
EXAM: CONVERGENCE OF RANDOM
VARIABLES AND LARGE DEVIATIONS

Problem 1. We consider a sequence of i.i.d. random variables (Xn)n∈N with values in
a finite set [[1, N ]], and with common distribution π ∈M 1([[1, N ]]), such that π(i) > 0 for
every i ∈ [[1, N ]].

(1) Write the large deviation principle for the sequence of empirical measures

νn =
1

n

n∑
i=1

δXi
.

Check that the rate function I(ν) of this LDP is a continuous convex function on
M 1([[1, N ]]), and that it is differentiable on the dense open set

O = {ν ∈M 1([[1, N ]]) | ∀i ∈ [[1, N ]] , ν(i) > 0}.

(2) Compute the derivative dIν =
(

∂I
∂ν(1)

(ν), . . . , ∂I
∂ν(N)

(ν)
)
.

(3) One fixes a state k ∈ [[1, N ]] and a real number θ ∈ (0, 1). By applying Lagrange’s
principle, compute

inf
{
I(ν) | ν ∈M 1([[1, N ]]) and ν(k) = θ

}
.

Hint: there are two constraints G(ν) = 1 and H(ν) = θ, so at the minimizer ν one
should have dIν = α dGν + β dHν for some constants α, β.

(4) Write the scaled occupation time Tk,n = card {i∈[[1,n]] | Xi=k}
n

of the state k as a
continuous function of νn. By using the contraction principle, show that Tk,n
satisfies a large deviation principle, and give the corresponding rate function.

(5) Recover this result by using Cramér’s theorem.

(6) More generally, consider a Markov chain (Xn)n∈N with irreducible transition matrix
p on the space [[1, N ]], and initial distribution π0. Write the Laplace transform
E[enTk,nt] in terms of the positive matrices

pk,t(x, y) =

{
p(x, y) if y 6= k

p(x, y) et if y = k.

Use Ellis-Gärtner theory to state a LDP for (Tn,k)n∈N in this general case.

Problem 2. One denotes D the vector space of real-valued functions f : [0, 1] → R
such that f(0) = 0 and for every t ∈ [0, 1],

lim
s→t
s<t

f(s) and lim
s→t
s>t

f(s)

exist, the second limit being equal to f(t). If the first limit is not equal to f(t), one says
that f has a discontinuity, or a jump at t. For f in D and δ > 0, one sets

ω(f, δ) = inf

{
sup

i∈[[1,r]], ti−1≤x<ti
|f(x)− f(ti−1)|

}
,
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where the infimum is taken over finite subdivisions 0 = t0 < t1 < t2 < · · · < tr = 1 of the
interval [0, 1] that are δ-sparse, that is to say that ti − ti−1 ≥ δ for all i. One admits that
there is a topology of D that makes it a polish space (separable complete metric space),
and such that :

(i) The relatively compact subsets F ⊂ D are those such that

lim
δ→0

(
sup
f∈F

ω(f, δ)

)
= 0.

(ii) A probability measure on D is entirely determined by its images by the measurable
maps

πt1<t2<···<tr(f) = (f(t1), . . . , f(tr)) ∈ Rr.

Let (Uk)k∈N be a sequence of i.i.d. random variables that are uniformly distributed on
[0, 1]: for every x ∈ [0, 1], P[Uk ≤ x] = x.

(1) Let

Xn,t =

bntc∑
k=1

1(Uk≤1/n),

where bntc denotes the entire part of nt. Show that the path Xn : t 7→ Xn,t falls
almost surely in D .

(2) Show that the number κ(n) of discontinuities of Xn satisfies:

lim
n→∞

P[κ(n) = k] =
1

e k!
.

(3) Show that conditionnally to the event κ(n) = k, the positions of the jumps t1 <
t2 < · · · < tk of Xn satisfy

law of (nt1, nt2, . . . , ntk)
= uniform law on the set Pk([[1, n]]) of subsets (n1, . . . , nk) of size k in [[1, n]].

Conditionnally to the same event κ(n) = k, show that the probability that the
random path Xn has two consecutive jumps ti−1 and ti with ti− ti−1 ≤ δ is smaller
than

(k − 1) bnδc
(
n
k−1

)(
n
k

) ≤ C(k) δ

for some constant C(k).

(4) Show that for any δ > 0,

lim
δ→0

(
sup
n∈N

P[Xn has consecutive jumps separated by less than δ]
)

= 0.

(5) Show that the random paths (Xn)n∈N have laws (µn)n∈N that form a tight sequence.

(6) Describe the limiting law of πt1<···<tr(Xn), and show that (Xn)n∈N has a limit in
law in D . What is this limiting random process?


