2. Méthodes de simulation de variables réelles

Soit X une variable aléatoire réelle de loi \mathbb{P}_X . La fonction de répartition

$$F_X(t) = \mathbb{P}_X[(-\infty, t]] = \mathbb{P}[X \le t]$$

caractérise la loi de X. En effet, elle détermine les valeurs de \mathbb{P}_X sur la classe stable par intersection des intervalles $(-\infty,t]$, et la tribu engendrée par ces intervalles est la tribu des boréliens, donc par le lemme de classe monotone, F_X détermine \mathbb{P}_X . Remarquons par ailleurs que :

- (1) La fonction de répartition est croissante de \mathbb{R} vers [0,1].
- (2) Cette fonction est continue à droite en tout point : $\lim_{s\to t, s>t} F_X(s) = F_X(t)$.
- (3) On a $\lim_{t\to-\infty} F_X(t) = 0$ et $\lim_{t\to+\infty} F_X(t) = 1$.

Nous verrons plus loin que toute fonction avec ces trois propriétés est la fonction de répartition d'une variable aléatoire réelle.

1. Simulation par inversion.

Soit $F: \mathbb{R} \to [0,1]$ une fonction croissante et continue à droite, de limites 0 et 1 en $\pm \infty$. On appelle inverse généralisée de F la fonction $F^{-1}: (0,1) \to \mathbb{R} \sqcup \{\pm \infty\}$ définie par

$$F^{-1}(u) = \inf \left(\{ t \, | \, F(t) \geq u \} \right),$$

avec par convention $\inf(\emptyset) = +\infty$. Si la fonction F est continue strictement croissante, alors F^{-1} est simplement la bijection réciproque de F.

(1) Pour 0 < u < 1, notons

$$A_u = \{t \, | \, F(t) \ge u\}.$$

Montrer que $A_u \neq \emptyset$ et que $A_u \neq \mathbb{R}$. Si $s \in A_u$ et t > s, montrer que $t \in A_u$. En déduire que $F^{-1}(u) \in \mathbb{R}$ et que $A_u = [F^{-1}(u), +\infty)$.

- (2) Soit U une variable de loi uniforme sur [0,1]. Calculer la fonction de répartition de la variable aléatoire $F^{-1}(U)$. En déduire que les trois propriétés listées au début du chapitre caractérisent les fonctions $F: \mathbb{R} \to [0,1]$ qui sont des fonctions de répartition.
- (3) Soit X une variable aléatoire à valeur réelle et F_X sa fonction de répartition. Pour U uniforme sur [0,1], quelle est la loi de $F_X^{-1}(U)$? En déduire une méthode pour simuler une variable aléatoire qui a la même loi que X.
- (4) Retrouver la méthode de simulation des variables exponentielles de paramètre λ .
- (5) La loi de Cauchy est la loi à densité

$$f(x) = \frac{1}{\pi(1+x^2)} \, \mathrm{d}x$$

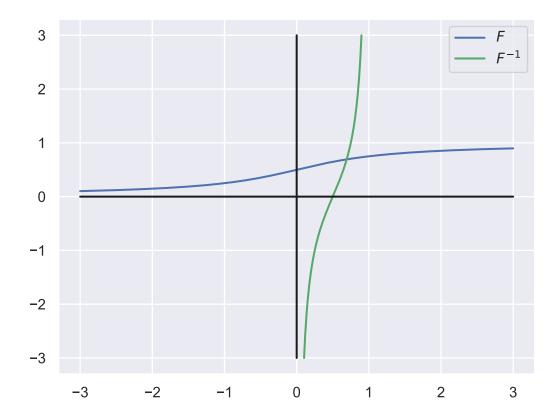


Fig. 2.1. Inverse d'une fonction de répartition.

sur \mathbb{R} . Calculer la fonction de répartition correspondante F(x), puis son inverse généralisée $F^{-1}(x)$. Écrire un programme qui simule des variables aléatoires suivant la loi de Cauchy.

(6) Trouver m tel que si X suive la loi de Cauchy, alors $\mathbb{P}[|X| \geq m] \leq 0.05$. Dessiner sur un même graphique la fonction de répartition empirique d'un échantillon de N = 10,100,1000 variables de Cauchy indépendantes, et la fonction F(x) calculée à la question précédente.

La méthode de *simulation par inversion* permet ainsi d'engendrer n'importe quelle variable aléatoire réelle *dont la fonction de répartition est calculable, ainsi que son inverse*. Pour traiter les cas où ceci n'est pas possible, on combinera cette méthode avec la méthode dite du *rejet*.

2. Méthode de rejet pour des variables à support compact.

Soit X une variable aléatoire dont la loi à un support compact inclus dans un intervalle [a, b], et a une densité bornée $f: [a, b] \to [0, K]$.

(1) Ecrire un programme uniforme(a, b) qui simule une variable de loi Unif([a,b]), et donc de densité

$$g(x) = \frac{1_{a \le x \le b}}{b - a}.$$

Écrire ensuite un programme point_uniforme(a, b, K) qui renvoie un couple (X, Y) avec X et Y indépendants, $X \sim \text{Unif}([a, b])$ et $Y \sim \text{Unif}([0, K])$.

- (2) On considère le cas où [a,b] = [1,2] et $f(x) = C(x^2-1) \mathbf{1}_{(1 \le x \le 2)}$. Calculer C pour que f soit une densité de probabilité, puis K pour que f prenne ses valeurs dans [0,K].
- (3) Écrire un programme nuage_points(N, f, a, b, K) qui prend en argument une densité $f:[a,b] \to [0,K]$, tire au hasard N points indépendants $(X_1,Y_1),\ldots,(X_N,Y_N)$ dans le rectangle $[a,b] \times [0,K]$, et les dessine, en mettant en bleu les points sous la courbe y=f(x), et en vert les points au-dessus de la courbe. On pourra utiliser la commande ax.scatter(X, Y, c=list_of_colors) pour dessiner un nuage de points d'abscisses contenues dans le vecteur X, et d'ordonnées contenues dans le vecteur Y. Utiliser ce programme avec N=200 et la fonction f de la question précédente.

Dans le contexte de la question précédente, on note :

$$M = \inf(\{i \ge 1 \mid f(X_i) > Y_i\})$$

et on dit que (X_M, Y_M) est le point accepté.

(4) Quelle est la loi de M? Calculer ensuite

$$\mathbb{P}[M = n \text{ et } X_M \leq t]$$

pour un paramètre $t \in [a, b]$. En déduire que M et X_M sont indépendants, et que X_M a la loi de densité f.

(5) Écrire un programme $nuage_points_accept(N, f, a, b, K)$ qui simule N points acceptés, les dessine dans le plan (ainsi que le graphe de la fonction f), et renvoie le vecteur formé des N abscisses de ces points. Tester ce programme avec la même fonction f que précédemment et N=1000. Dessiner sur un même graphique la fonction de répartition empirique du vecteur obtenu, et la fonction de répartition théorique F correspondant à f.

On a ainsi une méthode générale de simulation pour toute loi à densité bornée et à support compact. La troisième section étend ce principe, en retirant ces deux hypothèses sur la densité.

3. Méthode de rejet dans le cas général.

Soient f et g deux densités de probabilité sur \mathbb{R} , telles que $f(x) \leq \frac{1}{p} g(x)$ pour un certain $p \in (0,1)$ et tout x dans \mathbb{R} . On tire au hasard X_1, X_2, \ldots indépendants de densité g (par exemple avec la méthode d'inversion), puis Y_1, Y_2, \ldots définis par :

$$Y_i = \frac{1}{p} \, g(X_i) \, U_i,$$

où les U_i sont variables aléatoires indépendantes entre elles et indépendantes des variables X_i , de loi uniforme sur [0,1]. Remarquons que la construction de la section précédente correspondait au cas où $g(x) = \frac{1_{a \le x \le b}}{b-a}$ et $p = \frac{1}{K(b-a)}$.

On pose comme précédemment :

$$M = \inf(\{i \geq 1 \, | \, f(X_i) > Y_i\}).$$

- (1) En toute généralité, montrer que M suit une loi géométrique de paramètre p, et que X_M est indépendant de M, et a la loi de densité f.
- (2) Écrire un programme nuage_points_2(N, f, g, p, gen_g) qui :
 - prend en paramètre un entier N, deux densités f et g, un paramètre $p \in (0,1)$ tel que $f(x) \leq \frac{1}{p} g(x)$, et un générateur de variables aléatoires sous la densité g.

- tire au hasard N points $(X_1, Y_1), \dots, (X_N, Y_N)$ et les dessine dans le plan, en mettant en bleu les points sous la courbe y = f(x) et en vert les points au-dessus de cette courbe. On mettra également sur le dessin les graphes des fonctions f(x) et $\frac{1}{p}g(x)$.
- renvoie le vecteur formé des abscisses des points (X_i,Y_i) acceptés, c'est-à-dire tels que $f(X_i) > Y_i$.
- (3) On pose $g(x) = \frac{1}{2} e^{-|x|}$. Montrer que si $E \sim \text{Exp}(1)$ et S est une variable indépendante de E, à valeurs dans $\{\pm 1\}$ et avec $\mathbb{P}[S=1] = \mathbb{P}[S=-1] = \frac{1}{2}$, alors X = ES suit la loi de densité g.
- (4) Soit

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

la densité de la loi normale (ou gaussienne) N(0,1). Trouver un paramètre p tel que $f(x) \leq \frac{1}{p} g(x)$, et utiliser le programme nuage_points_2 avec ces fonctions, ce paramètre p, un générateur adéquat pour la loi g, et N=500.

(5) Modifier le programme $nuage_points_2$ pour que le paramètre N donne le nombre de points acceptés du résultat. Dessiner sur un même graphique la fonction de répartition empirique du vecteur obtenu (toujours avec N=500 et les fonctions f et g ci-dessus), et la fonction de répartition théorique de la gaussienne, qui est donnée par la commande scs.norm.cdf (appliquée à un array numpy de valeurs).

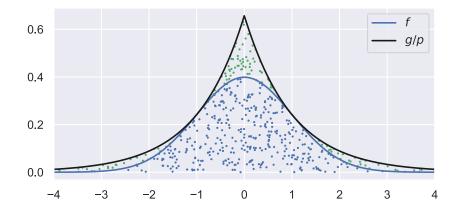


FIG. 2.2. Méthode de rejet : on tire des abscisses aléatoires de loi à densité à g, des ordonnées aléatoires $Y_i = \frac{1}{p} g(X_i) U_i$, et on accepte les abscisses des points placés sous la courbe y = f(x).