
A list of open problems in Differential Geometry

Good open problems play an indispensable role in the development of dif-
ferential geometry. All speakers and participants of the conference Modern
Trends in Differential Geometry (São Paulo, July 2018) were invited to in-
clude open problems. We thank the contributors and the organizers. We
think that this collection reflects many facets of geometry, its deep roots,
and its profusion of fruit.

Frank Morgan, Pierre Pansu

1 Can you hear an orbifold singularity?

proposed by Ian Adelstein, Yale.

Mark Kac in the American Mathematical Monthly in 1966 famously
asked if one can hear the shape of a drum, by which he meant whether the
Laplace spectrum of a manifold determines its isometry class. John Mil-
nor quickly answered this question in the negative, by producing a pair of
isospectral yet non-isometric 16 dimensional tori. Many subsequent mathe-
maticians have wondered which geometric properties are audible, i.e. deter-
mined by the spectrum of the Laplacian.

An important open question is

Question 1 Can one hear the presence of an orbifold singularity, i.e. whether
or not there exists a pair of isospectral orbifolds, one of which has singular
points whereas the other does not and is therefore a manifold.

The paper [2] discusses this question.
Recent work has shown that non-orbifold singularities are inaudible to

the G-invariant spectrum. In [1] the authors construct a pair of orbit spaces
with equivalent G-invariant spectra, yet where one space is isometric to an
orbifold whereas the other admits a non-orbifold singularity.
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2 Riemannian manifolds with curvature bounds

proposed by Lashi Bandara, Universität Potsdam, Germany.

Can a complete metric with Ricci curvature bounded below be L∞ ap-
proximated by one with two-sided Ricci curvature bounds?

Here is a precise statement.

Question 2 For every `, k > 0, there exist C,L,K > 0 with the following
effect. Let (M, g) be a complete Riemannian manifold with injectivity radius
inj(M, g) ≥ ` and Ricci curvature Ric(g) ≥ k. Then there exists a metric
h on M with inj(M,h) ≥ L and |Ric(h)| ≤ K such that

1

C
g ≤ h ≤ C g.

Let me motivate this problem. During my thesis, my supervisor Alan
McIntosh and I studied a problem called the Kato square root problem on
manifolds. In the Euclidean context, this was a 40 year outstanding problem,
which Alan was involved in for that entire period of time. We considered
this question in a geometric setting. In our work, we prove that this problem
can be solved for metrics that have Ricci bounded above and below, as well
as injectivity radius, [1]. In a later paper, [2], I showed that the solution is
stable under L∞ perturbations as expressed in the question.
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3 Reducibility of the holonomy of flat manifolds

proposed by Renato Bettiol, City University of New York (Lehman College).

Question 3 Give an alternative, geometric proof that the holonomy repre-
sentation of a closed flat manifold is reducible.
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By the Bieberbach Theorem, a closed flat n-dimensional manifold is
finitely covered by a flat n-torus. The group of deck transformations is
identified with the manifold’s holonomy group H, which is a finite subgroup
of O(n). In a very algebraic paper, [3], Hiss and Szczepanski proved that the
(orthogonal) action of H in Rn is always reducible, i.e., Rn admits a decom-
position as the orthogonal direct sum of nontrivial H-invariant subspaces.
Although this has important geometric consequences (e.g., it implies that all
closed flat manifolds admit non-homothetic flat deformations, see [1]), the
proof does not seem to provide much more geometric insight and is com-
pletely algebraic (even relies on the classification of finite simple groups). It
is reasonable to expect this fact should have a purely geometric proof, and
that this could shed some light on important questions about flat manifolds.
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4 Biorthogonal curvature

proposed by Renato Bettiol, City University of New York (Lehman College).

Question 4 Does S2×T 2 admit a Riemannian metric with positive biorthog-
onal curvature?

The biorthogonal curvature of a 4-manifold is defined, for each tangent
plane σ, as the average of the sectional curvature of σ and σ⊥. Positive
biorthogonal curvature is an intermediate condition between positive sec-
tional curvature and positive scalar curvature. Clearly, S2 × T 2 admits
metrics with nonnegative biorthogonal curvature, but it is unknown if they
can be deformed into metrics with (strictly) positive biorthogonal curvature.
Settling this matter would be a crucial step in classifying non-simply con-
nected closed 4-manifolds with positive biorthogonal curvature (the simply-
connected classification, up to homeomorphisms, was obtained in [1]).
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5 Branch points of area-minimizing surfaces

proposed by Camillo De Lellis, Institute for Advanced Study, Princeton.

Σ is a smooth, complete (m + n)-dimensional Riemannian manifold,
Γ ⊂ Σ a smooth (m − 1)-dimensional oriented submanifold and T an area
minimizing integer rectifiable current which spans Γ. We are interested in
the boundary regularity of T , more precisely on the size of Regb(T ) ⊂ Γ,
the (relatively open) set of boundary regular points, and its complement
Singb(T ) = Γ \ Regb(T ). The question is pertinent only in codimension
n ≥ 2, because the celebrated work of Hardt and Simon [5] shows that
Singb(T ) = ∅ when n = 1.

In [4] we show that Regb(T ) is dense in Γ. We also give an example of a
2-dimensional T with a sequence {Pk} ⊂ Singb(T ) of crossing singularities
accumulating towards a branching singularity P ∈ Singb(T ). This in sharp
contrast with the interior regularity theory, because we know that interior
singular points of area-minimizing 2-dimensional T are isolated (cf. [1, 2, 3]).

Question 5 1. Does Singb(T ) have zero (m − 1)-dimensional Hausdorff
measure?

2. If yes, does Singb(T ) have (Hausdorff) dimension at most m− 2?
3. A related question is: can we find an example as in [4] where the

sequence of accumulating singularities {Pk} ⊂ Singb(T ) are of branching
type? If yes, then one could imagine a Cantor type construction giving a
negative answer to 2.

4. White in [6] conjectures that if a 2-dimensional area-minimizing cur-
rents spans a real analytic closed curve, then it has finitely many (interior
and boundary) singularities and hence finite topological type.

5. The example in [4] is topologically a disk. Is it possible to give an ex-
ample of a smooth closed curve Γ ⊂ R2+n which bounds an area-minimizing
2-dimensional current with infinite topology?
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6 Manifolds modelled on flag manifolds

proposed by Elisha Falbel, Sorbonne Université, Paris.

Flag manifolds are homogeneous manifolds obtained as quotients of a
complex group by a Borel subgroup. One of the simplest examples is the
complex full flag manifold of complex dimension three F12 = SL(3,C)/B,
where B is the subgroup of upper triangular matrices. Each of the real forms
SL(3,R) and SU(2, 1) have a unique compact orbit which is a model for flat
path geometry structures and spherical CR structures respectively. Both
orbits have real dimension three. Here is natural question, certainly very
difficult as a variant of uniformization problems, open even in dimension
three:

Question 6 Which manifolds can be modeled on an orbit of a real form in
a space of flags?
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Back to real dimension three, one can define flag structures on a real 3-
manifold by a choice of two complex lines in its complexified tangent space.
A very special case appears when the manifold admits a totally real immer-
sion in F12. The complex lines arises when one considers natural foliations
in F12 intersected with the real immersion. Because it is so special, this flag
structure can be thought as a flat structure even though it is not locally
equivalent to one of the real orbits. This situation leads to the following

Question 7 What is the homotopy classification of totally real immersions
of real 3-manifolds in the complex full flag manifold F12?

Gromov’s H-principle applies here, so the problem should belong to ho-
motopy theory.
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7 Area minimizing projective spaces in the pro-
jective space with the Berger metric

proposed by Olga Gil-Medrano, University of Valencia, Spain..

A classical result due to M. Berger [1] and A. T. Fomenko [4] is that
for the real projective n-dimensional space with the standard metric, for
all 0 < k < n, the projective spaces obtained by projection of the k-
dimensional great spheres (that are totally geodesic submanifolds) are the
only k-dimensional volume minimizing in their homology class.

A Berger sphere is the Riemannian manifold (S2n+1, gµ) where the metric
gµ for µ > 0 is defined as follows: we denote by J the complex structure of
R2n+2 ' Cn+1 and by H the Hopf vector field JN, where N(p) = p is the
outwards unit normal of S2n+1, then

gµ(H,H) = µg(H,H) = µ, (gµ)|H⊥ = g|H⊥ , and gµ(H,H⊥) = 0,

where ⊥means orthogonal with respect to the standard metric g. By passing
to the quotient we can construct the corresponding Berger metrics on the
projective spaces (RP 2n+1, gµ)
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In [2] it is shown that for (RP 3, gµ) the projections of the equatorial
spheres are not totally geodesic surfaces, except for the round sphere µ = 1,
but they are always minimal surfaces and in [5] it is shown that in fact
area minimizing projective planes in (RP 3, gµ) are exactly the equatorial
projective planes.

The key point for the proof is the existence of area minimizing projective
planes in 3-manifolds stablished in [3].

Question 8 For 2n+ 1 > 3 and 0 < k < 2n+ 1, are projective subspaces
obtained by projection of the k-dimensional equatorial spheres minimal sub-
manifolds of the Berger projective space (RP 2n+1, gµ)? Are they the only
k-dimensional volume minimizing cycle in their homology classes?

Remark 1 In [2] it has been shown that Berger projective space of dimen-
sion 3 can be realized as the manifold (T rS2, gS) of vectors of norm r on
the unit sphere; more precisely (T rS2, gS) is isometric to (RP 3, 4gr2). The
isometry preserves the S1-bundle structure of both manifolds, namely the
one determined by the fibers of the Hopf fibration in the projective space and
the natural one in the tangent space.This isometry is specific of dimension
3.
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8 Bi-invariant metrics and multiplicity of conju-
gate points

proposed by Claudio Gorodski, University of São Paulo, Brazil.

Let G be a compact connected Lie group equipped with a bi-invariant
Riemannian metric. Then G is a symmetric space, namely, the Riemann
curvature tensor R is parallel. It follows that the Jacobi equation along a
geodesic γ, given by

−J ′′ +R(X, J)X = 0,

where X = γ′, has constant coefficients in an orthonormal parallel frame
along γ. More explicitly, the Jacobi operator is

R(X, ·)X =
1

4
ad2

X .

Here adX is a skew-symmetric operator, so the non-zero eigenvalues of the
Jacobi operator occur in pairs and hence all conjugate points are of even
order; equivalently, the index of any geodesic segment is even (Bott [1]).

We ask whether this property characterizes bi-invariant metrics on Lie
groups among the left-invariant ones (of course, it can be asked among all
Riemannian metrics, but we would like to consider the algebraic structure
of Lie groups).

Question 9 Assume that a left-invariant Riemannian metric is given on a
compact connected Lie group G such that the index of any geodesic segment
is even. Must the metric be bi-invariant?

It is not difficult to see that for a given Riemannian metric on G, the in-
dex of any geodesic segment is even if and only if, for any two non-conjugate
points p, q ∈ G, the energy functional

E(γ) =
1

2

∫
|γ̇|2 dt

defined on the Hilbert manifold of H1-curves joining p and q is a perfect
Morse function. Complete Riemannian metrics with the latter property
were called pointwise taut by Terng and Thorbergsson in [2].
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9 Toral manifolds and positive scalar curvature

proposed by Bernhard Hanke, Augsburg.

The classification of closed manifolds admitting Riemannian metrics of
positive scalar curvature has been a major research topic for decades. While
for simply connected manifolds of dimension at least 5 a complete classifi-
cation has been achieved by Gromov-Lawson [1] and Stolz [6], the picture
remains largely unclear even for finite fundamental groups.

Question 10 ([5], Conjecture 1.2) Let M be a connected closed mani-
fold with finite fundamental group of odd order. Assume that the universal
cover of M admits a metric of positive scalar curvature. Does M admit a
metric of positive scalar curvature?

Remark 2 Question 10 has a positive answer for dimM ≤ 2, and for
dimM = 3 it follows from the geometrisation theorem. For dimM = 4,
counterexamples were constructed in [4]. For dimM ≥ 5 Question 10 is
open.

Definition 3 Let Md be a connected closed d-manifold, and let p be a
prime. The manifold M is called p-toral, if there exist cohomology classes
c1, . . . , cd ∈ H1(M ;Fp) with c1 ∪ · · · ∪ cd 6= 0 ∈ Hd(M ;Fp). Otherwise M is
called p-atoral.

Remark 4 (i) The d-torus T d = (S1× · · · ×S1)d is p-toral for all p, and
so are all closed manifolds which are oriented bordant to T d over the
classifying space B(Z/p)d.

(ii) The real projective spaces RP 2m+1 are 2-toral for all m.

(iii) If p is odd and M is p-toral, then M is orientable.

(iv) If p is odd and dimM > rank(H1(Bπ1(M);Fp)), then M is p-atoral.
This follows from the fact that the classifying map M → Bπ1(M)
induces an isomorphism in H1(−;Fp) and for odd p each element in
H1(M ;Fp) has square 0.
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(v) In [3] we give a positive answer to Question 10, if dimM ≥ 5, π1(M)
is an elementary abelian p-group for some odd p and M is p-atoral.

Question 11 Let M be a connected closed manifold admitting a metric of
positive scalar curvature. Does this imply that M is p-atoral for all odd p?

The answer to Question 11 is positive if dimM ≤ 2. For dimM = 3 we
recall [2, Theorem 8.1] that the prime decomposition of M (which we can
assume to be orientable by Remark 4 (iii)) only contains copies of S1 × S2

and manifolds with universal covers homotopy equivalent to S3. This implies
that for odd p all prime summands of M , and hence M itself, are p-atoral.

Let p be odd and let Md be a p-toral non-spin manifold with finite
fundamental group of odd order. Such manifolds can be constructed along
Remark 4 (i) for all d ≥ 4. The universal cover of M is a closed simply
connected non-spin manifold, and therefore it admits a metric of positive
scalar curvature in case d ≥ 5 by [1, Corollary C]. Together with Remark
2, we conclude that if Question 11 has a positive answer, then Question 10
has a negative answer for dimM ≥ 4.
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10 Coarse embeddings

proposed by Dominique Hulin and Pierre Pansu, Paris-Sud (Paris-Saclay).

A map between metric spaces is a coarse embedding if there exist func-
tions ω and Ω, where ω tends to +∞ with its argument, such that for every
D > 0, pairs of points at distance D are mapped to pairs at distance be-
tween ω(D) and Ω(D). This large class arose in convex geometry in the
1960’s, and later in geometric group theory, where coarse embeddability of
a fundamental group into Hilbert space turns out to make it rather tame
from the topological viewpoint. Therefore the wider problem of coarse em-
beddability of certain classes of metric spaces into certain classes of Banach
spaces has received a lot of attention, see references in [3].

For nonlinear targets, large scale analogues of topological dimension have
been studied. They are nondecreasing under coarse embeddings, see [1].
They take integer values. Only recently did noninteger valued invariants
arise, like variants of the conformal dimension of the ideal boundary of a
hyperbolic metric space, see [5, 4], or sharp metric cotype, see [3].

Question 12 Find more numerical invariants of metric spaces that are
nondecreasing under coarse embeddings.

A remarkable fact about coarse embeddings is that they can sometimes
be made harmonic, see [2].

Question 13 Find applications of the harmonic map approximation of coarse
embeddings.
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11 Ricci pinching on solvable Lie groups

proposed by Jorge Lauret, Córdoba, Argentina.

Question 14 For solvable Lie groups G, show that solvsolitons are the only

local maxima of the Ricci pinching functional g 7→ F (g) = Scal(g)2

|Ric(g)|2 on left-
invariant Riemannian metrics on G.

A solvsoliton is an invariant Riemannian metric g such that Ric(g) =
cI +D where D is a derivation of the Lie algebra g.
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12 Classification problems and Poisson structures

proposed by Rui Loja Fernandes, University of Illinois.

R. Bryant (see the Appendix in [1]) observed that certain classification
problems in geometry, which may be called of “finite type”, can be formu-
lated as the problem of integrating a Lie algebroid A→ X to a Lie groupoid
G ⇒ X (Lie’s III Theorem). Examples of such classification problems in-
clude:

(i) Metrics of constant sectional curvature.

(ii) Metrics of Hessian type [2].

(iii) Bochner-Kähler metrics [1].

(iv) Symplectic connections with special holonomy [3, 4].

The Lie groupoid integrating the corresponding Lie algebroid gives a pre-
sentation of the stack of the moduli problem in question (see, e.g., [5])

On the other hand, given a Poisson manifold (M,π), it is well known
that its cotangent bundle A = T ∗M has a natural Lie algebroid structure.
If this Lie algebroid is integrable, then the source 1-connected integration
G ⇒ X is a symplectic groupoid: the space of arrows carries a multiplicative
symplectic form ω ∈ Ω2(G).
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It turns out that in all the problems above (and in others of finite type),
the Lie algebroid A relevant for the classification problem arises as the cotan-
gent Lie algebroid of some Poisson manifold. However, in some of these
problems, there is no natural symplectic or Poisson structure present, and
when there is one, it does not seem to arise from the symplectic structure ω
on the Lie groupoid integrating the Lie algebroid A. Still, the corresponding
moduli space has a “symplectic nature”.

Question 15 Explain the existence and the role of the symplectic nature
of the groupoid/algebroid and its relevance for the geometry of the moduli
spaces of geometric structures of finite type.
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13 Morse index of embedded minimal surfaces

proposed by Davi Maximo, University of Pennsylvania.

Question 16 • Do there exist embedded minimal surfaces with finite
genus and Morse index 4 ?

• More focussed: in the 1-parameter deformation of Costa’s surface, does
the index stay constant?

Complete embedded minimal surfaces of index 3 have been recently ruled
out in [1].
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14 On the Hodge spectra of lens spaces

proposed by Roberto Miatello, Córdoba, Argentina.

Question 17 - Construct congruence lattices which are norm1 and norm1∗-
isospectral in all dimensions (see [1]).

- Are there families of p-isospectral lens spaces for all p, with more than
two elements?

- Give a procedure to go from p-isospectral lens spaces (for all p) of
dimension m to dimension m+ 1.

- Establish connections with toric geometry (see [2]).
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15 Isoperimetric Problem in CP 2

proposed by Frank Morgan, Williams College, Williamstown.

Question 18 Prove that geodesic spheres provide the least-perimeter way
to enclose prescribed volume in CP 2.

There is enough symmetry to deduce that they have constant mean curva-
ture but not enough to prove them optimal by symmetry arguments.
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Figure 1: The triple bubble
Image by John M. Sullivan

http://torus.math.uiuc.edu/jms/Images/
by permission, all rights reserved.
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16 Triple Bubble in R3

proposed by Frank Morgan, Williams College, Williamstown.

Question 19 Prove that the pictured standard triple soap bubble is the least-
perimeter way to enclose and separate three given volumes in R3.

The corresponding Double Bubble Theorem was proved in R3 by Hutch-
ings, Morgan, Ritoré and Ros in 2002 and in Rn by Ben Reichardt in 2008.
The double and triple bubble theorems in Rn with Gaussian density were
announced in 2018 by Milman and Neeman.
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17 Homogeneous Riemannian manifolds with non-
trivial nullity

proposed by Carlos Olmos, Córdoba, Argentina.

Question 20 1. If the normal holonomy group of an irreducible and full
homogeneous submanifold Mn of the sphere with n ≥ 2 does not act transi-
tively, then M is the orbit of an s-representation.

2. The index of an irreducible symmetric space which is different from
G2/SO(4) (or its symmetric dual) coincides with its reflective index,[1].

3. Open questions about homogeneous Riemannian manifolds with non-
trivial nullity.

• Are there examples which are not topologically trivial?

• Are there examples M = G/H, with G non-solvable?

• Are there Kähler examples?

• Are there examples in any dimension d ≥ 5?
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18 Constant mean curvature in homogeneous 3-
manifolds

proposed by Joaqúın Pérez, University of Granada, Spain.
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Here are questions on constant mean curvature (CMC) spheres which
arose from the study of the isoperimetric problem in 3-dimensional, simply-
connected, noncompact homogeneous manifolds X diffeomorphic to R3.

Question 21 • Do CMC spheres about a point x in such a space form
a foliation of X − {x}?

• Could this be a way of proving embeddedness of CMC spheres in gen-
eral?

It is well known [1] that CMC spheres in X exist exactly for values of the
mean curvature H lying in an interval of the form (H(X),∞) where H(X)
is called the critical mean curvature of X. Furthermore, spheres of CMC
H are unique up to congruencies, when they exist. This uniqueness leads
to a well-defined notion of center of symmetry for CMC spheres. Finally, it
is also known that if we take any point x in X, the class of CMC spheres
with center x is a real analytic 1-parameter manifold. It is not known (but
expected) if CMC spheres are embedded in general (they are known to be
Alexandrov embedded).

I include two classical problems which I partly surveyed in my talk:

Question 22 • Calabi-Yau problem. For an embedded minimal surface
in R3, does complete imply proper ?

• Hoffman-Meeks conjecture. For a complete embedded minimal surface
of genus g and k ends and finite total curvature, k ≤ g + 2.
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19 Spherical submetries

proposed by Marco Radeschi, Notre Dame.

A submetry is a map with equidistant fibers. In [1], we show that every
submetry from the round sphere is defined by an algebra of polynomials
which is both maximal and Laplacian (i.e. stable under the Laplacian). The
converse is true: every maximal Laplacian algebra of polynomials defines a
spherical submetry.
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Question 23 Is every Laplacian algebra of polynomials maximal?

When the submetry is given by a global quotient Sn−1 → Sn−1/G for
some representation ρ : G ⊂ O(n), the Laplacian algebra is simply the alge-
bra of invariant polynomials. In this context, the question would solve the
following problem in Classical Invariant Theory: can one compute the invari-
ant polynomials of ρ⊕ρ : G→ O(2n) in terms of the invariant polynomials of
polynomials of ρ? If Question 23 was true then, letting x1, . . . , xn, y1, . . . , yn
be the coordinates of Rn⊕Rn, it would follow that the algebra of invariants
of ρ⊕ ρ is the Laplacian algebra generated by the invariant polynomials of
ρ and δ(x1, . . . , yn) =

∑
i xiyi. In [2], we showed that the answer to the

question above is yes, when the Laplacian algebra is generated by polyno-
mials of degree 2. Even to prove this rather basic case, though, we had to
generalize Weyl’s First Fundamental Theorem of Invariant theory for O(n),
to the more general setup of submetries.
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20 Minimax minimal surfaces

proposed by Tristan Rivière, ETH Zürich.

We consider the space of Sobolev W 3,2-immersions of a given closed
surface Σ2 into a closed riemannian manifold Nn of dimension n greater
than or equal to 3. This space is denoted by W 3,2

imm(Σ2, Nn). An admissible

family in this space is a subset of the power set P(W 3,2
imm(Σ2, Nn)) which is

invariant under the action of any homeomorphism of W 3,2
imm(Σ2, Nn) isotopic

to the identity. Let A be an admissible family with non zero minimax value
(i.e. non zero width)

βA := inf
A∈A

sup
Φ∈A

Area(Φ) > 0.

We prove that there exists a smooth surface S satisfying

genus(S) ≤ genus(Σ),
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and a smooth, possibly branched, minimal immersion ΦA of S into Nn such
that

βA = Area(ΦA).

The admissible family is called “homotopic of dimension d” if it is given by
continuous mappings from the d-dimensional sphere Sd into W 3,2

imm(Σ2, Nn).
We prove that for such a family the Morse index of the minimal branched
immersion is bounded by d :

Index(ΦA) ≤ d.

Question 24 Prove the lower bound

d ≤ Index(ΦA) + Null(ΦA),

where Null(ΦA) is the nullity of ΦA that is the dimension of the space of its
Jacobi fields.

Question 25 Prove that there exists infinitely many distinct minimal branched
2-dimensional immersions in Nn.
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21 Gromov-Hausdorff convergence of Kähler Ricci
flow

proposed by Gang Tian, BICMR, Peking University.

Let X be a compact Kähler n-manifold with KX ≥ 0 and Kodaira dimen-
sion κ = n. Then the normalized Ricci flow converges to a Kähler-Einstein
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current, smoothly on the ample locus (where KX > 0). J. Song proved that
the diameter stays bounded. Therefore the completion of the smooth part
is a metric on the canonical model of X. This does not suffice to imply
Gromov-Hausdorff convergence, which has been proved only in dimension
≤ 3, [1]. This can be thought of as an analogue of Perelman’s convergence
of the Ricci flow with surgery to a union of flat or hyperbolic pieces.

When Kodaira dimension satisfies 0 < κ < n, collapsing may occur. A
typical example is the product Σ×T where Σ is a higher genus curve and T a
torus. The normalized Ricci flow collapses the torus factor and the Gromov-
Hausdorff limit is a constant curvature metric on Σ. More generally, one
expects the fibers of a map X → Xcan to the canonical model to collapse.

Question 26 Does the normalized Ricci flow converge in Gromov-Hausdorff
sense to a generalized Kähler-Einstein space?

In [2], a relative volume estimate is used to control the size of fibers, and
this allows to handle the case where κ = 1.

References

[1] G. Tian, Zh. Zhang Convergence of Kähler-Ricci flow on lower di-
mensional algebraic manifolds of general type, Inter. Math. Res. Not.
21 (2016), 6493–6511.

[2] G. Tian, Zh. Zhang Relative volume comparison of Ricci Flow and
its applications, ArXiv: 1802.09506

22 Totally geodesic submanifolds and positive cur-
vature

proposed by Wolfgang Ziller, University of Pennsylvania.

Frankel’s theorem, [2], says that in a complete connected Riemannian
n-manifold of positive sectional curvature, two closed totally geodesic sub-
manifolds of dimension n1 and n2 must intersect provided n1 + n2 ≥ n.

Question 27 Does Frankel’s theorem hold for symmetric Finsler metrics?

We proved that the theorem holds in dimension two, but fails for non-
symmetric Finsler metrics on S2, [1].
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23 Closed geodesics

proposed by Wolfgang Ziller, University of Pennsylvania, and Miguel Angel
Javaloyes Victoria, Murcia.

It was recently proved that for a bumpy Finsler metric on S2 (i.e., the
energy function on the free loop space is Morse-Bott) there are either two
or infinitely many closed geodesics, [1].

Question 28 It is true without the bumpy assumption?
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