Sans document ni calculatrice. Durée : 3 heures. Les questions sont la plupart du temps indépendantes, et elles peuvent être traitées séparément, quitte à admettre les résultats de questions précédentes.

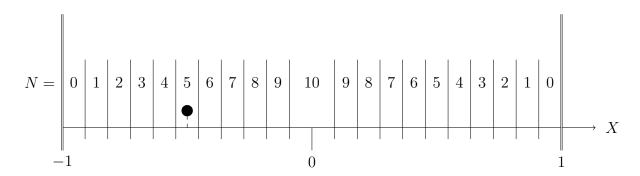
EXERCICE 1

Un joueur de bowling lance sa boule sur une piste de deux mètres de large, qu'on identifiera au segment [-1,1]. On note X la variable aléatoire à valeurs dans [-1,1] représentant l'endroit où la boule vient frapper les quilles, et on suppose que X admet pour densité

$$f_X(x) = \begin{cases} c|x| & \text{si } x \in [-1,1], \\ 0 & \text{sinon.} \end{cases}$$

- 1. Quelle est la valeur de la constante *c* ?
- 2. Calculer l'espérance et la variance de X.
- 3. Soient a < b deux nombres dans [0, 1]. Donner une formule en fonction de a et de b pour $\mathbb{P}[a \le X \le b]$, puis montrer que $\mathbb{P}[a \le |X| \le b] = b^2 a^2$.

Le nombre de quilles renversées N dépend du point d'impact X comme suit : si $\frac{k}{11} \le |X| \le \frac{k+1}{11}$, alors N = 10 - k (voir dessin ci-dessous, où N = 5).



- 4. Donner la loi de N (on pourra la présenter sous la forme d'un tableau).
- 5. Calculer l'espérance de N.

EXERCICE 2

Soit (X, Y) un couple aléatoire à densité donnée par

$$f_{(X,Y)}(x,y) = \begin{cases} k(x^2+y^2) & \text{si } 0 \le x \le 1 \text{ et } 0 \le y \le 1, \\ 0 & \text{sinon.} \end{cases}$$

- 1. Calculer la valeur de k.
- 2. Déterminer la loi marginale de la variable aléatoire X, puis celle de Y.
- 3. Calculer cov(X, Y) et commenter le résultat.

- 4. Les variables aléatoires X et Y sont-elles indépendantes ? Justifier votre réponse.
- 5. (Facultatif) Déterminer la loi de la variable aléatoire X + Y.

EXERCICE 3

Pierre et Caroline jouent à pile ou face avec une pièce non truquée. Une partie consiste en un lancer de la pièce : Pierre choisit toujours "Pile" ; Caroline choisit toujours "Face".

- 1. Soit $n \in \mathbb{N}^*$. Dans cette question, on suppose que n parties sont effectuées. On appelle X le nombre de parties gagnées par Pierre, Y le nombre de parties gagnées par Caroline.
 - (a) Quelle est la loi de la variable aléatoire X? Celle de Y?
 - (b) Déterminer la loi du couple aléatoire (X, Y).
 - (c) Calculer le coefficient de corrélation du couple aléatoire (X,Y). Commenter le résultat.
- 2. Dans cette question et la suivante, Pierre et Caroline jouent une infinité de parties. Soit T_1 le nombre de parties jouées lorsque Pierre gagne sa première partie. Déterminer la loi de T_1 , et donner son espérance.
- 3. Soit T_2 le nombre de parties jouées lorsque Pierre gagne sa deuxième partie. Déterminer la loi de T_2 . On pourra remarquer que l'événement $(T_2 = k)$ signifie qu'il y a eu une partie gagnée exactement par Pierre dans les k-1 premières parties, et qu'il a gagné la k-ième.
- 4. Pierre et Caroline décident de jouer jusqu'à ce que l'un d'eux ait remporté deux parties. On note U le nombre de parties qu'ils jouent. Déterminer la loi de U.
- 5. (Facultatif) Soit S_1 une variable aléatoire indépendante et de même loi que T_1 . Déterminer la loi de la variable aléatoire $T_1 + S_1$. Commenter.

EXERCICE 1 — CORRIGÉ

1. On doit avoir

$$1 = \int_{-1}^{1} f_X(x) \, dx = c \int_{-1}^{1} |x| \, dx = 2c \int_{0}^{1} x \, dx = 2c \left[\frac{x^2}{2} \right]_{0}^{1} = c,$$

donc c = 1.

2. L'espérance de X est

$$\mathbb{E}[X] = \int_{-1}^{1} x|x| \, dx = \int_{0}^{1} x^{2} \, dx - \int_{-1}^{0} x^{2} \, dx = \frac{1}{2} - \frac{1}{2} = 0,$$

et sa variance est

$$\operatorname{var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2]$$
$$= \int_{-1}^1 x^2 |x| \, dx = \int_0^1 x^3 \, dx - \int_{-1}^0 x^3 \, dx = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

3. Si $0 \le a < b \le 1$, on a

$$\mathbb{P}[a \le X \le b] = \int_a^b x \, dx = \frac{b^2 - a^2}{2}.$$

Par symétrie, $\mathbb{P}[-b \leq X \leq -a] = \frac{b^2 - a^2}{2}$, et on en déduit

$$\mathbb{P}[a \le |X| \le b] = \mathbb{P}[a \le X \le b] + \mathbb{P}[-b \le X \le a] = b^2 - a^2.$$

4. D'après la question précédente,

$$\mathbb{P}[N = 10 - k] = \mathbb{P}\left[\frac{k}{11} \le |X| \le \frac{k+1}{11}\right] = \left(\frac{k+1}{11}\right)^2 - \left(\frac{k}{11}\right)^2 = \frac{2k+1}{121},$$

d'où le tableau suivant pour la loi de N:

N	0	1	2	3	4	5	6	7	8	9	10
$\mathbb{P}[N=k]$	$\frac{21}{121}$	$\frac{19}{121}$	$\frac{17}{121}$	$\frac{15}{121}$	$\frac{13}{121}$	$\frac{11}{121}$	$\frac{9}{121}$	$\frac{7}{121}$	$\frac{5}{121}$	$\frac{3}{121}$	$\frac{1}{121}$

5. On calcule $\mathbb{E}[N] = \sum_{k=0}^{10} k \, \mathbb{P}[k]$, soit en utilisant le tableau précédent, soit avec les formules $\sum_{k=0}^{n} k = \frac{k(k+1)}{2}$ et $\sum_{k=0}^{n} k^2 = \frac{k(k+1)(2k+1)}{6}$:

$$\mathbb{E}[N] = \frac{1}{121} \sum_{k=0}^{10} (10 - k)(2k + 1) = \frac{35}{11}.$$

Exercice 2 — Corrigé

1. La fonction de répartition de X est

$$F_X(s) = \begin{cases} \int_0^s \frac{1}{(1+t)^2} dt = \frac{s}{1+s} & \text{si } s \ge 0; \\ 0 & \text{si } s < 0. \end{cases}$$

3

- 2. La première identité est obtenue par réduction au même dénominateur, et la seconde en élevant au carré la première.
- 3. Comme X et Y sont indépendantes et à valeurs positives, on peut utiliser la formule du produit de convolution pour la densité de Z = X + Y sur \mathbb{R}_+ :

$$f_Z(s) = \int_{t=0}^s f_X(t) f_Y(s-t) dt = \int_{t=0}^s \frac{1}{(1+t)^2 (1+s-t)^2} dt$$

$$= \frac{1}{(2+s)^2} \int_{t=0}^s \frac{1}{(1+t)^2} + \frac{1}{(1+s-t)^2} dt + \frac{2}{(2+s)^3} \int_{t=0}^s \frac{1}{1+t} + \frac{1}{1+s-t} dt$$

$$= \frac{2}{(2+s)^2} \frac{s}{1+s} + \frac{4}{(2+s)^3} \log(1+s).$$

On obtient ainsi cette densité sur \mathbb{R}_+ , et bien sûr 0 sur \mathbb{R}_- .