Module D4MA1C20, Compléments magistère Feuille de TD n^06

1. Propriétés élémentaires de l'entropie des partitions

Soient $\alpha = (A_x)_{x \in E_\alpha}$ et $\beta = (B_y)_{y \in E_\beta}$ deux partitions mesurables finies d'un espace probabilisé $(\Omega, \mathcal{B}, \mu)$. On note $f_\alpha : \Omega \to E_\alpha$ l'application qui vaut x sur A_x . Inversement, étant donnée une application mesurable $f : \Omega \to E$ fini, on note $\alpha_f = (f^{-1}(x))_{x \in E}$ la partition induite. Soit $T : \Omega \to \Omega$ une application préservant la mesure.

- 1- Vérifier que $f \mapsto \alpha_f$ et $\alpha \mapsto f_\alpha$ sont deux opérations inverses l'une de l'autre. Vérifier que $\alpha \vee \beta = \alpha_g$ où $g = (f_\alpha, f_\beta) : \Omega \to E_\alpha \times E_\beta$.
- 2- Vérifier que $H(\alpha) = H(f_{\alpha})$ est l'entropie de la variable aléatoire f_{α} . Vérifier que $H(\alpha|\beta) = H(f_{\alpha}|f_{\beta})$ est l'entropie conditionnelle des variables aléatoires f_{α} et f_{β} .
- 3- Vérifier que $0 \le H(\alpha|\beta) \le H(\alpha)$. Vérifier que $H(\alpha \lor \beta) = H(\beta) + H(\alpha|\beta)$. En déduire que $H(\alpha \lor \beta) \le H(\alpha) + H(\beta)$.
- 4- Vérifier que $\alpha \leq \alpha'$ si et seulement si il existe une application $g: E_{\alpha'} \to E_{\alpha}$ telle que $f_{\alpha} = g \circ f_{\alpha'}$. Vérifier que dans ce cas, $H(\alpha) \leq H(\alpha')$ et $H(\alpha|\beta) \leq H(\alpha'|\beta)$.
- 5- Vérifier que $f_{T\alpha} = f_{\alpha} \circ T$. En déduire que $T(\alpha \vee \beta) = T(\alpha) \vee T(\beta)$, $H(\alpha|\beta) = H(T\alpha|T\beta)$.

2. Entropie d'un itéré

Soit $(\Omega, \mathcal{B}, \mu)$ un espace probabilisé et $T: \Omega \to \Omega$ une transformation préservant la mesure. Soit α une partition mesurables finie de Ω . On note $\alpha_m^n = T^m \alpha \vee \cdots \vee T^n \alpha$.

- 1- Montrer que $h_{\mu}(T^{-1}) = h_{\mu}(T)$.
- 2- Montrer que pour tous $m \leq n$, $H(\Xi_{\alpha_m}^m) = H(\Xi_{\alpha})$.
- 3- En déduire que pour tout ℓ , $h_{\mu}(T^{\ell}) = |\ell|h_{\mu}(T)$.

3. Distance sur l'espace des partitions

Soit $(\Omega, \mathcal{B}, \mu)$ un espace probabilisé. Soit $T: \Omega \to \Omega$ une application qui préserve la mesure. Soit Φ l'ensemble des partitions mesurables finies de Ω modulo ensembles de mesure nulle. Autrement dit, les éléments de Φ sont les classes d'équivalence de partitions, où on identifie $\alpha = (A_x)_{x \in E_\alpha}$ et $\beta = (B_y)_{y \in E_\beta}$ si pour tout $x \in E_\alpha$, il existe $y \in E_\beta$ tel que $\mu(A_x \Delta B_y) = 0$.

- 1- Pour $\alpha, \beta \in \Phi$, on pose $\rho(\alpha, \beta) = H(\alpha|\beta) + H(\beta|\alpha)$. Montrer que ρ est une distance sur Φ .
- 2- Montrer que pour tout $\alpha, \beta \in \Phi, |H(\alpha) H(\beta)| \leq \rho(\alpha, \beta).$
- 3- Montrer que pour tout α , β et $\gamma \in \Phi$, $H(\beta \vee \gamma | \alpha) \leq H(\beta | \alpha) + H(\gamma | \alpha)$.
- 4- Montrer que pour tout $n, H(\beta_1^n | \alpha_1^n) \leq nH(\beta | \alpha)$.
- 5- Conclure que pour tout $\alpha, \beta \in \Phi, |H(\Xi_{\alpha}) H(\Xi_{\beta})| \leq \rho(\alpha, \beta).$

4. Entropie d'une transformation périodique

Soit T une transformation préservant la mesure d'un espace probabilisé $(\Omega, \mathcal{B}, \mu)$. On suppose qu'il existe k tel que $T^{\ell} = id_{\Omega}$. Que peut on dire de l'entropie métrique de T?