HOMEWORK: CONVERGENCE OF RANDOM
VARIABLES AND CHARACTERISTIC FUNCTIONS

1. LEVY’S CRITERION OF CONVERGENCE IN LAW

In this part, (X,).en is a sequence of real random variables; their laws in .#Z'(R) are
denoted ,,, and their characteristic functions are denoted ¢, (t) = u, (e™®) = E[el*¥=].

(1) Show that for any real valued random variable X, the characteristic function
$(t) = E[e™™] is a continuous function R — C.

In the following we suppose that (¢, )nen converges pointwise to a function ¢ : R — C
which is continuous at t = 0:

Vi ER, lim 6.(t) = o(t) (1)
and  lim 6(t) = 6(0) = 1. (2)

Questions 2. to 4. deal with the tightness of the sequence of probability measures (i, )nen
under these hypotheses; Questions 5. to 8. deal with the unicity of a limit of a subse-
quence.

(2) Using Fubini’s theorem, show that for any law u € .#'(R) of characteristic func-
tion ¢, and any € > 0,

L= /_1(1 — b)) dt = 26/R (1 - Sin;;x)) p(dz).

Show that if |ex| > 2, then 1 — % > % Deduce from it the inequality

plfr, Jerl > 2)) < =

(3) Fix > 0. Under the hypotheses (1) and (2), show that there is an ¢ > 0 and an
integer N such that

Conclude that (1) and (2) imply the tightness of the sequence of laws (i, )nen-

(4) Show that ¢ is the characteristic function of a law u € .#*(R) (hint: use a
convergent subsequence of (fi,)nen)-

(5) Let o and v be two probability measures with characteristic functions ¢, and ¢,.
Prove the Parseval identity

/ 12 5, (@) v(do) / Dy — 1) p(dy). 3)
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(6) Take v = N(0,¢), a Gaussian law of variance ¢ with density and characteristic

function
1

\2me

Denote X a random variable under the law p, and Y.-1 an independent random
variable under the law A(0,&e7!). Prove that the quantity of Equation (3), viewed
as a function D(e,t) of ¢ and t, is proportional to the density (in ) of the law of
X+Y 1.

ct?

22
e 2 dx ; o (t)=e" 2.

v(dx) =

(7) Verify that Y.-1 converges in probability to the constant 0 as £ goes to infinity,
and that X +Y.-1 — X.

(8) Show that if ¢, is known, then so is the law p, so that u +— ¢, is injective.

(9) Conclude that under the hypotheses (1) and (2), the laws p,, converge to a law p
of a random variable (for the topology of convergence in law in .#'(R)). This is
Lévy’s continuity theorem.

(10) Show the converse implication: if p,, — p, then (1) and (2) hold with ¢, = ¢.
(11) Application: let B,, be a sequence of independent random Bernoulli variables with
P[B, =1] =X and P[B, = 0] = 1 — 1. Recall that >_;_, + =logn+O(1). We set
MU (S0, B — logn
" Viogn 7 Viogn '

X, =
Show that

E[eitfn]—ﬁ Lt Lo 2 . £
_k:1 2klogn k2 logn = k(logn)32) )’

with a O(-) uniform in k. Conclude that X, converges in law to a standard
Gaussian variable.

Notice that X,, is a model for the number of disjoint cycles of a random permutation
of n elements.

2. MOD-CONVERGENCE AND BERRY-ESSEEN ESTIMATES

Lévy’s criterion is mostly used in order to prove convergence towards a Gaussian random
variable. In this second part we measure the difference between the distribution of the
X,,’s and the Gaussian distribution under slightly stronger hypotheses than before. Hence,
we consider a sequence of real-valued random variables (Y},),en such that

VneN, VteR, E[e"] = ¢u(t) = e % 4 (t); (4)
Ap >0, lim \, = +o0; (5)
nhjEO v, =1  at speed 0(\/1/\_n> : (6)

In Equation (4), we call the functions 1, (t) the residues of the characteristic functions
¢n(t). We assume that they are continuously differentiable functions on the real line, and
that v,, converge uniformly and sufficiently fast on every compact to the function ¢, which



is itself continuously differentiable (and with ¢,,(0) = ¢ (0) = 1); this is the meaning of
Equation (6). So,

(1)

(2)

Hence,

€
Ve >0, VI'>0, AN, Vn> N, sup [U,(t) —u(t)] < :
S [¢n(t) = (1)] o
Set X, = Y,,/v/An. Show that X,, converges in law to a standard Gaussian variable
of mean 0 and variance 1. For this reason, Hypotheses (4)-(6) are called hypotheses
of mod-Gaussian convergence.

For two probability measures 1 and v on R, one defines their Kolmogorov distance
as

d(p,v) = sup [F, () — F ()],

z€R

where F),(z) is the cumulative distribution function of y, that is u(—oo, x). Prove
that if p is absolutely continuous with respect to the Lebesgue measure, then

fin = pt = d(fin, 1) — 0.

One can use freely Dini’s theorem, which says that bounded increasing functions
that converge pointwise converge in fact uniformly (optional: prove Dini’s theo-
rem).

in the following, we shall measure the convergence X,, — N(0,1)) by computing

d(ManMO,An)> = d(#XnaMO,l))‘ For T' > 07 we set

1 —cos(Tx
Ar(w) = 7TT$<2 )

Questions 3. to 5. are devoted to a proof of Berry’s lemma, which relates the Kolmogorov
distance to the behavior of characteristic functions. Then, in Questions 6. to 8., we apply
this lemma to the situation of mod-convergence.

(3)

(4)

Fix T'> 0. Show that Ap(z) > 0 for all z € R; that [, Ap(x) dx = 1; and that

_ . e <
Belt) = [ Ar(w)etda = {1 r <7,
R

0 otherwise.

Show also that the probability measure Ar(x)dz gives to the set {z, |z| > h} a

mass smaller than —%-.
7Th

Let F' be the cumulative distribution function of a probability measure, and G be
a bounded function with

lim G(z)=0 ; lmGx)=1 ; |G'(x)<m
T—00

T—r—00

for a certain constant m. We denote

D)= F(z)—G(x) : Dp(x)= / D(z — y) Arly) dy:
7 = sup |D(x)] ; = sup |Dr(x)|.

If n = 0, show that ny = 0. Otherwise, we fix an element xy such that |D(z¢)| = n;
for instance we assume D(z9) = 7. Show that if h = ;- and & = x¢ + h, then

D(x —y) > g—i—my for all |y| < h.



Prove then that

o 1m
=9 7T

(distinguish the cases n = 0 and 1 > 0, and in this case split the integral Dr(x)
in two parts).

(5) Suppose that F' = F}, and G have characteristic functions
ou(t) = / " u(dr) ;o palt) = /eim g(x)dx =79g(t) with g=G".
R R

Using Fourier inversion formula f(z) = 5= [, F(t) e " dt, prove that

Dr(o) = 5 [ Bate) (220 oo

T on ¢

1 (T ¢ut) — palt 24
US—/ M‘dt slly (7)
T J_r t il
This last inequality is Berry’s lemma.
(6) Under the hypotheses (4)-(6), show that
: t2 ,(O) t t
t:E ltXn:—? 1+¢ _|_ )
) = Bl = (14 0 4 o
Prove also that e_é (1 + w\//(/(\i)t) is the Fourier transform of
e_é Y'(0) im)
n(x) = 1-— )
gn(@) = = ( oW
We set Gp(x) = [*__ gn(y) dy; check that this function satisfies the previous as-
sumptions.

(7) In the previous setting, prove that

M = sup |F,, (2) — Gu(z)] = 0<L>

z€R V )\n
(hint: take T'= K+/\, with K big, and split the integral in (7) in two parts
t€[—evV A, eV

t € [FE VA KV [=ev/ A e/

with e sufficiently small).
(8) Assuming v’(0) # 0, show that

L, Ny — @O0+ o(1)

21\,

(9) Optional: apply this result to the example of 1.(11).
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