EXAM: CONVERGENCE OF RANDOM VARIABLES AND LARGE DEVIATIONS

Problem 1. We consider a sequence of i.i.d. random variables $(X_n)_{n \in \mathbb{N}}$ with values in a finite set $[\![1, N]\!]$, and with common distribution $\pi \in \mathscr{M}^1([\![1, N]\!])$, such that $\pi(i) > 0$ for every $i \in [\![1, N]\!]$.

(1) Write the large deviation principle for the sequence of empirical measures

$$\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

Check that the rate function $I(\nu)$ of this LDP is a continuous convex function on $\mathscr{M}^1(\llbracket 1, N \rrbracket)$, and that it is differentiable on the dense open set

 $O = \{ \nu \in \mathscr{M}^1([\![1,N]\!]) \mid \forall i \in [\![1,N]\!], \ \nu(i) > 0 \}.$

- (2) Compute the derivative $dI_{\nu} = \left(\frac{\partial I}{\partial \nu(1)}(\nu), \dots, \frac{\partial I}{\partial \nu(N)}(\nu)\right).$
- (3) One fixes a state $k \in [\![1, N]\!]$ and a real number $\theta \in (0, 1)$. By applying Lagrange's principle, compute

 $\inf \{ I(\nu) \mid \nu \in \mathscr{M}^1(\llbracket 1, N \rrbracket) \text{ and } \nu(k) = \theta \}.$

Hint: there are two constraints $G(\nu) = 1$ and $H(\nu) = \theta$, so at the minimizer ν one should have $dI_{\nu} = \alpha \, dG_{\nu} + \beta \, dH_{\nu}$ for some constants α, β .

- (4) Write the scaled occupation time $T_{k,n} = \frac{\operatorname{card} \{i \in [\![1,n]\!] \mid X_i = k\}}{n}$ of the state k as a continuous function of ν_n . By using the contraction principle, show that $T_{k,n}$ satisfies a large deviation principle, and give the corresponding rate function.
- (5) Recover this result by using Cramér's theorem.
- (6) More generally, consider a Markov chain $(X_n)_{n \in \mathbb{N}}$ with irreducible transition matrix p on the space $[\![1, N]\!]$, and initial distribution π_0 . Write the Laplace transform $\mathbb{E}[\mathrm{e}^{n T_{k,n}t}]$ in terms of the positive matrices

$$p_{k,t}(x,y) = \begin{cases} p(x,y) & \text{if } y \neq k \\ p(x,y) e^t & \text{if } y = k. \end{cases}$$

Use Ellis-Gärtner theory to state a LDP for $(T_{n,k})_{n\in\mathbb{N}}$ in this general case.

Problem 2. One denotes \mathscr{D} the vector space of real-valued functions $f : [0,1] \to \mathbb{R}$ such that f(0) = 0 and for every $t \in [0,1]$,

$$\lim_{\substack{s \to t \\ s < t}} f(s) \quad \text{and} \quad \lim_{\substack{s \to t \\ s > t}} f(s)$$

exist, the second limit being equal to f(t). If the first limit is not equal to f(t), one says that f has a discontinuity, or a jump at t. For f in \mathscr{D} and $\delta > 0$, one sets

$$\omega(f, \delta) = \inf \left\{ \sup_{i \in [1, r]], \ t_{i-1} \le x < t_i} |f(x) - f(t_{i-1})| \right\},\$$

Date: May 14, 2013.

where the infimum is taken over finite subdivisions $0 = t_0 < t_1 < t_2 < \cdots < t_r = 1$ of the interval [0, 1] that are δ -sparse, that is to say that $t_i - t_{i-1} \geq \delta$ for all *i*. One admits that there is a topology of \mathscr{D} that makes it a polish space (separable complete metric space), and such that :

(i) The relatively compact subsets $\mathscr{F}\subset \mathscr{D}$ are those such that

$$\lim_{\delta \to 0} \left(\sup_{f \in \mathscr{F}} \omega(f, \delta) \right) = 0.$$

(ii) A probability measure on \mathscr{D} is entirely determined by its images by the measurable maps

$$\pi_{t_1 < t_2 < \cdots < t_r}(f) = (f(t_1), \dots, f(t_r)) \in \mathbb{R}^r.$$

Let $(U_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. random variables that are uniformly distributed on [0,1]: for every $x \in [0,1]$, $\mathbb{P}[U_k \leq x] = x$.

(1) Let

$$X_{n,t} = \sum_{k=1}^{\lfloor nt \rfloor} \mathbf{1}_{(U_k \le 1/n)},$$

where $\lfloor nt \rfloor$ denotes the entire part of nt. Show that the path $X_n : t \mapsto X_{n,t}$ falls almost surely in \mathscr{D} .

(2) Show that the number $\kappa(n)$ of discontinuities of X_n satisfies:

$$\lim_{n \to \infty} \mathbb{P}[\kappa(n) = k] = \frac{1}{\mathrm{e}\,k!}$$

(3) Show that conditionnally to the event $\kappa(n) = k$, the positions of the jumps $t_1 < t_2 < \cdots < t_k$ of X_n satisfy

law of $(nt_1, nt_2, \ldots, nt_k)$

= uniform law on the set $\mathfrak{P}_k(\llbracket 1, n \rrbracket)$ of subsets (n_1, \ldots, n_k) of size k in $\llbracket 1, n \rrbracket$.

Conditionnally to the same event $\kappa(n) = k$, show that the probability that the random path X_n has two consecutive jumps t_{i-1} and t_i with $t_i - t_{i-1} \leq \delta$ is smaller than

$$\frac{(k-1)\lfloor n\delta\rfloor\binom{n}{k-1}}{\binom{n}{k}} \le C(k)\,\delta$$

for some constant C(k).

(4) Show that for any $\delta > 0$,

$$\lim_{\delta \to 0} \left(\sup_{n \in \mathbb{N}} \mathbb{P}[X_n \text{ has consecutive jumps separated by less than } \delta] \right) = 0$$

- (5) Show that the random paths $(X_n)_{n \in \mathbb{N}}$ have laws $(\mu_n)_{n \in \mathbb{N}}$ that form a tight sequence.
- (6) Describe the limiting law of $\pi_{t_1 < \cdots < t_r}(X_n)$, and show that $(X_n)_{n \in \mathbb{N}}$ has a limit in law in \mathscr{D} . What is this limiting random process?