definition 3.6.1 A distribution T ∈ D′(Rd) is said to be Zd–periodic if

∀γ ∈ Zd , τγ(T ) = T .

Notice that derivatives of Zd–periodic distributions are Zd–periodic, as well as their product with C∞
Zd–periodic functions. A typical example of a Zd–periodic distribution is given by distributions defined
by Zd–periodic locally integrable functions. Another example is

T =
∑
γ∈Zd

δγ .
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The following proposition explains how to construct Zd–periodic locally integrable functions from L1

functions on Rd.

Proposition 3.6.2 Let f ∈ L1(Rd). For almost every x ∈ Rd, we have∑
γ∈Zd

|f(x− γ)| <∞ ,

so that the formula
f ♯(x) :=

∑
γ∈Zd

f(x− γ)

defines a Zd–periodic locally integrable function on Rd. Furthermore, if Q denotes the cube
[0, 1[d, the following identity holds,

(3.6.9)

∫
Q
f ♯(x) dx =

∫
Rd

f(x) dx .

If φ ∈ S(Rd), then φ♯ ∈ C∞(Rd), ∂αφ♯ = (∂αφ)♯ and

(3.6.10) ∥∂αφ♯∥L∞ ≤ CdNd+1+|α|(φ) .

Furthermore, there exists χ ∈ C∞0 (Rd) such that χ♯ = 1.

Proof.— By the monotone convergence theorem,∫
Q

∑
γ∈Zd

|f(x− γ)| dx =
∑
γ∈Zd

∫
Q
|f(x− γ)| dx =

∑
γ∈Zd

∫
γ+Q
|f(y)| dy .

Since ∪
γ∈Zd

(γ +Q) = Rd

and since the cubes γ +Q are pairwise disjoint, we conclude∑
γ∈Zd

∫
γ+Q
|f(y)| dy =

∫
Rd

|f(y)| dy <∞ .

Consequently, for almost every x ∈ Rd,∑
γ∈Zd

|f(x− γ)| <∞ ,

and so we can define f ♯(x). Notice that, for every γ0 ∈ Zd,

f ♯(x− γ0) =
∑
γ∈Zd

f(x− γ0 − γ) =
∑
β∈Zd

f(x− β) = f ♯(x) .
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Furthermore, by the above calculation,∫
Q
|f ♯(x)| dx ≤

∫
Rd

|f(x)| dx <∞ ,

so f ♯ is a Zd–periodic locally integrable function on Rd. Identity (3.6.9) follows from integrating the
series defining f ♯, and from using again the disjoint covering of Rd by the cubes γ +Q.

Let us suppose φ ∈ S(Rd). Recall the estimate of the proof of Proposition 3.1.7.

|φ(x)| ≤ Ad

(1 + |x|2)
d+1
2

Nd+1(φ) .

Consequently, for every γ ∈ Zd, we have

sup
x∈γ+Q

|φ(x)| ≤ Bd

(1 + |γ|2)
d+1
2

Nd+1(φ) .

Using for instance Proposition ??, we have∑
γ∈Zd

1

(1 + |γ|2)
d+1
2

<∞ .

Hence the series defining φ♯(x) is uniformly convergent on compact subset of Rd, and this also true
for the series defining (∂αφ)♯. Consequently, φ♯ is smooth, ∂αφ♯ = (∂αφ)♯ and (3.6.10) follows.
Finally, choose χ1 ∈ C∞0 (Rd) such that 0 ≤ χ1(x) ≤ 1 and χ1(x) = 1 on Q. Then χ♯ ∈ C∞(Rd) is

Zd –periodic, and χ♯1 ≥ 1. Therefore

χ :=
χ1

χ♯1
∈ C∞0 (Rd)

satisfies χ♯ = 1.

Given k ∈ (2πZ)d, notice that
ek(x) := eik.x

defines a C∞ Zd –periodic function. We say that a sequence (ck)k∈(2πZ)d of complex numbers has
moderate growth if there exits M,C > 0 such that

∀k ∈ (2πZ)d , |ck| ≤ C(1 + |k|)M .

If (ck) is such a sequence, the series ∑
k∈(2πZ)d

ckek

defines a tempered distribution. Indeed, if φ ∈ S(Rd), φ̂(k) = O((1 + |k|)−p)Np+d+1(φ) for every
p, so the series ∑

k∈(2πZ)d
ckφ̂(−k)

is absolutely summable, and we can define a tempered distribution by

∀φ ∈ S(Rd) ,

⟨ ∑
k∈(2πZ)d

ckek, φ

⟩
=

∑
k∈(2πZ)d

ckφ̂(−k) .

The next theorem claims that every Zd –periodic distribution is of this form.
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Theorem 3.6.3 Every Zd–periodic distribution T can be written uniquely

(3.6.11) T =
∑

k∈(2πZ)d
ck(T )ek , ek(x) = eik.x ,

where (ck(T ))k∈(2πZ)d is a sequence of complex numbers with moderate growth. Furthermore,
for every χ ∈ C∞0 (Rd) such that χ♯ = 1, we have

∀k ∈ (2πZ)d , ck(T ) = ⟨T, χe−k⟩ .

Proof.— First, we prove that every periodic distribution T is tempered. Indeed, if φ,ψ ∈ C∞0 (Rd),
let us check the formula

(3.6.12) ⟨T, φψ♯⟩ = ⟨T, φ♯ψ⟩ .

Since the series defining φ♯ converges in C∞, we have

⟨T, φψ♯⟩ =
∑
γ∈Zd

⟨T, φ τγψ⟩ =
∑
γ∈Zd

⟨T, τ−γφψ⟩ = ⟨T, φ♯ψ⟩ .

Then, introducing χ ∈ C∞0 (Rd) such that χ♯ = 1, we have, for every φ ∈ C∞0 (Rd),

⟨T, φ⟩ = ⟨T, φχ♯⟩ = ⟨T, φ♯χ⟩ .

Since T is a distribution, we infer, for some C > 0 and some integer m,

|⟨T, φ⟩| ≤ C sup
|α|≤m

∥∂α(χφ♯)∥L∞ ≤ C̃Nd+1+m(φ) ,

using the Leibniz formula and estimate (3.6.10). Hence T ∈ S ′(Rd).

The next step is to characterize the structure of T̂ ∈ S ′(Rd). Using the identity

τ̂aT = e−ia.ξT̂ ,

and the Zd–periodicity of T , we have

∀γ ∈ Zd , e−iγ.ξT̂ = T̂ .

Notice that the set where all the functions ξ 7→ (e−iγ.ξ − 1) vanish is (2πZ)d, hence the support of T̂
is included into (2πZ)d. Let us describe in more detail the structure of T̂ near each point k ∈ (2πZ)d.
Set

Q∗
k := k+]− 2π, 2π[d .

Then, for j = 1, . . . , d, the functions

ξ 7→ eiξj − 1

ξj − kj
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are C∞ and do not cancel on Q∗
k. Consequently, on Q∗

k, the equations

e−iξj T̂ = T̂ , j = 1, . . . , d

are equivalent to
(xj − kj)T̂ = 0 , j = 1, . . . , d ,

and we know that this implies, by Proposition 2.3.11, that there exists ak ∈ C such that

T̂|Q∗
k
= akδk .

Since the open sets Q∗
k cover Rd, we infer, by the gluing principle, that

T̂ =
∑

k∈(2πZ)d
akδk .

Furthermore, notice that the sequence (ak) has moderate growth. Indeed, since T̂ is tempered, we
have, if χ0 is a Plateau function above 0 and compactly supported in ]− 2π, 2π[d,

|ak| = |⟨T, τkχ0⟩| ≤ CNp(τkχ0) ≤ B(1 + |k|)p .

Finally, applying the inverse Fourier transform, we obtain

T = (2π)d
∑

k∈(2πZ)d
akF̌(δk) = (2π)d

∑
k∈(2πZ)d

akek .

This proves the first part of the theorem, with ck := (2π)dak. Furthermore, given ℓ ∈ (2πZ)d, and χ
a test function such that χ♯ = 1,

⟨T, χe−ℓ⟩ =
∑

k∈(2πZ)d
ck⟨ek, χe−ℓ⟩ =

∑
k∈(2πZ)d

ck⟨1, χek−ℓ⟩ .

But, by formula (3.6.9),

⟨1, χek−ℓ⟩ =
∫
Rd

χek−ℓ =

∫
Q
χ♯ek−ℓ =

∫
Q
ek−ℓ =

{
0 if k ̸= ℓ

1 if k = ℓ.

Finally, we obtain
⟨T, χe−ℓ⟩ = cℓ ,

as claimed, and this proves the uniqueness of the sequence (ck).

Remark 3.6.4 By deriving the Fourier decomposition (3.6.11), we have

ck(∂
αT ) = (ik)αck(T ) , k ∈ (2πZ)d .

Corollary 3.6.5 Let f be a locally integrable Zd–periodic function on Rd. Then, in S ′(Rd),

(3.6.13) f =
∑

k∈(2πZ)d
ck(f)e

ik.x , ck(f) :=

∫
Q
f(x)e−ik.x dx , k ∈ (2πZ)d .
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Furthermore, if f is locally square integrable, the above series is convergent in L2(Q), with

∥f∥2L2(Q) =
∑

k∈(2πZ)d
|ck(f)|2 .

Finally, if f is smooth, the sequence (ck(f)) is rapidly decreasing and the above series is
convergent in C∞.

Proof.— Let χ be a test function such that χ♯ = 1. Then

ck(f) = ⟨f, χe−k⟩ =
∫
Rd

f(x)χ(x)e−ik.x dx =

∫
Q
(fχe−k)

♯ dx =

∫
Q
fe−k dx .

Therefore the claim is a consequence of Theorem 3.6.3.

In the L2 case, we observe that (ek) is a orthonormal family of L2(Q) and that ck(f) is the inner
product of f with ek. From the identity (3.6.13), we observe that, if ck(f) = 0 for every k, then
f = 0. This implies that (ek) is an orthonormal basis of L2(Q), and the assertion follows.

Finally, if f is smooth, for every α ∂αf is locally square integrable, thus∑
k

|kαck(f)|2 =
∑
k

|ck(∂αf)|2 <∞ ,

therefore (ck(f)) is rapidly decreasing and consequently the series and all its derivatives converge
uniformly.

Corollary 3.6.6 (The Poisson summation formula)∑
γ∈Zd

δγ =
∑

k∈(2πZ)d
eik.x .

Proof.— Let χ be a test function such that χ♯ = 1. Then

ck

∑
γ∈Zd

δγ

 =
∑
γ∈Zd

⟨δγ , χe−k⟩ =
∑
γ∈Zd

χ(γ) = χ♯(0) = 1 .

Therefore the claim is a consequence of Theorem 3.6.3.

As an application, let us now consider periodic solutions of PDE with constant coefficients.

Corollary 3.6.7 Let p ∈ C[X1, . . . , Xd] and P = p(∂) be the corresponding differential opera-
tor.

i) If p(ik) ̸= 0 for every k ∈ 2πZd, then the only Zd periodic solution u of Pu = 0 is u = 0.

ii) If p(ik) ̸= 0 for every k ∈ 2πZd \ {0}, then every Zd–periodic solution of Pu = 0 is a
constant.
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As an illustration of Corollary 3.6.7, let us prove the following density theorem. Let ω = (ω1, . . . , ωd) ∈
Rd be such that the components are linearly independent on Q. Then, for every x ∈ Rd, for every
ε > 0, there exist t ∈ R and γ ∈ Zd such that

|x− tω − γ| < ε .

Indeed, the function u defined on Rd by

u(x) := inf
t∈R

inf
γ∈Zd

|x− tω − γ|

is Lipschitz continuous, and is Zd periodic. Furthermore, for every t ∈ R,

u(x+ tω) = u(x) .

This means

∀φ ∈ C∞0 (Rd) ,
∫
Rd

u(x+ tω)φ(x) dx =

∫
Rd

u(x)φ(x) dx .

Notice that the left hand side reads∫
Rd

u(x+ tω)φ(x) dx =

∫
Rd

u(y)φ(y − tω) dy ,

and, taking the derivative of this quantity with respect to t at t = 0, we obtain

−
∫
Rd

u(y)
d∑
j=1

ωj∂jφ(y) dy .

In other words, in the sense of distributions on Rd,

d∑
j=1

ωj∂ju = 0 .

Since, by the assumption on the components of ω, the polynomial function

p(x) =
d∑
j=1

ωjxj

does not vanish at k ∈ 2πZd \{0}, we infer that u is constant. Since clearly u(0) = 0, this completes
the proof.

3.7 An application to probability theory

Recall that a probability measure on Rd is a positive Borel measure µ on Rd of total mass µ(Rd) = 1.
Such a measure defines a tempered distribution through he formula

∀φ ∈ S(Rd), ⟨µ, φ⟩ =
∫
Rd

φ(x) dµ(x) .
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Using Fubini’s theorem, we observe that

⟨µ̂, φ⟩ =
∫
Rd

µ̂(ξ)φ(ξ) dξ ,

where

µ̂(ξ) =

∫
Rd

e−ix.ξdµ(x) .

Notice that |µ̂(ξ)| ≤ 1 and that the function µ̂ is continuous, thanks to the dominated convergence
theorem. We now introduce a standard definition in probability theory.

Definition 3.7.1 We say that a sequence (µn) of probability measures converges tightly to a
probability measure µ if, for every bounded continuous function f on Rd,∫

Rd

f dµn →
∫
Rd

f dµ .

Before stating the main result, let us make the connection between tight convergence and convergence
in S ′.

Proposition 3.7.2 Let (µn) be a sequence of probability measures on Rd, and let µ be a
probability measure on Rd. Then µn converges tightly to µ if and only if µn converges to µ in
S ′(Rd).

Proof.— Since every function in the Schwartz class is bounded and continuous, the only non trivial part
to be proven is that the convergence in S ′ of the probability measures µn to the probability measure
µ implies the tight convergence of µn to µ. First of all, we prove that∫

Rd

f dµn →
∫
Rd

f dµ ,

if f is continuous and compactly supported. Indeed, by regularization, f can be uniformly approxi-
mated by a sequence of elements of the Schwartz space. The uniform bound on µn(Rd) = 1 then
allows to extend the convergence on Schwartz test functions to continuous compactly supported test
functions. Next, let f be bounded continuous function. Let χ be a plateau function over the unit ball
of Rd, and define, for every R > 0,

χR(x) = χ
( x
R

)
.

Then∫
Rd

f dµn −
∫
Rd

f dµ =

∫
Rd

fχR dµn −
∫
Rd

fχR dµ+

∫
Rd

f(1− χR) dµn −
∫
Rd

f(1− χR) dµ .

Since fχR is continuous and compactly supported, we have∫
Rd

fχR dµn −
∫
Rd

fχR dµ −→
n→∞

0 .
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Furthermore,∣∣∣∣∫
Rd

f(1− χR) dµn
∣∣∣∣ ≤ ∥f∥L∞

∫
(1−χR) dµn = ∥f∥L∞

(
1−

∫
χR dµn

)
−→
n→∞

∥f∥L∞

(
1−

∫
χR dµ

)
.

Summing up, we have, for every R > 0,

lim sup
n→∞

∣∣∣∣∫
Rd

f dµn −
∫
Rd

f dµ

∣∣∣∣ ≤ 2∥f∥L∞

(
1−

∫
χR dµ

)
.

Since µ is a probability measure, the right hand side tends to 0 as R tends to ∞, by the dominated
convergence theorem. Hence the left hand side, which is independent of R, is 0.

We now state the main result of this paragraph.

Theorem 3.7.3 (P. Lévy) Let (µn) be a sequence of probability measures on Rd. The fol-
lowing statements are equivalent.

i) µn converges tightly to some probability measure.

ii) There exists a function g : Rd → C, continuous at 0, such that,

∀ξ ∈ Rd , µ̂n(ξ) −→
n→∞

g(ξ) .

Proof.— The first implication is trivial. Indeed, since, for every ξ ∈ Rd, the function f : x 7→ e−ix.ξ is
continuous and bounded, the tight convergence of µn to µ implies the convergence of µ̂n(ξ) to µ̂(ξ).

Let us prove that (ii) implies (i). Since µ̂n and continuous and bounded by 1, we already know that g is
measurable and bounded by 1, hence it defines a tempered distribution. Furthermore, the dominated
convergence theorem implies that µ̂n → g in S ′. Introducing T = F−1(g) , we infer that µn converges
to T in S ′. Since µn is a positive measure, it is a positive distribution, and so is T . Hence T = µ is a
positive measure.

It remains to prove that µ is a probability measure. Let χ be a plateau function over the unit ball, and,
for every R > 0,

χR(x) = χ
( x
R

)
.

By Fatou’s lemma,

µ(Rd) ≤ lim inf
R→∞

∫
Rd

χR dµ .

Since ∫
Rd

χR dµ = lim
n→∞

∫
Rd

χR dµn ≤ 1,

we first conclude that µ(Rd) ≤ 1. Hence µ has finite total mass, and the dominated convergence
theorem implies that

µ(Rd) = lim
R→∞

∫
Rd

χR dµ .
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Let ρ ∈ S such that χ = ρ̂. Then χR = ρ̂R, with

ρR(ξ) = Rdρ(Rξ) .

Hence ∫
Rd

χR dµ =

∫
Rd

ρ̂R dµ

= ⟨µ, ρ̂R⟩ = ⟨µ̂, ρR⟩ =
∫
Rd

g(ξ)ρR(ξ) dξ

=

∫
Rd

g

(
ξ

R

)
ρ(ξ) dξ .

Since g is continuous at ξ = 0, we infer, from the dominated convergence theorem,∫
Rd

g

(
ξ

R

)
ρ(ξ) dξ −→

R→∞
g(0)

∫
Rd

ρ(ξ) dξ = g(0)χ(0) = g(0) .

But g(0) = limn→∞ µ̂n(0) = 1 . Hence µ(Rd) = 1.

Remark 3.7.4 Notice that the assumption of continuity of g at 0 is crucial, as shown by the
following counterexample. Let ρ ∈ L1(Rd) be nonnegative, with integral 1 on Rd. For n ≥ 1,
consider the probability measure µn given by

dµn = ρn(x) dx , ρn(x) :=
1

nd
ρ
(x
n

)
.

Then, by the Riemann–Lebesgue lemma,

µ̂n(ξ) = ρ̂(nξ) −→
n→∞

g(ξ) =

{
0 if ξ ̸= 0

1 if ξ = 0 .

Thus g is not continuous at 0. Indeed, one easily checks that µn converges to 0 in S ′, hence does
not converge tightly.

We conclude by the classical application of P. Lévy’s theorem to the central limit theorem.

Theorem 3.7.5 Let µ be a probability measure on Rd such that∫
Rd

|x|2 dµ(x) <∞ , m =

∫
Rd

x dµ(x) .

Assume that no affine hyperplane H of Rd passing through m satisfies µ(H) = 1. Then the
symmetric matrix A = (ajk)1≤j,k≤d defined by

ajk =

∫
Rd

(xj −mj)(xk −mk) dµ(x)

is positive definite and, for every bounded continuous function f on Rd,∫
(Rd)n

f

(
x1 + · · ·+ xn − nm√

n

)
dµ(x1) . . . dµ(xn) −→

n→∞

∫
Rd

e−A
−1x.x/2

(2π)d/2
√

detA
f(x) dx .

Lecture Notes, Fall 2019 Patrick Gérard



CHAPTER 3. THE FOURIER TRANSFORMATION 133

Proof.— For every integer n ≥ 1, the formula∫
Rd

f dµn =

∫
(Rd)n

f

(
x1 + · · ·+ xn − nm√

n

)
dµ(x1) . . . dµ(xn)

defines a probability measure on Rd, and we have to prove that µn converges tightly to the probability
measure of density

GA(x) =
e−A

−1x.x/2

(2π)d/2
√

detA

with respect to the Lebesgue measure. Notice that, after diagonalisingA and using the Fubini theorem,
a linear change of variables and Proposition 3.2.3,

ĜA(ξ) = e−Aξ.ξ/2 .

Therefore, by P. Lévy’s theorem, it is enough to prove that

∀ξ ∈ Rd , µ̂n(ξ) −→
n→∞

e−Aξ.ξ/2 .

From the above definition of µn and the Fubini theorem, we have

µ̂n(ξ) =

[
eiξ.m/

√
nµ̂

(
ξ√
n

)]n
.

Because of the assumption ∫
Rd

|x|2 dµ(x) <∞ ,

the function

µ̂(ξ) =

∫
Rd

e−ix.ξ dµ(x)

is C2 and we can expand it near 0 by the Taylor formula, so that

eiξ.m/
√
nµ̂

(
ξ√
n

)
=

(
1 + i

ξ.m√
n
− (ξ.m)2

2n
+ o

(
1

n

))(
1− iξ.m√

n
− 1

2n

∫
Rd

(ξ.x)2 dµ(x) + o

(
1

n

))
= 1− Aξ.ξ

2n
+ o

(
1

n

)
.

Consequently,

µ̂n(ξ) =

(
1− Aξ.ξ

2n
+ o

(
1

n

))n
,

which —- by taking for instance the complex logarithm near 1 — converges to exp(−Aξ.ξ/2) as
n→∞.
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