

We not to use the finitions
$$\sum_{p} (\lambda) = 2 n^{4k} \chi^{k}(o_{p})$$
 if $n = |\lambda| \ge |p| \ge k$
in order to study the Alancherel measures, and mere generally the central measures on
integer pathoos.
1. The Twonov Kerov algebra
Def: A patial permutation is a pair (or A) with $0 \in S(A)$ and Afinke subset
if M^{∞} . We can also view σ as an element of $S(\omega) = \sqrt{2}S(\alpha)$; which
gives every $k \notin A$.
The product of two partial permutations is:
 $(\sigma, A) \times (\tau, B) = (\sigma_{5}\tau, A \cup B)$.
ex: $((1, 2), \{A, 2, 5 \leq \}) \times ((2, 3), \{B, 3, 5 \leq \}) = ((1, 2, 3), \{A, 2, 3, 5 \leq \})$
We extend this product by linearity to the real vector space of all formal linear
cambinations of partial permutations.
 $p = 2 x \ge 2 \phi_{7}(A)$ with $c_{0,7}(A) = 0$ if $A|>d$ for some $d \in A \cup g$
the gended algebra of partial permutations.
 $d_{2}(G, A) = |A|;$ $d_{2}(G, A) = (\sigma, T, B) \le d_{2}(\sigma, A) + d_{2}(\tau, B)$.
We can before another gradition on \mathcal{P} the weight.
wit $(\sigma, A) = |A| + \# cycles(\sigma, A)$.
Lemma: wit $((\sigma, A) \times (\tau, B)) \le wit(\sigma, A) + wit(\tau, B)$.
Trideed, we split the cycles of $\sigma_{7} \tau$ on $A \cup B$ in three subsets :

1) there included in A (Anb.
2) these included in B (Anb.
3) the other cycles .
If c is a cycle of type 1) in A (Anb, then
$$c = c \cdot t^{-4}$$
 is also a cycle for
 $z = \sigma^{-1} \circ c^{-4} = \tau^{-4} = \tau^{$

 $\sum_{\mu} = \sum_{a_1 \neq a_2 \neq \cdots \neq a_k \in \mathbb{N}^*} (\sigma_{\mu}(a_1, \dots, a_k), \{a_1, \dots, a_k\}) = z_{\mu} D_{\mu}.$ $k = l_{\mu} l_{\mu}$ product rule for the symbols \sum_{i} : The cycle type of $(\sigma_{A}) * (\tau_{B})$ only depends on which equalities $a_i = b_i h d d$ $T_{a_1, \dots, a_k} = T_{a_1, \dots, b_k}$ If one knows the partial pairing of $\mathbb{D}_1, \mathbb{k} \mathbb{J}$ and $\mathbb{D}_1, \mathbb{L} \mathbb{J}$ describing the equilities $s_i = b_i^2$, then the cycle type of $\sigma_{\overline{\mu}}(a_1, \dots, a_k) \times \sigma_{\overline{\nu}}(b_1, \dots, b_k)$ is known. $\rightarrow \sum_{p \times \sum_{ij} = \sum_{p \in V_i} \sum_{p \in V_i, ij} p_j \cdot p_j \cdot$ $\underline{example}: \qquad \sum_{3} \times \sum_{2} = \sum_{(3,2)}$ f
 one equility
 two equilities
 two equilities
 two equilities
 the eq $+ 6 \sum_{4}$ + 6 5(2,1) 2. Observables: algebra vs geometry. $\mathcal{G} \longrightarrow \mathcal{R}(\mathcal{S}(h))$ $(\sigma, A) \longmapsto \mathcal{G} \circ \mathcal{G}(\mathcal{G}(h))$ $\mathcal{G} \circ \mathcal{G}(herwise)$ For any n > 1, there is a morphism of Alcebras X^A: Z(RE(n)) -> R is a morphism of Apebras. Therefore, O -> R is a morphism: it is the composition X'o Th. Z, -> Zp(A)

We know that
$$\sum_{k} (\lambda) = \sum_{i=1}^{n} \frac{\mu_{i} \cdot \mu_{i} - \mu_{i}}{j^{+} \cdot \mu_{i} - \mu_{i}}$$
. $\mu = \lambda + n - i$.
This can be rewritten as:
 $\sum_{k} (\lambda) = \sum_{i=1}^{n-1} \left(-\frac{1}{k} \cdot \frac{\pi}{j^{-4}} \cdot \frac{\pi}{\pi} - \frac{\mu_{i}}{k} \right)$.
Given an integer pethtion λ_{i} its Trobenius Coordinates are the leafths of its raws and columns, sharting from the dispersion:
 $\lambda = (5, 3, 2)$
 $A(\lambda) = (\frac{3}{2}, \frac{3}{2})$; $B(\lambda) = (\frac{5}{2}, \frac{3}{2})$.
The Trobenius memories are: $\mu = (\lambda) = \sum_{i=1}^{d} (a_{i})^{k} + (-1)^{k-1} (b_{i})^{k}$.
In pathodar, $\mu(\lambda) = 1\lambda$.
Set $G_{i}(z) = -\frac{11}{2} \cdot \frac{z+b_{i}}{z-a_{i}} = \exp\left(\sum_{i=1}^{m} \frac{\mu(\lambda)}{k} \cdot \frac{z^{-k}}{k}\right)$.
By hroing λ by k degrees, we see that $A(\lambda) = \mathbb{Z}'_{+} \cap D(\lambda)$
 $B(\lambda) = \mathbb{Z}'_{-} / (\mathbb{Z}'_{-} \cap D(\lambda))$.
 $\Rightarrow G_{i}(z) = -\frac{\pi}{1} \cdot \frac{z+i-\Lambda_{0}}{z-\lambda_{i}+i-\Lambda_{0}}$.
 $= C + \frac{k+1}{k} \cdot \left(-\frac{1}{k} \cdot \frac{z-\Lambda_{0}}{2}\right)^{kk} \cdot \frac{G_{i}(z)}{G_{i}(z+k)}$.
 $= C + \frac{k+1}{k} \cdot \left(-\frac{1}{k} \cdot \frac{\pi}{2} - \frac{\pi}{2}\right) = C \sum_{i=1}^{k} (A - (i-\frac{1}{2})^{k}) \exp\left(\sum_{j=1}^{n} \frac{g(\Omega)}{2} + (A - \frac{A}{2})^{k}\right)^{kk}$.

3. End of the proof of LSKU By induction on the Voung disgram one can show that if $x_0 < y_0 < x_1 < \dots < y_s < x_s$ are the interlaced coordinates of λ , then $\frac{\prod_{i=1}^{j} z - y_i}{\prod_{i=1}^{j} z - \kappa_i} = \frac{1}{z} \exp\left(\sum_{j=1}^{\infty} \frac{p_j(\zeta)}{j} = \frac{1}{z}\right) = \frac{1}{z} \frac{G_{\chi}(z - 1|_{z})}{G_{\chi}(z + 1|_{z})}$ This implies that $\mathcal{B} = \mathcal{R} \subset \widetilde{p_2}, \widetilde{p_3}, \cdots$] and by working with the change of basis formulae, that $\widetilde{p_1} = \frac{1}{|p_1| + \ell(p)|} = \frac{1}{|p_1|} \frac{1}{|p_1$ Findly: $\mathbb{E}_{p_n} \mathbb{E}_{p_n} [\Delta] = \mathbb{1}_{p=\Delta^k} n^{bk} = \mathcal{O}(n^{\frac{wt(p)}{2}})$ $\mathbb{E}_{\text{Pl}_n} \subset \widetilde{p_k}(\lambda) = \mathbb{1}_k \text{ even } \left(\frac{k}{k_0} \right)^{n - \frac{k_0}{2}} + O(n^{\frac{k_0}{2}}).$ $\mathbb{E} \subset \widetilde{p_k}(w_n)] = \mathbb{1}_{k \text{ even }} \begin{pmatrix} \mu \\ \mu_{2} \end{pmatrix} + O(n^{-4/2}),$ ond since $ple^2 = \sum_{v,v} \bullet \sum_{v,v} + herms with lower weight$ $\frac{\varphi_{1}}{|\varphi|+\varrho(\varphi)} = |\varphi|+\varrho(\varphi) = |\varphi|$ we obtain similarly $\mathbb{E}\left[\widetilde{p}_{k}^{2}(w_{n})\right] = \mathbb{1}_{keven}\left(\binom{k}{k} + O(n^{-k})\right)$, so var $\longrightarrow O$.