P. Pansu

AN ISOPERIMETRIC INEQUALITY ON THE HEISENBERG GRUOP

We show that the 3-dimensional Heisenberg group behaves in a rather
original way at infinity.

A Let us first explain what we mean by “behaviour at infinity”. We shall
_ test a few notions on two simple examples: Fuclidean space IR” and hyper-
- bolic space H"

i Clearly, two balls of radius R , in IR” and H” respectively do
not look very different. In fact, the exponential map is a diffeomorphism bet
ween them, which changes distances (or lengths of curves)a bounded amount.
We call such a map a quasiisometry

- Definition: A diffeomorphism ¢ between Riemannian manifolds is a C-qua-
siisometry if, for any curve 7

¥

1 < length ¢ ()
c length vy

<C

sinbR
———>+oo
R R>+o0
However, one cannot map all of IR" onto H" with a bounded di-
stortion of distances, i.e. by a quasiisometry. Indeed, the volume of balls

Example: the exponential map above is a C-quasiisometry with €=
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grows polynomially in IR” , and exponentially in IH" , while the type of
growth is quasiisometry invariant.

One feels that IR® and IH" are even more different. Indeed, in the
traditional Poincaré upper half space and disk models - which are conformal
imbeddings of IH” in S” - hyperbolic space is always accompanied by a
“big’boundary. Whereas euclidean space may be conformally imbedded in S”
with boundary consisting of a single point.

This means that [R” and IH" are not conformally equivalent. When
n=2 , it follows from a celebrated theorem of Liouville. Since IH* is con-
formal to a disk in IR? , a conformal mapping of IR? into IH* would
be a bounded entire holomorphic function on IR? , which does not exist.

There is a generalisation to higher dimensions, which also applies to
quasiconformal mappings.

Definition: Let ¢ be a diffeomorphism between riemannian manifolds
M, g) and (N,g") . Let A\, <. <X\ denote the eigenvalues of S* g
with respect to g . Recall that ¢ is conformal iff A; =.. =X (Notice

1
that ¢ is a C-quasiisometry iff —C—~<)\1 <. S\, <O v s said to be

A
C-quasiconformal if the ratio —}—\-’1 <C.
1
We have seen that volumes are helpful to deal with quasiisometries.In the

case of quasiconformal mappings, one uses a kind of conformally invariant vo-
lume, called conformal capacity, which probably goes back to G. Polya.

Definition: In a complete riemannian manifold (M, g) a shell is a connected
open subset S whose boundary is disconnected into two parts 3, S, 9, S .
The conformal capacity of S is cap (S)=inf {vol (g)/g is a metric poin-
twise conformal to g , and dg (0o D,0, D)=1}

Remark: The normalization dg (3o D, 9; D)>1 is necessary in order to
obtain a non zero invariant,

‘ sed KCIR"
5

Examples:

1) Cap is non zero in general: if S is bounded, and if both 9, S and
d; S have positive dimension (i.e., are not totally disconnected), then
Cap (§)>0 (see for example [19])

In particular, let IH” be a disk in §” . Then, for any closed K C
C H" of positive dimension,

cap (H"\K)>0 .

; 2) On the contrary, if 0o S is a point, then cap (S)=0 . In particular,

let IR” be the complement of a point oo

of positive dimension,

in S” . Then for any clo-
cap (R"\K)=0 .

Sincey is C-quasiconformal => foranyS§, _1.< M <
. C Cap(S)
dfact, it is equivalent, see [19] and, more generally, [18]), we conclude

ithat IR” and H® are not quasiconformally equivalent,
.

(in

B In 1936, L. Ahlfors discovered a link between conformal mappings and

4isoperimetric inequalities.

What do we mean by an isoperimetric inequality?

1 Classical Isoperimetric Inequality. Let us call domain in a manifold a bounded

1 open set with smooth boundary. The Classical Isoperimetric Inequality (pro-

jved first by H. A, Schwarz, see [21]) states that “Among all domains in IR”

. (resp H") of given volume, the domains of least boundary volume are exa-
ctly balls’

Restated, in [R” : vol (D) < const,, vol (3D)*/#~1 | equality for balls.

Weakened, in IH”

1
: vol (D) < — vol (aD) , no equality .

Remark: The hyperbolic inequality is much stronger than the euclidean one,
for large domains. g
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The following theorem states that, if a complete manifold satisfies an

isoperimetric inequality, which is stronger than the euclidean one, then its
conformal behaviour is similar to that of hyperbolic space.

Theorem. (L. Ahlfors [2], M. Gromov [14] chap. 6)

1f a complete Riémannian manifold M satisfies an isoperimetric inequality
vol (D) < const, vol (3D)*
with a< -7-1%—1— then, for any compact KM of positive dimension
Cap M=K)>0 .
A sketch of the proof is given at the end of this paper.
Corollary (M. Gromov, id) Under the same assumptions, there are no quasi-
regular mappings (roughly speaking, non smooth quasiconformal immersions
with branched points, see [14]) from IR" into M .
C  Example: the 3-dimensional Heisenberg group, with its left invariant me-

trics.

Definition: The 3-dimensional Heisenberg group is the group G of triangu-

1 o v
lar matrices { 0 1 6>with 3 real entries «, B,
0 0 1

Theorem 1: Let g be a left-invariant metric on. G . Then, for any domain
D in G ,onebas

vol (D) < const (g) vol (3D)*? .

Proof: Follows from the Carnot-Caratheodory inequality, see below.

Remark: This inequality is mainly significant for large domains.

The Ahlfors Theorem implies that, conformally speaking, the Heisenberg

_group is “larger” than euclidean space IR® . For example, in any quasicon-
. formal imbedding in a complete manifold, G will have a boundary of positi-
ve dimension. .
In fact, the Heisenberg group is not quasiconformal to hyperbolic space
I J? either. This follows from L. Ahlfors'measurable Riemann mapping theo-
rem [1], together with an idea of D. Sullivan. We will not go further into this
+ theory. Thus the Heisenberg group appears in an intermediate position bet-
ween IR® and IH?® . In constrast, recall that any simply connected surface
4is either conformal to IR? , or to IH? - this follows from the uniformiza-
tion theory of Riemann surfaces, see [25].

D  Letustry toexplain the origin of the exponent 4/3.

010
Let X=<00 0

00 O

0 00 0 0 1
>Y=<O 0 1>Z=<0 0 O)beabasisoftheLie
0 0 0 0 00

lgebra. The bracket relations [X,Y]=Z, [X,6Z]=[Y,Z]=0
hat G is nilpotent with center Z .

Due to many automorphisms, left invariant metrics on G may be re-
© duced to a normal form, depending on only one parameter.
Up to automorphism, any left-invariant metric is equivalent to one of the

0 .
) . In coordinates,
2

e
o

R
-t

show

&
B

i

1
g, whose matrix in basis (X, Y, Z) is <0 1
€

ge=da2 +dp? + €2 (dy—adB)? .

, up to scaling. Indeed, we de-
as the automorphism whose matrix, in the basis

In fact, all g, are isometric to g
fine the dilation 3§,
€e0 0

1
X, Y, 2) i Oe¢ O) . Then g = — &*
) s O(e) (:‘2 € ge 62 € ge

: We are interested in large domains, their volume and boundary area rela-
tive to g; . But, up to scaling, a ball, relative to g, , of large radius € ,
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is identical to the unit ball relative to g
Ballg1 (e)= Ballg'E (1) .

Therefore, we should concentrate on the behaviour of the metrics g,
inside a fixed ball, when € goesto + o

-

Let m denote the projection G —>G/Z=IR? . Then, for any € , «
is a Riemannian submersion of (G, ge) onto euclidean IR? . This means
that 7 induces an isometry on each horizontal plane, i.e. orthogonal to Z
for any e . The geodesics of g, are belices, i.e., they make a constant an-
gle with the center Z , and they project onto circles of IR? | :

A. Koranyi [15] has observed that the (in general) unique g -geodesic
joining two points X and Y converges, when e goesto +oo | towards
a horizontal curve, that is, orthogonal to the center Z .

Distances also converge: lim de (x,y)=d, (x,9y),

e+ o
left-invariant (though non Riemannian) metric d_ is obtained as follows:
d_ (x,y) is the minimum of the length of horizontal curves joining x to
y . Thedistance d_ is well-behaved: it defines the usual topology of G ;
its balls are compact; it admits geodesics, which satisfy a differential equa-
tion - they are horizontal helices. It is called the Carnot-Carathéodory metric.

where the

Remark: The fact that the family of homothetic metric spaces (G, —1—2 g1)
€

- balls in the horizontal plane, but also ~ L

the 65 .

105

~ “converges” generalizes to all nilpotent Lie groups - see [23] and [13] for the
relevant notion of convergence. In some sense, this phenomenon characterizes

nilpotent groups, see M. Gromov [13].
It appears now that this Carnot-Carathéodory metric space (G, d_ )

 contains information about the asymptotic behaviour of g, . Letusdescribe

 this metric space. .

As the dilations §_ are bomotheties for d_ | small balls are images
by &, of unit ball They are very flat in the Z direction. In particular, to
cover a given open set with balls of radius e , it requires as usual ~ —;

5 balls in the vertical direction.
V4

A

e

X

: This is exactly what the following statement means: “The Hausdorff di-
}:’%mension of the metric space (G .d_ ) is equal to 4”. There is a canonical
Hausdorff measure, see [9],denoted by ¥ * , homogeneous of degree 4 under
| It is just the Haar measure daAdBAdy . In the same way, if §
“is a smooth compact surface, the Hausdorff dimension of the metric space
(S.d_ ) isequal to 3. There is a canonical Hausdorff measure 3 on sur-
faces, homogeneous of degree 3 under the 6_ . Theorem 1 is an easy conse-
quence of the following “Carnot-Caratheodory isoperimetric inequality”:
forany domain D in G,

12 1/3
1 o< (=) weepe
m

A sketch of proof is given at the end of this paper.
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Comments.

The preceding considerations - construction of a limiting metric - obviou-
sly generalize to any nilpotent group with “dilations” &_ . We conje-
cture that the isoperimetric inequality should generalize too.

Our feeling is that the Carnot-Caratheodory metric deserves further
attention. In some sense, it is more canonically associated to a nilpotent
group than left invariant Riemannian metrics. For instance, let M be
a bounded symmetric domain of rank one in €” |, H” or (a2
Then M=G/K , G Iwasawa decomposes in G=KAN where N
is nilpotent. Then N is the stabilizer of a point # on the boundary.
It is simply transitive on the horospheres centered at 7 (i.e. orthogonal
hypersurfaces to the family of geodesics with limit point #) . The fa-
mily of metrics induced by horospheres considered as imbeddings of N
is of type g_ - up to normalization. Thus a Carnot-Caratheodory metric
is obtained on the boundary.

This metric depends on the choice of a point # . What does not de-
pend on 7z is the conformal structure it defines. This point of view is
developped in [16].

This conformal structure may be expressed in terms of the Levi form,
and thus generalizes to pseudoconvex domains, see D. Burns Jr and
S. Shnider {6].

10/

G. D. Mostow uses a coarse version of this Carnot Caratheodory confor-
mal structure to prove rigidity of the compact quotiens of the above
symmetric spaces, see [20], chapter 20.

More generally, the differential geometry of Carnot-Caratheodory me-
trics is still to be done. In general, a Carnot-Caratheodory metric on a
manifold M consists of the data of a non integrable subbundle H (in
the strong sense of [26]) of the tangent bundle 7M , and of a metric
on H (euclidean on each fibre). Then the length of horizontal curves is
defined, and an infimum defines the distance. One should be able to asso-
ciate to these data a volume element, curvature, and so on. It is unclear
wether a reasonable exponential map can be constructed.

Consider the horizontal vectors X and Y in the Lie algebra as left-in-
variant vector-fields on G . Then the second order differential operator
A=X* 4+ Y* is bypoelliptic, that is, for any function # . Au €C* =
=y € C” . In some sense, this operator C is the prototype of all hy-
poelliptic operators, in the same way as the euclidean Laplacian is the
prototype of all elliptic second order operators. Its symbol is well-defi
ned on covectors: it is X* + Y? considered as a (positive semi defi-
nite) quadratic form on 7T*G . Under Legendre transform, it corre-
sponds to a function on TG which is quadratic on the horizontal pla-
nes and infinite elsewhere. This exactly is our Carnot-Caratheodory data.
In fact in the study of hypoelliptic operators, the Carnot-Caratheodory
distance plays the role of the Riemannian distance associated to the
symbol of an elliptic second order operator ......... For instance, in the
estimation of the corresponding heat kernel, see B. Gaveau’s work in
[3]and [12].

A typical situation in optimal control theory is the following.

The evolution of a system - for instance, position and speed of a rocket -
is described by a curve in a phase space - 2 manifold M .

Assume that the acceleration - a tangent vector to M - is subject to li-
near constraints: for example, the rocket is propelled via a few jets. This
defines a subbundle H of TM . Assume that the energy necessary to
modify the motion is measured by some quadratic form on H . Then,
the total energy needed to attain some state is the value of some Car-
not-Caratheodory distance.
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In [26], H. Sussman gives 4 sufficient condition for accessibility (i.e. any g, any 1<p<g<+oo | where I < 1
state may be attained, or, equivalently, the Carnot-Caratheodory distan- o . 9 P
ce is finite): the brackets - of any order - of vector fields tangent to K means that any two p ointsn IR" are linked by some short curve, and one
should span the ful. tangent space at each point. can estimate the variation of u by integrating lgrad z | along this curve.

The optimal way to join two states is a geodesic for the Carnot-Caratheo- In the Heisenberg group G , any two points may be joined by a hori-

dory distance. Thus, a key problem in optimal control amounts to descri- zontal curve (non integrability of the plane field H ), so it should suffice to
bing a Car‘not-Caratheodory distance, cf. [17] ntegrate the norm |grad”# | of the horizontal component of the gradient

of u
ndeed, it follows from the Carnot-Caratheodory inequality that

T Such an inequality

F Further applications of theorem 1.

- A combinatorial property (f,u9)19 < const (p, g.D) (f, lgrady pyi/p

Let I' be the subgroup of matrices in G with integral entries. Then 1 1 1
I' is discrete, cocompactin G . 5 == ; T
Let us say that two matricesin I’ are neighbours if they differ by only . ‘ ] .
one unit in one of their entries. Given a finite subset A in T , define the In their studv of the horizontal laplacian A » G. B. Folland and F.
boundary 9A = {a € A/some neighbour of aisnotin A} . Stein have proved such an inequality, with — < 1.1 . Their
Then, up to a constant, theorem 1 is equivalent to the following state- q p 4
ment, which is purely combinatorial: cthod is abstract, using Fourier transforms. | think that we have gained
“For any finite subset A in I , one has ‘gnore geometric understanding of this inequality.

Card (A) <Const. (Card 94)*3
‘Remark: The link between isoperimetric inequalities and Sobolev inequalities
It follows that theorem 1 generalizes to any universal covering M , E) oes back to G. Faber [8] and F. Krahn [17], see [4] for instance.
of a compact (M, g with 7, M)=T". oOf course, the exponent 4/3 is in-

dependent of the dimension of M (take M=S" XT/G , n>?2 , for in-

stance).

Proofs.

%aProof of the Ahlfors-Gromov theorem.
First notice that, for any shell S

Remark: The link between isoperimetric inequalities on manifolds, and on di-

screte groups is explained in[14] chapter 6). Cap (S)=inf {f¢ lgradu I"/u=(S. 3, S. 3, S)~ ([0, 1,0, 1)} .

- A Sobolev-type inequality ?or such a smooth function # , denote by

Recall the classical Sobolev inequality in IR” . Let D be some bounded 1
openset, # asmooth function with supportin D . Then | a(t)= (‘f{u:t} [grad u P! ) 1 orejo 1,

and
(fp #*)9 < const (p, 4. D) (S, lgradu |P) 1P A (u)=(‘r01 a(t)? dt) 1=n
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Then the Holder inequality (together with the equality case) implies that :fﬁuses a formula, due to S. Santalo ([24], ? ), which computes the volume of a

domain D as an integral over the unit tangent bundle UM ap of the

Cap (S)=1nf {A (u)/u = (3, ao S, al S)_') ([O, l] ] O, 1)} M 5 oundar'y aD M

Now assume that S is the complement of a compact set K of positive

ob . vol (5" 1) vol (D)= vol (UM ;)= Jumiap £ (x, v) cos <o, v>d (x, v)
volume in a complete manifold M , which satisfies an isoperimetric inequali-

n

ty with exponent & < here. for x €0D |, » a unit tangent vector at x, v is the unit normal

ector of 9D at Xx,R(x,v) is the first time when the geodesic starting
om x with initial speed v leaves D . This formula is a consequence
f the fact that the geodesic flow on the unit tangent bundle UM preserves

n—1"
For a smooth function =M, K,o)— ({0, 1],1,0) , denote by

Y(@)=vol {u=t}, X@®)=vol{u=>t}.

e natural volume. Since geodesics through x sweep all of D , the se-
1onal curvature assumption allows him to estimate
Then
X' (1) = _g}_{ = Sy lgradu Ju_sp 2 (%, 2) dv < const (n) vol (D)1/"
; =
nd thus
. N P H M d 1
Again, Holder’s inequality yields vol (D)'~ % < const (n) vol (D)
=1 n=1
Y()<a () Xm" our situation, we replace the unit tangent bundle UG - where no geo-

flesic flow is defined - by the unit borizontal bundle UH . We consider spe-

I geodesics, those which are horizontal lifts of lines in JR? Since,
through any point and horizontal vector, there is one unique such geodesic. a
Hdlow is defined on UH It preserves a natural volume on  UH - this relies

ssentially on the fact that the distribution H is not integrable. Santalo’s
formula now reads

With the isoperimetric inequality vol (D) <Const. vol (3D)* |, one gets

14

a @y <comst. X' (1) X (t) ¢-1

Integrating, it yields
? 1-n 2 m-1)

A (u)=const. [f¢ X D gx] = const. vol (K)* >0 .

| 2r ] (D)=, , fUHx L (x, v) cos <v, v>dv di3 (x) .
-

The special geodesics through x only sweep a surface X , SO
This is the desired property for compact K with positive vqlume. The : x
general case (K of positive dimension) is obtained using the fact that se- ;
mi-open functions # satisfy a uniform estimate in terms of [ lgradu # | |

see[10] and [19].

Jun @, v) do <32 (S, N DA

Since X isa minimal surface, one has

- Proof of the Carnot Caratheodory isoperimetric inequality. : . ey %
It imitates Ch. Croke’s proof of an isoperimetric inequality in simply con- -
nected manifolds M of non positive sectional curvature, see [7]. Ch. Croke -

¥3 (9D)
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which leads to

12 1/3
34 (D) < (—-ﬂ—) 303 (3D)*3

For a complete proof, see [22] .

173

)

njecture the optimal constant. An extremal domain aD , if smooth, would
have “constant mean curvature”. One can define Carnot-Caratheodory mean
curvature. A smooth surface has constant mean curvature b if and only if
it is foliated by horizontal lifts of circles in IR* of common radius %

12

Remark: The constant ( not optimal. Nevertheless, one may co-

Therefore, we believe that, relative to this isoperimetric problem the extremal
surfaces are those obtained by rotating a geodesic joining two points in the

center, around the center.
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