
1. Lévy’s criterion of convergence in law

(1) For every t ∈ R, ω ∈ Ω 7→ eitX(ω) is measurable and bounded in module by 1, whence integrable,
so φ(t) = E[eitX(ω)] is well-defined. Then, for every t0 fixed in R,

lim
t→t0

eitX = eit0X

almost surely, and all these random variables have real and imaginary part uniformly bounded
by 1. By Lebesgue dominated convergence,

lim
t→t0

φ(t) = lim
t→t0

E[eitX ] = E[eit0X ] = φ(t0),

so φ is continuous on R.

(2) All the functions considered are measurable on R× [−ε, ε] and uniformly bounded, and integrated
against a finite measure, namely, µ⊗ dt. So, one can use freely Fubini’s theorem to compute:

Iε =

∫ ε

−ε
(1− φ(t)) dt =

∫∫
R×[−ε,ε]

(1− eitx)µ(dx) dt

=

∫
R

(
2ε− 2 sin(εx)

x

)
µ(dx) = 2ε

(∫
R

(
1− sin(εx)

εx

)
µ(dx)

)
.

Set y = εx; for |y| ≥ 2, one has indeed

sin y

y
≤ | sin y|

2
≤ 1

2
; 1− sin(εx)

εx
≥ 1

2
.

Therefore,

Iε
2ε
≥
∫
R

(
1− sin(εx)

εx

)
1|εx|≥2 µ(dx) ≥ 1

2

∫
R
1|εx|≥2 µ(dx)

Iε
ε
≥ µ({x | |εx| ≥ 2}).

(3) Let η > 0. By continuity at 0 of φ, |1− φ(t)| = |φ(0)− φ(t)| ≤ η
3 for t small enough, say smaller

than some ε > 0. Then,
Iε
ε
≤ 1

ε

∫ ε

−ε

η

3
dt =

2η

3
.

By Lebesgue dominated convergence,

lim
n→∞

Iε,n
ε

=
Iε
ε
,

so for N big enough and all n ≥ N ,

Iε,n
ε
≤ 3 Iε

2 ε
≤ η.

By Question (2), this implies that for all n ≥ N ,

µn
(
(−2ε−1, 2ε−1)c

)
≤ η.

By decreasing the value of ε, one can also assume that this is true for the n’s smaller than
N (there is only a finite number of measures to consider). Thus, for every η > 0, there is a
relatively compact set (bounded interval) in R with complementary of measure smaller than η
for all measure in (µn)n∈N; i.e., there is tightness.

(4) The sequence of measures (µn)n∈N is tight, hence relatively compact; let (µψ(n))n∈N be a conver-
gent subsequence, and µ its limit. For every t, x 7→ eitx is a continuous bounded function,

µ(eitx) =

∫
R

eitx µ(dx) = lim
n→∞

µψ(n)(e
itx) = lim

n→∞
φψ(n)(t) = φ(t).

Hence, φ is indeed the characteristic function of a probability measure on R.
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(5) Again, µ ⊗ ν is a finite measure on R × R, and the functions under consideration are bounded,
so one can use Fubini’s theorem.∫

R
e−itx φµ(x) ν(dx) =

∫∫
R×R

e−itxeiyxµ(dy) ν(dx)

=

∫
R

(∫
R

ei(y−t)x ν(dx)

)
µ(dy)

=

∫
R
φν(y − t)µ(dy).

(6) Let f be a bounded non-negative continuous function on R. One has∫
R
f(t)D(ε, t) dt =

∫∫
R2

f(t) e−
ε(t−y)2

2 µ(dy) dt

=

∫∫
R2

f(x+ y) e−
εx2

2 µ(dy) dx

=
√

2πε−1
∫∫

R2

f(x+ y)µ(dy) νε−1(dx)

=
√

2πε−1 E[f(X + Yε−1)].

(7) For every interval (−η, η) around 0,

P[Yε−1 ∈ (−η, η)c] ≤ E[(Yε−1)2]

η2
=

1

(εη)2
→ 0,

so one has indeed Yε−1 →P 0. As a consequence, the pair (X,Yε−1) converge in probability to
(X, 0), and also in law. Since convergence in law is compatible with composition by continuous
functions,

X + Yε−1 ⇀ X + 0 = X.

(8) Suppose φµ known. Then, for every ε > 0 and every bounded continuous function f ,

E[f(X + Yε−1)] =
1√

2πε−1

∫
R
f(t)D(ε, t) dt =

1√
2πε−1

∫∫
R2

e−itx φµ(x) νε(dx) dt

is also known, since it can be computed from f and φµ. Taking the limit as ε goes to infinity,
one gets back E[f(X)] by the previous Question, that is to say µ(f). So, φµ determines µ(f) for
every f ∈ C b(R), and therefore µ by classical arguments of measure theory.

(9) We have seen that (µn)n∈N was tight under the hypotheses of Lévy’s criterion, and the limit of a
convergent subsequence (µψ(n))n∈N is by the previous Question the unique probability measure
µ such that φ(t) = µ(eitx). Therefore, µn ⇀ µ.

(10) This is clear since (t, x) 7→ eitx is a continuous bounded function.

(11) The characteristic function of Yk = Bk − 1
k is

E[eitYk ] = e−
it
k E[eitBk ] =

(
1 +

eit − 1

k

)
e−

it
k .

Therefore, since the Yk’s are independent,

E[eitX̃n ] =

n∏
k=1

(
1 +

e
it√
logn − 1

k

)
e
− it
k
√

logn

The Taylor expansion of each term Tk(t) is(
1 +

1

k

(
it√

log n
− t2

2 log n
+O

(
t3

(log n)3/2

)))(
1− it

k
√

log n
+O

(
t2

k2 log n

))
= 1− t2

2k log n
+O

(
t2

k2 log n
+

t3

k(log n)3/2

)
,



with a O that is uniform because it comes only from the Taylor expansion around 0 of the
exponential. So,

logE[eitX̃n ] =

n∑
k=1

log

(
1− t2

2k log n
+O

(
t2

k2 log n
+

t3

k(log n)3/2

))

=

n∑
k=1

− t2

2k log n
+O

(
t4

k4(log n)2
+

t2

k2 log n
+

t3

k(log n)3/2

)
= − t

2

2
+O

(
t2

log n
+

t4

(log n)2
+

t3

(log n)1/2

)
= − t

2

2
+ o(1)

since
∑n
k=1

1
k2 and

∑n
k=1

1
k4 are convergent. So, E[eitX̃n ] converges pointwise to e−

t2

2 , and since

Xn − X̃n is a deterministic O((log n)−1/2), the same is true for E[eitXn ]. As e−
t2

2 is the charac-
teristic function of a standard Gaussian, the central limit theorem for Xn is proven.

2. Mod-convergence and Berry-Esseen estimates

(1) By hypothesis, for t fixed,

E[eitXn ] = φn

(
t√
λn

)
= e−

t2

2 ψn

(
t√
λn

)
= e−

t2

2

(
ψ

(
t√
λn

)
+ o

(
1√
λn

))
= e−

t2

2

(
ψ(0) + o

(
1√
λn

))
→ e−

t2

2 .

By Lévy criterion of convergence in law, Xn ⇀ N(0,1).

(2) Suppose µn ⇀ µ. Since µ is supposed absolutely continuous w.r.t. Lebesgue measure, each
interval I = (−∞, x) is a continuity set for µ:

µ(I0) = µ(I) as I0 = I ; µ(I) = µ(I) + µ({x}) = µ(I) since µ({x}) = 0.

Therefore, by Portmanteau’s theorem, limn→∞ µn(−∞, x) = µ(−∞, x), so Fµn converges point-
wise to Fµ. By Dini’s theorem, since the cumulative functions are non-decreasing functions
bounded from above by 1 and from below by 0, this is in fact a uniform convergence, so

d(µn, µ) = sup
x∈R
|Fµn(x)− Fµ(x)| → 0.

Conversely, suppose d(µn, µ) → 0, and consider an open set U ⊂ R. It can be written as a
countable union of disjoint open intervals: U =

⊔
k∈N(ak, bk). Therefore,

µ(U) =
∑
k∈N

µ(ak, bk) =

∞∑
k=0

Fµ(bk)− Fµ(ak),

using for the second equality the fact that µ({ak}) = 0 for all k. Fix ε > 0, and K such that
K∑
k=0

Fµ(bk)− Fµ(ak) ≥ µ(U)− ε.

By continuity of Fµ, one can then choose η > 0 such that
K∑
k=0

Fµ(bk)− Fµ(ak + η) ≥ µ(U)− 2ε;

notice that
⊔K
k=0[ak + η, bk) ⊂ U . Since Fµn converges to Fµ, one has then

lim inf
n→∞

µn(U) ≥ lim inf
n→∞

(
K∑
k=0

µn([ak + η, bk))

)
= lim inf

n→∞

(
K∑
k=0

Fµn(bk)− Fµn(ak + η)

)
≥ µ(U)− 2ε.



It is true for every ε > 0, so lim infn→∞ µn(U) ≥ µ(U), and by Portmanteau’s theorem µn ⇀ µ.

(3) The positivity of ∆T is obvious since 1 ≥ cosTx. Notice then that the function x 7→ 1−cosTx
πTx2 is

in L 1(R) ∩L 2(R) (it is continuous and bounded by 1
x2 at infinity). Therefore, it is the inverse

Fourier transform of its Fourier transform. So, it is equivalent to prove

∆̂T (t) = 1|t|≤T

(
1− |t|

T

)
and to prove that

∆T (x) =
1

2π

∫ T

−T

(
1− |t|

T

)
e−itx dt.

This integral is easily computed:

1

2π

∫ T

−T

(
1− |t|

T

)
e−itx dt =

1

2π

[
e−itx

−ix

]T
−T

+
1

2πT

∫ 0

−T
t e−itx dt− 1

2πT

∫ T

0

t e−itx dt

=
sinTx

πx
+

1

2πT

([
t e−itx

−ix

]0
−T
−
[
t e−itx

−ix

]T
0

)

+
1

2πT

(∫ 0

−T

e−itx

ix
dt−

∫ T

0

e−itx

ix
dt

)

=
1

2πTx2

([
e−itx

]0
−T −

[
e−itx

]T
0

)
=

1− cosTx

πTx2
.

We have then computed the Fourier transform of ∆T , and in particular,∫
R

∆T (x) dx = ∆̂T (0) = 1.

Finally, set h > 0. The mass of (−h, h)c is smaller than

2

πT

∫ ∞
h

1− cosTx

x2
dx ≤ 2

πT

∫ ∞
h

2

x2
dx =

4

πTh
.

(4) If η = 0,then F = G, D = F −G = 0, and so is its convolution by ∆T :

DT (x) =

∫
R
D(x− y) ∆T (y) dy =

∫
R

0 dy = 0 ⇒ ηT = 0.

Suppose η > 0 and fix x0 such that D(x0) = η. Since F is increasing and G is Lipschitz with
constant m, for every |y| ≤ η

2m ,

D(x− y) = F (x− y)−G(x− y)

≥ F (x0)−G(x0)−m(x− y − x0) = η −mh+my =
η

2
+my.

Then,

ηT ≥ DT (x) =

∫
R
D(x− y) ∆T (y) dy

≥ −η
∫
(−h,h)c

∆T (y) dy +

∫
(−h,h)

(η
2

+my
)

∆T (y) dy

≥ −η
∫
(−h,h)c

∆T (y) dy +
η

2

∫
(−h,h)

∆T (y) dy since y∆T (y) is odd;

≥ η

2
− 3η

2

∫
(−h,h)c

∆T (y) dy

≥ η

2
− 6η

πTh
=
η

2
− 12m

πT
.

The inequality is also trivially true when η = 0.



(5) Recall that the Fourier transform of a convolution is the product of Fourier transforms:

(â ∗ b)(t) =

∫
R

(∫
R
a(x− y) b(y) dy

)
eitx dx

=

∫∫
R×R

(a(x− y) eit(x−y) dx) (b(y) eity dy) = â(t) b̂(t)

We use this result with a = D and b = ∆T , after a Fourier inversion of DT (we have the right to
do so, since a and b are both in L 1(R) ∩L 2(R)):

DT (x) =
1

2π

∫
R
D̂T (t) e−itx dt

=
1

2π

∫
R
D̂(t) ∆̂T (t) e−itx dt

=
1

2π

∫
R

(
F̂ (t)− Ĝ(t)

)
∆̂T (t) e−itx dt.

Notice then that â′(t) = −it â(t) by integration by parts:

â′(t) =

∫
R
a′(x) eitx dx = −it

∫
R
a(x) eitx dx = −it â(t).

Therefore,

F̂ (t)− Ĝ(t) =
µ̂(t)− ĝ(t)

−it
=
φµ(t)− φG(t)

−it
;

DT (x) =
1

2π

∫
R

∆̂T (t)

(
φµ(t)− φG(t)

−it

)
e−itx dt

≤ 1

2π

∫
R

∣∣∣∆̂T (t)
∣∣∣ ∣∣∣∣φµ(t)− φG(t)

t

∣∣∣∣ dt
≤ 1

2π

∫ T

−T

∣∣∣∣φµ(t)− φG(t)

t

∣∣∣∣ dt.
This is true for every x, so ηT has the same bound, and then

η ≤ 2ηT +
24m

πT
≤ 1

π

∫ T

−T

∣∣∣∣φµ(t)− φG(t)

t

∣∣∣∣ dt +
24m

πT
.

(6) We calculate

φµn(t) = E[eitXn ] = E[eitYn/
√
λn ] = e−

t2

2 ψn

(
t√
λn

)
= e−

t2

2

(
ψ

(
t√
λn

)
+O

(
t√
λn

)
o

(
1√
λn

))
since one has uniform convergence ψn → ψ at speed o(

√
λn
−1

) if the argument t/
√
λn stays

bounded. The remainder is a o
(

t√
λn

)
; then we can expand ψ in Taylor series to get

φµn(t) = e−
t2

2

(
1 +

ψ′(0) t√
λn

+ o

(
t√
λn

))
.

Then, ∫
R
gn(x) eitx dx =

1√
2π

∫
R

(
1− iψ′(0)x√

λn

)
eitx−

x2

2 dx

=

(
1− ψ′(0)√

λn

∂

∂t

)(
1√
2π

∫
R

eitx−
x2

2 dx

)
=

(
1− ψ′(0)√

λn

∂

∂t

)
e−

t2

2

= e−
t2

2

(
1 +

ψ′(0) t√
λn

)
.



This function is bounded, so the integral Gn(x) is indeed m-Lipschitz for a certain constant m.
Moreover, one has indeed Gn(+∞) = 1 and Gn(−∞) = 0, so Berry’s lemma will apply.

(7) Berry’s lemma ensures that

ηn = sup
x∈R
|Fµn(x)−Gn(x)|

≤ 1

π

∫ K
√
λn

−K
√
λn

∣∣∣∣φµn(t)− ĝn(t)

t

∣∣∣∣ dt+
24m

πK
√
λn

≤ 1

π
√
λn

(∫
(−K

√
λn,K

√
λn)\(−ε

√
λn,ε
√
λn)

+

∫
(−ε
√
λn,ε
√
λn)

)∣∣∣∣e− t22 υ( t√
λn

)∣∣∣∣ dt+
24m

πK
√
λn

where υ(·) is a function going to zero at zero. Fix θ > 0, and ε such that |υ(·)| is smaller than θ
on (−ε, ε). The integral on (−ε

√
λn, ε

√
λn) is then smaller that

θ

π
√
λn

∫
R

e−
t2

2 dt ≤ θ√
λn
.

Fix then K such that 24m
πK ≤ θ. The third summand in the upper bound is then also smaller than

θ√
λn

, and on the other hand, υ(·) is bounded by some constant C(K) on (−K,K). This leads to

ηn ≤
2θ√
λn

+
1

π
√
λn

∫
(−K

√
λn,K

√
λn)\(−ε

√
λn,ε
√
λn)

C(K) e−
t2

2 dt

≤ 2θ√
λn

+
C(K)

π
√
λn

∫
R\(−ε

√
λn,ε
√
λn)

e−
t2

2 dt

≤ 2θ√
λn

+
C(K) e−

ε2λn
2

πελn
≤ 3θ√

λn
for n big enough.

Since this is true for every θ, the estimate o(1/
√
λn) is shown.

(8) The previous Question proves that up to a uniform o(1/
√
λn),

Fµn(x) ' FN(0,1)
(x) +

∫ x

−∞

−iψ′(0) y√
λn

e−
y2

2

√
2π

dy = FN(0,1)
(x) +

iψ′(0)√
2πλn

e−
x2

2 ,

so
d(µXn ,N(0,1)) '

|Im(ψ′(0))|√
2πλn

sup
x∈R

(
e−

x2

2

)
' |Im(ψ′(0))|√

2πλn
.
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