Problem 1.

(1-2) By Sanov's theorem for i.i.d. variables, $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ satisfies a LDP with rate function

$$
I(\nu)=H(\nu \| \pi)=\sum_{k=1}^{N} \nu(k) \log \left(\frac{\nu(k)}{\pi(k)}\right) .
$$

For every k, the map $\phi_{k}: x \mapsto x \log (x / \pi(k))$ is well-defined and continuous on $[0,1]$, with $\phi_{k}(0)=0$; and it is convex since its second derivative is $1 / x>0$. As a positive linear combination of the functions $\phi_{k}(\nu(k))$ of the coordinates of $\nu, I(\nu)$ is itself continuous and convex. On the open set O, the partial derivative of I_{ν} with respect to $\nu(k)$ is

$$
\frac{\partial I(\nu)}{\partial \nu(k)}=\log \left(\frac{\nu(k)}{\pi(k)}\right)+1 .
$$

Since these partial derivatives are continuous on O with respect to all coordinates of ν, I is continuously differentiable on O.
(3) Notice that by strict convexity of I, the infimum of I under the linear constraints given is attained in the interior of $\mathscr{M}(\llbracket 1, N \rrbracket)$, which is O. There, one can apply Lagrange's principle: under the constraints $G(\nu)=\sum_{j=1}^{N} \nu(j)=1$ and $H(\nu)=$ $\nu(k)=\theta$, the minimizer ν satisfies the equation:

$$
\begin{aligned}
d I_{\nu} & =\alpha d G_{\nu}+\beta d H_{\nu} ; \\
\Longleftrightarrow \quad \sum_{j=1}^{N}\left(1+\log \left(\frac{\nu(j)}{\pi(j)}\right)\right) d \nu(j) & =\alpha\left(\sum_{j=1}^{N} d \nu(j)\right)+\beta d \nu(k) .
\end{aligned}
$$

for some constants (α, β). This means that if $j \neq k$, then

$$
1+\log \left(\frac{\nu(j)}{\pi(j)}\right)=\alpha \quad ; \quad \frac{\nu(j)}{\pi(j)}=\mathrm{e}^{\alpha-1}=A
$$

and if $j=k$, then

$$
1+\log \left(\frac{\nu(k)}{\pi(k)}\right)=\alpha+\beta \quad ; \quad \frac{\nu(k)}{\pi(k)}=\mathrm{e}^{\alpha+\beta-1}=B
$$

The constants A and B are determined by the constraints: $B=\theta / \pi(k)$ and then

$$
1-\theta=\sum_{j \neq k} \nu(j)=\sum_{j \neq k} A \pi(j)=A(1-\pi(k)) \quad ; \quad A=\frac{1-\theta}{1-\pi(k)}
$$

One has therefore

$$
\begin{aligned}
I(\nu) & =\sum_{j=1}^{N} \nu(j) \log \left(\frac{\nu(j)}{\pi(j)}\right)=(1-\theta) \log A+\theta \log B \\
& =(1-\theta) \log \left(\frac{1-\theta}{1-\pi(k)}\right)+\theta \log \left(\frac{\theta}{\pi(k)}\right) .
\end{aligned}
$$

(4) One has $T_{k, n}=H\left(\nu_{n}\right)$ with $H(\nu)=\nu(k)$, which is continuous. We know that $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ satisfies a LDP with rate function I, and it is automatically good since
$\mathscr{M}^{1}(\llbracket 1, N \rrbracket)$, the space of probability measures on a finite set, is compact. Therefore, one can use the contraction principle, and $T_{k, n}$ satisfies a LDP with rate function

$$
\inf \{I(\nu) \mid G(\nu)=\theta\}=f(\theta)=(1-\theta) \log \left(\frac{1-\theta}{1-\pi(k)}\right)+\theta \log \left(\frac{\theta}{\pi(k)}\right)
$$

(5) The variable $T_{k, n}$ is the mean of the i.i.d. Bernoulli random variables $\mathbf{1}_{X_{n}=k}$, that have parameter $\pi(k)$. By Cramér's theorem, $T_{k, n}$ satisfies a LDP with rate function the Legendre-Fenchel transform of the log-Laplace transform of these Bernoulli variables, which is

$$
\Lambda(t)=\log \left(\pi(k) \mathrm{e}^{t}+(1-\pi(k))\right)
$$

One computes the LF transform as follows:

$$
\begin{aligned}
\Lambda^{*}(\theta) & =\sup _{t \in \mathbb{R}}(\theta t-\Lambda(t)) \\
& =\theta t_{0}-\Lambda\left(t_{0}\right) \quad \text { with } \Lambda^{\prime}\left(t_{0}\right)=\theta \\
\theta & =\frac{\pi(k) \mathrm{e}^{t_{0}}}{(1-\pi(k))+\pi(k) \mathrm{e}^{t_{0}}} ; \\
t_{0} & =\log \left(\frac{\theta(1-\pi(k))}{\pi(k)(1-\theta)}\right) \\
\Lambda^{*}(\theta) & =(1-\theta) \log \left(\frac{1-\theta}{1-\pi(k)}\right)+\theta \log \left(\frac{\theta}{\pi(k)}\right) .
\end{aligned}
$$

Thus one has recovered the previous result.
(6) One computes

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{e}^{n T_{k, n} t}\right] & =\sum_{x_{1}, \ldots, x_{n}} \mathbb{P}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right] \mathrm{e}^{t \operatorname{card}\left\{i \mid x_{i}=k\right\}} \\
& =\sum_{x_{0}, x_{1}, \ldots, x_{n}} \pi_{0}\left(x_{0}\right) p\left(x_{0}, x_{1}\right) \cdots p\left(x_{n-1}, x_{n}\right) \mathrm{e}^{t \operatorname{card}\left\{i \mid x_{i}=k\right\}} \\
& =\sum_{x_{0}, x_{1}, \ldots, x_{n}} \pi_{0}\left(x_{0}\right) p^{k, t}\left(x_{0}, x_{1}\right) \cdots p^{k, t}\left(x_{n-1}, x_{n}\right) \\
& =\sum_{x}\left(\pi_{0}\left(p_{k, t}\right)^{n}\right)(x) .
\end{aligned}
$$

As in the lecture, if $r\left(p_{k, t}\right)$ is the Perron-Frobenius eigenvalue of the positive matrix $p_{k, t}$ and $\pi_{k, t}$ is the corresponding (normalized) positive eigenvector, then

$$
\pi_{0}=\alpha \pi_{k, t}+\text { remainder corresponding to lesser eigenvalues, }
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left[\mathrm{e}^{n T_{k, n} t}\right]=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\alpha\left(r\left(p_{k, t}\right)\right)^{n}\right)=\log r\left(p_{k, t}\right)=\Lambda(t)
$$

Notice that the random variables $T_{k, n}$ take their values in the compact set $[0,1]$, so their laws are automatically exponentially tight. One can therefore apply EllisGärtner theorem, which almost gives a LDP except for the problem of exposed points. However, the function Λ is finite and defined over \mathbb{R}, and as the logarithm of the largest root of a polynomial which depends smoothly on t, it is differentiable in t, except maybe at a finite number of values t, say $\left(t_{1}, \ldots, t_{M}\right)$. This still implies
the density of exposed points and therefore a full LDP for $\left(T_{n, k}\right)_{n \in \mathbb{N}}$, with good rate function

$$
\Lambda^{*}(\theta)=\sup _{t \in \mathbb{R}}\left(\theta t-\log r\left(p_{t, k}\right)\right) .
$$

Problem 2.

(1) Fix ω in the probability space. If s is not an integer multiple of $\frac{1}{n}$, then the path $X_{n}(\omega)$ is constant around s, equal to $\sum_{k=1}^{\lfloor n s\rfloor} \mathbf{1}_{\left(U_{k}(\omega) \leq 1 / n\right)}$ (and therefore continuous at s). Indeed, the number of terms $\lfloor n s\rfloor$ of the sum stays constant on the interval

$$
\frac{\lfloor n s\rfloor}{n}<s^{\prime}<\frac{\lfloor n s\rfloor+1}{n} .
$$

On the other hand, if s is a multiple of $\frac{1}{n}$, then $X_{n}(\omega)$ is still constant equal to $\sum_{k=1}^{n s} \mathbf{1}_{\left(U_{k}(\omega) \leq 1 / n\right)}$ on an interval to the right of s, namely, the interval

$$
\frac{n s}{n} \leq s^{\prime}<\frac{n s+1}{n}
$$

This implies the continuity on the right; and X_{n} has also a limit to the left of s, given by $\sum_{k=1}^{n s-1} \mathbf{1}_{\left(U_{k}(\omega) \leq 1 / n\right)}$. So for every $\omega, X_{n}(\omega)$ is indeed in \mathscr{D}.
(2) The jumps of X_{n} occur at multiples of $\frac{1}{n}$, and more precisely, $X_{n, s} \neq X_{n, s^{-}}$if and only if $s=\frac{k}{n}$ and $U_{k} \leq \frac{1}{n}$. In this case $X_{n, s}-X_{n, s^{-}}=\mathbf{1}_{\left(U_{k} \leq 1 / n\right)}$, so the number of discontinuities $\kappa(n)$ of X_{n} can be encoded by

$$
\begin{aligned}
\kappa(n) & =\sum_{k=1}^{n} \mathbf{1}_{\left(X_{n} \text { makes a jump at } s=k / n\right)} \\
& =\sum_{k=1}^{n} X_{n, k / n}-X_{n,(k / n)^{-}}=\sum_{k=1}^{n} \mathbf{1}_{\left(U_{k} \leq 1 / n\right)}=X_{n, 1} .
\end{aligned}
$$

So we have to compute the limiting law of $X_{n, 1}$, which is a sum of n independent Bernoulli variables of parameter $1 / n$. The characteristic function of $X_{n, 1}$ is

$$
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \zeta X_{n, 1}}\right]=\left(\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \zeta \mathcal{B}\left(n^{-1}\right)}\right]\right)^{n}=\left(1+\frac{\mathrm{e}^{\mathrm{i} \zeta}-1}{n}\right)^{n} \rightarrow_{n \rightarrow \infty} \mathrm{e}^{\mathrm{i} \zeta-1}
$$

This is well-known to be the characteristic function of a Poisson random variable, as is seen from the calculation

$$
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \zeta \mathcal{P}}\right]=\sum_{k=0}^{\infty} \frac{1}{\mathrm{e} k!} \mathrm{e}^{\mathrm{i} k \zeta}=\frac{1}{\mathrm{e}} \mathrm{e}^{\mathrm{e}^{\mathrm{i} \zeta}}=\mathrm{e}^{\mathrm{i} \mathrm{e}^{\zeta}-1}
$$

By Lévy criterion of convergence in law, $X_{n, 1}$ converges to a Poisson random variable, so one has indeed

$$
\lim _{n \rightarrow \infty} \mathbb{P}[\kappa(n)=k]=\frac{1}{\mathrm{e} k!} .
$$

(3) One looks at n random i.i.d. Bernoulli variables B_{1}, \ldots, B_{n}, and conditionally to the event that k of them are equal to 1 (and the $n-k$ other equal to 0), one wants to know the law of the k-tuples of ordered indices ($n_{1}<n_{2}<\cdots<n_{k}$) such that $B_{n_{1}}=B_{n_{2}}=\cdots=B_{n_{k}}=1$. However, the law of $\left(B_{1}, \ldots, B_{n}\right)$ is clearly invariant by permutation of the variables. Fix two k-tuples ($n_{1}<n_{2}<\cdots<n_{k}$)
and $\left(m_{1}<m_{2}<\cdots<m_{k}\right)$ and a permutation $\sigma: \llbracket 1, n \rrbracket \rightarrow \llbracket 1, n \rrbracket$ such that $\sigma\left(m_{i}\right)=n_{i}$. One has:

$$
\begin{aligned}
& \mathbb{P}\left[B_{m_{1}}=\cdots=B_{m_{k}}=1 \mid \sum_{j=1}^{n} B_{j}=k\right] \\
& =\frac{\mathbb{P}\left[B_{m_{1}}=\cdots=B_{m_{k}}=1 \text { and } B_{j \neq m_{i}}=0\right]}{\mathbb{P}\left[\sum_{i=1}^{n} B_{j}=k\right]} \\
& =\frac{\mathbb{P}\left[B_{n_{1}}=\cdots=B_{n_{k}}=1 \text { and } B_{j \neq n_{i}}=0\right]}{\mathbb{P}\left[\sum_{i=1}^{n} B_{j}=k\right]} \text { by } \sigma \text {-invariance of } \mathbb{P} ; \\
& =\mathbb{P}\left[B_{n_{1}}=\cdots=B_{n_{k}}=1 \mid \sum_{j=1}^{n} B_{j}=k\right]
\end{aligned}
$$

It follows that the probability of each k-tuple is the same, and is therefore the uniform probability $\frac{1}{\binom{n}{k}}$ on subsets of size k in $\llbracket 1, n \rrbracket$.

Now, if some jump-times of X_{n} have distance less than δ, then the corresponding set of integers $\left(n_{1}<n_{2}<\ldots<n_{k}\right)$ contains a pair $n_{i}<n_{i+1}$ with $i \in \llbracket 1, k-1 \rrbracket$ and $n_{i+1} \in \llbracket n_{i}+1, n_{i}+n \delta \rrbracket$. However, to construct such a k-tuple, one can
(a) choose an index i : $(k-1)$ possibilities,
(b) the set $n_{1}<\cdots<n_{i}<n_{i+2}<\cdots<n_{k}$: $\binom{n}{k-1}$ possibilities,
(c) and then n_{i+1} in an interval of size $\lfloor n \delta\rfloor$ to the right of $n_{i}:\lfloor n \delta\rfloor$ possibilities. Therefore,
$\mathbb{P}\left[X_{n}\right.$ has jumps separated by less than $\left.\delta \mid \kappa(n)=k\right] \leq \frac{(k-1)\lfloor n \delta\rfloor\binom{ n}{k-1}}{\binom{n}{k}}$

$$
\leq \frac{(k-1) k n}{n-k+1} \delta \leq k^{3} \delta
$$

by taking the supremum in n, obtained for $n=k$ (one always has $n \geq \kappa(n)=k$).
(4) Fix $\varepsilon>0$. For K big enough, $\sum_{k>K} \frac{1}{\mathrm{e} k!} \leq \varepsilon$, and by Question (2), for $n \geq N$, one has therefore

$$
\mathbb{P}[\kappa(n)>K] \leq 2 \varepsilon,
$$

so
$\mathbb{P}\left[X_{n}\right.$ has jumps separated by less than $\left.\delta\right]$
$\leq \mathbb{P}[\kappa(n)>K]+\mathbb{P}\left[X_{n}\right.$ has jumps separated by less than δ and $\left.\kappa(n) \leq K\right]$
$\leq 2 \varepsilon+\sum_{k \leq K} \mathbb{P}\left[X_{n}\right.$ has jumps separated by less than $\left.\delta \mid \kappa(n)=k\right] \mathbb{P}[\kappa(n)=k]$
$\leq 2 \varepsilon+\delta \sum_{k \leq K} k^{3} \mathbb{P}[\kappa(n)=k] \leq 2 \varepsilon+K^{4} \delta$.
This is true for $n \leq N$. On the other hand, for $\delta<\frac{1}{N}, X_{n}$ with $n \leq N$ cannot have two jumps separated by less than δ (they occur at multiple integers of $\frac{1}{n}>\delta$), so
the same probability is 0 . Hence, for any δ small enough,

$$
\sup _{n \in \mathbb{N}} \mathbb{P}\left[X_{n} \text { has jumps separated by less than } \delta\right] \leq 2 \varepsilon+K^{4} \delta
$$

$$
\limsup _{\delta \rightarrow 0}\left(\sup _{n \in \mathbb{N}} \mathbb{P}\left[X_{n} \text { has jumps separated by less than } \delta\right]\right) \leq 2 \varepsilon
$$

This is true for every $\varepsilon>0$, whence the result.
(5) Fix $\varepsilon>0$: we have to exhibit a relatively compact set $\mathscr{F} \subset \mathscr{D}$ such that $\mu_{n}(\mathscr{F}) \geq$ $1-\varepsilon$ for every n. Notice that if X_{n} has no jumps separated by less than δ, then one can find a subdivision of $[0,1]$ that is δ-sparse and such that

$$
\max _{i \in \llbracket 1, r \rrbracket} \sup _{x \in\left[t_{i-1}, t_{i}\right)}\left|X_{n, t_{i-1}}-X_{n, x}\right|=0
$$

namely, the subdivision given by the positions of its jumps (plus the endpoints 0 and 1). So,
$\mathbb{P}\left[X_{n}\right.$ has no jumps separated by less than $\left.\delta\right] \leq \mathbb{P}\left[\omega\left(X_{n}, \delta\right)=0\right]=\mu_{n}[\omega(\cdot, \delta)=0]$.
By the previous question, for δ small enough, the left-hand side is always larger than $1-\varepsilon$, and the right hand side is the μ_{n}-probability of a relatively compact part of \mathscr{D} (by the assumption (i) on the topology of this space). The tightness is therefore shown.
(6) For any $t_{1}<t_{2}<\cdots<t_{r}$, the same computations as in Question (2) show that $\left(X_{n, t_{1}}, \ldots, X_{n, t_{r}}\right)$ converge towards a vector of independent Poisson variables of parameter $t_{1}, t_{2}-t_{1}, \ldots, t_{r}-t_{r-1}$:
$\lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n, t_{1}}=k_{1}, X_{n, t_{2}}=k_{2}, \ldots, X_{n, t_{r}}=k_{r}\right]=\frac{\left(t_{1}\right)^{k_{1}}\left(t_{2}-t_{1}\right)^{k_{2}} \cdots\left(t_{r}-t_{r-1}\right)^{k_{r}}}{\mathrm{e}^{t_{r}} k_{1}!k_{2}!\cdots k_{r}!}$.
Since the finite-dimensional laws identify probability measures on \mathscr{D} (by the assumption (ii) on the topology of this space), the limit of a convergent subsequence of the laws $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ is uniquely determined by the previous identity, so by tightness $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converges indeed. The limiting random process is the standard Poisson process on the interval $[0,1]$.

