PARTITIONS ALEATOIRES D’EWENS-PITMAN

mots-clés : partitions aléatoires, sous-martingales et chaines de Markov rétrogrades.

Ce texte présente un modele de partitions aléatoires qui sont construites récursivement, et
qui ont des propriétés asymptotiques intéressantes. On rappelle qu'une partition de I’ensemble
[1,n] = {1,2,3,...,n} est une famille 7 = (my, 7y, ..., m,) de parties disjointes et non vides de
[1,n] telles que [1,n] = m; U my U -+ LU m,. Par exemple,

718 9]
T = (my, Ty, M my) = ({1,3,7}, {2}, {4,5,8,9}, {6}) = [[1_5 6]

1 3

est une partition de taille 9. Notons (n) I'ensemble des partitions de taille n. Si 7 € PB(n),
on ordonnera toujours ses parts m,...,m, en fonction de leurs éléments minimaux : minm; <
minm, < -+ < minm, (comme dans 'exemple ci-dessus). Ceci permet de définir sans ambiguité
la liste ¢(m) = (¢y(m),cy(m), ..., co(m)) des tailles des parts d’une partition 7 € PB(n). Dans
I'exemple ci-dessus, ¢(m) = (3,1,4,1). Notons aussi £(7) le nombre de parts de m, et A(m) le
réordonnement décroissant des tailles des parts de m; dans l'exemple précédent, (7)) = 4 et
A7) = (A (), Ay (1), Ag(7), Ay (7)) = (4,3,1,1). On dira que A(7) est la signature de .

Supposons donnée une partition m € P(n). Elle représente par exemple la répartition de n
personnes en autant de groupes d’opinion. Si une nouvelle personne n + 1 arrive dans cette
population, elle peut :

e soit rejoindre 1'un des groupes 7, déja existant ;
e soit créer un nouveau groupe {n + 1}.

La premiere section du texte définit des regles de transition qui construisent une partition I1 de
taille n+1 a partir de la partition 7 de taille n, en prenant en compte deux facteurs qui poussent
la personne n + 1 a créer un nouveau groupe. En itérant cette construction, on obtient ainsi une
suite aléatoire

de partitions, chaque 7(™) étant de taille n. Cette suite est cohérente, au sens suivant : pour tous
entiers n < N, les parts de 7™ sont les intersections non vides des parts de V) avec [1,n].
La seconde section du texte montre que sous une hypothese d’échangeabilité, les tailles des plus
grandes parts d’une suite cohérente de partitions aléatoires ont des fréquences limites : pour tout
k Z 17

)\k(ﬂ(n))

n

ou les Y, sont des variables aléatoires dans [0, 1], avec Z;il Y, < 1. La loi de ces fréquences
limites sera évoquée a la toute fin du texte.

n—oo\ Y
TR

1. LES PARAMETRES 0 ET «

Lorsqu'un nouvel individu n + 1 arrive dans une population de taille n partitionnée suivant
7" deux facteurs le poussent & créer un nouveau groupe :

e 'ambition individuelle 6 : 'individu n 4+ 1 a une propension naturelle a créer son propre
groupe.
1
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e 'ambition induite o : chaque groupe 77,(:) déja présent montre a n + 1 que l'on peut créer

sans risque son propre groupe, et ceci le pousse dans cette direction.

Sin™ =7 = (ny,...,m,) est fixée dans P(n), il existe £+ 1 partitions IT € P(n + 1) telles que
les parts de 7 sont les intersections non vides des parts de IT avec [1,n] :

e les successeurs 7[k| = (7, ..., 7, U{n+1},...,m,), obtenus en rajoutant n+ 1 a I'une des
parts de ;
e le successeur w[{ + 1| = (mq, ..., 7, {n+1}), obtenu en créant un nouveau groupe {n+1}.

Par exemple, si 7 est la partition de I'introduction, alors 7[2] = ({1, 3,7}, {2, 10}, {4,5,8,9},{6}),
et 7[5] = ({1,3,7}, {2}, {4,5,8,9}, {6}, {10}).

Si 'on veut prendre en compte les deux parametres d’ambition 6 et «, il est naturel de de-
mander que la probabilité conditionnelle pour obtenir 7("*1) = x[¢ + 1] sachant 7(™ = 7 soit
proportionnelle & 6 + a £(7). Par ailleurs, pour k € [1, 4], il est naturel de demander que la proba-
bilité conditionnelle pour obtenir 7™ = 7[k] sachant 7™ = 7 soit une fonction croissante de la
taille ¢;, de la part 7. Ainsi, s’il ne crée pas son propre groupe, alors n+ 1 a tendance a rejoindre
I'un des plus grands groupes déja existants. Ceci motive la définition suivante :

Définition 1. On fize deux paramétres 6 > 0 et o € [0,1). Soit P = |_|:):1 B(n). La suite de
partitions aléatoires (™), o, de paramétres (0, ) est la chaine de Markov sur B :

o d’état initial 7V = ({1}) (I'unique élément de B(1)) ;
o telle que 7™ € P(n) pour tout n > 1;

e dont le noyau de transition est défini pour w de taille n et avec £ parts par :

Plm,wl +1]) = 9910‘”5 . P(m7k]) = % sl1<k<t.
30 300
25 250
20 200
15 150
10 100
5 /_/_/_,—/# 50
0 A ~ 0
0 10 20 30 0 100 200 300

Fi1G. 1. Représentation graphique de deux suites cohérentes de partitions.

On peut représenter graphiquement une suite cohérente (W("))n21 comme suit. Pour tout k > 1,
la quantité

(), _ ) taille de la k-ieme part de 7("  si £('™)) > k,
(™) =10 si 6(x™) < k
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est croissante avec n, et pour tout n > 1, une unique quantité ck(w(”ﬂ)) est plus grande d’une
unité que ¢, (7(™) (celle telle que n + 1 appartient & la k-ieme part de 7("*1). Par conséquent,
si 'on connait toutes les suites (Ck<7'('(n)>)ne[17 ]+ alors on connait entierement (W("))ne[L ~- Une
représentation assez intuitive de cette suite cohérente de partitions est donc donnée par le tracé
de toutes les fonctions

n € [1, N] = ¢ (7)) + o (™) 4 oo + ¢ (7))

pour k < ¢(m(™). L’espace entre deux courbes consécutives représente alors la taille ¢, (7)) de
la k-ieme part, qui croit avec n.

On a dessiné sur la Figure 1 deux tirages de la chaine de parametres § = 1 et a = 0.3 : I'un
jusqu'a N = 30, et 'autre jusqu’a N = 300. Sur le second graphe, il apparait assez clairement
que pour tout k > 1, la proportion Ci%n)) d’individus dans le k-ieme groupe créé tend vers une
limite. L’objectif de la suite de ce texte est de comprendre ce résultat asymptotique.

Remarque 2. Dans la suite, on ne s’intéressera pas au nombre E(W(”)) de groupes créé au temps
n. On peut néanmoins montrer que, au sens de la convergence presque sire :

n 0 logn sia=0,
Um™) > S o
p.an” sia>0,

ou Sy, est une certaine variable aléatoire.

2. FREQUENCES LIMITES DES PARTS DE PARTITIONS ECHANGEABLES

Supposons donnée une suite cohérente de partitions aléatoires (ﬂ(”))nzl, définie sur un espace
de probabilités (2, %, P). On notera P, la loi de (™) :

V1 € P(n), P,[r] =P =]
Si (71,79, .., ) = 7 € P(n) et 0 € S(n) est une permutation de taille n, notons o(w) la

partition de taille n dont les parts sont (o(m;),0(my), ... ,0(m))).

Définition 3. La suite cohérente (ﬂ(”))n21 est dite échangeable si, pour tout n > 1 et toute
permutation o € &(n), les deux partitions 7™ et o(7™) ont la méme loi.

Théoréme 4. La chaine de Markov de paramétres (0,«) donne une suite (7™),~, qui est
échangeable.

Démonstration. Si w, 7" € PB(n), alors il existe une permutation o € &(n) telle que o(7) = 7’ si
et seulement si les parts de 7w et de 7’ ont les mémes longueurs, a réordonnement pres :

A(m) = ().

Une suite cohérente est donc échangeable si et seulement si P,,[7] est une fonction de la signature
A(m), pour tout n > 1. Etablissons ceci pour la chaine de Markov (7(™), -, de parametres (6, a).
Il suffit de voir que si m € P(n) a pour liste de tailles des parts ¢(m) = (¢q, ..., ¢;), alors

£

N Y
) ol =5 (2) TTa—aye
k=1

ott z'™ = z(x + 1) (x + m — 1) (avec par convention 1% = 1). En effet, la fonction ci-dessus

est symétrique en (cq,...,¢,), donc elle ne dépend en fait que du réordonnement décroissant
Ay s Ap) = A7), O
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Dans ce qui suit, on se concentre sur la suite ()\(”))n>1 des signatures d’une suite échangeable

(7)1 + A = (™), -, et chaque A\ est un élément de I'ensemble 9)(n) des suites finies
décroissantes d’entiers dont la somme est égale a n. On note

F =AW AL Am2)

la tribu engendrée par les signatures des partitions de taille plus grande que n dans la suite
échangeable. Par construction, chaque &_,, est une sous-tribu de #, et si [ < m sont deux entiers
négatifs, alors & C &,,. Autrement dit, (#,),-_; est une filtration rétrograde : c’est la méme
définition que pour une filtration d’un espace de probabilité, & ceci prés que les indices des sous-
tribus sont des entiers négatifs. Dans ce qui suit, on considérera également des chaines de Markov
rétrogrades indicées par les entiers négatifs : ce sont des suites de variables aléatoires (Y});._; &
valeurs dans un ensemble dénombrable 9), telles qu’il existe une matrice stochastique @ sur )
avec
[PD/Z—H =Yy | lfla }/l—la ] = Q(YVl, y)

pour tout [ > —2. L’équation ci-dessus est la méme formule que pour une chaine de Markov
standard, mais avec des indices négatifs pour les variables.

Proposition 5. Fizons k > 1, et notons

A AT A
V—n,k = n )

avec par convention 7'(';”) =0 et /\gn) =0 si j > £(7m™). La variable V_,.k est la proportion
d’entiers de [1,n] qui appartiennent auzx k plus grandes parts de ™. La suite (Vik)i<_1 est une
sous-martingale rétrograde pour la filtration (%)< :

Vi< =1, EV | F1] 2 Vi
Pour démontrer ceci, introduisons la notion d’effacement aléatoire. Si II est une partition de
taille n + 1, son effacement aléatoire est la partition m € B(n) obtenue :
e en choisissant aléatoirement X, ,; € [1,n + 1] de loi uniforme, indépendamment de I7 ;
e en retirant X, ; de la part de IT correspondante (supprimant la part si c¢’était {X, ;});

e et en utilisant I'unique bijection croissante [1,n + 1]\ {X,,,;} — [1,n] pour transformer
la liste de parts restantes en une partition de [1,n].

Notons cette construction 7 = E(IT). Par exemple, si IT = ({1,3,7},{2,10},{4,5,8,9},{6}) et
si l'on tire X, =5, alors 7 = ({1, 3,6}, {2,9}, {4,7,8},{5}).

Lemme 6. Si (1), ., est une suite échangeable de partitions, alors (\=Y),__, est une chaine
de Markov rétrograde sur %)) = |_|:):1 (n). Son noyau de transition est

(2) Q(A, p) = PIAE()) = p
ou IT est une partition arbitraire de signature A.

Esquisse de preuve. On montre d’abord que conditionnellement a #_, la loi de 7(") est uniforme
sur I’ensemble des partitions de [1,n] dont la signature est A Autrement dit, si 7 a signature
A, alors
Lom=a)

B n,A ,

ou B,, 4 est le nombre de partitions de [1, n] avec signature A. Ce nombre est donné par la formule :

(3) Pl =m|F_,] =

n!

(4) Boa= T @)™ (m)
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si A est une signature avec m, entrées égales a 1, m, entrées égales a 2, etc. de sorte que n =
S . 7 . o . .
>.;_, im;. Ces nombres sont également en jeu dans le noyau de transition Q(A,p) : si A =

(s™s, (s — 1)1 ...,2™2 1™ est la signature d’une partition I7 et si
po= (M, ..Ml (p— 1)meatl M)
est la signature de m = E(II), alors
(5) QA = e ;”AB
Le lemnlle s’en déduit, en calculant d’abord la loi conditionnelle sachant %_,, de 7("=1 puis celle
de A(»—1), O

Prewve de la Proposition 5. Notons X, ; une variable uniforme sur [1,n + 1] et indépendante de
@ = o(r(™*), F_(n+1))- Pour tous indices p(1) # p(2) # - # p(k),

n+1) n+1) n n
O (i ) =1, ) = PP ] 4 B

On choisit la permutation p de sorte que les parts 7721;;31) - ,W(T(L]:_)l) soient les k plus grandes :
| 7’L+1 ‘ + +| ’I’L+1 ’ — )\(TL+1) + _|_ A 7’L+1 (n + 1) n+1) .

Il suffit de connaitre ﬂ(”“) pour ChOlSlI‘ p, donc on peut supposer que p est F-mesurable, et en

particulier indépendante de X, ;. Par conséquent,

(n+1) (n+1)
X oet (p(l) e T k) )

En prenant 'espérance conditionnelle de (6) sachant F_(n+1), On obtient donc :
(7) nV—(n+1),k = [E[<|E<7T(n+l))p(1)| +ot |E( (n+1)>p |> ‘ F_ n+1)]
(8) S EX(B@) 4+ MBI | F )] = En Vo g [ F )],

en utilisant le Lemme 6 pour établir ’égalité sur la seconde ligne. U

sont indépendants.

L’inégalité du nombre de montées est valable pour les sous-martingales rétrogrades, avec la
méme preuve que dans le cas non rétrograde. Comme (V] ;),<_; est une suite bornée entre 0 et
1, elle n’a donc presque siirement qu’un nombre fini de montées entre deux niveaux a et b, pour
tous niveaux a < b. Ceci implique comme dans le cas standard la convergence presque stire :

. —nk
lim —= =1V,
n—oo N

pour une certaine variable aléatoire V,, € [0,1]. En posant Y, = V,, — V}._;, on obtient donc le
résultat annoncé dans l'introduction :

Théoreme 7. 57 ()\(”))7721 est la suite des signatures d’une suite échangeable de partitions, alors

pour tout k > 1,
ALY
T _>p.s. Yk

. . s . oo
pour certaines variables aléatoires Yy, avec )~ Y, < 1.

En particulier, le théoréme s’applique aux chaines de Markov introduites par la Définition 1. Si

, . N . s . . . A~ ¢ (™)
'on revient a la Figure 1, notons qu’on avait conjecturé la convergence presque siire de 2= ce

. . \ \ /7 7 . /4 A
qui differe de la convergence apres réordonnement décroissant des fréquences % Le résultat
suivant, dont la démonstration est simple mais assez longue, décrit les limites des fréquences non
réordonnées :
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Théoréme 8. Notons (W)~ une suite de variables aléatoires indépendantes, avec chaque W),
qui suit une loi beta de paramétres (1 — a, 0 + ka) :
'l+60+(k—1)a)
Lze,1) 77—
I'l—a) 0+ ka)

On pose X;, = (1 — W) (1 —Wy) -+ (1 — W, _ )W, et on introduit également une suite (U™), -,
de variables uniformes sur [0,1] et indépendantes entre elles et de (W},)ps1-

W, ~ 7 (1 —z)fthe-1 dg.

(1) Définissons une suite cohérente (1'™), -, de partitions aléatoires par la récurrence :

Sntl) w(" [K] SiX 44X, <U™ <X, 4+ 4 X,,
W(n)[ﬁ(ﬂ(n)> +1] i U > X, 4+ Xg(ﬂm))-

Au sens de la Définition 1, (™), -, est une chaine de Markov de paramétres (0, ).

(2) Cette chaine vérifie %W) s Xp-

(3) La suite (Yy)y>, est donc obtenue par réordonnement décroissant de la suite (X} )p-

QUESTIONS

(1) Vérifier que le noyau de transition de la Définition 1 est bien une matrice stochastique :
pour toute partition 7 € P(n), si £ est le nombre de parts de 7, alors Ziill P(m,n[k]) = 1.

(2) Ecrire un programme markov_partition(N, theta, alpha) qui simule le N-iéme état
7(N) de la chaine de Markov de paramétres (#, ). En Python, on pourra représenter une
partition 7 € P(N) par une liste de listes 7, dont la somme des tailles vaut N. Expliquer
pourquoi 7N) détermine entierement la suite (W("))HQ[L N

(3) Ecrire un autre programme dessin_partition(pi) qui prend en argument une partition
7 = V) de taille N, et qui dessine la représentation graphique de la suite cohérente
(71'(”)>n6[1’ ] correspondante, comme sur la Figure 1. Tester ce programme avec différentes
valeurs pour les parametres (6, a).

(4) Hlustrer par des programmes le résultat annoncé dans la Remarque 2.

L(mm)

(5) On souhaite donner une preuve de la convergence logn) —p.s. 0 lorsque a = 0.

e Montrer que si a = 0, alors £(7(™) a la loi d’'une somme de variables de Bernoulli

indépendantes ZZ;; By, avec P[B, = 1] =1—P[B, =0] = 9%{

e On considere des variables de Poisson indépendantes P, avec P, ~ Poisson(e%k).
Posons By, = 1(p ~1). En utilisant le lemme de Borel-Cantelli, montrer que la suite

n—1 n—1
(55
k=0 k=0 n>1

reste bornée presque stirement.

e En déduire le résultat souhaité, en considérant un processus de Poisson (#,);~q d’in-

0

sz s o n—1
tensité 1, qu’on regarde aux temps ¢, = > k0 G4
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(6) Montrer que deux partitions 7 et 7" de taille n sont reliées par une permutation o € &(n)
si et seulement si A\(w) = A(7).

(7) Etablir la Formule (1) pour la loi du n-iéme état 7™ d'une chaine de paramétres (6, a).
On pourra procéder par récurrence sur n, en séparant le cas ou n + 1 crée son propre
groupe dans ™1 et le cas ot n + 1 rejoint une part de 7™,

(8) On souhaite compléter la preuve du Lemme 6.

e Remarquons que la tribu &, est engendrée par les événements A = A(p™, ..., p( )
du type :
{A) = ) A(m0HD) = o) A (rl0) = ),
ott u™, ..., u"**) sont des signatures fixées de tailles n, ..., n + k. En revenant alors

a la définition de I’espérance conditionnelle, montrer que pour tout n > 1 et toute
partition 7 de signature A, 'Equation (3) est vérifiée.

e Etablir la formule (4). On pourra construire une surjection de ’ensemble des permu-
tations &(n) vers I'ensemble des partitions de [1,n] dont la signature est A.

e Montrer que le noyau Q(A, p) défini par I'Equation (2) est donné par la formule
explicite (5).

e Déterminer les lois conditionnelles de 7™~V et de A1) sachant &, et conclure.

(9) Expliquer pourquoi I'espérance conditionnelle du terme de gauche de I’Equation (7) vaut
nV_(n 1),k €t pourquoi le Lemme 6 implique I'égalité dans I’'Equation (8).

(10) Avec les parametres § = 1 et a = 0.5, vérifier expérimentalement que la loi de la limite Y;
de la proportion d’individus dans le plus grand groupe est la loi du maximum de la suite
(X)) k> définie par le Théoréme 8. On pourra utiliser scipy.stats.beta(a, b).rvs()
pour engendrer une variable de loi beta de parametres (a,b).
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