
Problem 1.

(1-2) By Sanov’s theorem for i.i.d. variables, (νn)n∈N satisfies a LDP with rate function

I(ν) = H(ν||π) =
N∑
k=1

ν(k) log

(
ν(k)

π(k)

)
.

For every k, the map φk : x 7→ x log(x/π(k)) is well-defined and continuous on
[0, 1], with φk(0) = 0; and it is convex since its second derivative is 1/x > 0. As a
positive linear combination of the functions φk(ν(k)) of the coordinates of ν, I(ν)
is itself continuous and convex. On the open set O, the partial derivative of Iν
with respect to ν(k) is

∂I(ν)

∂ν(k)
= log

(
ν(k)

π(k)

)
+ 1.

Since these partial derivatives are continuous on O with respect to all coordinates
of ν, I is continuously differentiable on O.

(3) Notice that by strict convexity of I, the infimum of I under the linear constraints
given is attained in the interior of M ([[1, N ]]), which is O. There, one can apply
Lagrange’s principle: under the constraints G(ν) =

∑N
j=1 ν(j) = 1 and H(ν) =

ν(k) = θ, the minimizer ν satisfies the equation:

dIν = α dGν + β dHν ;

⇐⇒
N∑
j=1

(
1 + log

(
ν(j)

π(j)

))
dν(j) = α

(
N∑
j=1

dν(j)

)
+ β dν(k).

for some constants (α, β). This means that if j 6= k, then

1 + log

(
ν(j)

π(j)

)
= α ;

ν(j)

π(j)
= eα−1 = A,

and if j = k, then

1 + log

(
ν(k)

π(k)

)
= α + β ;

ν(k)

π(k)
= eα+β−1 = B.

The constants A and B are determined by the constraints: B = θ/π(k) and then

1− θ =
∑
j 6=k

ν(j) =
∑
j 6=k

Aπ(j) = A (1− π(k)) ; A =
1− θ

1− π(k)
.

One has therefore

I(ν) =
N∑
j=1

ν(j) log

(
ν(j)

π(j)

)
= (1− θ) logA+ θ logB

= (1− θ) log

(
1− θ

1− π(k)

)
+ θ log

(
θ

π(k)

)
.

(4) One has Tk,n = H(νn) with H(ν) = ν(k), which is continuous. We know that
(νn)n∈N satisfies a LDP with rate function I, and it is automatically good since
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M 1([[1, N ]]), the space of probability measures on a finite set, is compact. There-
fore, one can use the contraction principle, and Tk,n satisfies a LDP with rate
function

inf{I(ν) | G(ν) = θ} = f(θ) = (1− θ) log

(
1− θ

1− π(k)

)
+ θ log

(
θ

π(k)

)
.

(5) The variable Tk,n is the mean of the i.i.d. Bernoulli random variables 1Xn=k, that
have parameter π(k). By Cramér’s theorem, Tk,n satisfies a LDP with rate function
the Legendre-Fenchel transform of the log-Laplace transform of these Bernoulli
variables, which is

Λ(t) = log
(
π(k) et + (1− π(k))

)
.

One computes the LF transform as follows:

Λ∗(θ) = sup
t∈R

(θt− Λ(t))

= θt0 − Λ(t0) with Λ′(t0) = θ;

θ =
π(k) et0

(1− π(k)) + π(k) et0
;

t0 = log

(
θ (1− π(k))

π(k) (1− θ)

)
;

Λ∗(θ) = (1− θ) log

(
1− θ

1− π(k)

)
+ θ log

(
θ

π(k)

)
.

Thus one has recovered the previous result.

(6) One computes

E[enTk,nt] =
∑

x1,...,xn

P[X1 = x1, . . . , Xn = xn] et card {i | xi=k}

=
∑

x0,x1,...,xn

π0(x0) p(x0, x1) · · · p(xn−1, xn) et card {i | xi=k}

=
∑

x0,x1,...,xn

π0(x0) p
k,t(x0, x1) · · · pk,t(xn−1, xn)

=
∑
x

(π0(pk,t)
n) (x).

As in the lecture, if r(pk,t) is the Perron-Frobenius eigenvalue of the positive matrix
pk,t and πk,t is the corresponding (normalized) positive eigenvector, then

π0 = απk,t + remainder corresponding to lesser eigenvalues,

and

lim
n→∞

1

n
logE[enTk,nt] = lim

n→∞

1

n
log(α (r(pk,t))

n) = log r(pk,t) = Λ(t).

Notice that the random variables Tk,n take their values in the compact set [0, 1],
so their laws are automatically exponentially tight. One can therefore apply Ellis-
Gärtner theorem, which almost gives a LDP except for the problem of exposed
points. However, the function Λ is finite and defined over R, and as the logarithm
of the largest root of a polynomial which depends smoothly on t, it is differentiable
in t, except maybe at a finite number of values t, say (t1, . . . , tM). This still implies



the density of exposed points and therefore a full LDP for (Tn,k)n∈N, with good
rate function

Λ∗(θ) = sup
t∈R

(θt− log r(pt,k)) .

Problem 2.

(1) Fix ω in the probability space. If s is not an integer multiple of 1
n
, then the path

Xn(ω) is constant around s, equal to
∑bnsc

k=1 1(Uk(ω)≤1/n) (and therefore continuous
at s). Indeed, the number of terms bnsc of the sum stays constant on the interval

bnsc
n

< s′ <
bnsc+ 1

n
.

On the other hand, if s is a multiple of 1
n
, then Xn(ω) is still constant equal to∑ns

k=1 1(Uk(ω)≤1/n) on an interval to the right of s, namely, the interval
ns

n
≤ s′ <

ns+ 1

n
.

This implies the continuity on the right; and Xn has also a limit to the left of s,
given by

∑ns−1
k=1 1(Uk(ω)≤1/n). So for every ω, Xn(ω) is indeed in D .

(2) The jumps of Xn occur at multiples of 1
n
, and more precisely, Xn,s 6= Xn,s− if and

only if s = k
n
and Uk ≤ 1

n
. In this case Xn,s −Xn,s− = 1(Uk≤1/n), so the number of

discontinuities κ(n) of Xn can be encoded by

κ(n) =
n∑
k=1

1(Xn makes a jump at s = k/n)

=
n∑
k=1

Xn,k/n −Xn,(k/n)− =
n∑
k=1

1(Uk≤1/n) = Xn,1.

So we have to compute the limiting law of Xn,1, which is a sum of n independent
Bernoulli variables of parameter 1/n. The characteristic function of Xn,1 is

E[eiζXn,1 ] = (E[eiζ B(n
−1)])n =

(
1 +

eiζ − 1

n

)n
→n→∞ ee

iζ−1.

This is well-known to be the characteristic function of a Poisson random variable,
as is seen from the calculation

E[eiζP ] =
∞∑
k=0

1

e k!
eikζ =

1

e
ee

iζ

= ee
iζ−1.

By Lévy criterion of convergence in law, Xn,1 converges to a Poisson random
variable, so one has indeed

lim
n→∞

P[κ(n) = k] =
1

e k!
.

(3) One looks at n random i.i.d. Bernoulli variables B1, . . . , Bn, and conditionally to
the event that k of them are equal to 1 (and the n − k other equal to 0), one
wants to know the law of the k-tuples of ordered indices (n1 < n2 < · · · < nk)
such that Bn1 = Bn2 = · · · = Bnk = 1. However, the law of (B1, . . . , Bn) is clearly
invariant by permutation of the variables. Fix two k-tuples (n1 < n2 < · · · < nk)



and (m1 < m2 < · · · < mk) and a permutation σ : [[1, n]] → [[1, n]] such that
σ(mi) = ni. One has:

P

[
Bm1 = · · · = Bmk = 1

∣∣ n∑
j=1

Bj = k

]

=
P[Bm1 = · · · = Bmk = 1 and Bj 6=mi = 0]

P[
∑n

i=1Bj = k]

=
P[Bn1 = · · · = Bnk = 1 and Bj 6=ni = 0]

P[
∑n

i=1Bj = k]
by σ-invariance of P;

= P

[
Bn1 = · · · = Bnk = 1

∣∣ n∑
j=1

Bj = k

]
.

It follows that the probability of each k-tuple is the same, and is therefore the
uniform probability 1

(nk)
on subsets of size k in [[1, n]].

Now, if some jump-times ofXn have distance less than δ, then the corresponding
set of integers (n1 < n2 < . . . < nk) contains a pair ni < ni+1 with i ∈ [[1, k − 1]]
and ni+1 ∈ [[ni + 1, ni + nδ]]. However, to construct such a k-tuple, one can

(a) choose an index i: (k − 1) possibilities,

(b) the set n1 < · · · < ni < ni+2 < · · · < nk:
(
n
k−1

)
possibilities,

(c) and then ni+1 in an interval of size bnδc to the right of ni: bnδc possibilities.
Therefore,

P[Xn has jumps separated by less than δ | κ(n) = k] ≤
(k − 1) bnδc

(
n
k−1

)(
n
k

)
≤ (k − 1) k n

n− k + 1
δ ≤ k3 δ

by taking the supremum in n, obtained for n = k (one always has n ≥ κ(n) = k).

(4) Fix ε > 0. For K big enough,
∑

k>K
1
e k!
≤ ε, and by Question (2), for n ≥ N , one

has therefore
P[κ(n) > K] ≤ 2ε,

so

P[Xn has jumps separated by less than δ]
≤ P[κ(n) > K] + P[Xn has jumps separated by less than δ and κ(n) ≤ K]

≤ 2ε+
∑
k≤K

P[Xn has jumps separated by less than δ | κ(n) = k]P[κ(n) = k]

≤ 2ε+ δ
∑
k≤K

k3 P[κ(n) = k] ≤ 2ε+K4δ.

This is true for n ≤ N . On the other hand, for δ < 1
N
, Xn with n ≤ N cannot have

two jumps separated by less than δ (they occur at multiple integers of 1
n
> δ), so



the same probability is 0. Hence, for any δ small enough,
sup
n∈N

P[Xn has jumps separated by less than δ] ≤ 2ε+K4δ

lim sup
δ→0

(
sup
n∈N

P[Xn has jumps separated by less than δ]
)
≤ 2ε.

This is true for every ε > 0, whence the result.

(5) Fix ε > 0: we have to exhibit a relatively compact set F ⊂ D such that µn(F ) ≥
1 − ε for every n. Notice that if Xn has no jumps separated by less than δ, then
one can find a subdivision of [0, 1] that is δ-sparse and such that

max
i∈[[1,r]]

sup
x∈[ti−1,ti)

|Xn,ti−1
−Xn,x| = 0,

namely, the subdivision given by the positions of its jumps (plus the endpoints 0
and 1). So,

P[Xn has no jumps separated by less than δ] ≤ P[ω(Xn, δ) = 0] = µn[ω(·, δ) = 0].

By the previous question, for δ small enough, the left-hand side is always larger
than 1 − ε, and the right hand side is the µn-probability of a relatively compact
part of D (by the assumption (i) on the topology of this space). The tightness is
therefore shown.

(6) For any t1 < t2 < · · · < tr, the same computations as in Question (2) show that
(Xn,t1 , . . . , Xn,tr) converge towards a vector of independent Poisson variables of
parameter t1, t2 − t1, . . . , tr − tr−1:

lim
n→∞

P[Xn,t1 = k1, Xn,t2 = k2, . . . , Xn,tr = kr] =
(t1)

k1 (t2 − t1)k2 · · · (tr − tr−1)kr
etr k1! k2! · · · kr!

.

Since the finite-dimensional laws identify probability measures on D (by the as-
sumption (ii) on the topology of this space), the limit of a convergent subsequence
of the laws (µn)n∈N is uniquely determined by the previous identity, so by tightness
(µn)n∈N converges indeed. The limiting random process is the standard Poisson
process on the interval [0, 1].


