L3/S6 M305 Algèbre II

TD n° VII

Réduction de FROBENIUS

Exercice A: (Endomorphismes nilpotents)

Soit $u \in \operatorname{End}_{\mathbb{K}}(E)$.

Montrrer que:

- 1) u est nilpotent d'échlon d si et seulement si $P_{\min u} = X^d$.
- 2) u est nilpotent d'échelon d et cyclique si et seulement si

u est cyclique et $\dim_{\mathbb{K}} E \ = \ d$.

3) u est nilpotent d'échelon d si et seulement si u est nilpotent de rang d-1.

Exercice B: Soit V un espace vectoriel de dimension finie et u un endomorphisme de V. On suppose que $V=\oplus_{i=1}^4 V_i$ où les sous-espaces vectoriels V_i sont des sous-espaces stables par u, cycliques pour u de polynôme minimal respectif x, x, x(x-1), $(x-1)^2$.

- 1) Quelle est la dimension de V?
- 2) Donner les invariants de similitude de V et écrire une décomposition de FROBENIUS de u.

Exercice C: 1) Soient P_1, P_2, P_3, P_4 des polynômes unitaires de $\mathbb{Q}[x]$ irréductibles et distincts deux à deux.

Donner le nombre de classes de similitude des matrices à coefficients dans Q

de polynôme caractéristique $P_{\text{car}} = \pm P_1^7 P_2^6 P_3^7 P_4^4$

(décomposition de P en facteurs irréductibles) et

de polynôme minimal $P_{\min} = P_1^6 P_2^2 P_3^3 P_4^3$.

On justifiera en énonçant en particulier le théorème utilisé sur les invariants des classes de similitude.

- 2) Soient P_1 , P_2 , P_3 trois polynômes irréductibles distincts sur un corps K.
- a) Combien y a-t-il de classes de similitude de matrices à coefficients dans K ayant comme polynôme minimal $P_1P_2^2P_3^2$ et comme polynôme caractéristique $P_1^3P_2^3P_3^4$? Pour chacune d'elles, donner les invariants de similitude.
- b) On prend $K = \mathbb{Q}$ et $P_1 = x^2 + 1$, $P_2 = x + 1$ et $P_3 = x 1$. Parmi les classes de similitudes précédentes, quelles sont celles pour lesquelles la dimension de l'espace propre associé à la valeur propre 1 est supérieure ou égale à 3?

Donner la matrice de Frobenius associée à une telle décomposition de Frobenius

Indication: il ne doit donc apparaître que des matrices compagnons.

Exercice D: (Endomorphismes anti-involutif)

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \operatorname{End}_{\mathbb{K}}(E)$ un endomorphisme de E anti-involutif; c'est-à-dire vérifiant $f^2 = -\operatorname{Id}$.

- 1) Donner un exemple d'un tel endomorphisme sur \mathbb{R}^2 .
- 2) Montrer que f n'admet pas de valeurs propres réelles. En déduire que la dimension de E est paire.
- 3) Montrer que pour tout $x \in E$, le sous-espace vectoriel $Vect\{x, f(x)\}$ est stable par f.
- **4)** Montrer que si $F \subset E$ est un sous-espace vectoriel de E stable par f et si x est un élément de E tel que $\text{Vect}\{x, f(x)\} \cap F \neq \{0\}$, alors $x \in F$.
- 5) En déduire que si dim E=2n, il existe des vecteurs e_1, \dots, e_n de E tels que $(e_1, f(e_1), \dots, e_n, f(e_n))$ soit une base de E. Quelle est la matrice de f dans cette base?

Exercice E: Soit \mathbb{K} un corps commutatif.

- 1) Combien y a-t-il de classes de similitude de matrices de $\mathcal{M}_8(\mathbb{K})$ telles que Im $A = \operatorname{Ker} A$?
- 2) Combien y a-t-il de classes de similitude de matrices nilpotentes de $A \in \mathcal{M}_5(\mathbb{K})$ telles que le rang de A^2 soit 2?