1. LÉVY'S CRITERION OF CONVERGENCE IN LAW

(1) For every $t \in \mathbb{R}, \omega \in \Omega \mapsto \mathrm{e}^{\mathrm{i} t X(\omega)}$ is measurable and bounded in module by 1 , whence integrable, so $\phi(t)=\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t X(\omega)}\right]$ is well-defined. Then, for every t_{0} fixed in \mathbb{R},

$$
\lim _{t \rightarrow t_{0}} \mathrm{e}^{\mathrm{i} t X}=\mathrm{e}^{\mathrm{i} t_{0} X}
$$

almost surely, and all these random variables have real and imaginary part uniformly bounded by 1. By Lebesgue dominated convergence,

$$
\lim _{t \rightarrow t_{0}} \phi(t)=\lim _{t \rightarrow t_{0}} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} t X}\right]=\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t_{0} X}\right]=\phi\left(t_{0}\right)
$$

so ϕ is continuous on \mathbb{R}.
(2) All the functions considered are measurable on $\mathbb{R} \times[-\varepsilon, \varepsilon]$ and uniformly bounded, and integrated against a finite measure, namely, $\mu \otimes d t$. So, one can use freely Fubini's theorem to compute:

$$
\begin{aligned}
I_{\varepsilon} & =\int_{-\varepsilon}^{\varepsilon}(1-\phi(t)) d t=\iint_{\mathbb{R} \times[-\varepsilon, \varepsilon]}\left(1-\mathrm{e}^{\mathrm{i} t x}\right) \mu(d x) d t \\
& =\int_{\mathbb{R}}\left(2 \varepsilon-\frac{2 \sin (\varepsilon x)}{x}\right) \mu(d x)=2 \varepsilon\left(\int_{\mathbb{R}}\left(1-\frac{\sin (\varepsilon x)}{\varepsilon x}\right) \mu(d x)\right) .
\end{aligned}
$$

Set $y=\varepsilon x$; for $|y| \geq 2$, one has indeed

$$
\frac{\sin y}{y} \leq \frac{|\sin y|}{2} \leq \frac{1}{2} \quad ; \quad 1-\frac{\sin (\varepsilon x)}{\varepsilon x} \geq \frac{1}{2}
$$

Therefore,

$$
\begin{aligned}
& \frac{I_{\varepsilon}}{2 \varepsilon} \geq \int_{\mathbb{R}}\left(1-\frac{\sin (\varepsilon x)}{\varepsilon x}\right) \mathbf{1}_{|\varepsilon x| \geq 2} \mu(d x) \geq \frac{1}{2} \int_{\mathbb{R}} \mathbf{1}_{|\varepsilon x| \geq 2} \mu(d x) \\
& \frac{I_{\varepsilon}}{\varepsilon} \geq \mu(\{x| | \varepsilon x \mid \geq 2\})
\end{aligned}
$$

(3) Let $\eta>0$. By continuity at 0 of $\phi,|1-\phi(t)|=|\phi(0)-\phi(t)| \leq \frac{\eta}{3}$ for t small enough, say smaller than some $\varepsilon>0$. Then,

$$
\frac{I_{\varepsilon}}{\varepsilon} \leq \frac{1}{\varepsilon} \int_{-\varepsilon}^{\varepsilon} \frac{\eta}{3} d t=\frac{2 \eta}{3}
$$

By Lebesgue dominated convergence,

$$
\lim _{n \rightarrow \infty} \frac{I_{\varepsilon, n}}{\varepsilon}=\frac{I_{\varepsilon}}{\varepsilon}
$$

so for N big enough and all $n \geq N$,

$$
\frac{I_{\varepsilon, n}}{\varepsilon} \leq \frac{3 I_{\varepsilon}}{2 \varepsilon} \leq \eta
$$

By Question (2), this implies that for all $n \geq N$,

$$
\mu_{n}\left(\left(-2 \varepsilon^{-1}, 2 \varepsilon^{-1}\right)^{\mathrm{c}}\right) \leq \eta
$$

By decreasing the value of ε, one can also assume that this is true for the n 's smaller than N (there is only a finite number of measures to consider). Thus, for every $\eta>0$, there is a relatively compact set (bounded interval) in \mathbb{R} with complementary of measure smaller than η for all measure in $\left(\mu_{n}\right)_{n \in \mathbb{N}}$; i.e., there is tightness.
(4) The sequence of measures $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ is tight, hence relatively compact; let $\left(\mu_{\psi(n)}\right)_{n \in \mathbb{N}}$ be a convergent subsequence, and μ its limit. For every $t, x \mapsto \mathrm{e}^{\mathrm{i} t x}$ is a continuous bounded function,

$$
\mu\left(\mathrm{e}^{\mathrm{i} t x}\right)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} t x} \mu(d x)=\lim _{n \rightarrow \infty} \mu_{\psi(n)}\left(\mathrm{e}^{\mathrm{i} t x}\right)=\lim _{n \rightarrow \infty} \phi_{\psi(n)}(t)=\phi(t)
$$

Hence, ϕ is indeed the characteristic function of a probability measure on \mathbb{R}.
(5) Again, $\mu \otimes \nu$ is a finite measure on $\mathbb{R} \times \mathbb{R}$, and the functions under consideration are bounded, so one can use Fubini's theorem.

$$
\begin{aligned}
\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} t x} \phi_{\mu}(x) \nu(d x) & =\iint_{\mathbb{R} \times \mathbb{R}} \mathrm{e}^{-\mathrm{i} t x} \mathrm{e}^{\mathrm{i} y x} \mu(d y) \nu(d x) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}(y-t) x} \nu(d x)\right) \mu(d y) \\
& =\int_{\mathbb{R}} \phi_{\nu}(y-t) \mu(d y) .
\end{aligned}
$$

(6) Let f be a bounded non-negative continuous function on \mathbb{R}. One has

$$
\begin{aligned}
\int_{\mathbb{R}} f(t) D(\varepsilon, t) d t & =\iint_{\mathbb{R}^{2}} f(t) \mathrm{e}^{-\frac{\varepsilon(t-y)^{2}}{2}} \mu(d y) d t \\
& =\iint_{\mathbb{R}^{2}} f(x+y) \mathrm{e}^{-\frac{\varepsilon x^{2}}{2}} \mu(d y) d x \\
& =\sqrt{2 \pi \varepsilon^{-1}} \iint_{\mathbb{R}^{2}} f(x+y) \mu(d y) \nu_{\varepsilon^{-1}}(d x) \\
& =\sqrt{2 \pi \varepsilon^{-1}} \mathbb{E}\left[f\left(X+Y_{\varepsilon^{-1}}\right)\right] .
\end{aligned}
$$

(7) For every interval $(-\eta, \eta)$ around 0 ,

$$
\mathbb{P}\left[Y_{\varepsilon^{-1}} \in(-\eta, \eta)^{\mathrm{c}}\right] \leq \frac{\mathbb{E}\left[\left(Y_{\varepsilon^{-1}}\right)^{2}\right]}{\eta^{2}}=\frac{1}{(\varepsilon \eta)^{2}} \rightarrow 0
$$

so one has indeed $Y_{\varepsilon^{-1}} \rightarrow_{\mathbb{P}} 0$. As a consequence, the pair $\left(X, Y_{\varepsilon^{-1}}\right)$ converge in probability to $(X, 0)$, and also in law. Since convergence in law is compatible with composition by continuous functions,

$$
X+Y_{\varepsilon^{-1}} \rightharpoonup X+0=X
$$

(8) Suppose ϕ_{μ} known. Then, for every $\varepsilon>0$ and every bounded continuous function f,

$$
\mathbb{E}\left[f\left(X+Y_{\varepsilon^{-1}}\right)\right]=\frac{1}{\sqrt{2 \pi \varepsilon^{-1}}} \int_{\mathbb{R}} f(t) D(\varepsilon, t) d t=\frac{1}{\sqrt{2 \pi \varepsilon^{-1}}} \iint_{\mathbb{R}^{2}} \mathrm{e}^{-\mathrm{i} t x} \phi_{\mu}(x) \nu_{\varepsilon}(d x) d t
$$

is also known, since it can be computed from f and ϕ_{μ}. Taking the limit as ε goes to infinity, one gets back $\mathbb{E}[f(X)]$ by the previous Question, that is to say $\mu(f)$. So, ϕ_{μ} determines $\mu(f)$ for every $f \in \mathscr{C}^{b}(\mathbb{R})$, and therefore μ by classical arguments of measure theory.
(9) We have seen that $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ was tight under the hypotheses of Lévy's criterion, and the limit of a convergent subsequence $\left(\mu_{\psi(n)}\right)_{n \in \mathbb{N}}$ is by the previous Question the unique probability measure μ such that $\phi(t)=\mu\left(\mathrm{e}^{\mathrm{i} t x}\right)$. Therefore, $\mu_{n} \rightharpoonup \mu$.
(10) This is clear since $(t, x) \mapsto \mathrm{e}^{\mathrm{i} t x}$ is a continuous bounded function.
(11) The characteristic function of $Y_{k}=B_{k}-\frac{1}{k}$ is

$$
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t Y_{k}}\right]=\mathrm{e}^{-\frac{\mathrm{i} t}{k}} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} t B_{k}}\right]=\left(1+\frac{\mathrm{e}^{\mathrm{i} t}-1}{k}\right) \mathrm{e}^{-\frac{\mathrm{i} t}{k}}
$$

Therefore, since the Y_{k} 's are independent,

$$
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t \widetilde{X}_{n}}\right]=\prod_{k=1}^{n}\left(1+\frac{\mathrm{e}^{\frac{\mathrm{i} t}{\sqrt{\log n}}-1}}{k}\right) \mathrm{e}^{-\frac{\mathrm{i} t}{k \sqrt{\log n}}}
$$

The Taylor expansion of each term $T_{k}(t)$ is

$$
\begin{aligned}
& \left(1+\frac{1}{k}\left(\frac{\mathrm{i} t}{\sqrt{\log n}}-\frac{t^{2}}{2 \log n}+O\left(\frac{t^{3}}{(\log n)^{3 / 2}}\right)\right)\right)\left(1-\frac{\mathrm{i} t}{k \sqrt{\log n}}+O\left(\frac{t^{2}}{k^{2} \log n}\right)\right) \\
& =1-\frac{t^{2}}{2 k \log n}+O\left(\frac{t^{2}}{k^{2} \log n}+\frac{t^{3}}{k(\log n)^{3 / 2}}\right),
\end{aligned}
$$

with a O that is uniform because it comes only from the Taylor expansion around 0 of the exponential. So,

$$
\begin{aligned}
\log \mathbb{E}\left[\mathrm{e}^{\mathrm{i} t \widetilde{X}_{n}}\right] & =\sum_{k=1}^{n} \log \left(1-\frac{t^{2}}{2 k \log n}+O\left(\frac{t^{2}}{k^{2} \log n}+\frac{t^{3}}{k(\log n)^{3 / 2}}\right)\right) \\
& =\sum_{k=1}^{n}-\frac{t^{2}}{2 k \log n}+O\left(\frac{t^{4}}{k^{4}(\log n)^{2}}+\frac{t^{2}}{k^{2} \log n}+\frac{t^{3}}{k(\log n)^{3 / 2}}\right) \\
& =-\frac{t^{2}}{2}+O\left(\frac{t^{2}}{\log n}+\frac{t^{4}}{(\log n)^{2}}+\frac{t^{3}}{(\log n)^{1 / 2}}\right)=-\frac{t^{2}}{2}+o(1)
\end{aligned}
$$

since $\sum_{k=1}^{n} \frac{1}{k^{2}}$ and $\sum_{k=1}^{n} \frac{1}{k^{4}}$ are convergent. So, $\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t \widetilde{X}_{n}}\right]$ converges pointwise to $\mathrm{e}^{-\frac{t^{2}}{2}}$, and since $X_{n}-\widetilde{X}_{n}$ is a deterministic $O\left((\log n)^{-1 / 2}\right)$, the same is true for $\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t X_{n}}\right]$. As $\mathrm{e}^{-\frac{t^{2}}{2}}$ is the characteristic function of a standard Gaussian, the central limit theorem for X_{n} is proven.

2. Mod-convergence and Berry-Esseen estimates

(1) By hypothesis, for t fixed,

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t X_{n}}\right] & =\phi_{n}\left(\frac{t}{\sqrt{\lambda_{n}}}\right)=\mathrm{e}^{-\frac{t^{2}}{2}} \psi_{n}\left(\frac{t}{\sqrt{\lambda_{n}}}\right) \\
& =\mathrm{e}^{-\frac{t^{2}}{2}}\left(\psi\left(\frac{t}{\sqrt{\lambda_{n}}}\right)+o\left(\frac{1}{\sqrt{\lambda_{n}}}\right)\right) \\
& =\mathrm{e}^{-\frac{t^{2}}{2}}\left(\psi(0)+o\left(\frac{1}{\sqrt{\lambda_{n}}}\right)\right) \rightarrow \mathrm{e}^{-\frac{t^{2}}{2}} .
\end{aligned}
$$

By Lévy criterion of convergence in law, $X_{n} \rightharpoonup \mathcal{N}_{(0,1)}$.
(2) Suppose $\mu_{n} \rightharpoonup \mu$. Since μ is supposed absolutely continuous w.r.t. Lebesgue measure, each interval $I=(-\infty, x)$ is a continuity set for μ :

$$
\mu\left(I^{0}\right)=\mu(I) \quad \text { as } I^{0}=I \quad ; \quad \mu(\bar{I})=\mu(I)+\mu(\{x\})=\mu(I) \quad \text { since } \mu(\{x\})=0
$$

Therefore, by Portmanteau's theorem, $\lim _{n \rightarrow \infty} \mu_{n}(-\infty, x)=\mu(-\infty, x)$, so $F_{\mu_{n}}$ converges pointwise to F_{μ}. By Dini's theorem, since the cumulative functions are non-decreasing functions bounded from above by 1 and from below by 0 , this is in fact a uniform convergence, so

$$
d\left(\mu_{n}, \mu\right)=\sup _{x \in \mathbb{R}}\left|F_{\mu_{n}}(x)-F_{\mu}(x)\right| \rightarrow 0 .
$$

Conversely, suppose $d\left(\mu_{n}, \mu\right) \rightarrow 0$, and consider an open set $U \subset \mathbb{R}$. It can be written as a countable union of disjoint open intervals: $U=\bigsqcup_{k \in \mathbb{N}}\left(a_{k}, b_{k}\right)$. Therefore,

$$
\mu(U)=\sum_{k \in \mathbb{N}} \mu\left(a_{k}, b_{k}\right)=\sum_{k=0}^{\infty} F_{\mu}\left(b_{k}\right)-F_{\mu}\left(a_{k}\right),
$$

using for the second equality the fact that $\mu\left(\left\{a_{k}\right\}\right)=0$ for all k. Fix $\varepsilon>0$, and K such that

$$
\sum_{k=0}^{K} F_{\mu}\left(b_{k}\right)-F_{\mu}\left(a_{k}\right) \geq \mu(U)-\varepsilon
$$

By continuity of F_{μ}, one can then choose $\eta>0$ such that

$$
\sum_{k=0}^{K} F_{\mu}\left(b_{k}\right)-F_{\mu}\left(a_{k}+\eta\right) \geq \mu(U)-2 \varepsilon
$$

notice that $\bigsqcup_{k=0}^{K}\left[a_{k}+\eta, b_{k}\right) \subset U$. Since $F_{\mu_{n}}$ converges to F_{μ}, one has then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \mu_{n}(U) & \geq \liminf _{n \rightarrow \infty}\left(\sum_{k=0}^{K} \mu_{n}\left(\left[a_{k}+\eta, b_{k}\right)\right)\right)=\liminf _{n \rightarrow \infty}\left(\sum_{k=0}^{K} F_{\mu_{n}}\left(b_{k}\right)-F_{\mu_{n}}\left(a_{k}+\eta\right)\right) \\
& \geq \mu(U)-2 \varepsilon
\end{aligned}
$$

It is true for every $\varepsilon>0$, so $\liminf _{n \rightarrow \infty} \mu_{n}(U) \geq \mu(U)$, and by Portmanteau's theorem $\mu_{n} \rightharpoonup \mu$.
(3) The positivity of Δ_{T} is obvious since $1 \geq \cos T x$. Notice then that the function $x \mapsto \frac{1-\cos T x}{\pi T x^{2}}$ is in $\mathscr{L}^{1}(\mathbb{R}) \cap \mathscr{L}^{2}(\mathbb{R})$ (it is continuous and bounded by $\frac{1}{x^{2}}$ at infinity). Therefore, it is the inverse Fourier transform of its Fourier transform. So, it is equivalent to prove

$$
\widehat{\Delta_{T}}(t)=\mathbf{1}_{|t| \leq T}\left(1-\frac{|t|}{T}\right)
$$

and to prove that

$$
\Delta_{T}(x)=\frac{1}{2 \pi} \int_{-T}^{T}\left(1-\frac{|t|}{T}\right) \mathrm{e}^{-\mathrm{i} t x} d t
$$

This integral is easily computed:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-T}^{T}\left(1-\frac{|t|}{T}\right) \mathrm{e}^{-\mathrm{i} t x} d t & =\frac{1}{2 \pi}\left[\frac{\mathrm{e}^{-\mathrm{i} t x}}{-\mathrm{i} x}\right]_{-T}^{T}+\frac{1}{2 \pi T} \int_{-T}^{0} t \mathrm{e}^{-\mathrm{i} t x} d t-\frac{1}{2 \pi T} \int_{0}^{T} t \mathrm{e}^{-\mathrm{i} t x} d t \\
& =\frac{\sin T x}{\pi x}+\frac{1}{2 \pi T}\left(\left[\frac{t \mathrm{e}^{-\mathrm{i} t x}}{-\mathrm{i} x}\right]_{-T}^{0}-\left[\frac{t \mathrm{e}^{-\mathrm{i} t x}}{-\mathrm{i} x}\right]_{0}^{T}\right) \\
& +\frac{1}{2 \pi T}\left(\int_{-T}^{0} \frac{\mathrm{e}^{-\mathrm{i} t x}}{\mathrm{i} x} d t-\int_{0}^{T} \frac{\mathrm{e}^{-\mathrm{i} t x}}{\mathrm{i} x} d t\right) \\
& =\frac{1}{2 \pi T x^{2}}\left(\left[\mathrm{e}^{-\mathrm{i} t x}\right]_{-T}^{0}-\left[\mathrm{e}^{-\mathrm{i} t x}\right]_{0}^{T}\right)=\frac{1-\cos T x}{\pi T x^{2}}
\end{aligned}
$$

We have then computed the Fourier transform of Δ_{T}, and in particular,

$$
\int_{\mathbb{R}} \Delta_{T}(x) d x=\widehat{\Delta_{T}}(0)=1
$$

Finally, set $h>0$. The mass of $(-h, h)^{c}$ is smaller than

$$
\frac{2}{\pi T} \int_{h}^{\infty} \frac{1-\cos T x}{x^{2}} d x \leq \frac{2}{\pi T} \int_{h}^{\infty} \frac{2}{x^{2}} d x=\frac{4}{\pi T h}
$$

(4) If $\eta=0$, then $F=G, D=F-G=0$, and so is its convolution by Δ_{T} :

$$
D_{T}(x)=\int_{\mathbb{R}} D(x-y) \Delta_{T}(y) d y=\int_{\mathbb{R}} 0 d y=0 \quad \Rightarrow \quad \eta_{T}=0
$$

Suppose $\eta>0$ and fix x_{0} such that $D\left(x_{0}\right)=\eta$. Since F is increasing and G is Lipschitz with constant m, for every $|y| \leq \frac{\eta}{2 m}$,

$$
\begin{aligned}
D(x-y) & =F(x-y)-G(x-y) \\
& \geq F\left(x_{0}\right)-G\left(x_{0}\right)-m\left(x-y-x_{0}\right)=\eta-m h+m y=\frac{\eta}{2}+m y
\end{aligned}
$$

Then,

$$
\begin{aligned}
\eta_{T} & \geq D_{T}(x)=\int_{\mathbb{R}} D(x-y) \Delta_{T}(y) d y \\
& \geq-\eta \int_{(-h, h)^{c}} \Delta_{T}(y) d y+\int_{(-h, h)}\left(\frac{\eta}{2}+m y\right) \Delta_{T}(y) d y \\
& \geq-\eta \int_{(-h, h)^{c}} \Delta_{T}(y) d y+\frac{\eta}{2} \int_{(-h, h)} \Delta_{T}(y) d y \quad \text { since } y \Delta_{T}(y) \text { is odd; } \\
& \geq \frac{\eta}{2}-\frac{3 \eta}{2} \int_{(-h, h)^{c}} \Delta_{T}(y) d y \\
& \geq \frac{\eta}{2}-\frac{6 \eta}{\pi T h}=\frac{\eta}{2}-\frac{12 m}{\pi T}
\end{aligned}
$$

The inequality is also trivially true when $\eta=0$.
(5) Recall that the Fourier transform of a convolution is the product of Fourier transforms:

$$
\begin{aligned}
(\widehat{a * b})(t) & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} a(x-y) b(y) d y\right) \mathrm{e}^{\mathrm{i} t x} d x \\
& =\iint_{\mathbb{R} \times \mathbb{R}}\left(a(x-y) \mathrm{e}^{\mathrm{i} t(x-y)} d x\right)\left(b(y) \mathrm{e}^{\mathrm{i} t y} d y\right)=\widehat{a}(t) \widehat{b}(t)
\end{aligned}
$$

We use this result with $a=D$ and $b=\Delta_{T}$, after a Fourier inversion of D_{T} (we have the right to do so, since a and b are both in $\mathscr{L}^{1}(\mathbb{R}) \cap \mathscr{L}^{2}(\mathbb{R})$):

$$
\begin{aligned}
D_{T}(x) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \widehat{D_{T}}(t) \mathrm{e}^{-\mathrm{i} t x} d t \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \widehat{D}(t) \widehat{\Delta_{T}}(t) \mathrm{e}^{-\mathrm{i} t x} d t \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}}(\widehat{F}(t)-\widehat{G}(t)) \widehat{\Delta_{T}}(t) \mathrm{e}^{-\mathrm{i} t x} d t
\end{aligned}
$$

Notice then that $\widehat{a^{\prime}}(t)=-\mathrm{i} t \widehat{a}(t)$ by integration by parts:

$$
\widehat{a^{\prime}}(t)=\int_{\mathbb{R}} a^{\prime}(x) \mathrm{e}^{\mathrm{i} t x} d x=-\mathrm{i} t \int_{\mathbb{R}} a(x) \mathrm{e}^{\mathrm{i} t x} d x=-\mathrm{i} t \widehat{a}(t)
$$

Therefore,

$$
\begin{aligned}
\widehat{F}(t)-\widehat{G}(t) & =\frac{\widehat{\mu}(t)-\widehat{g}(t)}{-\mathrm{i} t}=\frac{\phi_{\mu}(t)-\phi_{G}(t)}{-\mathrm{i} t} ; \\
D_{T}(x) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \widehat{\Delta_{T}}(t)\left(\frac{\phi_{\mu}(t)-\phi_{G}(t)}{-\mathrm{i} t}\right) \mathrm{e}^{-\mathrm{i} t x} d t \\
& \left.\leq \frac{1}{2 \pi} \int_{\mathbb{R}}\left|\widehat{\Delta_{T}}(t)\right| \frac{\phi_{\mu}(t)-\phi_{G}(t)}{t} \right\rvert\, d t \\
& \leq \frac{1}{2 \pi} \int_{-T}^{T}\left|\frac{\phi_{\mu}(t)-\phi_{G}(t)}{t}\right| d t .
\end{aligned}
$$

This is true for every x, so η_{T} has the same bound, and then

$$
\eta \leq 2 \eta_{T}+\frac{24 m}{\pi T} \leq \frac{1}{\pi} \int_{-T}^{T}\left|\frac{\phi_{\mu}(t)-\phi_{G}(t)}{t}\right| d t+\frac{24 m}{\pi T}
$$

(6) We calculate

$$
\begin{aligned}
\phi_{\mu_{n}}(t)=\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t X_{n}}\right] & =\mathbb{E}\left[\mathrm{e}^{\mathrm{i} t Y_{n}} / \sqrt{\lambda_{n}}\right]=\mathrm{e}^{-\frac{t^{2}}{2}} \psi_{n}\left(\frac{t}{\sqrt{\lambda_{n}}}\right) \\
& =\mathrm{e}^{-\frac{t^{2}}{2}}\left(\psi\left(\frac{t}{\sqrt{\lambda_{n}}}\right)+O\left(\frac{t}{\sqrt{\lambda_{n}}}\right) o\left(\frac{1}{\sqrt{\lambda_{n}}}\right)\right)
\end{aligned}
$$

since one has uniform convergence $\psi_{n} \rightarrow \psi$ at speed $o\left({\sqrt{\lambda_{n}}}^{-1}\right)$ if the argument $t / \sqrt{\lambda_{n}}$ stays bounded. The remainder is a $o\left(\frac{t}{\sqrt{\lambda_{n}}}\right)$; then we can expand ψ in Taylor series to get

$$
\phi_{\mu_{n}}(t)=\mathrm{e}^{-\frac{t^{2}}{2}}\left(1+\frac{\psi^{\prime}(0) t}{\sqrt{\lambda_{n}}}+o\left(\frac{t}{\sqrt{\lambda_{n}}}\right)\right)
$$

Then,

$$
\begin{aligned}
\int_{\mathbb{R}} g_{n}(x) \mathrm{e}^{\mathrm{i} t x} d x & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}\left(1-\frac{\mathrm{i} \psi^{\prime}(0) x}{\sqrt{\lambda_{n}}}\right) \mathrm{e}^{\mathrm{i} t x-\frac{x^{2}}{2}} d x \\
& =\left(1-\frac{\psi^{\prime}(0)}{\sqrt{\lambda_{n}}} \frac{\partial}{\partial t}\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} t x-\frac{x^{2}}{2}} d x\right) \\
& =\left(1-\frac{\psi^{\prime}(0)}{\sqrt{\lambda_{n}}} \frac{\partial}{\partial t}\right) \mathrm{e}^{-\frac{t^{2}}{2}} \\
& =\mathrm{e}^{-\frac{t^{2}}{2}}\left(1+\frac{\psi^{\prime}(0) t}{\sqrt{\lambda_{n}}}\right) .
\end{aligned}
$$

This function is bounded, so the integral $G_{n}(x)$ is indeed m-Lipschitz for a certain constant m. Moreover, one has indeed $G_{n}(+\infty)=1$ and $G_{n}(-\infty)=0$, so Berry's lemma will apply.
(7) Berry's lemma ensures that

$$
\begin{aligned}
\eta_{n} & =\sup _{x \in \mathbb{R}}\left|F_{\mu_{n}}(x)-G_{n}(x)\right| \\
& \leq \frac{1}{\pi} \int_{-K \sqrt{\lambda_{n}}}^{K \sqrt{\lambda_{n}}}\left|\frac{\phi_{\mu_{n}}(t)-\widehat{g_{n}}(t)}{t}\right| d t+\frac{24 m}{\pi K \sqrt{\lambda_{n}}} \\
& \leq \frac{1}{\pi \sqrt{\lambda_{n}}}\left(\int_{\left(-K \sqrt{\lambda_{n}}, K \sqrt{\lambda_{n}}\right) \backslash\left(-\varepsilon \sqrt{\lambda_{n}}, \varepsilon \sqrt{\lambda_{n}}\right)}+\int_{\left(-\varepsilon \sqrt{\lambda_{n}}, \varepsilon \sqrt{\lambda_{n}}\right)}\right)\left|\mathrm{e}^{-\frac{t^{2}}{2}} v\left(\frac{t}{\sqrt{\lambda_{n}}}\right)\right| d t+\frac{24 m}{\pi K \sqrt{\lambda_{n}}}
\end{aligned}
$$

where $v(\cdot)$ is a function going to zero at zero. Fix $\theta>0$, and ε such that $|v(\cdot)|$ is smaller than θ on $(-\varepsilon, \varepsilon)$. The integral on $\left(-\varepsilon \sqrt{\lambda_{n}}, \varepsilon \sqrt{\lambda_{n}}\right)$ is then smaller that

$$
\frac{\theta}{\pi \sqrt{\lambda_{n}}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{t^{2}}{2}} d t \leq \frac{\theta}{\sqrt{\lambda_{n}}}
$$

Fix then K such that $\frac{24 m}{\pi K} \leq \theta$. The third summand in the upper bound is then also smaller than $\frac{\theta}{\sqrt{\lambda_{n}}}$, and on the other hand, $v(\cdot)$ is bounded by some constant $C(K)$ on $(-K, K)$. This leads to

$$
\begin{aligned}
\eta_{n} & \leq \frac{2 \theta}{\sqrt{\lambda_{n}}}+\frac{1}{\pi \sqrt{\lambda_{n}}} \int_{\left(-K \sqrt{\lambda_{n}}, K \sqrt{\lambda_{n}}\right) \backslash\left(-\varepsilon \sqrt{\lambda_{n}}, \varepsilon \sqrt{\lambda_{n}}\right)} C(K) \mathrm{e}^{-\frac{t^{2}}{2}} d t \\
& \leq \frac{2 \theta}{\sqrt{\lambda_{n}}}+\frac{C(K)}{\pi \sqrt{\lambda_{n}}} \int_{\mathbb{R} \backslash\left(-\varepsilon \sqrt{\lambda_{n}}, \varepsilon \sqrt{\lambda_{n}}\right)} \mathrm{e}^{-\frac{t^{2}}{2}} d t \\
& \leq \frac{2 \theta}{\sqrt{\lambda_{n}}}+\frac{C(K) \mathrm{e}^{-\frac{\varepsilon^{2} \lambda_{n}}{2}}}{\pi \varepsilon \lambda_{n}} \leq \frac{3 \theta}{\sqrt{\lambda_{n}}} \text { for } n \text { big enough. }
\end{aligned}
$$

Since this is true for every θ, the estimate $o\left(1 / \sqrt{\lambda_{n}}\right)$ is shown.
(8) The previous Question proves that up to a uniform $o\left(1 / \sqrt{\lambda_{n}}\right)$,

$$
F_{\mu_{n}}(x) \simeq F_{\mathcal{N}_{(0,1)}}(x)+\int_{-\infty}^{x} \frac{-\mathrm{i} \psi^{\prime}(0) y}{\sqrt{\lambda_{n}}} \frac{\mathrm{e}^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} d y=F_{\mathcal{N}_{(0,1)}}(x)+\frac{\mathrm{i} \psi^{\prime}(0)}{\sqrt{2 \pi \lambda_{n}}} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

so

$$
d\left(\mu_{X_{n}}, \mathcal{N}_{(0,1)}\right) \simeq \frac{\left|\operatorname{Im}\left(\psi^{\prime}(0)\right)\right|}{\sqrt{2 \pi \lambda_{n}}} \sup _{x \in \mathbb{R}}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) \simeq \frac{\left|\operatorname{Im}\left(\psi^{\prime}(0)\right)\right|}{\sqrt{2 \pi \lambda_{n}}} .
$$

