
THE RESULTANT OF TWO POLYNOMIALS

PIERRE-LOÏC MÉLIOT

Abstract. We introduce the notion of resultant of two polynomials, and we explain its use for the
computation of the intersection of two algebraic curves.

Case of two polynomials in one variable. Consider an algebraically closed field k (say, k = C),
and let P and Q be two polynomials in k[X]:

P (X) = arX
r + ar−1X

r−1 + · · ·+ a1X + a0;

Q(X) = bsX
s + bs−1X

s−1 + · · ·+ b1X + b0.

We want a simple criterion to decide whether P and Q have a common root α. Note that if this is
the case, then

P (X) = (X − α)P1(X);

Q(X) = (X − α)Q1(X)

and P1Q−Q1P = 0. Therefore, there is a linear relation between the polynomials

P (X), XP (X), . . . , Xs−1P (X), Q(X), XQ(X), . . . , Xr−1Q(X).

Conversely, such a relation yields a common multiple P1Q = Q1P of P andQ with degree strictly
smaller than degP + degQ, so P and Q are not coprime and they have a common root.

If one writes in the basis 1, X, . . . , Xr+s−1 the coefficients of the non-independent family of
polynomials, then the existence of a linear relation is equivalent to the vanishing of the following
determinant of size (r + s)× (r + s):

Res(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ar ar−1 · · · a0

ar ar−1 · · · a0
. . . . . . . . .

ar ar−1 · · · a0

bs bs−1 · · · b0

bs bs−1 · · · b0
. . . . . . . . .

bs bs−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

with s lines with coefficients ai and r lines with coefficients bj . This determinant is called the
resultant of P and Q, and the previous discussion shows that P and Q share a common root in
k if and only if Res(P,Q) = 0. On the other hand, the resultant is a polynomial function of the
coefficients:

Res(P,Q) ∈ k[ar, . . . , a0, bs, . . . , b0],
and it is homogeneous with total degree r + s. This property and the vanishing condition can be
used to prove the following formula:

Res(P,Q) = (ar)
s(bs)

r
∏

x root of P
y root of Q

(x− y),
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where the enumeration of the roots of P and Q takes into account their possible multiplicities.

If P,Q ∈ k[X] with k arbitrary field (not supposed anymore algebraically closed), then the
factorisation of the resultant presented above still holds, but with the enumeration of roots in an
algebraic closure k of k. On the other hand, note that the following conditions are equivalent:

(1) The polynomials P and Q have a common factor in k[X].

(2) The polynomials P and Q have a common root in k, an algebraic closure of k.

(3) The polynomials P (X), XP (X), . . . , Xs−1P (X), Q(X), XQ(X), . . . , Xr−1Q(X) are lin-
early dependent in kr+s−1[X], the space of polynomials with degree smaller than r+ s− 1.

(4) The resultant Res(P,Q) vanishes.

Example 1. Consider a polynomial P (X) = aX2 + bX + c and its derivative Q(X) = 2aX + b
(the base field k is supposed with characteristic not equal to 2). Their resultant is Res(P,Q) =
−a(b2−4ac); we recognise the discriminant b2−4acwhose vanishing corresponds to the existence
of a double root for P .

Example 2. Consider a polynomial P (X) = X3+pX+ q and its derivativeQ(X) = 3X2+p, with
a base field with characteristic 0. Their resultant is Res(P,Q) = 27q2+4p3; we recognise again the
discriminant of polynomials of degree 3.

The equation Res(P,Q) = 0 is an explicit equation in terms of the polynomials P and Q, and it
has many uses; in the sequel we investigate two of those.

Intersection of two algebraic curves. Consider two polynomials P (x, y) and Q(x, y) in two
variables and with coefficients in some field k. We are interested in the intersection of the two
algebraic curves CP and CQ determined by the two equations

P (x, y) = 0;

Q(x, y) = 0.

To make things concrete, we can for instance consider the two equations in real numbers:

y4 − y3 + y2 − 2x2y + x4 = 0;

y − 2x2 = 0.

This particular example can be solved by replacing y by 2x2 in the first equation, and then solving in
terms of x; but it is clear that this technique would not work if the second equation was a bit more
complicated. However, the resultants of polynomials allow one to perform the elimination of a
variable in any case. Let us fix y = y0, and let us consider the set of solutions x for this particular
value of y. We now have two polynomials Py0 and Qy0 in k[X]:

Py0(x) = P (x, y0) = 0 ; Qy0(x) = Q(x, y0) = 0.

The set of equations above says that Py0 andQy0 have a common root x; therefore, Res(Py0 , Qy0) =
0. To make clear that we are considering polynomials in x, we add an index to the notation Resx.
Thus:

Proposition 3. If y0 ∈ k is the ordinate of a pair (x0, y0) in the intersecion of the algebraic curves CP

and CQ, then y0 is solution of the polynomial equation

Resx(Py0 , Qy0) = 0.
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Note that the equation is indeed polynomial in y0, because the resultant is a homogeneous poly-
nomial of the coefficients of the two polynomials. Thus, we can use the following method in order
to find all the intersection points of the two curves:

(1) Solve the polynomial equation Resx(Py0 , Qy0) = 0; it has a finite number of solutions y0.

(2) For each of these solutions y0, replace y by y0 in P (x, y) = Q(x, y) = 0, and find the
corresponding x’s; again there are only a finite number of solutions.

We have thus transformed a system of two polynomial equations in two variables into a finite family
of polynomial equations in one variable, which in general are much easier to solve.

Example 4. Let us solve the previous example over R2. The resultant of the two polynomials with
y = y0 fixed can be computed:

Resx(Py0 , Qy0) = 16

(
y0 −

1

2

)4

(y0)
4.

Therefore, if there exists an intersection point (x0, y0), then y0 belongs to the set {0, 1
2
}. We now

replace y by one of these values, and we solve the corresponding system:
• y0 = 0: the equations become x4 = 0 and x2 = 0, so one has the solution (x0, y0) = (0, 0).
• y0 = 1

2
: the equations become x4 − x2 + 3

16
= 0 and x2 = 1

4
, and there are two solutions:

x0 = ±1
2
.

Therefore, the intersections of the two real curves CP and CQ are the three points (0, 0), (1
2
, 1
2
) and

(−1
2
, 1
2
); see the figure below.

CP

CQ

In the elimination technique, it is sometimes easier to fix x0 and to compute Resy(Px0 , Qx0); we
leave the reader try to perform this alternative technique for the previous example. On the other
hand, the reasoning above could be used in order to compute the number of intersection points
in terms of the degrees of P and Q; however, in order to have a satisfying result (the so-called
Bezout intersection theorem for algebraic curves), it is required to consider the case where k is
an algebraically closed field, and where the two algebraic curves are replaced by their projective
versions (homogeneous polynomial equations in three variables).

The field of algebraic numbers. An algebraic number is a complex number z which is the root
of a polynomial with rational coefficients; for instance,

√
2 and 1+i

√
3

2
are algebraic numbers, but

this is not the case of π or e. Denote Q the set of all algebraic numbers; it is a strict subset of C. It
turns out that the theory of resultants allows one to prove:

Proposition 5. The set of algebraic numbers Q is a field.
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This result is not at all trivial: although
X2 − 2 and X6 − 1

clearly vanish on the two aforementioned algebraic numbers, it seems at first sight much more
complicated to find a polynomial with rational coefficients vanishing on their sum

√
2+ 1+i

√
3

2
. We

give hereafter the arguments which prove the stability of Q by sum and by product: the stability
by inversion or by taking the opposite is much easier.

• stability by sum. Consider two algebraic numbers z1 and z2 which are roots of polynomials
P and Q in Q[X]. We consider the polynomial in Y

R(Y ) = ResX(P (X), Q(Y −X)).

This is a polynomial in Q[Y ], with total degree degP × degQ. Notice then that z1 + z2 is
a root of R, because the two polynomials P (X) and Q(z1+ z2−X) vanish simultaneously
at X = z1. Thus, z1 + z2 is algebraic, as a root of the polynomial R.
• stability by product. In the same setting as above, let us consider the polynomial in Y

S(Y ) = ResX

(
P (X), XdegQQ

(
Y

X

))
.

This polynomial in Q[Y ] has again for total degree degP × degQ, and it vanishes on z1z2:
indeed, the two polynomials P (X) and XdegQQ( z1z2

Y
) vanish simultaneously at X = x1.

So, the product z1z2 is algebraic.
Let us close this note by two remarks. First, the exact same arguments can be used in order to prove
thatO, the set of algebraic integers (roots of monic polynomials with coefficients in Z), is a ring in
C. On the other hand, the proof above of the fact that Q is a field has the advantage of providing
explicit vanishing polynomials; however there exists also an abstract proof of the same fact. Let us
remark that the following facts are equivalent:

• The complex number z is algebraic.
• The Q-vector space Qz spanned in C by the image of

φz : Q[X]→ C
P 7→ P (z)

is finite-dimensional.
Consider now two algebraic numbers z1 and z2, and denote Qz1,z2 the set of complex numbers
which are rational polynomials in z1 and z2; it is also aQ-vector space. There is a natural surjective
linear map

Qz1 ⊗Q Qz2 → Qz1,z2

a⊗ b 7→ ab.

If P and Q are minimal rational polynomials for z1 and z2, then the tensor product on the left-
hand side is a finite-dimensional space over Q with dimension degP × degQ. Therefore, Qz1,z2

is also finite dimensional, and it contains the two Q-vector spaces Qz1+z2 and Qz1z2 . This proves
that z1+ z2 and z1z2 are algebraic, and also that there exists rational polynomials of degree at most
degP × degQ that vanish on these elements; the theory of resultants provides explicit vanishing
polynomials.


