EXAM: CONVERGENCE OF RANDOM VARIABLES AND LARGE DEVIATIONS

Problem 1. We consider a sequence of i.i.d. random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ with values in a finite set $\llbracket 1, N \rrbracket$, and with common distribution $\pi \in \mathscr{M}^{1}(\llbracket 1, N \rrbracket)$, such that $\pi(i)>0$ for every $i \in \llbracket 1, N \rrbracket$.
(1) Write the large deviation principle for the sequence of empirical measures

$$
\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} .
$$

Check that the rate function $I(\nu)$ of this LDP is a continuous convex function on $\mathscr{M}^{1}(\llbracket 1, N \rrbracket)$, and that it is differentiable on the dense open set

$$
O=\left\{\nu \in \mathscr{M}^{1}(\llbracket 1, N \rrbracket) \mid \forall i \in \llbracket 1, N \rrbracket, \nu(i)>0\right\} .
$$

(2) Compute the derivative $d I_{\nu}=\left(\frac{\partial I}{\partial \nu(1)}(\nu), \ldots, \frac{\partial I}{\partial \nu(N)}(\nu)\right)$.
(3) One fixes a state $k \in \llbracket 1, N \rrbracket$ and a real number $\theta \in(0,1)$. By applying Lagrange's principle, compute

$$
\inf \left\{I(\nu) \mid \nu \in \mathscr{M}^{1}(\llbracket 1, N \rrbracket) \text { and } \nu(k)=\theta\right\} .
$$

Hint: there are two constraints $G(\nu)=1$ and $H(\nu)=\theta$, so at the minimizer ν one should have $d I_{\nu}=\alpha d G_{\nu}+\beta d H_{\nu}$ for some constants α, β.
(4) Write the scaled occupation time $T_{k, n}=\frac{\operatorname{card}\left\{i \in \llbracket 1, n \rrbracket \mid X_{i}=k\right\}}{n}$ of the state k as a continuous function of ν_{n}. By using the contraction principle, show that $T_{k, n}$ satisfies a large deviation principle, and give the corresponding rate function.
(5) Recover this result by using Cramér's theorem.
(6) More generally, consider a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ with irreducible transition matrix p on the space $\llbracket 1, N \rrbracket$, and initial distribution π_{0}. Write the Laplace transform $\mathbb{E}\left[\mathrm{e}^{n T_{k, n} t}\right]$ in terms of the positive matrices

$$
p_{k, t}(x, y)= \begin{cases}p(x, y) & \text { if } y \neq k \\ p(x, y) \mathrm{e}^{t} & \text { if } y=k\end{cases}
$$

Use Ellis-Gärtner theory to state a LDP for $\left(T_{n, k}\right)_{n \in \mathbb{N}}$ in this general case.

Problem 2. One denotes \mathscr{D} the vector space of real-valued functions $f:[0,1] \rightarrow \mathbb{R}$ such that $f(0)=0$ and for every $t \in[0,1]$,

$$
\lim _{\substack{s \rightarrow t \\ s<t}} f(s) \text { and } \lim _{\substack{s \rightarrow t \\ s>t}} f(s)
$$

exist, the second limit being equal to $f(t)$. If the first limit is not equal to $f(t)$, one says that f has a discontinuity, or a jump at t. For f in \mathscr{D} and $\delta>0$, one sets

$$
\omega(f, \delta)=\inf \left\{\sup _{i \in \llbracket 1, r \rrbracket, t_{i-1} \leq x<t_{i}}\left|f(x)-f\left(t_{i-1}\right)\right|\right\}
$$

where the infimum is taken over finite subdivisions $0=t_{0}<t_{1}<t_{2}<\cdots<t_{r}=1$ of the interval $[0,1]$ that are δ-sparse, that is to say that $t_{i}-t_{i-1} \geq \delta$ for all i. One admits that there is a topology of \mathscr{D} that makes it a polish space (separable complete metric space), and such that :
(i) The relatively compact subsets $\mathscr{F} \subset \mathscr{D}$ are those such that

$$
\lim _{\delta \rightarrow 0}\left(\sup _{f \in \mathscr{F}} \omega(f, \delta)\right)=0 .
$$

(ii) A probability measure on \mathscr{D} is entirely determined by its images by the measurable maps

$$
\pi_{t_{1}<t_{2}<\cdots<t_{r}}(f)=\left(f\left(t_{1}\right), \ldots, f\left(t_{r}\right)\right) \in \mathbb{R}^{r}
$$

Let $\left(U_{k}\right)_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables that are uniformly distributed on $[0,1]$: for every $x \in[0,1], \mathbb{P}\left[U_{k} \leq x\right]=x$.
(1) Let

$$
X_{n, t}=\sum_{k=1}^{\lfloor n t\rfloor} \mathbf{1}_{\left(U_{k} \leq 1 / n\right)},
$$

where $\lfloor n t\rfloor$ denotes the entire part of $n t$. Show that the path $X_{n}: t \mapsto X_{n, t}$ falls almost surely in \mathscr{D}.
(2) Show that the number $\kappa(n)$ of discontinuities of X_{n} satisfies:

$$
\lim _{n \rightarrow \infty} \mathbb{P}[\kappa(n)=k]=\frac{1}{\mathrm{e} k!} .
$$

(3) Show that conditionnally to the event $\kappa(n)=k$, the positions of the jumps $t_{1}<$ $t_{2}<\cdots<t_{k}$ of X_{n} satisfy
law of $\left(n t_{1}, n t_{2}, \ldots, n t_{k}\right)$
$=$ uniform law on the set $\mathfrak{P}_{k}(\llbracket 1, n \rrbracket)$ of subsets $\left(n_{1}, \ldots, n_{k}\right)$ of size k in $\llbracket 1, n \rrbracket$.
Conditionnally to the same event $\kappa(n)=k$, show that the probability that the random path X_{n} has two consecutive jumps t_{i-1} and t_{i} with $t_{i}-t_{i-1} \leq \delta$ is smaller than

$$
\frac{(k-1)\lfloor n \delta\rfloor\binom{ n}{k-1}}{\binom{n}{k}} \leq C(k) \delta
$$

for some constant $C(k)$.
(4) Show that for any $\delta>0$,

$$
\lim _{\delta \rightarrow 0}\left(\sup _{n \in \mathbb{N}} \mathbb{P}\left[X_{n} \text { has consecutive jumps separated by less than } \delta\right]\right)=0
$$

(5) Show that the random paths $\left(X_{n}\right)_{n \in \mathbb{N}}$ have laws $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ that form a tight sequence.
(6) Describe the limiting law of $\pi_{t_{1}<\cdots<t_{r}}\left(X_{n}\right)$, and show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ has a limit in law in \mathscr{D}. What is this limiting random process?

