
PARTITIONS ALÉATOIRES D’EWENS–PITMAN

mots-clés : partitions aléatoires, sous-martingales et chaînes de Markov rétrogrades.

Ce texte présente un modèle de partitions aléatoires qui sont construites récursivement, et
qui ont des propriétés asymptotiques intéressantes. On rappelle qu’une partition de l’ensemble
[[1, 𝑛]] = {1, 2, 3, … , 𝑛} est une famille 𝜋 = (𝜋1, 𝜋2, … , 𝜋ℓ) de parties disjointes et non vides de
[[1, 𝑛]] telles que [[1, 𝑛]] = 𝜋1 ⊔ 𝜋2 ⊔ ⋯ ⊔ 𝜋ℓ. Par exemple,

𝜋 = (𝜋1, 𝜋2, 𝜋3, 𝜋4) = ({1, 3, 7}, {2}, {4, 5, 8, 9}, {6}) =
1 2 3
4 5 6
7 8 9

est une partition de taille 9. Notons 𝔓(𝑛) l’ensemble des partitions de taille 𝑛. Si 𝜋 ∈ 𝔓(𝑛),
on ordonnera toujours ses parts 𝜋1, … , 𝜋ℓ en fonction de leurs éléments minimaux : min 𝜋1 <
min 𝜋2 < ⋯ < min 𝜋ℓ (comme dans l’exemple ci-dessus). Ceci permet de définir sans ambiguïté
la liste 𝑐(𝜋) = (𝑐1(𝜋), 𝑐2(𝜋), … , 𝑐ℓ(𝜋)) des tailles des parts d’une partition 𝜋 ∈ 𝔓(𝑛). Dans
l’exemple ci-dessus, 𝑐(𝜋) = (3, 1, 4, 1). Notons aussi ℓ(𝜋) le nombre de parts de 𝜋, et 𝜆(𝜋) le
réordonnement décroissant des tailles des parts de 𝜋 ; dans l’exemple précédent, ℓ(𝜋) = 4 et
𝜆(𝜋) = (𝜆1(𝜋), 𝜆2(𝜋), 𝜆3(𝜋), 𝜆4(𝜋)) = (4, 3, 1, 1). On dira que 𝜆(𝜋) est la signature de 𝜋.

Supposons donnée une partition 𝜋 ∈ 𝔓(𝑛). Elle représente par exemple la répartition de 𝑛
personnes en autant de groupes d’opinion. Si une nouvelle personne 𝑛 + 1 arrive dans cette
population, elle peut :

• soit rejoindre l’un des groupes 𝜋𝑘 déjà existant ;
• soit créer un nouveau groupe {𝑛 + 1}.

La première section du texte définit des règles de transition qui construisent une partition 𝛱 de
taille 𝑛 + 1 à partir de la partition 𝜋 de taille 𝑛, en prenant en compte deux facteurs qui poussent
la personne 𝑛 + 1 à créer un nouveau groupe. En itérant cette construction, on obtient ainsi une
suite aléatoire

(𝜋(1), 𝜋(2), … , 𝜋(𝑛), …)
de partitions, chaque 𝜋(𝑛) étant de taille 𝑛. Cette suite est cohérente, au sens suivant : pour tous
entiers 𝑛 ≤ 𝑁 , les parts de 𝜋(𝑛) sont les intersections non vides des parts de 𝜋(𝑁) avec [[1, 𝑛]].
La seconde section du texte montre que sous une hypothèse d’échangeabilité, les tailles des plus
grandes parts d’une suite cohérente de partitions aléatoires ont des fréquences limites : pour tout
𝑘 ≥ 1,

𝜆𝑘(𝜋(𝑛))
𝑛 →(𝑛→∞

p.s ) 𝑌𝑘

où les 𝑌𝑘 sont des variables aléatoires dans [0, 1], avec ∑∞
𝑘=1 𝑌𝑘 ≤ 1. La loi de ces fréquences

limites sera évoquée à la toute fin du texte.

1. Les paramètres 𝜃 et 𝛼
Lorsqu’un nouvel individu 𝑛 + 1 arrive dans une population de taille 𝑛 partitionnée suivant

𝜋(𝑛), deux facteurs le poussent à créer un nouveau groupe :
• l’ambition individuelle 𝜃 : l’individu 𝑛 + 1 a une propension naturelle à créer son propre

groupe.
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• l’ambition induite 𝛼 : chaque groupe 𝜋(𝑛)
𝑘 déjà présent montre à 𝑛 + 1 que l’on peut créer

sans risque son propre groupe, et ceci le pousse dans cette direction.
Si 𝜋(𝑛) = 𝜋 = (𝜋1, … , 𝜋ℓ) est fixée dans 𝔓(𝑛), il existe ℓ + 1 partitions 𝛱 ∈ 𝔓(𝑛 + 1) telles que

les parts de 𝜋 sont les intersections non vides des parts de 𝛱 avec [[1, 𝑛]] :
• les successeurs 𝜋[𝑘] = (𝜋1, … , 𝜋𝑘 ⊔ {𝑛 + 1}, … , 𝜋ℓ), obtenus en rajoutant 𝑛 + 1 à l’une des

parts de 𝜋 ;
• le successeur 𝜋[ℓ + 1] = (𝜋1, … , 𝜋ℓ, {𝑛 + 1}), obtenu en créant un nouveau groupe {𝑛 + 1}.

Par exemple, si 𝜋 est la partition de l’introduction, alors 𝜋[2] = ({1, 3, 7}, {2, 10}, {4, 5, 8, 9}, {6}),
et 𝜋[5] = ({1, 3, 7}, {2}, {4, 5, 8, 9}, {6}, {10}).

Si l’on veut prendre en compte les deux paramètres d’ambition 𝜃 et 𝛼, il est naturel de de-
mander que la probabilité conditionnelle pour obtenir 𝜋(𝑛+1) = 𝜋[ℓ + 1] sachant 𝜋(𝑛) = 𝜋 soit
proportionnelle à 𝜃 + 𝛼 ℓ(𝜋). Par ailleurs, pour 𝑘 ∈ [[1, ℓ]], il est naturel de demander que la proba-
bilité conditionnelle pour obtenir 𝜋(𝑛) = 𝜋[𝑘] sachant 𝜋(𝑛) = 𝜋 soit une fonction croissante de la
taille 𝑐𝑘 de la part 𝜋𝑘. Ainsi, s’il ne crée pas son propre groupe, alors 𝑛 + 1 a tendance à rejoindre
l’un des plus grands groupes déjà existants. Ceci motive la définition suivante :
Définition 1. On fixe deux paramètres 𝜃 > 0 et 𝛼 ∈ [0, 1). Soit 𝔓 = ⨆∞

𝑛=1 𝔓(𝑛). La suite de
partitions aléatoires (𝜋(𝑛))𝑛≥1 de paramètres (𝜃, 𝛼) est la chaîne de Markov sur 𝔓 :

• d’état initial 𝜋(1) = ({1}) (l’unique élément de 𝔓(1)) ;
• telle que 𝜋(𝑛) ∈ 𝔓(𝑛) pour tout 𝑛 ≥ 1 ;
• dont le noyau de transition est défini pour 𝜋 de taille 𝑛 et avec ℓ parts par :

𝑃(𝜋, 𝜋[ℓ + 1]) = 𝜃 + 𝛼 ℓ
𝜃 + 𝑛 ; 𝑃(𝜋, 𝜋[𝑘]) = 𝑐𝑘(𝜋) − 𝛼

𝜃 + 𝑛 si 1 ≤ 𝑘 ≤ ℓ.
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Fig. 1. Représentation graphique de deux suites cohérentes de partitions.

On peut représenter graphiquement une suite cohérente (𝜋(𝑛))𝑛≥1 comme suit. Pour tout 𝑘 ≥ 1,
la quantité

𝑐𝑘(𝜋(𝑛)) = {taille de la 𝑘-ième part de 𝜋(𝑛) si ℓ(𝜋(𝑛)) ≥ 𝑘,
0 si ℓ(𝜋(𝑛)) < 𝑘
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est croissante avec 𝑛, et pour tout 𝑛 ≥ 1, une unique quantité 𝑐𝑘(𝜋(𝑛+1)) est plus grande d’une
unité que 𝑐𝑘(𝜋(𝑛)) (celle telle que 𝑛 + 1 appartient à la 𝑘-ième part de 𝜋(𝑛+1)). Par conséquent,
si l’on connaît toutes les suites (𝑐𝑘(𝜋(𝑛)))𝑛∈[[1,𝑁]], alors on connaît entièrement (𝜋(𝑛))𝑛∈[[1,𝑁]]. Une
représentation assez intuitive de cette suite cohérente de partitions est donc donnée par le tracé
de toutes les fonctions

𝑛 ∈ [[1, 𝑁]] ↦ 𝑐1(𝜋(𝑛)) + 𝑐2(𝜋(𝑛)) + ⋯ + 𝑐𝑘(𝜋(𝑛))
pour 𝑘 ≤ ℓ(𝜋(𝑛)). L’espace entre deux courbes consécutives représente alors la taille 𝑐𝑘(𝜋(𝑛)) de
la 𝑘-ième part, qui croît avec 𝑛.

On a dessiné sur la Figure 1 deux tirages de la chaîne de paramètres 𝜃 = 1 et 𝛼 = 0.3 : l’un
jusqu’à 𝑁 = 30, et l’autre jusqu’à 𝑁 = 300. Sur le second graphe, il apparaît assez clairement
que pour tout 𝑘 ≥ 1, la proportion 𝑐𝑘(𝜋(𝑛))

𝑛 d’individus dans le 𝑘-ième groupe créé tend vers une
limite. L’objectif de la suite de ce texte est de comprendre ce résultat asymptotique.

Remarque 2. Dans la suite, on ne s’intéressera pas au nombre ℓ(𝜋(𝑛)) de groupes créé au temps
𝑛. On peut néanmoins montrer que, au sens de la convergence presque sûre :

ℓ(𝜋(𝑛)) ≃𝑛→∞ {𝜃 log 𝑛 si 𝛼 = 0,
𝑆𝜃,𝛼 𝑛𝛼 si 𝛼 > 0,

où 𝑆𝜃,𝛼 est une certaine variable aléatoire.

2. Fréquences limites des parts de partitions échangeables

Supposons donnée une suite cohérente de partitions aléatoires (𝜋(𝑛))𝑛≥1, définie sur un espace
de probabilités (𝛺, ℱ , ℙ). On notera ℙ𝑛 la loi de 𝜋(𝑛) :

∀𝜋 ∈ 𝔓(𝑛), ℙ𝑛[𝜋] = ℙ[𝜋(𝑛) = 𝜋].
Si (𝜋1, 𝜋2, … , 𝜋ℓ) = 𝜋 ∈ 𝔓(𝑛) et 𝜎 ∈ 𝔖(𝑛) est une permutation de taille 𝑛, notons 𝜎(𝜋) la
partition de taille 𝑛 dont les parts sont (𝜎(𝜋1), 𝜎(𝜋2), … , 𝜎(𝜋ℓ)).
Définition 3. La suite cohérente (𝜋(𝑛))𝑛≥1 est dite échangeable si, pour tout 𝑛 ≥ 1 et toute
permutation 𝜎 ∈ 𝔖(𝑛), les deux partitions 𝜋(𝑛) et 𝜎(𝜋(𝑛)) ont la même loi.

Théorème 4. La chaîne de Markov de paramètres (𝜃, 𝛼) donne une suite (𝜋(𝑛))𝑛≥1 qui est
échangeable.

Démonstration. Si 𝜋, 𝜋′ ∈ 𝔓(𝑛), alors il existe une permutation 𝜎 ∈ 𝔖(𝑛) telle que 𝜎(𝜋) = 𝜋′ si
et seulement si les parts de 𝜋 et de 𝜋′ ont les mêmes longueurs, à réordonnement près :

𝜆(𝜋) = 𝜆(𝜋′).
Une suite cohérente est donc échangeable si et seulement si ℙ𝑛[𝜋] est une fonction de la signature
𝜆(𝜋), pour tout 𝑛 ≥ 1. Établissons ceci pour la chaîne de Markov (𝜋(𝑛))𝑛≥1 de paramètres (𝜃, 𝛼).
Il suffit de voir que si 𝜋 ∈ 𝔓(𝑛) a pour liste de tailles des parts 𝑐(𝜋) = (𝑐1, … , 𝑐ℓ), alors

(1) ℙ𝑛[𝜋] = 𝛼ℓ

𝜃↑𝑛 ( 𝜃
𝛼)

↑ℓ ℓ
∏
𝑘=1

(1 − 𝛼)↑𝑐𝑘−1,

où 𝑥↑𝑚 = 𝑥(𝑥 + 1) ⋯ (𝑥 + 𝑚 − 1) (avec par convention 𝑥↑0 = 1). En effet, la fonction ci-dessus
est symétrique en (𝑐1, … , 𝑐ℓ), donc elle ne dépend en fait que du réordonnement décroissant
(𝜆1, … , 𝜆ℓ) = 𝜆(𝜋). □
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Dans ce qui suit, on se concentre sur la suite (𝜆(𝑛))𝑛≥1 des signatures d’une suite échangeable
(𝜋(𝑛))𝑛≥1 : 𝜆(𝑛) = 𝜆(𝜋(𝑛))𝑛≥1, et chaque 𝜆(𝑛) est un élément de l’ensemble 𝔜(𝑛) des suites finies
décroissantes d’entiers dont la somme est égale à 𝑛. On note

ℱ−𝑛 = 𝜎(𝜆(𝑛), 𝜆(𝑛+1), 𝜆(𝑛+2), …)
la tribu engendrée par les signatures des partitions de taille plus grande que 𝑛 dans la suite
échangeable. Par construction, chaque ℱ−𝑛 est une sous-tribu de ℱ , et si 𝑙 ≤ 𝑚 sont deux entiers
négatifs, alors ℱ𝑙 ⊂ ℱ𝑚. Autrement dit, (ℱ𝑙)𝑙≤−1 est une filtration rétrograde : c’est la même
définition que pour une filtration d’un espace de probabilité, à ceci près que les indices des sous-
tribus sont des entiers négatifs. Dans ce qui suit, on considérera également des chaînes de Markov
rétrogrades indicées par les entiers négatifs : ce sont des suites de variables aléatoires (𝑌𝑙)𝑙≤−1 à
valeurs dans un ensemble dénombrable 𝔜, telles qu’il existe une matrice stochastique 𝑄 sur 𝔜
avec

ℙ[𝑌𝑙+1 = 𝑦 | 𝑌𝑙, 𝑌𝑙−1, …] = 𝑄(𝑌𝑙, 𝑦)
pour tout 𝑙 ≥ −2. L’équation ci-dessus est la même formule que pour une chaîne de Markov
standard, mais avec des indices négatifs pour les variables.
Proposition 5. Fixons 𝑘 ≥ 1, et notons

𝑉−𝑛,𝑘 = 𝜆(𝑛)
1 + 𝜆(𝑛)

2 + ⋯ + 𝜆(𝑛)
𝑘

𝑛 ,

avec par convention 𝜋(𝑛)
𝑗 = ∅ et 𝜆(𝑛)

𝑗 = 0 si 𝑗 > ℓ(𝜋(𝑛)). La variable 𝑉−𝑛,𝑘 est la proportion
d’entiers de [[1, 𝑛]] qui appartiennent aux 𝑘 plus grandes parts de 𝜋(𝑛). La suite (𝑉𝑙,𝑘)𝑙≤−1 est une
sous-martingale rétrograde pour la filtration (ℱ𝑙)𝑙≤−1 :

∀𝑙 ≤ −1, 𝔼[𝑉𝑙,𝑘 | ℱ𝑙−1] ≥ 𝑉𝑙−1,𝑘.
Pour démontrer ceci, introduisons la notion d’effacement aléatoire. Si 𝛱 est une partition de

taille 𝑛 + 1, son effacement aléatoire est la partition 𝜋 ∈ 𝔓(𝑛) obtenue :
• en choisissant aléatoirement 𝑋𝑛+1 ∈ [[1, 𝑛 + 1]] de loi uniforme, indépendamment de 𝛱 ;
• en retirant 𝑋𝑛+1 de la part de 𝛱 correspondante (supprimant la part si c’était {𝑋𝑛+1}) ;
• et en utilisant l’unique bijection croissante [[1, 𝑛 + 1]] ∖ {𝑋𝑛+1} → [[1, 𝑛]] pour transformer

la liste de parts restantes en une partition de [[1, 𝑛]].
Notons cette construction 𝜋 = 𝐸(𝛱). Par exemple, si 𝛱 = ({1, 3, 7}, {2, 10}, {4, 5, 8, 9}, {6}) et
si l’on tire 𝑋10 = 5, alors 𝜋 = ({1, 3, 6}, {2, 9}, {4, 7, 8}, {5}).
Lemme 6. Si (𝜋(𝑛))𝑛≥1 est une suite échangeable de partitions, alors (𝜆(−𝑙))𝑙≤−1 est une chaîne
de Markov rétrograde sur 𝔜 = ⨆∞

𝑛=1 𝔜(𝑛). Son noyau de transition est
(2) 𝑄(𝛬, 𝜇) = ℙ[𝜆(𝐸(𝛱)) = 𝜇]
où 𝛱 est une partition arbitraire de signature 𝛬.
Esquisse de preuve. On montre d’abord que conditionnellement à ℱ−𝑛, la loi de 𝜋(𝑛) est uniforme
sur l’ensemble des partitions de [[1, 𝑛]] dont la signature est 𝜆(𝑛). Autrement dit, si 𝜋 a signature
𝛬, alors

(3) ℙ[𝜋(𝑛) = 𝜋 | ℱ−𝑛] =
1(𝜆(𝑛)=𝛬)

𝐵𝑛,𝛬
,

où 𝐵𝑛,𝛬 est le nombre de partitions de [[1, 𝑛]] avec signature 𝛬. Ce nombre est donné par la formule :

(4) 𝐵𝑛,𝛬 = 𝑛!
∏𝑠

𝑖=1(𝑖!)𝑚𝑖(𝑚𝑖!)
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si 𝛬 est une signature avec 𝑚1 entrées égales à 1, 𝑚2 entrées égales à 2, etc. de sorte que 𝑛 =
∑𝑠

𝑖=1 𝑖 𝑚𝑖. Ces nombres sont également en jeu dans le noyau de transition 𝑄(𝜆, 𝜇) : si 𝛬 =
(𝑠𝑚𝑠, (𝑠 − 1)𝑚𝑠−1, … , 2𝑚2, 1𝑚1) est la signature d’une partition 𝛱 et si

𝜇 = (𝑠𝑚𝑠, … , 𝑟𝑚𝑟−1, (𝑟 − 1)𝑚𝑟−1+1, … , 1𝑚1)
est la signature de 𝜋 = 𝐸(𝛱), alors

(5) 𝑄(𝛬, 𝜇) = (𝑚𝑟−1 + 1) 𝐵𝑛−1,𝜇
𝐵𝑛,𝛬

.

Le lemme s’en déduit, en calculant d’abord la loi conditionnelle sachant ℱ−𝑛 de 𝜋(𝑛−1), puis celle
de 𝜆(𝑛−1). □
Preuve de la Proposition 5. Notons 𝑋𝑛+1 une variable uniforme sur [[1, 𝑛 + 1]] et indépendante de
𝒢 = 𝜎(𝜋(𝑛+1), ℱ−(𝑛+1)). Pour tous indices 𝜌(1) ≠ 𝜌(2) ≠ ⋯ ≠ 𝜌(𝑘),
(6) (|𝜋(𝑛+1)

𝜌(1) | + ⋯ + |𝜋(𝑛+1)
𝜌(𝑘) |) − 1(𝑋𝑛+1∈𝜋(𝑛+1)

𝜌(1) ⊔ ⋯ ⊔𝜋(𝑛+1)
𝜌(𝑘) ) = |𝐸(𝜋(𝑛+1))𝜌(1)| + ⋯ + |𝐸(𝜋(𝑛+1))𝜌(𝑘)|.

On choisit la permutation 𝜌 de sorte que les parts 𝜋(𝑛+1)
𝜌(1) , … , 𝜋(𝑛+1)

𝜌(𝑘) soient les 𝑘 plus grandes :

|𝜋(𝑛+1)
𝜌(1) | + ⋯ + |𝜋(𝑛+1)

𝜌(𝑘) | = 𝜆(𝑛+1)
1 + ⋯ + 𝜆(𝑛+1)

𝑘 = (𝑛 + 1) 𝑉−(𝑛+1),𝑘.
Il suffit de connaître 𝜋(𝑛+1) pour choisir 𝜌, donc on peut supposer que 𝜌 est 𝒢 -mesurable, et en
particulier indépendante de 𝑋𝑛+1. Par conséquent,

𝑋𝑛+1 et (𝜋(𝑛+1)
𝜌(1) , … , 𝜋(𝑛+1)

𝜌(𝑘) ) sont indépendants.
En prenant l’espérance conditionnelle de (6) sachant ℱ−(𝑛+1), on obtient donc :

𝑛 𝑉−(𝑛+1),𝑘 = 𝔼[(|𝐸(𝜋(𝑛+1))𝜌(1)| + ⋯ + |𝐸(𝜋(𝑛+1))𝜌(𝑘)|) | ℱ−(𝑛+1)](7)
≤ 𝔼[𝜆1(𝐸(𝜋(𝑛+1))) + ⋯ + 𝜆𝑘(𝐸(𝜋(𝑛+1))) | ℱ−(𝑛+1)] = 𝔼[𝑛 𝑉−𝑛,𝑘 | ℱ−(𝑛+1)].(8)

en utilisant le Lemme 6 pour établir l’égalité sur la seconde ligne. □
L’inégalité du nombre de montées est valable pour les sous-martingales rétrogrades, avec la

même preuve que dans le cas non rétrograde. Comme (𝑉𝑙,𝑘)𝑙≤−1 est une suite bornée entre 0 et
1, elle n’a donc presque sûrement qu’un nombre fini de montées entre deux niveaux 𝑎 et 𝑏, pour
tous niveaux 𝑎 < 𝑏. Ceci implique comme dans le cas standard la convergence presque sûre :

lim
𝑛→∞

𝑉−𝑛,𝑘
𝑛 = 𝑉𝑘

pour une certaine variable aléatoire 𝑉𝑘 ∈ [0, 1]. En posant 𝑌𝑘 = 𝑉𝑘 − 𝑉𝑘−1, on obtient donc le
résultat annoncé dans l’introduction :

Théorème 7. Si (𝜆(𝑛))𝑛≥1 est la suite des signatures d’une suite échangeable de partitions, alors
pour tout 𝑘 ≥ 1,

𝜆(𝑛)
𝑘
𝑛 →p.s. 𝑌𝑘

pour certaines variables aléatoires 𝑌𝑘 avec ∑∞
𝑘=1 𝑌𝑘 ≤ 1.

En particulier, le théorème s’applique aux chaînes de Markov introduites par la Définition 1. Si
l’on revient à la Figure 1, notons qu’on avait conjecturé la convergence presque sûre de 𝑐𝑘(𝜋𝑛)

𝑛 , ce
qui diffère de la convergence après réordonnement décroissant des fréquences 𝜆𝑘(𝜋(𝑛))

𝑛 . Le résultat
suivant, dont la démonstration est simple mais assez longue, décrit les limites des fréquences non
réordonnées :
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Théorème 8. Notons (𝑊𝑘)𝑘≥1 une suite de variables aléatoires indépendantes, avec chaque 𝑊𝑘
qui suit une loi beta de paramètres (1 − 𝛼, 𝜃 + 𝑘𝛼) :

𝑊𝑘 ∼ 1(𝑥∈[0,1])
𝛤(1 + 𝜃 + (𝑘 − 1)𝛼)
𝛤(1 − 𝛼) 𝛤(𝜃 + 𝑘𝛼) 𝑥−𝛼 (1 − 𝑥)𝜃+𝑘𝛼−1 d𝑥 .

On pose 𝑋𝑘 = (1 − 𝑊1)(1 − 𝑊2) ⋯ (1 − 𝑊𝑘−1)𝑊𝑘, et on introduit également une suite (𝑈 (𝑛))𝑛≥1
de variables uniformes sur [0, 1] et indépendantes entre elles et de (𝑊𝑘)𝑘≥1.

(1) Définissons une suite cohérente (𝜋(𝑛))𝑛≥1 de partitions aléatoires par la récurrence :

𝜋(𝑛+1) = {𝜋(𝑛)[𝑘] si 𝑋1 + ⋯ + 𝑋𝑘−1 ≤ 𝑈 (𝑛) < 𝑋1 + ⋯ + 𝑋𝑘,
𝜋(𝑛)[ℓ(𝜋(𝑛)) + 1] si 𝑈 (𝑛) ≥ 𝑋1 + ⋯ + 𝑋ℓ(𝜋(𝑛)).

Au sens de la Définition 1, (𝜋(𝑛))𝑛≥1 est une chaîne de Markov de paramètres (𝜃, 𝛼).

(2) Cette chaîne vérifie 𝑐𝑘(𝜋(𝑛))
𝑛 →p.s. 𝑋𝑘.

(3) La suite (𝑌𝑘)𝑘≥1 est donc obtenue par réordonnement décroissant de la suite (𝑋𝑘)𝑘≥1.

Questions

(1) Vérifier que le noyau de transition de la Définition 1 est bien une matrice stochastique :
pour toute partition 𝜋 ∈ 𝔓(𝑛), si ℓ est le nombre de parts de 𝜋, alors ∑ℓ+1

𝑘=1 𝑃(𝜋, 𝜋[𝑘]) = 1.

(2) Écrire un programme markov_partition(N, theta, alpha) qui simule le 𝑁 -ième état
𝜋(𝑁) de la chaîne de Markov de paramètres (𝜃, 𝛼). En Python, on pourra représenter une
partition 𝜋 ∈ 𝔓(𝑁) par une liste de listes 𝜋𝑘 dont la somme des tailles vaut 𝑁 . Expliquer
pourquoi 𝜋(𝑁) détermine entièrement la suite (𝜋(𝑛))𝑛∈[[1,𝑁]].

(3) Écrire un autre programme dessin_partition(pi) qui prend en argument une partition
𝜋 = 𝜋(𝑁) de taille 𝑁 , et qui dessine la représentation graphique de la suite cohérente
(𝜋(𝑛))𝑛∈[[1,𝑁]] correspondante, comme sur la Figure 1. Tester ce programme avec différentes
valeurs pour les paramètres (𝜃, 𝛼).

(4) Illustrer par des programmes le résultat annoncé dans la Remarque 2.

(5) On souhaite donner une preuve de la convergence ℓ(𝜋(𝑛))
log 𝑛 →p.s. 𝜃 lorsque 𝛼 = 0.

• Montrer que si 𝛼 = 0, alors ℓ(𝜋(𝑛)) a la loi d’une somme de variables de Bernoulli
indépendantes ∑𝑛−1

𝑘=0 𝐵𝑘, avec ℙ[𝐵𝑘 = 1] = 1 − ℙ[𝐵𝑘 = 0] = 𝜃
𝜃+𝑘 .

• On considère des variables de Poisson indépendantes 𝑃𝑘, avec 𝑃𝑘 ∼ Poisson( 𝜃
𝜃+𝑘).

Posons 𝐵𝑘 = 1(𝑃𝑘≥1). En utilisant le lemme de Borel–Cantelli, montrer que la suite

(
𝑛−1
∑
𝑘=0

𝑃𝑘 −
𝑛−1
∑
𝑘=0

𝐵𝑘)
𝑛≥1

reste bornée presque sûrement.
• En déduire le résultat souhaité, en considérant un processus de Poisson (𝒫𝑡)𝑡≥0 d’in-

tensité 1, qu’on regarde aux temps 𝑡𝑛 = ∑𝑛−1
𝑘=0

𝜃
𝜃+𝑘 .
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(6) Montrer que deux partitions 𝜋 et 𝜋′ de taille 𝑛 sont reliées par une permutation 𝜎 ∈ 𝔖(𝑛)
si et seulement si 𝜆(𝜋) = 𝜆(𝜋′).

(7) Établir la Formule (1) pour la loi du 𝑛-ième état 𝜋(𝑛) d’une chaîne de paramètres (𝜃, 𝛼).
On pourra procéder par récurrence sur 𝑛, en séparant le cas où 𝑛 + 1 crée son propre
groupe dans 𝜋(𝑛+1), et le cas où 𝑛 + 1 rejoint une part de 𝜋(𝑛).

(8) On souhaite compléter la preuve du Lemme 6.
• Remarquons que la tribu ℱ−𝑛 est engendrée par les événements 𝐴 = 𝐴(𝜇(𝑛), … , 𝜇(𝑛+𝑘))

du type :
{𝜆(𝜋(𝑛)) = 𝜇(𝑛), 𝜆(𝜋(𝑛+1)) = 𝜇(𝑛+1), … , 𝜆(𝜋(𝑛+𝑘)) = 𝜇(𝑛+𝑘)},

où 𝜇(𝑛), … , 𝜇(𝑛+𝑘) sont des signatures fixées de tailles 𝑛, … , 𝑛 + 𝑘. En revenant alors
à la définition de l’espérance conditionnelle, montrer que pour tout 𝑛 ≥ 1 et toute
partition 𝜋 de signature 𝛬, l’Équation (3) est vérifiée.

• Établir la formule (4). On pourra construire une surjection de l’ensemble des permu-
tations 𝔖(𝑛) vers l’ensemble des partitions de [[1, 𝑛]] dont la signature est 𝛬.

• Montrer que le noyau 𝑄(𝛬, 𝜇) défini par l’Équation (2) est donné par la formule
explicite (5).

• Déterminer les lois conditionnelles de 𝜋(𝑛−1) et de 𝜆(𝑛−1) sachant ℱ−𝑛, et conclure.

(9) Expliquer pourquoi l’espérance conditionnelle du terme de gauche de l’Équation (7) vaut
𝑛 𝑉−(𝑛+1),𝑘, et pourquoi le Lemme 6 implique l’égalité dans l’Équation (8).

(10) Avec les paramètres 𝜃 = 1 et 𝛼 = 0.5, vérifier expérimentalement que la loi de la limite 𝑌1
de la proportion d’individus dans le plus grand groupe est la loi du maximum de la suite
(𝑋𝑘)𝑘≥1 définie par le Théorème 8. On pourra utiliser scipy.stats.beta(a, b).rvs()
pour engendrer une variable de loi beta de paramètres (𝑎, 𝑏).
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