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Abstract. The goal of these lectures is to study the qualitative and quantitative as-
pects of the convergence of a sequence of random variables. For the qualitative ap-
proach, we shall be interested in the connections between the various possible notions
of convergence in a probabilistic setting, and in the underlying topology of the space
of probability measures on a topological space. We shall follow mainly the two first
chapters of [Billingsley, 1999]. Then, given a sequence of random variables (Xn)n∈N
that converges in probability, we shall study the rate of convergence of the sequence by
estimating the quantities

−sn logP[Xn ∈ B],

with B some fixed measurable subset of the space X where the random variables take
their values, and (sn)n∈N some sequence going to 0 and giving the exponential speed
of convergence. This leads to the theory of large deviations, for which we shall follow
[Dembo and Zeitouni, 1998, Feng and Kurtz, 2006]. Though we shall try to treat
each subject in the most general setting (usually a polish space which may be infinite-
dimensional), the main connection between the different chapters of these lectures will
consist in the three following examples.

(1) Consider the mean Zn = 1
n

∑n
i=1 Xi of a sequence of independent (or weakly de-

pendent) random variables. It is involved in the two most known limit theorems
in probability: the law of large numbers and the central limit theorem. Can one
quantify these two convergences and estimate their speed?

(2) Consider a (time-homogeneous) Markov chain (Xn)n∈N. Under certain hypotheses,
e.g., the finiteness of the space of states and the irreducibility and aperiodicity
of the kernel, the law of Xn is known to converge to a stationary measure. Is it
possible to compute the corresponding mixing time?

(3) Finally, consider a random walk (Xn)n∈N, e.g., the sum of independent Bernoulli
variables. Under appropriate scaling, one expects the random walk to converge
to the continuous analogue of random walks, namely, the Brownian motion. Can
one give a precise meaning to this convergence, and deduce from this certain fine
properties of the Brownian motion?
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CHAPTER 1

Notions of convergence in a probabilistic setting

In this first chapter, we present the most common notions of convergence used in
probability: almost sure convergence, convergence in probability, convergence in L p-
norms and convergence in law. We show the connections between these notions, and we
detail the topology of convergence in law, which is to be understood as a structure of
polish space on the space M 1(X) of probability measures on a space X. Our main sources
are [Billingsley, 1999, Kallenberg, 2001].

Banach space topology

weak-! topology related to
the duality (Cb(X), Mrba(X))

measured by the theory of large deviations (Ch. 3,4)

almost sure convergence (§1.1)
Xn →a.s. X convergence in L p (§1.2.2)

Xn →L p X

Lebesgue’s dominated
convergence theorem

convergence in probability (§1.2.1)

convergence in law (§1.3.2)

Xn →P X

Xn ⇀ X

with uniform integrability

every subsequence has a
convergent sub-subsequence

1

Let us fix some notations. The usual sets of integer, rational, real and complex numbers
are denoted N, Q, R and C. A measurable space is usually denoted (Ω,B), where B is
the σ-field of measurable events; and a probability space is usually denoted (Ω,B,P). If
Ω = X is a topological space, then unless explicitly stated, B = B(X) will be taken to be
the set of Borelians, that is to say the smallest σ-field that contains open (and closed)
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2 1. NOTIONS OF CONVERGENCE IN A PROBABILISTIC SETTING

subsets. We will call random variable a measurable map X : (Ω,B,P) → (X,B(X)); it
induces a probability measure PX on the space of states (X,B(X)), the law of X, which
is defined by

PX [A ∈ B(X)] = P[X−1(A)].

Sometimes we shall also denote PX = X∗P. The set of all probability measures on a
measurable space (X,B) is denoted M 1(X,B), or simply M 1(X). On the other hand, the
set of continuous real-valued functions on a topological space X will be denoted C (X),
and L p(Ω) = L p(Ω,B,P) will stand for the set of measurable real-valued functions on
(Ω,B) with ∫

Ω

|f(ω)|p P(dω) < +∞,

where p is an exponent in [1,+∞).

Remark. The main difficulty of these lectures lies probably in the topological back-
ground, as we shall need to manipulate general topological spaces, that is to say more
general than the usual normed vector spaces. The first chapters of [Lang, 1993] form
an excellent reference for this theory. If needed, the reader can replace most of the state-
ments involving a general topological space by a statement involving a metric space. In
this setting, many proofs are eased by the fact that the topology can be described in terms
of convergence of sequences, and measured explicitely by the metric.

1.1. Almost sure convergence

Consider a sequence (Xn)n∈N of random variables defined on a common probability
space (Ω,B,P), and with values in a topological space X. We recall that a sequence
(xn)n∈N of points in X is said to converge to x ∈ X if for every open subset U of X
containing x,

∃N = N(U), ∀n ≥ N, xn ∈ U.
When X = (X, d) is a metric space, this is equivalent to the usual definition with small
ε’s. A topology being fixed on X, we denote the convergence of a sequence by a simple
arrow: xn → x.

Definition 1.1. The sequence (Xn)n∈N is said to converge almost surely to a
random variable X : (Ω,B,P) → X if there exists a subset Ω′ ⊂ Ω of probability 1 and
such that

∀ω ∈ Ω′, Xn(ω)→ X(ω).

Notation: Xn →a.s. X.

This is the most natural way to define the convergence of a sequence of random variables,
in the sense that it is the direct adaptation of the deterministic setting. The almost
sure convergence occurs for instance in the famous strong law of large numbers. Recall
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that a family of random variables (Xi)i∈I is said independent if, for every finite subset
{i1, . . . , ir} ⊂ I and for every measurable subsets A1, . . . , Ar ∈ B(X),

P[Xi1 ∈ A1, . . . , Xir ∈ Ar] =
r∏

j=1

P[Xij ∈ Aj].

In other words, the law of (Xi)i∈I is the direct product of the laws PXi .

Theorem 1.2 (Kolmogorov). Let (Xn)n∈N be a sequence of independent real random
variables with the same law PX1, and such that X1 (whence all the Xn’s) is in L 1(Ω).
One has the almost sure convergence

1

n

n∑

i=1

Xi →a.s. E[X1] =

∫

R
xPX1(dx) =

∫

Ω

X1(ω)P(dω).

Proof. Though probably the most well-known result in probability, the law of large
numbers is not at all easy to prove; we follow here [Kallenberg, 2001, Chapter 4], which
makes a clever use of the Borel-Cantelli lemma and of Chebyshev’s inequality. Considering
Xn − E[Xn] instead of Xn, one can of course assume E[Xn] = 0 for all n. Denote X an
other independent copy of the Xn’s, and for any n ∈ N,

X ′n(ω) = 1|Xn|≤n(ω)Xn(ω).

It is sufficient to show the almost sure convergence of Z ′n = 1
n

∑n
i=1X

′
i instead of Zn =

1
n

∑n
i=1 Xi. Indeed,

∑

n∈N>0

P[X ′n 6= Xn] =
∑

n∈N>0

P[|Xn| > n] =
∑

n∈N>0

P[|X| > n]

≤
∫ ∞

0

P[|X| > x] dx = E[|X|] <∞,

so by Borel-Cantelli, X ′n = Xn for every n but a finite number (almost surely), and Zn
and Z ′n have therefore the same asymptotic behavior.

Set Yn = X′n
n
; the Yn’s are centered independent random variables, bounded in absolute

value by 1, and we are going to show that
∑∞

n=1 Yn converges almost surely. Notice that
∑

n≥1

E[(Yn)2] =
∑

n≥1

1

n2
E[X2 1|X|≤n] ≤ 1 +

∫ ∞

1

1

x2
E[X2 1|X|≤x] dx

≤ 1 + E
[
X2

∫ ∞

|X|

1

t2
dt

]
= 1 + E[|X|] < +∞.

Set Sn = Y1 + Y2 + · · ·+ Yn and

τ = inf{k ≥ n1, |Sk − Sn1| > ε},
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where ε is a fixed positive real number. The independence of the Yn’s ensures that for
any n2 ≥ k ≥ n1, (Sn2 − Sk) and (Sk − Sn1)1τ=k are independent. Then,

n2∑

k=n1+1

E[(Yk)
2] = E[(Sn2 − Sn1)

2] ≥
n2∑

k=n1+1

E[(Sn2 − Sn1)
2 1τ=k]

≥
n2∑

k=n1+1

E[(Sk)
2 1τ=k] + E[2Sk (Sn2 − Sk)2 1τ=k] + E[(Sn2 − Sk)2]

≥
n2∑

k=n1+1

E[(Sk)
2 1τ=k] ≥ ε2 P[τ ≤ n2].

With n2 going to infinity, we thus get

1

ε2

∞∑

k=n1+1

E[(Yk)
2] ≥ P

[
sup
k≥n1

|Sk − Sn1 | > ε

]
,

and since the left-hand side goes to zero when n1 goes to infinity, so does the right-hand
side. Hence, for every ε > 0,

lim
n→∞

P
[
sup
k≥n
|Sk − Sn| ≤ ε

]
= 1.

Now, let us analyze the event “(Sn)n∈N does not converge”. It also means that this is not
a Cauchy sequence, hence, we look at

⋃

ε>0

⋂

n≥1

{
sup
k≥n
|Sk − Sn| > ε

}
=
⋃

m≥1

⋂

n≥1

{
sup
k≥n
|Sk − Sn| >

1

m

}
.

But we have just seen that

P

[⋂

n≥1

{
sup
k≥n
|Sk − Sn| >

1

m

}]
≤ inf

n≥1
P
[
sup
k≥n
|Sk − Sn| >

1

m

]
= 0.

Taking a countable union over m ≥ 1 does not change the zero probability, so we have
indeed shown that (Sn)n∈N was almost surely a Cauchy sequence, whence convergent.
Finally,

Sn(ω)− Z ′n(ω) =
n∑

i=1

(
1− i

n

)
X ′i
i

=
n∑

i=1

(∫ 1

i
n

1 dx

)
X ′i
i

=

∫ 1

0

(∑

i≤nx

X ′i
i

)
dx =

∫ 1

0

Sbnxc(ω) dx

for a fixed ω in the set of convergence of (Sn)n∈N. By dominated convergence of the maps
x 7→ Sbnxc(ω), the right-hand side converges to

∫ 1

0
(limn→∞ Sn(ω)) dx = limn→∞ Sn(ω), so

limn→∞ Z ′n(ω) exists also and is zero. �
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The proof of the strong law of large numbers is a good illustration of many features
of the almost sure convergence: in particular, most of the time, one has first to find good
estimates on the probability of “bad behavior” of the sequence, and then use the Borel-
Cantelli lemma to prove the good behavior outside an event of probability zero. In
this context, the almost sure convergence appears as a refinement of weaker notions of
convergence, which are prerequisites in the proof of a strong convergence theorem. This
motivates our next paragraph, where we shall deal with the convergences in probability
and L p-norms. One of the main advantages of these notions is that their proof in a
concrete situation usually involves totally explicit computations, e.g., computations of
estimates of moments; most of the time this is far easier than a direct proof of the strong
(almost sure) convergence.

1.2. Convergence in probability and in L p-spaces

Again, consider a sequence (Xn)n∈N of random variables defined on a common proba-
bility space and with values in a topological space X. For simplicity we shall assume that
X is metrizable, that is to say that there is a distance d on X such that a basis of neigh-
borhoods of any point x ∈ X consists in the open balls B(x,ε) = {y ∈ X, d(x, y) < ε}.
We could also have treated the notion of convergence in probability in the setting of
topological vector spaces, but the choice of metrizable spaces was more coherent with the
discussion of §1.3.

1.2.1. Convergence in probability.

Definition 1.3. The sequence (Xn)n∈N converges in probability to a random vari-
able X if for every ε > 0,

lim
n→∞

P[d(Xn, X) ≥ ε] = 0.

We shall denote Xn →P X for the convergence in probability. In fact, the notion only
depends on the underlying topology of X, and not on the metric compatible with the topol-
ogy.

The independence from the metric of the notion of convergence in probability relies on
the following result, which relates convergence in probability and almost sure convergence.

Proposition 1.4. A sequence (Xn)n∈N converges in probability to X if and only if
every subsequence (Xφ(n))n∈N has a sub-subsequence (Xφ◦ψ(n))n∈N that converges almost
surely to X. As a consequence, Xn →a.s. X implies Xn →P X.

Proof. Suppose Xn →P X, and fix a subsequence (Yn)n∈N. We first prove that for
η > 0, there is a subset Ωη ⊂ Ω of probability greater than 1 − η, and an extraction
φη : N → N such that Yφη(n)(ω) → X(ω) for all ω ∈ Ω. There exists an integer nη,1 ≥ 1
such that

P
[
d(Ynη,1 , X) ≥ 1

2

]
≤ η

2
;
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then, an integer nη,2 > nη,1 such that

P
[
d(Ynη,2 , X) ≥ 1

4

]
≤ η

4
;

etc.; we choose each time nη,k > nη,k−1 such that

P
[
d(Ynη,k , X) ≥ 1

2k

]
≤ η

2k
.

The probability of the union
⋃
k≥1{d(Ynη,k , X) ≥ 1

2k
} is smaller than η

2
+ η

4
+ · · · = η, so

P
[
∀k ≥ 1, d(Ynη,k , X) ≤ 1

2k

]
≥ 1− η.

Setting φη(k) = nη,k, we have shown the previous statement. Then, we proceed by
diagonal extraction. Let

• ψ1 = φ 1
2
be an extraction for the sequence (Yn)n∈N and corresponding to the

parameter η = 1
2
;

• ψ2 = φ 1
4
be an extraction for the sequence (Yψ1(n))n∈N and corresponding to the

parameter η = 1
4
;

and so on. The injection ψk : N→ N is an extraction for the sequence (Yψ1◦ψ2◦···◦ψk−1(n))n∈N
and corresponding to the parameter η = 1

2k
. The previous inequality shows that if

Ψ(n) = ψ1 ◦ ψ2 ◦ · · · ◦ ψn(n),

then

P
[
∀n ≥ N, d(YΨ(n), X) ≤ 1

2n

]
≥ 1− 1

2N
,

because the sequence considered in this estimate of probabilities is a subsequence of
Yψ1◦···◦ψN . It follows that

P[d(YΨ(n), X)→ 0] ≥ 1− 1

2N

for every N , so in fact this probability is 1. Hence, any subsequence of a sequence of r.v.
that converges in probability to X has a sub-subsequence that converges almost surely.

Conversely, suppose that (Xn)n∈N does not converge in probability to X; then there is
an ε > 0 such that P[d(Xn, X) ≥ ε] stays bigger than some η > 0 for an infinite number
of n’s, say, along a subsequence (Yn)n∈N. Now, if the second statement were true, then
this subsequence would have a further subsequence (YΨ(n))n∈N that also converges almost
surely, though with

∀n ∈ N, P[d(YΨ(n), X) ≥ ε] ≥ η.

The functions min{d(Yψ(n), X), 1} are then dominated by 1 and converge almost surely
to 0, so

E[min{d(Yψ(n), X), 1}]→ 0

by the dominated convergence theorem. However, it stays also bigger that εη for ε ≤ 1;
contradiction.
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Since the almost sure convergence is a purely topological notion, this criterion shows
that the convergence in probability does not depend directly on the metric (by that we
mean that two distances compatible with the topology yield the same notion of conver-
gence in probability). �

The previous criterion has numerous applications: indeed, almost every result related
to the convergence of deterministic sequences trivially “survives” to the almost sure setting,
and then, using Proposition 1.4, one gets the analogue result for the convergence in
probability. Thus, let us state easy “transformation results” for these two notions of
convergence:

(1) Let f : X → W be a continuous map. If Xn →a.s. X, then f(Xn) →a.s. f(X).
Similarly, if Xn →P X, then f(Xn)→P f(X).

(2) Let (Wn)n∈N and (Xn)n∈N be two sequences of random variables defined on a
probability space (Ω,B,P), and taking their values in two spaces W and X.
Assume Wn →a.s. W and Xn →a.s. X. The pairs (Wn, Xn), which are random
variables in W×X, converge almost surely to (W,X). The same statement holds
for the convergence in probability.

(3) As a consequence of the two previous results, if X is a topological vector space
(respectively, a topological algebra), then any linear combination (respectively,
any polynomial) of convergent sequences of r.v. also converges (for the almost
sure convergence or the convergence in probability).

1.2.2. Convergence in L p and uniform integrability. Contrary to the almost
sure convergence, there exist various numerical criterions in order to prove the convergence
in probability of a sequence of random variables. For simplicity we assume in the following
that X = R, though most of the theory could be stated in the setting of random variables
with values in a normed vector space.

Definition 1.5. Suppose that Xn ∈ L p(Ω) for any n, with p ∈ [1,+∞). The sequence
(Xn)n∈N converges in L p towards a random variable X ∈ L p(Ω) if

lim
n→∞

E[|Xn −X|p] = 0.

Then, Xn →P X. Hence, the convergence in L p implies the convergence in probability.

Proof. This is just a reformulation of the Markov-Bienaymé-Chebyshev in-
equality:

P[|Xn −X| ≥ ε] = P[|Xn −X|p ≥ εp] ≤ E[|Xn −X|p]
εp

→ 0.

�
Notice that on a probability space, if p < q, then by Hölder’s inequality,

‖X‖p = ‖1×X‖p ≤ ‖1‖ 1
1
p−

1
q

‖X‖q = ‖X‖q,

so L q(Ω) ⊂ L p(Ω) and the convergence in L q implies the convergence in L p.
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Example (Weak law of large numbers). Let (Xn)n∈N be a sequence of independent
and identically distributed random variables, all in L 2(Ω). The L 2-norm of the centered
mean Zn = 1

n

∑n
i=1Xi − E[X] is

E[(Zn)2] =
n∑

i=1

1

n2
Var[Xi] =

Var[X]

n
→ 0,

so Zn →L 2 0 and consequently, Zn →P 0. This statement is weaker than Theorem 1.2,
but obviously its proof is way simpler.

Notice that the implications previously shown cannot be reversed: hence, convergence
in probability does not imply the almost sure convergence or the L p-convergence.

Example. To any real number ω ∈ [0, 1), we associate an increasing sequence of
integers as follows. Write the proper binary expansion of ω:

ω =
a1

2
+
a2

4
+
a3

8
+ · · · =

∞∑

k=1

ak
2k
,

with each ai ∈ {0, 1}. We then set

nk(ω) = 2k +
k∑

i=1

ai2
k−i ∈

[[
2k, 2k+1 − 1

]]
;

the sequence (nk(ω))k≥1 is strictly increasing, with exactly one element in each interval[[
2k, 2k+1 − 1

]]
. Define then Xn(ω) = 1 if n = nk(ω) for some k, and 0 otherwise. Each

Xn is the characteristic function of an interval of length

` =
1

2b
logn
log 2
c
,

so in particular it is measurable. The Xn’s converge in probability to 0; indeed, E[|Xn|] =
E[Xn] = ` → 0, so one has convergence in L 1([0, 1), dx). On the other hand, every real
number ω ∈ [0, 1) corresponds to an infinite sequence (nk(ω))k≥1, so to an infinite sequence
of Xn(ω) with d(Xn(ω), 0) = 1; hence, Xn(ω) never converges to zero. Conclusion: one
can have convergence in probability without almost sure convergence.

Example. Take the same example as before, but this time with Xn(ω) = n
1
p if

n = nk(ω) for some k, and 0 otherwise. One still has the convergence in probability of
(Xn)n∈N towards 0: indeed, for any ε > 0,

P[|Xn| ≥ ε] = `→ 0.

But on the other hand, ‖Xn(ω)‖p = (`× n)
1
p ≥ 1 for every n, so one does not have

convergence in L p.

To conclude this section, let us see under which conditions one has the converse of
Proposition 1.5, i.e., a sequence of random variables that converges in probability also
converges in L p(Ω); this leads to the notion of uniform integrability.
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Definition 1.6. A class of functions F ⊂ L p(Ω) is said uniformly integrable in L p

(or simply uniformly integrable when p = 1) if for every ε > 0, there exists K such that

E[|X|p 1|X|≥K ] ≤ ε

for all X ∈ F . In other words, limK→∞ supX∈F E[|X|p 1|X|≥K ] = 0.

Example. Every family of functions F all bounded a.s. by a constant K is uniformly
integrable in L p, for all p.

Example. Suppose (Ω,B,P) = ([0, 1], dx), and consider the family of functions
Fd = {x 7→ xc}c>−d

with d ∈ [0, 1
p
]. If d < 1

p
, then Fd is uniformly integrable in L p(Ω), because

sup
X∈Fd

E[|X|p 1|X|≥K ] =

∫ 1

0

x−dp 1x−d≥K dx =

∫ K−
1
d

0

x−dp dx =
1

(1− dp)K 1−dp
d

→K→∞ 0.

However if d = 1
p
then the supremum is always +∞ and the family is not uniformly

integrable.

Proposition 1.7. Let (Xn)n∈N be a sequence of random variables in L p(Ω). The
following assertions are equivalent:

(i) Xn →L p X.

(ii) Xn →P X and (Xn)n∈N is uniformly integrable in L p.

Proof. Suppose Xn →L p X; we have already shown that Xn →P X. Set ε > 0;
since |X|p 1|X|≥K converges to zero almost surely as K goes to infinity, by Lebesgue’s
dominated convergence theorem, for K big enough,

∫
Ω
|X(ω)|p 1|X(ω)|≥K P(dω) ≤ ε. A

similar inequality holds for any finite family of random variables in L p(Ω); in other words,
finite subsets of L p(Ω) are uniformly integrable in L p. Now, since ‖Xn−X‖p → 0, there
exists N such that for every n ≥ N ,∫

Ω

|Xn(ω)−X(ω)|p P(dω) ≤ ε.

Choose K such that
∫

Ω
|Xn(ω)|p 1|Xn(ω)|≥K P(dω) ≤ ε for every n < N and also for

X∞ = X. Then, for every n ≥ N , one has also
(∫

Ω

|Xn|p 1|Xn|≥2K

) 1
p

≤
(∫

Ω

|X|p 1|Xn|≥2K

) 1
p

+

(∫

Ω

|Xn −X|p 1|Xn|≥2K

) 1
p

≤
(∫

Ω

|X|p 1|X|≥K
) 1

p

+

(∫

Ω

|X|p 1|X|<K and |Xn|≥2K

) 1
p

+

(∫

Ω

|Xn −X|p
) 1

p

≤
(∫

Ω

|X|p 1|X|≥K
) 1

p

+ 2

(∫

Ω

|Xn −X|p
) 1

p

≤ 3 ε
1
p
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being understood that all the integrals are taken against P(dω). So,
∫

Ω

|Xn(ω)|p 1|Xn(ω)|≥2K P(dω) ≤ 3pε

for every n ∈ N and K big enough, and the family (Xn)n∈N is uniformly integrable in L p.

Conversely, suppose Xn →P X and (Xn)n∈N uniformly integrable in L p. Fix ε > 0
and K an ε-module of uniform integrability for the family {Xn −X, n ∈ N} — one sees
easily that removing X does not change the uniform integrability. Then,
(∫

Ω

|Xn −X|p
)1
p

≤
(∫

|Xn−X|<ε
1
p

|Xn −X|p
)1
p

+

(∫

ε
1
p≤|Xn−X|<K

|Xn −X|p
)1
p

+

(∫

|Xn−X|≥K
|Xn −X|p

)1
p

≤ ε
1
p +K P[|Xn −X| ≥ ε

1
p ]

1
p + ε

1
p .

Since one has convergence in probability, for n big enough, the probability in the middle
term is smaller than K−pε, and consequently E[|Xn−X|p] ≤ 3pε, so one has convergence
in L p(Ω). �

The previous result is often used as follows. Suppose that (Xn)n∈N is a sequence of r.v. in
L 1(Ω) that are uniformly integrable, and that converge in probability to some random
variable X. Then one also has |Xn| →P |X| since x 7→ |x| is continuous, and there is a
subsequence |Xφ(n)| →a.s. |X|. By Fatou’s lemma,

E[|X|] ≤ lim inf
n→∞

E[|Xφ(n)|] ≤ sup
n∈N

E[|Xn|]

the supremum on the right-hand side existing by hypothesis of uniform integrability.
Hence, X ∈ L 1(Ω), and the previous discussion shows that E[X] = limn→∞ E[Xn].

1.3. Convergence in law and Prohorov’s topology

Though more accessible than the almost sure convergence, the convergence in proba-
bility is not really adapted to describe certain phenomena. The typical case is the central
limit theorem: if Zn is the mean of independent and identically distributed random vari-
ables X1, . . . , Xn in L 2(Ω), then for any a < b,

lim
n→∞

P
[
a ≤ √n (Zn − E[X]) ≤ b

]
= N(0,Var[X])(a, b) =

1√
2πVar[X]

∫ b

a

e−
x2

2Var[X] dx,

but there is no natural Gaussian random variable G such that
√
n (Zn −E[X]) converges

almost surely or in probability to G. This leads to a third important notion of probabilistic
convergence, the convergence in law (or in distribution, or weak convergence). In this last
section, we give several equivalent definitions of it, and we show that it is induced by the
weak topology related to the duality between Cb(X) and a space of “generalized” measures
Mrba(X).
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1.3.1. Continuous bounded functions and their dual space. A topological
space X being fixed, we denote Cb(X) the space of real continuous functions on X that
are uniformly bounded:

Cb(X) = {f ∈ C (X) | ∃M ≥ 0, ∀x ∈ X, |f(x)| ≤M}.
This is a complete normed vector space with respect to the norm ‖f‖∞ = supx∈X |f(x)|.
It is therefore natural to ask what is the topological dual of this Banach space, that is
to say the set of linear functionals φ : Cb(X)→ R that are bounded in the sense that

∃C(φ), ∀f ∈ Cb(X), |φ(f)| ≤ C(φ) ‖f‖∞.
This is quite a difficult question; see [Dunford and Schwartz, 1988, Theorem IV.6.2].
In the simpler case of a compact and Hausdorff space X, the well-known Riesz’ theorem
ensures that the dual of Cb(X) = C (X) can be identified with M (X), the space of signed
(bounded) measures; see e.g. [Lang, 1993, Chapter IX]. This can be generalized in
several ways to the case of a locally compact Hausdorff space. Hence, looking for instance
at the space C0(X) of continuous functions that vanish at infinity, under some additional
topological assumptions on X, the dual of the Banach space is M (X). However, the case
of Cb(X) is quite different and involves more general objects than measures. Before going
on, we shall impose additional conditions on the space X, and always assume that they
hold in the following.

Definition 1.8. A topological space X is called polish if:

(1) The space is separable, i.e., there exists a dense countable subset (am)m∈N.

(2) The space is metrizable, that is to say that there exists a distance d on X such
that a basis of neighborhoods of any point x ∈ X consists in the open balls B(x,ε).

(3) The distance d can be chosen so that (X, d) is a complete metric space, i.e., every
Cauchy sequence (with respect to d) has a limit.

As a metric space, any polish space is in particular normal, which means that points are
closed and that any two disjoint closed subsets can be separated by open subsets. One
may ask why one does not deal directly with complete separable metric spaces, and only
ask for “metrizable by a complete distance”. The reason is that the space of states X may
admit a “natural distance” for which it is not complete, but such that the corresponding
topology is metrizable by another distance which is complete but whose manipulation is
quite cumbersome.

Example. Consider the open segment X = (0, 1), endowed with the restriction of the
natural distance d(x, y) = |x − y| of the real line R. This space is obviously separable
as Q is dense in R, but it is not complete with respect to d, since it is not closed in the
complete metric space (R, d). However, the topologically equivalent distance

D(x, y) =

∣∣∣∣tan

(
π(2x− 1)

2

)
− tan

(
π(2y − 1)

2

)∣∣∣∣
makes X into a complete metric space, because it comes from the homeomorphism x 7→
tan π(2x−1)

2
from (0, 1) to R and from the complete usual distance on R. So, (0, 1) is a
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polish space. But in practice, it will be easier to stick to the natural distance d, and we
shall neither use D.

Example. Another famous example of polish space without convenient complete met-
ric is Skorohod’s space D of càdlàg paths, see the discussion at the end of Chapter 2.
This example is more convincing than (0, 1), because one could have dealt with the non-
completeness of ((0, 1), d) just by completing the space and looking at [0, 1]. On the
contrary, this completion is not manipulable in the case of Skorohod’s space.

We now come back to the problem of the dual of Cb(X), assuming that X is a polish
space (this assumptions holds till the end of the chapter). Call finitely additive measure on
X a function µ : B(X)→ R such that for all finite family A1, . . . , An of disjoint measurable
subsets,

µ

(
n⊔

i=1

Ai

)
=

n∑

i=1

µ(Ai).

One does not ask here for countable additivity, which is the main difference with usual
measures. A finitely additive measure is called bounded if for every subset A,

|µ|(A) = sup
A=B1tB2t···tBn

(
n∑

i=1

|µ|(Ai)
)
<∞.

Endowed with the total variation ‖µ‖ = |µ|(X), the set Mba(X) of bounded and finitely
additive measures on X becomes a Banach space; of course it contains the space M (X) of
bounded (signed) measures. A closed subspace of Mba(X) is the set Mrba(X) of regular
bounded finitely additive measures, which on top of the previous hypotheses satisfy:
∀A ∈ B(X), ∀ε > 0, ∃C ⊂ A ⊂ O with C closed and O open, ∀B ⊂ O\C, |µ|(B) ≤ ε.

Beware of the difference between this notion of regularity and the notion of sets of con-
tinuity developed hereafter. In a similar way to Lebesgue’s integration theory, one can
define the integral of a bounded continuous function against a measure in Mrba(X). Then:

Theorem 1.9 (Dunford-Schwartz). The dual of the Banach space Cb(X) is exactly
Mrba(X). For a polish space, Mrba(X) contains as a closed subset M 1(X), the set of
probability measures.

The proof is quite technical and again we refer to [Dunford and Schwartz, 1988]. The
second part of the statement of the theorem uses the following facts:

(1) Any probability measure on a metric (or metrizable) space is regular; then it is
also obviously bounded and finitely additive.

(2) In Mrba(X), the vector space of regular bounded countably additive measures is
closed.

Beware that by “closed” we refer to the strong Banach space topology on Mrba(X); as we
shall explain in a moment, M 1(X) is not closed for the convergence in law inside Mrba(X).
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1.3.2. Weak convergence of random variables. We are now ready to define the
weak convergence of a sequence of random variables (Xn)n∈N. Denote µn = PXn the law
of the r.v. Xn, which is in M 1(X); notice that we do not require the Xn’s to be defined
on a common probability space (Ω,B,P), and that we shall only deal with the laws µn.
The integral of a continuous bounded function f with respect to any probability measure
µ with be denoted µ(f) =

∫
X
f(x)µ(dx).

Definition 1.10. The sequence of random variables (Xn)n∈N is said to converge in
law towards a random variable X if for any bounded continuous function f ∈ Cb(X),

lim
n→∞

µn(f) = µ(f),

where µ is the law of X. We then write Xn ⇀ X, and since the notion only depends on
the laws, we may also write µn ⇀ µ.

If the reader knows about weak topologies, he will see that the convergence of laws
µn ⇀ µ is exactly the restriction of the weak-? topology induced by the duality
(Cb(X),Mrba(X)) from Mrba(X) to M 1(X). Notice that the space M 1(X) is not closed
w.r.t. weak-? topology; actually this will be one of the main motivation for the notion of
tightness developed in Chapter 2. A first important property of the convergence in law is
the compatibility with continuous maps:

Proposition 1.11. Let (µn)n∈N be a sequence of probability measures on a (polish)
space X, with µn ⇀ µ. For every continuous function f : X→ Y, the image laws satisfy
f?(µn) ⇀ f?(µ).

Proof. Let g be a bounded continuous function on Y. Notice that f?(µn)(g) =
µn(g ◦ f), and g ◦ f is a bounded continuous function on X. Therefore,

lim
n→∞

f?(µn)(g) = µ(g ◦ f) = f?(µ)(g)

which means that f?(µn) ⇀ f?(µ). �

Theorem 1.12 (Portmanteau). For probability measures (µn)n∈N and µ on X, the
following assertions are equivalent:

(i) µn ⇀ µ.

(ii) for every bounded and uniformly continuous function f , limn→∞ µn(f) = µ(f).

(iii) for every closed subset F , lim supn→∞ µn(F ) ≤ µ(F ).

(iv) for every open subset U , lim infn→∞ µn(U) ≥ µ(U).

(v) if µ(Ao) = µ(A) = µ(A), then limn→∞ µn(A) = µ(A).

Proof. The implication (i)⇒ (ii) is obvious, and so is the equivalence (iii)⇔ (iv),
since the complementary of a closed subset is an open subset, and ν(Ac) = 1 − ν(A) for
any probability measure ν.
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For (ii)⇒ (iii), recall that the uniform continuity means that

∀ε > 0, ∃η > 0, ∀x, y ∈ X, d(x, y) ≤ η ⇒ |f(x)− f(y)| ≤ ε.

This is in particular satisfied if f is Lipschitz. Set

fK(x) = (1−K d(x, F ))+ = max{1−K d(x, F ), 0},
where K > 0 and d(x, F ) = inf{d(x, y) | y ∈ F}. For any K, fK is Lipschitz with
constant K, whence uniformly continuous. Moreover, fK takes its values in [0, 1], and
fK(x) = 1 if and only if x ∈ F . It follows that for any measure µn, µn(F ) ≤ µn(fK).
Fix ε > 0. As K goes to infinity, fK converges pointwise to the indicator of F , and this
convergence is dominated by the constant function 1. Hence, limK→∞ µ(fK) = µ(F ) and
there is a K = Kε such that µ(fK) ≤ µ(F ) + ε. Since fK is uniformly continuous and
bounded, limn→∞ µn(fK) = µ(fK), so for n ≥ N ,

µn(F ) ≤ µn(fK) ≤ µ(fK) + ε ≤ µ(F ) + 2ε,

and therefore lim supn→∞ µn(F ) ≤ µ(F ) + 2ε. Since this is true for every ε > 0, one
concludes that lim supn→∞ µn(F ) ≤ µ(F ).

The implication (iii) + (iv) ⇒ (v) is easy. Suppose that A is a set of continuity of µ,
which means that the measure of A is also the measure of its interior Ao or the measure
of its closure A. Then,

lim inf
n→∞

µn(A) ≥ lim inf
n→∞

µn(Ao) = µ(Ao) = µ(A) ≥ lim sup
n→∞

µn(A) ≥ lim sup
n→∞

µn(A),

so the limit of µn(A) exists and all the inequalities above are equalities. In particular,
limn→∞ µn(A) = µ(A).

Finally, assume (v) and let us prove that µn ⇀ µ. Fix f ∈ Cb(X); by linearity one can
assume that f take its values in [0, 1]. Then, one can write

µ(f) =

∫ 1

0

µ({x | f(x) > t}) dt

and similarly for the µn’s. As f is continuous, the closure of {x | f(x) > t} is the set
{x | f(x) ≥ t}, so if {x | f(x) > t} is not a continuity set of µ, then µ({x | f(x) = t} > 0.
This can happen only for a countable subset {t1, t2, . . .} of [0, 1]. As a consequence, almost
everywhere on [0, 1], the functions

x 7→ µn({x | f(x) > t})
converge towards µ({x | f(x) > t}). Finally, by dominated convergence on [0, 1], µ(f) =
limn→∞ µn(f). �

Corollary 1.13. Suppose X = R, and assume for simplicity that µ has a continuous
cumulative distribution function x 7→ Fµ(x) = µ((−∞, x]), which is the case for
instance if µ is absolutely continuous w.r.t. the Lebesgue measure. Then, a sequence of
random variables (Xn)n∈N converges in law to µ if and only if the cumulative distribution
functions FXn(x) = P[Xn ≤ x] converge pointwise to Fµ(x).
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Remark. Without the hypothesis of continuity of Fµ, the condition is replaced by
pointwise convergence of the FXn ’s at every point of continuity of Fµ.

Example. The classical central limit theorem ensures, that given a sequence of i.i.d.
random variables (Xn)n∈N in L 2(Ω), the recentered and rescaled mean

√
n (Zn − E[X])

converges in law towards a Gaussian variable of mean 0 and variance Var[X].

For real valued random variables, another powerful criterion of convergence in law is
the one actually used in the proof of the central limit theorem, namely, the so-called Lévy
continuity theorem. Recall that the characteristic function of a probability measure
µ ∈M 1(R) is Φµ(ζ) = µ(eiζX) =

∫
R eiζx µ(dx).

Theorem 1.14 (Lévy). A sequence of probability measures (µn)n∈N converges weakly
to a probability measure µ if and only if, for every ζ ∈ R, limn→∞Φµn(ζ) = Φµ(ζ).

We shall prove this theorem quite easily in Chapter 2 by using the theory of tightness.
Now, let us see the connections between the convergence in law and the other modes of
convergence. The main result is the following:

Proposition 1.15. Suppose Xn →P X. Then, Xn ⇀ X, and the converse is true if
X is a constant random variable.

Proof. We use the third criterion of Portmanteau’s theorem. Let F be a closed
subset of X; we denote F ε the ε-boundary of F , that is to say that

F ε = {x ∈ X | ∃y ∈ F, d(x, y) < ε}.
For ε > 0 fixed, if Xn →P X, then for n big enough the probability that d(Xn, X) > ε is
arbitrary small, say, smaller than ε. Thus,

µn(F ) = P[Xn ∈ F ] ≤ P[Xn ∈ F and d(Xn, X) ≤ ε] + P[d(Xn, X) > ε]

≤ P[X ∈ F ε] + ε = µ(F ε) + ε

for n ≥ N(ε). Now, since F =
⋂
ε↓0 F

ε as a closed set, limε→0 µ(F ε) = µ(F ), so for a
given ε′ > 0, there exists ε ∈ (0, ε′) such that µ(F ε) ≤ µ(F ) + ε′. If follows that for any
ε′ > 0,

lim sup
n→∞

µn(F ) ≤ µ(F ) + 2ε′

and the supremum limit is even smaller than µ(F ) since the previous inequality is true
for any ε′ > 0. We have therefore shown that Xn ⇀ X. Suppose now that Xn ⇀ a;
considering an open ball B(a,ε), we have by Portmanteau’s theorem that

lim inf
n→∞

µn(B(a,ε)) ≥ δa(B(a,ε)) = 1,

which can be rewritten as : limn→∞ P[d(Xn, X) < ε] = 1 for any ε > 0. So in the case of
a constant, the converse implication is true. �

Thus, we have the chain of implications (Xn →a.s. X)⇒ (Xn →P X)⇒ (Xn ⇀ X).
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Remark. It can actually be shown that conversely, if µn ⇀ µ on a polish space X,
then there exists a probability space (Ω,B,P) and random variables Xn, X : Ω → X
such that Xn has for law µn, X has for law µ, and Xn →a.s. X; see [Billingsley, 1999,
Theorem 6.7]. So in some sense one does not lose much between the notions of almost
sure convergence and weak convergence.

1.3.3. Prohorov’s topology. As we have defined a notion of (weak) convergence
in the space of probability measures, it is now interesting to study the corresponding
topology; ultimately this problem will be solved in §2.1, but we can already state basic
results.

Proposition 1.16 (Prohorov). There exists a distance d on M 1(X) such that µn ⇀ µ
if and only if d(µn, µ)→ 0. Consequently, the topology of weak convergence of probability
measures is metrizable.

Proof. Define the Prohorov-Lévy metric by

d(µ, ν) = inf{ε > 0, ∀A ∈ B(X), µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε},
where as before Aε denotes the ε-boundary of A. This is well-defined as obviously ε = 1
is in the set considered. Let us first verify that d is a distance on M 1(X). If d(µ, ν) = 0,
then for any Borel set A,

µ(A) ≤ inf{ν(Aε), ε > 0} = ν(A) and ν(A) ≤ µ(A).

In particular, µ and ν agree on closed sets, and as is well-known from measure theory,
this ensures that µ = ν. The symmetry of d is obvious, and for the triangular inequality,
we proceed as follows. Let µ, ν, ρ be three probability measures, and ε and η be such that
d(µ, ν) < ε and d(ν, ρ) < η. If A is a Borel set, then

µ(A) ≤ ν(Aε) + ε ≤ ρ((Aε)η) + η + ε,

and by the triangular inequality, (Aε)η ⊂ Aε+η, so ε + η is a correct bound on d(µ, ρ) —
by symmetry the previous argument also works from ρ to µ. Since this is true for any
ε > d(µ, ν) and any η > d(ν, ρ), we conclude that

d(µ, ρ) ≤ d(µ, ν) + d(ν, ρ),

which ends the proof that d is a distance. It should be noticed that the Prohorov-Lévy
metric could have been defined by the simpler equation

d(µ, ν) = inf{ε > 0, ∀A ∈ B(X), µ(A) ≤ ν(Aε) + ε},
which does not seem a priori symmetric in µ and ν. Indeed, suppose that µ(A) ≤ ν(Aε)+ε
for every Borelian subset. Then,

µ(Aε) = 1− µ((Aε)c) ≥ 1− ν(((Aε)c)ε)− ε
and x ∈ ((Aε)c)ε means that there is a y such that d(x, y) < ε, and d(y, A) ≥ ε. By
the triangular inequality x cannot be in A, so ((Aε)c)ε ⊂ Ac and 1− ν(((Aε)c)ε) ≥ ν(A).
Thus, one also has ν(A) ≤ µ(Aε) + ε for every A ∈ B(X).



1.3. CONVERGENCE IN LAW AND PROHOROV’S TOPOLOGY 17

Now, suppose that d(µn, µ) converges to 0, and fix a Borelian subset A which is a
continuity set for µ. If ε′ > 0 is fixed, there is an ε ∈ (0, ε′) such that µ(A) ≤ µ(Aε) ≤
µ(A) + ε′. Then, for n big enough, d(µn, µ) ≤ ε, so

µn(A) ≤ µ(Aε) + ε ≤ µ(A) + 2ε′.

Looking at Ac which is also a continuity set for µ, one gets a converse inequality, so
|µn(A)−µ(A)| ≤ 2ε′ for n big enough, and by Theorem 1.12 this ensures the convergence
in law. Conversely, assume µn ⇀ µ. Since the space is assumed separable, there is a
sequence (am)m∈N such that for every ε > 0,

X =
⋃

m∈N
B(am,ε).

Fix ε > 0 and let M be a finite subset of N such that µ(
⋃
m∈M B(am,ε)) is already bigger

than 1− ε. The set F of all open subsets F of type
(B(ai1 ,ε)

∪ · · · ∪B(air ,ε)
)ε with {i1, . . . , im} ⊂M

is finite, so for n big enough, µn(F ) ≥ µ(F )− ε for every F ∈ F — this is assertion (iv)
of Portmanteau’s theorem. Now, fix A ∈ B(X), and denote

F (A) =


 ⋃

m∈M, B(am,ε)∩A 6=∅
B(am,ε)



ε

;

this is an element in F , and the µ-measure of the complementary of F (A) in A is smaller
than ε. On the other hand, F (A) ⊂ A3ε. So,

µ(A) ≤ µ(F (A)) + µ(A \ F (A)) ≤ µn(F (A)) + 2ε ≤ µn(A3ε) + 3ε

for n big enough, and by a previous remark this is sufficient to assert that d(µn, µ) ≤ 3ε
or n big enough. �

Proposition 1.17. Starting from a polish (or even metric separable) space X, the
space of probability measures M 1(X) is also separable.

Proof. Fix a dense sequence (am)m∈N in X, and denote E the set of probability
measures that are rational linear combinations

∑
m∈M rm δam of the Dirac measures at

the points am; we aim to prove that E , which is countable, is dense in M 1(X). We fix
µ ∈M 1(X) and ε > 0, and as in the proof of the previous proposition, we chooseM finite
subset of N such that µ(

⋃
m∈M B(am,ε)) is bigger than 1 − ε. By removing intersections,

one can then choose open subsets Fm ⊂ B(am,ε) such that
⋃

m∈M
B(am,ε) =

⊔

m∈M
Fm.

In each Fm we can assume that there is still the point am. Now, fix a Borelian subset A,
and denote F (A) =

⋃
m∈M, Fm∩A 6=∅ Fm; as before,

µ(A) ≤ µ(F (A)) + µ(A \ F (A)) ≤


 ∑

m∈M, Fm∩A 6=∅
µ(Fm)


+ ε.
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We then take in E the measure π =
∑

m∈M rm δam , where
∑

m∈M |rm − µ(Fm)| ≤ 2ε
and

∑
m∈M rm = 1; this is always possible (and with rational numbers). The previous

inequality rewrites then as

µ(A) ≤


 ∑

m∈M, Fm∩A 6=∅
rm


+ 3ε = π(F (A)) + 3ε ≤ π(A3ε) + 3ε,

so d(µ, π) ≤ 3ε and we have shown the density of E in M 1(X). �

Hence, we have shown that starting from a separable metrizable space X (the com-
pleteness has not been used so far), the space of probability measures M 1(X) was also
separable and metrizable for the topology of convergence in law. This result will be com-
pleted in the next chapter, where it will be shown that completeness is also conserved.
We have now ended our presentation of the modes of probabilistic convergence in which
we will be interested, and what we lack basically is a characterization of compactness
w.r.t. these convergences, that is to say abstract criterions that guarantee the existence of
limits of (sub)sequences. This will prove extremely useful in order to construct complicate
random objects by approximation; cf. §2.2 where the example of Brownian motions will
be treated. Before going on, let us mention that there exists other mode of convergences
for random variables or their laws. In particular, one can look at the strong convergence
on M 1(X) (restricted from Mrba(X)), given by the total variation distance

dTV(µ, ν) = sup
A∈B(X)

|µ(A)− ν(A)| ∈ [0, 1].

Unless X is a finite set, the convergence in total variation distance is much stronger than
the convergence in law: for instance, if xn → x in R, then δxn ⇀ δx (use for instance the
fifth criterion in Theorem 1.12), but dTV(δxn , δx) = 1 if xn 6= x for every n ∈ N. However,
the total variation distance is often used to measure the weak convergence on a finite
(combinatorial) set, e.g., the convergence to stationarity of a Markov chain (see §3.2). It
is then much more sensible than Prohorov’s metric: indeed, on a large finite set X, even
if µn ⇀ µ, one can still find “exceptional” events A such that |µn(A) − µ(A)| stays large
for quite a long time.

If µ and ν are absolutely continuous with respect to a third probability measure ρ,
then their total variation distance can be seen as a L 1-norm:

dTV(µ, ν) =
1

2

∫

X

∣∣∣∣
dµ(x)

dρ
− dν(x)

dρ

∣∣∣∣ ρ(dx).

Indeed, it is easily seen that dTV(µ, ν) is attained on the set A = {x : dµ(x)
dρ
≥ dν(x)

dρ
}, or

its complementary (up to a set of (µ+ ν)-measure zero).
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As a consequence,

dTV(µ, ν) = |µ(A)− ν(A)| = 1

2
(|µ(A)− ν(A)|+ |µ(Ac)− ν(Ac)|)

=
1

2

∫

A

dµ(x)

dρ
− dν(x)

dρ
ρ(dx) +

1

2

∫

Ac

dν(x)

dρ
− dµ(x)

dρ
ρ(dx)

=
1

2

∫

AtAc

∣∣∣∣
dµ(x)

dρ
− dν(x)

dρ

∣∣∣∣ ρ(dx) =
1

2

∫

X

∣∣∣∣
dµ(x)

dρ
− dν(x)

dρ

∣∣∣∣ ρ(dx).

Most of the time one takes the reference measure ρ to be one of the measure µ of ν, say ν,
so one looks at the L 1-norm of dµ

dν
−1, defined to be +∞ if µ is not absolutely continuous

with respect to ν. A natural generalization of the total variation distance is then of course
the L p-distance (∫

X

∣∣∣∣
dµ(x)

dν
− 1

∣∣∣∣
p

ν(dx)

) 1
p

,

again defined to be +∞ if µ is not absolutely continuous w.r.t. ν. Notice that these
notions are quite different from the L p-convergences studied in §1.2. However, for every
exponent p ∈ [1,+∞), if µn →L p(X,dµ) µ, then µn ⇀ µ.





CHAPTER 2

Compactness and tightness

If X is a topological space, recall that it is called compact if every covering X =⋃
i∈I Ui by open subsets Ui has a finite sub-coverX =

⋃
i∈J⊂I Ui. On a metric or metrizable

space, this is equivalent to the sequential compactness: every sequence (xn)n∈N in X has
a convergent subsequence (xφ(n))n∈N. Suppose now X Hausdorff (this means that distinct
points can be separated by open subsets), or even metrizable. Then a compact subset
Y ⊂ X is necessarily closed, which leads to the notion of relative compactness: a subset
Y is relatively compact if its closure Y is compact in X (for the induced topology). On a
metrizable space, this is equivalent to the following statement: every sequence (yn)n∈N in
Y has a convergent subsequence, with its limit in Y . For instance, the relatively compact
subsets of RN are exactly the bounded subsets by Bolzano-Weierstrass theorem. This
notion is extremely useful in functional analysis, for the following reason. Assume that
X is a metrizable space of “functions”, for instance, the space of all continuous functions
on [0, 1] (endowed with the sup norm). Consider now (xn)n∈N a sequence in X that is
relatively compact, and such that all the convergent subsequences of (xn)n∈N have the same
limit x (we shall see in this chapter many situations where this unicity is guaranteed).
Then:

Lemma 2.1. In the previous situation, assuming only X metrizable, xn → x.

Proof. In the converse situation, there exists ε > 0 and a subsequence (xφ(n))n∈N
such that xφ(n) /∈ B(x,ε) for every n ∈ N. Since (xn)n∈N is relatively compact, there is a
further subsequence (xφ◦ψ(n))n∈N that is convergent, and by hypothesis its limit is x since
it is extracted from (xn)n∈N: contradiction. �

This lemma is of prime importance in approximation theory: in order to construct a
complicate object in a functional space (space of functions, or space of measures, etc.), it
suffices now to find a sequence (xn)n∈N that is built in such a way that the unicity of the
limit is ensured, and to prove the relative compactness of the sequence (which most of the
time amounts to prove that the sequence is “correctly bounded”, in a sense to be precised
hereafter in each case). In particular, in a probabilistic setting, this method allows one
to construct very subtle random objects, e.g., random trees, surfaces, continuous paths,
etc.; we shall detail in §2.2 the example of Brownian motions.

The main problem is then to give useful criterions of relative compactness in the usual
functional spaces. In this chapter, we shall do it for:

21
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(1) the space of probability measures M 1(X) over any polish space; this leads to the
notion of tightness, and will allow us to have a better understanding of the weak
topology (§2.1).

(2) the space of continuous functions C (X) on a separable locally compact space,
see §2.2.

In Section 2.3, we shall also explain a generalization of the discussion of Section 2.2 to
possibly non-continuous random paths; for this section we won’t give all details and we
refer to [Billingsley, 1999, Chapter 3].

2.1. Compactness in M 1(X) and tightness

If X = [[1, N ]] is a finite set, then M 1(X) is a simplex in RN and it is obviously compact
for the strong topology, which is the same as the weak-? topology corresponding to the
convergence in law. However, in the general case of a polish space X, there is no hope
to have this compactness. Indeed, assuming for instance X = R, a sequence (δxn)n∈N of
Dirac masses at points xn such that xn → +∞ has no limit in M 1(R) with respect to the
convergence in law. Indeed, if it were the case, then the limit µ would satisfy µ(U) = 0 for
every open set U = (−n, n), and then, by countable additivity, for every Borelian subset,

µ(A) = lim
n→∞

µ(A ∩ (−n, n)) = 0,

which is not possible for µ ∈M 1(R) since µ(R) = 1. In particular, the sequence (δn)n∈N
cannot have any convergent subsequence in M 1(R).

However, (δn)n∈N has a convergent subsequence in Mrba(R). Indeed, by Banach-
Alaoglu’s theorem, a closed ball for the norm in the dual of a Banach space is always
weak-∗ compact, so M 1(X) is weak-∗-relatively compact inside Mrba(X), the dual of
Cb(X). But as we have just seen, it is not closed, and one may therefore asks for a
criterion of relative compactness inside M 1(X); or in other words, a criterion that ensures
that the limits of convergent sequences stay in M 1(X).

2.1.1. Tightness and Prohorov’s theorem.

Definition 2.2. A family of probability measures P ⊂M 1(X) is called tight if for
every ε > 0, there is a compact subset K of X such that

µ(Kc) ≤ ε for every µ ∈P.

Example. A single probability measure µ on a polish space is always tight. Indeed,
consider a dense sequence (am)m∈N in X; since

⋃
m∈NB(am,η) = X for every η > 0, for

every ε > 0 and every m ≥ 0, there is an index φ(m) such that

µ


 ⋃

m′≤φ(m)

B(am′ ,2
−m)


 ≥ 1− ε

2m
.
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Consider then the closure of Y =
⋂
m≥0

⋃
m′≤φ(m) B(am′ ,2

−m); its µ-measure is bigger than
1 −∑m≥0

ε
2m

= 1 − 2ε. Let (yn)n∈N be a sequence in Y . For every m ≥ 0, there is
an subsequence of (yn)n∈N such that all the terms fall in the same ball B(am′ ,2

−m) with
m′ ≤ φ(m). Hence, by diagonal extraction, one can construct a subsequence (yΨ(n))n∈N
such that

∀n1, n2 ≥ N, |yΨ(n1) − yΨ(n2)| ≤
1

2N−1
.

Then, the extracted subsequence is Cauchy, and since X is polish, convergent. So, Y is
compact and the tightness is shown.

Example. The sequence (δn)n∈N is not tight in M 1(R), since for every compact set
K there is an n such that δn(K) = 0.

Theorem 2.3 (Prohorov). A class of probability measures P over a polish space is
tight if and only if it is relatively compact for the topology of weak convergence.

Proof. The easy thing to prove is: relative compactness implies tightness. Indeed,
as in the case of a single probability measure, for every ε > 0 and every m ≥ 0, there is
an index φ(m) such that

µ


 ⋃

m′≤φ(m)

B(am′ ,2
−m)


 ≥ 1− ε

2m

for every µ in the relatively compact class P. Otherwise, one could construct a sequence
(µn)n∈N in P such that

µn

( ⋃

m′≤n
B(am′ ,2

−m)

)
< 1− ε

2m

and by relative compactness and the forth criterion in Theorem 1.12, a limit µ of a
convergent subsequence would satisfy µ(X) ≤ 1 − ε

2m
, which is absurd. Then the same

proof as in the case of a single measure ensures the existence of a compact set such that
µ(K) ≥ 1− ε for every fixed ε > 0 and any µ ∈P.

The other direction is more difficult, and we shall admit the following facts that have
previously been discussed:

(1) Suppose that X is a compact topological space. Then the topological dual of
the Banach space C (X) is M (X), the set of bounded signed (countably additive)
measures (this is Riesz’ representation theorem).

(2) Let B be any Banach space, and B? be its topological dual. One endows B?

with the weak-? topology: a basis of neighborhoods of φ ∈ B? is given by finite
intersections of sets

Ux
φ,ε = {ψ ∈ B? | |ψ(x)− φ(x)| < ε}
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with ε > 0 and x ∈ B. Then the unit ball {φ ∈ B? | ∀x ∈ B, |φ(x)| ≤ ‖x‖}
is topologically compact for the weak-? topology, and on the other hand it is
metrizable if B is separable (this is the Banach-Alaoglu theorem).

Now the first step in the proof of the remaining half of Prohorov’s theorem is the follow-
ing statement: if X is a compact space, then M 1(X) is also compact. This is a direct
consequence of the previous results: indeed, M 1(X) is a subset of the unit ball of M (X),
which is compact by Banach-Alaoglu’s theorem since M (X) = (C (X))?. Thus, it suffices
to show that M 1(X) is closed in M (X) w.r.t. the weak-? topology (convergence in law).
But it writes as the intersection of the sets

{µ ∈M (X) | µ(X) = 1}
and

{µ ∈M (X) | µ(f) ≥ 0} for f ∈ C (X) non-negative,
which are all closed.

Now, suppose only that X is polish, and fix a dense sequence (am)m∈N and a complete
metric d. The map

ψ : X→W = [0, 1]N

x 7→ (min(d(x, am), 1))m∈N

is an homeomorphism of X into a compact space. Endowed with the convergence of
all coordinates, [0, 1]N is indeed compact (use diagonal extraction, or even Tychonoff’s
theorem), and even metrized by

δ((vn)n∈N, (wn)n∈N) =
∞∑

n=0

1

2n
|vn − wn|.

If d(x, y) ≤ ε, then for every m ∈ N,
|d(x, am)− d(y, am)| ≤ ε ; |min(d(x, am), 1)−min(d(y, am), 1)| ≤ ε,

and therefore δ(ψ(x), ψ(y)) ≤∑∞n=0
ε

2n
= 2ε and ψ is continuous and even Lipschitz. As-

sume now ψ(x) = ψ(y). Then, for every m, d(x, am) = d(y, am), so taking a subsequence
(aφm)m∈N that converges to x in X, one gets d(x, x) = 0 = d(y, x) by continuity of the
distance, and therefore x = y. So, ψ realizes an embedding of X into W. To see that it is
an homeomorphism, one has to show that

xn → x ⇐⇒ ψ(xn)→ ψ(x).

The implication⇒ is clear: if xn → x, then d(xn, am)→ d(x, am) for every m, so ψ(xn)→
ψ(x). Conversely, if xn 6→ x, then there is a subsequence (xφ(n))n∈N and ε > 0 such that
d(xφ(n), x) ≥ ε for every n. Take am such that d(x, am) ≤ ε

3
; then d(xφ(n), am) ≥ 2ε

3
for

every n, and therefore

δ(ψ(xφ(n)), ψ(x)) ≥ 1

2m
(
d(xφ(n), am)− d(x, am)

)
≥ ε

3 2m
.

It follows that ψ(xn) 6→ ψ(x), and we have shown that ψ was an homeomorphism onto
its image.
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Consider finally a tight class of probability measures P ⊂ M 1(X). Denote ψ∗ the
map from M 1(X) to M 1(W) which associates to a measure µ the probability measure
ψ∗(µ) = µ ◦ ψ−1. Given a sequence of probability measures (µn)n∈N in P, there is
a convergent subsequence of measures (ψ∗(µφ(n)))n∈N in M 1(W), because this space is
compact. Denote ν its limit. Since P is tight, there is for every m ≥ 0 a compact Km in
X such that

∀n ∈ N, µφ(n)(Km) ≥ 1− 1

2m
.

As a consequence, ψ∗(µφ(n))(ψ(Km)) ≥ 1− 1
2m

and since ψ is an homeomorphism, ψ(Km)
is compact inside W, whence closed. By Portmanteau’s theorem, it follows that

ν(ψ(Km)) ≥ lim sup
n→∞

ψ∗(µφ(n))(ψ(Km)) = lim sup
n→∞

µφ(n)(Km) ≥ 1− 1

2m
,

and therefore, ν(ψ(X)) ≥ ν(ψ(
⋃
m∈NKm))) ≥ 1, i.e., ν ∈ ψ∗(M 1(X)). We have therefore

a natural candidate for a limit of (µφ(n))n∈N in M 1(X), namely, µ = (ψ−1)∗(ν). Fix a
closed subset F ⊂ X and ε > 0. Since ψ is an homeomorphism, ψ(F ) is closed in ψ(X),
which means that there is a closed subset G of W such that ψ(F ) = G∩ ψ(X) — beware
that ψ(F ) needs not to be closed in W. Then,

lim sup
n→∞

µφ(n)(F ) = lim sup
n→∞

ψ∗(µφ(n))(ψ(F )) = lim sup
n→∞

ψ∗(µφ(n))(G)

≤ ν(G) = ν(ψ(F )) = µ(F ),

so we have finally proved that µφ(n) ⇀ µ and that P is relatively compact. �
Remark. In our proof of Prohorov’s theorem, we have seen that if X is compact, then

the same holds for M 1(X). In fact, the converse is true. Indeed, if M 1(X) is compact,
then

X→M 1(X)

x 7→ δx

is an homeomorphism into a closed subset of M 1(X), so X is compact.

2.1.2. Completeness of the space of measures. The rest of the chapter is devoted
to consequences and corollaries of Prohorov’s theorem 2.3. A first abstract consequence
is the following:

Proposition 2.4. The space of probability measures M 1(X) on a polish space is itself
polish with respect to the topology of convergence in law.

Proof. We already know that M 1(X) is separable and metrizable, so the only thing
that needs to be proved is the completeness, and in view of Theorem 2.3, it suffices to
show that a Cauchy sequence (µn)n∈N in M 1(X) is tight. Then, two possible limits µ1

and µ2 of convergent subsequences (µφ1(n))n∈N and (µφ2(n))n∈N satisfy for every ε > 0

∃N, ∀n1, n2 ≥ N, dPL(µφ1(n), µφ2(n)) ≤ ε
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where dPL is the Prohorov-Lévy metric. With n1, n2 →∞, one has therefore dPL(µ1, µ2) ≤
ε for every ε, so µ1 = µ2, and by unicity of the limit the Cauchy sequence has then to
converge.

As in the proof of the tightness of a single probability measure, the following is a
sufficient criterion for tightness: for every m ≥ 0, there is a finite family of open balls
(B(xm,m′ ,2

−m))m′≤φ(m) of radius 1
2m

such that

µ


 ⋃

m′≤φ(m)

B(xm,m′ ,2
−m)


 ≥ 1− 1

2m

for every µ in the family. Fix m ≥ 0 and N ≥ 1 such that d(µn1 , µn2) ≤ 1
2m

for n1, n2 ≤ N .
There is a finite family of balls B(xm,m′ ,2

−m−1) such that for all n ≤ N ,

µn


 ⋃

m′≤φ(m)

B(xm,m′ ,2
−m−1)


 ≥ 1− 1

2m+1
.

Since
⋃
m′≤φ(m) B(xm,m′ ,2

−m) is included in the 1
2m+1 -boundary of

⋃
m′≤φ(m)B(xm,m′ ,2

−m−1),
for n ≥ N ,

µn


 ⋃

m′≤φ(m)

B(xm,m′ ,2
−m)


 ≥ µn


 ⋃

m′≤φ(m)

B(xm,m′ ,2
−m−1)


− 1

2m+1
≥ 1− 1

2m
,

because dPL(µn, µN) ≤ 1
2m+1 ; and the same inequality holds for n ≤ N . The tightness is

then proved. �

The completeness of M 1(X) is an important result: indeed, in (functional) analysis,
one always looks for complete spaces so that there are “sufficiently many limits” — this is
why standard analysis is done on R and not on Q, and integration theory is done with the
Lebesgue spaces L 1(Ω) obtained by completion of the spaces of step functions. Now, the
notion of tightness also eases many proofs of convergence in law. Indeed, assuming that
a limit µ has already been identified for a sequence of probability measures (µn)n∈N, one
does not need anymore to prove that for every f ∈ Cb(X), µn(f)→ µ(f); the tightness is
sufficient.

Example. Following [Kallenberg, 2001, Chapter 5], let us give a simple proof of
Lévy’s continuity theorem 1.14. If µn ⇀ µ, then obviously Φµn → Φµ pointwise since each
function x 7→ eiζx is continuous and bounded. Conversely, let us suppose the pointwise
convergence of the characteristic functions Φµn to Φµ. By Fubini’s theorem, we get the
following estimate: for any c > 0,

∫ c

−c
(1− Φµ(ζ)) dζ =

∫

R
µ(dx)

∫ c

−c
(1− eiζx) dζ = 2c

∫

R

(
1− sin cx

cx

)
µ(dx)

≥ c µ({x | |cx| ≥ 2})
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since sinx ≤ x
2
for x ≥ 2. As a consequence,

µ({x | |x| ≥ R}) ≤ R

2

∫ 2
R

− 2
R

(1− Φµ(ζ)) dζ,

i.e., the tail of µ at infinity is controlled by how close Φµ stays to 1 around 0. By
Lebesgue’s dominated convergence theorem, one has therefore

lim sup
n→∞

µn({x | |x| ≥ R}) ≤ lim
n→∞

R

2

∫ 2
R

− 2
R

(1− Φµn(ζ)) dζ =
R

2

∫ 2
R

− 2
R

(1− Φµ(ζ)) dζ

which ensures the tightness since the right-hand side goes to zero as R goes to infinity
(by continuity of Φµ at 0). Since the map µ 7→ Φµ is injective, the limit of a convergent
subsequence of (µn)n∈N is necessarily µ, so Theorem 1.14 is proved.

2.2. Compactness in C (X) and Donsker’s theorem

In Rd, relative compactness is equivalent to boundedness, so the tightness of a family
of probability measures P is equivalent to the existence of balls such that

µ(BRd
(0,R)) ≥ 1− ε

for every µ ∈ P, and for an arbitrary ε > 0. However, in a functional (polish, or
even Banach) space, the relative compactness is less easy to characterize, and so is the
tightness of a family of probability measures P ⊂M 1(X). In this section, we detail the
case of C (X), the space of continuous functions on a compact, or even separable locally
compact metric space (X, d); this example is specially important since it is the natural
space of states of many random processes. We give criterions for relative compactness in
X = C (X), and then for tightness in M 1(X); and as an application we prove Donsker’s
theorem, which under weak assumptions ensures the convergence of the rescaled sums
of independent and identically distributed increments towards an universal continuous
random process, the Brownian motion.

2.2.1. Arzelà-Ascoli criterion. To begin with, we assume that X is a compact
metric space, with distance d. Then every continuous function f ∈ C (X) is in fact
uniformly continuous (Heine’s theorem), that is to say that for every ε > 0 there exists a
modulus δ of uniform continuity such that

d(x, y) ≤ δ ⇒ |f(x)− f(y)| ≤ ε.

We define ωf (δ) to be the maximum of |f(x)−f(y)| when d(x, y) ≤ δ; the above statement
is equivalent to limδ→0 ωf (δ) = 0. A family of functions F ⊂ C (X) is said equicontin-
uous if

lim
δ→0

(
ωF (δ) = sup

f∈F
ωf (δ)

)
= 0.

In other words, for every ε > 0, there is a common ε-modulus of uniform continuity δ for
all f ∈ F .
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We endow C (X), the space of continuous real-valued functions on X, with the sup
norm ‖f‖∞ = maxx∈X |f(x)|; then C (X) is a complete normed vector space (whence
polish).

Theorem 2.5 (Arzelà-Ascoli). A family of functions F ⊂ C (X) on a compact space
is relatively compact if and only if it is equicontinuous and bounded, where by bounded we
mean that

sup
f∈F
‖f‖∞ = sup

f∈F
sup
x∈X
|f(x)| = M <∞.

Proof. Consider a compact family F ⊂ C (X). Since the map ‖ · ‖∞ : f 7→ ‖f‖∞
is continuous, the image of F by ‖ · ‖∞ is compact in R, whence bounded; so F is
bounded in C (X) by some constant M . If F were not equicontinuous, then one could
find a sequence of functions (fn)n∈N and points xn, yn in X such that d(xn, yn) → 0 and
|fn(xn) − fn(yn)| ≥ ε > 0 for every n. Up to extractions in [−M,M ] and in F , one can
then suppose xn → x, yn → y = x and fn → f . But then, since f is continuous and
‖f − fn‖∞ → 0,

ε ≤ lim inf
n→∞

|fn(xn)− fn(yn)|
≤ lim inf

n→∞
(|fn(xn)− f(xn)|+ |f(xn)− f(yn)|+ |fn(yn)− f(yn)|)

≤ lim inf
n→∞

(|f(xn)− f(yn)|+ 2‖f − fn‖∞) = 0;

whence a contradiction. So, a (relatively) compact family F ⊂ C (X) is bounded and
equicontinuous.

Conversely, suppose that F ⊂ C (X) is bounded and equicontinuous. We fix a dense
sequence (am)m∈N in X, and a sequence (fn)n∈N in F . For every m ∈ N, the sequence
(fn(am))n∈N is in a compact interval [−M,M ], so it has a convergent subsequence. By
diagonal extraction we can then make all the (fΨ(n)(am))n∈N converge simultaneously.
More precisely, we choose an extraction φ0 : N → N such that (fφ0(n)(a0))n∈N converges;
then, a further extraction φ1 : N → N such that (fφ0◦φ1(n)(a1))n∈N converges; etc. The
extraction φk : N→ N is chosen so that (fφ0◦φ1◦···◦φk(n)(ak))n∈N converges. If

Ψ(n) = φ0 ◦ φ1 ◦ · · · ◦ φn(n)

then after rank m, (Ψ(n))n∈N is extracted from φ0 ◦ φ1 ◦ · · · ◦ φm, so fΨ(n)(am) has a
limit; and this for every m ∈ N. Now take x ∈ X, and (bm = aφ(m))m∈N a sequence that
converges to x. For every k, l,

|fΨ(k)(x)− fΨ(l)(x)|
≤ |fΨ(k)(x)− fΨ(k)(bm)|+ |fΨ(k)(bm)− fΨ(l)(bm)|+ |fΨ(l)(x)− fΨ(l)(bm)|
≤ |fΨ(k)(bm)− fΨ(l)(bm)|+ 2ωF (d(x, bm))

which proves that (fΨ(n)(x))n∈N is Cauchy for every x ∈ X (not only the x’s in the fixed
dense sequence). Therefore, f(x) = limn→∞ fΨ(n)(x) exists for every x ∈ X. Finally, if
d(x, y) ≤ δ, then

|f(x)− f(y)| = lim
n→∞

|fΨn(x)− fΨn(y)| ≤ ωF (δ),
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so f ∈ C (X) and F is relatively compact. �

2.2.2. Donsker’s theorem. A combination of Prohorov’s theorem 2.3 and of Arzelà-
Ascoli criterion 2.5 leads to:

Corollary 2.6. A family of probability measures P ⊂ M 1(C (X)) is tight if and
only if

(i) limM→∞ supµ∈P µ({‖f‖∞ ≥M}) = 0;

(ii) and limδ→0 supµ∈P µ({ωf (δ) ≥ ε}) = 0 for every ε > 0.

Proof. We denote B‖·‖∞R the ball of radius R and center 0 w.r.t. the sup norm, and
B
ω(δ)
ε the set of continuous functions f such that ωf (δ) < ε. Suppose P tight, and fix

ε > 0. There is a compact subset K ⊂ C (X) such that µ(K) ≥ 1− ε for any µ ∈P, and
by Arzelà-Ascoli, an M ≥ 0 such that

K ⊂ B
‖·‖∞
M ∩

(⋂

ε>0

⋃

δ>0

Bω(δ)
ε

)
.

From this one deduces:

(i) If m ≥M , then for all µ ∈P,

µ({‖f‖∞ ≥ m}) ≤ µ({‖f‖∞ ≥M}) ≤ µ(Kc) ≤ ε,

which proves that limM→∞ supµ∈P µ({‖f‖∞ ≥M}) = 0.

(ii) Fix ε′ > 0 and a δ0 such that K ⊂ B
ω(δ0)
ε′ . If δ ≤ δ0, then for all µ ∈P,

µ({ωf (δ) ≥ ε}) ≤ µ({ωf (δ0) ≥ ε′}) ≤ µ(Kc) ≤ ε,

so limδ→0 supµ∈P µ({ωf (δ) ≥ ε′}) = 0 for every ε′ > 0.

The direct sense is therefore proved. Conversely, if the two assumptions are satisfied, fix
ε > 0 and choose real numbers M and δn≥1 so that

∀m ≥M, ∀µ ∈P, µ({‖f‖∞ ≥ m}) ≤ ε;

∀δ ≤ δn, ∀µ ∈P, µ
({
ωf (δ) ≥ 2−n

})
≤ ε

2n
.

The µ-measure of the union {‖f‖∞ ≥ M} ∪⋃n≥1 {ωf (δn) ≥ 2−n} is smaller than 2ε for
every µ ∈P. The complementary of this set is

B
‖·‖∞
M ∩

(⋂

n≥1

B
ω(δn)

2−n

)
⊂ B

‖·‖∞
M ∩

(⋂

n≥1

⋃

δ>0

B
ω(δ)

2−n

)
= B

‖·‖∞
M ∩

(⋂

ε>0

⋃

δ>0

Bω(δ)
ε

)

and it is relatively compact. �
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Example. Fix a sequence (Xn)n∈N of random variables that are independent, iden-
tically distributed and in L 2(Ω,B,P), with mean E[X] = 0 and variance E[X2] = 1.
We associate to such a sequence a family of random continuous functions on the segment
[0, 1]:

W (n)(ω, t) =
1√
n

(
Sbntc(ω) + (nt− bntc)Xbntc+1(ω)

)
,

where Sn = X1 +X2 + · · ·+Xn. The map W (n) is the unique affine map starting from 0
and such that the increment from time t = k

n
to time t = k+1

n
is linear and equal to Xk+1√

n
;

see the figure hereafter.

Xk+1√
n

t
0 1k

n
k+1

n

1

For every n,W (n) can be considered as a C ([0, 1])-valued random variable, since it is a con-
tinuous (hence measurable) function Rn → C ([0, 1]) of the random vector (X1, . . . , Xn).
Denote µ(n) the law of W (n); we claim that {µ(n)}n∈N is tight inside M 1(C ([0, 1])). In
order to prove this, notice that in Corollary 2.6, on any path connected compact space
X, the first criterion (i) can be replaced by

lim
M→∞

sup
µ∈P

µ(|f(x0)| ≥M}) = 0

where x0 ∈ X is some fixed point. Indeed, if ε > 0 is fixed and assuming (ii) true, one
has then

sup
µ∈P

µ({|f(x0)| ≥M}) ≤ ε

2

for M big enough, but also

sup
µ∈P

µ({ωf (δ) ≥M}) ≤ ε

2

for δ small enough. It follows that the measure of the complementary of these sets is
bigger than 1− ε, and on this event,

|f(x)| ≤ |f(x0)|+
⌈
d(x0, x)

δ

⌉
M ≤

(
1 +

⌈
diam(X)

δ

⌉)
M,

so ‖f‖∞ is bounded by a constant with arbitrary big µ-probability uniformly in µ ∈P.
In our case, W (n)(0) = 0 almost surely, so it is sufficient to verify that (ii) in Corollary 2.6
is satisfied. This is done by using Kolmogorov’s tightness criterion, in the following
form:
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Proposition 2.7 (Kolmogorov). In the previous setting, if

lim
λ→∞

lim sup
n→∞

λ2 P
[

max
k∈[[1,n]]

|Sk| ≥ λ
√
n

]
= 0,

then one has tightness for (W (n))n∈N.

Proof. First, let us check that this criterion holds. This is a consequence of the
subtle Etemadi maximal inequality, which is true for any sequence of independent centered
random variables in L 2(Ω). Set τ = inf{k ≥ 1, |Sk| ≥ 3M}— the same kind of argument
has been used in the proof of Theorem 1.2. Then,

P
[

max
k∈[[1,n]]

|Sk| ≥ 3M

]
≤ P[|Sn| ≥M ] +

n−1∑

k=1

P[(|Sn| < M) ∧ (τ = k)]

≤ P[|Sn| ≥M ] +
n−1∑

k=1

P[(|Sn − Sk| > 2M) ∧ (τ = k)]

≤ P[|Sn| ≥M ] +
n−1∑

k=1

P[(|Sn − Sk| > 2M)] P[τ = k]

≤ P[|Sn| ≥M ] + max
k∈[[1,n−1]]

(P[|Sn − Sk| ≥ 2M ])

≤ P[|Sn| ≥M ] + max
k∈[[1,n−1]]

(P[|Sn| ≥M ] + P[|Sk| ≥M ])

≤ 3 max
k∈[[1,n]]

(P[|Sk| ≥M ]) .

Suppose now that Sn = X1 + · · ·+Xn with i.i.d. random variables. By the central limit
theorem, Sn√

n
converges to a Gaussian random variable G, so if λ is fixed, then for k ≥ kλ

big enough,

P[|Sk| ≥ λ
√
n] ≤ P[|Sk| ≥ λ

√
k] ≤ 4

3
N ([−λ, λ]c) ≤ 4

3

E[G4]

λ4
=

4

λ4
.

On the other hand, for k ≤ kλ, by Chebyshev’s inequality in L 2(Ω),

P[|Sk| ≥ λ
√
n] ≤ E[(Sk)

2]

λ2n
=

k

λ2n
≤ kλ
λ2n

.

Consequently,

lim sup
n→∞

(3λ)2 P
[

max
k∈[[1,n]]

|Sk| ≥ 3λ
√
n

]
≤ 27 lim sup

n→∞
max

(
kλ
n
,

4

λ2

)
=

108

λ2
→λ→∞ 0

and Kolmogorov’s criterion is satisfied.

Now, fix ε > 0, and let us prove that under Kolmogorov’s criterion one has

lim
δ→0

lim sup
n→∞

µn({ωW (δ) ≥ ε}) = 0;

since we are working with a sequence we can replace the supremum over a family by the
limit of the supremum in Corollary 2.6. Fix a subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tr = 1 of
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[0, 1], and δ smaller than |ti+1− ti| for every i. If ωW (δ) ≥ 3ε, then there exist times s < t
with |t− s| ≤ δ and |W (s)−W (t)| ≥ 3ε. Either s and t are in the same interval [ti−1, ti],
in which case

2 max
i∈[[1,r]]

sup
u∈[ti−1,ti]

|W (u)−W (ti)| ≥ |W (s)−W (ti)|+ |W (t)−W (ti)| ≥ |W (s)−W (t)| ≥ 3ε.

Otherwise, s ∈ [ti−1, ti] and t ∈ [ti, ti+1] and

3 max
i∈[[1,r]]

sup
u∈[ti−1,ti]

|W (u)−W (ti)| ≥ |W (s)−W (ti)|+ |W (ti)−W (ti+1)|+ |W (t)−W (ti+1)|

≥ |W (s)−W (t)| ≥ 3ε.

So in every situation, maxi∈[[1,r]] supu∈[ti−1,ti]
|W (u)−W (ti)| ≥ ε, and therefore

P[ωW (δ) ≥ 3ε] ≤
r∑

i=1

P

[
sup

u∈[ti−1,ti]

|W (u)−W (ti)| ≥ ε

]
.

Assume now P = µn and (ti = Ti
n

)i∈[[0,r]] subdivision of ( i
n
)i∈[[0,n]]. Then for each i, since

the function W (n) is almost surely affine by parts with changes of direction at points i
n
,

sup
u∈[ti−1,ti]

|W (u)−W (ti)| = max
k∈[[Ti−1,Ti]]

∣∣∣∣W
(
k

n

)
−W

(
Ti
n

)∣∣∣∣ ,

and therefore,

µn({ωW (δ) ≥ 3ε}) ≤
r∑

i=1

P
[

max
k∈[[Ti−1,Ti]]

|Sk − STi | ≥ ε
√
n

]

≤
r∑

i=1

P
[

max
k∈[[1,Ti−Ti−1]]

|Sk| ≥ ε
√
n

]
,

assuming that δ ≤ Ti−Ti−1

n
for all i. Write then λ = ε√

4δ
, and Ti = im where m = dnδe.

This condition ensures that
Ti − Ti−1

n
=
dnδe
n
≥ δ,

except maybe around t = 1: we remove the last Ti and choose Tr = n in such a way that

dnδe ≤ Tr − Tr−1 < 2dnδe.
The number r is then smaller than n

m
≤ 1

δ
, and on the other hand, for n big enough,

n
m
≥ 1

2δ
. Then,

µn({ωW (δ) ≥ 3ε}) ≤ r P
[

max
k∈[[1,2m]]

|Sk| ≥ ε
√
n

]
≤ 1

δ
P
[

max
k∈[[1,2m]]

|Sk| ≥
ε√
4δ

√
2m

]

≤ 4λ2

ε2
P
[

max
k∈[[1,2m]]

|Sk| ≥ λ
√

2m

]
.

The parameters ε and δ being fixed, for n going to infinity, m goes also to infinity, so by
Kolmogorov’s criterion the right-hand side goes to zero. �
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In the previous example, it turns out that there is a unique possible limit for of a
convergent subsequence of r.v. (W (φ(n)))n∈N. The proof of this fact relies on the following
general result:

Proposition 2.8. Let P be a tight subset of M 1(C (X)), where X is a compact
metric space. If for every finite family of points of X,

(µn)∗(f(x1), f(x2), . . . , f(xd)) ⇀Rd µ∗(f(x1), f(x2), . . . , f(xd))

with the µn’s in P, then µn ⇀C (X) µ. In other words, tightness and convergence
of the finite-dimensional laws ensure the convergence — on the other hand, the finite-
dimensional laws entirely determine a probability measure on C (X).

Proof. Let us first see why the finite-dimensional laws determine the law of a random
function f ∈ C (X) taken according to a probability measure µ. Fix ε > 0, f ∈ C (X)
and a dense sequence (am)m∈N in X. The closed ball B(f,ε) can be written as

B(f,ε) =
∞⋃

m=1

{g ∈ C (X), |g(am)− f(am)| ≤ ε}

=
∞⋃

m=1

↑ {g ∈ C (X), ∀m′ ≤ m, |f(am′)− g(am′)| ≤ ε}.

The sets appearing on the right-hand side are finite-dimensional laws, so the measure of
any closed ball is entirely determined by the finite-dimensional laws. From there one can
compute the measure of any open ball, and then by separability of any open set. This
determines µ by a standard argument of measure theory.

Now, suppose that (µn)n∈N is a tight sequence on C (X) and converges in finite-
dimensional laws towards µ. Since the maps

C (X)→ Rd

f 7→ (f(x1), . . . , f(xd))

are continuous, by Proposition 1.11, if ν is the limit a convergent subsequence of (µn)n∈N,
then the finite dimensional laws of ν agree with those of ν, so µ = ν by the previous
discussion. The lemma at the beginning of the chapter allows one to conclude. �

All this leads to the powerful:

Theorem 2.9 (Donsker). Suppose that (Xn)n∈N is a sequence of identically distributed
and independent random variables in L 2(Ω,B,P), with E[X] = 0 and E[X2] = 1. The
sequence of random paths (W (n))n≥1 that is associated to it converges in law towards the
unique continuous random process W in C ([0, 1]) such that, for any times 0 = t0 ≤ t1 ≤
· · · ≤ tr ≤ 1,

Wt1 ,Wt2 −Wt1 , . . . ,Wtr −Wtr−1

are independent centered Gaussians of variance t1, t2 − t1, . . . , tr − tr−1. In particular,
such a random continuous path exists, and it is called the Brownian motion.
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Proof. Since the tightness is already shown, it suffices to verify that the finite dimen-
sional laws are those indicated above. Fix times t1, . . . , tr and intervals [a1, b1], . . . , [ar, br];
one wants to estimate the probability

P

[
(W

(n)
t1 ,W

(n)
t2 −W

(n)
t1 , . . . ,W

(n)
tr −W

(n)
tr−1

) ∈
r∏

i=1

[ai, bi]

]
.

Each increment W (n)
ti −W

(n)
ti−1

differs from W
(n)
btinc
n

−W (n)
bti−1nc

n

by at most (in absolute value)

∆
(n)
i =

1√
n

(
|Xti+1|+ |Xti−1+1|

)
.

For n big enough these quantities ∆
(n)
i are independent and identically distributed random

variables with square mean smaller than 4
n
. It follows that if ε > 0 is fixed, then the

probability that all ∆
(n)
i are smaller than ε can be made arbitrary close to 1, so that the

asymptotic behavior of the probability to estimate is the same as the one of

P

[(
Sbt1nc√

n
,
Sbt2nc − Sbt1nc√

n
, . . . ,

Sbtrnc − Sbtr−1nc√
n

)
∈

r∏

i=1

[ai, bi]

]
.

The central limit theorem ensures that this random vector converges in law to a Gaussian
vector with independent entries and diagonal variances t1, t2 − t1, . . . , tr − tr−1 (use if
needed Lévy’s continuity theorem to reprove in a vectorial setting the convergence in law
by computation of the asymptotics of the characteristic functions). So, the limit of the
probability is as expected

1∏r
i=1

√
2π(ti − ti−1)

∫
∏r
i=1[ai,bi]

e
−∑r

i=1
(xi)

2

2(ti−ti−1) dxr

and this ends the proof of our theorem �

2.3. Skorohod’s space D([0, 1])

The proof of Donsker’s theorem is a typical use of tightness theory in a functional
setting, and it illustrates every important feature of this kind of argument. Hence, one
can show in a very similar way the existence of other complicate random objects, such
as: solutions of stochastic differential equations, random Brownian trees, random metric
spaces that are scaling limits of random combinatorial objects (e.g. random maps), etc.
To conclude this chapter, let us discuss two generalizations of Donsker’s theorem.
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2.3.1. Extension of Donsker’s theorem to locally compact separable spaces.
The first one does not cost much and is the extension of the abstract setting developed at
the beginning of §2.2 to spaces X that are only locally compact and separable. Locally
compact means that every point x ∈ X has a compact neighborhood, and if one assumes
also the separability, then X can be written as an increasing union of compact sets:

X =
∞⋃

n=1

↑ Kn, with each Kn compact set.

A typical example is R =
⋃∞
n=1[−n, n]. The space C (X) of continuous functions on a

locally compact separable metric space (in short l.c.s.s.) is endowed with the topology
of convergence on every compact set, that is to say that a basis of neighborhoods of a
function f ∈ C (X) consists in the sets

{g ∈ C (X), ∀x ∈ K, |f(x)− g(x)| ≤ ε},
where K is a compact set and ε > 0. For a l.c.s.s., this topology is metrizable by

d(f, g) =
∞∑

n=1

‖f − g‖∞,Kn
2n

with ‖u‖∞,K = sup
x∈K
|u(x)| for any compact set K.

We thus get a polish space C (X) on which Prohorov’s theorem can be applied. The
analogue of Arzelà-Ascoli theorem 2.5 in the setting of l.c.s.s. is a localized version of
equicontinuity: a family F ⊂ C (X) is relatively compact if and only if on any compact
set K (or any compact set in an exhaustive sequence (Kn)n∈N with X =

⋂∞
n=1Kn),

lim
δ→0

sup
f∈F

ωf,K(δ) = 0 with ωf,K(δ) = sup{|f(x)− f(y)|, x, y ∈ K and d(x, y) ≤ δ}.

As a consequence, a family of probability measures P ⊂M 1(C (X)) is tight if and only
if, for every compact set K and any ε > 0,

lim
M→∞

sup
µ∈P

µ({‖f‖∞,K ≥M}) = 0 ; lim
δ→0

sup
µ∈P

µ({ωf,K(δ) ≥ ε}) = 0.

In short: if all the previously discussed criterions hold on any compact subset K ⊂ X,
then everything works. So for instance, one gets for free the existence of a continuous
random path W on R+ = [0,+∞) (instead of [0, 1]) that is the universal limit of rescaled
sums of independent identically distributed random variables, and such that increments
are independent Gaussian variables as in Donsker’s theorem.

2.3.2. Extension of Donsker’s theorem to càdlàg paths. A far more complex
generalization of the previous discussion is the analysis of random paths that may have
jumps, and of tight sequences of such random paths. We shall not give all the details, but
try to explain the main features of this theory, following [Billingsley, 1999, Chapter 3].
Denote D([0, 1]) ⊃ C ([0, 1]) the space of càdlàg functions f : [0, 1]→ R such that:

(i) for every t ∈ [0, 1], lims→t− f(s) exists;

(ii) for every t ∈ [0, 1], lims→t+ f(s) exists and is equal to f(t).
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Hence, f is continuous on the right and with limits on the left. Important functions that
are in D([0, 1]) but not necessarily in C ([0, 1]) are the functions with bounded variation
(up to modification at a countable number of points of discontinuity so that jumps are
càdlàg), and in particular, any monotone function. As a consequence, the space D([0, 1]),
or its infinite counterpart D(R+), is particularly useful in the study of random processes
that may have jumps, e.g., Poisson processes, or more generally a process in one of the two
most studied classes, namely, Feller processes and semimartingales — up to modification,
a real-valued process in one these two classes can always be realized as an element of
D(R+), see [Revuz and Yor, 2004].

The topology on D([0, 1]) corresponds basically to the “uniform” convergence of the
graphs of the functions viewed as subsets of R2. To make this notion rigorous, let us
introduce the metric

d(f, g) = inf
ψ

max(‖f − g ◦ ψ‖∞, ‖id− ψ‖∞),

where the infimum is taken over all the increasing homeomorphisms ψ : [0, 1] → [0, 1].
This is indeed a distance, and the corresponding topology is called Skorohod’s topology;
its restriction to C ([0, 1]) can be shown to be the same as the topology given by the
uniform norm ‖ · ‖∞ — in particular, C ([0, 1]), since complete, is closed inside D([0, 1]).
It can be shown that D([0, 1]) is a polish space, but new difficulties occur in the proof:

(1) First of all, D([0, 1]), though a vector space endowed with a topology, is not a
topological vector space, that is, addition of functions is not continuous w.r.t. Sko-
rohod’s topology! Consider indeed the two following sequences of functions:

fn = 1[ 12+ 1
2n+1 ,1]

; gn = 1[ 12−
1

2n+1 ,1]
.

Skorohod’s topology is made for such sequences to converge to h = 1[ 1
2
,1]. Indeed,

define ψn to be the affine by parts function such that ψn(0) = 0, ψn(1
2
) = 1

2
+ 1

2n+1

and ψn(1) = 1, and ψn is affine between these points. Then h ◦ ψn = fn, so

d(fn, h) ≤ ‖ψn − id‖∞ =
1

2n+1
→ 0,

and the same argument holds for the gn’s. If addition were continuous, then one
would have fn + gn → 2h in D([0, 1]). However, for every homeomorphism ψ,
h ◦ ψ has only two different values, 0 and 2, whereas fn + gn also takes the value
1; it follows that

d(fn + gn, 2h) ≥ 1 for any n ≥ 1.

(2) This oddity put apart, the distance d defined above is not complete. However,
one can find a topologically equivalent distance δ that is complete. The idea is to
penalize more the homeomorphisms ψ with large fluctuations, hence, one takes

δ(f, g) = inf
ψ

max

(
‖f − g ◦ ψ‖∞, sup

s<t
log

∣∣∣∣
ψ(t)− ψ(s)

t− s

∣∣∣∣
)
.

This is only useful to show that D([0, 1]) is a polish space, since of course δ is
then way less manipulable than d.
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The analogue of Arzelà-Ascoli therem for Skorohod’s space involves a notion of δ-modulus
adapted to functions which may have jumps. Thus, define

ω′f (δ) = inf
0<t1<t2<···<tr=1

max
i∈[[1,r]]

sup
x∈[ti−1,ti)

|f(x)− f(ti−1)|

where the infimum is taken over subdivisions of [0, 1] with |ti − ti−1| ≥ δ for all i. One
can show that

ω′f

(
δ

2

)
≤ ωf (δ) ≤ 2ω′f (δ) + sup

x∈[0,1]

|f(x)− f(x−)|

for any f ∈ D([0, 1]). Then, a part F ⊂ D([0, 1]) is relatively compact if and only if
it is bounded and limδ→0 supf∈F ω′f (δ) = 0 — remark the similarity with Theorem 2.5.
It follows that tightness in M 1(D([0, 1])) is given by the exact analogue of Corollary
2.6, with ω′f (δ) instead of ωf (δ). Proposition 2.8 also generalizes to the case of functions
in D([0, 1]). This enables one to deal with more general random paths than continuous
paths, but the price is the complexity of Skorohod’s topology.

Example. Given a sequence (Xn)n∈N of i.i.d. random variables in L 2(Ω), we associate
to it a sequence of random paths in D([0, 1]):

X(n)(t) =
Sbntc√
n
, with Sk = X1 +X2 + · · ·+Xk.

This definition is quite simpler than the definition of the affine by parts paths W (n), and
one ends up in Skorohod’s space D([0, 1]). Then, one can show that in D([0, 1]), one has
convergence in law of (X(n))n∈N towards the Brownian motion, though it is not obvious
then that this random process is in fact continuous. So, there is the analog of Theorem
2.9 in Skohorod’s space.





CHAPTER 3

Cramér’s and Sanov’s theorems

In the previous chapters, we have reviewed the different notions of convergence in
probability, and we have given criterions of compactness for sequences of random variables.
Another topic in this setting is the study of the speed of convergence, and it leads to the
theory of large deviations. More precisely, a way to measure the convergence (say, in
probability) of a sequence of random variables Xn →P 0 is to compute the probabilities
for the |Xn|’s to stay bigger than some level ε:

P[|Xn| ≥ ε] = ?

These probabilities P (ε) all go to zero, and the speed of convergence of the r.v. is re-
lated to their rate of decay. In the case of sums of i.i.d. random variables, the com-
putation of the rate of decay is given by Cramér’s theorem, cf. §3.1; whereas for em-
pirical laws of finite Markov chains, the convergence is ensured by the so-called ergodic
theorems (§3.2) and is measured by Sanov’s entropy (see §3.3). Cramér’s and Sanov’s
theorems shall allow us to introduce the main features of the general theory of large devi-
ations, which will in turn be exposed in Chapter 4. Our main references for this chapter
and the next one are [Deuschel and Stroock, 1989, Dembo and Zeitouni, 1998,
Feng and Kurtz, 2006].

3.1. Legendre-Fenchel transforms and Cramér’s large deviations

Let (Xn)n∈N be a sequence of independent random variables in R. Even when the Xn’s
do not have the same distribution, one still expects Zn = 1

n

∑n
i=1 Xi to be concentrated

around its mean E[Zn] = 1
n

∑n
i=1 E[Xi], at least if the Xi’s are “not too big”. To make

this statement precise, suppose for instance that each Xi is almost surely bounded, with
values in an interval [ai, bi].

Proposition 3.1 (Hoeffding). In the previous setting,

P[|Zn − E[Zn]| ≥ ε] ≤ 2 exp

(
− 2ε2n2

∑n
i=1(bi − ai)2

)
.

Proof. This inequality follows from a clever use of Chernov’s inequality and the
convexity of the exponential map. For any random variable X with mean 0,

E[eθX ] ≤ E
[
X − a
b− a eθb +

b−X
b− a eθa

]
=
beθa − aeθb

b− a = eθa+log( b
b−a−

a
b−a eθ(b−a))

39
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for any interval [a, b] containing the values of X. Notice that the function

g(θ) = θa+ log

(
b

b− a −
a

b− a eθ(b−a)

)

satisfies g(0) = 0 and g′(0) = 0, so, by Taylor expansion,

g(θ) ≤ θ2

2

(
max

0≤φ≤θ
g′′(φ)

)
=
θ2

2

(b− a)2

4
; E[eθX ] ≤ e

θ2(b−a)2
8 .

Then, by Chernov’s inequality,

P[Zn − E[Zn] ≥ ε] ≤ e−θε E
[
eθ(Zn−E[Zn])

]

≤ e−θε
n∏

i=1

E
[
e
θ
n

(Xi−E[Xi])
]

≤ e−θε+
θ2

8n2

∑n
i=1(bi−ai)2

≤ e
− 2ε2n2∑n

i=1
(bi−ai)2

if one takes for the last step θ = 4εn2/(
∑n

i=1(bi − ai)2). Replacing Zn by −Zn, one gets
the inequality with a coefficient 2 for P[|Zn − E[Zn]| ≥ ε]. �

As a corollary, if the Xn’s all take their values in a common interval [a, b], then

P[|Zn − E[Zn]| ≥ ε] ≤ 2 exp

(
− 2ε2n

(b− a)2

)
,

that is to say that the probability of deviation of the mean from its expected value
decreases exponentially fast in n. The theory of large deviations is exactly meant to
prove such kind of results, and also to compute precisely the exponents of fluctuations.
In the previous example, we have shown that

lim sup
n→∞

1

n
logP[|Zn − E[Zn]| ≥ ε] ≤ − 2ε2

(b− a)2
,

but this inequality is quite suboptimal in some cases. Cramér’s theorem 3.3 will give a
refined and precise estimate in the case of independent and identically distributed random
variables.

3.1.1. Legendre-Fenchel transforms. Thus, consider a sequence of i.i.d. random
variables X1, X2, . . . with values in R, not necessarily in any space L p(Ω). The Laplace
transform

ΦX(s) = E[esX ]

is well defined as a function R → [0,+∞], since esX(ω) ≥ 0 for any s and any ω in the
probability space (Ω,B,P). The independence hypothesis ensures that

ΦZn(s) =
(

ΦX

( s
n

))n
∀s ∈ R, n ∈ N,



3.1. LEGENDRE-FENCHEL TRANSFORMS AND CRAMÉR’S LARGE DEVIATIONS 41

and then, by Chernov’s inequality, one has

P[Zn ≥ u] ≤ e−su E[esZn ] = e−su ΛZn(s) = exp
(
−n
(su
n
− log ΦX

( s
n

)))

≤ exp (−n(tu− log ΦX(t)))

with t = s
n
. Since this is true for any value of t ≥ 0, one deduces that

1

n
logP[Zn ≥ u] ≤ − sup

t∈R+

(tu− ΛX(t))

where ΛX(t) = log ΦX(t) is the logarithm of the moment generating function, also known
as the cumulant generating function.

This leads us to consider the following transform on (convex) functions.

Definition 3.2. The Legendre-Fenchel transform of a function f : R→ (−∞,+∞]
not equal everywhere to +∞ is

f ∗(u) = sup
t∈R

(tu− f(t)) ∈ (−∞,+∞].

The transformation LF : f 7→ f ∗ takes its values in the set of convex and lower semi-
continuous functions, and f = f ∗∗ if and only if f is convex and lower semi-continuous.

Proof. Recall that a function on the real line is said convex if, for a ≤ x ≤ b,

f(x) ≤ b− x
b− a f(a) +

x− a
b− a f(b);

equivalently, the slopes of the function are non-decreasing.

x

f(x)

2

3
1

slope(1) ≤ slope(2) ≤ slope(3)

2

On the other hand, f is said lower semi-continuous if for every x ∈ R and any ε > 0,
there exists δ such that

d(x, y) ≤ δ ⇒ f(y) ≥ f(x)− ε.

In other words, lim infy→x f(y) ≥ f(x), which means that f cannot decrease with a
discontinuity; see the figure below.
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x

f(x)

2

If f is a convex function and f(a) and f(b) are finite, then f is continuous on the whole
interval [a, b]. Indeed, if x < y are two points in [a, b], then

f(x)− f(a)

x− a ≤ f(y)− f(a)

y − a ≤ f(y)− f(x)

y − x ≤ f(b)− f(x)

b− x ,

so if ∆f (a, x) and ∆f (x, b) are the left- and right-hand sides of the previous inequality,
then

f(x) + ∆f (a, x) (y − x) ≤ f(y) ≤ f(x) + ∆f (x, b) (y − x)

around x, which ensures the continuity. It follows that a convex function from R to
(−∞,+∞] is continuous on an interval I, and equal to +∞ outside I. If one demands f
to be lower semi-continuous, then I is a closed interval, and moreover, one has then

f = sup{g, g affine and smaller than f}.

Fix f : R → (−∞,+∞] not equal everywhere to +∞, and let us check that f ∗ is
convex. If x ∈ [a, b], then for any t,

xt− f(t) =
x− a
b− a (bt− f(t)) +

b− x
b− a (at− f(t)) ≤ x− a

b− a f
∗(b) +

b− x
b− a f

∗(a),

so by taking the supremum, f ∗(x) indeed satisfies the inequality of convexity. The Legen-
dre-Fenchel transform is also automatically lower semi-continuous:

lim inf
y→x

f ∗(y) = lim
ε→0

(
inf

d(y,x)≤ε
sup
t∈R

(ty − f(t))

)
≥ lim

ε→0

(
sup
t∈R

(tx− f(t))− tε
)

≥ sup
t∈R

(tx− f(t)) = f ∗(x).

By the previous discussion, it is even continuous on D(f ∗) = {x ∈ R, f ∗(x) < +∞},
which is a closed interval. Then, let us prove the following: the biconjugate f ∗∗ is the
largest lower semi-continuous and convex function that is smaller than f . First, for any
x,

f ∗∗(x) = sup
t∈R

(tx− f ∗(t)) = sup
t∈R

(
tx− sup

s∈R
(ts− f(s))

)

≤ sup
t∈R

(tx− (tx− f(x))) = sup
t∈R

f(x) = f(x),
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so f ∗∗ is indeed a lower semi-continuous and convex function that is smaller than f .
Conversely, let g ≤ f be an affine function. Then, for any s and x,

g(x) = g(s) + t(x− s) ≤ f(s) + t(x− s)
for some t, so g(x) ≤ infs∈R(f(s) + t(x− s)) = tx− f ∗(t) for some t, and

g(x) ≤ sup
t∈R

(tx− f ∗(t)) = f ∗∗(x).

Since a lower semi-continuous convex function is the supremum of the affine functions
that are smaller, it follows that indeed

f ∗∗ = sup{g, g lower semi-continuous convex function smaller than f}.
In particular, if f = f ∗∗, then f is lower semi-continuous and convex, and conversely, if f
is lower semi-continuous and convex, then f ≤ f ∗∗ ≤ f , so f = f ∗∗. �

Example. LetX be a real-valued random variable, and Λ(t) = logE[etX ] its cumulant
generating series. To begin with, we assume that |X| is almost surely bounded in absolute
value by some constant M ; this ensures the existence and analyticity of Λ(t) on R. Then,
it is easy to verify that Λ(t) is convex:

Λ′(t) =
E[X etX ]

E[etX ]
= E′[X]

Λ′′(t) =
E[X2 etX ]E[etX ]− E[X etX ]2

E[etX ]2
= Var′[X] ≥ 0.

where the E′ means that one computes the expectation under the new probability

dP′ =
etX

E[etX ]
dP.

In the general case, by Lebesgue’s monotone convergence theorem,

Λ(t) = sup
M∈R+

logE[etX 1|X|≤M ],

so one conserves the inequalities of convexity. On the other hand, as the supremum of
continuous functions, Λ is a lower semi-continuous function; indeed, it is easy to verify
from the definition that lower semi-continuous functions are closed by upper bound. In
particular, Λ∗∗ = Λ.

Example. Let us detail the previous example for classical distributions. If X =
N (m,σ2) is a Gaussian variable of mean m and variance σ2, then E[etX ] = exp(tm+ t2σ2

2
),

so

ΛX(t) = tm+
t2σ2

2
which is indeed convex, and

Λ∗X(u) =
1

2

(
u−m
σ

)2

.
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If X is a Bernoulli variable equal to ±1 with probability 1
2
for each possibility, then

E[etX ] = cosh t, ΛX(t) = log cosh t and

Λ∗X(u) = u arctanhu−log cosh arctanhu =

{
1+u

2
log(1 + u) + 1−u

2
log(1− u) if |u| < 1;

+∞ otherwise.

Finally, if X = P(m) is a Poisson variable of mean m, then ΛX(t) = m(et − 1) and

Λ∗X(u) =

{
(m− u) + u log u

m
if u > 0,

+∞ otherwise.

3.1.2. Cramér’s large deviations. We are now ready to prove that the previously
demonstrated upper bound for the probability of deviation of a mean of i.i.d. variables is
a sharp bound. We follow very closely [Dembo and Zeitouni, 1998, Chapter 2].

Theorem 3.3 (Cramér). Denote as usual Zn the mean of n independent copies of a
random variable X. For any closed set F ⊂ R,

lim sup
n→∞

1

n
logP[Zn ∈ F ] ≤ − inf

u∈F
Λ∗X(u),

and for any open set U ⊂ R,

lim inf
n→∞

1

n
logP[Zn ∈ U ] ≥ − inf

u∈U
Λ∗X(u).

Lemma 3.4. The following are equivalent:

(i) D(ΛX) = {0}, i.e., ΛX(0) = 0 and ΛX(t 6= 0) = +∞.

(ii) Λ∗X = 0 everywhere on R.

Otherwise, E[X] exists, possibly as an extended real number (±∞). If E[X] is finite, then
Λ∗X(E[X]) = 0. In every case, infu∈R Λ∗X(u) = 0.

Proof. If D(ΛX) = {0}, then for every u ∈ R,

Λ∗X(u) = sup
t∈R

(ut− ΛX(t)) = u 0− ΛX(0) = 0,

so (i) ⇒ (ii). Conversely, since the Legendre-Fenchel transform restricted to the set
of convex lower semi-continuous functions is an involution, (ii) ⇒ (i). Suppose now
D(ΛX) 6= {0}, which means that there exists t 6= 0 with ΛX(t) < +∞. By symmetry, one
can assume for instance t > 0. Then, since X ≤ etX

t
,

E[X] =

∫

Ω

X(ω) dP(ω) ≤
∫

Ω

etX(ω)

t
dP(ω) =

exp ΛX(t)

t
< +∞

so E[X] exists in [−∞,+∞). Similarly, if ΛX(t) <∞ for some t < 0, then E[X] exists in
(−∞,+∞].
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Since ΛX(0) = 0, in every case, Λ∗X(u) = supt∈R(ut− ΛX(t)) ≥ u 0− ΛX(0) = 0, that
is, Λ∗X is a non-negative function. Suppose E[X] = m finite. Then, by Jensen’s inequality,

ΛX(t) = logE[etX ] ≥ E[log etX ] = tE[X] = tm,

so Λ∗X(m) = supt∈R(mt−ΛX(t)) ≤ 0, and one has in fact equality. Thus, we already know
that infu∈R Λ∗X(u) = 0 in the following situations:

• if D(ΛX) = {0}, because in this case Λ∗X = 0 everywhere;

• or, if E[X] = m is finite.

Suppose finally D(ΛX) ∩ R∗+ 6= ∅, but E[X] = −∞ (the other case is symmetric). Then,
for every u,

logP[X − u ≥ 0] ≤ inf
t∈R+

logE[etX−tu] = − sup
t∈R+

(ut− ΛX(t)) = −Λ∗X(u)

because ΛX(t) = +∞ if t < 0. It follows that limu→−∞ Λ∗X(u) = 0, since the left-hand
side in the previous inequality trivially goes to 0. �

Example. Suppose that X follows a Cauchy law of parameter 1: dPX = 1
π(1+x2)

dx.
Then, ΛX(t) = 1t6=0∞, which is the first case in the previous lemma.

+∞

ΛC(1) Λ∗
C(1)

4

Consider then the case when X is the absolute value of a Cauchy variable of parameter
1: dPX =

21x≥0

π(1+x2)
dx. Then, ΛX(t) is finite for t ≤ 0, but E[X] = +∞. In this case the

aspect of the cumulant generating function and its Legendre-Fenchel transform is:

+∞ +∞

Λ|C(1)| Λ∗
|C(1)|

5

Finally, if X is a Gaussian variable of mean m and variance 1, then ΛX(t) = (t+m)2−m2

2

and Λ∗X(u) = (u−m)2

2
, and in particular one has indeed Λ∗X(m) = 0.
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ΛN (m,1)
Λ∗

N (m,1)

6

Lemma 3.5. Suppose E[X] > −∞. Then, for all u ≤ E[X],

Λ∗X(u) = sup
t∈R−

(ut− ΛX(t))

and Λ∗X is non-increasing on (−∞,E[X]). Similarly, if E[X] < +∞, then for all u ≥
E[X],

Λ∗X(u) = sup
t∈R+

(ut− ΛX(t))

and Λ∗X is non-decreasing on (E[X],+∞).

Proof. Let us treat for instance the second case. If E[X] = −∞, then ΛX(t) = +∞
for any t < 0, so ut− Λ(t) = −∞ if t < 0. Therefore,

sup
t∈R

(ut− ΛX(t)) = sup
t∈R+

(ut− ΛX(t))

for any u ∈ (−∞,+∞). On the other hand, if E[X] = m is finite, then for u ≥ m, and
t < 0,

ut− ΛX(t) ≤ mt− ΛX(t) ≤ Λ∗X(m) = 0,

so again
0 ≤ sup

t∈R
(ut− ΛX(t)) = sup

t∈R+

(ut− ΛX(t)).

Since u 7→ ut − Λ(t) is non-decreasing in u for any t ∈ R+, this also implies that Λ∗X is
non-decreasing on (m,+∞). �

Proof of Theorem 3.3. The upper bound is mainly a consequence of Chernov’s
inequality and of the previous lemmas. Fix a non-empty closed set F ⊂ R. The inequality

lim sup
n→∞

1

n
logP[Zn ∈ F ] ≤ − inf

u∈F
Λ∗X(u)

is obvious if the infimum is equal to 0, so one can suppose infu∈F Λ∗X(u) > 0. In particular,
this implies that Λ∗X is not identically equal to zero, so by Lemma 3.4, E[X] exists as an
extended real number. Recall that for every u ∈ R

P[Zn ≥ u] ≤ exp

(
−n sup

t∈R+

(ut− ΛX(t))

)
,

and similarly,

P[Zn ≤ u] ≤ exp

(
−n sup

t∈R−
(ut− ΛX(t))

)
.
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The previous lemma ensures then for all u in (−∞,E[X]), P[Zn ≤ u] ≤ exp(−nΛ∗X(u)),
and for all u in (E[X],+∞), P[Zn ≥ u] ≤ exp(−nΛ∗X(u)). Here it is understood that
(−∞,−∞) = ∅ and (+∞,+∞) = ∅.

(1) Suppose first that E[X] = m is finite. Since Λ∗X(m) = 0, m is in the complemen-
tary of F , which is open; so there exists an interval (a, b), which one can assume
maximal, such that m ∈ (a, b) ⊂ F c. Then,

P[Zn ∈ F ] ≤ P[Zn ≤ a] + P[Zn ≥ b] ≤ 1a>−∞ e−nΛ∗X(a) + 1b<+∞ e−nΛ∗X(b).

Since F is closed, if a > −∞, then a ∈ F , so Λ∗X(a) ≥ infu∈F Λ∗X(u). Similarly, if
b < +∞, then b ∈ F , so Λ∗X(b) ≥ infu∈F Λ∗X(u). So finally,

P[Zn ∈ F ] ≤ 2 e−n infu∈F Λ∗X(u),

which proves the upper bound in the case of finite expectation random variables.

(2) Suppose now that E[X] is infinite, say, equal to −∞. We have seen before that
in this case, limu→−∞ Λ∗X(u) = 0. Since infu∈F Λ∗X(u) > 0, the set F is therefore
bounded from below. Denote x = inf F > −∞; since x ∈ F ,

P[Zn ∈ F ] ≤ P[Zn ≥ x] ≤ e−nΛ∗(x) ≤ e−n infu∈F Λ∗X(u).

So, the upper bound is also shown in the case of r.v. with infinite expectation.

For the lower bound, suppose first that the law of X charges both (0,+∞) and
(−∞, 0), but is supported by a bounded subset of R. This implies that ΛX(t) < +∞
for every t ∈ R, and also that lim|t|→∞ ΛX(t) = +∞. Consequently, ΛX and Λ∗X are
continuous convex functions with values in R. By Lebesgue’s dominated convergence
theorem, ΛX is then even differentiable, with

Λ′X(t) =
E[X etX ]

E[etX ]
.

Let t0 be such that ΛX(t0) = inft∈R ΛX(t), and therefore Λ′X(t0) = 0. Denote µ the law of
X under P, and µ0 the law of X under the new probability:

dP0(ω) =
et0X(ω)

E[et0X ]
dP(ω).

This exponential change of probability measure will be a central argument of the
theory of large deviations. If An is the mean of i.i.d. variables of law µ0, then for every
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ε > 0,

P[An ∈ (−ε, ε)] =

∫

|∑n
i=1 xi|<nε

µ0(dx1) · · ·µ0(dxn)

= e−nΛX(t0)

∫

|∑n
i=1 xi|<nε

exp

(
t0

n∑

i=1

xi

)
µ(dx1) · · ·µ(dxn)

≤ en(|t0|ε−ΛX(t0))

∫

|∑n
i=1 xi|<nε

µ(dx1) · · ·µ(dxn)

≤ en(|t0|ε−ΛX(t0)) P[Zn ∈ (−ε, ε)].
By choice of t0, the first moment of µ0 is zero, so by the law of large numbers,

lim
n→∞

P[An ∈ (−ε, ε)] = 1.

Therefore, for η > ε > 0,

lim inf
n→∞

1

n
logP[Zn ∈ (−η, η)] ≥ lim inf

n→∞
1

n
logP[Zn ∈ (−ε, ε)] ≥ ΛX(t0)− ε|t0|.

Taking the limit ε→ 0, one concludes that

lim inf
n→∞

1

n
logP[Zn ∈ (−η, η)] ≥ ΛX(t0) = −Λ∗X(0)

since Λ∗X(0) = supt∈R−ΛX(t) is attained for t = t0.

If µ(0,+∞) = 0 or µ(−∞, 0) = 0, then the previous inequality is also satisfied. Indeed,
ΛX is then a monotone function with inft∈R ΛX(t) = log µ({0}) = −Λ∗X(0). Then,

P[Zn ∈ (−η, η)] ≥ P[Zn = 0] = P[X1 = X2 = · · · = Xn = 0]

≥ (µ({0}))n = exp(−nΛ∗X(0)).

Finally, the same inequality also holds when µ(0,+∞) > 0, µ(−∞, 0) > 0 but µ has an
unbounded support. Indeed, for every M > 0 such that µ(0,M) > 0 and µ(−M, 0), if
µM is the law of X conditioned to be smaller in absolute value than |M |, and if Bn is the
mean of i.i.d. variables of law µM , then

P[Zn ∈ (−η, η)] ≥ P[Zn ∈ (−η, η) and |Xi| ≤M for all i ∈ [[1, n]]]

≥ µ(−M,M)n P[An ∈ (−η, η)],

and therefore, by the previous discussion,

lim inf
n→∞

1

n
logP[Zn ∈ (−η, η)] ≥ log µ(−M,M) + inf

t∈R
ΛX,M(t)

where ΛX,M(t) is the cumulant generating function of µM . The right-hand side can also
be rewritten as

inf
t∈R

(
log

∫ M

−M
etx µ(dx)

)
≥ min(log µ(0,M), log µ(−M, 0)).



3.1. LEGENDRE-FENCHEL TRANSFORMS AND CRAMÉR’S LARGE DEVIATIONS 49

Therefore, if K = lim supM→∞mint∈R
(

log
∫M
−M etx µ(dx)

)
, then K > −∞, and on the

other hand,

lim inf
n→∞

1

n
logP[Zn ∈ (−η, η)] ≥ −K.

For every M , the level set {t ∈ R, log
∫M
−M etx µ(dx) ≤ K} is a non-empty compact set.

Since the integrals are increasing withM , these compact sets are nested, so there exists by
Bolzano-Weierstrass some t0 in the intersection of all these sets. By Lebesgue monotone
convergence theorem,

inf
t∈R

exp(ΛX(t)) ≤
∫ ∞

−∞
et0x µ(dx) ≤ K,

so again lim infn→∞
1
n

logP[Zn ∈ (−η, η)] ≥ −Λ∗X(0).

Finally, fix an open set U and a ∈ U . There exists an interval (a− η, a+ η) included
in U , and by applying the previous inequality to the variable Zn − a,

lim inf
n→∞

P[Zn ∈ U ] ≥ lim inf
n→∞

P[Zn − a ∈ (−η, η)] ≥ −Λ∗X−a(0) = −Λ∗X(a).

Since this is true for any a ∈ U , the upper bound is proved. �

Example. Suppose that X is a Bernoulli variable equal to ±1 with probability 1
2
.

Hoeffding’s inequality ensured that

P[|Zn| ≥ ε] ≤ 2 e
−nε2

2

for any ε > 0. Cramér’s theorem shows that more precisely,

P[|Zn| ≥ ε] ≤ 2 e−nΛ∗X(ε) = 2 e−n(
1+ε
2

log(1+ε)+ 1−ε
2

log(1−ε))

for ε ∈ [0, 1). The new exponent is always better, as can be seen on the following picture
(the new exponent is the upper curve):
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3.1.3. Moderate deviations. The rest of this chapter, and Chapter 4 are devoted
to extensions and generalizations of Cramér’s theorem 3.3. From the proof, it appears that
the independence of the Xn’s does not play such a big role, except in order to compute
the ΛZn ’s. As a consequence, one can expect that a large deviation principle will also
occur when the ΛZn ’s satisfy certain asymptotic property. This statement will be made
rigorous by Ellis-Gärtner theorem, see §4.2. Hence, we shall be able to deal with the
large deviations of a sequence of r.v. that does not necessarily come from independent
random variables. On the other hand, though many arguments of monotony have been
used in the previous discussion, the main tools, namely, Chernov’s inequality for the upper
bound and an exponential change of probability for the lower bound, can be generalized
for instance to Rd, and even to “larger” spaces whose topology will be precised in §4.1. So
one expects an analogue of Cramér’s theorem to hold in a multi-dimensional setting, or
even possibly in an infinite-dimensional setting. In the rest of this chapter, we present in
detail a case which gives many hints about what happens in the general setting, and which
also constitutes an important example in this theory: the large deviations of empirical
measures of finite Markov chains.

Before going on, let us review the different asymptotic regimes of a sumX1+· · ·+Xn =
Sn of independent, identically distributed and centered random variables. The central
limit theorem ensures that the fluctuations of Sn are typically of order

√
n, hence,

P[Sn ≥ x
√
n] ' 1√

2π σ

∫ ∞

s=x

e−
s2

2σ2 ds ≤ σ√
2π x

e−
x2

2σ2 .

On the other hand, Cramér’s theorem gives the estimate

P[Sn ≥ xn] ≤ 2 e−nΛ∗(x)

for fluctuations of order n, with Λ∗(x) Legendre-Fenchel transform of the cumulant gen-
erating series of X. One can then ask what happens in between, that is for fluctuations
of order an with

√
n� an � n. This is covered by the following result:

Proposition 3.6. Fix a sequence (an)n∈N with
√
n� an � n, and suppose to simplify

that ΛX is defined over R. Then, for x > 0,

lim
n→∞

n

(an)2
logP[Sn ≥ x an] = − x2

2σ2
.

This to be compared to

lim
n→∞

1

n
logP[Sn ≥ xn] = −Λ∗(x).

Partial proof. The upper bound is again a consequence of Chernov’s inequality:

P[Sn ≥ x an] ≤ E
[
e
λSn an

n

]
e−λx

(an)2

n = enΛX(λ an
n

)−λx (an)2

n .

The asymptotic expansion of ΛX around 0 is ΛX(ε) = σ2ε2

2
+ o(ε2), so,

lim sup
n→∞

n

(an)2
logP[Sn ≥ x an] ≤

(
λ2σ2

2
− λx

)
.
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Choosing λ = x2

σ2 ends the proof of the upper bound. For the lower bound, we refer to
Section 4.3, since the hypotheses of our Proposition will allow us to apply Ellis-Gärtner
theorem. �

A way to restate the previous Proposition is to say that n is the smallest order of
fluctuations for which the central limit theorem does not hold anymore; before, the rate
of decay of the probabilities of fluctuations is given by the universal exponent − x2

2σ2 .
Actually, much more can be said in the intermediate regime

√
n � an � n2/3: indeed,

theorems due to Bahadur and Rao ensure that if X is not distributed on a lattice, then
the approximation

P[Sn ≥ x an] ' P[N(0,1) ≥ x an]

holds, that is to say that one has an equivalent of P[Sn ≥ x an] instead of its logarithm.
We refer to [Dembo and Zeitouni, 1998, §3.7] for precisions on these results.

3.2. Ergodic theorems for Markov chains

We start by recalling the main features of finite Markov chains.

3.2.1. Irreducible finite Markov chains and Perron-Frobenius theory. Fix
a finite space of states, say, X = [[1, N ]]. A (time-homogeneous) Markov chain on X
is a sequence of random variables (Xn)n∈N such that for all n, the Markov property is
satisfied:

P[Xn+1 = xn+1|X0 = x0, . . . , Xn = xn] = p(xn, xn+1)

where (p(i, j))i,j∈[[1,N ]] is a stochastic matrix, that is to say a matrix with non-negative
entries such that

N∑

j=1

p(i, j) = 1

for any row i ∈ [[1, N ]]. One says then that p is the transition matrix of the Markov chain.
A Markov chain is entirely determined in law by its transition matrix and by the law of
X0, which is a vector (π0(1), . . . , π0(N)) in the (finite-dimensional) simplex M 1([[1, N ]]).
Indeed, by repetitive use of Markov’s property, one can then compute all the elementary
probabilities

P[X0 = x0, X1 = x1, . . . , Xn = xn] = π0(x0) p(x0, x1) p(x1, x2) · · · p(xn−1, xn).

In particular, for any time n, the law of Xn is related to the n-th power of p:

πn(x) = P[Xn = x] = (π0 p
n)(x).

In this setting, the Perron-Frobenius theorem (see Theorem 3.9 hereafter) allows
one to prove most of the asymptotic results on finite Markov chains. We first need to
explain the notions of irreducibility and aperiodicity of a (non-negative) square matrix.
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Definition 3.7. A square matrix A ∈ M(N,R) with non-negative entries is said
irreducible if one of the following equivalent properties holds:

(i) There is no non-trivial and A-invariant coordinate subspace, i.e., for every part
{i1, . . . , ir} 6= ∅, [[1, N ]] of [[1, N ]], Vect(ei1 , . . . , eir) is not A-invariant.

(ii) There is no permutation matrix Pσ such that

PσAPσ−1 =

(
B C
0 D

)

with B and D non-zero matrices.

(iii) For every pair of indices (i, j), there is a natural number m ≥ 1 such that (Am)ij > 0.

Otherwise, A is called a reducible matrix, and there exists a permutation matrix Pσ such
that

PσAPσ−1 =




B1 ∗ · · · ∗
0 B2

. . . ...
... . . . . . . ∗
0 · · · 0 Bk




where each Bi is either equal to 0 or irreducible.

Proof. In what follows we always make the matrices act on the right of the vectors,
which are therefore considered as row matrices of size N . If ¬(i) holds, choose a permuta-
tion σ of [[1, N ]] that sends [[1, r]] to {i1, . . . , ir}. Then, PσAPσ−1 stabilizes the vector space
Vect(e1, . . . , er), so it writes as a block upper triangular matrix and ¬(ii) is true. Con-
versely, if ¬(ii) is true, then, denoting r the size of the block B, the coordinate subspace
Vect(eσ(1), . . . , eσ(r)) is stabilized by A. Therefore, (i) ⇔ (ii). Suppose (i) false, and fix
an invariant coordinate subspace Vect(ei1 , . . . , eir). Denote i = i1 and fix j /∈ {i1, . . . , ir}.
For any m, eiAm ∈ Vect(ei1 , . . . , eir) has for j-th coefficient 0, so (Am)ij = 0 and (iii)
is false. Conversely, if (iii) is false, fix two indices i, j such that (Aij)

m = 0 for all m,
and denote Ci the set of indices k such that (Aik)

m > 0 for some m. We claim that
Vect({ek, k ∈ Ci}) is a non-trivial invariant coordinate subspace of RN . It is non-trivial
because it contains ei but it does not contain ej. On the other hand, consider a linear
combination

∑
k∈Ci λk ek, and apply to it A; one obtains

N∑

l=1

(∑

k∈Ci
λk Akl

)
el.

If el occurs with a non-zero coefficient above, then some Ak0l has to be non-zero itself,
and on the other hand, (Am)ik0 > 0 for some m. Then,

(Am+1)il =
∑

k

(Am)ik Akl ≥ (Am)ik0 Ak0l > 0

so l ∈ Ci and the stability is shown, as well as the equivalence (i) ⇔ (iii). The last
statement in the definition is a refinement of the previous discussion, where each block
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Bs corresponds to indices in a connected component of the digraph with vertex set [[1, N ]]
and edge set the (i, j)’s such that Aij > 0. �

Call period of index i of a non-negative matrix A the greatest common divisor of the
integers m ≥ 0 such that (Am)ii > 0.

Lemma 3.8. For an irreducible matrix A, the period h(A) does not depend on i and is
called the period of the matrix. There exists a partition of [[1, N ]] in h(A) parts X1t· · ·tXh

such that, if σ is a permutation that sends consecutive intervals I1, . . . , Ih of [[1, N ]] to
X1, . . . ,Xh, then

Pσ APσ−1 =




0 B1 0 · · · 0
... . . . B2

. . . ...
... . . . . . . 0
0 0 Bh−1

Bh 0 · · · · · · 0



.

Theorem 3.9 (Perron-Frobenius). Let A be an irreducible non-negative matrix of size
N and period h. There exists a positive real number r = r(A) with the following properties:

(1) For every h-th root of unity ζ, rζ is a simple eigenvalue of A.

(2) Every complex eigenvalue e of A satisfies |e| ≤ r, with equality if and only if
e = rζ for some h-th root of unity.

(3) The eigenspace associated to r contains real vectors with positive coordinates,
and conversely, if v is an eigenvector of A with positive coordinates, then v is an
eigenvector for r.

(4) The Perron-Frobenius eigenvalue r satisfies

min
i∈[[1,N ]]

(
N∑

j=1

aij

)
≤ r ≤ max

i∈[[1,N ]]

(
N∑

j=1

aij

)
.

In particular, if A is a stochastic matrix, then r = 1.

We refer to [Meyer, 2000, Chapter 8] for a proof of these classical algebraic results.

3.2.2. Ergodic theorems. For Markov chains, the Perron-Frobenius theory implies
the following:

Theorem 3.10 (Ergodic theorem for irreducible Markov chains). Consider an ir-
reducible Markov chain with space of states [[1, N ]], and denote π the unique Perron-
Frobenius vector π such that

∑n
i=1 π(i) = 1.

(1) If the chain is aperiodic, meaning that the period h of the transition matrix p is
1, then for any initial measure µ0, the Markov chain (Xn)n∈N converges in law
towards π:

πn ⇀ π.
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(2) Even if the chain is not aperiodic, the empirical distribution νn = 1
n

∑n
i=1 δXi,

which is a random measure, converges almost surely towards π:

νn →a.s. π.

Here, the topology on measures is the topology of convergence in law, but since
the space of states is finite this is also the strong topology inside RN .

Finally, π is a stationary probability measure for the Markov chain, meaning that if π0 =
π, then πn = π for all n ≥ 0.

The second part of Theorem 3.10 is an example of ergodic theorem, that is to say a
statement that relates asymptotically a mean over time (the empirical measure) to a mean
over space (the stationary measure).

Proof. On a finite set, convergence in law is equivalent to the convergence of all
elementary probabilities P[Xn = x]→ π(x); in other words, πn → π in RN . Suppose that
the transition matrix p is irreducible and aperiodic; then by Perron-Frobenius theorem,
there exists (up to a scalar) a unique positive eigenvector π for the eigenvalue 1, and
all the other eigenvalues are of strictly smaller module. In the following we assume π
to be normalized to be a probability measure on [[1, N ]]. We then expand π0 in a basis
(π, b2, . . . , bN) such that the operator associated to p has for matrix in this basis the
Jordan form 



1 0 · · · · · · 0
λ2 ∗ · · · ∗

λ3
. . . ...
. . . ∗

λN




with |λi| < 1 for i ∈ [[2, N ]]. If R < 1 is strictly bigger than all the modules of these other
eigenvalues, then π0 = απ +

∑N
i=2 βi bi implies that

π0 p
n = απ +

(
N∑

i=2

βi bi

)
pn

︸ ︷︷ ︸
smaller in norm

than C Rn

.

Indeed, the underbraced term writes as
∑N

i=2 βi(m) (λi)
m bi with the βi(m)’s polynomials

in m. Consequently, πn = π0 p
n → απ, and since the map (x1, . . . , xN) → ∑N

i=1 xi is
continuous, as the left-hand side is always a probability measure, α = 1. So, we have
shown that πn ⇀ π in the aperiodic case.

In the periodic case (h ≥ 2), the previous result is usually false, as can be seen on the
example

N = 2 ; p =

(
0 1
1 0

)
; π0 = (1, 0) ; π =

(
1

2
,
1

2

)
.

However, one can still guess on this example that in mean over time, the Markov chain
occupies each state i with probability π(i). This is precisely what is meant by the second
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part of the theorem, and the proof of this ergodic theorem goes as follows. The almost
sure convergence claimed in our ergodic theorem is equivalent to the statement

1

n

n∑

i=1

1(Xi=k) = νn(k)→a.s. π(k)

for any k ∈ [[1, N ]]. Let Tk→k be the first time n ≥ 1 (random) for which Xn = k, assuming
X0 = k almost surely. This time is finite almost surely; otherwise, by irreducibility of the
Markov chain, there would be a non-negative probability for not returning to the state j
for any j (not only k), and then, a non-negative probability for not returning to [[1, N ]],
and of course that is absurd.

So, Tk→k is finite a.s., and more generally, if T (m)
k→k is the m-th hitting time of k by the

Markov chain starting from k, then T (m)
k→k is finite a.s., and by the strong Markov property,

T
(1)
k→k, T

(2)
k→k − T

(1)
k→k, . . . , T

(m)
k→k − T

(m−1)
k→k , . . .

are i.i.d. random variables. By the law of large numbers,

E[Tk→k] = lim
m→∞

T
(m)
k→k
m

almost surely,

this being a priori an extended real number in [0,+∞]. Now, denote m the unique
(random) integer such that Tπ0→k + T

(m)
k→k ≤ n < Tπ0→k + T

(m+1)
k→k . By definition,

νn(k) =
m+ 1

n
≤ m+ 1

Tπ0→k + T
(m)
k→k
→a.s.

1

E[Tk→k]

and similarly,

νn(k) =
m+ 1

n
≥ m+ 1

Tπ0→k + T
(m+1)
k→k

→a.s.
1

E[Tk→k]

since Tπ0→k is a.s. finite for the same reasons as before, and the number m of visits to
k goes a.s. to infinity. We have therefore shown the a.s. convergence of the empirical
measure towards the vector

(
1

E[T1→1]
, . . . ,

1

E[TN→N ]

)
.

However, the expectation of the empirical measure is at coordinate k

1

n

n∑

i=1

P[Xi = k] =
1

n

n∑

i=1

(π0 p
i)(k).

Even in the periodic case, one can still expand π0 over a Jordan adapted basis of the
operator p. This expansion writes

π0 = απ +
h−1∑

j=1

bζj + remainder associated to smaller eigenvalues,
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where ζ is a primitive h-th root of unity, the bζj ’s are eigenvectors for the ζj, and as before
π is the normalized eigenvector for the eigenvalue 1. Consequently,

1

n

n∑

i=1

(π0 p
i)(k) = απ(k) +

h−1∑

j=1

(
1

n

n∑

i=1

ζ ij

)
bζj(k) + remainder smaller than C Rn,

which converges to απ(k) as n goes to infinity. By taking the sum over k ∈ [[1, N ]],
one also gets α = 1, so, the limited expectation of the empirical measure is the vector
π. Lebesgue dominated convergence theorem ensures now that 1

E[Tk→k]
= π(k), and the

convergence a.s. of the empirical measure to π is shown. In particular, since the vector π
is positive by Perron-Frobenius, E[Tk→k] < +∞ for all k. �

Example. If (Xn)n∈N is a sequence of i.i.d. random variables on [[1, N ]], then the
empirical measure of these realizations of X converges a.s. to the law of X.

Example. Consider the random walk on N points placed on a circle, with at each
step a probability 1/3 to jump from one site to the left neighbor, 1/3 to jump to the right
neighbor, and 1/3 to stay at the same position. The matrix of transition of this Markov
chain is given hereafter, and it can be written as

p =
CN + IN + (CN)−1

3
,

where CN is the circulant matrix with 1’s over the diagonal and in the bottom left corner.

1
3 1

3

1
3

9
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neighbor, and 1/3 to stay at the same position.

1
3 1

3

1
3

9

0
BBBBBB@

1/3 1/3 1/3

1/3 1/3
. . .

. . . . . . . . .
. . . . . . 1/3

1/3 1/3 1/3

1
CCCCCCA

The proof of the ergodic theorem says nothing about the speed of convergence, but on
the other hand, since it uses the law of large numbers for independent random variables
(the times T

(m)
k!k � T

(m�1)
k!k ), one can expect that an exponential control can indeed be

shown. This is the purpose of the next section, which is devoted to Sanov’s theorem.

3.3. Entropy and Sanov’s theorem

In this section, we fix a finite space of states X = [[1, N ]] and an irreducible Markov
chain on X with transition kernel p and stationary measure ⇡.

Definition 3.10. The entropy of a probability measure µ 2 M 1(X) is

H(µ) = �
NX

i=1

µ(i) log µ(i),

and the relative entropy (also known as Kullback-Leibler divergence) of a probability mea-
sure ⌫ with respect to µ is

H(µ|⌫) =
NX

i=1

µ(i) log
µ(i)

⌫(i)
.

These quantities are non-negative, and H(µ|⌫) = 0 if and only if µ = ⌫.

Proof. The non-negativity of the entropy is obvious, since every term is non-negative;
it is not hard to see that H(µ) = 0 if and only if µ is concentrated on one point i 2 [[1, N ]].
For the relative entropy, we use Jensen’s inequality on the convex function �(x) = x log x:

H(µ|⌫) =
NX

i=1

⌫(i)�(xi) � �

 
NX

i=1

⌫(i) xi

!
= �(1) = 0

where xi = µ(i)
⌫(i)

. Since � is strictly convex, there is equality if and only if xi = 1 for all
i 2 [[1, N ]], i.e., µ = ⌫. ⇤

As a consequence, the diagonalization of p is equivalent to the diagonalization of CN .
However, CN is solution of the equation XN − 1 = 0, so its eigenvalues are the N roots
of unity 1, ζ = e

2iπ
N , ζ2, . . . , ζN−1. Consequently, the eigenvalues of p are

1,
1 + 2 cos ζ

3
,
1 + 2 cos 2ζ

3
, . . . ,

1 + 2 cos(N − 1)ζ

3

and they are all smaller than 1 but the first eigenvalue, associated to the Perron-Frobenius
vector π = ( 1

N
, 1
N
, . . . , 1

N
). It follows from the ergodic theorems that the law of the random

walk XN and the empirical law converges towards this Perron-Frobenius vector, which is
the uniform law on [[1, N ]].
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The proof of the ergodic theorem says nothing about the speed of convergence, but on
the other hand, since it uses the law of large numbers for independent random variables
(the times T (m)

k→k − T
(m−1)
k→k ), one can expect that an exponential control can indeed be

shown. This is the purpose of the next section, which is devoted to Sanov’s theorem.

3.3. Entropy and Sanov’s theorem

In this section, we fix a finite space of states X = [[1, N ]] and an irreducible Markov
chain on X with transition kernel p and stationary measure π.

3.3.1. Relative entropy and a statement of Sanov’s theorem. For Markov
chains, the role of the Legendre-Fenchel transform (the rate of decay in principles of large
deviations for sums of i.i.d.) will be played by the (relative) entropy of measures, and
by generalizations of it.

Definition 3.11. The entropy of a probability measure µ ∈M 1(X) is

H(µ) = −
N∑

i=1

µ(i) log µ(i),

and the relative entropy (also known as Kullback-Leibler divergence) of a probability mea-
sure ν with respect to µ is

H(µ||ν) =
N∑

i=1

µ(i) log
µ(i)

ν(i)
.

These quantities are non-negative, and H(µ||ν) = 0 if and only if µ = ν.

Proof. The non-negativity of the entropy is obvious, since every term is non-negative;
it is not hard to see that H(µ) = 0 if and only if µ is concentrated on one point i ∈ [[1, N ]].
For the relative entropy, we use Jensen’s inequality on the convex function φ(x) = x log x:

H(µ||ν) =
N∑

i=1

ν(i)φ(xi) ≥ φ

(
N∑

i=1

ν(i)xi

)
= φ(1) = 0

where xi = µ(i)
ν(i)

. Since φ is strictly convex, there is equality if and only if xi = 1 for all
i ∈ [[1, N ]], i.e., µ = ν. �

For ν probability measure on X, we set

I(ν) = sup
µ∈M 1(X)

(
N∑

i=1

ν(i) log
µ(i)

(µ p)(i)

)
.



58 3. CRAMÉR’S AND SANOV’S THEOREMS

Notice that if the Markov chain is a sequence of independent identically distributed ran-
dom variables, then µ p = π is the law of these r.v. for any µ, and therefore, by calculus
of variations with respect to µ,

I(ν) = sup
µ∈M 1(X)

(
N∑

i=1

ν(i) log
µ(i)

π(i)

)
=

N∑

i=1

ν(i) log
ν(i)

π(i)
= H(ν||π)

is the relative entropy with respect to π. In the general case, one can always give an
equation for the measure µ that realizes the supremum, by using the Lagrange principle;
see the discussion of Corollary 4.7.

Theorem 3.12 (Sanov). As in Theorem 3.10, we denote νn = 1
n

∑n
i=1 δXi the random

empirical measures of the Markov chain. For any closed set F ⊂M 1(X),

lim sup
n→∞

1

n
logP[νn ∈ F ] ≤ − inf

ν∈F
I(ν),

and for any open set U ⊂M 1(X),

lim inf
n→∞

1

n
logP[νn ∈ U ] ≥ − inf

ν∈U
I(ν).

The similarity of this statement with Cramér’s theorem 3.3 will lead us to define general
principles of large deviations in §4.1, by requiring similar asymptotics for the probabilities
of being in a given closed or open set. Actually, this framework (and more precisely, Ellis-
Gärtner theorem, see Sections 4.2 and 4.3.4) is needed in order to prove Sanov’s theorem
in full generality.

3.3.2. Method of types and Sanov’s theorem for independent variables.
Fortunately, when the Xn’s are i.i.d. random variables, one can prove the theorem by
elementary combinatorial arguments, and the so-calledmethod of types. This discussion
makes appear the notions of entropy in a very natural way.

Proof of Theorem 3.12 for i.i.d. random variables. To any sequence x =
(x1, . . . , xn) ∈ Xn, we associate the empirical measure νx = 1

n

∑n
i=1 δxi . Notice then

that for a sequence of i.i.d. random variables with law π,

P[X1 = x1, . . . , Xn = xn] =
n∏

i=1

π(xi) =
∏

y∈X
π(y)nνx(y)

= exp

(∑

y∈X
n νx(y) log π(y)

)
= e−n(H(νx)+H(νx||π)).

Call type a class T of sequences x = (x1, . . . , xn) in Xn that differ by a permutation of
the coordinates; for instance, if N = 2 and n = 5, then

T = {(1, 1, 1, 1, 2), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1), (1, 2, 1, 1, 1), (2, 1, 1, 1, 1)}
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is the type of sequences with four 1’s and one 2. The cardinality of the type T (x) of a
sequence x is given by the multinomial coefficient

n!∏
y∈X nνx(y)!

.

Recall Stirling’s estimate for factorials: k log k
e
≤ log k! ≤ k log k

e
+ 1

2
log k + 1. Conse-

quently,

log(cardT (x)) ≤ n log
(n

e

)
+

1

2
log n+ 1−

∑

y∈X
nνx(y) log

(
nνx(y)

e

)

≤ −n
∑

y∈X
νx(y) log νx(y) +

1

2
log n+ 1 = nH(νx) +

1

2
log n+ 1;

and similarly,

log(cardT (x)) ≥ nH(νx)−N
(

1

2
log n+ 1

)

So, there exists polynomials in n that are independent of the type and such that
1

P1(n)
enH(νx) ≤ cardT (x) ≤ P2(n) enH(νx).

Fix now a Borel subset B ⊂M 1(X), and let us compute bounds for P[νn ∈ B]. Notice that
two sequences have the same type if and only if they yield the same empirical measure
νx. Denote Tn the subset of M 1(X) that consists in empirical measures coming from
n-sequences. Then, for the upper bound, one can write:

P[νn ∈ B] =
∑

ν∈B∩Tn

P[νn = ν] =
∑

ν∈B∩Tn

∑

νx=ν

P[X1 = x1, . . . , Xn = xn]

≤
∑

ν∈B∩Tn

P2(n) enH(ν) e−n(H(ν)+H(ν||π))

≤ (card Tn)P2(n) e−n infν∈B H(ν||π).

The number of types of order n is the number of way to split n into N non-negative
integers, so it is given by the binomial coefficient

(
n+N−1
N−1

)
, which is a polynomial in n.

Hence, there exists a polynomial P3(n) such that
1

n
logP[νn ∈ B] ≤ 1

n
logP3(n)− inf

ν∈B
H(ν||π),

which proves the upper bound since the logarithm of the polynomial is a o(n).

For the lower bound, fix an open set U ⊂ M 1(X) and a measure νε ∈ U such that
H(νε||π) ≤ infν∈U H(ν||π)+ε. For n big enough, one can always approximate the weights
νε(1), νε(2), . . . , νε(N) by fractions over n, in such a way that the approximation νε,n is in
Tn and satisfies H(νε,n||π) ≤ H(νε||π) + ε. This approximation is in U for n big enough
because U is open. Then,

P[νn ∈ U ] ≥ P[νε,n ∈ U ] ≥ 1

P1(n)
e−nH(νε,n||π),
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and taking the logarithms and the liminf gives

lim inf
n→∞

1

n
logP[νn ∈ U ] ≥ − inf

ν∈U
H(ν||π)− 2ε.

Since this is true for every ε > 0, the theorem is proved in the i.i.d. case. �

3.3.3. Large deviations for empirical pair measures. A modification of the
method of types can be used in the general case of Markov chains, but it does not readily
gives Sanov’s theorem. The starting point is the possibility to compute the probability of
any sequence x = (x1, . . . , xn). Suppose to simplify that the initial distribution π0 is the
stationary measure π. We set x0 = xn for symmetry reasons. Then,

P[X1 = x1, . . . , Xn = xn] = π(x1)
n∏

i=2

p(xi−1, xi)

wich leads us to introduce the empirical pair measure

ν(2)
x =

1

n

n∑

i=1

δ(xi−1,xi) ∈M 1(X× X),

and to show a principle of large deviations for this empirical pair measure instead of the
empirical measure. For ν ∈M 1(X× X), set

J(ν) =

{
H(ν||ν1 ⊗ p) if ν1 = ν2,

+∞ otherwise,

where ν1 and ν2 are the two marginales of ν, and (µ ⊗ p)(x, y) = µ(x) p(x, y) for µ ∈
M 1(X). A measure in M 1(X × X) with equal marginales will be called shift-invariant.
Notice that the marginales of an empirical pair measure ν(2)

x are always equal, and equal
to νx.

Theorem 3.13. For an irreducible Markov chain on X with transition kernel p and
stationary measure π, assuming moreover π0 = π, one has

lim sup
n→∞

1

n
logP[ν(2)

n ∈ F ] ≤ − inf
ν∈F

J(ν)

for any closed set F ⊂M 1(X× X), and

lim inf
n→∞

1

n
logP[ν(2)

n ∈ U ] ≥ − inf
ν∈U

J(ν)

for any open set U ⊂M 1(X× X).

Proof. For g : X×X→ R, consider the modified Markov chain with transition kernel

p(g)(x, y) = eg(x,y)−U(g)(x) p(x, y),

where U (g)(x) is the normalization constant

U (g)(x) = log

(∑

y∈X
eg(x,y) p(x, y)

)
.
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It is still irreducible, so the modified stationary measure π(g) as well as the stationary
measure π are positive on X. The reader should notice the similarity between this change
of process and the change of probability measures involved in the proof of the lower bound
of Cramér’s theorem 3.3. That said, note that

1 =
∑

x1,...,xn

π(g)(x1)
n∏

i=2

p(g)(xi−1, xi) =
∑

x1,...,xn

π(g)(x1)
n∏

i=2

p(xi−1, xi) eg(xi−1,xi)−U(g)(xi−1)

≥
(

inf
(y,z)∈X2

π(g)(y) p(y, z)

π(y) p(g)(y, z)

) ∑

x1,...,xn

(
π(x1)

n∏

i=2

p(xi−1, xi)

)
en

∫
(g(y,z)−U(g)(y)) ν

(2)
x (dy,dz)

≥
(

inf
(y,z)∈X2

π(g)(y) p(y, z)

π(y) p(g)(y, z)

)
E
[
en

∫
(g(y,z)−U(g)(y)) ν

(2)
n (dy,dz)

]

Fix a closed subset F ⊂M 1(X× X), and ν(2) ∈ F . One can find a function g such that
∫

(g(y, z)− U (g)(y)) ν(2)(dy, dz) ≥ sup
h

(∫
(h(y, z)− U (h)(y)) ν(2)(dy, dz)

)
− ε,

and by continuity, a neighborhood B(ν(2),η) of ν(2) such that for µ(2) in this neighborhood,
∫

(g(y, z)− U (g)(y))µ(2)(dy, dz) ≥
∫

(g(y, z)− U (g)(y)) ν(2)(dy, dz)− ε.

Then, by Chernov’s inequality,

P[ν(2)
n ∈ B(ν(2),η)] ≤ E

[
en

∫
(g(y,z)−U(g)(y)) ν

(2)
n (dy,dz)

]
e−n(suph(

∫
(h(y,z)−U(h)(y)) ν(2)(dy,dz))−2ε)

≤ C e−n(suph(
∫

(h(y,z)−U(h)(y)) ν(2)(dy,dz))−2ε)

with C independent from n. It follows that

lim sup
n→∞

1

n
logP[ν(2)

n ∈ B(ν(2),η)] ≤ − sup
h

(∫
(h(y, z)− U (h)(y)) ν(2)(dy, dz)

)
+ 2ε

≤ − inf
µ(2)∈F

sup
h

(∫
(h(y, z)− U (h)(y))µ(2)(dy, dz)

)
+ 2ε

and covering the compact set F by a finite number of balls, and then making ε go to zero,
we end up with

lim sup
n→∞

1

n
logP[ν(2)

n ∈ F ] ≤ − inf
µ(2)∈F

sup
h

(∫
(h(y, z)− U (h)(y))µ(2)(dy, dz)

)
.

Let us then identify the supremum over functions h. Fixing a measure µ with µ1 = µ2,
one looks at

∑

(y,z)∈X2

(g(y, z)− U (g)(y))µ(y, z) =
∑

(y,z)∈X2

µ(y, z) log

(
µ1(y) p(g)(y, z)

µ1(y) p(y, z)

)

= H(µ||µ1 ⊗ p)−H(µ||µ1 ⊗ p(g)) ≤ H(µ||µ1 ⊗ p)
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with equality if and only if µ = µ1 ⊗ p(g), which corresponds to the choice

g(y, z) = log

(
µ(y, z)

µ1(y) p(y, z)

)
.

Notice that in this case U (g) = 0. This ends the proof for the upper bound.

For the lower bound, similar arguments reduces the problem to the proof of

lim inf
n→∞

1

n
logP[ν(2)

n ∈ B(µ,η)] ≥ −H(µ||µ1 ⊗ p)

for any µ and η small enough. Denote P(g) and E(g) the probabilities and expectations
corresponding to the modified Markov chain of parameter g : X× X→ R. One has

P[ν(2)
n ∈ B(µ,η)] =

∑

x1,...,xn

π(x1)

(
n∏

i=2

p(xi−1, xi)

)
1
ν
(2)
x ∈B(µ,η)

≥ C
∑

x1,...,xn

π(g)(x1)

(
n∏

i=2

p(g)(xi−1, xi)

)
e−(

∑n
i=1 g(xi−1,xi)−U(g)(xi−1))

1
ν
(2)
x ∈B(µ,η)

≥ C E(g)
[
e−(

∑n
i=1 g(xi−1,xi)−U(g)(xi−1))

1
ν
(2)
x ∈B(µ,η)

]
,

and one can choose η small enough so that within the ball B(µ,η),

1

n

n∑

i=1

g(xi−1, xi)− U (g)(xi−1) ≤
∫

(g(y, z)− U (g)(y))µ(dy, dz) + ε

for a fixed arbitrary ε > 0. One obtains then

P[ν(2)
n ∈ B(µ,η)] ≥ C e−n(

∫
(g(y,z)−U(g)(y))µ(dy,dz)+ε) P(g)[ν(2)

n ∈ B(µ,η)],

so it suffices to show the following result: for any µ with µ1 = µ2, if g is chosen to
maximize the functional

∫
(g(y, z)− U (g)(y))µ(dy, dz), then

lim inf
n→∞

1

n
logP(g)[ν(2)

n ∈ B(µ,η)] ≥ 0,

or, by taking the complementary event,

lim sup
n→∞

1

n
logP(g)[ν(2)

n ∈ (B(µ,η))
c] < 0.

However, the upper bound part of our Theorem ensures that this limsup is smaller than

− inf
ν∈(B(µ,η))

c

ν1=ν2

H(ν||ν1 ⊗ p(g)).

Therefore, by compactness and continuity of the functional ν 7→ H(ν||ν1⊗p(g)), it suffices
to show that H(ν||ν1 ⊗ p(g)) > 0 on the complementary of B(µ,η), or, equivalently, that
H(ν||ν1 ⊗ p(g)) = 0 implies ν = µ for a law with ν1 = ν2 and in M 1(X× X).
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However, if H(ν||ν1 ⊗ p(g)) = 0, then

ν(x, y) = (ν1 ⊗ p(g))(x, y) = ν1(x)p(g)(x, y) = ν1(x) eg(x,y) p(x, y) =
ν1(x)

µ1(x)
µ(x, y).

Taking the sum over x, we conclude that

ν1(y) = ν2(y) =
∑

x∈X

ν1(x)

µ1(x)
µ(x, y) = (ν1 × q)(y)

where q is the stochastic matrix q(x, y) = µ(x,y)
µ1(x)

. However, this stochastic matrix has for
invariant law µ1, so ν1 = µ1 and ν = µ. This ends the proof of the lower bound. �

It turns out that Theorem 3.13 is stronger than the general form of Sanov’s theorem
3.12: indeed, we shall see in the next chapter how to deduce from a large deviation
principle on empirical pair measures a large deviation principle on empirical measures, by
using the map

M 1(X× X)→M 1(X)

ν 7→ ν1 (marginal law);

see Proposition 4.6 and the example given just after. On the other hand, the proofs of
Theorems 3.3, 3.12 and 3.13 have exhibited the main characteristics of a large deviation
principle:

• For sequences of random variables that converge in probability, one expects the
probabilities of rare events to decrease exponentially fast, with an upper bound
on

lim sup
n→∞

sn logP[Xn ∈ F ]

for F closed subset of the space of states, and lower bounds on
lim inf
n→∞

sn logP[Xn ∈ U ]

for U open subset of the space of states.

• The actual rates of decay are given by a functional which most of the times can
be computed by application of Chernov’s inequality; the same inequality gives
the upper bound (possibly after some topological work).

• The lower bound is then obtained by combining a method of exponential change
of measures and the proof of the upper bound.

Chapter 4 is devoted to the task of finding the correct framework in order to generalize
all these arguments.





CHAPTER 4

Principles of large deviations

This last Chapter is organized as follows. In Section 4.1, we define large deviation
principles in the most general topological setting, and we detail how to use continuous
maps or exponential changes of measures in order to translate these LDP from one space
to another. In §4.2, we restrict ourselves to the case of locally convex topological vector
spaces, and we give a fairly general theorem that contains both Cramér’s and Sanov’s
results, and that is the main criterion in order to prove LDP in a functional setting.
Finally, in §4.3, we apply this theorem to many situations: Cramér’s large deviations
in Rd, refinements of Sanov’s theorem, Poissonian approximations, etc. We conclude by
an analysis of the Brownian paths in the setting of large deviations, thereby proving
Schilder’s theorem and stating the law of the iterated logarithm.

large deviation principle (4.2) with
unique good rate function I (4.1, 4.5)

stable by
contraction (4.6)

: Dawson-Gärtner

exponential change of
probability measures (4.10)

: Bryc (4.11)
! exponential tightness

! weak LDP:
− upper bound on compact sets
− lower bound on open sets

(4.3)
•

X = regular topological space

X = regular locally convex topological vector space

Ellis-Gärtner theory
Λ(φ) = lim supn→∞

1
an

log µn[exp(anφ(x))]

Λ∗(x) = supφ∈X∗(φ(x) − Λ(φ))

with exposed points
of Λ∗, (4.14(2))

+

Λ = lim
Λ∗ = c.r.(I)

(4.14(1))

Λ = lim, finite, and
differentiable (4.14(3))

X = Rd, Λ steep (4.16)

get rid of

11

65
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Remark. The main difficulty here is probably to remember at each step the hy-
potheses underlying the results and the chains of implications (this is difficult even to the
author). To simplify a bit the reading, we have summarized the chapter by a scheme.
One studies a sequence of probability measures (µn)n∈N on a general regular topological
space X (in black), and then more precisely on a regular and locally convex topological
vector space X (in blue).

4.1. Topological setting and transformations

4.1.1. Rate functions and large deviation principles. Though the theory of
convergence of random variables has been developed in Chapters 1 and 2 on polish spaces,
it is convenient here to start with a slightly more general setting, so in the following X
stand for a topological Hausdorff space (Hausdorff means that disjoint can be separated
by open sets). We want to deal with sequences, or more generally families of random
variables such that asymptotically, their laws are exponentially concentrated, in a fashion
similar to Theorems 3.3, 3.12 and 3.13. Therefore, we fix a family (µε)ε>0 in M 1(X), its
asymptotics being understood as the limiting behavior when ε goes to zero. One recovers
the case of sequences (Xn)n∈N of X-valued random variables by setting

µε = law of Xb 1
ε
c.

Then, one expects a large deviation principle to be a statement of the kind

− inf
u∈Bo

I(u) ≤ lim inf
ε→0

ε log µε(B) ≤ lim sup
ε→0

ε log µε(B) ≤ − inf
u∈B

I(u)

for any measurable set B (this is equivalent to the analogue statement with an upper
bound for closed set and a lower bound for open sets). However, one might want to impose
a few restrictions on the kind of functions I allowed in such a statement. Continuity is
a little too strong requirement, as can be seen from Cramér’s theorem in the case of
bounded variables: in this case one has indeed I = +∞ outside the convex hull of the
support of the law.

Definition 4.1. A rate function I : X → [0,+∞] is a lower semi-continuous
function, i.e., for all level α ≥ 0, the level set

I≤α = {x ∈ X, I(x) ≤ α}
is a closed subset. A good rate function is a rate function whose level sets are compact for
all α ∈ R+.

Example. Consider any non-negative, lower semi-continuous and strictly convex func-
tion on R (i.e., the slopes are strictly monotone with respect to the two points between
which they are computed), that attains its minimum on R. Such a function is a always
a good rate function, and more generally, a non-negative lower semi-continuous convex
function is still a rate function. In particular, the Legendre-Fenchel transform of the cu-
mulant generating function of a real random variable X is a rate function. A sufficient
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criterion to obtain a good rate function in this setting is to require that 0 lies in the
interior of D(ΛX). Indeed, one has then E[etX ] <∞ for t = ±t0 with t0 > 0; and so,

Λ∗X(u) = sup
t∈R

(ut− ΛX(t)) ≥ |u| t0 −max(ΛX(t0),ΛX(−t0)).

So, lim inf |u|→∞
Λ∗X(u)

|u| ≥ t0, which clearly ensures the boundedness of every level set.

Definition 4.2. A family of laws (µε)ε>0 on X follows a large deviation principle
(in short LDP) with rate function I if

− inf
u∈Bo

I(u) ≤ lim inf
ε→0

ε log µε(B) ≤ lim sup
ε→0

ε log µε(B) ≤ − inf
u∈B

I(u)

for any Borel set B ⊂ X.

Example. A way to restate Theorem 3.3 is: the mean of i.i.d. random variables such
that 0 ∈ D(ΛX)o satisfies a LDP with good rate function Λ∗X .

Example. Similarly, Sanov’s theorem reads as follows: the empirical measure νn of
an irreducible Markov chain with finite space of states X = [[1, N ]] satisfies a LDP with
good rate function

I(ν) = sup
µ∈M 1(X)

(∑

x∈X
ν(x) log

µ(x)

(µ p)(x)

)
. (4.1)

Let us proof that I is indeed a good rate function. An important fact that will prove
useful later is the non-obvious identity

I(ν) = J(ν) = sup
λ∈RN

(
〈λ | ν〉 − log r(p(i, j) eλj)

)
, (4.2)

where r(A) denotes as before the Frobenius eigenvalue of an irreducible non-negative
matrix. We proceed by double inequality to prove it. In one direction, notice that the
supremum in Equation (4.1) is attained on positive vectors. If µ is such a fixed vector in
M 1(X), set λj = log

µj
(µ p)j

, so that

pλ(i, j) = p(i, j) eλj =
µj p(i, j)∑N
i=1 µi p(i, j)

.

Notice that (µ pλ)j = µj, so µ pλ = µ and r(pλ) = 1 since µ is a positive vector. Therefore,

J(ν) ≥ 〈λ | ν〉 =
N∑

j=1

νj log
µj

(µ p)j
,
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and since this is true for every µ, J(ν) ≥ I(ν). In the other direction, fix λ ∈ RN and
choose a Frobenius eigenvector µ for pλ. One has

−〈λ | ν〉+
N∑

j=1

νj log
µj

(µ p)j
=

N∑

j=1

νj log
µj

(µ pλ)j

= −
N∑

j=1

νj log r(pλ)

= − log r(pλ),

so I(ν) ≥ 〈λ | ν〉 − log r(pλ). Since this is true for any λ, I(ν) ≥ J(ν) and (3.3) is
proved. Now, I appears as the Legendre-Fenchel transform (in dimension N) of a positive
differentiable function, so in particular it is lower semi-continuous. Since the space of
states M 1(X) is compact, the rate function I is automatically good.

In Definition 4.2, notice that µε(X) = 1 for all ε, so the infimum over X of a rate
function of a large deviation principle should always be 0. Sometimes, the speed of
exponential convergence is not proportional to ε, but to another function of ε, for instance
φ(ε) = ε2; one then still speaks of a large deviation principle, but with speed φ(ε). On
the other hand, the goodness of the rate function ensures that in the upper bound, the
infimum is actually a minimum, which sometimes eases the computation of this upper
bound. Finally, the definition of a LDP reflects a uniform concentration of the family of
measures, therefore, it is no surprise that it is closely related to the exponential equivalent
of the notion of tightness studied in Chapter 2.

Definition 4.3. On a topological space X, a family of probability measures (µε)ε>0 is
said exponentially tight if, for every α <∞, there exists a compact set Kα such that

lim sup
ε→0

ε log µε(K
c
α) ≤ −α.

For a countable family of probability measures (µn)n∈N, this statement is replaced by

lim sup
n→∞

1

n
log µn(Kc

α) ≤ −α.

(1) If (µn)n∈N satisfies a LDP principle with a good rate function, then it is exponen-
tially tight (notice the hypothesis of a countable family).

(2) Under the assumption of exponential tightness, if the upper bound

lim sup
ε→0

ε log µε(K) ≤ − inf
u∈K

I(u)

is satisfied by any compact set K, then it is also satisfied by any closed set F .

(3) Under the same assumption, if the lower bound is satisfied by any open set, then
I is a good rate function.

So, if the family satisfies a weak LDP, that is to say a LDP with the upper bound only for
compact sets, then the exponential tightness ensures a full LDP and a good rate function.
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For the proof we refer to [Dembo and Zeitouni, 1998, Lemma 1.2.18 and Exercise
4.1.10].

Actually, the notion of exponential tightness plays with respect to large deviation prin-
ciples a role extremely similar to the role of tightness w.r.t. weak convergence. Let us just
state without proof the following theorem, for which we refer to [Feng and Kurtz, 2006,
Theorem 3.7].

Theorem 4.4 (Puhalskii). Let (µn)n∈N be a sequence of probability measures on a
polish space that is exponentially tight. There is a good rate function I and a subsequence
(µφ(n))n∈N such that a LDP with rate function I holds for the subsequence (with asymptotic
speed φ(n)).

In the remaining of this section, we shall discuss a few details around the definition of
a LDP, and we shall give another equivalent “integral” formulation, which is in fact one of
the main motivation outside the computation of the speed of convergence; see Theorem
4.10 and 4.11.

4.1.2. Contraction principle and a proof of Sanov’s theorem. We start with
the following precision of Definition 4.2.

Proposition 4.5. A rate function I for a large deviation principle is unique.

Proof. For convenience we write the proof in a metric space, but it holds in any
regular topological space (see the definition at the beginning of §4.1.3). Consider a family
(µε)ε>0 of probability measures that satifies a LDP with respect to two different rate
functions I1 and I2. Since I1 is lower semi-continuous,

lim
δ→0

inf
y∈B(x,δ)

I1(y) ≥ I1(x).

By definition of a large deviation principle,

− inf
y∈B(x,δ)

I1(y) ≥ lim sup
ε→0

ε log µε(B(x,δ))

≥ lim inf
ε→0

ε log µε(B(x,δ))

≥ − inf
y∈B(x,δ)

I2(x) ≥ −I2(x).

By taking the limit as δ goes to 0, −I1(x) ≥ −I2(x), i.e, I1 ≤ I2. By symmetry of the
roles played by I1 and I2, I1 = I2. �

Another important result is the following contraction principle:

Proposition 4.6 (Contraction principle). Let X and W be two topological spaces,
f : X → W a continuous function. If (µε)ε>0 is a family of probability measures on X
that satisfies a LDP with good rate function I, then (f?µε)ε>0 satisfies on W a LDP with
good rate function

f?I(w) = inf{I(x), f(x) = w}.
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Proof. Since f?I is defined by taking lower bounds of sets of non-negative real num-
bers, it is non-negative on W. On the other hand, by goodness of I, the infimum is
always attained in the definition of f?I, because one takes the infimum on a closed set.
Take α ≥ 0; the level set (f?I)≤α = {w, f?I(w) ≤ α} is included in the image by f of
the level set I≤α. Indeed, if f?I(w) ≤ α, then there exists x such that I(x) ≤ α and
f(x) = w (the point of f−1({w}) at which the infimum is attained), which exactly means
that w ∈ f(I≤α). The converse inclusion is obvious, so

(f?I)≤α = f(I≤α).

Since I is a good rate function, I≤α is compact, and so is its image by any continuous
function, so we have shown that f?I was a good rate function.

Take a closed set F ⊂W. One can write

lim sup
ε→0

ε log f?µε(F ) = lim sup
ε→0

ε log µε(f
−1(F )) ≤ − inf

u∈f−1(F )
I(u) = − inf

w∈F
f?I(w)

since f−1(F ) is closed as the reciprocal image of a closed set by a continuous function. The
same argument works for open sets, so the LDP for the image laws is demonstrated. �

Surprisingly, there is a way to go in the opposite direction, namely, if all the images
of (µε)ε>0 by a “sufficiently large” family F of continuous maps satisfy a LDP with good
rate functions, then the family (µε)ε>0 also satisfy a LDP with a good rate function, but
w.r.t. the weak topology determined by F — this is the Dawson-Gärtner theorem, see
[Dembo and Zeitouni, 1998, Theorem 4.6.1]. Most of the discussion of §4.2 is devoted
to a particular case of this principle.

Corollary 4.7. Theorem 3.12 with π0 = π (the stationary measure) holds in the
general setting of an irreducible Markov chain on a finite set.

To prove Corollary 4.7, we shall use classical arguments of calculus of variations,
which we recall here. Suppose that f and g are real-valued continuously differentiable
functions on RN , and consider the following problem: we want to find the local extremas
of f(x1, . . . , xN) under the constraint g(x1, . . . , xN) = c, where c is some constant. By
introducing the Lagrange function

L(λ, x1, . . . , xN) = f(x1, . . . , xN)− λ(g(x1, . . . , xN)− c)
where λ is an additional variable, this problem is translated into the equation dL = 0, so a
constraint extrema x1,0, . . . , xN,0 satisfies the system of N+1 Euler-Lagrange equations

{
g(x1,0, . . . , xN,0) = c;

df(x1,0,...,xN,0) = λ0 dg(x1,0,...,xN,0).

More generally, if one wants to find the local extremas of f(x1, . . . , xN) under r constraints
g1(x1, . . . , xN) = c1, g1(x2, . . . , xN) = c2, etc., then one has to solve the system of N + r
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equations




g1(x1,0, . . . , xN,0) = c1;
...

gr(x1,0, . . . , xN,0) = cr;

df(x1,0,...,xN,0) = λ1,0 dg1,(x1,0,...,xN,0) + · · ·+ λr,0 dgr,(x1,0,...,xN,0).

As an application of this principle, we have:

Lemma 4.8. For ν ∈M 1(X) with positive coordinates, let µ be the maximizer of the
function

F (µ) =
∑

x∈X
ν(x) log

(
µ(x)

(µp)(x)

)
,

so that I(ν) = F (µ). If

ν(2) =
µ(x) p(x, y) ν(y)

(µp)(y)
,

then the two marginales of ν(2) are equal to ν, and F (µ) = J(ν(2)) with the notations of
Theorem 3.13.

Proof. The constraint of maximization of F is
∑

x∈X µ(x) = 1, so Euler-Lagrange
equation reads as

dFµ =
∑

x∈X

(
ν(x)

µ(x)
−
∑

y∈X

p(x, y)ν(y)

(µp)(y)

)
dµx = λ

∑

x∈X
dµx.

This means that there is a common constant λ such that for all x ∈ X,

λ =
ν(x)

µ(x)
−
∑

y∈X

p(x, y) ν(y)

(µp)(y)
.

Multiplying by µ(x) and taking the sum over x ∈ X, we get

λ = λ
∑

x∈X
µ(x) =

∑

x∈X
ν(x)−

∑

(x,y)∈X2

µ(x) p(x, y) ν(y)

(µp)(y)
= 1− 1 = 0.

So, µ is solution of the equations ν(x) =
∑

y∈X
µ(x) p(x,y) ν(y)

(µp)(y)
for every x. Equivalently, the

first marginale of ν(2) is ν, and the same is true for the second marginale:
∑

x∈X
ν(2)(x, y) =

∑

x∈X

µ(x) p(x, y) ν(y)

(µp)(y)
=

(µp)(y) ν(y)

(µp)(y)
= ν(y).

We can then rewrite:

I(ν) = F (µ) =
∑

x

ν(x) log

(
µ(x)

(µp)(x)

)
=
∑

x,y

ν(2)(x, y) log

(
µ(x)

(µp)(x)

)
.
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Notice that

log

(
µ(x)

(µp)(x)

)
= log

(
ν(2)(x, y)

ν(x) p(x, y)

)
+ log

(
ν(x) (µp)(y)

ν(y) (µp)(x)

)
.

Since ν(2)(x, y) has same x and y marginales, the expectation of the second term under
ν(2)(x, y) is zero. Therefore,

F (µ) =
∑

x,y

ν(2)(x, y) log

(
ν(2)(x, y)

(ν ⊗ p)(x)

)
= H(ν(2)||ν ⊗ p) = J(ν(2)).

�

Similarly, the Lagrange principle leads to:

Lemma 4.9. For ν ∈ M (1)(X) with positive coordinates, let ν(2) be the pair measure
that minimizes J(ν(2)) under the constraints ν(2)

1 = ν
(2)
2 = ν. There exists two positive

functions γ and γ̃ on X such that

ν(2)(x, y) = ν(x) γ(x) p(x, y) γ̃(y).

One can suppose without loss of generality that ν · γ = ν(x)γ(x) is a probability measure
on X. Then, J(ν(2)) = F (ν · γ) with the notations of the previous lemma.

Proof. The 2N constraints are
∑

y∈X ν
(2)(x, y) =

∑
y∈X ν

(2)(y, x) = ν(x) for all x ∈
X. Therefore, there exists 2N constants αx, α̃y such that if

G(ν(2)) =
∑

x,y

ν(2)(x, y) log

(
ν(2)(x, y)

ν(x) p(x, y)

)
,

then dGν(2) =
∑

x,y(αx + α̃y) dν
(2)
x,y at the constraint minimizer. However,

dGν(2) =
∑

x,y

(
1 + log

(
ν(2)(x, y)

ν(x) p(x, y)

))
dν(2)

x,y.

Setting γ(x) = eαx−1/2 and γ̃(y) = eα̃y−1/2, we obtain the first part of the lemma. One
can force ν · γ to be a probability measure by replacing γ by γ

|ν·γ| and γ̃ by |ν · γ| γ̃; this
does not change the equation

ν(2)(x, y) = ν(x) γ(x) p(x, y) γ̃(y).

Taking marginales, we get on the one hand
∑

y∈X γ(x) p(x, y) γ̃(y) = 1, and on the other
hand

∑
x∈X ν(x) γ(x) p(x, y) γ̃(y) = ν(y). This means that pγ(x, y) = γ(x) p(x, y) γ̃(y) is
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the transition matrix of an irreducible Markov chain with Frobenius eigenvector ν. Then,

J(ν(2)) =
∑

x,y

ν(x) pγ(x, y) log(γ(x) γ̃(y))

=
∑

x

ν(x) log(γ(x)) +
∑

x,y

ν(x) pγ(x, y) log(γ̃(y))

=
∑

x

ν(x) log(γ(x)) +
∑

y

ν(y) log(γ̃(y))

=
∑

x

ν(x) log(γ(x) γ̃(x)).

Finally, γ̃(x) = ν(x)
((ν·γ)p)(x)

, which ends the proof. Then, it can be checked that one can get
rid of the hypothesis of positive coordinates for ν. �

Proof of Corollary 4.7. One uses Theorem 3.13 and the contraction principle
4.6. Recall that the empirical pair measure ν(2)

n has for first marginale law the empirical
measure νn; and obviously this projection M 1(X×X)→M 1(X) is continuous. The rate
function of the LDP satisfied by the empirical pair measure is indeed a good rate function:
it is lower semi-continuous as the composition of the functions

ν 7→ (ν, ν1) 7→ (ν, ν1 ⊗ p) 7→ H(ν||ν1 ⊗ p),

and automatically good since M 1(X×X) is compact. Therefore, νn satisfies a LDP with
good rate function

T (ν) = inf
ν
(2)
1 =ν

(2)
2 =ν

{H(ν(2)||ν ⊗ p)}.

However, µ in Lemma 4.8 and ν · γ in Lemma 4.9 satisfy the same equations, so they are
equal and

T (ν) = F (ν · γ) = F (µ) = I(ν),

which ends the proof. It can then be checked that the assumption π0 = π (one starts
from the stationary law) was only there to ease certain computations on the empirical
pair measures, so Theorem 3.12 holds in full generality. �

4.1.3. Varadhan’s lemma. Fix a topological space X and a family of probability
measures (µε)ε>0 that satisfies a large deviation principle with good rate function I. For
the results of this paragraph to hold, we have to suppose that a point and a disjoint closed
subset of X can be separated by open subsets; thus, X is a regular space, which is a
little more than Hausdorff. This hypothesis will be used at the beginning of the proof of
Bryc’s theorem.
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If I attains its minimum at exactly one point x0, then µε ⇀ δx0 . Indeed, if (Xε)ε>0 is
a family of random variables representatives of the laws µε, then

P[d(Xε, x0) ≥ η] = µε((B(x0,η))
c) ≤ Cη,δ exp

(
−

infu/∈B(x0,η)
I(u)− δ

ε

)
for any δ > 0

≤ Cη,δ exp

(
−Kη

ε

)
→ε→0 0.

In general, one stills expect the laws µε to be concentrated around the points where I
is maximal. Varadhan’s lemma precises this statement; it is also a generalization of
Laplace’s method for functions on the real line.

Theorem 4.10 (Varadhan). Fix a continuous function φ on X. One assumes the tail
condition

lim
M→∞

lim sup
ε→0

(
ε log µε

[
e
φ(X)
ε 1φ(X)≥M

])
= −∞.

Then,

lim
ε→0

ε log µε

[
e
φ(X)
ε

]
= sup

x∈X
(φ(x)− I(x)).

Remark. The tail condition is verified if, for instance, there exists γ > 1 such that

lim sup
ε→0

ε log µε

[
e
γφ(X)
ε

]
< +∞.

Indeed, for M > 0, consider the random variable Yε = exp(φ(Xε)−M
ε

), where Xε follows
the law µε. Notice that Yε ≥ 1 if and only if φ(Xε) ≥M . Then,

e−
M
ε E

[
e
φ(Xε)
ε 1φ(Xε)≥M

]
= E[Yε 1Yε≥1] ≤ E[(Y ε)γ] = e−

γM
ε E

[
e
γ φ(Xε)

ε

]
,

and therefore,

lim sup
ε→0

(
ε log µε

[
e
φ(X)
ε 1φ(X)≥M

])
≤ −(γ − 1)M + lim sup

ε→0
ε log µε

[
e
γφ(X)
ε

]
,

which goes to −∞ as the bound M goes to infinity.

Proof of Theorem 4.10. Fix x ∈ X and δ > 0. Since φ is continuous there is an
open neighborhood U of x such that infu∈U φ(u) ≥ φ(x)− δ. Then,

lim inf
ε→0

ε logE
[
e
φ(Xε)
ε

]
≥ lim inf

ε→0
ε logE

[
e
φ(Xε)
ε 1U(Xε)

]
≥ inf

u∈U
φ(u) + lim inf

ε
ε log µε[U ]

≥ inf
u∈U

φ(u)− inf
u∈U

I(u) ≥ φ(x)− I(x)− δ.

Since this is true for all δ one can replace the right-hand side by φ(x) − I(x), and since
this is true for all x ∈ X, one can even take supx∈X(φ(x)− I(x)).
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Conversely, suppose first φ bounded from above by some constant M . Since I is a
good rate function, for any level α, I≤α is a compact set and can therefore be covered by
a finite number of open sets B(xi,ε) such that

(
inf

u∈B(xi,ε)

I(u)

)
≥ I(xi)− δ ;

(
sup

u∈B(xi,ε)

φ(u)

)
≤ φ(xi) + δ

where δ > 0 is fixed and arbitrary small. Then,

E
[
e
φ(Xε)
ε

]
≤

r∑

i=1

E
[
e
φ(Xε)
ε 1Xε∈B(xi,ε)

]
+ e

M
ε µε((I≤α)c)

≤
r∑

i=1

e
φ(xi)+δ

ε µε(B(xi,ε)) + e
M
ε µε((I≤α)c)

≤
(

r∑

i=1

Ci e
φ(xi)−I(xi)+2δ

ε

)
+ C e

M−α
ε ,

so,

lim sup
ε→0

ε logE
[
e
φ(Xε)
ε

]
≤ max

(
max {φ(xi)− I(xi) + 2δ, i ∈ [[1, r]]} ,M − α

)

≤ max

(
sup
x∈X

(φ(x)− I(x) + 2δ),M − α
)
.

Since this is true for all δ (with α fixed), a correct bound is then

max

(
sup
x∈X

(φ(x)− I(x)),M − α
)
,

and making α going to infinity,

lim sup
ε→0

ε logE
[
e
φ(Xε)
ε

]
≤ sup

x∈X
(φ(x)− I(x)),

which ends the proof in the bounded case. The tail condition allows precisely to get rid
of this hypothesis. �

Remark. A statement equivalent to Varadhan’s lemma 4.10 is the following result
on exponential changes of probability measures and LDP. Suppose that (µε)ε>0 follows a
LDP with good rate function I, and consider a bounded continuous function φ. Then,
the family of probability measures

dνφε =
e
φ(x)
ε

µε

[
e
φ(X)
ε

] dµε

satisfies an LDP with good rate function

Iφ(x) = I(x)− φ(x)− inf
y∈X

(I(y)− φ(y)).
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Indeed, by modifying just a little the proof of Varadhan’s theorem, one sees that

− inf
u∈B

(I(u)− φ(u)) ≥ lim sup
ε→0

ε log µε

[
e
φ(X)
ε 1X∈B

]

≥ lim inf
ε→0

ε log µε

[
e
φ(X)
ε 1X∈B

]

≥ − inf
u∈Bo

(I(u)− φ(u))

and the normalization constant µε
[
e
φ(X)
ε

]
of the probability measure is obtained by looking

at the case B = X.

From the previous remark, we see that large deviation principles are conserved by ex-
ponential changes of measures w.r.t. bounded continuous functions. Moreover, Varadhan’s
lemma yields in each case the asymptotics of the normalization constants, also known as
partition functions; these quantities play an important role in statistical mechanics.
The following theorem, due to Bryc, proves the converse: if the renormalized partition
functions ε log µε

[
eφ(X)/ε

]
all have a limit when ε goes to infinity and φ is a bounded

continuous function on X, then one has a LDP.

Theorem 4.11 (Bryc). For φ ∈ Cb(X), denote

Λφ = lim
ε→0

ε log µε

[
e
φ(X)
ε

]
,

provided it exists. If (µε)ε>0 is exponentially tight and if Λφ exists for all φ ∈ Cb(X), then
the family satisfies a LDP with good rate function

I(x) = sup
φ∈Cb(X)

(φ(x)− Λφ).

Proof. For the lower bound, fix an open set U ⊂ X and u ∈ U . The topological
assumptions on X ensure that one can construct a continuous function such that φ takes
its values in [0, 1], φ(x) = 1 and φ(u) = 0 outside U (see [Lang, 1993]). Set then
fm(u) = m(φ(u)− 1); this is a continuous bounded non-positive function. Since

µε

[
e
fm(u)
ε

]
≤ e−

m
ε µε(U

c) + µε(U) ≤ e−
m
ε + µε(U),

one has

max
(

lim inf
ε→0

ε log µε(U),−m
)
≥ Λfm = −(fm(x)−Λfm) ≥ − sup

f∈Cb(X)

(f(x)−Λf ) = −I(x).

Making m go to infinity, and then taking the supremum over U , one concludes that

lim inf
ε→0

ε log µε(U) ≥ − inf
u∈U

I(u).

For the upper bound, fix η > 0, and x ∈ X. Denote Iη = min(I − η, 1
η
). There is a

function φ ∈ Cb(X) such that φ(x) − Λφ ≥ Iη(x) — the transformation I → Iη is meant
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to take care of the cases I(x) < +∞ and I(x) = +∞ simultaneously. By continuity of φ,
one can then choose a neighborhood Ax of x such that

∀y ∈ Ax, φ(y)− φ(x) ≥ −η.
By Chebyshev’s inequality,

µε[Ax] ≤ E[e
φ(Xε)−φ(x)

ε ] exp

(
− inf

y∈Ax
φ(y)− φ(x)

)

lim sup
ε→0

ε log µε[Ax] ≤ η − φ(x) + Λ(φ) ≤ η − Iη(x).

By taking finite open coverings, one deduces from this that for any (relatively) compact
set K,

lim sup
ε→0

ε log µε[K] ≤ η − inf
x∈K

Iη(x),

and since this is true for any η, lim supε→0 ε log µε[K] ≤ − infx∈K I(x). Thus, one has a
weak LDP, and by the assumption of exponential tightness, a full LDP with I a good rate
function, cf. Definition 4.3. �

Bryc’s theorem is already a powerful criterion to get a large deviation principle in a
general polish space, but unfortunately, the space of test functions Cb(X) can be absolutely
enormous, which makes the computation of the rate function quite difficult. The Ellis-
Gärtner theorem, studied in the next section, reduces a lot the size of the space of test
functions against which the asymptotics of Laplace transform have to be computed.

4.2. Ellis-Gärtner theorem

To get general principle of large deviations, we need to add a few topological assump-
tions on the space X supporting the probability measures (µε)ε>0. Thus, in the following,
we assume that X is a topological vector space that is regular and locally convex,
i.e.,

(i) X is a vector space and a regular topological space, such that the vector space laws
(addition, multiplication by a scalar) are continuous with respect to the topology;

(ii) every point of X has a basis of neighborhoods that are convex subsets of X.

Recall that a convex subset C ⊂ X is a subset with

∀a, b ∈ C, ∀λ ∈ (0, 1), λa+ (1− λ)b ∈ C;

the general theory of convex bodies is detailed in [Schneider, 1993, Hörmander, 1994].
Every normed vector space satisfies the previous hypotheses, and X = C (R+) also satisfies
these hypotheses. The vector space of continuous linear functionals Φ : X → R will be
denoted X∗.
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4.2.1. Legendre-Fenchel transforms in infinite-dimensional spaces. The dual
space X∗ appears in the generalization of the Legendre-Fenchel transform, defined as
follows: if Λ : X∗ → (−∞,+∞] is a function not equal everywhere to +∞, then its
Legendre-Fenchel transform is

Λ∗ : X→ (−∞,+∞]

x 7→ sup
φ∈X∗

(φ(x)− Λ(φ)).

When X = R this definition corresponds clearly to the one given in §3.1.

Theorem 4.12. Let (µε)ε>0 be a family of probability laws on X, and denote

Λ(φ) = lim sup
ε→0

ε log µε

[
e
φ(X)
ε

]

for φ ∈ X∗. The function Λ is convex, and its Legendre-Fenchel transform is a convex
rate function. Moreover, for all compact subsets K ⊂ X,

lim sup
ε→0

ε log µε(K) ≤ − inf
u∈K

Λ∗(u).

Proof. The convexity follows from the convexity of each function φ 7→ ε log µε

[
e
φ(X)
ε

]
,

which can be proved as follows. Take two linear forms φ and ψ, and consider the map

f : [0, 1]→ R

t 7→ ε log µε

[
e
tφ(X)+(1−t)ψ(X)

ε

]
.

If f(0) and f(1) are finite, then for any t, by Hölder’s inequality,

f(t) ≤ ε log

(
µε

[
e
φ(X)
ε

]t
µε

[
e
ψ(X)
ε

]1−t
)

= t f(0) + (1− t)f(1).

This is also obviously true if f(0) = +∞ or if f(1) = +∞, so the convexity is shown.
Next, as a supremum of affine continuous functions, a Legendre-Fenchel transform is
always convex and semi-continuous, and by looking at φ = 0, one sees that Λ∗ is always
non-negative, whence a rate function. Finally, the upper bound is proved exactly the
same way as the upper bound in Bryc’s theorem 4.11. �

As a consequence of this theorem, one has a good candidate for the rate function
leading a large deviation principle: the Legendre-Fenchel transform of the limit of the
quantities ε log µε[e

φ(X)
ε ]. The next result shows that if a large deviation principle with

good rate function I, then I = Λ∗ in many situations.

Proposition 4.13. Suppose that (µε)ε>0 satisfies a LDP with good rate function I,
and that Λ(φ) < +∞ for all φ ∈ X∗. Then, Λ(φ) is in fact a limit,

Λ(φ) = sup
x∈X

(φ(x)− I(x)),

and Λ∗ is the largest convex rate function smaller than I (in particular, I = Λ∗ if I is
convex).
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Proof. We admit the following result, which is the infinite-dimensional generalization
of the Legendre-Fenchel duality of Definition 3.2: if f be a lower semi-continuous function
on X, and if

g(φ) = sup
x∈X

(φ(x)− f(x)),

then the Legendre-Fenchel transform of g is the largest convex function smaller than f
(in particular f = g∗ if f is supposed convex). The proof is analog to the one given
for functions on R, only one has to use Hahn-Banach theorem to construct certain affine
functions.

If the assumptions of the proposition are verified, then for any φ ∈ X∗, Λ(γφ) < ∞
for some γ > 1, which allows to apply Varadhan’s theorem 4.10:

Λ(φ) = lim
ε→0

ε log µε

[
e
φ(X)
ε

]
= sup

x∈X
(φ(x)− I(x)).

Legendre-Fenchel duality ensures then that Λ∗ is the convex regularization of I. �

4.2.2. Exposed points of Λ∗ and the general criterion. We still need sufficient
conditions for Λ∗ governing a full LDP. This is what is provided by Ellis-Gärtner theorem,
which consists mainly on topological assumptions on Λ. Call exposed point x of Λ∗ a
point such that there exists an “exposing hyperplane” φ ∈ X∗ with

φ(x)− Λ∗(x) > φ(z)− Λ∗(z) for all z 6= x.

not-exposed pointexposed point

7

Theorem 4.14 (Ellis-Gärtner, Baldi). Consider an exponentially tight family of prob-
ability measures (µε)ε>0 on X.

(1) For any closed subset F ⊂ X,

lim sup
ε→0

ε log µε(F ) ≤ − inf
u∈F

Λ∗(u).

(2) Denote E the set of exposed points of Λ∗ for which some exposing hyperplane φ
satisfies Λ(φ) = limε→0 ε log µε[e

φ(X)/ε] < +∞, and Λ(γφ) < +∞ for some γ > 1.
For any open subset U ⊂ X,

lim inf
ε→0

ε log µε(U) ≥ − inf
u∈U∩E

Λ∗(u).
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(3) Suppose that Λ exists as a limit everywhere, is finite-valued and is differentiable
in the Gateaux sense. Then,

lim inf
ε→0

ε log µε(U) ≥ − inf
u∈U

Λ∗(u).

for all u ∈ U , i.e., a LDP holds with good rate function Λ∗.

Proof. (1) From Theorem 4.12, one gets an upper bound over compact subsets
K ⊂ X, and from 4.3, this upper bound extends to arbitrary closed subsets,
because one has exponential tightness.

(2) One can assume Λ > −∞ everywhere, since otherwise Λ∗ = +∞ everywhere and
the lower bound is trivial. Fix an open set U , an exposed point x ∈ U ∩E, and an
exposing hyperplane φ. By continuity of the linear form φ, for δ > 0 sufficiently
small, there is an open neighborhood U(x,η) ⊂ U of x such that |φ(y − x)| ≤ η
for every y ∈ U(x,η) — note that X is not supposed to be a metric space, so one
cannot take balls. On the other hand, since Λ(φ) < +∞, log µε[e

φ(X)/ε] < +∞
for ε small enough. We introduce the modified probability measures

νφε (dx) =
e
φ(x)
ε

µε

[
e
φ(x)
ε

] µε(dx).

This is the same idea as in the proof of Theorem 3.3. One then writes:

ε log µε(U) ≥ ε log µε(U(x,η)) = ε log

∫

U(x,η)

µε

[
e
φ(x)
ε

]

e
φ(y)
ε

νφε (dy)

≥ ε log µε

[
e
φ(X)
ε

]
− φ(x)− η + ε log νφε (U(x,η))

≥ Λ(φ)− φ(x)− 2η + ε log νφε (U(x,η))

≥ −Λ∗(x)− 2η + ε log νφε (U(x,η))

for ε sufficiently small. The lower bound follows now from the following law of
large numbers for νφε :

νφε (U(x,η))→ 1 as ε→ 0.

To prove it, fix a family of compact sets Kα as in Definition 4.3, and consider
the compact set U c

(x,η) ∩ Kα. We want to apply Theorem 4.12 to the family of
measures (νφε )ε>0. For θ ∈ X∗, one has

ε log νφε

[
e
θ(X)
ε

]
= ε log µε

[
e

(φ+θ)(X)
ε

]
− ε log µε

[
e
φ(X)
ε

]
' Λ(φ+ θ)− Λ(φ),

and therefore,

lim sup
ε→0

ε log νφε (U c
(x,η) ∩Kα) ≤ − inf

y∈U(x,η)∩Kα
g(y),
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where g is the Legendre-Fenchel transform of the new translated asymptotic
cumulant generating function f(θ) = Λ(φ+ θ)− Λ(φ). Let us compute g:

g(y) = sup
θ∈X∗

(θ(y)− Λ(φ+ θ) + Λ(φ))

= Λ∗(y) + Λ(φ)− φ(y)

≥ Λ∗(y)− Λ∗(x)− φ(y − x).

Since φ is an exposing hyperplane for x and the convex function Λ∗, the right-
hand side is strictly positive for y 6= x. So,

lim sup
ε→0

ε log νφε (U c
(x,η) ∩Kα) < 0. (4.3)

We shall prove in a moment that

lim sup
ε→0

ε log νφε (Kc
α) < 0 (4.4)

for α large enough. Taken together, Equations (4.3) and (4.4) ensure that
lim supε→0 ε log νφε (U c

(x,η)) < 0, and therefore, νφε (U c
(x,η))→ 0 and νφε (U(x,η))→ 1.

The inequality (4.4) is obtained again by splitting Kc
α in two halves. Set

Hβ = {x ∈ X | φ(x) < β}. For every γ > 1, by Chernov’s inequality,

ε log νφε (Hc
β) = ε log

∫

Hc
β

νφε (dx)

≤ ε log

∫

X

e
(γ−1)φ(x)

ε νφε (dx)− β(γ − 1)

≤ ε log µε

[
e
γφ(X)
ε

]
− ε log µε

[
e
φ(X)
ε

]
− β(γ − 1).

By hypothesis, there exists γ > 1 such that this upper bound is finite. Then, for
β large enough, the upper bound becomes asymptotically negative:

lim sup
ε→0

ε log νφε (Hc
β) < 0. (4.5)

On the other hand,

ε log νφε (Kc
α ∩Hβ) ≤ β − ε log µε

[
e
φ(X)
ε

]
+ ε log νε(K

c
α),

which gives asymptotically

lim sup
ε→0

ε log νφε (Kc
α ∩Hβ) < β − Λ(φ)− α < 0 for α large enough. (4.6)

Combining (4.5) and (4.6) leads to Equation (4.4), and then to the law of large
numbers for νφε (U(x,η)). As a consequence, for every η > 0, lim infε→0 ε log µε(U) ≥
−Λ∗(x)− 2η, and finally

lim inf
ε→0

ε log µε(U) ≥ − inf
x∈U∩E

Λ∗(x).
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(3) Recall that in a topological vector space, a function F is called differentiable in
the Gateaux sense at x if for every direction y, there is a limit to the quotient

F (x+ εy)− F (x)

ε
as ε goes to 0 (the limit does not need to be linear or continuous w.r.t. y, as
opposed to Frechet derivatives). These hypotheses on Λ ensure that one can
approximate any point x ∈ U by exposed points xn → x, with Λ∗(xn) → Λ∗(x).
Hence,

inf
x∈U∩E

Λ∗(x) = inf
x∈U

Λ∗(x),

so a weak LDP is proved, and by exponential tightness this is a full LDP with
a good rate function. However, the proofs of the approximation result are quite
involved, and in particular they rely on advanced convex analysis; so again we
refer to [Dembo and Zeitouni, 1998, Chapter 4]. �

4.3. Applications of the Ellis-Gärtner theory

In this Section, we shall use Theorem 4.14 in many situations, and of course we shall
need each time to show that the sequence of measures considered is exponentially tight.
Note that once Λ and Λ∗ have been computed, if one expects a full LDP with good rate
function Λ∗, then the level sets of Λ∗ are compact and are therefore natural candidates to
check the exponential tightness. However, this technique requires one to show in advance
that Λ∗ is good, which might be quite difficult; and then to prove a priori a statement
like

lim sup
ε→0

1

ε
log µε[((Λ

∗)≤α)c] ≤ −α,
which is not obvious, or even true in general (notice that this is not at all the same
statement as Proposition 4.12). Thus, it is usually easier to prove the exponential tightness
by ad hoc arguments. In particular, Theorem 4.16 and the remark after Theorem 4.15
provide such criterions.

4.3.1. Cramér’s theorem in Rd. A first application of the Ellis-Gärtner theory is
a generalization of Theorem 3.3 to a multi-dimensional setting. Fix a dimension d and a
random variable X with values in Rd. We consider the mean Zn of n independent copies
of X. Recall that when d = 1, a sufficient condition to obtain a LDP with good rate
function Λ∗X is to ask for 0 being in the interior of the domain of the cumulant generating
function ΛX .

Theorem 4.15. Denote ΛX(x) = logE[e〈x |X〉], and Λ∗X(x) = supy∈Rd(〈y | x〉 − Λ(y)).
If D(ΛX) = Rd, then Zn satisifies a LDP on Rd with good rate function Λ∗X .

Remark. In fact, this LDP still holds if one only assumes that 0 lies in the interior of
D(ΛX) ⊂ Rd. But the proof does not follow readily from Ellis-Gärtner theorem, and is not
a direct modification of the arguments of §3.1; it requires an argument of subadditivity,
cf. [Dembo and Zeitouni, 1998, §6.1].
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Proof. On a finite-dimensional space, linear forms are represented by scalar products
〈y | ·〉. Since 1

n
logE[e〈nx |Zn〉] = logE[e〈x |X〉] = ΛX(x), which is by hypothesis finite

everywhere and therefore differentiable, the Ellis-Gärtner theorem will apply with Λ =
ΛX , and the only think to check is the exponential tightness of the family of measures.
Denote µn the law of Zn, and Kρ = [−ρ, ρ]d. The complementary of Kρ is included into
the union of the half spaces

H±ρ,i = {x ∈ Rd | ± xi ≥ ρ},
and for these sets one can use the one-dimensional Cramér theorem:

lim sup
n→∞

1

n
log µn[H±ρ,i] ≤ − inf

±xi∈[ρ,+∞)
Λ∗Xi(xi).

By the one-dimensional case, the limit of the right-hand side as ρ goes to infinity is −∞,
for each i. This proves the exponential tightness. �

4.3.2. Poissonian approximations. To see more of the full strengh of Ellis-Gärtner
theorem, one can look at sums of independent random variables that are not equidis-
tributed. Fix a sequence of parameters pk ∈ (0, 1), with

∞∑

k=1

pk = +∞ and
∞∑

k=1

(pk)
2 < +∞.

Notice that the second condition implies that pk → 0. We then consider the sum of
independent Bernoulli variables

Sn =
n∑

k=1

B(pk), with P[B(pk) = 1] = pk and P[B(pk) = 0] = 1− pk.

It is well-known that sums of Bernoulli variables with parameters going to 0 approximate
Poisson variables. Here, one has indeed

E
[
etSn

]
=

n∏

k=1

E
[
etB(pk)

]
=

n∏

k=1

(1 + pk (et − 1))

= e(
∑n
k=1 pk)(et−1)

n∏

k=1

(1 + pk (et − 1)) e−pk (et−1).

Denote an =
∑n

k=1 pk, and ψn(t) = E[etXn ] e−an (et−1); ψn(t) is the product in the last term
of the previous list of equations. For any t,

logψn(t) =
n∑

k=1

log(1 + pk (et − 1))− pk(et − 1) = −
n∑

k=1

(pk (et − 1))2

2
(1 + o(1))

is convergent since
∑∞

k=1(pk)
2 is supposed finite. Therefore, if Xn = Sn

an
and µn is the law

of Xn, then

lim
n→∞

1

an
log µn

[
eantX

]
= lim

n→∞
1

an
logE

[
et Sn

]
= et − 1 = Λ(t).
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To apply Theorem 4.14, one still has to show the exponential tightness of the sequence of
measures (µn)n∈N. In finite dimension, it becomes useful to have a criterion on the limit
Λ that automatically ensures this. We shall admit the following:

Theorem 4.16. Suppose that Λ : Rd → R t {+∞} is steep, which means that it is
differentiable on the non-empty open set D(Λ)o, and that for every point b in the boundary
of this open set,

lim
x→b
|∇Λ(x)| = +∞.

Notice that this is automatically true if D(Λ) = Rd. Then, if

lim
n→∞

1

an
log µn[eantX ] = Λ(t)

for a sequence of random variables (Xn)n∈N with laws µn, the family of laws is exponen-
tially tight and Ellis-Gärtner Theorem 4.14 applies: the random variables (Xn)n∈N satisfy
a LDP with speed (an)n∈N and rate function Λ∗.

In our example, D(Λ) = R, so steepness is automatic and Ellis-Gärtner theorem
applies: the laws µn of the rescaled sums of Bernoulli variables satisfy a LDP with speed
an and good rate function

Λ∗(x) = sup
t∈R

(tx− (et − 1)) =

{
+∞ if x < 0;

x log x− x+ 1 if x ≥ 0.

More concretely, one obtains

∀ε > 0, lim
n→∞

1

an
logP[Sn ≥ (1 + ε)an] = (1 + ε) log(1 + ε)− ε;

∀ε ∈ (0, 1), lim
n→∞

1

an
logP[Sn ≤ (1− ε)an] = (1 + ε) log(1 + ε)− ε.

Notice that these two statements are not at all implied by the convergence in law towards
a Poisson random variable Sn

an
→ P . In this case one can actually compute the exact

asymptotics of P[Sn ≥ (1 + ε)an] (instead of the logarithm), but this follows from difficult
arguments of harmonic analysis on the characteristic functions of the r.v. Sn.

4.3.3. Ellis-Gärtner theory and moderate deviations. Another advantage of
the Ellis-Gärtner theory is its flexibility in comparison to the previous results, because it
allows one to choose the rate an of the fluctuations that one wants to study. In particular,
it leads to a complete description of the fluctuations of sums of i.i.d. real random variables,
in a fashion similar to what was described in §3.1.3. Hence, fix a law µ of Laplace transform
Φ defined on a neighborhood of 0, with mean Φ′(0) = 0 and variance σ2 = Φ′′(0). We
fix an exponent α ∈ [1

2
, 1], and consider the laws µn of the means Mn = 1

n

∑n
k=1 Xk of a

sequence of i.i.d. random variables with law µ. One has:

1

nα
log µn

[
en

αMn
]

= n1−α log Φ(nα−1x)→
{

Λ(x) = log Φ(x) if α = 1;
σ2 x2

2
if 1

2
≤ α < 1.
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In both cases, Ellis-Gärtner theorem applies, so one recovers Cramér’s theorem 3.3 when
α = 1, and the moderate deviations of Proposition 3.6 when α < 1.

4.3.4. A new proof of Sanov’s theorem. By using Ellis-Gärtner theorem, one can
give a quick new proof of Sanov’s theorem, and in full generality (e.g without assumption
on the initial distribution). Indeed, if νn = 1

n

∑n
i=1 δXi is the random empirical measure

of a Markov chain with irreducible transition matrix (p(i, j))1≤i,j≤N , then its Laplace
transform is

Φn(nλ ∈ RN) = E

[
exp

(
n∑

i=1

λXi

)]

=
∑

a0,a1,...,an

π0(a0) p(a0, a1)eλa1 p(a1, a2)eλa2 · · · p(an−1, an)eλan

=
N∑

a,b=1

π0(a)
(
(p(i, j) eλj)n

)
(a, b).

Let r(λ) be the Perron-Frobenius of the matrix (p(i, j)eλj)1≤i,j≤N , and πλ the correspond-
ing eigenvector. Since it has positive coordinates, one can estimate the previous quantity
by multiples of the same sum, but starting from πλ instead of π0. It follows that

lim
n→∞

1

n
log Φn(nλ) = lim

n→∞
1

n
log

(
N∑

a,b=1

πλ(a)
(
(p(i, j) eλj)n

)
(a, b)

)

= lim
n→∞

1

n
log

(
N∑

b=1

(r(λ))n πλ(b)

)
= log r(λ).

But then we have seen that the Legendre-Fenchel transform of log r(λ) was I(ν), the
generalization of relative entropy involved in Sanov’s theorem. Since the space of prob-
ability measure is compact, exponential tightness is automatic and Theorem 4.14 gives
back immediately Sanov’s theorem 3.12.

4.3.5. Fine analysis of Brownian paths. To conclude this chapter and the lecture,
we are going to study in detail one of the simplest example of large deviations in a infinite-
dimensional setting. Consider a Brownian motion W : R+ → R, as defined by Theorem
2.9. If C (R+,R) is endowed with the topology of uniform convergence on every compact,
then the law of W is the unique probability measure on this space for which W (0) = 0
almost surely, and such that for every times t1 ≤ t2 ≤ · · · ≤ tn, the vector

(Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1)

is a vector of independent centered Gaussian random variables with variances

(t1, t2 − t1, . . . , tn − tn−1).

The picture on the next page represents (an approximation of) a Brownian motion on a
finite interval of time. Let us then give a list of well-known properties of the Brownian
motions — we refer to [Revuz and Yor, 2004, Chapter 1] for proofs.
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(1) Invariance by scaling: if (Ws)s∈R+ is a BM, then so is (
√
εWs/ε)s∈R+ for all ε > 0.

(2) Invariance by time-translation: if (Ws)s∈R+ is a BM, then for every time t ≥ 0,
(Wt+s − Wt)s∈R+ is a BM independent of (Ws)0≤s≤t. This is even true for an
optional random time t = τ (assuming τ is almost surely finite).

(3) Invariance by time-inversion: if (Ws)s∈R+ is a BM, then so is (sW1/s)s∈R+ .

(4) Invariance by space-reflexion: if (Ws)s∈R+ is a BM and τ is a finite optional time,
denote

W τ
s =

{
Ws if s < τ,

2Wτ −Ws if s ≥ τ

the BM reflected at time τ . It is again a Brownian motion.

(5) Invariance by time-reflexion: if (Ws)s∈[0,1] is a BM (with finite horizon), then so
is (W1 −W1−s)s∈[0,1].

(6) The function t 7→ Wt is almost surely nowhere locally α-Hölder for α > 1
2
, and it

is locally α-Hölder for α < 1
2
.

(7) One has limt→∞
|Wt|
tα

= 0 almost surely for every α > 1
2
, and in particular for

α = 1.
The last properties allows one to consider a BM as a probability measure on a slightly
smaller space than C (R+,R), namely,

X =

{
W ∈ C (R+,R) | W (0) = 0, lim

t→∞
|W (t)|
t

= 0

}
,

which is a Banach space for the norm

‖W‖X = sup
t∈R+

|W (t)|
1 + t

.

Notice that the topology of X is just the restriction of the topology of C (R+,R), but
this time it corresponds to a norm (and therefore a topology which is regular and locally
convex).
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Lemma 4.17. The topological dual of X is the Banach space X∗ of finite signed Borel
measures on R+ with

λ({0}) = 0 ; ‖λ‖X∗ =

∫

R+

(1 + s) |λ|(ds) < +∞.

Proof. Notice that Wt 7→ Wt

1+t
is an isometry between X and the space of bounded

continuous functions on R+ that vanish at 0 and +∞, endowed with the sup norm. This
space itself can be identified with

Y = {f ∈ C ([0, 1]) | f(0) = f(1) = 0}.
by using the map s 7→ 2

π
arctan(s) to send [0,+∞] to [0, 1]. By Riesz’ representation

theorem, the dual of C ([0, 1]) is the set of signed measures on [0, 1], and the dual of Y
is the set of signed measures with λ({0}) = λ({1}) = 0. Going back in the chain of
isometries, we have shown the lemma. Notice that ‖ ·‖X∗ is indeed the dual norm of ‖ ·‖X,
that is

‖λ‖X∗ = sup
W∈X

|λ(W )|
‖W‖X

.

�

We want to prove a LDP for the family of probability measures (µε)ε>0 of the scaled
BM (

√
εWs)s∈R+ . Obviously µε → δ0, the law of the constant function equal to 0, so

this will be a way to understand the “large values” of a Brownian motion. By scaling
invariance, this is also a way to understand the asymptotic behavior in time. In view of
Theorem 4.14, the first thing to do is to compute the log-Laplace transform of µ.

Lemma 4.18. For every λ ∈ X∗,

logE
[
eλ(W )

]
= log

(∫

X

exp

(∫ ∞

0

ω(t)λ(dt)

)
µ(dω)

)
=

1

2

∫∫

(R+)2
(s ∧ t)λ(ds)λ(dt).

Proof. Under Wiener’s law µ, (Wt)t∈R+ is a Gaussian process with covariance form
C(s, t) = s∧ t, that is to say that every finite vector (Wt1 , . . . ,Wtn) is a centered Gaussian
vector with covariance matrix (ti ∧ tj)1≤i,j≤n. In particular, every linear combination
λ1Wt1 + λ2Wt2 + · · ·+ λnWtn is a Gaussian random variable with mean 0 and variance

n∑

i,j=1

λiλj(ti ∧ tj).

This formula can be extended by density to any linear form of the path (Wt)t∈R+ which
is in the dual space X∗; so, under µ, λ(ω) =

∫∞
0
ω(t)λ(dt) is a Gaussian random variable

with variance ∫∫

(R+)2
(s ∧ t)λ(ds)λ(dt),

which is indeed finite. �
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Thus, we have computed the log-Laplace transform Λ(λ) of Wiener’s law, and it follows
that

lim
ε→0

(
1

ε
log µε(λ)

)
= lim

ε→0

Λ(
√
ελ)

ε
= Λ(λ).

One can therefore expect a LDP for (µε)ε>0 with rate function the Legendre-Fenchel
transform of Λ. Notice that for non-atomic measures λ (which are dense in X∗),

Λ(λ) =
1

2

∫∫

(R+)2
(s ∧ t)λ(ds)λ(dt) =

∫∫

(R+)2
1s≤t s λ(ds)λ(dt)

=

∫∫

(R+)2
1s≤t s F

′
λ(s)F

′
λ(t) ds dt with Fλ(t) =

∫ ∞

t

λ(ds)

= −
∫

R+

s F ′λ(s)Fλ(s) ds = −1

2

∫ ∞

0

s d((Fλ(s))
2) =

1

2

∫ ∞

0

(Fλ(s))
2 ds.

This identity leads to the following definition:

Definition 4.19. The Cameron-Martin space H 1(R+) is the set of locally abso-
lutely continuous functions on R+ that vanishes at 0, and with derivative in L 2(R+).

An absolutely continuous function on a compact interval [a, b] is a function f such
that for every ε > 0, there exists some η > 0 with the property that if ([xk, yk])k≤K are
disjoint intervals in [a, b] of total length

∑
k≤K yk − xk ≤ η, then

∑

k≤K
|f(yk)− f(xk)| ≤ ε.

This is quite stronger than uniform continuity, and it is equivalent to the existence of a
derivative f ′ almost everywhere and that is integrable on [a, b]. So,

f(x) = f(a) +

∫ x

a

f ′(s) ds with f ′ ∈ L 1([a, b]).

Then, the Cameron-Martin space is the space of functions with derivative that exists
almost everywhere and is square integrable on R+. It is endowed with the Hilbert space
topology given by

‖f‖H 1 = ‖f ′‖L 2 =

√∫ ∞

0

|f ′(s)|2 ds

Notice that H 1(R+) ⊂ X: indeed, elements of H 1(R+) are indeed continuous functions
that vanish at 0, and

|f(t)|
1 + t

=
1

1 + t

∣∣∣∣
∫ t

0

f ′(s) ds

∣∣∣∣ ≤
√
t

1 + t
‖f ′‖L 2 →t→∞ 0.

Remark. The Cameron-Martin space is involved in exponential change of measures
for Brownian motions. Namely, if (Wt)t∈R+ is a BM under the law µ, then the law µθ
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of a drifted BM (Wt + θt)t∈R+ is absolutely continuous with respect to µ if and only if
θ ∈H 1(R+), with Radon-Nikodym derivative

dµθ

dµ
(ω) = exp

(∫

R
θ′(s)ω(s) ds− 1

2
‖θ‖2

H 1

)
.

Proposition 4.20. The Legendre-Fenchel transform of Λ is

Λ∗(ω) =

{
1
2
‖ω‖2

H 1 if ω ∈H 1(R+);

+∞ otherwise.

Proof. Suppose first that ω ∈H 1(R+). For λ non-atomic, one has

λ(ω)− Λ(λ) =

∫

R+

ω(s)λ(ds)− 1

2

∫

R+

(Fλ(s))
2 ds

=

∫

R+

(
ω′(s)Fλ(s)−

1

2
(Fλ(s))

2

)
ds

which leads by density into X∗ to the identity

sup
λ∈X∗

(λ(ω)− Λ(λ)) = sup
F∈L 2(R+)

(
〈ω′ | F 〉L 2 −

1

2
〈F | F 〉L 2

)
=

1

2
〈ω′ | ω′〉L 2 =

1

2
‖ω‖2

H 1 .

Conversely, suppose Λ∗(ω) < +∞. For any smooth path with support compact ω̃, one
defines a linear form in X∗ by λω̃([t,+∞)) = ω̃(t). One has

K = Λ∗(ω) ≥
∫ ∞

0

ω(s)λω̃(ds)− 1

2

∫ ∞

0

(ω̃(s))2 ds

≥ −
∫ ∞

0

ω(s) ω̃′(s) ds− 1

2

∫ ∞

0

(ω̃(s))2 ds

Therefore, the linear map on the set of smooth paths with compact supports

ω̃ 7→ −
∫ ∞

0

ω(s) ω̃′(s) ds

is continuous w.r.t. the L 2-norm, so it can be represented by a unique ω′ ∈ L 2(R+):

∀ω̃ smooth and compactly supported, −
∫ ∞

0

ω(s) ω̃′(s) ds =

∫ ∞

0

ω′(s) ω̃(s) ds.

From there it is immediate that ω(t) =
∫ t

0
ω′(s) ds, and by construction the derivative is

indeed in L 2(R+), so ω ∈H 1(R+). �

To obtain the LDP, it suffices now to prove the exponential tightness: one can then
apply Ellis-Gärtner theorem, including the third part, since Λ exists everywhere and is
finite and differentiable. The standard proof of this exponential tightness for laws of
Brownian motions relies on the following clever trick:
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Lemma 4.21 (Fernique). Let µ be a measure on a topological vector space X, and
F : X→ [0,+∞] a measurable functional which satisfies

∀α ∈ R, ∀x ∈ X, F (αx) = |α|F (x) ; ∀(x, y) ∈ X, F (x+ y) ≤ F (x) + F (y).

Suppose that µ⊗ µ is invariant by the rotation

(x, y) 7→
(
x− y√

2
,
x+ y√

2

)
.

If F is finite µ-almost surely, then there exists an α > 0 such that
∫

X

exp(α(F (x))2)µ(dx) <∞.

Proof. Let s < t be two positive real numbers. One has

µ[F (x) ≤ s]µ[F (x) ≥ t]

= µ⊗2[F (x) ≤ s and F (y) ≥ t]

= µ⊗2[F (x− y) ≤
√

2 s and F (x+ y) ≥
√

2 t] by invariance of µ by rotation;

≤ µ⊗2[|F (x)− F (y)| ≤
√

2 s and F (x) + F (y) ≥
√

2 t] by subadditivity;

≤ µ⊗2

[
F (x) ≥ t− s√

2
and F (y) ≥ t− s√

2

]
=

(
µ

[
F (x) ≥ t− s√

2

])2

.

Fix s such that µ[F (x) ≤ s] > 1
2
, and define a sequence (tn)n∈N by

t0 = s ; tn = s+
√

2 tn−1 =

(√
2
n+1 − 1√
2− 1

)
s.

The previous computation shows that

µ[F (x) ≥ tn]

µ[F (x) ≤ t0]
≤
(
µ[F (x) ≥ tn−1]

µ[F (x) ≤ t0]

)2

≤
(
µ[F (x) ≥ t0]

µ[F (x) ≤ t0]

)2n

= θ2n

with θ < 1. Then, with tn−1 = 0,
∫

X

exp(α(F (x))2)µ(dx) ≤
∞∑

n=0

µ[tn ≥ F (x) ≥ tn−1] exp(α(tn)2)

≤ exp(αs2) +
∞∑

n=0

µ[F (x) ≥ tn] exp(α(tn+1)2)

≤ Kα
1 +

∞∑

n=0

2 exp(2n log θ + αK2 2
n
2 )

for some constants K1 = exp(s2) and K2 = 2s/(
√

2 − 1). Since log θ < 0 the proof is
done. �
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Lemma 4.22. Fernique’s theorem applies with µ the law of the Brownian motion, and

F (ω) = sup
t≥1

|ω(t)|
t3/4

+
∞∑

n=1

1

2n
sup

0≤s<t≤n

|ω(t)− ω(s)|
|t− s|1/4 .

Moreover, the level sets of this function are relatively compact in X.

Proof. The second part of the lemma is an immediate consequence of Arzela-Ascoli
Theorem 2.5, since functions f with bounded F (f) ≤ B are uniformly bounded on every
compact [0, n] by B n3/4, and also equicontinuous on every compact [0, n], with local δ-
module of uniform continuity smaller than 2nB δ1/4. For the first part of the lemma,
one has mainly to check that F (ω) < ∞ almost surely under Wiener’s law, since the
subadditivity of each term in F is obvious, as well as the rotation-invariance of µ (a two-
dimensional Brownian motion is indeed invariant by any rotation in SO(2,R)). However,

|ω(t)|
t3/4

→t→∞ 0

almost surely, so it is bounded. On the other hand, since ω is almost surely 1
4
-Hölder on

[0, 1], by using Fernique’s theorem, the random variables

sup
0≤s<t≤n

|ω(t)− ω(s)|
|t− s|1/4

have moments of all order, and even well-defined Laplace transforms for their squares. In
particular, one can consider for any n

C(n) =

∫

X

sup
0≤s<t≤n

( |ω(t)− ω(s)|
|t− s|1/4

)8

µ(dω),

and by invariance of the BM by scaling, C(n) = C(1)n2. It follows that the second term
in F (w) has norm in L 8(R) smaller than

∞∑

n=1

(
C(1)n2

2n

)1/8

< +∞,

so in particular it is finite almost surely. �

Corollary 4.23. The laws (µε)ε>0 of the rescaled Brownian motions are exponen-
tially tight.

Proof. By Fernique’s theorem, there is some α > 0 such that µ[eαF
2
] = K <∞, and

therefore,

µε[(F≤B)c] = µ[(F≤B/√ε)
c] = µ

[
F 2 >

B2

ε

]
≤ µ[eαF

2
]

e
αB2

ε

≤ K e−
αB2

ε ;

lim sup
ε→0

ε log µε[(F≤B)c] ≤ −αB2.

Moreover, the previous lemma ensures that the level sets F≤B are relatively compact. �
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Theorem 4.24 (Schilder). The laws (µε)ε>0 of the rescaled Brownian motions satisfy
a LDP with good rate function Λ∗ given by Proposition 4.20.

Remark. It might seem a bit counter-intuitive that the rate function of the LDP for
BM is finite only on paths with derivative almost everywhere and that is square integrable,
although Brownian motions themselves are nowhere derivable. However, since H 1(R+)
is dense in X for the topology of uniform convergence on compact subsets, one obtains
in the LDP meaningful upper and lower bounds in most cases. Intuitively, Schilder’s
theorem ensures that when one rescales a Brownian motion to zero, the last paths that
one observes are close to paths in the Cameron-Martin space, and with rate of exponential
decay given by the functional ‖ · ‖H 1 . The next theorem, which ends the lecture, makes
this much more concrete.

Theorem 4.25 (Strassen). Denote

X(n)(t) =
W (nt)√

2n log log n
,

where W is a standard Brownian motion. Almost surely, the sequence (X(n))n∈N is rela-
tively compact in X, and its closure (the limits of convergent subsequences of (X(n))n∈N)
is exactly the unit ball of the Cameron-Martin space:(

Xφ(n)(ω)→n→∞ X ⇐⇒ X ∈H 1(R+) and
∫ ∞

0

|X ′(s)|2 ds ≤ 1

)
a.s. in ω.

We refer to [Deuschel and Stroock, 1989, Chapter 1] for a proof of this result, where
most computations are made starting from Schilder’s theorem. Strassen law has an im-
portant consequence known as the law of the iterated logarithm: given a Brownian
motion,

lim sup
t→∞

Wt√
2t log log t

= 1 almost surely.

Indeed, denote B the unit ball of the Cameron-Martin space

H ([0, 1]) =

{
f | f(0) = 0 and

∫ 1

0

(f ′(s))2 ds <∞
}
.

From Strassen theorem, it suffices to compute supX∈BX(1). However, simple calculus of
variations shows that the maximiser X of X(1) under the constraint

∫ 1

0
(X ′(s))2 ds = 1 is

the affine function X(t) = t, so the maximal value is indeed 1.
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