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Abstract. We introduce a new numerical approximation method for functionals of factor credit
portfolio models based on the theory of mod-ϕ convergence andmod-ϕ approximation schemes. The
method can be understood as providing correction terms to the classic Poisson approximation, where
higher order corrections lead to asymptotically better approximations as the number of obligors
increases. We test the model empirically on two tasks: the estimation of risk measures (VaR and ES)
and the computation of CDO tranche prices. We compare it to other commonly used methods –
such as the recursive method, the large deviations approximation, the Chen–Stein method and the
Monte Carlo simulation technique (with and without importance sampling) – and we show that it
leads to more accurate estimates while requiring less computational time.
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1. Introduction

Mod-ϕ convergence [FMN16] is a new notion of convergence for sequences of random variables
which provides a unified framework for the derivation of refinements of classical limit theorems,
such as the central limit theorem, the Berry–Esseen theorem, precise large and moderate deviation
results, local limit theorems and more. The results presented in this paper rely on mod-ϕ approx-
imation schemes, which were first introduced in [BKN14] and [CDMN20], together with many
examples of applications to probability theory, analytic number theory and combinatorics.

The paper is organized as follows. Sections 2 and 3 provide a self-contained introduction to the
main concepts of mod-ϕ convergence and mod-ϕ approximation schemes respectively. Section 4
discusses the application of mod-Poisson approximation schemes to credit portfolio models. The
main result is Theorem 4.1, which states that the total number of portfolio defaults Ln =

∑n
i=1 Yi

converges mod-Poisson conditionally on the mixing factor and can therefore be approximated us-
ing mod-Poisson approximation schemes (ν(r)n )n∈N, where r ≥ 1 is the order of approximation.
Higher orders lead to better asymptotic approximations and can therefore be used to improve ac-
curacy for finite n. The performance of this approximation is empirically tested on two bench-
mark applications – the estimation of risk measures in Section 6 and the pricing of synthetic CDO
tranches in Section 7 – and is compared in terms of accuracy and computational time to the fol-
lowing commonly used estimation methods: recursive methodology [HW04, Bra04], the large de-
viations approximation [DDD04], Chen–Stein’s method and the zero-bias transformation method
[EKJK08, EKJ09] and Monte Carlo simulation, with and without importance sampling [GL05].
These methods and the corresponding algorithms are presented in Appendix A. Section 5 presents
the derivation of mod-compound Poisson approximation schemes for the case of portfolio losses
Ln =

∑n
i=1 Zi Yi with conditionally i.i.d. exposures (Zi)ni=1. Section 8 concludes, and Appendices

B, C and D present the detailed proofs of certain theoretical results. In particular, the framework of
mod-ϕ convergence relies on certain combinatorial arguments related to the theory of Möbius in-
version and to the theory of symmetric functions; for this later topic, we refer to [Mac95, Chapter
1], and everything required is recalled in Section D.

2. Mod-ϕ convergence

Given a Z-valued random variable X with probability law µX , we can define its characteristic
function as the Fourier transform of its law:

µ̂X(ξ) = E
[
eiξX

]
=
∑
k∈Z

µX({k}) eikξ, ξ ∈ T := R/2πZ.

Notice that the Fourier transform µ̂X in this case is well-defined on T, because we are assuming X
to be an integer-valued random variable.

If µ is an infinitely divisible distribution on Z, then its Fourier transform admits the following
representation:

µ̂(ξ) = eϕ(ξ), ξ ∈ T,
where ϕ is a periodic function of period 2π, called the Lévy–Khintchine exponent [SVH03] of the
distribution. Infinitely divisible laws will play a fundamental role in mod-ϕ convergence. Two very
important examples are given below.
Example 2.1. (Poisson distribution) LetX be a Poisson randomvariablewith parameter λ, i.e.X ∼
Po (λ). Then, its Lévy–Khintchine exponent is given by:

ϕ(ξ) = λ(eiξ − 1), ξ ∈ T.
Example 2.2. (Compound Poisson distribution) A random variable X follows a compound Pois-
son distribution if it admits the following representation:

X =
N∑
i=1

Zi,
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where (Zi)
∞
i=1 is a family of i.i.d. N-valued random variables distributed like Z, and N is an in-

dependent Poisson random variable with parameter λ. In this case we write X ∼ CPo(λ, Z). If
X ∼ CPo(λ, Z), then its Lévy–Khintchine exponent is given by:

ϕ(ξ) := log
(
E
[
eiξX

])
= λ(µ̂Z(ξ)− 1),

where µ̂Z is the Fourier transform of the law of Z. For N-valued random variables, it turns out
that every infinitely divisible distribution is a compound Poisson distribution: if X is a N-valued
infinitely divisible distribution, then it necessarily follows that there exists a λ > 0 and a N-valued
random variable Z such that X ∼ CPo(λ, Z); see [SVH03, Theorem 3.2].

By Lévy’s continuity theorem [Kal02, Thm. 4.3], knowledge of µ̂X is equivalent to knowledge
of the full probability law µX and limit theorems for probability laws can be derived directly in
Fourier space in terms of pointwise convergence of characteristic functions. For instance, the so-
called law of small numbers (which is a generalization of the original Poisson convergence theorem)
states that if Yi,n, i = 1, . . . , n is a triangular array of independent Bernoulli random variables
with success probabilities pi,n such that

∑n
i=1 pi,n → λ ∈ R and max1≤i≤n pi,n → 0, then Xn :=∑n

i=1 Yi,n converges in law to a random variable Y , with Y ∼ Po (λ).

This convergence can be proved from the pointwise convergence of µ̂Xn to the characteristic
function of Y as n → ∞ (see, for instance, [Dur10, Theorem 3.6.1]). But this limit law can
also be interpreted as a non-asymptotic approximation result, stating that the law of Xn can be
approximated by a Poisson variable with parameter λn =

∑n
i=1 pi,n, which is just a sum of λn

independent Poisson random variables with parameter one. We would expect this approximation
to work well for n→∞, or equivalently for λn →∞.

More generally, given a sequence (Xn)n∈N of Z-valued random variables, we are interested in the
problem of approximating the law µXn of Xn – which might be difficult to compute or simulate
– by a sum Yn of λn i.i.d. copies of a given Z-valued infinitely divisible law with Lévy–Khintchine
exponent ϕ, for λn → ∞. Let us notice that we can make sense of the law of Yn even if λn is not
an integer, by placing oneself in the convolution semigroup of probability measures generated by
ϕ. This approximation problem leads to the following definition:

Definition 2.3 (Mod-ϕ convergence). We say that (Xn)n∈N converges mod-ϕwith parameters (λn)n∈N
and limiting function ψ if λn →∞ and

µ̂Xn(ξ) e
−λnϕ(ξ) = ψn(ξ), ξ ∈ T (1)

with
lim
n→∞

ψn(ξ) = ψ(ξ).

The convergence ψn → ψ usually occurs in a space of continuously derivable functions Cr(T)
endowed with the norm ∥f∥Cr = sup|α|≤r supξ∈T |∂αf(ξ)|. When a sequence (Xn)n∈N converges
mod-ϕ, we can use the functions ψn and ψ to extract precise information about the behavior of
µXn , both asymptotically and non-asymptotically, and to construct good approximations by the
reference infinitely divisible law, as we will see in the next section.

3. Mod-ϕ approximation schemes

The right space to study these approximations turns out to be the Wiener algebra A(T) of abso-
lutely convergent Fourier series on T, which is a Banach algebra under the pointwise product and
the norm

∥µ̂∥A(T) =
∑
n∈Z

|cn(µ̂)|,

where cn(µ̂) :=
∫
T µ̂(ξ) e

−inξ dξ is the n-th Fourier coefficient of µ̂.

Working in the Wiener algebra A(T) is essential for at least two reasons. First of all, the char-
acteristic function µ̂ of a probability law µ always lies in A(T) and its Fourier coefficients satisfy
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cn(µ̂) = µ(n), so that the Wiener algebra norm of µ̂ is actually equal to the total variation norm of
the law µ itself (or twice this norm depending on the chosen convention). This means that good
approximation bounds in the Wiener algebra directly translate into good approximation bounds in
total variation distance.

Second, Wiener’s 1/f theorem guarantees that e−λnϕ(ξ) lies in A(T). This fact, together with
Eq. (1), implies that ψn ∈ A(T) and that it can be thought of as the deconvolution residue of the
law µXn by a sum of λn independent copies of the infinitely divisible reference law with Lévy–
Khintchine exponent ϕ. In other words, we can think of ψn as that element of A(T) that satisfies
the following equation:

µ̂Xn(ξ) = ψn(ξ) e
λnϕ(ξ). (2)

Clearly Equation (2) implies that we can always use the deconvolution residue ψn to reconstruct
µ̂Xn perfectly by pointwise multiplication with the Fourier transform of the reference infinitely
divisible, but in practice ψn might be as hard to compute as µ̂Xn itself. Nevertheless one can con-
struct good approximations for µ̂Xn by substituting ψn in Eq. (2) with another function χn ∈ A(T)
that approximates it sufficiently well on T and that is easier to compute. This leads to the following
definition of mod-ϕ approximation schemes, which was first given in [CDMN20]. In the sequel,
we focus on N-valued random variables, hence non-negative. This choice fits with the application
that we have in mind, namely, the approximation of the distribution of the total loss variable of
a credit portfolio. However, notice that if we were working with variables that can be positive or
negative, then a straightforward extension of our methods to Z-valued random variables exist and
is described in [CDMN20, Example 1.11].

Definition 3.1 (Mod-ϕ approximation scheme of order r). Let (Xn)n∈N be a sequence of N-valued
random variables that converges mod-ϕ with parameters (λn)n∈N. We suppose that ψn admits the fol-
lowing series expansion around zero:

ψn(ξ) = 1 +
∞∑
k=1

bk,n(e
iξ − 1)k.

Then the mod-ϕ approximation scheme of order r for (Xn)n∈N is a sequence of discrete signed measures
(ν

(r)
n )n∈N on Z, such that

ν̂(r)n (ξ) = χ(r)
n (ξ) eλnϕ(ξ), (3)

where χ(r)
n is the polynomial of degree r that approximates ψn around 0 up to order r:

χ(r)
n (ξ) = 1 +

r∑
k=1

bk,n(e
iξ − 1)k.

An explicit formula for the measure ν̂(r)n in terms of λn and of the coefficients bk,n is given in
[CDMN20, Lemma 3.8 and Remark 3.9]. For instance, if ϕ = Po (1) and r = 2, then we have:

ν(2)n (k) =
e−λn (λn)

k

k!

(
1 + b2,n

(
1− 2k

λn
+
k(k − 1)

(λn)2

))
,

so ν(2)n is in this case a perturbation of ν(0)n = Po (λn). In general, the zero-th order approximation
ν
(0)
n corresponds to approximating µXn with a sum of λn i.i.d. copies of the reference infinitely
divisible law, while higher order approximations will correspond to signed measures that approx-
imate the law µXn increasingly well. Let us be a bit more precise on this claim. In a companion
paper [MNV22], we prove that ifXn is a sum of n independent Bernoulli variables with parameters
p1, . . . , pn, then the corresponding approximations ν(r)n satisfy∑

k∈N

|P (Xn = k)− ν(r)n (k)| ≤ A

(
Kσn√
λn

)r+1

, (4)
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with λn =
∑n

i=1 pi, (σn)
2 =

∑n
i=1(pi)

2 and A and K universal constants. The mod-Poisson con-
vergence of such sequences (Xn)n∈N is explained in Theorem 4.1 below. Thus, the quality of the
approximation ν(r)n of µXn indeed increases with the order of approximation r. The results that we
shall present in Sections 6 and 7 are numerical evidences of the general theoretical result (4), and
applications for the study of credit risk models.

In general, the way in which the measures ν(r)n incorporate the information contained in µXn

and in the residue ψn as r increases can also be understood in terms of factorial cumulants.

Definition 3.2 (Factorial cumulant generating function). If X is a N-valued random variable, then
its factorial cumulant generating function (when it exists, which is always the case in this paper) is defined
as

log
(
E
[
(z + 1)X

])
=

∞∑
k=1

1

k!
κk(X) zk, z ∈ C,

and the coefficient κk(X) is called the k-th factorial cumulant ofX .

Example 3.3. If X ∼ Po (λ), then

κk(X) =

{
λ if k = 1,
0 otherwise.

We note that if X is a random variable with law µ, then the coefficients in the expansion of its
Fourier transform µ̂(ξ) in powers of z := (eiξ − 1) are precisely its factorial cumulants, so that the
coefficients of amod-ϕ approximation scheme are naturally related to these quantities. In particular,
the following proposition shows that the measures ν(r)n achieve better approximations by matching
exactly the factorial cumulants of Xn up to order r, while maintaining the factorial cumulants of
the reference infinitely divisible law for all higher orders.

Proposition 3.4. Let (Xn)n∈N be a sequence of N–valued random variables that converges mod-ϕ
with parameters (λn)n∈N, and let (Yn)n∈N follow the reference infinitely divisible laws with exponents
(λnϕ)n∈N. If (ν(r)n )n∈N is a mod-ϕ approximation scheme of order r for (Xn)n∈N and if we denote by
κ
(r)
k,n the k-th factorial cumulant of ν(r)n , then

κ
(r)
k,n =

{
κk(Xn) for k = 1, . . . , r,
κk(Yn) for k ≥ r + 1,

where κk(X) is the k-th factorial cumulant of the random variableX .

Proof. From Equation (2) we compute:

ψn(ξ) = exp

(
∞∑
k=1

1

k!
(κk(Xn)− κk(Yn)) zk

)

= 1 +
∞∑
k=1

1

k!

∑
π∈Π(k)

∏
B∈π

(
κ|B|(Xn)− κ|B|(Yn)

)
zk,

by using the first identity of Theorem C.6 in the last step. Since χ(r)
n approximates ψn up to order

r in powers of z, we have:

log
(
χ(r)
n (ξ)

)
= log

1 +
r∑

k=1

1

k!

∑
π∈Π(k)

∏
B∈π

(
κ|B|(Xn)− κ|B|(Yn)

)
zk

 .
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We can now compute the coefficients of the series expansion of log(χ(r)
n ) in powers of z by using

the second identity of Theorem C.6:

s! [zs] log
(
χ(r)
n (ξ)

)
=
∑
σ∈Π(s)

µ(σ, 1̂s)
∏
D∈σ

∑
π∈Π(|D|)

∏
B∈π

(
κ|B|(Xn)− κ|B|(Yn)

)
1{|B|≤r}

=
∑
σ∈Π(s)

µ(σ, 1̂s)
∑
τ≤σ

∏
B∈τ

(
κ|B|(Xn)− κ|B|(Yn)

)
1{|B|≤r}

=
∑
τ∈Π(s)

∑
σ∈Π(s)

ζ(τ, σ)µ(σ, 1̂s)
∏
B∈τ

(
κ|B|(Xn)− κ|B|(Yn)

)
1{|B|≤r}

=
∑
τ∈Π(s)

δ(τ, 1̂s)
∏
B∈τ

(
κ|B|(Xn)− κ|B|(Yn)

)
1{|B|≤r}

= (κs(Xn)− κs(Yn))1{s≤r}

where we have used the convolution relation ζ ⋆ µ = δ for the Möbius function of the poset Π(s).
We refer the reader to Appendix C for a primer on the Möbius function and its basic properties.

Finally, we can compute the factorial cumulants of the measures ν(r)n by taking logarithms in
Equation (3):

log
(
ν̂(r)n (ξ)

)
=

∞∑
k=1

1

k!
(κk(Yn)) z

k + log
(
χ(r)
n (ξ)

)
=

∞∑
k=1

1

k!
(κk(Yn)) z

k +
r∑

k=1

1

k!
(κk(Xn)− κk(Yn)) zk

=
r∑

k=1

1

k!
(κk(Xn)) z

k +
∞∑

k=r+1

1

k!
(κk(Yn)) z

k.

□

As a particular case of Proposition 3.4, we remark that in the case of mod-Poisson approximation
schemes, the signed measures ν(r)n have all factorial cumulants equal to zero (because the Poisson
distribution itself does) with the exception of the first r cumulants, which exactly match the facto-
rial cumulants of Xn. Since factorial cumulant generating functions fully characterize probability
distributions, Proposition 3.4 also implies that ν(∞)

n = µXn .

Despite the availability of this interpretation in terms of factorial cumulants, the signed mea-
sures ν(r)n are in general difficult to compute, even if we have full knowledge of the coefficients
(bk,n)

r
k=1. Nevertheless, the computation of expectations of functions of these measures can be

done efficiently, as the following proposition shows.

Proposition 3.5. Let (Xn)n∈N be a sequence of N-valued random variables that converges mod-ϕ with
parameters (λn)n∈N, and let (ν(r)n )n∈N be its mod-ϕ approximation scheme of order r. Then, for any
bounded function f : N→ R, the integral of f with respect to ν(r)n is given by:

ν(r)n (f) =
∑
j∈N

f(j) ν(r)n ({j}) = E [f(Yn)] + E [∆n(r, f)(Yn)]

where Yn follows the reference infinitely divisible law with exponent λnϕ, and where the correction term
∆n(r, f) is given by:

∆n(r, f)(j) =
r∑

k=1

bk,n(∆
k
+(f))(j).
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Here,∆k
+ denotes the k-th power of the forward finite difference operator:

(∆k
+(f))(j) =

k∑
l=0

(−1)k−l
(
k

l

)
f(j + l).

Proof. A similar result with functions f ∈ ℓ2(N) is stated in [CDMN20, Proposition 1.12]; in the
sequel, we give a new proof when f is only assumed to be bounded, and at the end we shall even
explain how to extend the result to polynomially bounded functions. Since ν(r)n is a finite signed
measure, it is in ℓ1(N) ⊂ ℓ2(N). On the other hand, for any f, g ∈ ℓ2(N), the Parseval formula
holds: ∑

j∈N

f(j) g(j) =

∫ 2π

0

f̂(ξ) ĝ(ξ)
dξ

2π
.

In particular, if f ∈ ℓ2(N) and g = ν
(r)
n , we obtain:

ν(r)n (f) = ν(0)n (f) +
r∑

k=1

bk,n

(∫ 2π

0

f̂(ξ) (e−iξ − 1)k ν̂(0)n (ξ)
dξ

2π

)
,

where ν̂(0)n (ξ) = eλnϕ(ξ). However, for f ∈ ℓ1(N), we have

f̂(ξ) (e−iξ − 1) =
∑
j∈N

f(j) eijξ(e−iξ − 1)

= f(0) e−iξ +
∑
j∈N

(f(j + 1)− f(j)) eijξ

= f(0) e−iξ + ∆̂+(f)(ξ)

so ∫ 2π

0

f̂(ξ) (e−iξ − 1) ν̂(0)n (ξ)
dξ

2π
= f(0)

∫ 2π

0

eiξ ν̂(0)n (ξ)
dξ

2π
+

∫ 2π

0

∆̂+(f)(ξ) ν̂
(0)
n (ξ)

dξ

2π

= ν(0)n (∆+(f))

since the first integral vanishes ( ν̂(0)n has only positive Fourier coefficients). By an immediate in-
duction, ∫ 2π

0

f̂(ξ) (e−iξ − 1)k ν̂(0)n (ξ)
dξ

2π
= ν(0)n (∆k

+(f))

for any k ≥ 1, whence the result for f ∈ ℓ1(N). So, we have the equality of linear forms on the
space of summable real functions on N:

ν(r)n = ν(0)n ◦

(
id +

r∑
k=1

bk,n∆
k
+

)
.

Consider now a bounded function f : N→ R, and for L ∈ N, denote fL(j) = 1j≤L f(j), which is
in ℓ1(N). Since ν(0)n and ν(r)n are in ℓ1(N), for any sequence of functions (gL)L∈N which are uniformly
bounded by a constant K and such that gL(j) →L→∞ g(j) for any j ∈ N, ν(0)n (gL) →L→∞ ν

(0)
n (g)

and ν(r)n (gL)→L→∞ ν
(r)
n (g) by the dominated convergence theorem. Here, we have obviously

fL(j)→L→∞ f(j);(
fL(j) +

r∑
k=1

bk,n (∆
k
+fL)(j)

)
→L→∞

(
f(j) +

r∑
k=1

bk,n (∆
k
+f)(j)

)
,

so

ν(r)n (f) = lim
L→∞

ν(r)n (fL) = lim
L→∞

ν(0)n

(
fL +

r∑
k=1

bk,n∆
k
+(fL)

)
= ν(0)n

(
f +

r∑
k=1

bk,n∆
k
+(f)

)
.
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Let us remark that the dominated convergence argument works for a larger class of functions: a
sufficient assumption is that (f(j))j∈N and its shifts (f(j + l))j∈N with 1 ≤ l ≤ r are bounded
by functions which are integrable against the reference infinitely divisible distribution ν

(0)
n . In

particular, if ϕ is the exponent of the Poisson distribution, then the formula of the proposition holds
for any f bounded by a polynomial function. More generally, if ϕ = CPo(λ, Z)withE [Zr] < +∞,
then the formula of the proposition holds for any f bounded by a polynomial function with degree
r. □

We can summarize Proposition 3.5 by saying that expectations of the form E [f(Xn)] can be
approximated with a mod-ϕ approximation scheme (ν(r)n )n∈N in two steps:

(1) Replace Xn by the infinitely divisible random variable Yn.

(2) Correct the function f by adding the correction term ∆n(r, f).

The main advantage of this approximation procedure is that computing integrals of the reference
infinitely divisible law is typically easier, as they may even admit closed-form expressions in terms
of well-known special functions.

Remark 3.6. If the reference infinitely divisible law ϕ has a moment of order 3, and if the con-
vergence of residues ψn(ξ) → ψ(ξ) occurs in the space Cr+2(T), then [CDMN20, Theorem 3.11]
shows that for any r ≥ 0 and any bounded function f : N → R, the difference |E [f(Xn)] −
E [f(Yn)] − E [∆n(r, f)(Yn)] | goes to 0 as n goes to infinity, with a speed of convergence which
improves with the order of approximation r. Indeed,

|E [f(Xn)]− E [f(Yn)]− E [∆n(r, f)(Yn)] | = |µXn(f)− ν(r)n (f)|

≤ ∥f∥∞ dTV(µXn , ν
(r)
n ) = O

(
1

(λn)
r+1
2

)
.

In the case which we shall examine in Section 4 (sums of independent Bernoulli variables), the
result follows also from the general estimate (4).

4. Mod-Poisson approximation

In the context of credit risk we are interested in approximating the total losses of a credit portfolio
with n counterparties, which is given by

Ln =
n∑
i=1

Zi Yi,

where Yi is the default indicator function for the i-th counterparty (i.e. a Bernoulli random variable
with P (Yi = 1) = 1− P (Yi = 0) = pi, where pi is the default probability) and Zi is the monetary
loss incurred by the portfolio due to that counterparty’s default.

It is customary in credit risk to assume that the random variables (Yi)ni=1 are conditionally inde-
pendent given some underlying (macroeconomic or purely statistical) latent factor, Ψ, so that one
can write P (Yi = 1|Ψ) = pi(Ψ), for some measurable function pi, which depends on the particular
credit risk model we are interested in studying. On the other hand, the exposures (Zi)ni=1 can be
either constant or random. In the latter case, it is common practice to assume them to be i.i.d. ran-
dom variables, independent of (Yi)ni=1. A less common choice is to incorporate the dependence on
the underlying factor Ψ by choosing (Zi)ni=1 to be conditionally i.i.d. given Ψ.

In this section we focus on the case of constant unit exposures (i.e. Zi = 1, for all i = 1, . . . , n),
which is related to the classical Poisson approximation problem, but we anticipate that all results
presented here will be extended in Section 5 to the general case of (Zi)ni=1 conditionally i.i.d. given
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Ψ. The basic idea is to derive mod-Poisson convergence of Ln conditionally on Ψ and use mod-
Poisson approximation schemes to estimate functionals of Ln conditionally on Ψ. Unconditional
estimates would then follow by integrating (numerically) on Ψ.

Theorem 4.1 (Mod-Poisson convergence). Let (Ln)n∈N be a sequence of total portfolio losses given
by Ln =

∑n
i=1 Yi, where we assume the Yi’s to be independent random variables such that Yi ∼ Be (pi).

(1) If
∑∞

i=1 pi = +∞ and
∑∞

i=1(pi)
2 < +∞, then (Ln)n∈N convergesmod-ϕwith parametersλn =∑n

i=1 pi and with reference infinitely divisible law the Poisson distribution Po (1) (i.e. ϕ(ξ) =
eiξ − 1).

(2) Furthermore, (Ln)n∈N admits a mod-Poisson approximation scheme of order r with the follow-
ing coefficients:

bk,n =
1

k!

∑
π∈Π(k)

∀B∈π, |B|≥2

µ(0̂k, π)

(∏
B∈π

p|B|,n

)
(5)

whereΠ(k) denotes the poset of set partitions of {1, . . . , k}; µ(·, ·) is the Möbius function for the
incidence algebra of the poset Π(k); and pk,n :=

∑n
j=1(pj)

k for k ≥ 2.

Proof. We compute the deconvolution residues as in Equation (1) using the explicit form for the
characteristic function of Ln and of the Po (1) distribution, obtaining:

ψn(ξ) = µ̂Ln(ξ) e
−

∑n
j=1 pj(e

iξ−1)

=
n∏
j=1

(
1 + pj(e

iξ − 1)
)
e−pj(e

iξ−1)

= exp

(
n∑
j=1

log
(
1 + pj(e

iξ − 1)
)
− pj(eiξ − 1)

)

= exp

(
∞∑
k=2

(−1)k−1

k

(
eiξ − 1

)k
pk,n

)
, (6)

where we have defined pk,n :=
∑n

j=1(pj)
k.

The condition
∑∞

j=1(pj)
2 < +∞ guarantees that ψn(ξ) converges to a limit ψ(ξ) uniformly in T,

so the mod-ϕ convergence is proved. In order to compute the coefficients (bk,n)rk=1 for the mod-ϕ
approximation scheme of order r, we need to extract the coefficients of the series expansion ofψn(ξ)
in powers of (eiξ−1). This is again an application of the first identity of Theorem C.6, since ψn(ξ)
is the exponential of the generating series G(z) =

∑∞
k=2

gk
k!
zk with gk≥2 = (−1)k−1(k − 1)! pk,n.

Hence,

bk,n = [zk] exp(G(z)) =
1

k!

∑
π∈Π(k)

∀B∈π, |B|≥2

∏
B∈π

g|B|

=
1

k!

∑
π∈Π(k)

∀B∈π, |B|≥2

µ(0̂k, π)
∏
B∈π

p|B|,n

by using the formula for the Möbius function of the poset Π(k) computed in the Appendix C.
Notice that the sum runs over all set partitions with each block of size at least two. □

Remark 4.2. The computational time for the evaluation of the coefficients (bk,n)rk=1 can be substan-
tially reduced by noticing that in (5) the term in the summation depends only on the type of the
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set partition π. This leads to the following equivalent, but computationally more advantageous
expression:

bk,n =
∑

λ∈P (k)
λ=(λ1≥λ2≥···≥λℓ≥2)

(−1)(k−ℓ(λ))

zλ
pλ,n,

where P (k) is the set of integer partitions of k, i.e. the set of all finite non-increasing sequences
of positive integers, λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ), such that

∑ℓ
i=1 λi = k. We also denote ℓ(λ)

the number of parts of the integer partition λ; pλ,n =
∏ℓ(λ)

i=1 pλi,n; and zλ =
∏

k≥1 k
mk(λ)(mk(λ))!,

where mk(λ) is the number of parts of λ of size k. In the expression of bk,n in terms of the pλ,n,
the sum runs over those integer partitions λ ∈ P (k) such that all the parts of λ are larger than 2.

The first few coefficients of the mod-ϕ approximation in terms of the obligors’ default probabil-
ities are:

b1,n = 0 ; b2,n = −1

2

n∑
i=1

(pi)
2;

b3,n =
1

3

n∑
i=1

(pi)
3 ; b4,n = −1

4

n∑
i=1

(pi)
4 +

1

8

(
n∑
i=1

(pi)
2

)2

.

We remark that the first-order correction to the Poisson approximation presented in [EKJK08,
EKJ09] and based on the Chen–Stein method corresponds to a mod-Poisson approximation scheme
of order r = 2. On the other hand, higher order approximations have so far remained inaccessible
to the Chen–Stein method.

Remark 4.3. Equation (5) shows that the coefficients bk,n are symmetric functions in the default
probabilities pi, because they are polynomials in the Newton power sums pk,n. By using the com-
binatorics of symmetric functions, one can rewrite the coefficients (bk,n)rk=1 as polynomials in the
moments (E

[
(Ln)

k
]
)rk=1 of the total portfolio loss variable. Thus, ifMk,n = E

[
(Ln)

k
]
(which can

be estimated numerically), then

bk,n =
(−1)k

k!
(M1,n)

k +
∑

1≤m≤l≤k

(−1)k−m

(k − l)! l!

[
l

m

]
Mm,n(M1,n)

k−l, (7)

where
[
l
m

]
is the Stirling number which counts the permutations of size l with exactly m disjoint

cycles (taking into account the fixed points as cycles with length 1). In particular, knowledge of
these first moments is sufficient in order to construct the r-th order approximation scheme ν(r)n ,
and we do not need to know all the individuals default probabilities. The first coefficients are:

b1,n = 0 ; b2,n =
1

2
(M2,n −M1,n − (M1,n)

2);

b3,n =
1

2
((M1,n)

2 −M2,n −M2,nM1,n) +
1

3
(M1,n + (M1,n)

3) +
1

6
M3,n.

The proof of Eq. (7) is given in Appendix D.

The following proposition provides explicit closed-form expressions for the mod-Poisson ap-
proximations of the expectation of two common functions in credit risk, namely the tail function
and the call function, which will be used in the numerical simulations of Sections 6 and 7.

Proposition 4.4 (Estimation formulæ). Let γ be the lower incomplete gamma function given by:

γ(x, λ) =

∫ λ

0

tx−1e−tdt.

Then:
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(1) Tail function. Fix a value x ∈ R, and let f(j) = 1{j>x} = 1{j>⌊x⌋}. Then,

ν(r)n (f) =
1

⌊x⌋!
γ (⌊x⌋+ 1, λn) + e−λn

⌊x⌋∑
j=⌊x⌋−r+1

(λn)
j

j!
∆n(r, f)(j). (8)

where∆n(r, f) is the correction term for f as in Proposition 3.5.

(2) Call function. Fix a value K ∈ R, and let f(j) = (j − K)+, which is used in the pricing of
call options and CDOs. Then,

ν(r)n (f) =
λn

(⌈K⌉ − 2)!
γ (⌈K⌉ − 1, λn)−

K

(⌈K⌉ − 1)!
γ (⌈K⌉, λn)

+ e−λn
⌊K⌋∑

j=⌊K⌋−r+1

(λn)
j

j!
∆n(r, f)(j) (9)

where∆n(r, f) is the correction term for f as in Proposition 3.5.

Proof. We must compute in each case the following expectations:

ν(r)n (f) = E [f(Yn)] + E [∆n(r, f)(Yn)] , (10)
where Yn ∼ Po (

∑n
i=1 pi). Indeed, for the tail function, Proposition 3.5 applies readily because f is

bounded. For the call function, we can use the remark at the end of the proof of Proposition 3.5:
the formula is valid because f is bounded by a polynomial function. The term E [f(Yn)] can be
computed in closed form for both functions. Indeed the tail function of a Poisson random variable
is known to admit a closed-form expression in terms of the incomplete lower gamma function
(see Proposition B.1 for the formula and its proof), while for the call function, one can proceed as
follows:

E
[
(Yn −K)+

]
=

∞∑
j=0

(j −K)+ e−λn
λjn
j!

=
∞∑

j=⌈K⌉

(j −K) e−λn
(λn)

j

j!

= e−λn
∞∑

j=⌈K⌉

λjn
(j − 1)!

−K P (Yn > ⌈K⌉ − 1)

= e−λnλn

∞∑
j=⌈K⌉−1

(λn)
j

j!
−K P (Yn > ⌈K⌉ − 1)

= λn P (Yn > ⌈K⌉ − 2)−K P (Yn > ⌈K⌉ − 1) .

The term E [∆n(r, f)(Yn)] of Equation (10) corresponds to the summations in Equations (8) and
(9), the only difference being that the integration with respect to the distribution of Yn has been
explicitly restricted to the integer-valued interval J⌊x⌋−r+1, ⌊x⌋K. This follows from the fact that
the correction term ∆n(r, f) actually vanishes outside that interval for both the tail and the call
function, as can be seen by their explicit formulæ. Indeed, for the tail function one has

∆n(r, f)(j) =
r∑

k=1

bk,n

k∑
l=0

(−1)k−l
(
k

l

)
1{j+l>⌊x⌋}.

On the one hand if j ≤ ⌊x⌋ − r, then j + l ≤ ⌊x⌋ for all values of l, so ∆n(r, f)(j) vanishes. On
the other hand, if j ≥ ⌊x⌋ + 1, then j + l > ⌊x⌋ for all values of l, so that the inner summation
yields

∑k
l=0(−1)k−l

(
k
l

)
= 0 for all k = 1, . . . , r and ∆n(r, f)(j) is zero.
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For the call function, instead, we have that

∆n(r, f)(j) =
r∑

k=1

bk,n

k∑
l=0

(−1)k−l
(
k

l

)
(j + l −K)+.

On the one hand if j ≤ ⌊K⌋− r, then j + l ≤ ⌊K⌋ for all values of l, so (j + l−K)+ is identically
zero and∆n(r, f)(j) vanishes. On the other hand, if j ≥ ⌈K⌉, then j+ l ≥ ⌈K⌉ for all values of l,
so that the inner summation becomes

∑k
l=0(−1)k−l

(
k
l

)
(j + l −K) which vanishes because k ≥ 2

(b1,n = 0) and
∑k

l=0(−1)k−l
(
k
l

)
P (l) = 0 for all polynomials P of order strictly lower than k (see,

for instance, Corollary 2 in [Rui96]). □

Formulæ (8) and (9) are particularly suitable for numerical implementation. Indeed, the lower
incomplete gamma function can be estimated efficiently from its power series expansion (as shown
in [Tem94], on which the python implementation of the gamma function in scipy is based) while
the correction term∆n(r, f), which requires numerical integration, is non-zero on at most r points
and is therefore easy to integrate.

5. Mod-compound Poisson approximation

This section deals with the extension of the results presented in Section 4 to the case of credit
portfoliosLn =

∑n
i=1 Zi Yi with random i.i.d. exposures (Zi)ni=1. In this case it is possible to prove a

mod-compound Poisson convergence of the sequence (Ln)n∈N, as shown in the following theorem.

Theorem 5.1 (Mod-compound Poisson convergence). Define a sequence (Ln)n∈N of total portfolio
losses given by Ln =

∑n
i=1 Zi Yi, where we assume the Yi’s and Zi’s to be mutually independent, Yi ∼

Be (pi), and the Zi’s are i.i.d. random variables with the same law as Z, for Z a givenN-valued random
variable.

(1) If
∑∞

i=1 pi = +∞ and
∑∞

i=1(pi)
2 < +∞, then (Ln)n∈N converges mod-ϕ with parameters

λn =
∑n

i=1 pi and with reference infinitely divisible law the compound Poisson distribution
CPo(1, Z).

(2) Furthermore, (Ln)n∈N admits a mod-compound Poisson approximation scheme of order r with
the following coefficients:

bk,n =
1

k!

∑
σ∈Π(k)

∑
τ∈Π(k)
τ≤σ

µ(τ, σ)
∏
D∈τ

E
[
(Z)|D|

] ∏
B∈σ

pnσ
τ (B),n,

where Π(k) is the poset of set partitions of {1, . . . , k}; nστ (B) denotes the number of blocks
of τ contained in the block B of σ; µ(τ, σ) = (−1)|τ |−|σ|∏

B∈σ(n
σ
τ (B) − 1)! is the Möbius

function for the incidence algebra of the posetΠ(k), and pk,n :=
∑n

j=1(pj)
k, with the convention

p1,n := 0.

Proof. We compute the deconvolution residue as in Equation (1), using the explicit form of the
Lévy–Khintchine exponent of CPo(1, Z). We obtain:
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ψn(ξ) = µ̂Ln(ξ) e
−

∑n
i=1 pi(µ̂Z(ξ)−1)

=
n∏
j=1

(1 + pj(µ̂Z(ξ)− 1)) e−pj(µ̂Z(ξ)−1)

= exp

(
n∑
j=1

log (1 + pj(µ̂Z(ξ)− 1))− pj(µ̂Z(ξ)− 1)

)

= exp

(
∞∑
k=1

(−1)k−1

k
(µ̂Z(ξ)− 1)k pk,n

)
, (11)

where we have defined pk,n :=
∑n

j=1(pj)
k, with the convention p1,n := 0.

The condition
∑∞

j=1(pj)
2 < +∞ guarantees that ψn(ξ) converges to a limit, ψ(ξ), uniformly in

T, so the mod-ϕ convergence is proved. Let us then extract the coefficients (bk,n)rk=1 for the mod-ϕ
approximation scheme of order r: thus, we need to compute the power series expansion of ψn(ξ)
in powers of z = eiξ − 1. We start by noticing that

µ̂Z(ξ) =
∞∑
j=0

1

j!
E [(Z)j] (e

iξ − 1)j,

where (Z)j := Z(Z− 1) · · · (Z−k+1) is the j-th falling factorial and E [(Z)j] is therefore the j-th
factorial moment of Z. As a consequence, the series in the exponential (11) rewrites as:

∞∑
k=1

(−1)k−1

k

(
∞∑
j=1

1

j!
E [(Z)j] z

j

)k

pk,n

=
∞∑
l=1

zl

 ∞∑
k=1

(−1)k−1

k
pk,n

∑
l=j1+···+jk
j1,...,jk≥1

E [(Z)j1 ] · · ·E [(Z)jk ]

(j1)! · · · (jk)!



=
∞∑
l=1

zl

 l∑
k=1

(−1)k−1(k − 1)! pk,n
∑

l=λ1+···+λk
λ1≥···≥λk≥1

E [(Z)λ1 ] · · ·E [(Z)λk ]

(m1(λ))! · · · (ml(λ))! (λ1)! · · · (λk)!

 .

In these formulæ, the sum on the second line runs over compositions l = j1 + · · · + jk of size l
and length k (sequences that sum to l), and the sum on the third line runs over integer partitions
l = λ1 + · · · + λk with λ = (λ1 ≥ · · · ≥ λk) (non-increasing sequences). For i ≤ l, mi(λ) is
the number of parts λj equal to i. Similar combinatorial arguments are detailed in the proof of
Theorem C.6; see Appendix C. Now, since the number of set partitions π ∈ Π(l) with sizes of
blocks given by an integer partition λ = (λ1 ≥ · · · ≥ λk) is

l!

(m1(λ))! · · · (ml(λ))!λ1! · · ·λk!
,

and since the Möbius function µ(π, 1̂l) of a set partition with k = |π| blocks is (−1)k−1 (k − 1)!,
we can rewrite:

∞∑
k=1

(−1)k−1

k

(
∞∑
j=1

1

j!
E [(Z)j] z

j

)k

pk,n =
∞∑
l=1

zl

l!

 ∑
π∈Π(l)

µ(π, 1̂l) p|π|,n

(∏
B∈π

E
[
(Z)|B|

]) .
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Substituting this expansion in Equation (11) and using the first part of Theorem C.6 with gl =∑
π∈Π(l) µ(π, 1̂l) p|π|,n(

∏
B∈π E

[
(Z)|B|

]
), we get:

bk,n =
1

k!

∑
σ∈Π(k)

∏
B∈σ

g|B| =
1

k!

∑
σ∈Π(k)

∏
B∈σ

 ∑
τB∈Π(|B|)

µ(τB, 1̂|B|) p|τB |,n

(∏
C∈τB

E
[
(Z)|C|

]) .

We notice that choosing one partition τB ∈ Π(|B|) for each block B ∈ σ is equivalent to choosing
a subpartition τ of σ, so the coefficient can be expressed more compactly as:

bk,n =
1

k!

∑
σ∈Π(k)

∑
τ∈Π(k)
τ≤σ

µ(τ, σ)
∏
D∈τ

E
[
(Z)|D|

] ∏
B∈σ

pnσ
τ (B),n

where nστ (B) denotes the number of blocks of τ contained in the block B of σ; and where we have
furthermore recognized the Möbius function for the incidence algebra of the poset Π(k), given by
µ(τ, σ) = (−1)|τ |−|σ|∏

B∈σ(n
σ
τ (B)− 1)! =

∏
B∈σ µ(τB, 1̂|B|). □

The implementation of mod-compound Poisson approximation schemes for credit risk appli-
cations is numerically more problematic than in the case of mod-Poisson schemes. In particular,
integrals with respect to the reference infinitely divisible law are more difficult to evaluate and
closed-form expressions, such as formulæ (8) and (9), are not available anymore, except in few very
specialized cases. Nevertheless these integrals can be evaluated numerically (for instance by esti-
mating the compound Poisson law via Panjer recursion) but, depending on the application at hand
and the particular distribution of the random exposures, this might lead to estimations that are as
computationally expensive as the recursive methodology.

6. Application: Estimation of risk measures

6.1. Background. A commonly used risk measure for market and credit risk applications is the
Value at Risk (VaR), defined as

VaRα (Ln) := inf {t ∈ R | P (Ln ≤ t) ≥ α} ,

which quantifies the minimum capital required to cover all portfolio losses with a probability at
least equal toα. The parameterα is known as the confidence level and higher values of this parameter
correspond to higher and more stringent capital requirements. The definition of VaRα (Ln) is
mathematically equivalent to the generalized inverse of the distribution function of Ln, which is
also known as the α-quantile of Ln.

The VaR is the most commonly used risk measure in financial practice, despite the fact that it
is not a coherent risk measure [ADEH99], which means that it fails to account for diversification
effects when risk is aggregated across several portfolios. A risk measure that is commonly employed
to solve this problem is the Expected Shortfall (ES), also known as conditionalVaR, which is defined
as follows:

ESα (Ln) :=
1

1− α

∫ 1

α

VaRu (Ln) du = E [Ln|Ln > VaRα (Ln)] .

One can think of ESα (Ln) at confidence level α as the expected value of portfolio losses, given
that these losses already exceed VaRα (Ln). One can show that ESα (Ln) is always greater or equal
to VaRα (Ln) for all confidence levels α, so that ES is more conservative than VaR. It is also a
coherent risk measure, because it incorporates information about all potential losses, including
the ones above the confidence level α, and it is therefore the simplest modification of VaR that
yields a theoretically acceptable risk measure. The computation of ES is more demanding than the
computation of VaR, because it requires the availability of accurate estimations for the entire tail
function of the loss distribution: this is the reason why simulation-based methods, such as Monte
Carlo simulation, typically perform poorly in estimations of portfolio ES.
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We remark that if Ln is a discrete random variable (this is typically the case if the distribution has
been discretized for purposes of numerical evaluation) with N := ∥Ln∥∞ < ∞ , then VaRα (Ln)
is integer-valued and is given by the following left-continuous step function:

VaRα (Ln) =
N∑
k=0

k 1(P(Ln≤k−1),P(Ln≤k)](α), (12)

while ESα (Ln) is given by

ESα (Ln) =
1

1− α

(P (Ln ≤ VaRα (Ln))− α)VaRα (Ln) +
N∑

k>VaRα(Ln)

k P (Ln = k)

 . (13)

6.2. Estimation or risk measures. It is clear from Equations (12) and (13) that the estimation
of the VaR and the ES depends crucially on accurate estimates for the tail function P (Ln ≥ x) of
portfolio losses. It is therefore instructive to compare estimation methods first of all on the task
of tail function estimation for a representative credit portfolio model, in our case a single-factor
Gaussian copula with n = 250 obligors, heterogeneous average default probabilities uniformly
distributed in [2%, 8%] and equicorrelation parameter ρ = 0.3. The results do not vary qualitatively
for different choices of the parameters.

Figure 1. Estimated tail functions on a logarithmic scale. For simulation-based
methods (i.e. Monte Carlo and Importance Sampling) mean estimates are reported
within their 99% asymptotic confidence interval (shaded areas).

Figure 1 shows a comparison of the estimated tail functions for an exact method (the recursive
method), two semi-analytical methods (mod-Poisson with varying order and large deviations ap-
proximation) and two simulation-based methods (Monte Carlo and importance sampling). The
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reader is referred to Appendix A for a self-contained presentation of all these estimation models,
together with full details of their numerical implementation.

• The recursive method can be used as a benchmark to assess the accuracy of the other meth-
ods, because it is an exact procedure for the computation of the loss distribution, up to
the numerical integration error due to integration over the portfolio mixing variable and
any rounding errors due to finite machine precision, both of which are in practice of order
10−15. A better measure of the performance of each estimation method can be obtained
by looking at the signed relative errors of the estimated tail probabilities (computed with
respect to the benchmark) as a function of the tail point, as plotted in Figure 2.

Figure 2. Signed relative errors of estimated tail probabilities for all levels of rela-
tive portfolio losses. Benchmark value (i.e. the assumed true value with respect to
which errors are computed) computed via the recursive method. For simulation-
based methods (i.e. Monte Carlo and Importance Sampling) mean estimates are re-
ported within their 99% asymptotic confidence interval (shaded areas).

• The plain Monte Carlo method has been implemented as in Algorithm 2 with 106 simu-
lation runs. Due to the finite number of simulations, it is able to estimate the probability
of relative losses only up to the 75% level and with increasing uncertainty, as shown by
the widening of the asymptotic confidence intervals around the mean estimates. The mean
estimates themselves show a negative bias, due to the undersampling of rare, large losses.
Higher accuracy can be obtained by suitably increasing the number of simulations at the
price of higher computational times.
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• The importance sampling method, by addressing the rare-event simulation problem as ex-
plained in Section A.6, is able to estimate tail probabilities at higher levels of relative losses
with only 104 simulation runs. Nevertheless, this method is also characterized by widening
confidence intervals, with the result that only estimates close to 85% of relative losses can
be conceivably used with any statistical confidence. We further remark that higher uncer-
tainty is visible in Figure 2 not only for high levels of relative losses, but also for low ones.
This is because after performing the exponential tilting described in Algorithm 4 the mean
of the loss distribution has been shifted and low losses have become rare events. In practice
one could fix this issue by gluing together the estimates coming from a plain Monte Carlo
method for low levels of losses and the estimates from the importance sampling method for
high levels, as suggested in [GL05].
• The large deviations approximation is characterized by an erratic behavior. This is partly
due to the discreteness of the distribution Ln, but also to the numerical integration over
the mixing variable of the Gaussian copula, which is unstable, possibly because of the de-
nominator in Equation (19). In general one can expect this method to perform well only
in the asymptotic regime as the number of obligors becomes large, but for finite portfolios
of hundreds of obligors the performance is disappointing and the estimates are biased and
affected by large relative errors.
• The mod-Poisson approximation schemes show a remarkable accuracy for most of the tail
function, except at the level of relative losses higher than 90%, i.e. losses of probability
lower than 10−8 for our representative portfolio, as can be deduced from Figure 1). Above
that level the approximation order becomes an important tuning parameter: approxima-
tion schemes with higher order are able to maintain higher accuracy farther in the tail.
Nevertheless, the performance at low approximation orders – such as r = 4, 6, 10 as shown
in Figure 2 – is already very satisfactory, since mod-Poisson approximation schemes show
high relative errors only on probabilities of order smaller than 10−8, whose contribution
to the estimation of risk measures is negligible, as will be shown next.

Table 1 compares the estimates of the VaR and ES (obtained using Equations (12) and (13)) of
the representative portfolio for a selection of typically used confidence levels, ranging from 95% to
99.9999%, while Figure 3 shows the signed relative errors in the estimation of VaR as a function
of the confidence levels on a logarithmic scale.

The best performing methods are clearly the mod-Poisson approximation schemes, which yield
estimates that are almost always identical to the benchmark value for any confidence value, already
for order r = 4. The other methods are characterized by diminishing accuracy at higher confidence
levels and increasing uncertainty in the estimates, in the case of simulation-based methods.



VaR level
Benchmark
(recursive)

Large
deviations

Monte Carlo
(106 runs)

Mean [99% CI]

Importance
Sampling
(104 runs)

Mean [99% CI]

Mod-Poisson
(order=4)

Mod-Poisson
(order=6)

Mod-Poisson
(order=10)

95% 48 54 47 47 48 48 48
99% 82 89 82 [81, 83] 81 [80, 83] 82 82 82

99.99% 169 173 168 [164, 172] 168 [165, 170] 169 169 169
99.9999% 218 222 n.a. 215 [212, 221] 218 218 218

ES level
Benchmark
(recursive)

Large
deviations

Monte Carlo
(106 runs)

Mean [99% CI]

Importance
Sampling
(104 runs)

Mean [99% CI]

Mod-Poisson
(order=4)

Mod-Poisson
(order=6)

Mod-Poisson
(order=10)

95% 68.91 79.08 68.50 [67.99, 69.01] 68.16 [66.06, 69.28] 68.91 68.91 68.91
99% 103.06 118.92 102.81 [101.85, 103.76] 102.38 [100.86, 103.84] 103.06 103.06 103.06

99.99% 181.65 198.71 160.70 [147.39, 172.90] 179.99 [177.49, 182.09] 181.64 181.65 181.65
99.9999% 223.73 231.13 n.a. n.a. 223.57 223.70 223.73

Table 1. Estimates for VaR (above) and ES (below) across estimation methods for a selection of confidence levels (95%, 97.5%, 99%,
and 99.99%). For simulation-based methods, such as Monte Carlo and Importance Sampling, the mean estimate is shown together
with its 95% asymptotic confidence interval in square brackets.
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Figure 3. Signed relative errors of estimatedVaR for confidence levels on a logarith-
mic scale. Benchmark value (i.e. the assumed true value with respect to which errors
are computed) computed via the recursive method. For simulation-based methods
(i.e. Monte Carlo and Importance Sampling) mean estimates are reported within
their 99% asymptotic confidence interval (shaded areas).

6.3. Computational time. The performance of an estimation method in terms of computational
time can be particularly important for certain financial applications. In this section we compare
empirically the performance of various methods for the estimation of tail probabilities and discuss
relative advantages and disadvantages. All empirical tests are performed on a representative portfo-
lio model, specifically a single-factor Gaussian copula with average default probabilities uniformly
distributed in [2%, 8%] and equicorrelation ρ = 0.3.

Figure 4 compares the elapsed CPU clock time for the estimation of a single tail probability
of portfolio losses (i.e. an evaluation of P (Ln > x) for a given value x ≥ 0) as a function of the
number of obligors.

• The recursive methodology is the only known method for the exact estimation (up to nu-
merical integration error) of the loss distribution, but its computational complexity scales
quadratically in the number of obligors, as we already anticipated in the remarks following
Algorithm 1 and as can be seen in Figure 4. For this reason the recursive method is con-
sidered computationally expensive in the case of large portfolios (i.e. with more than one
hundred obligors) and approximate methods – either semi-analytical or simulation-based –
are typically preferred.
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Figure 4. CPU clock time for estimation of a single tail probability for a selection
of estimation methods as a function of the number of obligors. Shaded areas are
95% asymptotic confidence intervals from 10 runs of the estimation methods.

Furthermore, an important disadvantage of the recursivemethod comes from the fact that it
is designed to output the full distribution of the portfolio losses, which might be wasteful in
some applications. For instance, when computing risk measures it is necessary to compute
the tail function of the loss distribution only at a few points – more specifically in the part
of the tail corresponding to high losses – so that information of the full distribution is ef-
fectively useless. In contrast, semi-analytical methods, such as mod-Poisson approximation
schemes or the large deviation approximation, yield approximations of the tail function at
a single point and can thus be used to compute risk measures much more efficiently. An-
other application for which the recursive methodology tends to be inefficient can be found
inmodel risk management, where sensitivity analysis requires computing risk measures and
other portfolio metrics repeatedly for a given credit risk model under slight perturbations
of the model parameters. In this case the recursive methodology requires the expensive
computation of a large number of very similar loss distributions, thus compounding the
wastefulness issue discussed above.
• As shown in Figure 4, simulation-based methods – such as Monte Carlo integration and
importance sampling – scale more favorably in the number of obligors. In particular, both
methods scale linearly in the number of obligors, since they both require simulating amatrix
of obligors’ default indicators with number of columns equal to the number of obligors and
number of rows equal to the number of simulation runs.

While for the Monte Carlo method this linear dependence is evident in Figure 4, in the
case of the importance sampling method it is concealed by the computational overhead
stemming from the determination of the shifted mean µ in the first part of Algorithm 4.
This preliminary optimization step turns out to be computationally expensive and makes
the importance sampling algorithm unappealing for financial applications that require fast
execution, such as product pricing for trading desks or the estimation of pre-trade risk for
proprietary trading. Furthermore, it is worthwhile recalling that the importance sampling
algorithm applies exclusively to the Gaussian factor copula model, so that its field of appli-
cation is in any case already quite limited. As far as the Monte Carlo method is concerned,
a correct assessment of its time complexity must take into account the dependence on the
number of simulations needed. While the importance sampling procedure can produce ac-
curate estimations far into the tail with a low number of simulations (in practice of the
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order 104), the plain Monte Carlo approach requires a much higher number of simulation
runs, as explained in Section A.5. This is particularly problematic when high accuracy is
required as in the computation of the Expected Shortfall of a portfolio and other distortion
measures with non-zero spectrum at high quantile levels.
• Semi-analytical methods, such as mod-Poisson approximation schemes and the large devi-
ations approximation, boast the best performance in terms of computational time, due to
the fact that they require only the evaluation of known functions and a numerical inte-
gration over the copula factor, both of which can be performed efficiently. To be more
precise, these methods depend on the number of obligors only through the computation
of a few coefficients. In the case of mod-Poisson approximation schemes it is necessary to
compute the coefficients pk,n for k = 2, . . . , r, where r is the approximation scheme order,
while in the case of the large deviations approximation it is only needed to evaluate the
cumulant generating function F , its second derivative F ′′ and the optimal tilting λx. Nev-
ertheless, these operations amount to computing specific functions of the vector of default
probabilities (p1, p2, . . . , pn) and are easily vectorized on any modern CPU, which results
in a linear dependence on the number of obligors with a very small coefficient. Indeed this
linear dependence is empirically negligible for portfolios of even thousands of obligors and
is effectively invisible in Figure 4.

Figure 5. CPU clock time for estimation of a single tail probability formod-Poisson
approximation schemes as a function of the order.

The accuracy of mod-Poisson approximation schemes increases in the approximation order, as
shown empirically in Figure 2. It is therefore natural to investigate how the computational time
burden increases when the order is increased. From Theorem 4.1 and Remark 4.2 it is clear that
the computation of the coefficient bk,n depends on k as the number of integer partitions of k with
minimum block size 2. In practice integer partitions can be generated efficiently by encoding them
as ascending compositions – rather than descending compositions, as is conventionally done – and
by exploiting some properties of this representation, as explained in [KO09]. One can then select
only integer partitions with minimum block size 2 by acceptance-rejection. This implementation
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yields an exponential time complexity in the square-root of r, as checked empirically for orders up
to r = 30 in Figure 5.

7. Application: CDO pricing

7.1. Background. A CDO (Collateralized Debt Obligation) is a financial product for the securiti-
zation of credit portfolios, such as pools of residential mortgages or consumer loans. We refer the
reader to [MFE15, Chapter 12] for an introduction to CDO pricing. Here we only mention that
CDO pricing requires the valuation and comparison of payment cashflows, therefore the temporal
evolution of the credit portfolio becomes important. Therefore we introduce the time dependence
by denoting the total portfolio losses up to time t as:

Lt,n =
n∑
i=1

Zi Yt,i.

Let us denote bym the total number of tranches in the CDO, then the notional value of the j-th
tranche at time t as a function of the underlying portfolio losses is given by:

N
(j)
t (Lt,n) =


Kj −Kj−1 if Lt,n < Kj−1,

Kj − Lt,n if Kj−1 ≤ Lt,n ≤ Kj,

0 if Lt,n > Kj,

where 0 = K0 < K1 < . . . < Km. The two values Kj−1 and Kj are called the attachment and
detachment points respectively. If the portfolio losses are below the attachment point, the tranche
has a fixed value of Kj −Kj−1. As losses increase above that level, the tranche must absorb them
and correspondingly loses value, up until the losses reach the detachment point and the tranche has
become worthless.

The notional value of tranches can also be expressed more compactly as follows:

N
(j)
t = (Kj − Lt,n)+ − (Kj−1 − Lt,n)+, j = 1, . . . ,m, (14)

which shows that CDO tranches have the same payoff as put spreads on the underlying credit
portfolio. Similarly it is possible to define the cumulative tranche loss up to time t, given by:

L
(j)
t = Kj −Kj−1 −N (j)

t = (Lt,n −Kj−1)
+ − (Lt,n −Kj)

+, j = 1, . . . ,m, (15)
which represents the losses incurred by the tranche and has the same payoff as a call spread on the
underlying credit portfolio.

In this section we are actually interested in pricing syntheticCDOs, which involves the evaluation
and comparison of the two cashflows, or legs, of the counterparties: the premium payments leg
and the default payments leg. The CDO issuer makes premium payments at regular times, say
0 = t0 < t1 < . . . < tN = T . Assuming time is measured in years, we can express these payments
in terms of an annualized spread, denoted by s. The premium payment at time tn from the j-th
tranche is then equal to s(tn − tn−1)N

(j)
tn , where N (j)

tn is just the notional value of the tranche at
time tn, as given in Equation (14). In actual practice premium payments also include so called
accrued payments. More specifically, if an obligor in the reference portfolio defaults at a random
time T ∈ (tn−1, tn], then at time tn the CDO issuer is also required to pay the premium accrued
over the time before the default occurred, i.e. s(T − tn−1)(L

(j)
T −L

(j)
T−), where LjT is the tranche loss

at time T , as given in Equation (15). By assuming a sufficiently thick time grid (i.e.N is sufficiently
large), we can safely ignore accrued payments, as we will do in the following.

The total value at time t = 0 of the premium cashflow can then be computed by taking the
expectation of the discounted cashflow under an equivalent martingale measure, obtaining:

Lpremium(s) = s
N∑
n=1

e−rtn(tn − tn−1) E
[
N

(j)
t

]
, (16)
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where r denotes the deterministic risk-free interest rate. Notice that the uncertainty due to interest
rate risk is many orders of magnitude smaller than the uncertainty due to default dependence. This
is why incorporating interest rate risk in credit risk models typically leads to negligible contribu-
tions and the assumption of a deterministic interest rate is common inmany credit risk applications.

The CDO buyer makes default payments every time an obligor in the reference portfolio de-
faults. The discounted value at time t = 0 of the default cashflow is given by the following integral:∫ T

0

e−rtdL
(j)
t ,

which is to be understood as a pathwise Riemann–Stieltjes integral, and which can be approximated
as a stochastic Riemann sum over the premium payments time grid:

N∑
n=1

e−rtn(L
(j)
tn − L

(j)
tn−1

).

The value at time t = 0 of the default cashflow can then be computed, analogously to the pre-
mium case, as the expectation of the discounted cashflow under an equivalent martingale measure,
yielding:

Ldefault ≈
N∑
n=1

e−rtn
(
E
[
L
(j)
tn

]
− E

[
L
(j)
tn−1

])
. (17)

The fair value of the CDO can be deduced by equating the premium leg Lpremium(s) in Equation
(16) with the default leg Ldefault in Equation (17). The value of the spread s for which equality
holds is:

s =
Ldefault

Lpremium(1)
,

and is called the fair spread. This is the quantity that is quoted in CDO exchanges and used to assess
the relative cost a CDO contract.

7.2. Estimation of call prices. From the definitions of tranche notional value and tranche loss in
Equations (14) and (15) it is clear that the computations of the two payment legs – and therefore of
the fair spread – can be reduced to the problem of computing call and put spreads on the reference
portfolio. Moreover, since the payoff of a put option can be expressed in terms of the payoff of
a call option, this task can be further reduced to the accurate estimation of call prices only. This
section is devoted to an empirical comparison of several estimation models on this particular task.
All estimations refer to a representative credit portfolio model, a single-factor Gaussian copula
with n = 100 obligors, equicorrelation parameter ρ = 0.1 and heterogeneous average default
probabilities sampled from a log-normal distribution with varying mean p and standard deviation
σ = 0.2. The choice of a log-normal distribution is of course arbitrary and is done in analogy
to (and to ease comparison with) the numerical experiments presented in [EKJK08, EKJ09]. The
results do not vary qualitatively for different choices of the parameters.

Figure 6 shows the signed relative error for estimated call prices measured in basis points (bp) as
a function of the strike. Each subfigure refers to a different choice of the mean p of the log-normal
distribution from which the average single-obligor default probabilities are sampled. The value
of p is the correct parameter to study the performance of these estimation methods, because as it
increases the total portfolio losses move from a Poisson regime to a Gaussian one, correspondingly
affecting the performance of the methods.

• For low values of p all methods based on the Poisson approximation perform best, with
negligible errors, while the Stein first-order correction to theGaussian approximation yields
comparatively larger errors, further characterized by an oscillation in the strike due to the
approximation to a discrete distribution.
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Figure 6. Signed relative error for call price estimation measured in basis points
(bp) as a function of the strike for different estimation methods and for increasing
values of the average default probability in the portfolio. Method “Poisson” denotes
the Chen–Stein first order correction to the Poisson approximation (which corre-
sponds also to themod-Poisson approximation scheme of order 2), while themethod
“Gaussian” denotes the Chen–Stein first order correction to the Gaussian approxi-
mation (see [EKJK08, EKJ09] or Appendix A).

• As the default probability increases, the error associated with the Chen–Stein first-order
correction to the Poisson approximation increases, while theGaussian approximation yields
better and better estimates. For this reason the authors in [EKJK08, EKJ09] (where the
Chen–Stein’s method is first applied to CDO pricing) propose a hybrid estimation method,
in which they suggest to use either the first-order correction to the Gaussian approximation
or to the Poisson one, depending on the specific value of p.
• As shown in Figure 6, mod-Poisson approximation schemes at higher order perform very
well even in a Gaussian regime. For instance, in the case of p = 50% – which is an extremely
high average default probability in any conceivable credit risk setting – the mod-Poisson
approximation schemes of order 6 and 10 perform better than the first-order correction to
the Gaussian approximation, so that the domain of validity of the Poisson approximation,
if properly corrected, includes all credit risk applications, without the need for a hybrid
method.

7.3. Default leg, premium leg, and fair spread. Accurate estimates of call prices can then be
used in Equations (17) and (16) for the determination of the default and premium legs of the CDO
and finally for the estimation of the fair spread, which is effectively used to price a CDO contract.
Table 2 compares the estimation of default legs, premium legs and fair spreads for five standardized
tranches of a CDO written on a representative portfolio.
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Figure 7. Decimal place accuracy of fair spread estimates for all estimationmethods
by tranche.

The accuracy of the models’ estimates can be more readily compared from Figure 7, where the
decimal place accuracy of the fair spread estimates in Table 2 are compared. The mod-Poisson
approximation schemes yield the most accurate estimates, with exponentially improving precision
as the approximation scheme order increases.



Attachment
points

Benchmark
(recursive)

Gaussian
approximation

Poisson
approximation

Mod-Poisson
(order=4)

Mod-Poisson
(order=6)

Mod-Poisson
(order=10)

Default leg 232.5975 bp 228.8759 bp 232.5996 bp 232.5979 bp 232.5974 bp 232.5975 bp
0% - 3% Premium leg 452.2145 bp 451.0626 bp 452.2208 bp 452.2137 bp 452.2145 bp 452.2145 bp

Fair spread 5143.5210 bp 5074.1488 bp 5143.4961 bp 5143.5404 bp 5143.5204 bp 5143.5210 bp
Default leg 200.2722 bp 200.7338 bp 200.2540 bp 200.2716 bp 200.2723 bp 200.2722 bp

3% - 7% Premium leg 1364.6971 bp 1362.7014 bp 1364.7217 bp 1364.6987 bp 1364.6971 bp 1364.6971 bp
Fair spread 1467.5213 bp 1473.0575 bp 1467.3613 bp 1467.5153 bp 1467.5218 bp 1467.5213 bp
Default leg 62.8105 bp 62.7749 bp 62.8088 bp 62.8099 bp 62.8104 bp 62.8105 bp

7% - 10% Premium leg 1248.7606 bp 1248.8878 bp 1248.7468 bp 1248.7608 bp 1248.7606 bp 1248.7606 bp
Fair spread 502.9824 bp 502.6464 bp 502.9747 bp 502.9777 bp 502.9820 bp 502.9825 bp
Default leg 33.6304 bp 33.5575 bp 33.6500 bp 33.6310 bp 33.6304 bp 33.6304 bp

10% - 15% Premium leg 2204.4540 bp 2204.5755 bp 2204.4246 bp 2204.4529 bp 2204.4540 bp 2204.4540 bp
Fair spread 152.5566 bp 152.2176 bp 152.6473 bp 152.5594 bp 152.5565 bp 152.5566 bp
Default leg 7.2444 bp 7.2698 bp 7.2461 bp 7.2447 bp 7.2445 bp 7.2444 bp

15% - 30% Premium leg 6738.6074 bp 6738.5758 bp 6738.6165 bp 6738.6076 bp 6738.6073 bp 6738.6074 bp
Fair spread 10.7506 bp 10.7883 bp 10.7531 bp 10.7511 bp 10.7508 bp 10.7507 bp

Table 2. Default leg, premium leg and fair spread for five tranches computed using different techniques. Benchmark values are exact
and computed using the recursive methodology.
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8. Conclusions

In this paper we have introduced mod-Poisson approximation schemes for the semi-analytical
estimation of functionals of factor credit portfolio models. This technique is based on the theory
of mod-ϕ convergence and mod-ϕ approximation schemes and relies on the computation of higher-
order correction terms to the classic Poisson approximation. We also show how to extend the
method to credit models with stochastic exposures using mod-compound Poisson approximation
schemes.

The method has been compared empirically with the recursive method, the large deviations ap-
proximation, theChen–Steinmethod and theMonteCarlo simulation technique (with andwithout
importance sampling). The tests show that mod-Poisson approximation schemes lead tomore accu-
rate estimates for risk measures (such as VaR and ES) and CDO tranche prices. Furthermore, due
to the semi-analytical nature of the approximations, they require substantially less computational
time, especially in the large portfolio limit.
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Appendix A. Overview of estimation methods

A.1. Recursive methodology. The recursive methodology was first introduced in [BH84] (but
see [KZ03] for a more concise introduction) in the context of reliability theory, where the main
quantity of interest is the failure probability of a system constituted by a large number of inde-
pendent sub-components. The same estimation technique was rediscovered in the context of credit
portfolios in [HW04, Bra04] and is nowadays well–known among financial practitioners. In its full
generality, thismethod allows the exact computation of the law ofLn =

∑n
i=1 Yi, where the random

variables (Yi)ni=1 are assumed to be integer-valued and independent, but not necessarily identically
distributed. Under the conditional independence assumption typical of credit risk models, this
method can be used to compute the conditional distribution of Ln given Ψ, i.e. P (Ln = k|Ψ) for
all k ∈ N and all ψ ∈ Range(Ψ). The unconditional distribution of Ln can then be obtained via
numerical integration over the mixing variable Ψ.

Before presenting the recursive methodology algorithm in its full generality, it is instructive to
consider the simpler case of the Poisson binomial distribution. Let Ln =

∑n
i=1 Yi, where (Yi)ni=1

are independent Bernoulli random variables, with P (Yi = 1) = pi. The basic idea is to compute
the distribution of the sum Ln recursively by adding one Bernoulli random variable at a time.

Data: distributions of the Yi as qi,j = P (Yi = j), for j ∈ Range(Yi).
Result: distribution pk = P (Ln = k), for k ∈ Range(Ln).
p
(0)
0 ← 1

p
(0)
k ← 0, for k ∈ Range(Ln)\{0}
for i = 1 to n do

p
(i)
k ← p

(i−1)
k , for k ∈ Range(Ln)

for k ∈ Range(Ln) do
for j ∈ Range(Yi) do

ℓ← k + j

p
(i)
k −= p

(i−1)
k qi,j

p
(i)
ℓ += p

(i−1)
k qi,j

end
end

end
return pk ← p

(n)
k , for k ∈ Range(Ln).

Algorithm 1: Recursive methodology for loss distribution under assumption of independence.

If Ln is the sum of the first term only, i.e. Ln = Y1, then its distribution is simply the same as
that of Y1. We can denote it as follows:

p
(1)
k = P (Ln = k) =

{
1− p1 if k = 0,

p1 if k = 1

where the superscript (1) indicates that this is the distribution of Ln as a sum of only one term. If
Ln = L1 + L2, then clearly we have that:

p
(2)
k = P (Ln = k) =


(1− p1)(1− p2) if k = 0,

p1(1− p2) + p2(1− p1) if k = 1,

p1p2 if k = 2,

which can also be expressed in terms of p(1)k as follows:

p
(2)
k = p

(1)
k (1− p2) + p

(1)
k−1p2, k = 0, 1, 2,
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provided we set p(1)−1 := 0. This shows that adding one more summand to the sum is equivalent to
shifting a probability mass equal to p(1)k p2 from the point k to the point k+1, for all possible values
of k.

This recursion can be generalized, for any number of summands:

p
(m)
k = p

(m−1)
k (1− pm) + p

(m−1)
k−1 pm, k = 0, 1, . . . ,m.

Running the recursion from m = 1 to m = n, one finally recovers the distribution of Ln. In the
general case with Ln =

∑n
i=1 Yi, where the Yi are independent, integer-valued random variables

not necessarily Bernoulli distributed, at the m-th step of the recursion we must shift a probability
mass equal to p(m−1)

k P (Ym = j) from the point k to the point ℓ := k + j, for every possible value
j of Ym and for every possible value k. Algorithm 1 shows the recursion in this general case.

The complexity of the algorithm is

O

n |Range(Ln)|∑
i=1

|Range(Yi)|

 .

In the Poisson binomial case the complexity is O(n2), which makes the recursive methodology
computationally expensive in the case of large portfolios, as shown in Section 6.3. We further re-
mark that the recursive method always outputs the full loss distribution, which is computationally
wasteful in the case of applications for which only a part of the distribution is needed, for instance
its tail or a particular tail value.

A.2. Large deviations approximation. The large deviations theory provides tools for the analyt-
ical approximation of probabilities of rare events. Most results can be derived using a variety of
techniques, but since the ’80s a unified approach to the field has emerged, as expounded in several
monographs on the subject [DS01, Ell06, DZ10, DH08]. The theory has been applied to many fi-
nancial problems, including credit risk management (see [Pha07] for an overview). Here we follow
the results presented in [DDD04], which can be used to estimate conditional probabilities of the
form P (Ln > nx|Ψ) for a given tail value x ∈ R+ and a generic credit portfolio Ln =

∑n
i=1 Zi Yi.

The key quantity, as in all large deviations applications, is the cumulant generating function of
the random variable of interest. In this case we want to approximate the conditional distribution
of Ln given Ψ, so we denote its conditional cumulant generating function by F (·,Ψ) and compute
it as:

F (λ,Ψ) =
1

n

n∑
i=1

log
(
1 + pi(Ψ)(E

[
eλZi |Ψ

]
− 1)

)
, (18)

where P (Yi = 1|Ψ) = pi(Ψ) are the default probabilities as a function of the mixing variable and
E
[
eλZi |Ψ

]
is the conditional moment generating function of Zi. The latter quantity depends on

the particular distributional assumptions of the credit risk model and should be known explicitly
or be easily computable.

We remark that the normalization term 1/n in Equation (18) is necessary for adapting the proof
of Bahadur–Rao’s theorem (see [DZ10, Theorem 3.7.4.]) to the case of still independent, but not
identically distributed summands. More specifically, F (λ,Ψ) can be thought of as the cumulant
generating function of a mixture of the summands’ distributions, each taken with weight 1/n.

The second key quantity is the Legendre–Fenchel transform of F (λ, ψ) for a given tail value x,
which is defined as:

λx(Ψ) := sup
λ≥0
{λx− F (λ,Ψ)} .

Even in the case of the simplest credit models the value λx(ψ) cannot be computed analytically,
but fortunately the corresponding optimization problem can be solved efficiently, since the objec-
tive function is convex. Finally, F (·,Ψ), its second derivative F ′′(·,Ψ) and λx(Ψ) are used in the
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computation of the following large devations tail probability estimator:

P (Ln > nx|Ψ) ≈ 1√
2πnλx(Ψ)2F ′′(λx(Ψ),Ψ)

e−n(λx(Ψ)x−F (λx(Ψ),Ψ)) (19)

The unconditional tail probability can then be obtained numerically by integrating over the mixing
variable Ψ. This latter integration actually suffers from numerical instabilities due to the presence
of a vanishing denominator in Equation (19) for some values of Ψ, as discussed in Section 6. We
remark that the large deviations approximation is optimal only asymptotically in n, therefore we
can expect it to perform well in the limit of very large portfolios.

A.3. Stein’s method: first-order correction to the Gaussian approximation. In this section
we present a method introduced by El Karoui and Jiao in [EKJ09] and applied to CDO pricing
in [EKJK08]. Their results rely on Stein’s method [Ste72] and on the zero-bias transformation
framework [GR97] developed by Goldstein and Reinert. The results we are interested in rely on
the following lemma.

Lemma A.1. Let X1, . . . , Xn ∈ L4 be independent mean-zero random variables and letW = X1 +
· · · + Xn, with σ2

W = Var(W ). Then for any function h such that ∥h′′∥∞ is finite, the following
approximation holds:

E [h(W )] ≈ E [h(Z)] +

∑n
i=1 E [(Xi)

3]

2σ4
W

E
[(

Z2

3σ2
W

− 1

)
Zh(Z)

]
,

where Z ∼ N (0, σ2
W ).

This lemma provides a first-order correction to the classical approximation of W in terms of
the Gaussian random variable Z. Its proof, together with an explicit bound on the approximation
error, is beyond the scope of this work and can be found in [EKJK08, Theorem 2.1]. Unfortunately
Lemma A.1 cannot be used directly for the estimation of tail probabilities or call prices, because the
regularity assumption on the function h (namely, that its second derivative exists everywhere) is not
satisfied neither for indicator functions, h(x) = 1{x>k}, nor for call functions, h(x) = (x − k)+.
Nevertheless the authors are able to show the result still holds for these functional choices: see
[EKJ09, Propositions 3.5 and 3.6].

If Ln =
∑n

i=1 Zi Yi is a generic credit portfolio with mixing variableΨ, then we can approximate
the expectation of a call function of Ln with strike K using Lemma A.1 applied to the centered
random variables Xi := ZiYi − E [ZiYi], obtaining:

E
[
(Ln −K)+|Ψ

]
≈ E

[
(Z −K)+|Ψ

]
+

1

6σ2
W

n∑
i=1

E
[
X3
i

]
KϕσW (K),

where σ2
W =

∑n
i=1 Var(ZiYi|Ψ), Z ∼ N (0, σ2

W ), ϕσ denotes the Gaussian density with variance
σ2, and the first-order correction term has been computed explicitly using Bachelier’s formula. The
approximation for the unconditional expectation can then be obtained by numerical integration
over the distribution of the mixing variable Ψ.

A.4. Chen–Stein’s method: first-order correction to the Poisson approximation. This method
was also introduced in [EKJ09, EKJK08], together with the first-order Gaussian correction seen
in the previous section. In fact the two methods share the same basic techniques, just different
reference laws. When the reference law is the Poisson law, Stein’s method can still be applied but
for a different choice of operator, as first noticed by Chen in [Che75]. The approximation we are
interested in relies on the following lemma.

Lemma A.2. Let X1, . . . , Xn ∈ L3 be non-negative, integer-valued random variables and let W =
X1+ . . .+Xn, with λW = E [W ] and σ2

W = Var(W ). Then for any bounded function h, the following
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approximation holds:

E [h(W )] ≈ E [h(Z)] +
σ2
W − λW

2
E
[
∆2

+(h)(Z)
]
,

where Z ∼ Po (λW ) and∆2
+(h)(x) = h(x+ 2)− 2h(x+ 1) + h(x) is the second-order forward finite

difference operator.

Also in this case, it is clear that the lemma provides a first-order correction to the classical Poisson
approximation ofW in terms ofZ. Its proof, together with an explicit bound on the approximation
error, can be found in [EKJ09, Theorem 4.2].

In a credit risk setting we can apply this result to the case of a credit portfolio with unit exposures
Ln =

∑n
i=1 Yi and mixing variable Ψ. For instance, we can approximate the expectation of a call

function of Ln with strike K using Lemma A.2 applied to the default indicators Yi ∼ Be (pi(Ψ)),
which yields:

E
[
(Ln −K)+|Ψ

]
≈ E

[
(Z −K)+|Ψ

]
− 1

2

n∑
i=1

pi(Ψ) e−λ
λK−1

(K − 1)!
,

where λ =
∑n

i=1 pi(Ψ) and Z ∼ Po (λ). The method can trivially be extended to the case of
homogeneous deterministic recovery rates, that is portfolios of the form Ln =

∑n
i=1 Zi Yi, with

Zi = 1 − R, for some R ∈ [0, 1], but the authors in [EKJK08, EKJ09] are unable to provide
an extension to the case of stochastic, heterogeneous recovery rates. In Section 5 we show how
higher order correction terms to the Poisson approximation can be derived in this setting using
mod-compound Poisson approximation schemes. Finally, let us remark that this approximation
method corresponds to the mod-Poisson approximation scheme of order r = 2.

A.5. Monte Carlo simulation. Simulation-based methods are very popular in financial applica-
tions and standard monographs in the field are [AG07] and [Gla04]. The simplest simulation-based
method is Monte Carlo integration. Algorithm 2 presents the naive Monte Carlo estimator for the
tail probabilities of a generic credit risk model Ln =

∑n
i=1 Li.

The simulation is divided in two steps: first we simulate a realization of the mixing variable Ψ
and then, conditionally on this value, we simulate the portfolio losses. The process is then repeated
for a sufficiently high number of simulation runs.

Data: number of Monte Carlo simulationsM .
Result: tail probability estimator θx ≈ P (Ln > x), for some x ∈ R+.
for m = 1 toM do

Sample ψm from the distribution of Ψ
for i = 1 to n do

Sample L(m)
i given Ψ = ψm

end
end

θx ←
1

M

M∑
m=1

1{∑n
i=1 L

(m)
i >x

}
return θx.

Algorithm 2: Monte Carlo estimator for probability tail function.

One key advantage of this naive Monte Carlo methodology is its generality: it’s straightforward
to introduce new sources of randomness and additional model parameters (provided, of course, the
final losses can still be simulated efficiently), so that even very complicatedmodels can be estimated.

Additionally, it is possible to estimate the full loss distribution with only one batch of simula-
tions, by running Algorithm 2 for different values of x on the same simulated sample.
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On the other hand, the naive Monte Carlo methodology requires at least 10n simulations for the
estimation of probabilities of order 10−n. This is a simple consequence of the fact that rare events
occur rarely also in simulations, thus leading to estimators that underestimate the probability of
rare events. In practice, even more simulations are needed in order to obtain an accurate estimate
within any reasonable asymptotic confidence interval: see Figure 3 for an empirical illustration.
This problem is particularly severe in risk management applications, since large losses tend to occur
with low probability but contribute substantially to the risk of a position.

A.6. Importance sampling. In order to overcome the limitations of the naiveMonteCarlomethod-
ology for the estimation of rare events, importance sampling techniques have been developed. Our
presentation follows [GL05], where an importance sampling algorithm for the Gaussian copula
model was first introduced, but good treatments can also be found in [Gla04, MFE15]. Addition-
ally we show explicitly how to incorporate stochastic exposures. To illustrate the approach, let
us first consider a simple Poisson binomial model of the form Ln =

∑n
i=1 Yi and suppose that

we are interested in estimating the rare event probability P (Ln > x), for x sufficiently large. Let
f(y1, . . . , yn) = P (Y1 = y1, . . . , Yn = yn) be the probability mass function of the random vector
(Y1, . . . , Yn) on {0, 1}n and let g denote the probability mass function of another random vector
of obligors’ losses, (Ỹ1, . . . , Ỹn), yet to be determined. Then a simple calculation shows that

P (Ln > x) = E
[
1{Y1+···+Yn>x}

]
= E

[
1{Ỹ1+···+Ỹn>x}

f(Ỹ1, . . . , Ỹn)

g(Ỹ1, . . . , Ỹn)

]
, (20)

where the right-hand side integral is computed only with respect to the distribution of (Ỹ1, . . . , Ỹn)
and the ratio f(·)/g(·) is known as the likelihood ratio function of the two distributions.

The main idea of importance sampling is that we can choose (Ỹ1, . . . , Ỹn) in such a way that the
event {Ỹ1 + · · · + Ỹn > x} is much more likely than {Y1 + · · · + Yn > x} on the support of the
likelihood ratio function, so we can approximate the rare event probability on the left-hand side of
(20) by estimating the integral on the right-hand side using a naive Monte Carlo estimation. The
large deviations theory suggests that a natural choice for the loss distribution (Ỹ1, . . . , Ỹn) comes
from exponentially tilting the total loss Ln, which leads to the following parametrized family:

gλ(y1, . . . , yn) = eλ(y1+...+yn)
f(y1, . . . , yn)

E [eλ(Y1+...+Yn)]
(21)

= eλ(y1+...+yn)
∏n

i=1(pi)
yi(1− pi)1−yi∏n

i=1(1 + pi(eλ − 1))

=
n∏
i=1

qi(λ)
yi(1− qi(λ))1−yi (22)

where we defined

qi(λ) =
pie

λ

1 + pi(eλ − 1)
, λ ∈ R+.

Equation (22) shows that sampling from the distribution gλ is equivalent to simulating losses with
new default probabilities qi(λ) instead of pi.

Ideally the parameter λ should be chosen by minimizing the variance of the importance sam-
pling estimator in Equation (20) (or equivalently its second moment), because the estimator with
minimum variance will require the least number of simulations for any given level of confidence.
Unfortunately this minimization is in general intractable, but by expressing the likelihood ratio
function from Equation (21) in terms of F (λ) := log

(
E
[
eλ(Y1+...+Yn)

])
(i.e. the cumulant gener-

ating function of Ln), we obtain the following bound for the second moment of the exponentially
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tilted importance sampling estimator:

E

(1{Ỹ1+...+Ỹn>x}
f(Ỹ1, . . . , Ỹn)

gλ(Ỹ1, . . . , Ỹn)

)2
 ≤ e−2λx+2F (λ). (23)

This bound, which is equivalent to the Chernoff bound, turns out to be remarkably sharp, so that
the minimizer λx of the right-hand side of (23) can be used to obtain a very efficient importance
sampling estimator. The estimation procedure we just outlined applies to a Poisson binomial dis-
tribution, but it is readily extended to any Gaussian copula model of the form Ln =

∑n
i=1 Zi Yi

with mixing variable Ψ, assuming that the variables Zi Yi are light-tailed.

We first sample several realizations of the mixing variable Ψ and compute the exponentially
tilted importance sampling estimator for each realization. The presence of the stochastic expo-
sures, Zi, slightly modifies the formulæ already presented through their moment generating func-
tions, E

[
eλZi

]
, which must be explicitly computable, but are otherwise easy to incorporate. A full

description of this procedure can be found in Algorithm 3.

Data: number of Monte Carlo simulationsM .
Result: tail probability estimator θx ≈ P (Ln > x), for some x ∈ R+.
for m = 1 toM do

Sample ψm from N (0, I)
Compute λx(ψm)
for i = 1 to n do

qi ←
pi(ψm)E

[
eλx(ψm)Zi

]
1 + pi(ψm)(E [eλx(ψm)Zi ]− 1)

Sample L̃(m)
i = ZiỸi, with Ỹi ∼ Be (qi)

end
end

θx ←
1

M

M∑
m=1

1{∑n
i=1 L̃

(m)
i >x

}e−λx(ψm)
∑n

i=1 L̃
(m)
i +F (λx(ψm),ψm)

return θx.
Algorithm 3: One-step importance sampling algorithm for probability tail function.

Nevertheless, this importance sampling procedure yields estimators that are far from being opti-
mal, as shown in [GL05]. The problem lies in the way the mixing variableΨ is handled. Recall that
in a Gaussian copula model large losses tend to occur for large realizations of the mixing variable
Ψ (up to sign conventions), but in Algorithm 3 large realizations of Ψ will be sampled only rarely.
In other words, the exponential tilting must be applied to the unconditional portfolio losses and
not just to the conditional ones. This leads to a two-step exponential tilting procedure, in which
the Gaussian mixing variable Ψ is tilted first – which amounts to a shift of its mean from zero to
a new value µ – while portfolio losses are tilted in a second step conditionally on each realization
of the shifted mixing variable, exactly as in Algorithm 3. It should be mentioned that the first step
relies heavily on the specific parametric choice of a Gaussian copula and furthermore on solving an
approximate optimization, as the objective function itself needs to be approximated. Nevertheless
several possible approximations are feasible and the interested reader is referred to [GL05, Section
5.1] for an overview of choices.

The final procedure is described in detail in Algorithm 4 and this is also the procedure used for the
empirical tests of Section 6. Finally, we remark that if the full tail function of the loss distribution
needs to be estimated, then it is not necessary to re-compute the shifted mean µ ofΨ for each value
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of x, since in practice the same shift yields efficient estimators for a large neighborhood of tail
points.

Data: number of Monte Carlo simulationsM .
Result: tail probability estimator θx ≈ P (Ln > x), for some x ∈ R+.

µ← sup
z∈R

{
F (λx(z), z)− λx(z)x−

1

2
|z|2
}

for m = 1 toM do
Sample ψm from N (µ, I)
Compute λx(ψm)
for i = 1 to n do

qi ←
pi(ψm)E

[
eλx(ψm)Zi

]
1 + pi(ψm)(E [eλx(ψm)Zi ]− 1)

Sample L̃(m)
i = ZiỸi, with Ỹi ∼ Be (qi)

end
end

θx ←
1

M

M∑
m=1

1{∑n
i=1 L̃

(m)
i >x

}e−λx(ψm)
∑n

i=1 L̃
(m)
i +F (λx(ψm),ψm)+ 1

2
|µ|2−µTψm

return θx.
Algorithm 4: Two-step importance sampling algorithm for probability tail function.

Appendix B. Tail of the Poisson distribution

Proposition B.1 (Tail function of the Poisson distribution). IfX is a Po (λ) random variable, then:

P (X > k) =
1

k!
γ(k + 1, λ), ∀k ∈ N

where γ is the lower incomplete gamma function given by:

γ(x, λ) =

∫ λ

0

tx−1e−tdt.

Proof. For a Poisson distribution, the derivative of the tail probability with respect to the distribu-
tion parameter λ is given by the probability mass function. This can be shown as follows:

d
dλ

P (X > k) =
∞∑

j=k+1

1

j!

d
dλ
(
e−λλj

)
=

∞∑
j=k+1

e−λ
λj−1

(j − 1)!
−

∞∑
j=k+1

e−λ
λj

(j)!

=
∞∑
j=k

e−λ
λj

j!
−

∞∑
j=k+1

e−λ
λj

(j)!
= e−λ

λk

k!
.

Then, by the fundamental theorem of calculus, one has:

P (X > k) =

∫ λ

0

e−t
tk

k!
dt =

1

k!
γ(k + 1, λ).

□
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Appendix C. Incidence algebras and the Möbius function

DefinitionC.1. Aposet (or partially ordered set)P is a set togetherwith a binary order relation, denoted
≤, satisfying the following axioms:

(1) x ≤ x, ∀x ∈ P ,

(2) if x ≤ y and y ≤ x, then x = y,

(3) if x ≤ y and y ≤ z, then x ≤ z.

We say that P has a minimal element, denoted 0̂, if there exists an element 0̂ ∈ P such that 0̂ ≤ x

for all x ∈ P . Analogously, has a maximal element 1̂, if there exists an element 1̂ ∈ P such that
1̂ ≥ x for all x ∈ P .

ExampleC.2 (The poset of set partitionsΠ(n)). LetA be a finite set. A set partition π = {B1, . . . , Bk}
of A is a collection of non-empty, mutually disjoint subsets of A, such that ∪ki=1Bi = A. The sets
B1, . . . , Bk are called the blocks of π and the number of blocks of π is denoted by |π|.

For n ∈ N, define Π(n) as the set of all set partitions of {1, 2, . . . , n}. Given two set partitions π
and σ, we denote π ≤ σ if every block of π is contained in a block of σ. Then, the poset (Π(n),≤)
admits a minimal element

0̂n = {{k}, k = 1, . . . , n} (the partition with n blocks)

and a maximal element

1̂n = {{1, . . . , n}} (the partition with only one block).

An interval of a poset P , denoted [x, y] for some x, y ∈ P with x ≤ y, is a subset of P defined as
[x, y] = {z ∈ P |x ≤ z ≤ y}. We denote by Int(P ) the set of all intervals of P and we say that P is
locally finite is every interval of P is finite. It is quite natural to define functions on intervals, for
instance if we want to count the number of elements of an interval, and more generally functions
f : Int(P )→ K for some field K. The space of all such functions can be turned into an associative
algebra, as the following definition shows.

Definition C.3 (Incidence algebra I(P,K)). The incidence algebra I(P,K) of P over K is the K-
algebra of all functions f : Int(P )→ K with operation, called convolution, given by:

(f ⋆ g)(x, y) :=
∑
x≤z≤y

f(x, z) g(z, y).

The algebra I(P,K) is associative, and its multiplicative identity is

δ(x, y) =

{
1 if x = y,
0 otherwise.

Another important element of the incidence algebra is the zeta function of the poset, defined as

ζ(x, y) =

{
1 if x ≤ y,
0 otherwise.

It can be shown that the function ζ of a poset is invertible and its inverse is called the Möbius
function of the poset and is denoted by µ. In particular one has that µ satisfies:

µ ⋆ ζ = ζ ⋆ µ = δ.

Furthermore, the following important result holds.
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Theorem C.4 (Möbius inversion formula). Let P be a locally finite poset and let g, h : P → K. Then

h(x) =
∑
y≤x

g(y), ∀x ∈ P

is equivalent to
g(x) =

∑
y≤x

h(y)µ(y, x), ∀x ∈ P.

Example C.5. The Möbius function of the poset of set partitions Π(n) admits the following repre-
sentation:

µ(π, σ) = (−1)|π|−|σ|
∏
B∈σ

(nσπ(B)− 1)!, ∀π ≤ σ

where nσπ(B) is the number of blocks of π contained in the block B of σ.

We refer to [Rot64] for details on these constructions. For the manipulation of Fourier and
Laplace transforms of probability distributions, the formalism of posets and Möbius functions
enables one to go from a generating series to its exponential or logarithm.

Theorem C.6 (Exponential and logarithm of generating series). Let G(z) =
∑∞

n=1
gn
n!
zn be the

exponential generating series of a sequence of coefficients (gn)n≥1. IfH(z) = exp(G(z)), then

H(z) = 1 +
∞∑
n=1

1

n!

 ∑
π∈Π(n)

∏
B∈π

g|B|

 zn.

Conversely, ifH(z) = 1 +
∑∞

n=1
hn
n!
zn and G(z) = log(H(z)), then

G(z) =
∞∑
n=1

1

n!

 ∑
π∈Π(n)

µ(π, 1̂n)
∏
B∈π

h|B|

 zn,

with µ(π, 1̂n) = (−1)|π|−1 (|π| − 1)!.

Proof. We expand the exponential ofG(z) =
∑∞

n=1
gn
n!
zn, and we collect the coefficient of zn. This

is

[zn]H(z) =
n∑
l=1

∑
c1+···+cl=n
c1≥1,...,cl≥1

1

l!

gc1 · · · gck
c1! · · · cl!

.

The sum above runs over compositions of n, that is to say sequences (c1, . . . , cl) of positive integers
with sum equal to n. By replacing these compositions of size n by their non-increasing reorderings
called integer partitions of size n, we obtain a sum over a smaller set:

[zn]H(z) =
n∑
l=1

∑
λ1+···+λl=n
λ1≥···≥λl≥1

1

m1(λ)! · · ·mn(λ)!

gλ1 · · · gλl
λ1! · · ·λl!

,

wheremi(λ) denotes the number of parts λ1≤j≤l of λ equal to i. Indeed, given an integer partition
λ = (λ1 ≥ · · · ≥ λl) with sum n, the number of compositions whose non-increasing reordering is
λ is the multinomial coefficient l!

m1(λ)!···mn(λ)!
. Now, for any integer partition λ with size n,

n!

m1(λ)! · · ·mn(λ)!λ1! · · ·λl!
is the number of set partitions π with size n and type λ, that is to say that the sizes of the blocks of
π are given by the integer partition λ. Therefore,

n! [zn]H(z) =
∑

π∈Π(n)

∏
B∈π

g|B|.
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This proves the first formula. In order to get the second formula, let us define two functions g and
h on the poset Π(n) :

g(π) =
∏
B∈π

(
|B|! [z|B|]G(z)

)
=
∏
B∈π

g|B|;

h(π) =
∏
B∈π

(
|B|! [z|B|]H(z)

)
=
∏
B∈π

h|B|.

IfH(z) = exp(G(z)), then we have shown that h(1̂n) =
∑

π∈Π(n) g(π), from which we deduce that
h(σ) =

∑
π≤σ g(π). By Möbius inversion, g(σ) =

∑
π≤σ µ(π, σ) g(π), so in particular,

g(1̂n) = gn = n! [zn]G(z) =
∑

π∈Π(n)

µ(π, 1̂n)
∏
B∈π

h|B|.

Note that an alternative way to get these inversion formulæ is bymeans of the Faà-di-Bruno formula

dn(a ◦ b)
dzn

(z) =
∑

π∈Π(n)

d|π|a
dz|π|

(b(z))
∏
B∈π

d|B|b

dz|B| (z),

with b taken equal to G(z) or H(z), and a = exp or a = log. □

Appendix D. Relation between the coefficients of the approximation scheme and the

moments of the total loss variable

In this appendix, we prove Formula (7). It is convenient to introduce the elementary symmetric
functions

ek,n =
∑

1≤i1<i2<···<ik≤n

pi1pi2 · · · pik .

By using the well known relation between the coefficients of a polynomial and its roots, we get:

1 +
∞∑
k=1

ek,n z
k =

n∏
i=1

(1 + piz) = exp

(
n∑
i=1

log(1 + piz)

)

= exp

(
n∑
i=1

∞∑
k=1

(−1)k−1

k
(piz)

k

)
= exp

(
∞∑
k=1

(−1)k−1

k
pk,n z

k

)
.

By using TheoremC.6, we then obtain the relation between the coefficients ek,n and the coefficients
pk,n:

ek,n =
1

k!

∑
π∈Π(k)

µ(0̂k, π)

(∏
B∈π

p|B|,n

)
.

This is the same relation as Equation (5), except that the sum runs over all set partitions, and not
only those with blocks of size larger than 2. As a consequence, the coefficients ek,n and bk,n are
related by the following inclusion-exclusion formula:

bk,n =
k∑
l=0

(−1)l

l!
(e1,n)

l ek−l,n. (24)

Indeed, let us replace on the right-hand side each ek−l,n by its expansion over set partitions. We get:

RHS =
k∑
l=0

∑
π∈Π(k−l)

(−1)l µ(0̂k−l, π)
l! (k − l)!

(p1,n)
l

(∏
B∈π

p|B|,n

)
.
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Since there are k!
l!(k−l)! subsets of the integer interval [[1, k]] = {1, 2, . . . , k} with size l, we can

rewrite the formula above as a sum over pairs (σ, S), where σ ∈ Π(k), and S is a subset of S(σ) =⊔
B∈σ, |B|=1B, which is the union of the blocks of σ with size 1. Thus,

RHS =
1

k!

∑
σ∈Π(k)

∑
S⊂S(σ)

(−1)|S| µ(0̂k, σ)

(∏
B∈σ

p|B|,n

)
.

Given a set partition σ, the alternate sum
∑

S⊂S(σ)(−1)|S| vanishes unless S(σ) = ∅, so we conclude
that

RHS =
1

k!

∑
σ∈Π(k)

∀B∈σ, |B|≥2

µ(0̂k, σ)

(∏
B∈σ

p|B|,n

)
= bk,n.

Now, the coefficients ek,n also appear in the computations of the moments of Ln =
∑n

i=1 Yi with
Yi ∼ Be (pi):

E [(Ln)
r] =

∑
1≤i1,i2,...,ir≤n

E [Yi1Yi2 · · ·Yir ] =
∑

f :[[1,r]]→[[1,n]]

 ∏
i∈f([[1,r]])

pi


=

r∑
s=1

∑
1≤i1<i2<···<is≤n

s!

{
r

s

}
pi1pi2 · · · pis =

r∑
s=1

s!

{
r

s

}
es,n,

where
{
r
s

}
is the Stirling number of the second kind, which counts set partitions of [[1, r]] in s parts.

Indeed, to go from the first line to the second line, we gather the functions f : [[1, r]] → [[1, n]]
according to their range f([[1, r]]) = {i1 < i2 < · · · < is}; if this range is fixed, then there are s!

{
r
s

}
functions with this range. SetMr,n = E [(Ln)

r]. The relation above can be inverted by introducing
the Stirling number of the first kind

[
r
s

]
, which counts permutations of size r with s disjoint cycles.

Hence,

er,n =
1

r!

r∑
s=1

(−1)r−s
[
r

s

]
Ms,n; (25)

see [Sta97, Sections 1.3 and 1.4] for the combinatorial properties of the two kinds of Stirling num-
bers. Injecting Equation (25) into Formula (24), we get Equation (7).
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