HIGHER COLEMAN THEORY

GEORGE BOXER AND VINCENT PILLONI

AsTrACT. We develop local cohomology techniques to study the finite slope
part of the coherent cohomology of Shimura varieties. The local cohomology
groups we consider are a generalization of overconvergent modular forms, and
they are defined by using a stratification on the Shimura variety obtained
from the Bruhat stratification on a flag variety via the Hodge-Tate period
map. We construct a spectral sequence from the local cohomologies to the
classical cohomology and use it to obtain classicality and vanishing results.
We also develop a theory of p-adic families and construct eigenvarieties. As
an application, we prove some new properties of Galois representations arising
from certain non-regular algebraic cuspidal automorphic representations.
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1. INTRODUCTION

In the 90’s, Coleman proved his classicality theorem for overconvergent p-adic
modular forms [Col96] and developed the theory of p-adic families of finite slope
overconvergent modular forms [Col97]. Subsequently, Coleman and Mazur con-
structed the eigencurve [CM9§|. Since then, these works have been generalized to
a wide class of Shimura varieties.

These Coleman theories concern classical and overconvergent modular forms, or
zeroth cohomology of automorphic vector bundles on Shimura varieties. Recently
we have come to expect |[Pil20], [BCGP21], [LPSZ21], |[BP22] that there should be
some analogous “higher Coleman theories” concerning the higher coherent cohomol-
ogy of Shimura varieties. The goal of this paper is to develop such theories for a
rather general class of Shimura varieties.

1.1. Setup. Let (G, X) be a Shimura datum of abelian type, so by definition G/Q
is a reductive group and X is a complex analytic space with an action of G(R)
satisfying a list of axioms ([Del79]). Associated to a choice of Hodge cocharacter u
there are two opposite parabolic subgroups of G attached to (G, X), called P, and
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Pjtd, with common Levi M,,. The space X embeds G(R)-equivariantly as an open
subspace of FL% (C) = G/Ps*(C). This is the Borel embedding.

For any neat compact open subgroup K C G(Ay), we let Sk (C) = G(Q)\X x
G(Ay)/K be the corresponding Shimura variety over C. This is a finite disjoint
union of arithmetic quotients of X.

Any representation of P;td defines a G-equivariant vector bundle over F Lgi.
Let Z; C G be the maximal torus of the center of G which splits over R but contains
no Q-split subtorus. We let M = M,,/Z,. By pull back to X and descent to Sk (C),
we obtain a functor from the category of representations of My to the category of
vector bundles on Sk (C), called (totally decomposed) automorphic vector bundles.
We make a choice of Borel subgroup B contained in P,, let 7" be a maximal torus
contained in this Borel, and let T° = T'/Z;. We label irreducible representations
of M by their highest weight in X*(T¢)Mut . For any weight k € X*(T¢)Met we
let V,; be the corresponding vector bundle over Sk (C).

The Shimura variety Sk (C) has a structure of an algebraic variety Sk defined
over a number field F, called the reflex field. For a combinatorial choice ¥ of cone
decomposition, there are projective compactifications S}QTE whose (reduced) bound-
ary Dg sy = S5, \ Sk is a Cartier divisor. The vector bundles V,, admit models
over Sk and canonical extensions Vs to S’y ([Mil90], [Har90a]). We also have
V. s(—Dk x), the so called sub-canonical extension (its sections are holomorphic
cusp forms).

This paper is devoted to the study of the coherent cohomology of weight k:
H' (S}, Ves), H (S¥'s, Vien(—Dk 1)) as well as the interior cohomology:

H'(S1%, Vir) = Im(H (S, Ve s (~ Dis)) — H (S5, Vi 5)).

They are independent of the cone decomposition ¥ and we denote them simply by
Hi(K, k), H(K, k, cusp), and H (K, k).

We now fix a rational prime p and pass to the p-adic theory. We assume through-
out this paper that Gg, is quasi-split (this assumption is necessary to have finite
slope families over all of weight space). We fix a finite extension F' of Q,, over which
G, splits, and we assume that we have chosen T'C B C P, so that T and B are
defined over Q, and P, is defined over F'. We now pass to analytic geometry and
let Si';/Spa(F, OF) be the adic Shimura variety. We assume for the rest of the
introduction that K = K?K, where K, C G(Q,) is a certain congruence subgroup
(denoted K10 in possessing an Iwahori factorization

K, = (U(@p) n Kp) ’T(Zp) : (U(Qp) n Kp)

where U and U denote the unipotent radicals of B and the opposite Borel. When
G, is unramified, K, will be an Iwahori subgroup.

Our study of the p-adic properties of coherent cohomology is based on the Hodge-
Tate period map introduced by Scholze [Sch15| and refined in [CS17] and [DLLZ23].
More specifically we will use the existence of a diagram

Sir — > FLa

]

SKPKP - ]:ﬁG,u/Kp
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where FLg,, = P,\G is the adic space associated to the Hodge-Tate flag space
FLq, = P,\G. Here we only view FL¢ ,/K, as a topological space, and the
“truncated” Hodge-Tate period map myr i, as a continuous map. The map myr
is equivariant for the right actions of the group G(Q,), while the map 7y7 K, is
equivariant for the action of double classes K,gK, for g € G(Q,). It also extends

to a map on the toroidal compactification 797 i : Sy, 5 = FLgu/Kp. The

basic idea in this paper is to use w}j‘f% K, to define certain support conditions for
coherent cohomology on the Shimura variety, and to study the dynamical properties
of certain Hecke operators at p.

We introduce some further notation. For a choice of + or — which we denote

from now on by +, we consider the monoids
T* = {t € T(Q,) | v(a(t)) > 0,Va € D)

where ®T denotes the positive roots of G with respect to 7" C B, and also the
associated commutative subalgebras of the Iwahori Hecke algebra

HE = span{[K,tK,) |t € T} C H,,.

These should be thought of as the algebra of “U,-type” Hecke operators. The reason
we consider both the 4+ and — algebras is in order to study duality (we note that
[KptK,] and [K,t ' K,] are transposes as correspondences), but the reader might
assume that all +’s are just + on first reading.

We let W be the (absolute) Weyl group of G and Wy, C W the Weyl group
of M,,. We write £ : W — Z for the length function and we write wg € W and
wo,m € Wiy for the longest elements. In this paper a crucial role will be played
by the set W C W of minimal length coset representatives for Wy \W. It has
a unique longest element wéw = wo,mwo of length d = dim Sg = dim FLg ;. We
define £+ : MW — [0,d] by ¢4 = £ and {_(w) = d — {(w).

The set MW will index the “higher Coleman theories” constructed in this paper.
We recall how it arises naturally in the study of coherent cohomology, both from
the archimedean and p-adic points of view.

The coherent cohomologies H! (K, k) for k € X*(T¢)Mu* can be computed in
terms of automorphic forms on G ([Har90al, [Su24]). Cuspidal automorphic rep-
resentations m = m,, ® my contribute to coherent cohomology according to the
archimedean component 7. The (essentially) tempered mo, which contribute to
coherent cohomology have been completely classified: according to work of Blasius-
Harris-Ramakrishnan, Mirkovic, Schmid, and Williams, they are exactly the so
called non-degenerate limits of discrete series (see [Har90a], theorems 3.4 and 3.5).
According to Harish-Chandra, for each element of W there is a corresponding
family of (limits of) discrete series representations, parameterized by the infinites-
imal character (more accurately, this would be true if G(R) were semisimple and
simply connected).

We recall how the limits of discrete series contribute to coherent cohomology.
Beginning with a (dominant) “C-algebraic” infinitesimal character v+p € X*(T¢)g
with v € X*(T¢), then for a choice of w € MW, if k,, = —womw(v + p) — p is
M,,-dominant, then there is a (limit of) discrete series with infinitesimal character
v+ p contributing to coherent cohomology in weight ., and degree ¢(w). We recall
some features of this description:
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e The case of w = 1 corresponds to the family of holomorphic (limits of)
discrete series. They contribute to degree zero coherent cohomology.

e When v + p is regular, s, is automatically M,-dominant, and the cor-
responding representations of G(R) are discrete series. Moreover a k €
X*(T¢)Mut with x + p regular will be of the form k,, for a unique v and
w € MW, and so cusp forms which are tempered at co contribute to coho-
mology in weight x in only a single degree.

e When v + p is not regular, there will be some subset of MW (possibly
empty) for which k,, is M,-dominant (we emphasize in particular that this
set may be nonempty but not contain 1, and this is a major motivation
for studying higher coherent cohomology of Shimura varieties). In this
case the corresponding representations of G(R) are limits of discrete series.
Beginning with a k € X*(T)" with s + p irregular, we will have £ = Ky,
for multiple w € MW (with a range of lengths), and so the cohomology in
weight x will have contributions from cuspidal automorphic representations
tempered at oo in a range of degrees.

We note that in this paper, our study of coherent cohomology is purely geometric,
and makes no use of the theory of automorphic forms or the results recalled above
(except in the application to local-global compatibility for irregular automorphic
representations in section . Nonetheless, it is useful to keep in mind, for
interpreting the results that follow.

Now we pass to p-adic geometry, beginning with the Hodge-Tate flag space
FLg, = P,\G. The set MW indexes the Schubert stratification of F L ,:

FLg,=P\G= [[ P.\P.wB
weMWwW
Passing to a more dynamical point of view, the set of fixed points for the action of
T on FLg, is exactly

Fixr(FLg,,) = {P,w | we MW}

as indeed there is one T fixed point in each Schubert cell. A closely related fact
is that the set of points of FL¢ ,(Cp)/K), fixed by all of the “Up,-type” Hecke
correspondences [K,tK,| for t € T+ is

{PowK, |we MW}

(To say that a point K, € FL¢ ,(C,)/ K, is a fixed point of [K,tK,] just means
that x € e KptK,.)

According to Scholze-Weinstein [SW13|, FL¢ ,(Cp)/K, should be thought of
as the set of p-divisible groups “with G-structure” over Oc¢,, equipped with a K,
level structure (on the generic fiber). In particular, the points P,wK, for w € MW
correspond to certain very special such p-divisible groups, which are fixed points for
the action of the “U,-type” Hecke correspondences. We can now pass to the Shimura
variety via the Hodge-Tate period map. According to Caraiani-Scholze [CS17], the
fibers of mgyr are (closures of) perfectoid Igusa varieties. In this paper we will
consider the “Igusa varieties” (77 - )~ (P,wK)p) C SiZ%; at finite level. We view
them as some kind of fixed subspaces for the “U,-type” Hecke correspondences. We
emphasize that in contrast to the situation at infinite level, they are not Zariski
closed, and we do not try to give them any geometric structure (in fact, we will only
consider neighborhoods of them, constructed using the Hodge-Tate period map).
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We give two illustrative examples:

Ezample 1.1.1. If (G,X) = (GSpQW'H;t) is the Siegel Shimura datum and K, is
Iwahori, then the corresponding Shimura varieties are moduli spaces of polarized
abelian varieties of dimension g. The polarized p-divisible groups with Iwahori level
structures (G, \, {H; }o<i<2,4) corresponding to the elements of ¥ W are all ordinary
(i.e. G = pdoe x (Qp/Zy)?) and the element w € W measures the relative position
of the canonical subgroup Hcq, = pf with the symplectic flag

OZH()CH1C-“CH29=g[p]

giving the Iwahori level structure (alternatively, the 29 elements of W correspond
to the 29 possibilities that H;/H;_1 for i = 1,..., g is either multiplicative or étale).
Passing to the Shimura variety, the “Igusa varieties” 7rI_{1T7 K, (P,wkKp) are simply the
(closures of the) corresponding components of the (quasi-compact, open) ordinary
locus.

Ezample 1.1.2. If (G, X) = (Resp/qGLa, (H;)F"¥) is a Hilbert Shimura datum
for F' a totally real field in which p remains prime (for simplicity), then the cor-
responding Shimura varieties are (coarse) moduli spaces of abelian varieties of di-
mension [F : Q] with an action of Op. In this case, MW = W = {1, w}HomFCp),
For I C Hom(F,C,) we write w; € W for the element which is 1 in the factors
corresponding to the elements of I. Then the p-divisible group with Og-action
and Iwahori level structure corresponding to wy is (LT; x LTje,LTy[p]) where
I¢ = Hom(F,Cp) \ I, and LT;/Oc, is the unique p-divisible group with Op-action
of height [F': Q] and such that Lieyr, ® C, = @&,¢;C,(7) as F ® C,, modules, where
C,(7) denotes the F' ® C, module on which F' acts via 7. The isogeny correspond-
ing to quotienting by LT;c[p] witnesses these p-divisible groups as fixed points for
the “U,-type” Hecke correspondences. In particular, in contrast to the previous
example, only 1 = wygom(r,c,) and wy = wy correspond to ordinary p-divisible
groups.

1.2. Overconvergent cohomologies. The first aim of this paper is the construc-
tion, for all w € MW, weights k € X*(T¢)Mw* and choices 4 of + or —, of some
finite slope, overconvergent cohomologies H?, (KP, k)™ /% and H! (KP?, s, cusp)™7s.
These spaces carry actions of the algebras ?—lf for which the “U,-type” operators
[K,tK,) for t € TF act invertibly (hence “finite slope”) as well as actions of the prime
to p Hecke operators. We actually more generally consider spaces H, (K?, x, x)*/2,

H! (KP, K, x, cusp) 7 where x : T(Z,) — @; is a finite order character (a Neben-
typus), but for simplicity in the introduction we restrict ourselves to the case y = 1.

We explain the rough idea of the construction: we start with the complex
RI'ynz(U, Vi x) of cohomology with support, where U N Z C Sy, is a suitably
chosen, locally closed neighborhood of the “Igusa variety” WEIT’ K, (w- Kp). The
support conditions are chosen in order to have an action of the Hecke operators
[KptK,y] for t € T#*, and so that furthermore sufficiently regular Hecke operators
act compactly. Then we use the spectral theory of compact operators to take the
finite slope part, i.e. roughly pass to the part where the Hecke operators [K,tK,)]
for t € T* act invertibly. The space H)(K?, x)*/* is nothing but the usual space
of finite slope overconvergent modular forms of weight «.

The following theorem summarizes the basic results about the finite slope over-
convergent cohomologies.
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Theorem 1.2.1. (1) (Spectral sequence to classical cohomology) There
18 a Hf—equz’vam’ant spectral sequence

EPY = @ HPFHI(KP, k)5S = HPT(K k)5S
weMW, 04 (w)=p

and similarly for cuspidal cohomology.

(2) (Analytic continuation) The finite slope, overconvergent cohomologies
RT, (K?, k)*7% and RT,(KP, k, cusp)™f*, together with their Hecke ac-
tion, can be computed on arbitrarily small neighborhoods of the “Igusa va-
riety” WE%KP(U) - Kp) C SE's. (See sections and for a precise
statement.)

(3) (Duality) There is a perfect pairing

(—,—): HfU(Kp, K,CUSp)i’fs X Hgfi(Kp,nv):F’fs — F

such that for all t € T*, the Hecke operators [K,tK,| on the left and
[K,t 71K, on the right are adjoint. Moreover, these pairings are compat-
ible, via the spectral sequence of part (1), with the classical Serre duality
Pairings
HY(K, k,cusp) x H (K, k") — F.
(Here kY := —2pp. — wo pk where 2p,. € X*(T) is the sum of the positive
roots of G which are not roots of M,,. The canonical bundle of Sﬁgfg is
V_2pne.2(=Dkx), and the dual of Vi s is V_wy yr.5-)
(4) (Vanishing) We have

H (KP, k)57 = 0 for i<{lsi(w),
Hi (K?, K, cusp)™7* = 0 for i>lsi(w),

and so in particular the interior cohomology ﬁ;(Kp, k) 575 vanishes except
when i = {1 (w).

The spectral sequence is simply the finite slope part of the spectral sequence
of a filtration on S, defined using 7y and the Bruhat stratification of the flag
variety. We note that if K, is Iwahori, then the “U,-type” operators [K,tK,]| for
t € T* are already invertible in the Iwahori Hecke algebra H,, and hence the
classical cohomology at Iwahori level is already “finite slope”, i.e. H!(K,r)* /s =
H!(K, k). The “analytic continuation” result follows from a dynamical study of the
Hecke operators and their interactions with the support conditions. The vanishing
theorem is ultimately deduced from the affineness of the Hodge-Tate period map.

If the Shimura variety is compact, then the vanishing theorem implies that the
overconvergent cohomologies H¥ (K?, k)% are concentrated in the single degree
{4 (w), and so the spectral sequence takes the particularly simple form of a single
complex

H (Kp7h_/)i,f8_>._._> @ HL(Kpﬂﬁ)i,fs_)_..%Hiy/ld(KP’;i)i,fs

weMW, by (w)=1

0
Id/wdt

whose cohomology is the classical cohomology H!(K, k) (here we write Id/w}! to
mean Id in the + case and w! in the — case, and W is the longest element of
MW). We call this the Cousin complex of the Shimura variety, in analogy with the
work of Kempf [Kem78| on the cohomology of the flag variety.
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1.3. Slope bounds and classicality. The key input for proving the classicality
theorem is a lower bound for the slopes (i.e. p-adic valuations of eigenvalues) of the
Hecke operators acting on finite slope, overconvergent cohomology. More precisely

we prove the following (see theorems and .
Theorem 1.3.1 (Slope bounds). For anyt € T* and any eigenvalue A of [KtK,|
acting on H,, (K7, k)75 we have
v(A) > v((wtwo ar(k + p) + p)(t)) in the + case
v(A) > v((w™ (K + p) — p)(1)) in the — case

Here p € X*(T')q is half the sum of the positive roots of G and, given an algebraic
character 4 € X*(T'), we may view it as a character p : T(F') — F*, so that it
makes sense to evaluate it on ¢ € T(Q,) and take the valuation. We remark that
an eigenclass is “ordinary” if the inequalities of the theorem are in fact equalities.

Actually we expect (conjecture that the same bound holds for the full
overconvergent cohomologies HY, (KP, x)*7% and H (K?, k, cusp)™f*, but we were
only able to prove a slightly weaker bound (theorem . The improved bound
on interior cohomology above is proved by a bootstrapping trick using p-adic inter-
polation.

From the slope bound we can immediately deduce a classicality theorem in reg-
ular weight. The idea is that if we fix x, the lower bounds vary with w € MW,
and so there will be a certain range of “small slopes” which can only occur for a
single w. Then by passing to the small slope part of the spectral sequence we will
obtain an isomorphism between the small slope parts of the w overconvergent and
classical cohomologies.

Theorem 1.3.2 (Classicality theorem). Let k € X*(T¢)™% be a weight such
that k + p is G-regular. Let wy (resp. w_) be the unique w € MW such that
—w ™ wg pr(k + p) (resp. w (K + p)) is G-dominant.

Then we have a quasi-isomorphism:
1%1—\7”i (Kp’ ﬁ)i,sssM(n) — RF(KP7 K)i,sssM(n)

and similarly for cuspidal cohomology. Here the superscript is the “strongly small
slope part”, i.e. the part where the eigenvalues of the Hecke operators [K,tK,]| for
t € T* satisfy certain upper bounds (see sectionfor the precise definition).

If the Shimura variety is compact, then “strongly small slope” can be replaced by
the weaker “small slope” condition +,ssM (k) (again see section . Even if the
Shimura variety is not compact it is still true that a small slope overconvergent cusp
form (i.e. an element of HY(KP, k,cusp) ™" (")) is classical.

Remark 1.3.3. Many cases of this theorem for the degree 0 cohomology of PEL
Shimura varieties were already proven, see for example [Col96], [Kas06|, [Pill1],
[BPSI6], [TX16], [BijI7].

Remark 1.3.4. Even in cases of degree 0 cohomology where classicality theorems
were already known, this theorem often improves on the slope bound. For example
in the Siegel case, with the usual labelling of weights k = (k1,--- ,kq) with &k >
-+ > kg, and for the usual “minuscule” Hecke operator U,, the theorem states that

any finite slope overconvergent cusp form of weight x and Up-slope < kg — g is

classical. The bound previously proven in [Pilll] and [BPS16] was < kg, — %.
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Holomorphic discrete series contribute to the HY in weights with k, > g, while
holomorphic limits of discrete series contribute when k;, = g. Thus we cannot
expect any “numerical” classicality results when k; = g, while the theorem is non-
vacuous for all k5 > g.

It was first explained in [MWS6] that in the case g = 1, a weight 1 ordinary p-adic
modular form need not be classical, as in fact its Galois representation need not
be Hodge-Tate. We similarly expect non classical ordinary p-adic modular forms
in any irregular weight.

Remark 1.3.5. We conjecture that the theorem should hold with “small slope” in-
stead of “strongly small slope” in the non-compact case as well. This would follow
from the conjectural improved slope bound [5.9.2] Moreover we believe that the
“small slope” condition is optimal. We remark that an “ordinary” cohomology class
is small slope in all weights, but it may only be strongly small slope under an
additional regularity condition.

Remark 1.3.6. In the case that x + p is not G-regular, there are multiple w € MW
for which —w ™ wg pr(k+p) (or w™t(k+p)) are G-dominant, and the lower bound on
the slopes are the same for these w. Thus we can impose some small slope condition
to kill the contributions of the remaining w € MW to the spectral sequence, but
there will still be further cancellation among those that remain.

Ezample 1.3.7. We explicate all the results so far in the case of the modular curve,
where everything was already done in [BP22]. Then YW = W = {1,w} has only
two elements, and the spectral sequence reduces to a four term exact sequence

0 — HY(K,k) — HY(K?, k)" — HL (K?, k)" — HY(K, k) — 0
relating the the classical coherent cohomology of the modular line bundle w*, k € Z,
to the two overconvergent cohomologies, and moreover HY(K, k)*+/* is nothing but
the usual space of finite slope overconvergent modular forms of weight k.

Then the slope bound says that the “unnormalized U, operator” Ug“”“e has slopes
>1on HY(K, k)" /¢ and > k on H. (K, k)" /5. Motivated by this we renormalize
the U, operator by setting U, = p~ mi“(l’k)U;}‘””e, and then from the four term
exact sequence above and the slope bounds, we immediately deduce Coleman’s
classicality theorem

H(l)(Kp’ k)<k71 — HO(I(7 k)<k71
in weights k > 2, as well as its “H'-analog”
Hy, (K7, k)78 = HY (K B <t

in weights & < 0. (Here the superscripts < x mean we take the slope < x part for
the normalized U, operator.)

Combining the slope bounds with the vanishing theorem for overconvergent co-
homology, we obtain vanishing theorems for the small slope part of classical co-
homology. For any x € X*(T¢)Mu+t | there is a range [fmin(k), lmax(x)] € [0,d]
where cuspidal automorphic representations which are (limits of) discrete series at
oo contribute. We recall a combinatorial description of this range: let C'(k)T =
{w e W, —w two p(k + p) € X*(T )+} and then let fmin(k) = min,ec o)+ £(w),
lmax (k) = MaXy,eo(e)+ £(w). We note that when x + p is regular, then C(x)*

{w4} where wy is as in theorem above, and 80 lyin(K) = lmax(k) = L(wy)
and hence the range is reduced to a single degree.
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Then we have the following vanishing theorem for the small slope part of classical
cohomology (theorems [5.12.20] and [6.10.2)).

Theorem 1.3.8 (Vanishing for classical cohomology). For any x € X*(T¢)Mu:+,

(1) ﬁi(K, KJ)SSM(K) is concentrated in the range [lmin(K), fmax(K)],
(2) H(K, r, cusp)SSSM("“) is concentrated in the range [0, {max(K)],
(3) HY(K, /@)SSSM(“) is concentrated in the range [Cuin(k),d].

Again we conjecture that strongly small slope can be replaced by small slope in
the second and third points, and this would follow from conjecture We also
prove a similar result at deeper levels at p, and give a more representation theoretic

statement (see definition [5.12.17)).

Remark 1.3.9. This result should be compared to vanishing theorems in [Lani6] or
[BHRO4] where there is no small slope condition but instead a regularity condition
on the weight x.

Using Faltings’s dual BGG spectral sequence, we can also deduce vanishing
theorems for de Rham and hence Betti cohomology. Let v € X*(T°)" and let
W, be the corresponding irreducible representation of G and W)’ its contragre-
dient. We can attach to it a local system W) on Sk(C). We have the Betti
cohomology groups H*(Sk (C), W), H:(Sk(C), W)) and the interior cohomology
H (5K (C),WY) = Im(H*(Sk (C), WY) — H*(Sk (C),WY)). We have the following
(Theorems [5.12.20 and |6.10.2)):

Theorem 1.3.10 (Vanishing of Betti cohomology). For any v € X*(T°)",

(1) ﬁi(K, WY () s concentrated in the middle degree d,
(2) HL(K,WY)*s(") s concentrated in the range [0,d],
(3) HY(K, WY )**5*W) is concentrated in the range [d,2d).

Remark 1.3.11. The conditions ss,(v) and sssp(v) are the union of all conditions
ssM(k) and sssM(k) respectively where k € X*(T¢)M:* runs through the set
{~wwo(v + p) — p,w € MW}.

In [CS17] and [CS24], Caraiani and Scholze proved a similar concentration result
for the Betti cohomology of unitary Shimura varieties under a genericity condition
for the action of the spherical Hecke algebra at a prime number ¢. Their result is
much more powerful because it also applies to the cohomology with coefficients in
a p-torsion local system for a prime p # £. In this section we have seen three kinds
of conditions that can be used to kill cohomology outside of the expected range of
degrees: small slope at p, genericity at some prime ¢, and tempered at co. We give
the simplest example of a cohomology class outside of the expected degree, and
explain how all of these conditions fail.

FEzample 1.3.12. Consider a compact Shimura curve Sk associated to a quaternion
algebra over Q split at oo and p. Consider the constant function 1 € HY(Sx, Os,.),
which comes from the trivial automorphic representation. The degree 0 cohomology
is the “wrong” degree in this weight, in the sense that the interesting cohomology
of Og, =V sits in degree 1. We observe that the cohomology class 1 is:

(1) Non tempered at oo, since Vol(PGL3(R)) = oc.
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(2) Not small slope at p, because the U, eigenvalue of the trivial representation
is p, and v(p) = 1. The small slope condition in weight 0 is having U,-
eigenvalue of slope < 1.

(3) Not generic at any prime ¢, because the semi-simple conjugacy class at-
tached to the trivial representation at ¢ via the local Langlands correspon-
dence is diag(¢z,0~2).

1.4. Locally analytic cohomology, interpolation, and the eigenvariety.
Our next results concern the p-adic interpolation of the overconvergent cohomolo-
gies over weight space, and the construction of the eigenvariety. In the classical
work [CMO98| (revisited in [AIS14] and [Pil13]), the eigencurve was constructed
by interpolating the Hecke action on the spaces of overconvergent modular forms
HY(KP, k)™ % in the weight k. This approach of interpolating overconvergent mod-
ular forms was generalized to Siegel varieties in [AIP15] (see also [CHJ17]|, [Bralé],
[Her19], [Bra20], [BHW23] for further generalizations). In another direction, p-adic
interpolation of the Betti cohomologies H* (S (C), W,/) was considered (and in this
setting, one considers general arithmetic quotients of locally symmetric space, not
only Shimura varieties). See for example [AS08|, [Urbl1l], [Hanl7|, [Eme06]. We
also mention the case of algebraic modular forms where the group G(R) is compact
modulo center, which has been studied intensively, and for which there is no dis-
tinction between Betti and coherent cohomology (see for example [Buz07], [Che04],
[Loeld]).

In this paper, we construct eigenvarieties by interpolating the local cohomologies
Hi (KP,k)* /5. For the case of overconvergent modular forms HY(KP, k)% we
recover certain of the constructions recalled above. In this case, the improvement
is that we are not assuming that the group Gg, is unramified or that there is a
nonempty ordinary locus.

Let A = Z,[[T¢(Zy)]] be the Iwasawa algebra and let W = Spa(A, A) Xspaz,.z,)
Spa(Qp,Z,) be the weight space of continuous characters of T¢(Z,). In order to
construct families, we must first replace the finite slope, overconvergent cohomolo-
gies H! (KP, k) /5 which are defined for algebraic weights k € X*(7¢)*M« | with
some finite slope, locally analytic overconvergent cohomologies Hiurm(K P o)t s,
which are defined for any p-adic weight v : T%(Z,) — C\.

To define these cohomologies, we use the same support conditions, but we replace
the automorphic vector bundles V, with certain Banach sheaves V" and Dg".
These Banach sheaves are defined on neighborhoods of (777, Kp)_l(w -K,), using a
reduction of the M, ﬁ—torsor which is used to define the sheaves V... This reduction
is defined using the Hodge-Tate period map (see section . Locally, the sheaves
Ver (resp. D) are modeled on a locally analytic induction (resp. locally analytic
distributions) of a certain profinite subgroup of M, (F) (actually with a fixed “radius
of analyticity” which we suppress from the notation, as it will not matter when we
pass to the finite slope part of cohomology). We define H?, . (K?,v)"/* using V2"

w,an

and Hfﬂ’an(Kp7 v)~ /% using D?". We must consider both of the sheaves V4" and

D™ in order to have a duality theory, and we note that here we break the symmetry
between the + and — theories.

The finite slope, locally analytic overconvergent cohomologies Hy, ,, (K?, v)Efs

carry a Hecke action of the monoid TF (see section for the definition), where

one should think of the action of ¢t € T* as something like the “Up-type” Iwahori

Hecke operator [K,tK)], except that one does not actually get an action of ’H;‘E,
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as the “diamond operators” t € T(Z,) do not act trivially: in fact they act by
v(t)*!. The finite slope, locally analytic overconvergent cohomologies enjoy similar
properties to parts (2),(3),(4) of theorem [[.2.1] (see section for duality and
theorems and for vanishing).

We now explain the relation between the two cohomologies. Fix w € MW
and let k € X*(T¢)MwF be an algebraic weight. We may associate a p-adic weight
v:T(Z,) — F*, as follows: we first consider v,y = —w ™ wo,ar(k+p)—p € X*(T°),
take the associated character T'(F) — F*, and define v to be its restriction to
T(Zp,). We emphasize that when G does not split over Q, neither x nor w need
be defined over Q,,, and the (absolute) Weyl group W need not act on 7°(Z,) nor
on W.

From the construction we have maps of sheaves in a neighborhood of 7'1';[%1’ K, (w-
Kp)

Vi, = V)" and DJ" — Vv

which are locally modeled on the inclusion of an algebraic induction into a locally
analytic induction and its dual. Passing to cohomology with supports, we obtain
maps

Hy, (K7, 5) 5T = 1, o (KP,0) ™7 (<)

Hfi},an(Kp7 V)_7fs(yalg> - HZ}(KP’ K\/)—,fs
where we have twisted the Hecke action of 7% on the analytic cohomology in order
to make these maps Hecke equivariant (the twist of (—v,;,) means that we multiply
the action of ¢ € T by v4,(t)~". Note that with this twist, T(Z,) acts trivially.)

Then we can state our second classicality theorem (see corollary .

Theorem 1.4.1 (Classicality at the level of the sheaf). The two maps above be-
come isomorphisms after passing to the +,ssSp (k) part in the + case and the
—, 888pw(kY) part in the — case. If the Shimura variety is compact, the same
statement is true with weaker conditions +, ssnyrw(K) and —, ssarw(KY) (again see
sectionfor the precise definitions of these small slope conditions).

Remark 1.4.2. We try to clarify the switch from « to v, and why it is really v
and not x that is the natural weight parameter on the eigenvariety. The situation
will become much clearer if we start by fixing a G-dominant v4;, € X*(7°¢)". Then
associated to each w € W we can consider k., = —wo prw(Vaig+p)—p. Combining
the two classicality theorems we have an isomorphism

Hi (Kp, y)-l—,sssw(ualg) — HI(K7 Kw)—&-,sssw(ualg)

w,an

where the small slope condition +, 584, (Vaig) is simply the combination of +, sssM (k)
and +, $ssp7.w(Kyw) (if the Shimura variety is compact, we can use the condition
55(Vaig), which is independent of w and is the usual small slope condition in the
algebraic modular form setting).

Now a stable L-packet where the archimedean components are discrete series
with infinitesimal character v,;4 + p should give the same contribution to the coho-
mologies H (") (K, k,,) for w € M. If the contributions to the H/ ") (K, k,,) 555w (Vais)
are nonempty, then we will see eigenclasses with the same system of Hecke eigen-
values in all of the Hﬁ,(fgzl(Kp ,v)T/5. These eigenclasses should all correspond to
the same point of the eigenvariety, and thus we should use v, which is nothing but
a p shift of the dominant representative of the infinitesimal character, rather than
the k., which vary with w € MW.
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We finally turn to results about the eigenvariety = : £ — W. The eigenvariety

T

comes with a map T(Q,,) — O¢ (compatible with the map T(Z,) — Z,[[T°(Z,)]] —
O¢) and a map H® — Og where H* is the spherical Hecke algebra away from the
finite set of primes S which contains p and all primes ¢ where K/ is not hyperspecial.
Points of the eigenvariety are pairs (A, A¥) where A, is a character of T(Q,), and
M5 is a system of eigenvalues for the prime to S spherical Hecke algebra. The
projection to W is given by A, — v = )\p\Tc(Zp). When v is associated to an
algebraic weight v,;, € X*(T), we let A" = /\Pya_lgl; be the smooth part of A, (it is
trivial on T'(Z,)). We have the following theorem on the existence and properties

of the eigenvariety (Theorems and [6.9.7)):

Theorem 1.4.3. The eigenvariety w : € — W is locally quasi-finite and partially
proper. It carries coherent sheaves

Hk (Kp,l/“")?fs, HF (Kpﬂ/“”,cusp)f,’fs

w,an w,an

for allw € MW and k € 7 and they satisfy the following properties:

(1) (Any classical, finite slope eigenclass gives a point of the eigen-
variety) For any x € X*(T)™% and any system of Hecke eigenvalues
(A3, A) occurring in H'(K, k) T1* there is a w = wyw™ € W with
wyr € War, wM € MW, so that if v : T¢(Z,) — F* is associated with

Valg = —w  wo,a (Katg + p) — p, then (AS ™ Vaig, M%) is a point of the eigen-
variety & which lies in the support ofHﬁ)M an (K7, V“")z’fs for some k. The

analogous results hold for the cuspidal and — cohomologies.

(2) (Small slope points of the eigenvariety in regular, locally algebraic
weights are classical) Conversely if vq, € X*(T°)" is a G-dominant
weight and (A\,, \°) is a point of £ in weight v and in the support of
Hﬁ,’an(KP,1/“")er’fS Jor some w € MW, and if 3™ satisfies +, sss.(v)
then (A\5™, X%) occurs in H' (K, k) "1% for k = —wo prw(vayg + p) — p and
some i. The analogous results hold for the cuspidal and — cohomologies.

(3) (Serre duality interpolates over the eigenvariety) We have pairings:

HF (KP, V“”)f,’fs ® HiF (KP, " cusp)z,’fS - 7 0.

w,an w,an

and these pairings are compatible with Serre duality under the classicality
theorem.

(4) (Interior cohomology classes deform over the weight space) Any
interior cohomology eigenclass ¢ € ﬁ*(K, k)T defines a point on a com-
ponent of the eigenvariety of dimension equal to the dimension of the weight
space.

Remark 1.4.4. It is plausible that the eigenvariety £ coincides with an eigenvariety
constructed via Betti cohomology interpolation, as in [Hanl7|. One can also be-
lieve that there is a p-adic Eichler-Shimura theory relating both constructions. See
[AIS15], as well as some forthcoming work of Juan Esteban Rodriguez.
Remark 1.4.5. We can defi in 7~ 1 0)y-torsi 0 (ke oy BT
emark 1.4.5. We can define certain 7~ 0yy-torsion free sheaves H,, ,,," (K7, ") >
over the eigenvariety. This sheaves interpolate the various modules of the interior
Cousin complex (which can be used to compute the interior cohomology). For all



14 G. BOXER AND V. PILLONI
= c 1. . .

w € MW, we let £}, be the support of wai:)(Kp, V“")é’fs, which is a union of irre-
ducible components of the eigenvariety of dimension equal to dim W. Any interior
cohomology class lifts to a point on U,,cmy &L,

Remark 1.4.6. For GSp,/L with L a totally real field, variants or special cases of
this theory are considered in [Pil20], [BCGP21], [LPSZ21].

Remark 1.4.7. The point (4) of the theorem is an advantage of the method we
use to construct the eigenvarieties. Such a result was only available in a limited
number of cases (e.g. Shimura sets and automorphic forms contributing to cuspidal
coherent H?).

Finally, using point (4) we can give a new construction of Galois representations
associated to certain automorphic representations realizing in the coherent coho-
mology of Shimura varieties, but not in the Betti cohomology. This construction is
via p-adic interpolation, and yields new results on local-global compatibility at p.
In [EP21], section 9, we defined a certain class of cuspidal automorphic represen-
tations for the group GL, /L where L is a totally real or CM number field. These
are called weakly regular, odd, algebraic, essentially (conjugate) self dual, cuspidal
automorphic representations. Informally, the weak regularity condition means that
we allow the weights of the infinitesimal character to repeat at most twice.

Theorem 1.4.8. Let 7 be a weakly regular, odd, algebraic, essentially (conjugate)
self dual, cuspidal automorphic representation of GLy, /L with ¢ = ©¥ ® x and
infinitesimal character X = ((A1,r,..., An,r)reHom(L,c)) With A1z > -+ > Apr.
Then for each isomorphism v : @p ~ C there is a continuous Galois representation
pr.: Gr — GLn(@p) such that:

(1) ps, ~p'® 6}17_” ® x. where x, is the p-adic realization of x.

(2) pr,. is unramified at all finite places v t p for which m, is unramified and

one has
1-n
WD(pr,lG,, )" % = rec(m, ® | det [, ).
(3) px. has generalized 1= o T-Hodge—Tate weights (— Ay + "7_1, =M+
L*l)

5 )
(4) Let v | p be a place of L and assume that m, is a reqular principal series.
Then pr.lc,, is potentially crystalline and

1-n
WD (pr, |G, )" 5 = rec(m, ®@ | det [, ).

Here the hypothesis that m, is a regular principal series in part (4) is a *

¢
p-

1—n
distinguished” condition, which in particular implies that rec(m, ® |det|,? ) is a
sum of n distinct characters, so that we can prove that p,,|Gr, is potentially
crystalline by finding its periods one at a time.

When 7 is regular rather than just weakly regular and odd, then a stronger form
of the theorem holds according to results of Bellaiche, Caraiani, Chenevier, Clozel,
Harris, Kottwitz, Labesse, Shin, Taylor, etc. (see [CH13|, [BLGGT14]) including
purity and local-global compatibility at all places. The above theorem is deduced
from these results by p-adic interpolation. Moreover even in the irregular case, the
Galois representations in the theorem have already been constructed by different
methods in [PS16] (and in special cases in [Box15|, [GK19]). The novelty in the
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above theorem is the results towards local global compatibility at p in points (3)
and (4).

The theorem is proved by first descending 7 to a cuspidal automorphic represen-
tation on a quasi-split unitary group over L, which then contributes to the interior
coherent cohomology of the corresponding Shimura variety. Then we apply point
(4) of theorem to get a point on the eigenvariety which is a limit of regular
weight classical points, and conclude using results of Kisin [Kis03] on the interpo-
lation of crystalline periods in analytic families, as in the work of Jorza and Mok
[Jor12], [Mok14].

Remark 1.4.9. As explained, our proof of this theorem makes use of the results
of [MokI5| to descend certain automorphic representations to quasi-split unitary
groups, and is therefore conditional on the results announced in [Art13].

1.5. A toy model: the cohomology of flag varieties and the Cousin com-
plex of Kempf. There is a strong analogy between the coherent cohomology of
Shimura varieties, and the much simpler coherent cohomology of flag varieties. In
[Kem78|, Kempf introduced a local cohomology method for computing the coherent
cohomology of flag varieties, which may be viewed as a “toy model” for the methods
of this paper. We briefly review this computation and some of the analogies (see
section for more details).

For this section of the introduction, which is independent of the rest of the paper,
we let G be a split reductive group over a field F and let 7' C B C G be a Borel
and maximal torus. Let 'L = B\G be the flag variety for G and write 7 : G — F'L
for the projection. Let d be the dimension of F'L. Let W be the Weyl group of
G with length function ¢, and let wy € W be the longest element. For any weight
k € X*(T), we associate a G-equivariant line bundle £,; over F'L, whose sections
on an open U — F'L are

Lo(U)={f:n'(U) > Al | f(bg) = (wor)(b) f(g), Vb€ B,gen'(U)}

The right action of G on FL induces a left action on the cohomology groups
HY(FL,L,). If k is dominant, then HY(FL, L,) contains a highest weight rep-
resentation of weight .

The classical Borel-Weil-Bott theorem describes the cohomology of the sheaves
L, over F'ILL when the characteristic of F' is 0:

Theorem 1.5.1 ([Jan03]|, 5.5, corollary). Assume that char(F) = 0. Let k € X*(T)
then:

(1) If there exists no w € W such that w(k + p) — p is dominant (i.e. K+ p is
irreqular) then H(FL,L,) =0 for all i.

(2) If there exists w € W such that w(k + p) — p is dominant, then there is a
unique such w, and H(FL, L) = 0 if {(w) # i, while A*“)(FL, L) is the
highest weight w(k + p) — p representation.

Following section 12 of [KemT78§|, one can study the cohomology of the sheaves
L, over FL with the help of the Bruhat stratification FL = Uy,ew B\BwB. Given
w € W, let C, = B\BwB, and let U,, C FL be an open so that C,, C U, is closed
(for example one can take U, = B\ BwoBw, 'w). Then one can introduce the local
cohomology groups:

H! (k) == HE Uy, Ls).
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Unlike the cohomology of the full flag variety, these local cohomologies do not carry
an action of G. However they do still carry an action of B, as well as of the Lie
algebra g of G.

Then we have the following results:

e (Vanishing) The local cohomologies H (k) vanish unless i = d — £(w).
e (Cousin complex) For each weight x € X*(T') there is a Grothendieck-
Cousin complex

HY (k) — @ HLY (k) = - — @ Hi (k) = --- — H(k)
weW l(w)=d—1 weW l(w)=d—1i

computing the cohomology H*(FL, L,). This complex arises as the E; page
of the spectral sequence of the following filtration of F'L associated to the
Bruhat stratification:

A U o

weW l(w)<d—1

We also remark that this complex is closely related to the BGG resolu-
tion. For example, if the characteristic of F' is zero and k is dominant, then
this complex is exactly the dual of the BGG resolution of the irreducible
representation of highest weight —wgk.

e (Weight bounds) The analog of the Hecke action of ”H;t on the finite
slope, overconvergent cohomologies is the action of the torus 7" on the local
cohomologies H? (k) (there is no analog of taking the “finite slope part”,
as we already have the action of a group). Then the analog of the slope
bound is the following “weight bound”: any weight A € X*(T') occurring in

Hﬁlfz(w) satisfies

A<w twg(k+p)—p

where we write A < XN if M — A = 3" _\ cqo with ¢, > 0 where A denotes
the simple roots of G associated to T' C B. Actually this weight bound is
an immediate consequence of a much better result, which we lack an analog
of in the Shimura variety setting: the character of T' acting on H’, (k) equals
that of the Verma module of highest weight w™lwg(x + p) — p.

e (“Classicality” and vanishing for the “big weight” part) In analogy
with passing to the small slope part in the Shimura variety setting, we can
try to impose a “big weight” condition in order to kill most (ideally all but
one) of the terms in the Cousin complex.

We make some combinatorial definitions: let C'(xk) = {w € W | w™twq(k+
p) € X*(T)3£} be the subset of W for which the weight bound is as big as
possible. We say that a weight A € X*(T)* is a big weight (depending on
k) if X € wlwo(k + p) — p for all w & C(k). The point of this definition
is exactly that by the weight bound, Hfff““’)(n) will not contain any big
weights unless w € C(k). Then from this and the Cousin complex we have
the following immediate consequences, which can be viewed as a weak form
of the Borel-Weil-Bott theorem (as well as toy models for theorems
13.9):
— HY(FL,£,,)" = 0 unless i € [miny,ec () d—(w), max,ec(x) d—LH(w)].



HIGHER COLEMAN THEORY 17

— If kK + p is regular, so that C(k) = {w} consists of a single element,
then we have the following “classicality theorem”:

H), (k)" = H'(FL, L))"

and both sides vanish when i # d — ¢(w).
Although these results are not as strong as the Borel-Weil-Bott theorem,
we emphasize that we have not assumed that char(F') = 0. Moreover, in
characteristic zero it is not too hard to deduce the full Borel-Weil-Bott
theorem using some basic properties of the BGG category O (see section
52).

e (Interpolation) We assume F' has characteristic 0. Although the line bun-
dles £,; and their cohomologies only exist for integral weights k € X*(T),
the local cohomologies H?, (X, k), together with their g action can be defined
for all K € X*(T)" @ F =Y, where t is the Lie algebra of T'. The families
of g-modules obtained in this way are called twisted Verma modules (see
[ALO3]).
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2. COHOMOLOGICAL PRELIMINARIES

2.1. Cohomology with support in a closed subspace. We recall the notion
and the basic properties of the cohomology of an abelian sheaf on a topological
space, with support in a closed subspace. A reference for this material is [Gro05],
chapter 1. Let X be a topological space. We let Abx be the category of abelian
sheaves over X. If X is a point, Aby is simply Ab the category of abelian groups.
We let D(Abx) be the derived category of Abx. Let i : Z — X be a closed
subspace. For an object . of Abx, we let I'z(X,.Z) be the subgroup of HY(X, .7)
of sections whose support is included in Z. We let RT'z(X, —) : D(Abx) — D(Ab)
be the right derived functor of I'z (X, —) (see [Sta22], Tag 079V, in particular for
the unbounded version). Let U = X \ Z and let .% be an object of D(Abx). We
have an exact triangle in D(Ab) (|[Gro05], I, corollaire 2.9):

RI',(X,Z) — RI(X,.F) —» RI(U, Z) 2 .
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We have the classical pushforward functor i, : Aby — Abx and it admits a right
adjoint i' : Abx — Aby which can be described as follows: Let W C Z be an open
subset. Let W/ C X be an open subset of X such that W = W’ N Z. For any
object .# of Abx, we have i'.% (W) = 'y (W', F|w). It follows that ['z(X,.#) =
HO(X,i,i"'.%). The functor i' has a right derived functor Ri' : D(Abx) — D(Aby).
Moreover RI'z(X,.#) = RI'(X, i, Ri'.%).

Some properties of the cohomology with support are:

(1) (corestriction)|[|Gro05], I, Proposition 1.8] If Z C Z’ C X are closed subsets,
there is a corestriction map RT'z(X, . #) — RI'z/ (X, .%).

(2) (pull-back) If we have a continuous map f : X — X', closed subsets Z C X,
Z' C X' satisfying f~1(Z') C Z, and a sheaf .# on X', then there is a map
RI' 2 (X/, 3‘\) — er(X, fﬁlﬂ\).

(3) (Change of ambient space)[|Gro05], I, Proposition 2.2| If we have Z C U C
X for some open U of X, then the pull back map RI'z(X, .#) — RI'z(U, %)

is a quasi-isomorphism.

The above properties imply easily the following lemma:

Lemma 2.1.1. Let Zy,7Z5 C X be two disjoint closed subsets. Then the natural
map given by corestriction:

I{FZ1 (X,y) (&) RFZz(X,y) — I{FZIUZ2(XV7 ﬁ)
is a quasi-isomorphism.

Proof. Fori € {1,2}, weleti; : Z; — X. Wefinally let ¢ : Z1UZs < X. The lemma
follows from the claim that for any .# € Ob(Abx), the natural map (i1).i}.# @
(i2)4i5.F — i,i'.F is an isomorphism of sheaves. This is a local computation. Since
X = Z{ U Z§ and the claim holds true over any open subset of Zf or Z5, we are
done. O

We now discuss the construction of the trace map in the context of schemes or
adic spaces and finite locally free morphisms ([Hub96], Sect. 1.4.4).

Lemma 2.1.2. Consider a commutative diagram of topological spaces:

Z——X

b

7 —= X'

with X and X' schemes (resp. adic spaces), f a finite locally free morphism of
schemes (resp. adic spaces), Z' — X' and Z — X closed subspaces. Let F be a
sheaf of Ox:-modules. Then there is a trace map RUz(X, f*#) — Rz (X', F)
which is functorial in & .

Proof. We first recall that the category of sheaves of Or-modules on a ringed space
(T, Or) has enough injectives ([Sta22], Tag 01DH). It follows that it is enough
to construct a functorial map I'z(X, f*%#) — I'z/(X',.%) for sheaves .# of Ox-
modules. We have a map I'z(X, f*7) — T'y-1(2)(X, f*F). Therefore, it suffices
to consider the case where Z = f~1(Z’), which we now assume. We have a trace
map Tr: f,Ox — Ox/. Moreover, the natural morphism f,0x ®¢,, F — fuf*F
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is an isomorphism. We therefore have a trace map Tr : f, f*% — %. Let us
complete the above diagram into:

J——X<—-U

N

Z/*)X/<37U/

where U’ = X'\ Z' and U = X \ Z. Note that g : U — U’ is still finite free. We
have a commutative diagram:

f*F —— g9 (§')F

|

F——— 5T
We deduce that the trace map T'(X, f*%#) — I'(X’,.#) induces a trace map
Fz(X,f*y)—}FZ/(XI,y). ([l
2.2. Cup products. Let (X, Ox) be a ringed space. Let K =T'(X, Ox).

Proposition 2.2.1. Let Z1,Z5 C X be two closed subsets. Let F and 4 be two
flat sheaves of Ox-modules. There is a natural map, functorial in F and ¥, as
well as the support Z1 and Zs:

Rz, (X, F) @k RT7,(X,9) — Rl 2,0z, (X, F @5 9).

Proof. Let Z3 = Zy N Zy. For 1 < j <3, welet i; : Z; — X be the inclusion.
For .# and ¥ sheaves of Ox-modules we have a map (i1),i}.F gy (i2)xi59 —
(i3)+i5(.F @9) (such a map exists because if s has support in Z; and ¢ has support
in Zy then s ® t has support in Z; N Z3). We claim that there is a map in the
derived category:

(i1).Ri}.F @5, (i2)Riv¥ — (i3).Ris(F @ 9).

Indeed, taking the Godement resolution ([Sta22], Tag OFKR) gives quasi-isomorphisms
F — F* and ¥ — ¥°* where Z°* and ¢° are bounded below complexes of flasque
sheaves of O'x-modules and for all x € X, the maps %, — %, and ¥, — ¥ are
homotopy equivalences in the category of Ox z-modules. In particular, .#*® and G*
are K-flat (by [Sta22], Lemma 06YB and the property that .%, and ¥, are flat
Ox-modules). Since .Z* and ¥°* are K-flat, the map % @ ¥ — Tot(z?' ® {4')
is a quasi-isomorphism. We see that (il)*Ri!lf is computed by (il)*i!lg‘" and
(i), Rib% is computed by (ip),i4%*. Taking K-flat resolutions A® — (i1),4}.7*
and B® — (i2),i5%*, we see that Tot(A® ®¢, B*) computes

(i1)Ri}.F @5 (i2).Rib¥
and there is a composite map

Tot(A®* ®g, B*) — Tot((il)*illﬁ' Qe (i2)159°)

— (ig)*ié(Tot(ﬁ' ®9*)).
Taking a K-injective resolution Tot(.#*®%*) — C* we finally find that (i3).i5(C*®)
computes (i3),Ri}(F ® 4) and we have a morphism

(i3)4i5(Tot (F° @ 9*)) — (i3).i5(C*®).
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There is also a usual cup-product map by [Sta22], Tag 0OFPJ:
RI(X, (i1).Ri1.7) @ RI(X, (i2),Riy%) — RT(X, (i1),Ri}.F @5 (i2).Rib¥).

Combining the two maps gives the map of the proposition. O

2.3. The spectral sequence of a filtered topological space. Let X be a topo-
logical space, .% a sheaf of abelian groups, and let W C Z be two closed subspaces
of X. We can define Rz, (X, #) = Rl ,2\w(X \W,.Z). f ZC Z' and W C W'
we have a map RI'z/w (X,.7) — Rl z/ ) (X, 7).

If we have Zs C Zy C Z3, then there is an exact triangle ([KemT78|, lemma 7.6):
Ry, /2,(X,F) = Rz, /2,(X, F) = RT 4, (X, Z) 5

Assume that there is a filtration by closed subsets X = Zy 2 Z; D --- Z, = ().
Then there is a spectral sequence of filtered topological space ([Har66], p. 227):

EY"=H}M, (X,.7)= HT(X,7)

which we can visualize as follows:

H (X, F) — H? (X, F) —— -

1
Zy/21 Z1/Z3

H (X, F) — HL (X, F) — - --

0
Zo/Zy Z1/Z3

HY 7 (X, F) ——>

The differential d}"? : HZZ?ZPH(X"?) — H’ZZT/IZPH (X, #) is the boundary

map in the long exact sequence associated with the triangle:

1
RLy . /z,..(X,F) = RUy /7 (X, F) =Ry ;7 (X, F) 5.

2.4. The category of projective Banach modules. In this work we will con-
sider cohomologies that will be naturally represented by complexes of Banach mod-
ules (or projective, inductive limits of such complexes). We therefore recall the
basics of this theory. Our discussion follows [Urb11], section 2. Let A be a com-
plete Tate ring topologically of finite type over a non-archimedean field F'. We let
w € Of be a pseudo-uniformizer.

2.4.1. Modules. We let Mod(A) be the abelian category of A-modules, C(A) be
the category of complexes of A-modules, K(A) its homotopy category and D(A)
the derived category. We let KP°"f(A) be the homotopy category of the category
of bounded complexes of finite projective A-modules. These are called perfect
complexes. The category KP¢"f(A) is a full subcategory of the category D(A).
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2.4.2. Banach modules. A Banach A-module M is a topological A-module whose
topology can be described as follows: Let Ag be an open and bounded subring
of A. Then M contains an open and bounded sub Ap-module My which is w-
adically complete and separated (and M = My[L]). We let Ban(A) be the category
whose objects are Banach A-modules, and whose morphisms are continuous A-linear
morphisms. This is a quasi-abelian category in the sense of [Sch99], def. 1.1.3.
This means that Ban(A) is an additive category with kernels and cokernels, strict
epimorphisms are stable under pullback and strict monomorphisms are stable under
pushout. Recall that strict morphisms f are those for which the natural morphism
coim(f) — im(f) is an isomorphism in Ban(A).

2.4.3. The derived category. We let C(Ban(A)) be the category of complexes of
Banach modules, and K(Ban(A)) be its homotopy category. A complex M*® in
C(Ban(A)) is strictly exact if each differential d; : M; — M, is strict and the
morphism Im(d;) — ker(d;+1) is an isomorphism. A morphism f : M®* — N*® in
C(Ban(A)) is a strict quasi-isomorphism if its cone is strictly exact. It is a general
property of quasi-abelian categories that if a morphism is strictly exact, so is any
other morphism in the same homotopy class. One can consider the derived cate-
gory D(Ban(A)) obtained by inverting in C(Ban(A)) the strict quasi-isomorphisms
([Sch99], def. 1.2.16, [Urb11], sect. 2.1.3). In the case of the category Ban(A) we
have the following lemma which helps recognize strict quasi-isomorphisms:

Lemma 2.4.4. Let M*® be a complex in C(Ban(A)). Then M® is exact as a
complex of A-modules if and only if it is strictly exact. A morphism f : M® — N*®
in C(Ban(A)) is a quasi-isomorphism of complezes in Mod(A) if and only if it is
a strict quasi-isomorphism.

Proof. 1t follows from the open mapping theorem (for Banach F-spaces) that any
epimorphism in Ban(A) is open and therefore strict. The first claim follows. The
second claim is deduced by considering the cone of f. O

Because of this lemma, strict quasi-isomorphisms will simply be called quasi-
isomorphisms.

2.4.5. Projectives. Let I be a set. Denote by A(I) the submodule of A! of se-
quences of elements of A indexed by I converging to 0 according to the filter in I
of the complement of the finite subsets of /. This module can also be described as
follows. Let Ay be an open and bounded subring of A. Let Ag(I) be the w-adic
completion of the free Ap-module with basis 1. Then A(I) = Ag(I)[L]. We see
that A(I) is a Banach A-module. A Banach A-module M is orthonormalizable
if there exists a set I and an isomorphism M =~ A(I). A Banach A-module is
called projective if it is a direct factor of an orthonormalizable Banach A-module.
We let CP"°/(Ban(A)) be the category of bounded complexes of projective Banach
A-modules and KP™°/ (Ban(A)) be the homotopy category. There is a natural func-
tor KPr°/(Ban(A)) — D(Ban(A)) and it is fully faithful ([Sch99], prop. 1.3.22,
[Urb11], lem. 2.1.8). In particular we deduce the following lemma which will be
used in this work:

Lemma 2.4.6. Let f : M® — N* be a quasi-isomorphism in CP"*/ (Ban(A)). Then
f admits and inverse g : N®* — M*® up to homotopy.

Recall that finite type A-modules are canonically Banach A-modules. Therefore
we can view KCP"f(A) as a full subcategory of KP™7 (Ban(A)).
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2.4.7. Limits of Banach spaces. We let Proy(Ban(A)) be the category of countable
projective systems of Ban(A). Its objects are contravariant functors N — Ban(A).
An object of this category will be denoted “lim;eny”K; with K; € Ob(Ban(A)).
We recall that the morphisms are defined by Hom(“lim;en” M;, “lim;en”N;) =
lim,, colim,, Hom(M,,, N,,). We let Indy(Ban(A)) be the category of countable
inductive systems of Ban(A). Its objects are covariant functors N — Ban(A).
An object of this category will be denoted “colim;en” K; with K; € Ob(Ban(A)).
We have a limit functor lim : Proy(Ban(A)) — Mod(A), and a colimit functor
colim : Indy(Ban(A)) — Mod(A4). Of course, these functors completely forget
the topology. We could consider instead limit and colimit functors in the category
of locally convex A-modules instead, but this turns out to be unnecessary to us.
We extend lim and colim to functors between the category of complexes: lim :
C(Pron(Ban(A))) — C(A) and colim : C(Indy(Ban(A4))) — C(A).

We let Proy(KP™/(Ban(A))) be the category whose objects are projective sys-
tems of complexes {K; € Ob(KP"/ (Ban(A)))}ien and the K;’s have non-zero co-
homology in a uniformly bounded range of degrees. We denote an object of this
category by “lim;eny”K; (we are not evaluating the limit). Let “lim;en”K; €
Ob(Proy(KPm°I (Ban(A)))). Then there exists an object (unique up to a non unique
isomorphism) lim;eny K; € D(A) by [Sta22], Tag 08TB. And similarly, for any
morphism “lim;eny " K; — “lim;en” K] € Proy(KP™%/(Ban(A))), there is a mor-
phism lim K; — lim K. If “lim;en” K; € Ob(Pron(KP™/(Ban(A)))) can be repre-
sented by an object in C(Proy(Ban(A))), and moreover in each degree t the system
“lim;en " K} satisfies the topological Mittag-Leffler condition ([Gro63, Remarques
13.2.4]), then lim K; is obtained by taking the degreewise projective limit.

We also let Indy(KP™% (Ban(A))) be the category whose objects are inductive
systems of complexes { K; € Ob(KP"/(A))};en and the K;’s have non-zero cohomol-
ogy in a uniformly bounded range of degrees. We denote an object of this category
by “colim;en” K; (we are not evaluating the limit either).

Let “colim;en” K; € Ob(Indy(KP™°(Ban(A)))). Then there exists an object
(unique up to a non unique isomorphism) colim;enK; € D(A) by [Sta22|, Tag 0A5K.
And similarly, for any morphism “colim;en” K; — “colim;en” K| € Indy (KPP (Ban(A))),
there is a morphism colim K; — colim K. If “colim;en” K; € Ob(Indy(KP"%/(Ban(A))))
can be represented by an object in C(Indy(Ban(A))), then colim K; is obtained by
taking the degreewise inductive limit.

2.4.8. Compact operators. Recall that a morphism T : M — N in Ban(A4) is
called compact if it is a limit of finite rank operators (for the supremum norm of
operators, or equivalently the strong topology on Hompan(4)(M, N)). A morphism
T:M®*— N°®in C(Ban(A)) is called compact if it is compact in each degree.

Definition 2.4.9. A morphism T : M® — N*® in K™/ (Ban(A)) is compact if it
has a compact representative in CP"° (Ban(A)).

We need to extend these definitions to the case of objects in Proy (KP™°/ (Ban(A)))
or Indy(KP™/(Ban(A))). Let T : “lim;”M? — “lim;”N? be a morphism in
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Proy(KP"J(Ban(A))). We say that T is compact if there exists a compact opera-
tor T': M*®* — N*® € KP™/(Ban(A)), and a commutative diagram:

M.%N‘

| |

. T .
“lim; " M —— “lim; " N7

Lemma 2.4.10. Let “lim; " M? € Ob(Proy(KP™°/(Ban(A)))) and let T be a com-
pact endomorphism of “lim;”M?. Then T induces canonically a compact endo-
morphism T; of M? for i large enough and there are factorization diagrams:

Tit1

. °
Mi+1 Mi+1

.

Proof. By definition, the map “lim; ”M? — M?* factors into “lim; "M} — M —
M?® for some i large enough. The map N® — “lim; ” M? is given by a collection of
compatible maps N* — M. The lemma follows. (]

Let T : “colim;” M? — “colim;” N? be a morphism in Indy(KP"°(Ban(A))).

We say that T is compact if there exists a compact operator TV : M®* — N°® €
KrProi(Ban(A)), and a commutative diagram:

Me T' N*

T |

. T .
“colim;” M> —— “colim;” N/

Lemma 2.4.11. Let “colim;” M? € Ob(Indy(KP™% (Ban(A)))) and let T be a com-
pact endomorphism of “colim;” M?. Then T induces canonically a compact endo-
morphism T; of M? for i large enough and there are factorization diagrams:

Proof. By definition, the map N°® — “colim,” M} factors into N®* — M? —
“colim;” M for some % large enough. The map “colim;” M — M?*® is given by
a collection of compatible maps M — M*®. The lemma follows. ([

Definition 2.4.12. LetT : N* — M* be a map in D(A). We say that T is compact
if it arises from a compact map in Pron(KP™/ (Ban(A))) or Indy(KP™/ (Ban(A))).

Definition 2.4.13. Let M* € Ob(D(A)) and let T' € Endp(a)(M*®). We say that
T is potent compact if for some n >0, T™ is compact.
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2.5. The cohomology of Banach sheaves. In this section we explain how we
can obtain complexes of Banach modules from the cohomology of rigid analytic
varieties. We use the theory of adic spaces described in [Hub96| and [Hub94] for
example.

2.5.1. Sheaves of Banach modules over adic spaces. In this section we recall some
material from [AIP15], appendix A. Let F be a non archimedean field with ring of
integers Op. Let w € F be a topologically nilpotent unit.

We recall that there is a good theory of coherent sheaves on finite type adic
spaces over Spa(F,Or): If X = Spa(A, AT) is affinoid and .¥ is a coherent sheaf
on X, then H (X, Ox) = 0 for i # 0, M = HY(X, Ox) is an A-module of finite type
and the canonical map M ®4 Ox — % is an isomorphism ([Hub94], thm. 2.5).
Moreover, M is canonically a Banach A-module ([Hub94], lem. 2.4). It follows
that a coherent sheaf . over a finite type adic space X is a sheaf of topological
Ox-modules. In this paper we will have to manipulate topological sheaves which
are not coherent.

Definition 2.5.2. Let X' be a finite type adic space over Spa(F,Op). A sheaf F
of topological Ox-modules is called a Banach sheaf if:
(1) For any affinoid open U — X, F(U) is a Banach Ox(U)-module,
(2) There is an open affinoid covering X = U;U;, such that for any affinoid V C
U;, the continuous restriction map F(U;) — F(V) induces a topological
isomorphism: Ox (V)& g wnF Us) = F(V),
A Banach sheaf F is called locally projective if there is a covering as in (2) such
that F(U;) is a projective Banach Ox(U;)-module.

Any coherent sheaf on X is therefore a Banach sheaf and a coherent sheaf is a
locally projective Banach sheaf if and only if it is locally free. Banach sheaves over
X form a full subcategory of the category of topological & x-modules.

2.5.3. Cohomological properties of Banach sheaves. We warn the reader that Ba-
nach sheaves which are not coherent sheaves are pathological in general. In particu-
lar it is not true that on an affinoid X', a Banach sheaf has trivial higher cohomology
groups, nor is it true that a Banach sheaf is the sheaf associated with its global
sections (in [SW20, Example 9.1.2], we have i : V — X and .0y is an example
of a Banach sheaf with higher cohomology and not generated by global sections).
Here is nevertheless a simple situation where this holds. Let X = Spa(4, AT) be
an affinoid and let M be a projective Banach A-module. Let . = M&4Ox be the
pre-sheaf whose value on an affinoid open U = Spa(B, Bt) of X' is M&4B.

Lemma 2.5.4. The pre-sheaf .7 is a sheaf and H(X,.F) =0 for all i > 0.

Proof. Since M is a direct factor of an orthonormalizable Banach module, we can
assume that M is orthonormalizable. Let {U;}; be a finite affinoid covering of
X. By Tate acyclicity (see for example [Hub94, Thm. 2.5]), the augmented Cech
complex 0 — Ox(X) — ®;0x(U;) — - - is a long exact sequence of Banach spaces.
It clearly remains exact after taking the completed tensor product with M. This
proves the sheaf property and the vanishing of higher Cech cohomology. By [Gro57,
3.8, Coro.4], this implies the vanishing of higher cohomology. (]

We now introduce a certain class of Banach sheaves that have better cohomolog-
ical properties, following [AIP15], appendix A. These are Banach sheaves admitting
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formal models which can be controlled in a certain sense. We thus begin by dis-
cussing formal Banach sheaves over formal schemes.

Definition 2.5.5. Let X — Spf O be a finite type formal scheme over Spf(OF). A
sheaf § of Ox-modules is called a formal Banach sheaf if § is flat as an Op-module,
Fp = /@™ is a quasi-coherent sheaf, and § = lim,, Z,.

A formal Banach sheaf is called flat if .7, is a flat Ox/w™-module for all n.
It is called locally projective if %, is a locally projective €% /w"-module for all
n. A formal Banach sheaf is called small if there exists a coherent sheaf & over
X with the property that %] is the inductive limit of coherent sub sheaves .#; =
colimjez. ,#1,; and F1 ;/.F1 ;-1 is a direct summand of ¢ for all j > 0.

The relevance of the smallness assumption is given by the following theorem:

Theorem 2.5.6. Let X — Spf Op be a finite type and separated formal scheme
and let § be a small formal Banach sheaf. Assume that X has an ample invertible
sheaf, and that the generic fiber X of X is affinoid. Then HY(X,F) ®o, F =0 for
all 1 > 0.

Proof. This is [AIP15], theorem A.1.2.2. In the reference, the formal scheme X is
assumed to be normal and quasi-projective, but the only property needed in the
proof is the existence of an ample sheaf on X. (]

Let X — Spf Of be a finite type formal scheme, and let X — Spa(F,Op) be
the generic fiber of X. Thus (X, 0%) = limy/ (X', Ox') where the limit runs over all
admissible blow-ups of X (by Raynaud’s theory, see |Liit90]). Let § be a Banach
sheaf over X. For any admissible blow-up f : X' — X, we let Fx = lim,, f*.%,,. We
let .# = colimx/Fx/[1/w]. This is a sheaf over X' that we call the generic fiber of

5.

Theorem 2.5.7. Let X — Spf Op be a finite type formal scheme, with generic
fiber X. We have the following properties:

(1) There is a “generic fiber” functor going from the category of flat formal
Banach sheaves over X to the category of Banach sheaves over X, described
by the procedure § — .

(2) If U — X is a quasi-compact open subset and Y — X' is a formal model
for the map U — X, F(U) = Fz (W)[1/w].

(3) The property (2) of deﬁnitz’on holds over the generic fiber of any affine
covering of X.

(4) The generic fiber functor sends locally projective formal Banach sheaves to
locally projective Banach sheaves.

(5) Let F be a Banach sheaf arising from a flat small formal Banach sheaf.
Then for any affinoid open subset U — X we have H' (U, F) = 0 for all
1> 0.

Proof. The first three points are [AIP15], proposition A.2.2.3. For the fourth point,
let $ be an open affine of X. Let M, = H(Y, %,), A, = HO(W, Ox /"), M =
lim, M,, and A = lim, A,,. We claim that M is a direct factor of the completion
of a free A-module. Let us pick a surjection p; : A — M; and for any n, we can
lift it successively to surjections p, : AL — M,. We need to prove that we can
find a compatible system of sections s,, : M,, — AL. We first observe that the map
Hom 4 (M,,, AL) — Homu(M,,_1, AL ) is surjective. This follows from the short
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exact sequence 0 — Homy, (M,,, A1) — Homa, (M,,, AL) — Homy, (M, AL _|) —
0 (since M, is a projective A,-module). Hence we can lift the section s,_1 to a
map 3, : M, — Al which might not be a section. But (p,3, — Id)(M,) C M; =
M, [w" 1] and s,, = &, — @" 181 0 (pn3, — Id) is a section lifting s, ;.

For the last point, let X be a formal model of X and § be a small flat formal
Banach sheaf over X. Let 4 be an affine formal model of /. Let U;Uf; = U be a finite
affinoid cover of U. Let Y’ be an admissible blow-up of { with the property that
U;U; = U is the generic fiber of a covering of I’ and there is a map {4’ — X inducing
the map U — X. Note that {’ has an ample invertible sheaf, since it is a blow-up
of an affine formal scheme. We can apply theorem to Fy, the pull-back to
' of §, which is still small by flatness. This shows that the Cech cohomology of
U with respect to the covering U;i; vanishes. Since this holds for any finite cover,
and U is quasi-compact, we deduce that H (U,.%) = 0 for all i > 0. O

Definition 2.5.8. Let X be a finite type adic space over Spa(F,Op). A Banach
sheaf F is called a small, locally projective Banach sheaf if it arises as the generic
fiber of a small, locally projective formal Banach sheaf.

Remark 2.5.9. A locally free coherent sheaf over X is a small, locally projective
Banach sheaf by the flattening techniques of [RGT71].

Remark 2.5.10. We don’t know if, for X = Spa(A, A1) affinoid and .# a small,
locally projective Banach sheaf on X, it is true that .% (X) is a projective Banach
A-module and the map .#(X)®40x — F is an isomorphism.

2.5.11. Acyclicity of quasi-Stein spaces. In our arguments, it will often be useful to
consider not only affinoid covers of adic spaces, but also some quasi-Stein covers.

Definition 2.5.12 ([Kie67], def. 2.3). We say that an adic space X — Spa(F, OF)
is quasi-Stein if X = Ujez_,X; is a countable increasing union of finite type affinoid
adic spaces X; — Spa(F,Op) and Ox, ., — Ox, has dense image.

FEzample 2.5.13. Here are some examples of quasi-Stein adic spaces:

e An affinoid space, like the unit ball B(0, 1).
e A Stein space like the open unit ball: B°(0,1) = U,B(0, |p=|).
e A “mixed” situation like B°(0,1) Xgpa(r,0,) B(0, 1).

We also recall the following classical acyclicity result:

Theorem 2.5.14 (|Kie67], Satz 2.4). Let X be a quasi-Stein adic space and let F
be a coherent sheaf over X. Then H'(X,.%) =0 for all i > 0.

We also have:

Proposition 2.5.15. Let X = Spa(A, AT) be an affinoid finite type adic space,
let M be a projective Banach A-module, and let F = M&aO~. LetU — X be a
quasi-Stein open subset. Then H' (U, F) =0 for all i > 0.

Proof. We reduce to the case where M is orthonormalizable. Write U = U;U; where
U; = Spa(B;, B]") are affinoid and B;; — B; has dense image. Then by lemma
RIT'(U, F) is computed by Rlim; M ® 4 B; and we conclude by topological
Mittag-Leffler. O
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2.5.16. Cohomology complexes. We now illustrate how one can obtain complexes of
Banach modules. We denote by D(F') the derived category of the category of F-
vector spaces. We also let Ban(F') be the category of Banach F-vector spaces. For
an adic space X’ over Spa(F,Of), and a sheaf .# of Ox-modules, the cohomology
groups RT'(X,.%) are objects of the category D(F). Nevertheless, they often carry
more structure and can be represented by objects of the category C(Ban(F')) of
complexes of Banach modules. We formalize this in this section.

Remark 2.5.17. Our approach is rather elementary and we content ourselves with
statements saying that a given cohomology can be represented by certain complexes
of topological F-vector spaces. This is enough for our purposes. We simply point
out in this remark a more conceptual approach yielding stronger results. Let .7
be a coherent sheaf over an adic space X of finite type over Spa(F, Or). Since F
carries a canonical topology, we can view % as sheaf of locally convex F-vector
spaces over X. Let Locg be the category of locally convex F-vector spaces. This
is a quasi-abelian category with enough injectives (|[Pro00]). One can therefore
derive the functor HO(X,.#) in this category and view RI'(X,.%) as an object of
D(Locp).

Lemma 2.5.18. Let X be a separated finite type adic space over Spa(F,Op). Let
Z be a locally projective Banach sheaf over X. LetU C X be a quasi-compact open
subset. Let Z C X be a closed subset, with quasi-compact complement. Then one
can represent RT zey (U, F) by an object of KP™°J(Ban(F)).

Proof. We have an exact triangle RT' z~, (U, %) — RT'(U,.7) — RI'U \ (ZN

U), #) H oand therefore, we are reduced to prove the claim for RT'(U, #) and
RT'(U\ (ZNU),F). Finally, it suffices to prove that for a quasi-compact open
U C X, RI'(U, F) € Ob(KPr°i(Ban(F))). We can compute the cohomology by
considering a finite .Z-acyclic affinoid covering of U, and the associated Cech com-
plex by [Hub94], thm. 2.5. Then each of the terms of the Cech complex carries a
canonical structure of Banach F-module. ]

Lemma 2.5.19. Let X be a separated finite type adic space over Spa(F, Or). Let &
be a locally projective Banach sheaf over X. LetU C X be an open subset which is a
finite union of quasi-Stein spaces. Let Z C X be a closed subset, whose complement
is a finite union of quasi-Stein spaces. Then one can represent R zqy (U, F) by

an object of Pron(KP oI (Ban(F))).

Proof. As in the proof of lemma[2.5.18] we are reduced to showing that for an open
U C X which is a finite union of quasi-Stein spaces, RI'(U, .%) € Ob(C(Proy(Ban(F)))).
We let U = Ug)Vy be a finite covering of U by .F-acyclic quasi-Stein spaces V.
We let Vi, = U;>o Vi, where Vi ; is affinoid. We let U; = UpVy ;. Then we let
RI'(U, F) = “lim”RI(U;, &) (using topological Mittag-Leffler [Gro63, Remarques
13.2.4]). O

2.5.20. Compact morphisms in the cohomology of adic spaces. We give some ex-
amples of compact morphisms arising from maps between the cohomology of adic
spaces. First, let us fix a standard notation. Let T be a topological space and let .S

be a subset of 7. Then we denote by S the closure of S in T and by g‘ the interior
of S'in T.
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Lemma 2.5.21. Let X be a proper adic space. Let U’ C U be quasi-compact open
subsets. Assume that U’ C U. Then there exists a formal model X — Spf Op of
X, and two opens $ and W' of X with generic fibers U and U', such that W C 4. If
U' is affinoid, there exists an open affinoid subset U" of U such that U’ C U".

Proof. Recall that the ringed space (X, ﬁ;) is the inverse limit of the ringed spaces
(%, Ox) where X runs over all the formal models of X. For a cofinal subset of X,
we have opens iy and U5 of X with generic fiber & and U’. We let U’y be the
generic fiber of W'x. Then U’ = NxU'x. The topological space X equipped with
the constructible topology is compact (in fact this is a profinite set). We have that
U)¢ = Ux(U'x)¢ N (U)°. Since (U)¢ is compact, we deduce that there is a model
¥ such that U’y C U, and therefore $('x C (5. This finishes the proof of the first
part. The second part follows from [Liit90], thm. 5.1. O

Remark 2.5.22. In the situation of lemma [2.5.21] one often calls U a strict neigh-
borhood of U’. If U and U’ are affinoid, then some authors also call U’ relatively
compact in U (see [Liit90], lem. 2.5).

We introduce a notion of compact morphisms between sheaves.

Definition 2.5.23. Let X be a proper adic space over Spa(F,Op). Let U be a
quasi-compact open subset. Let F and 4 be two locally projective Banach sheaves
overU. Let ¢ : F — &G be a continuous morphism of Oy -modules. We say that the
map ¢ is compact if :

(1) there exists a quasi-compact open subset V withU C V and locally projective
Banach sheaves ', 4" over V and a map ¢' : F' — &' extending ¢.

(2) there is an affinoid covering ¥V = U;V; satisfying the point (2) of definition
[2.5.9 for both F' and ', such that the map ¢' : F'(V;) — 9' (Vi) is a
compact map of Ox(V;)-modules.

(3) there is an affinoid covering U = UU; with U; C V;.

Remark 2.5.24. Note that if # and ¢ are locally free, for a morphism % — ¢ to
be compact, we only need to check the condition (1). Indeed, by lemma [2.5.21| the
other conditions are automatic.

Lemma 2.5.25. Let X — Spa(F,Op) be a proper adic space. LetU' CU C X be
affinoid open subsets. Assume thatU' CU. The map Ox(U) — OxU') is compact
in Ban(F).

Proof. We reproduce the argument of [KL05|, prop. 2.4.1. By lemma we
can find a formal model &' < [ — X (with maps being Zariski open immersions)
for the maps U’ — U — X with the property that the map Y’ — 4 factors into
(s (< 4. We claim that the image of Ox (L) in Ox(W)/w™ is a finite Op-
module. Let X,,,U,,U},,U’,, be the schemes obtained by reduction modulo @™ of
X, 8, 8 and 8V respectively. The image of Ox () in Ox (') /™ is contained (inside
Ox, (U})) in the image of Ox, (U,). But the map Ox, (U,) — Ox,(U]) factors

over Ox, (Upn) = Og7 (U'n) — Ox,,(U},). The Op-module &7 (U’},) is finite since
i/ is proper. O

Lemma 2.5.26. Let A and A’ be two Tate rings topologically of finite type over F.
Let A — A’ be an F-algebra map which is a compact map in Ban(F). Let M — N
be a compact map in Ban(A). Then the map M — N — N ®4 A’ is a compact
map in Ban(F).



HIGHER COLEMAN THEORY 29

Proof. Let us pick rings of definition Ay and A{, for A and A’ such that we have
a map a : Ay — A{ inducing the original map A — A’. Let us also pick Mo,
Ny to be Ag-modules and lattices inside M and N and such that we have a map
b: My — Ny inducing M — N. We need to see that for any n, the image I,, of the
composite My — Ny ®4, Aj/w™ is a finite &p-module. The image b, (M) of My
in No/w™Ny is a finite Ag-module since M — N is compact. Let a,(A4g) be the
image of Ag in Aj/w". This is a finite O'p-algebra since A — A’ is compact. Since
I,, is a quotient of b,(Mp) ®4, an(Aop), it is a finite Op-module. O

Lemma 2.5.27. Let X — Spa(F,Op) be a proper adic space. Let U C U be
two quasi-compact open, and Z C Z' be two closed subspaces, with quasi-compact

. [e]
complements. Assume that u CU and Z C Z'. Let F and 4 be two locally
projective Banach sheaves defined over an open neighborhood of U N Z', and let
¢ F — 9 be a compact morphism. Then the map

Rrgmu(u7 y) — Rrgfmul (U/, g)
1s compact.

Proof. By assumption, there exists two open neighborhoods Uy and Uy of U N 27,
such that U; C Uy and the map ¢ is defined over Us (they are denoted by U and
V in definition . Notice that RTzry (U, F) = R zruru, U NUs, F) and
Rlzru U, 9) = RUzimyrmu, U MU, 94). We further observe that U/’ NU; C
UNUs and U NULN(Z) CUNU N Z°. We take a finite affinoid covering
Uy = Ul ; satistying definition (3). We take a finite affinoid covering
UjesU; of U' N Uy which refines this covering. We take a finite affinoid covering
Ujes Vi of U N U N (Z2')¢ which refines Uje U (so there is a map @ : J' — J
and V; C Z/I&,( j)). By lemma we may now choose for any j € J an affinoid
U; C U N Uy with the property that U] C U;. We finally choose for any j € J' an
affinoid V; C U NU> N Z€ with the property that VT’ cy; C Z/{q;.(j). ‘We consider the
natural diagram of Cech complexes:

é({uj}ﬂg\);)é({vj}vg\)

| l

C{uj}9) —=C({V}}.9)

By lemma [2.5.25] and [2.5.26] the two vertical maps are compact. It follows that
the map from the cone of the top horizontal map to the cone of the bottom hor-
izontal map is also compact. The cone of the bottom vertical map represents
RT z/nur (U',9). The cone of RI'(U NUs, F) — RI(U Nla) \ (ZNUNUs), F),
which is R zry (U, %), maps to the cone of the top vertical map. We have thus
proved that the map RT zqy (U, F) — Rl z/qy (U, 9) factors over a compact map,
and is thus compact. (Il

2.6. Integral structures on Banach sheaves. We now consider integral struc-
tures on Banach sheaves, but this time more in the spirit of analytic geometry. We
let X be a separated adic space locally of finite type over Spa(F,Or). We let .Z be
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a locally projective Banach sheaf over X. We can view % as a sheaf on the étale
site of X by [BGI8| Thm 3.1.

Definition 2.6.1. An integral structure on ¥ is a sheaf FT of ﬁ;—modules on
the étale site of X, such that:
(1) F* = Z and Ft @0, F = Z,
(2) There is an étale cover [[U; — X by affinoid spaces such that F(U;) is the
completion of a free 0 (U;)-module, and the canonical map ﬁ‘*(Ui)@ﬁ;(Uﬂﬁi_ —
Ft\u, is an isomorphism.

Remark 2.6.2. A stronger property would be to ask that the étale cover [[U; — X
is in fact an analytic cover. In our applications, this stronger property will not
be satisfied. Indeed, we will produce sheaves arising from torsors under various
groups, and these torsors are usually only trivial locally for the étale topology.
However, we will not consider the étale cohomology H:,(X,.ZT), but only the
analytic cohomology H! (X, .7 71).

Lemma 2.6.3. In the situation of definition assume moreover that X is
reduced. Let U — X be an étale map with U quasi-compact. Then FT(U) is an
open and bounded submodule of F(U).

Proof. Let I be a finite set and let Hiel U; — U be an étale cover such each U; is
affinoid and .Z 1|y, is the completion of a free sheaf of ﬁa’i—modules. By the sheaf
property we have an exact sequence:

i i
and .Z (U) is a closed Banach subspace of [], #(U;). Since [[, .#*(U;) is open and
bounded in [, . (U;) (using that &7 (U;) is bounded by the reducedness hypothe-
sis), ZH(U) =11, ZT(U;) N.F(U) is open and bounded in .Z*(U). O

We now will elaborate on a result of Bartenwerfer which we first recall.

Theorem 2.6.4 (|[Bar78| Theorem 2). Let X be an affinoid smooth adic space over
Spa(F,Or). There exists N € Zxq such that H., (X, 0F) is annihilated by pV for
all i > 0.

Proof. Bartenwerfer’s result is stated for Cech cohomology. By [Pi120] prop. 3.1.1,
this implies the claim for cohomology. |

Lemma 2.6.5. Let X be an affinoid smooth adic space over Spa(F,Op). Let
ZF be a locally projective Banach sheaf which is assumed to be associated to its
global sections (i.e. satisfies point (2) in definition m Let F be an integral
structure on F. There exists N € Z>o such that for all i > 0 the cohomology
groups H (X, F 1) are annihilated by p™ .

Proof. Let X = Spa(A,AT). By assumption, .# = M®0x is associated to a
projective Banach A-module M. Let I be a set such that A(J) = M & N. Let
M*T =AT(I)NM and Nt = A*(I) N N. The injective map M™ & NT — AT(I)
has cokernel of bounded torsion. Moreover, if we let M. be the image of AT (I) in M
under the projection orthogonal to N, then M — M, has cokernel of bounded
torsion. We deduce that there exists an integer N such that the multiplication
pN i M+ — M™ factors through: M+ — A*(I) — M7 (where the first map is the
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inclusion, the second map is the orthogonal projection with respect to N composed
with multiplication by p" and followed by the inclusion p™¥ M, C M*). It follows
from theorem that HY(X, 05 &4+ A1 (I)) is of bounded torsion for all i > 0.
We let .#* be the subsheaf of &5 4+ A*(I) N7 equal to the image of the sheaf
associated to the presheaf ﬁ}@ A+M™T (in other words, it is the subsheaf of .Z of
sections which can locally be written as tensors in ﬁ’;@ A+ M),

We see that multiplication by pV : .#+ — .# 7 factors through .4+ — 5@ 4+ AT(I) —
A+, We deduce that H' (X, .#7) is of bounded torsion for all i > 0. After rescal-
ing, we may assume that M+ C .#1(X), with cokernel of bounded torsion by lemma
We therefore get a morphism: .#T — # . We claim that this morphism
has cokernel of bounded torsion. Let U;c;U; — X be an affinoid étale covering with
the property that . |y, is associated with its global sections. We may assume that
the set I is finite. It suffices to show that 0% (U;)® 4+ M — F ¥ (U;) has cokernel
of bounded torsion. This follows since the image of ﬁ;(UZ-)@)AJr M is open. We
finally deduce that H?,,(X,.Z ") is of bounded torsion for all i > 0. O

2.7. Duality for analytic adic spaces. In this section we fix X’ a proper smooth
adic space over Spa(F, Op) of pure dimension d. Let Qg( JF be the canonical sheaf,

equal to AdQ}/F. Let ¢+ : Z — X be a closed subset, equal to the closure of

a quasi-compact open subset U of X. One can consider the cohomology group

Theorem 2.7.1 ([GKO00] Thm. 4.4). (1) There is a trace map trz : H%(X,Qg(/F) —
F

(2) If Z C Z', there is a factorization
trz - HE(X, 0% 1) — HL, (X, Q4 ) "5 F.

(3) For any coherent sheaf F defined on a neighborhood of Z the map trz
mduces a pairing:

Ext] 14, (" F,071Q% p) x HE (X, F) — F

(4) When Z = X the cohomology groups are finite dimensional F-vector spaces,
and the pairing is perfect.

(5) WhenU is affinoid and .F is a locally free sheaf, Ext)—1 4 (0717, l,_ng(/F)

is a compact inductive limit of F-Banach spaces, Hdz(é\,’,ﬁ) is a compact
projective limit of F-Banach spaces, and the pairing is a topological dual-
ity between locally convex topological F-vector spaces spaces identifying each
space with the strong dual of the other. Moreover, Extf_l O (L7, flﬁ‘}y/F)

and HE (X, F) vanish for i # 0.

Remark 2.7.2. We give some translations to the language of [GK00]. Let U’ be
the dagger space attached to U — X. Let # be a coherent sheaf defined on
a neighborhood of Z in X. Then H' U, .F) = H(Z,: %) and HL(UT, F) =
HL (X, 7).

We end this section with a slight extension of the above result. An LB space
of compact type is a locally convex, complete F' vector space V which can be
written as a sequential inductive limit of Banach spaces with injective and compact
transition maps. In other words, V = colim,cnV,, where V,, are Banach spaces
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and V,, — V41 is injective and compact. Dually, a Fréchet space of compact
type is a locally convex, complete F' vector space V which can be written as a
sequential inverse limit of Banach spaces with compact transition maps. In other
words, V' = lim,en V,, where V,, are Banach spaces and V,, 1 — V,, are compact.
There is a perfect duality between LB spaces of compact type and Fréchet spaces
of compact type V — VY and V = (VV)V (see [Schi3al, proposition 16.10).

Let V be a LB space of compact type. We can consider the sheaf V& r @y and
its “Serre dual”, equal to the sheaf VV®FQ;1WF.

Proposition 2.7.3. Assume that U is affinoid. Then

RI(Z,0 'V&rOy) = HY(Z,07'0x)&pVI0]
RLz(X,VY&@rQ% p) = RIz(X, Q% p)@rVY[-d.

Moreover HY(Z,0"'V&pOy) and HL (X, VV®FQA,/F) are respectively a LB space
and a Fréchet space of compact type and are in duality.

Proof. We can write Z = N,U,, where U, is affinoid and U, 11 — Z7n+1 — U,,. We
also let V' = colimy V. We first check that RI(Uy,, Va®@r Oy, ) = HO(U,,, Oy YR F Vi
by proving this for Cech cohomology and using that tensoring completing with
Vi a long exact sequence of Banach spaces remains an exact sequence. Pass-
ing to the inductive limit over n and k, we deduce that RI'(Z,."'V&pOy) =
H(2,:7'0x)@rV[0]. One proves RI'z(X,VY&rpQ) ) = RUz(X,Qkp)0rVY[~d]
using similar arguments (and the topological Mittag-Leffler). The duality between
HO(Z,."'V®rOx) and HL (X, VV®FQ§(/F) now follows from theorem and
[Sch13al, proposition 20.13.

3. FLAG VARIETY

3.1. Bruhat decomposition. Let F' be a non archimedean local field of mixed
characteristic with residue field k of characteristic p and discrete valuation v nor-
malized so that v(p) = 1. Let G — Op be a split reductive group with maximal
torus T contained in a Borel B with unipotent radical U and normalizer N(T). Let
B C P be a parabolic with Levi M C P containing T'.

Remark 3.1.1. In our application to Shimura varieties, the unipotent radical of P
will be abelian. Nevertheless, this assumption is not relevant for the moment.

We let ® be the set of roots, A and ®* the subsets of simple and positive roots

corresponding to our choice of B, and ®~ = —®T. We let @X/l be the subset of
positive roots which lie in the Lie algebra of M and &+ = &+ \ &7, We let
¢y, = -4, and @M = M,

We let W be the Weyl group of G. We denote by ¢ : W — Z>( the length
function. We denote by wg the longest element of W. For each w € W, we choose
a representative in N(T') that we still denote w. The group W acts on the left
on the cocharacter group X,(7T') and on the character group X*(7T) on the left as
well via the formula wk(t) = k(w™1tw) for kK € X*(T) and w € W. Let Wy be
the Weyl group of M. The quotient Wj,\W has a set of coset representatives of
minimal length (the Kostant representatives) called W . This is the subset of W
of elements w that satisfy @L Cwdt.
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Let FL = P\G — Spec Op be the flag variety associated with P. We let
d = #®1tM be the (relative) dimension of FL. The group G acts on the right on
FL.

For any w € MW, we let C,, = P\ PwB be the Bruhat cell corresponding to w.
We have the decomposition into B-orbits F'IL = [],,cmy, Cw. We can also consider
the opposite Bruhat cell: C* = P\ PwB for the opposite Borel B.

We let X, be the Schubert variety equal to the Zariski closure of C, in F'L. We
also let X be the opposite Schubert variety, equal to the Zariski closure of C'"
in FL. There is a partial order < on MW for which X,, = U <wChyr and X =
Uw>wC® . For the length function £ : MW — [0, dimF L], we have £(w) = dim C,,
(here dimensions are relative dimensions over Spec Op).

We also define Y,, = Uy, C,yy for all w € My, This is an open subscheme of
FL containing C,.

Lemma 3.1.2. We have an inclusion X% — Y,,.

Proof. By |[BLO03], I, lemma 1, we know that X* N X, # § & v > w. We deduce
that X*' NC, # 0 = v > w, so that X* C Uy>,Cy. O

The following lemma gives a description of the Bruhat cells. For all a € &, we
let U, be the one parameter subgroup corresponding to a.

Lemma 3.1.3. The product map (for any ordering of the factors)

H U, — Cy

ac(w=1e—M)NG+

(o) + wHaja

is an isomorphism of schemes.

Proof. We need to prove that the map [],c(,-19-.1)np+ Ua = (BN w™ ' Pw)\B
is an isomorphism. This follows easily from the following facts:
¢ B=T x]],ecq+ Ua (in any order),
e o = (w e M) N [[(w i) Not [[(w™1d,,)NdT,
e BN w‘le =T X Hae(w_l‘iﬁ')ﬁqﬁ' [[(w—1®7,)Nd+ Ua.
(Il

We also introduce the translated open cell U, = Cy, - wg Lw, so that by the
lemma we have an isomorphism (for any ordering of the roots):

I v. - v

acw—1d—M

(xo) — mea.

We see that U, contains the Bruhat cell C,, as a closed subset.
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3.2. Interlude: the cohomology of the flag variety. In this section, which is
independent of the rest of the paper, we discuss the coherent cohomology of the
flag variety following [KemT8|, section 12. For this section only we assume that
P = B is a Borel subgroup. We consider the stratification Zo = FL 2> Z; 2O --- D
Z4 2D Zgr1 = 0 where d = dimFL and Z; = Uwew’e(w):d% Xy Let k € X*(T).
We associate to k a G-equivariant line bundle £, on F'L as follows: if 7 : G — FL
is the projection map, then for any open U — F'L,

Lo(U)={f a1 (U) — Al | f(bu) = (wor) (D) f(u), ¥(bu) € B x 7~ (U)}.
We consider the spectral sequence associated to the filtration (section

EP?=HY",  (FL,L.) = HT(FL,L,).
The abutment of this spectral sequence carries an action of G. The terms on the
left do not carry an action of GG, but then do carry an action of B, as well as the
Lie algebra g (see [KemT7§|, lemma 12.8), and the spectral sequence is equivariant
for these actions.

In order to study this spectral sequence, we need the following basic result:

Lemma 3.2.1. Letm > n. Let A™ = Spec Of[x1, -+ , &) and A™ = Spec Op[zq, - - -

Le_t A™ — A™ be the closed immersion given by xp41 = -+ = T, = 0. We have
H,.(A™,0)=0ifi # m—mn, and
Hy " (A™, 0) = &y Op - [ =¥
kl:"'vknzov k'rz+1;"';km<0 i=1

Proof. One can use a Koszul complex. See [Gro05], exposé II, proposition 5. O

Let p = 13 cor a. We define the dotted action of W on X*(T) by w -k =
w(k + p) — p. We also denote Hy, (FL, L) = HE, (Uy, Ly).

Lemma 3.2.2. We have a decomposition

HIZ‘;ZM (FL,L,) = &P HPF(FL, L)
weW l(w)=d—p

and these groups vanish when q # 0. Moreover, T' acts on Hi_g(w)(FL,EH) with

character:
[(w™ wo) - K]

[Toce- (1] = a])
Here the character is viewed as a function X*(T') — Z and for A € X*(T), we
write [A] for the function which is 1 on A and 0 otherwise. The multiplication is

convolution. We note that this says that the character of Hfu_aw)(FLE,{) is the
same as that of the Verma module with highest weight (w™lwy) - k.

Proof. Since Z, \ Z,11 = HweW,l(w):dfp C, and U, is a neighborhood of C,, in
FL, we deduce from lemma [2.1.1] that

H%—:?Zwrl (FL7 ‘CH) = @wEW,é(w):dpr%tq(Uw, EN)

By lemma after choosing an ordering of the roots, we have U,, ~ A% with
coordinates z, for @ € w™'®~, and C, ~ AY™) with coordinates z, for o €
w™l®~ N ®t. Moreover the inclusion C,, C U, is given by the vanishing of z,
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for « € w™'®~ N ®~. The torus T acts on U, and C,, and the action on the
coordinates is given by ¢ - x,, = (—a)(t)zq-

Over Uy, the line bundle £, has a non-vanishing section s given by the function
bwouwy 'w = (wor)(b) on 71 (Uy,) = BwoUwy "w. We compute that the action
of T on s is given by t - s = (w™twgk)(t)s.

We now deduce from lemma that H]g;q(Uw, L,;) is concentrated in degree
p, and the cohomology is isomorphic to the free Op-module:

@ OF - H zhes
ko>0 Yacw—1d—Nd+ k<0 Yacw—1&—Nd-

from which we can read off the character of the T-action:

ch(HZ, (Uw,Ly)) = Z [w™ twok + Z ko]

ka>0 Ya€w—10+Nd— ko >0 Yacw—1d—Nd—

[w™ work + Z o !

acw-1d-Nd— Haeqr([l] - [a])

Finally we note

(w™rwo) -k = w rwo(k+p) —p = w wor —w  p—p = w twer + Z Q.
acw1é—NP—

O

It follows from the lemma that the complex EY 0 from the spectral sequence (the
Grothendieck-Cousin complex):

Cous(r) : 0 = HY ,, (FL,Lyx) == HY ;. (FL,Ls) =0
computes RI'(FL, L,). Each group decomposes

HY oy (FL L) = @  HLFLL)
weW l(w)=d—p

and we have established a precise formula for the weights of T on each module.
There is a partial order on X*(7T') where A > 0 if and only if X is a sum of
s . . . d—L(w)

positive roots. Lemma tells us that the weights occurring in Hy, (FL,Ly)

are exactly those which are < (w™lwyg) - k. In particular certain “big weights” will

occur in as few of the terms of the Cousin complex as possible. We begin with the

following lemma:

Lemma 3.2.3. Let v € X*(T) be such that v+ p is dominant. Then the following
conditions on a weight A € X*(T) are equivalent:

(1) ALw-v forallw e W with w-v # v.

(2) AL oV for all o € A with s - v # v.
Moreover if we additionally assume that X\ < v then we have the further equivalent
condition:

(3) A=v=3" caNat withn, < (a,v)+1 for all a € A with (", v)+1> 0.

Proof. Clearly the first condition implies the second. For the converse, writing w
as a reduced product of simple reflections, there must be at least one factor s,
with so - v # v. Then w > s, and so w-v < s, - v (see lemma and hence
A £ Sq - v implies A L w - v.
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The equivalence of the second and third points follows from the formula s, -v =
v—({aV,v) +1)a. O

We say that a weight A satisfying the conditions of the proposition has big weight
(with respect to v) and for a T-module M which is a direct sum of its weight
spaces we denote by M®*(*) the direct sum of its weight spaces corresponding to
big weights. We note that if v 4+ p is regular the last condition may be expressed
as A >v -3 cA((@V,v)+1)a.

The set X *(T)6 — p is a fundamental domain for the dotted action of W on
X*(T)q, and so there is a unique v € X*(T)z)f —p with v € W .k We let
C(k) ={w € W | (w™twp) - k = v}. This set is a right torsor under W, = {w €
W | w-v = v}, and hence it is always nonempty and consists of a single element if
and only if k + p is regular. For example, if x is dominant, C (k) = {wp}.

Proposition 3.2.4. The cohomology complexz RT'(F'L, En)bw(”) is a perfect complex
of Op-modules of amplitude [min,,cc () (d — £(w)), max,,ec(x)(d — £(w))].

Proof. We will show that for w € W\ C(k), the big weight part of the term in
the Grothendieck-Cousin complex corresponding to w vanishes. Indeed, by lemma
all the weights of Hgfz(w)(FL,ﬁ,.@) are < (w™lwp) - K, but (wlwg) - Kk # v
and so HYy "“)(FL, L,)"®) = 0.

(I

Remark 3.2.5. In particular when k + p is regular so that C'(k) = {w} consists of
a single element, we have that H*(FL, £, )**®) = H: (FL, L,.)*"®*). We view this
statement as a sort of analog of Coleman’s classicality theorem, where the algebraic
local cohomology groups H7, play the role of the overconvergent cohomology groups
introduced in this paper, and the big weight condition plays the role of the small
slope condition.

We emphasize that the vanishing of Proposition [3.2.4] is characteristic indepen-
dent. Of course in characteristic zero, the classical Borel-Weil-Bott theorem gives
a precise description of H*(F'L, L,;). For the sake of completeness, we explain how
the Borel-Weil-Bott theorem may be deduced from the computation of H*(FL, L)
via the Cousin complex and basic properties of the BGG category O.

Theorem 3.2.6 ([Jan03], 5.5, corollary). Let k € X*(T).

(1) If there exists now € W such that w-k is dominant then H(FL, L,.)®F = 0
for all i.

(2) If there exists w € W such that w - £ is dominant, then there is a unique
such w, and H(FL, L) ® F = 0 if f(w) # i, while H*“)(FL, L) ® F is a
highest weight w - k representation.

Proof. Tt suffices to prove the theorem after tensoring with F', an algebraic closure
of F. For simplicity, we slightly change our notation and we assume that F' is
algebraically closed for this proof. There is a famous sub-category of the category
of U(g)-modules, called the category O. See [Hum08], chapter 1 for the definition
and properties of the category 0. We recall a number of basic results concerning
the category O that will be used in the argument. The category O is abelian,
Artinian and Noetherian. The simple objects are indexed by weights A € X*(T)®F
and denoted by Ly. If the module L) is finite dimensional then A € X*(T)7 is
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dominant, and moreover L arises from the highest weight A\ representation of G.
For all A € X*(T') ® F we also denote by My = U(g) @y (e) F'(A) the Verma module
of weight A\. The simple module L) is the unique simple quotient of M,. The
Grothendieck group of O, denoted by K(O), is the free module on the [L,]. We
denote by M — [M] the semi-simplification map from O to K(0O). In K(O) we
have [M)] = Guwa<ra(w - A\, N)[Ly.x] with a(A, A) = 1. Since any element M € O
has diagonalizable t-action, we can associate to M its formal character chM which
is an element of the group X of functions X*(T)® F — Z. The character is additive
on short exact sequence and we get a map K(O) — X, [M] — ch[M]. Moreover,
this last map is a group injection. We denote by X its image. Finally, any U(g)-
module with diagonalizable t-action, and whose formal character belongs to Xp is
an object of O.
It follows from lemmathat ch(ng/Zp+1 (FL, Lr)®0p F) =32 s(w)=d—p B(Mu—1u0-x)

lies in X». The Grothendieck-Cousin complex

O—>H%O/Z1(FL,/.ZH)®F_>..._>HdZd/Zd+l(FL’£H)®F_>O

carries an action U(g) by [Kem78|, lemma 12.8, and the t action is semisimple.
Therefore it is a complex in the category O. At this stage, we see that if none of
the elements in the set {w-} is dominant, then none of the H%p/zp+1 (FL,L:)®0, F
contains a finite dimensional subquotient. Otherwise there is a unique w such that
w-k is dominant. We see that for p = ¢(w), [H%p/Zwl (FL,Ly)®0, F] has a unique
finite dimensional constituent (with multiplicity one) equal to [L.,..;]. On the other
hand [HZ'Z,i/Z’lerl (FL,L,) ®0, F] has no finite dimensional constituent for i # £(w).
The cohomology groups HY(FL,L,) ®c, F are finite dimensional because FL is
proper. If none of the elements in the set {w - k} is dominant, the cohomology is
therefore trivial. If there is a unique w such that w - k is dominant, we see that
H{(FL,L.) ®o, F =0 if i # {(w), and H ) (FL,L,.) ®0, F = Ly.x. O

3.3. Analytic geometry. If S — Spec Op is a finite type morphism of schemes,
we let S = S Xgpee 0, Spa(F, Op) be the associated analytic adic space and Sy, =
S Xspec 0p Spec k be the special fiber. We remark that S may also be viewed
as the adic generic fiber of the formal scheme & obtained by completion along
the special fiber. One can also consider §%*, the analytification of the scheme
S Xgpec 0 Spec F, and there is a map & — S*" which is an isomorphism when
S is proper (see [Hub94|, section 4). There is a continuous specialization map
sps : & — Sy and the preimage of a subset U C Sy is denoted by spg'(U) (in
[Hub94], this is the map denoted = in Prop. 4.1). If U is a locally closed subset
of Sy, there is an adic space |U[s called the tube of U (see [Ber91]). The tube
JU[s is the adic space associated to a “classical” rigid space, while spg'(U) is not in
general. The difference between sps'(U) and |Ul[s consists only of certain higher
rank points as the following example shows.

Ezample 3.3.1. Let us assume that S = Spec A, so that S; = Spec A/p and
S = Spa(A[1/p], AT), where AT is the integral closure of A in A[1/p]. Let f € A/p
with lift f € A. Let D(f) and V(f) be the standard open and closed subsets
attached to f in Sx. Then spg' (D(f)) =|D(f)[s= {|.I,|f| > 1}. On the other
hand, sp3" (V(f)) = {11 1| < 1}, while [V(f)[s= Unzodl.|: /"] < Ipl}.

Lemma 3.3.2. Let U be a locally closed subset of S,. Then |U|s is the interior of
sps (U). If U is closed, sps' (U) is the closure of |U|s.
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Proof. Tt follows from the definitions that if U is open, |U[s= spg'(U). We may
therefore suppose that U is closed. Covering S by open affines, we reduce to the
situation that S = Spec A, U = V((f1,---, fn)) where f1,---, fn € A/p. We let
fi be a lift of f; in A. We have that |U[s= Un>o{|.[,¥i || < |p|}. We have
sps (U) = {|.|,Vi |fi| < 1}. Let V C spg'(U) be a quasi-compact open subset
of . Tt follows from the maximum principle that V C {|.|,¥i |f*| < |p|} for n
large enough. This shows that |U[s is the interior of spg'(U). We next prove that
spgl(U ) is the closure of |U[s. Let V be a quasi-compact open subset with the
property that VN]U[s= 0. The complement of Spgl(U) is the quasi-compact open
subset W = {|.|,3i |fi| > 1}. Clearly, V and V N W are two quasi-compact open
subsets and they have the same rank one points. By [Hub93], corollary 4.2, they
must be equal. This proves that spgl(U) is the closure of |U|s. O

3.3.3. The Iwahori decomposition. Let G be the quasi-compact adic space associ-
ated to G and let Iw =] Bg[g be the Iwahori subgroup of G.

For any root o € ®, we have an algebraic root space U, — Spec Op. We let U,
be the corresponding quasi-compact adic space (isomorphic to a unit ball) and we let
U2 =]{1}u, be the tube of the identity element (isomorphic to an increasing union
of balls of radii r < 1). We also let 2™ be the analytification of U, (isomorphic to
the affine line). We let 7 be the quasi-compact adic space associated to T

The following result gives a strong form of the Iwahori decomposition.

Proposition 3.3.4. Let oy, - ,a, be an enumeration of the roots in ®. The
product map

T x Hu; — Iw

is an isomorphism of analytic adic spaces, where Uy = Uy, if a; € &t and Uy =
Ug, if a; € ¢

Remark 3.3.5. The existence of a product decomposition T (K) x [[Uzi (K) —
Iw(K) for K a discretely valued field is a consequence of Bruhat-Tits theory [Tit79],
sect. 3.1.1.

Proof. We let Jto be the formal group scheme obtained by completing the group G
along the closed subscheme Bj. For each root «, we let i, = Spf(Or(T)) be the
formal completion of U, along its special fiber, and we let U2 = Spf(Or][[T]]) be
the formal completion of 4l, at the identity. We also let T be the formal completion
of T along its special fiber.

We consider the map of formal schemes: T x [J{% — Jw which yields the
map of the proposition after passing to the generic fiber. We will show that this
map of formal schemes is an isomorphism. Passing to underlying reduced schemes,
we observe that we have an isomorphism T} X Haeq>+ Ua,k; = By. As the source
and target are formally smooth, it suffices to check the maps on tangent spaces
at closed points are isomorphisms. Let &’ be a finite field extension of k. Let
(t,ua,) € T x [TUL (K'). Note that u,, = 1 if a; € ®~. The map on Zariski
tangent spaces is given by:

(t(1+ €T), uq, (1 + €Uy, )1<i<n) — t(1 + €T) Huai(l + eU,,)

7
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where (T, (Uq,;)1<i<n) € Lie(T}) ®i k' @; Lie(U,,) ®i k', and there is an equality:
n+1 n
t(1+€T) H Ua;(1+eUq,;) =1 H Ua; (1+€Ad((H Ua; )_1)(T)+Z Ad((H uak)_l)Uai—l )-
i i i i=2 k=i
Therefore, if we identify the tangent space of Tx[[ U} at (¢, uq,) and the tangent
space of Jw at ¢ [] uq, with

Lie(Gk> Rk = Lie(Tk) Rk k' ®; Lie(Ua ) ® k',

the map on tangent spaces is given by the endomorphism:
n+1 n
(T, (Uarin) = AT 00) ™ )T) + 37 A ) )V, ):

i i=2 k=i
Observe that ([Tj_; ua, )"t € U(K') for all 1 < i < n. By Chevalley’s commutativ-
ity relations ([Stel€], chapter 6), we know that for any v € U(k’), any o € @ U {0}
and any v € Lie(Gr)a ® k', Ad(u).v = v +w where w € @, , Lie(Gr)or @ K'.
A simple inductive argument proves that the map on tangent spaces is an isomor-
phism. ([

3.3.6. Tubes of Bruhat cells. For any w € MW, we now consider the tube of the
Bruhat cell |Cy, x[re= P\Pwlw, as well as the tubes | X, x[rc and |V, x[re. It
follows from lemma that X" =Y, klre-

We can now give a very precise description of the tubes of Bruhat cells.

Corollary 3.3.7. For any w € MW, and for any ordering of the roots in ®, we
have an isomorphism of analytic spaces:

[ tx [ u = 1Cuuls

ac(w=1e—-M)Nd+ ac(w=1e—M)Nd—

(ua)aewfhb—,M = w H Uq
@

where the product [],, uq is taken according to the ordering of ®.
Proof. This follows easily from proposition [3.3.4] O

3.3.8. Analytic subspaces of US". We now consider US", the analytification of U,,.
This open subset of L contains |Cy, x[F., and we have an isomorphism of analytic
spaces (for any ordering of the roots):

I ue - ur

ac(w—1@—M)

(Ua)acw-10-M +H W Hua
(03

We now introduce certain quasi-Stein subspaces of U as well as some partial
closures of them. In order to do this we introduce a little bit of language.

If T is a topological space and S C T is a subset, we let as usual S be the closure
of Sin T. We will use repeatedly the property that in a spectral space, the closure
of a pro-constructible set is the set of all its specializations (see [Schl7], lemma 2.4).

Let X be an adic space. Using the Yoneda lemma, we identify X with a functor
on complete Huber pairs (A4, A™). Let T be a subset of X. In general T is not an adic
space but using the Yoneda point of view, we can attach to T" a subfunctor of X: we
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let T((A, AT)) be the subset of X((A4, A")) of morphisms Spa(A, AT) — X whose
image factors through 7. We observe that this functor is completely determined
by its value on fields (K, KT). In general, we say that a subfunctor F of X is a
subset of & if it is the functor attached to a subset of X.

Ezample 3.3.9. Let B(0,1) and B°(0, 1) be respectively the quasi-compact unit ball
and the open unit ball of radius 1 over Spa(F,Op). These are open subsets of
the affine line (A')®". For any (F,Or)-complete Huber pair (4, AT), we have
(A1) ((A,AT)) = A, B(0,1)((4,A%)) = A", B°(0,1)((4,A")) = {a € AT, Tn €
Z>1,a"™ € pAT}. The closed subset B(0,1) is the union of B(0,1) together with a
rank two point whose maximal generalization is the Gauss point and which points
towards infinity. This is still an adic space equal to Spa(F(X),Or + mp, X +
Mo, X2+ ). We have B(0,1)((A4, AT)) = A°, the ring of power bounded elements.
The closed subset B°(0, 1) is the union of B°(0,1) together with a rank two point
whose maximal generalization is the Gauss point and which points towards the
center of the disc. This is not an adic space. We have B°(0,1)((K,K")) = Kt+ =
{a € K,|a| < 1}.

We identify each U, with the unit ball of center 0 and coordinate u, with its
additive group law (the coordinate w, is well defined up to multiplication by a
unit). For all m € QU{—oc} and all & € @, we let Uy 1, = {|.| € U™, |ua| < |p™|}
and U3 ,,, = Up'>mUa,m/. We also consider the closures Uy, ,, and UG ,,, in US™.

Definition 3.3.10. (1) Forallm,n € QU{—oo}, we let |Cy k[m.n be the image

of
w H u&m X H ua;n — Uff,na
ac(w=1e—M)NP— ac(w=1e—M)NG+
(2) For allm,n € Q, we let |Cy kx[m,n be the image of
w H u&m X H uoe,n — uf,l,"’
ac(w—1e—M)NP— ac(w—1d—M)NG+
(3) For allm,n € Q, we let |Cy k[mm be the image of
w 1T Us.,, x 11 Uy — U™,
ac(w=1e—M)Nd— ac(w=1e—M)ND+
(4) For allm,n € Q, we let |Cy k[mn be the image of
w 11 us. ,, x 11 Uy — U
a(w=1d—M)NP— ac(w=1d—M)Nd+

Clearly, |Cy £[=]Cuw k0,0, Cuw,k[mnC]Cuw.k] if m,n > 0, and moreover then we
have |Cy k[m.n=]Cw.k[m,0N]Cuw k[0.ns |Cuw k[77.n=]Cuw.k [m,0N]Cw k[0.n and |Cy k[m 7=
}Cw,k[m,om]cw,k[O,ﬁ-

Remark 3.3.11. In the formulas defining the sets |Cy g[m,n and their partial clo-
sures, the image is taken in the sheaf theoretic sense. If the spaces at hand are adic
spaces, this is also the images of the corresponding morphisms of adic spaces.

Remark 3.3.12. In the above formulas, we make the product for any ordering of
the roots in (w™ 1@ M)Nd* or (w™ 1@~ M)Nd~. See [Stel6], lemma 17 for a jus-
tification that the order doesn’t matter. We also point out that in our applications
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to Shimura varieties the unipotent radical of P is abelian so that the root groups
U, for @ € w™1®—M commute with each other.

3.3.13. Orbits of Cells. We can give a more group theoretic description of certain
of the above sets. We introduce some subgroups of G.

For m € Q> we let Gp 1, (resp. Gu.m, GB.m Qﬁ’m) for the affinoid subgroup of
G of elements reducing to B (resp. U, B, U) mod p™ (concretely if Iz C O is the
ideal defining B C G, then Gp ,, is defined by the conditions |f| < |p|™ for f € Ip).
We also define gg,m =Up>mGB,m’, g&m = UpsmGu,m’ -

Then for all m,n € Q>o we let G, = G3 ,,, NG5, In particular we note that
Go.0 = Iw. We also let g}m =G0m NG5 -

We would also like to introduce some “partial closures” of these groups. In general
these won’t be adic spaces, but simply certain subsets of G*". For all m,n € Q>¢
we let Gmn = Gy, NGp,, and G& =Gy NGy, where the closures are taken
inside G. We note that G5 , = sp~!(Bg), the closure of Iw in G. For all m,n € Qxo,
we let Gy, and G, 5 be set of all specializations of Gy, , and Gy, ,, respectively in
G". For all m,n € Q¢ with n > 0 we also observe that G,, 7 = gg}m N gﬂ and
G = Gbm NG ,, Where the closures are taken inside g.

Lemma 3.3.14. The subsets Gy n, Gmn and Gy g, g}m, glmn and G} _ of GO

m,n
are subgroups (in the sense that their functor of points is a subgroup of G ).

Proof. It is clear that Gg m, Gum, ggm, gﬁm are groups. Therefore, the G,,
are groups. We deduce that the G,,7 are groups. Indeed, G, »((K,K™')) =
Gmn (K, K°) for any field (where K is the ring of power bounded elements in
K), since G, 7 is closed under specialization. We also check that Gz ¢ are groups.
Indeed, Gmo((K,K")) = {9 € G(K"),g mod p"K** € B(Kt/pm™K*t)}. We
finally deduce that Gz 5, is a subgroup. O

Note that the groups G, n, Gmn, and G, » all have the same rank 1 points.
Moreover they all have Iwahori decompositions:

Proposition 3.3.15. Let w € W. Then for m,n € Q¢ and for G’ one of Gmons
s G with x € {0, 1} the product map

T n
Tng' x [ ux [ ui—-¢
a;€w— 1o+ a;Ew—1d—
is an isomorphism, where if a; € ® then Uy is U, n (resp. Uo, n) if G =
s G (resp. G' = Gr o) while if a; € 7 then Uy is U, ,, (resp. UG, ) if

G = Ghons G- (resp. G' = g*mn.)

Proof. We first give the argument for Gg,. Since G, = sp~Y(By), and By —
w~ By, Bw, it follows that G50 = TxIlocw-10- Ualacw-10+ Ua = sp~H(w ™! By Brw).
We now let g € Ggo(K,K™) for a field K and valuation ring K+ C K. Let
K*T be the maximal ideal of K+. By definition, ¢ € G(KT) and its image
g in G(K*/K**) lies in B. Let g = t[] ci-10+ %a[lpcw-10- Ua- We have
J=t]]pcw-10+ Tallpcw-10- Ua and we find that %, = 1 if @ € @~ by unicity of
the decomposition. The case of Gy ¢ has already been treated in proposition
The case of G 5 follows. The general case is left to the reader. O
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Remark 3.3.16. For the group Go,o = Iw, the decomposition holds for any ordering
of the roots @ € ® by proposition [3:3:4] We don’t know if this property holds for
Gp,o for example.

Corollary 3.3.17. We have that for all m,n € Q>o, |Cy klmn= P\PwGmn =
P\ngm ns } w k[m n— P\ngm n — P\ngm n and » ]Cw,k[m,ﬁ: P\ngm,ﬁ =
’P\’ng}nm

Proof. We only prove the identity |Cy i [m,n= P\PwGpm,, the other identities are
proved similarly. By proposition we have that

P\PwWGmrn = ww 'PwnGmn\Gmmn

= w ] wx T weN I we I u

aEw=1dy, a;cw— 1o+ a;cw— 1o+ a;Cw—1d—

= w H uy

acw—1¢—M

where if a; € ®+ then Ui is Ua, » and if o € @~ then UL is UY, .. O
Lemma 3.3.18. For all m € Z>o and k € Zxq, the groups G\ ., 1, g}m]c and
Gl are normalized by G, o.

m+k,%

Proof. The case k = 0 is trivial. We assume that £k > 1. We can find a closed
embedding G — GL, and a Borel Bqar,, of GL, with the property that B = G N
Bar,, - Indeed, first consider a faithful representation of G into GL,, then consider
the action of B on the flag variety of Borels of GL,. This action of a solvable
group on a proper scheme must have a fixed point Bgr,., and then B C GN Bgr,.
But then we must have B = G N Bgy, as the later is a solvable subgroup of G
containing B. Therefore, the problem is reduced to the case of the group GL,.
We now consider certain sub-algebras of the algebra of r x r matrices MZ™. For
all s € Q, we let B(0,s) the (quasi-compact) ball of center 0 and radius s, and
B°(0,s) = Ugr<sB(0, s") be the “open” ball of radius s (which is a Stein space). For
any m > 0, we let:

Liey, o(S,ST)
{(a; ;) € M2™(S,51), a;; € B°(0, [p™|)(S, S1)ifi > j,a;; € B(0,1)(S,ST)ifi < j},
Llem o(S S+)

{(a;i;) € M™(S,S%),a;; € Be(0,[p™])(S,ST)ifi > j,a; ; € B(0,1)(S,ST)ifi < 5},
6(Sa S+)

{(a;;) € M&™(S,8T), a;; € B°(0, |p™|)(S,ST)ifi > ja;; € B(0,1)(S,5T)ifi < j}.

We claim that these algebras are stable under the adjoint action of G,, . Since
Lie,, o is the Lie algebra of G}, 0> and Gy, o normalizes gL (0, this case follows easily.
The other cases are elementary to check by hand. A typical element of G} hk
(resp. GL R Tesp: Gl k. k) writes (1+p*g) where g € Lie,, o (resp. Lies o, resp.
Lie,, 5). For h € G, 0, we have h(1 +p*g)h~t =1+ p*Ad(h).g. O
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Lemma 3.3.19. Let w € MW. Let m > 0, and let K, C Gn,o be a profinite
subgroup. For all s > 0, the sets

]O'w,k[m+s,st; ]Ow,k[m,st and ]wa,k[m+s,§Kp
are a finite disjoint union of translates of the form
10w klmts,shy |Cw klmrs.shs and respectively |Cuy k[mtssh for b € K.
Proof. We prove the first statement, the others are identical. For h € K, we
have [Cy k[mts,sh = P\PwG} . = P\PwhG}, ., by Lemma [3.3.18) This
proves that if for h, b’ € K, |Cy k[m+s,sPN]Cu ki [mts,sh' # 0, then |Cyy k[m+s,sh =

1Cw.k[m+s,sh'. Therefore, |Cy km+s,sKp is a disjoint union of translates. This
disjoint union is finite because Gy, ys,s N K is of finite index in K. Il

We now consider certain intersections. A subgroup K, of G(Op) is said to have
an Iwahori decomposition if the the product map U(Or) N K, x T(Op) N K, ¥
U(Op)N K, — K, is a bijection.

Lemma 3.3.20. Letw € MW. Let m,n € Z>o and let K, be a subgroup of Go o(F)
admitting an Twahori decomposition. Then we have:

]Cw,k[m,OKpm]Cw,k[O,nKp = ]Cw,k[m,nKp7
]Cw,k[m’ﬁKpm]Cw,k[O,ﬁKp = ]Cw,k[m,ﬁK;m
]Cw,k:[m,OKpm]Cw,k[ﬁpr = ]O'w,k[Tn,nKp-

Proof. We only check the first statement as the others are identical. Let us denote
by Uk, = U(Op) N Kpiand Bk, = B(Or) N K,. By corollary [3.3.17, we have
}Ow,k[m,OK :}Ow,k[m,OUKp and ]Ow,k[O,nKp :]Ow,k[Om,BKp~ Let

T = XoUg = .131b1 G]Cw,k[m,OKpm]Cw,k[O,nKp

with 9 €]Cy k[m,0, T1 €]Cw klo.n, To € (_]Kp and by € Bg,. We have 33110_1 =
Ty = xlblﬂgl. By the Iwahori decomposition, blﬂo_l = Ugbs so that xﬂgl =

ZTo = x1lobs. Finally, xﬂalbgl = xobg_l = x11. Note that xobgl €]Cuw.k[m,0 and
x1U2 €]Cy klo,n, so that mglb;l €]Cw k[m,0NCuw,kl0.n=]Cw k[mn- The reverse
inclusion is trivial. |

3.3.21. Intersections and unions of cells. We prove a few more results concerning
the intersections and unions of various subsets of F£ we have introduced so far.

Lemma 3.3.22. For any integer v, we have:
FL = } Uw,@(w)Zr Cw,k[H] Uw,Z(w)Srfl Cw,k:[
= } Uw,[(w)Zr Cw,k[H] Uw,[(w)grfl Cw,k:[

Proof. The first equality is obtained by applying sp~! to the decomposition of the
special fiber:

FLy= Uw,f(w)zrcw,k H Uw,f(w)grflcw,k7
noting that sp’l(Uwyg(w)ST_lc’w,k) is the closure of | Uy, g(w)<r—1 Cuw,k[ by lemma
For the second equality, first observe that both | Uy, ¢(w)>r Cw,k[and | Uy gwy<r—1 Cu,kl
are stable under specialization and generalization. Since the disjoint union contains
all rank one points of FL, it contains all of them. Since the intersection contains
no rank one points, it is empty. [
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Lemma 3.3.23. Let w,w’ € MW. Assume that {(w) < (w') and w # w'. Then:
(1) ]Xw,k[m]yw’,k[: 0,
(2) ]ka[m]ngk[ = 0.
Proof. We prove the first point. Note that | X, x[ = sp™1(Xux) and |V x[=
sp_l(Yw/’k). Thus the first point follows from the fact that X, , N Yy, = 0. We
prove the second point. Since |Y, x| is quasi-compact open, |Y,, ;[ is the set of all its

specializations. Therefore, both Y, [ and ]X,, [ are stable under generalization.
But they have no common rank one point, again as Xy, N Yy, = 0. ([l

Lemma 3.3.24. (1) For allm,n € Q, we have m =|Cy k[mal U,
(2) We have |Cuy k[0,— 00 ] Xw k-

(3) We have |Cy k-00,0C] Y k|-

(4) We have |Yi, k[N X,k [=]Cw,klo 5C |Cuw k-

(5) We have |V k[ N ] Xuw k[ =|Cuw kl50C |Cuw k-

Proof. We begin with the first point. Let Z = FL\U,, a closed subscheme. We let
Z be the associated analytic space which is proper. We have FL =U2"[] Z. Since
Z is proper, we deduce that US" is stable under specializations. Let us consider
1Cw.k[mn- We claim that |Cy klmn C UL To prove this, we can first find a
quasi-compact open U such that |Cy k[mC U C U™ and we see that U is the
set of all its specializations and is therefore included in US". Now it is clear that
]Cw,k[m,n :]Cw,k:[ﬁ,ﬁ-

We now prove the second point. We observe that wHae(wﬂq}ijqﬁ U =
Cam C Xy C) Xy k[ and since | X, x[ is invariant under multiplication by the Iwahori
subgroup,

w H U™ x H u;
ac(w=1®—M)NP+ ac(w=1e—M)ND—

We check the third point. We observe that wHae(w,l(p,,M)m), usr = cven C

X" C]Y, k[ and again the conclusion follows because |Y, k[ is invariant under mul-
tiplication by the Iwahori subgroup.

We prove the fourth point. Since |Y,, ;[ is quasi-compact, it is constructible, and

therefore |Y,, [ is the set of all specializations of |Y,, [ in FL. Let 2 € |V, 1[N Xw k[

and let y be the maximal generalization of z in FL. Then y €)Yy 1[N Xw k=

Q]Xw,k[-

]Cw k[ The subset of |C,, x| consisting of points whose maximal generalization is in
JCuw,k| is exactly w ][, cp-10-1)n0+ Uy x [oe(uw-10-21)ne- Us- This proves that
1Y 1[N Xw k| is included in that set. The converse inclusion follows easily from
the second and third points. We prove the last point. Since | X, x| = sp™ (X 1)
and Y, x[= sp~ ! (Ya,x), we deduce that |Ye, 1[N ] Xy k[ = sp~H(Cu k) C |Cy x| has
exactly the announced description. O
Lemma 3.3.25. (1) We have | X,k [=]Cuw,klo 511 Yu’ <w] Xuw k-

(2) We have }YU,’;C[:]Cw,k[@’OH U sw] Yo k-

(3) We have }Xw,k[ :]Cw,k[ﬁ,ou Uw’<w}Xw’,k['

(4) We have ]Yw,k[ :]Cw,k[()ﬁH Uw’>w]Yw’,k['
Proof. We prove the first point and the direct inclusion. We first observe that since
X i is closed, | X, k[ is a finite union of Stein spaces. Therefore X, ; is stable
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under specialization. Let x €]X,, ;[ If its maximal generalization is in ]X,, x| for
some w' < w, then actually x €] X, r[. Otherwise, x € |Cy 1[N Xw r[=]Cw ko5
by lemma The converse inclusion follows from the same lemma. The union
is disjoint by lemma We prove the second point. We note that Y, x[=
sp~ ! (Y k) and therefore,

]Yw,k[: Spil(cw,k)m])/w,k[u Uw’>'w}Yw’,k[-
By lemma [3.3.24) sp™! (Cy 1) N] Yo,k [C]Cu k[5,o- The reverse inclusion follows also
from the lemma. The union is disjoint by lemma[3:3:23] We prove the third point.
We have Xy 1 = Cuyk [[ U <wXuw k. Taking sp~! gives the identity. We prove
the last point. All three spaces |Y,, k[, ]Cw,k[o’ﬁz 1Yokl N Xw k[ and Uy sw] Y il

are stable under specialization and generalization. It suffices therefore to prove the
identity on rank one points, and it is clear. ([

3.4. Dynamics. Let v : F — R U {400} be the p-adic valuation normalized by
v(p) = 1. We consider certain sub-semigroups of T(F). We let TH(F) = {t €
T(F),v(a(t)) > 0, Va € ®T}, TTH(F) = {t € T(F),v(a(t)) > 0, Va € &1},
T(F) ={t € T(F),v(a(t)) <0, Ya € &t} T-(F) = {t € T(F),v(a(t)) <
0, Va € &1},

Lemma 3.4.1. (1) Ifte TH(F), | Xwi[t ) Xwi| for allwe MW.
(2) Ift e T~ (F), Yw k|t C)Yuwi[ for alwe MW.

Proof. By [Hub93|, corollary 4.2, we reduce to check the inclusions on rank 1 points.
For the first point, it suffices therefore to prove that |Cy, k[t C] Xy k[ Let wbu €
JCuwi[ with b € B and u € [],cq- US. We find that wbut = wt™'btt~ ut. Now,
Ad(tu € [[,cp- U, while Ad(t~1)b € B*". In particular wAd(t™ )b € X, C
1 Xw.kFc. Therefore wAd(t~')bAd(¢t~!)u €] X, x[. For the second point, it suffices
to prove that |Cy x[.t €]V &[. Let wub €]Cy, x| with b € Band u € U°. We find that
wubt = wt— utt='bt. Now, Ad(t~')b € B, while Ad(t~")u € B"". In particular,
wAd(t Yu € XY C]Y, k|72 Therefore wAd(t~HuAd(t1)b €]Yo k[ O

Fort € TTT(F), we define min(t) = min,ce+ v(a(t)) and max(t) = max,eqp+ v(a(t)).
For t € T~ (F), we let min(t) = mingeqo- v(a(t)) and max(t) = max,eca- v(a(t)).
We note that min(¢) > 0 and that min(¢) = min(¢~!) and max(t) = max(t~*) for
teTHH(F).

Lemma 3.4.2. (1) Lett € TTH(F). For allw € MW, m,n € Q, we have

(
}Cw,k[m—}—max(t),n—min(t) - ]Cw,k[mmnt g]cw,k[m—&-min(t),n—max(t)
}O'UU?k[ermax(t),nfmin(t) < ]Cw,k[ﬁ,n-t g]C(wak’[Win(t),nfmax(t)’
[Cuw .kl C |Cuklmmt C]Cuw il

m-~+max(t),n—min(t) ) Flm+4min(t),n—max(t)"

(2) Lett € T~—(F). For allw € MW and m,n € Q, we have
}Cw,k[mfmin(t),n+max(t) - ]Cw,k:[m,n-t g]cw,k:[mfmax(t)nH»min(t)
}vak[m—min(t),n-‘rmax(t) < ]vak[m»”'t g]cwak[mTax(t),n—&-min(t)’
]Cw k[ g ]Cw,k:[m,ﬁ-t g]cw,k:[

»Flm—min(t),n+max(t) m—max(t),n+min(t)"

Proof. Let = w]],cq Ua be an element of FL. We have xt = w [[,cq a(t™!)uq.
The lemma follows easily from this observation. O
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3.5. Dynamics of correspondences.

3.5.1. Certain compact open subgroups. We now assume that the group Gp =
G Xspec 0p OSpec F is defined and quasi-split over Q,. Therefore, we have a re-
ductive group Gg, with Borel Bg, and moreover the group Gg, splits over the
extension F' of Q,. We have a reductive model G of G over Spec Op. The Borel
By, base changes to a Borel Br of G which extends to a Borel B of G. Similarly,
we have a maximal torus Ty, C Bg, of Gg,, and its base change Tr extends to a
maximal (split) torus of G. We will often drop the subscripts Q, or F' when the
context is clear.

Remark 3.5.2. Starting from the next section, we will consider a Shimura datum
(G, X), where G is a reductive group over Q. The group Gg, that we consider here
will be the base change to Q, of the group G which is part of the Shimura datum.
We apologize for this slightly inconsistent notation.

We let T'(Z,) be the maximal compact subgroup of T'(Q,). Note that T(Z,) =
T(Or) NT(Q,). We have an exact sequence 0 — OF — F* = Q and tensoring
with X, (T) and taking Galois invariants, we obtain the sequence: 0 — T(Z,) —
T(Q,) > X,(T%) ® Q where T stands for the maximal split torus inside 7" and
X, (T?) for its cocharacter group. The image of T(Q,) in X, (T?%) ® Q is easily seen
to be a Z-lattice.

We let Tt =T(Q,) NTH(F), Tt =T(Q,) NT*H(F), T~ =T(Q,) N T~ (F),
and T~~ =T(Q,)NT~~ (F). These are semigroups in T(Q,,) and one proves easily
that they generate T(Q)) (since there are regular elements in the maximal split
torus T9).

We will now consider certain compact open subgroups of G(Op). For all m €
Z>o, we let K, € G(OF) be the preimage of B(Ox /p™) under the map G(OF) —
G(Op/p™). We observe that K, = G(Or) and K, is the Twahori subgroup of
G(Op) with respect to the Borel B(Op) if F' is unramified. For b € Z>o we let
K,5 € G(OF) be the preimage of U(Op/p®) under the map G(Or) — G(Op/p?).
Finally for m > b > 0 we let f(@m’b = f(pﬂn N f(p@b. In other words f(p,mb is the
subgroup of G(Op) of elements whose reduction mod p™ lies in B, and whose
reduction mod pb lies in U. We note that we have Kp’m,b C Gm-1p0.

For m > b > 0 and m > 0, the groups K’p,myb have an Iwahori decomposition, in
the sense that the product map

Em X Tb X U(OF) — f{p,m,b

is a bijection, where T, = ker(T(Op) — T(Op/p®)) and U,, = ker(U(Op) —
U(Or/p™))- i
We now let K 1 = G(Qp)NKp mp. This is a compact open subgroup of G(Q,).
For m > b > 0 and m > 0, the groups K, ,, 5 have an Iwahori decomposition, in
the sense that the product map

U x Ty X U(Zyp) = Kpmp
is a bijection, where T, = T, N T(Q,) and U, = Uy N U(Qy), U(Z,) =U(OF) N
U(Qp).

Remark 3.5.3. The index p in our notation for compact open subgroups is in view
of our application to Shimura varieties starting with the next section.



HIGHER COLEMAN THEORY 47

Remark 3.5.4. We note that the groups K, » depend (even up to conjugation in
general), on the choice of the reductive model G over Op.

Remark 3.5.5. If the group Gg, is unramified, then we can choose a reductive
model Gz, of Gg, with Borel and maximal torus Bz, and T7,. In this case, if
we take Go, = Gz, Xz, SpecOp, then we have that K, is the preimage of
B(Z,/p™) under G(Z,) — G(Z,/p™), and K,y is the preimage of U(Z,/p")
under G(Z,) — G(Z,/p®). In particular, K, 10 is an Iwahori subgroup, and K, 1
is a pro-p Iwahori subgroup.

In the ramified case, there is still a notion of an Iwahori subgroup of G(Q))
defined using Bruhat-Tits theory. However, our subgroup K, 1,0 will usually not be
an Iwahori subgroup. In the general case, we found it convenient to work with the
groups K, n, p constructed as above, and it makes no difference for the purposes of
this paper whether K, 1 ¢ is an Iwahori.

3.5.6. Change of group. In this paragraph we make a short digression that will be
useful when we deal with abelian type Shimura varieties. Assume that we have
an epimorphism of reductive groups Gg, — G(’QP with central kernel. This implies
that G and G’ have the same adjoint group G®. We assume that these group
split over F' and we fix models over O, that we denote G and G’ together with a
map G — G’ over Spec O, extending the map Gp — G%». We also assume that
Gq, and G{@p are quasi-split and pick Borels B and B’ defined over @, such that
B — B’. We can therefore define compact open subgroups K, ,,» € G(Q,) and
K, . € G'(Qp) as in section w

Lemma 3.5.7. The groups Kpm and K}, , have the same image in G**(Q,).

Proof. This follows from the Iwahori decomposition of these groups. Since Gg, —
Gpr is an epimorphism with central kernel, the induced map on root groups are
isomorphisms. O

3.5.8. Hecke algebras. Welet H, 1, be the Hecke algebras Z[Kp 1, 1 \G(Qp) /K p.m.b)-
We denote by H;m,b the sub-algebra generated by the double cosets [K), pm st Kp m b)
with t € TT and by H;_,;,b the ideal generated by [Kjp m bt Kp mp] with ¢ € THF.
We define similarly H ., and H

p,m,b*

Lemma 3.5.9. For all m > b > 0 with m > 0, the map t — [Kpm ptKpm.s]

induces ring isomorphisms Z[T+ [Ty] — H;m p and Z[T™ [Ty = H .y

Proof. This is [Cag|, lem. 4.1.5. (Alternatively it can be deduced from lemma
4.2.14] below.) O

3.5.10. Action of correspondences on the flag variety. Let K, C Go(Q,) be a com-
pact open subgroup.

We consider the quotient FL/K,, just as a topological space. This space carries
an action by correspondences of double cosets K,gK, for g € Go(Q,). Namely,
given 2K, € FL/K,, we let zK,.K,gK, = {zugK,, u € K,/(9K,9 ' NK,), @ €
K, lifts u}.

We now consider a compact open K, = K, v, for m’ > b >0 and m’ > 0.

Lemma 3.5.11. Let w € MW
(1) Lett € T*. The sequence {] Xy i [.(KptKy)™ }m>o0 is nested.
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(2) Lett € T~. The sequence {]Yy k[.(KptK,)" tn>0 is nested.
(3) Lett € TT and m > 0. We have

]Cw,k [m max(t),m.Kp <

[ Xow k[ (KptKp)™ C]Cuw.kly, min(e) Zommax Lp J Yo <o) X .
(4) Lett € T~ and n > 0. We have

]vak [771 min(t),n max(t) 'Kp <

]Y [(K tK ) }Cw k[—nmax(t n min( UUw >l

(5) Lett e TTt. For allm,n € Z>o,

]Xw,k['(Kpth)m ]Y [(K t_lK)

]Cw k[m min(t),n min(t)KP'
(6) Lett € T——. For allm,n € Zxq,
[ Xw k[ (Kpt P K,)™ N Yo k[ (Kt Kp)"

]Cw k [m min(t),n min(t) Kp'

(7) Let t € T~—. For alln > d, |Yyr[.(KptKp)" C|Yuy k[
(8) Lett € T*T*. Foralln > d, X [ (KptKp)™ C) Xy k-

Proof. We observe that | X, p[.(KptK,)" =Xy [t K, and Y, k[ (KptK,)™ =
Y 1 [t K, using the very definition of the action, and also noting that (K,tK,)™ =
K,t" K, by lemma[3.5.9} Therefore, the first and second points follow from lemma

We note that | Xy, 1 [=]Cu k(o 5U Uu <w]| Xw k[ and [ Ve & [=]Cu & [5,0U Uw > Yor k[
by lemma The third and fourth point follow from this, the first two points,
and lemma

We know that | X, £[N]Ye [ =]Cu.klo.g by lemma Moreover, |Cy k[ 50 X k[=
() if w’ # w and ]Cw,k[o,ﬁﬂ]wa,k[: 0 if w’ # w (because Cw,k[oﬁ, 1 X k[ and Vi k|
are all stable under generalization and they have no common rank one point).
Therefore,

]Xw,k[-(Kpth)m n ]Yw,k [~(Kpt_1Kp)n -

]O'ka [0,60]0“’1k[m min(t),m[{pm}cka [7n max(t—1),nmin(¢t—1) 'Kp <

1Cw ki min() 0 Ep N Cu ko rmin K =1Cw ki min(e) mmim@ Kp

by lemma [3:3:20] The proof of the sixth point is similar. We pass to the seventh
point. By taking closures, we find that Yy, x[.(KptK,) C|Cly, k[m mnKp U U sw] Yo k[

Since |Cy k= K, ClY, 1], we deduce that for any « € ]wak[, and any

max(t),min(t)"
y € x.KptK)y, then either y €]Yy, [ or y € Y, x| for some w’ > w. We conclude
by induction on d — ¢(w). The proof of the last point is similar.

O
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4. SHIMURA VARIETIES

Let (G, X) be a Shimura datum. Thus X is a G(R)-conjugacy class of homo-
morphism & : Resc/rG,, — Gr satisfying a list of familiar axioms ([Del79], section
2.1):

(1) For all h € X, the Hodge structure on gg has weight (1,—1), (0,0) and
(-1,1).

(2) The involution Ad(h(i)) is a Cartan involution on G&.

(3) The group G has no simple Q-factor whose real points are compact.

Remark 4.0.1. The condition (3) is mostly irrelevant for this paper. This axiom
is used in order to apply the strong approximation theorem, which is important
for the description of connected components of Shimura varieties, and therefore
the theory of canonical models over the reflex field. This is important for certain
rationality questions, but will not play much of a role in this paper. Groups G
whose real points are compact modulo the center give Shimura sets. Automorphic
forms on these groups are called algebraic automorphic forms, and all our results
are well known for Shimura sets: all the vanishing theorems are trivial, whereas
the theory of overconvergent modular forms has been extensively developed in this
setting ([Buz07], [Che04], [Loell]). We keep this third axiom for convenience, as it
is used in many references, but believe all our results hold without this assumption,
with minor modifications of the proofs.

Via base change to C, we have (Resc/rGm)c = Gm X Gy, (given by z = (2, 2))
and via projection to the first factor, X induces a conjugacy class of cocharacters
G,, — G¢. We fix one such cocharacter p. Associated to p we have two opposite
parabolic subgroups Pjtd = {9 € Gc,limy_,oc Ad(pu(t))g exists} and P, = {g €
G, limy_,0 Ad(p(t))g exists}. We also let M, be the Levi quotient of P, and P5™.
We let FLgfL = Gc/Pjtd and FL¢g,, = P,\Gc be the Flag varieties. Let E be the
reflex field, which is the field of definition of the conjugacy class of . The two flag
varieties are defined over Spec E.

Let K C G(Ay) be a neat compact open subgroup, and let Sk — Spec E
be the canonical model of the corresponding Shimura variety [Mil90]. We have
Sk(C) = G(Q\X x G(Ay)/K. In the rest of this paper, all the compact open
subgroups K C G(Ay) are assumed to be neat, so we do not always repeat this
assumption.

The most fundamental Shimura data are the Siegel data (GSpy,,H,) for all
g € Z>1, where H, is the Siegel (upper and lower) half space of matrices M €
M, (C) such that ‘M = M and Im(M) is definite. The corresponding Shimura
varieties parametrize abelian varieties of dimension g, with a polarization and level
structure prescribed by K. A Shimura datum (G, X) is of Hodge type if it admits
an embedding in a Siegel datum. All PEL Shimura data are of Hodge type. A
Shimura datum (G, X) is of abelian type if there exists a datum (G, X1) of Hodge
type and a central isogeny G¢¢" — G¢" which induces an isomorphism of connected
Shimura data (G, X*) = (G, X|") where Xt is a connected component of X
(and similarly X is a connected component of X ).

Ezample 4.0.2. Let L be a totally real number field. The datum (Resy, oGSpy,, HEL:Q])
is of abelian type. We call it a symplectic datum. In the case g = 1, the corre-
sponding Shimura varieties are the Hilbert modular varieties.
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We let S — Spec E be the minimal compactification of Sk. Depending on the
auxiliary choice of a projective cone decomposition ¥, we let Sﬁ?,’"z — Spec E be
the toroidal compactification of Sk corresponding to ¥. The (reduced) boundary
Dg s = S}gf”z \ Sk is a Cartier divisor. The cone decompositions ¥ are partially
ordered by inclusion, and any two cone decompositions admit a common refinement.
The cone decompositions ¥ which are such that S}?TE — Spec E is smooth and
projective are cofinal among all cone decompositions, and we usually choose them

this way. We refer to [Pin90] for the construction of these compactifications.
4.1. Automorphic vector bundles and their cohomology.

4.1.1. Automorphic vector bundles. We choose a field extension F' of E which splits
G and we work over F' in this section. In most of this paper, F' will be a finite
extension of Q,, but this is not necessary for the moment. We can choose f so that
it is defined over F', and choose a maximal split torus 7" with u(G,,) €T C M,.
We let Z,(G) be the largest subtorus of the center Z(G) which is R-split but
contains no Q-split subtorus. We let G = G/Zs(G), and define Mg, T¢, Pg, and

Pst similarly.

Remark 4.1.2. In the Hodge type case, Z;(G) = {1}. For the symplectic datum
(ResL/QGszg, H[gL:Q]), Z(Q) is the kernel of the norm Resy, /oG — Gy

Let Rep(M ﬁ) be the category of finite dimensional algebraic representations of
the reductive group M, on F-vector spaces.
By [Mil90], thm. 5.1 and [Har89], thm. 4.2 we have a right M -torsor Magr over

57", and it corresponds to a functor:
Rep(My) — VB(SK%)
V = VK,Z

where V B(S’y;) is the category of locally free sheaves of finite rank over Si',.

This functor is compatible in a natural way with change of level K and of cone
decompositions ¥ (see theorem . The locally free sheaves in the essential
image of this functor are called (totally decomposed) automorphic vector bundles.
The colimit along K and X of the Vi 5 viewed as a sheaf on limg » S}gfz carries

an equivariant action of G(Ay).

Remark 4.1.3. We recall the description of Mgpr X gtor Sk (C) as a complex analytic
space. First, we have the Borel embedding § : X — FL4 (C) = G°(C)/P5*(C)
which sends h € X to the parabolic stabilizing the Hodge filtration. The Borel
embedding is equivariant for the left action of G(R). We have the canonical map
G°(C) — FLgi (C). This map is a right P;**(C)-torsor and is G(C)-equivariant
for the left action. Similarly, the canonical map GC((C)/UP‘C,SM (C) — FLgi(C) is
a right M (C)-torsor (where Ups,std is the unipotent radical of P;*'%). Then we
have:

Mar X sipr, Sx(C) = GQ\B™H(G(C)/Upena(C)) x Gllsg)/ K.

Remark 4.1.4. We give a description of Mg for the Siegel Shimura datum (GSp,,, H)-
Let us first work over Sk . Let w4 be the conormal sheaf of the universal abelian
scheme A — Sk along its unit section and let Lie(A) be its dual. The torsor Myg
parametrizes trivializations ¢ © g : 04 @ 0% — Lie(A) ®war, such that under
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the isomorphism Lie(A)Y = w4 given by the polarization, we have 1, = c(¢5 ')t

for a unit ¢ € 0% . The extension of Myr over S¥%. has a similar description.
Sk dR K,% p

Indeed, A can be extended to a semi-abelian scheme Ay over Si’s;, and we can let
Mgar be the torsor of trivializations of Lie(Ax) @ wat,, compatible, up to a unit,

with the polarization.

We now make the construction of automorphic vector bundles explicit, and label
them using weights. We begin by making a choice of positive roots of T: we first
choose a set of compact positive roots ®} which lie in m,, the Lie algebra of M,,.
We then choose the non-compact positive roots ®;f, to lie in g/ps/* where psf is
the Lie algebra of P;™. We let @+ = & [[®}.

Remark 4.1.5. This choice implies that the Borel corresponding to 7 is included
in P, or equivalently that the cocharacter y of the Shimura datum is dominant. In
section [3| we fixed a parabolic P of G containing a Borel B. In the applications to
Shimura varieties, P will be P,. Therefore our convention is also compatible with
the choice made in section Bl

We let X*(T)M«* be the cone of characters of T which are dominant for
®F. We label irreducible representations of M, by their highest weight x €
X*(T)Mut. An explicit construction of the highest weight x representation Vi
is as follows. Let wo s be the longest element of the Weyl group of M,,. For any
k € X*(T)Mut we consider the space V,; of functions f : M, — A! such that
f(mb) = (wo,pk)(b1) f(m) for all m € M, and b € BN M,. The action of M, on
itself via left translation induces a left action on Vi, i.e. (m/- f)(m) = f(m'~"'m).
The irreducible representations of My are the irreducible representations of M,
labelled by dominant characters & of T¢. We let X*(7T¢)™«+ be the cone of these
characters.

We denote by V. ks the locally free sheaf associated to the irreducible rep-
resentation of highest weight s of Mj. Concretely, we consider the right torsor
g : Myg — S}?TE and we let Vy i » be the subsheaf of g.0,, of sections f(m)
such that f(mb) = (wo,mk)(b™1)f(m) for all b € BN M,,. We will often abbreviate
Vi k,x to V.

We also introduce the cuspidal subsheaf V,, x »(—Dg ) of sections vanishing
on the boundary divisor D s < S%. Again, we often abbreviate this sheaf to
V.(=D).

4.1.6. The cohomology of automorphic vector bundles. We let mr s : SR’y — Sk
be the projection from the toroidal to the minimal compactification.

Theorem 4.1.7. We have Ri(ﬂ'K)g)*V,{’KVE(*nD[QE) =0 for all i > 0 and all
n>1.

Proof. In the PEL case (and for n = 1), this is [Lanl7|, thm. 8.6. We give an

argument which follows closely [AIP15] (proof of theorem 8.2.2.3) and which is also
—

similar to loc. cit. Let x € S} be a closed point. We write S}gfz for the formal

completion of Si¢. along 71';(’12(1'). By the theorem on formal functions ([Sta22],

. —
Tag 0207) it suffices to prove that H'(SE%; , Vi k. x(-—nDkx)) = 0 for all i > 0
and n > 1.
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We may now use the description of S/ﬁ(ix in terms of the local charts, following
the notations of [MP19] (see for example [MPI9l Thm. 4.1.5], but we only use
these results over the field E and not its ring of integers). The argument is mostly
about torus embedding, so we do not need to explain in detail the structure of the
toroidal compactification, but just recall what is strictly necessary. Suppose that x
belongs to a boundary component indexed by a cusp label representative ®. There
is a tower of spaces:

Ska(Qa, Da) > Sky(Qg, Da) — Sky(Gon, Dop)

where Sg, (Qs,Ds) — Sk, (Qe, Da) is a torsor under a torus Ex(®). There is

a locally free sheaf V, i over Sy, (Qgp, Da). There is a twisted torus embedding
Sks(Qa,Da) — Sk, (Qa, Do, X(P)) which depends on the choice of ¥. There

is an arithmetic group Ag(®) acting on X*(Ex(®)) and on Sk, (Qs,Ds) —
SK@(QCIMD@?Z((I)))' Let g SK@(QCIMD(I)?E((I))) - SK@(Q(IMD‘IZ')' The arith-

metic group also acts on g*V, x. We have a Ak (®P)-invariant closed subscheme
Zi,(Qv,De,3(P)) — Sk, (Qa, Dy, X(P)). There is a finite morphism Sk, (Go 1, Do.p) —
Sk whose image contains x. There is a series of morphisms:

Zr,(Qo, Do, S(®)) — Sk, (Qp: Do) = Sky(Gan, Dop).

We let Zk, (Qs, Do, (D)), be the closed subspace equal to the inverse image of
. The main result on the description of toroidal compactifications states that:

)

Gtor " - Zky(Qe,D3,2(P))e
Sier, =~ Ag(P)\(Sky (Qu, Do, £(®))

Moreover, the sheaf g*V,, k on Sk, (Qa, Do, X(P)) descends to

J— Zicy (Qw,Da,S(®)).
AK(CI))\(SK¢(Q<I>aD‘I>72((I))) )

gior =~ Welet D be the boundary divisor Stor,\ Sk. Un-
K,x ’

der the isomorphism above, it corresponds to the divisor Dy = S Ko (Qa, Do, X(P))\
Sk (Qe, Do)

There is a divisor D’ on S}?TE which has exactly the same support as D and
such that & sten, (—D’) is ample relatively to the minimal compactification. It cor-
responds to a divisor D{ on Sk, (Qs, Dg, X(P)).

We will prove the following statement: for any C' € Z~q, there exists s > C and
a finite morphism N

and identifies with V,; k x|

v Sy - Sy
such that v*V,; kv = Vi k.» and €(—nD) — ¢, 0(—sD’) is a split injection. This
implies the theorem, as we deduce that for all ¢ > 0, Hi(SﬁngH, Ve, k,x(—nD)) is a

direct factor of Hi(SﬁgTEI, Vi, n(—sD")). Taking C' large enough, this last group
vanishes for 7 > 0.

We now prove the claim about the existence of 1. Our proof follows [AIP15],
p. 679. We will construct everything on Sk, (Qs, Do, X(P)). For any integer
¢, the multiplication by ¢-map on the torus Ex(®) induces a finite morphism
Y1 Sk, (Qa, Do, X(P)) — Sk, (Qa,De, X(P)) which is Ag(P) equivariant and
for which ¥}3*V. x = Ve k. The morphisms ¢, induces a finite morphism

S};”EI — S%”Em We have Dj = > c5(9)(1) 4 Dp where E(®)(1) is the set of one
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dimensional faces in 3(®) and Do = 3~ ¢ (g)(1) Dp- Since D is Ak (®)-equivariant
and X(®)(1)/ Ak (P) is finite, we deduce that for any s > 1, there exists ¢ such that
0 < sa, < {. It follows that the round-down of the Q-divisor 76’1D(’) is —Dg. We
deduce from [CLSTI], lem. 9.3.4 that 0(—Dy) < (¢¢)«0(—sDj}) is a split injection.
Pulling back this morphism by ¢,,, we deduce that &(—nDg) — (1) C(—snD})
is a split injection. O

We let g g/ 55 - S}?TE — S35y be the map associated to a change of level
(for K C K') and cone decomposition.

Theorem 4.1.8. We have ¢ g 5 s Ve i 57 = Vi k5. We have RY (g k0 5. 50) e Vi ke 5 =
0 and R 7k k5.5 )« Ve, k5(—Dkx) = 0 for all i > 0. Moreover if K C K’ is
normal then we have

(Tr, 0 55V k2) S 5 = Vo s

and

K'JK _

((mr, k7 5,5 )« Ve, k52 (—Dk 5)) . i 57 (=Dt sy).

Proof. This is easily extracted from [Har90b], section 2 (look in particular at propo-
sition 2.4 and proposition 2.6 and their proofs). In the PEL case, this is explicitly
[Lanl?], prop. 7.5. O

In particular from the case that K = K’ we deduce that the cohomologies
RI(SR's, Vi k,x2) and RE(SE%;, Vi k(= Dk 52)) do not depend on .

We also recall that the maps 7k k' x x/ have fundamental classes in the sense

. !

of [FP21] section 2.3. Namely we have maps ﬁgig& = T K55 ﬁsﬁé’fﬁz/ and
ﬁsﬁg&(—DK,g) — W}(,K/,z,zﬁs;g,iz/(_DK’,Z’) or equivalently, by adjunction, trace
maps R(7x, k7 5,5 )+ Oster, = (T k7 2,57 )+Ogter, = Osiop  and R(7x k7 5.57)x (Oster, (D 3)) =
(WK’K/’Z’E/)*(ﬁS?E (—Dkyx)) — ﬁsﬁffrz/ (=Dxk 5), both of which extend the trace
map for the finite étale morphism WK7}(/ : Sk — Skr.

4.2. Action of the Hecke algebra.

4.2.1. Action of Hecke correspondences on cohomology. Let K1, Ko C G(Ay) be
open compact subgroups, and let g € G(Ay). To this data we associate a Hecke
correspondence

SKlﬁng_l

/ K
Sk, Sk,

where p; is the forgetful map corresponding to the inclusion K; N gKsg~! C K,

and po is the composition of the action map [g] : Sk, ngr,9-1 — Sg-1k,gnK, and

the forgetful map corresponding to the inclusion ¢ 7' K19 N Ky C K.

For any weight k € X*(T¢)Mu% we have a cohomological correspondence (p1)xp3 Ve, —

V.. k.- This is obtained by combining the trace map tr,, : (pl)*(’)sngKzg_1 —

Osy, for the finite étale map p; with the isomorphism p3V;; k, ~ piVg k,, which

is itself composed of the isomorphism pi Vi x, ~ Vi k,ngk,e—1 and the similar iso-
morphism for the forgetful map Sy-1x, gnx, — Sk,, as well as the action map
[g]*vn,g_lKlgﬂKz =~ Kk, K1NgKag—1-
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One readily verifies that the cohomological correspondence ((Sk,ngr,g-1: P15 D2)s (P1)«P3 Vi Ky —
V... k,) only depends on the double coset K;jgK3, up to canonical isomorphism.
Now for suitable choices of cone decomposition we have a diagram

Stor
KiNgKzg~1,2"

/ K
tor tor
SKQ,E’ SKl,E

and we claim that our cohomological correspondence on the interior extends to a co-
homological correspondence R(p1)«p5 Vi k5,50 = (01)xD5 Vi Ko, 50 — Vi i, s as well
as a cuspidal version R(p1)«p5 Ve ko5 (—Dky ) = (01)«P5Ve k5,5 (—Diey 50) —
V. k1,57 (—Dk,,5). We have already discussed the extensions of the trace map in
the previous section. As for the action map, it also induces an isomorphism of
canonical extensions p3V. g, s — PV« k,,5 as well as a morphism of subsheaves
P5(Vie, ko, 5(=Dky5)) = (P1Ve, k1, 2) (= DKy ngkag=1,57)-

Finally these cohomological correspondences induces maps on cohomology in the
usual way, namely we denote by [K;gK>] the composition

tor tor * —
RI(SE, 55 Vi, io,5r) = RU(SE g rpg—1.55 P2 Vi Ko 57) =

RI(S] 5, R(p1)«p5 Vi k6o 5) = T(SE] 53, Vi ey 5)
where the first map is p5 and the last map uses the cohomological correspondence.
We have a similar definition for cuspidal cohomology.

4.2.2. Composition of Hecke correspondences. Let us briefly explain the point of
this section. We have defined an action of individual Hecke operators on coherent
cohomology, and we would like to show that this actually gives an action of the
Hecke algebra. The standard proof (see [Har90h, Prop. 2.6]) is to pass to a limit
over all K to obtain a representation of G(Ay), and then use the purely group
theoretic fact that Hecke algebras act on its invariants. However in this paper we
will also study coherent cohomology with support conditions which are not G(Q))
invariant, and so we no longer expect an action of the full Hecke algebra, but
only of certain Hecke operators which preserve the support conditions in a suitable
sense. We would still like to know that these Hecke operators compose according
to relations in the abstract Hecke algebra.

For this reason we develop a different approach to composition of Hecke oper-
ators, by directly studying the geometric composition of Hecke correspondences.
This material is presumably well known but we lack a reference (see [FC90), VII §3]
for a closely related discussion.)

We recall the formalism of double coset multiplication. Fix a Haar measure on
G(Ay) and let C°(G(Ay),R) be the Hecke algebra with its convolution product
defined by fxg(y) = fxeG(Af) f(z)g(z~ y)dz. For K1, Ko C G(Af) we consider the
free group Z[K,\G(Af)/K>] and we write the basis elements as [/ gK>]. We have
an embedding i, x, : Z[K1\G(Af)/K3] — C*(G(Af),R) which sends [K;9K>)]

1 . g .
o} N EATEA] 1k, ¢K,, Where 1k 4k, denotes the characteristic function of the

double coset K1gK>.
For Ki, K2, K3 C G(Ay) open compact, there is a product map

ZIKN\G(Ap) [ K] X ZIK\G(Ay) /K] = ZIKI\G(Af)/ K]
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which can be defined by
i, 15 ([K19 K] [K2hK3]) = i, 1o, ([K19K2]) * ixc, i, ([K2h K3])
To see that the right hand side is in the image of ik, x, note that
(1, 9K, * Lonicy ) () = vol(K1gKo N K3h™ ' Ky)

is an integer multiple of vol(K3). We also note that this definition is independent
of the choice of Haar measure.

It follows from the definition that double coset multiplication is associative and
satisfies

([E19Eo|[KahKs])" = [Koh K] [K1g Ko

where the transpose map (=)' : Z[K1\G(Ay)/K2] — Z[K2\G(Af) /K] is defined by
[K1gK>]! = [K2g~'K;]. This corresponds to transposes of Hecke correspondences.

We now give a formula for double coset multiplication which is closely related
to geometric composition of Hecke correspondences.

Proposition 4.2.3. Let ky,...,k, € Ky be a set of representatives for the double
cosets (Ko N g~ K19)\K2/(Ks N hK3h™1). Then we have
[KngQ] [KQth] = Z C(kz)[Klgkftth]

where C(ka) = [g_lKlg n (k‘lh)K;g(kzh)_l : g_lKlg NKoN (kzh)Kg(klh)_l]

Proof. We first note that for z,y € G(Af) we have 1k, x 1,x, = vol(z 'K 2 N
ngy’l)llest. Decomposing K7gK> into right K; cosets and KohK3 into left
K3 cosets we have

1K19K2*1K2hK3 = Z VOl(iBilleﬁngyil)lKlmyKy

z€K1\K19K>
yethKg/Kg

=

Now note that the terms of this sum are constant in K5 orbits, for the action
k- (Kyz,yK3) = (Ki2k~' kyK3). We have a bijection

(Kg N gilKlg)\Kg/(KQ n thhil) — KQ\((Kl\Kngz) X (K2hK3/K3))

sending the double coset of k to the orbit of (K;g,khKs3). Moreover the stabilizer
of this orbit is K3 N g 1K1gN (kh)K3(kh)~t. It follows that

" vol(Ks)vol(g~ ' K1g N (kih) K3(k:h) ™)

1 * 1. = 1 . .
Kaghs 7 HRah K ; vol(Ka Mg~ K1g N (kih) Ks(kh) 1)~ F1okitks
which translated back into double coset multiplication gives the proposition. (I

Suppose we have K, Ks, K3 C G(Ay) open compact subgroups and g,h €
G(Ayf). We have a diagram of correspondences

SKzﬁhK3h_1 SKlﬂgKZQ_l

SK3 SK2 SKI
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where the middle diamond is cartesian. We denote s; = pir1, S2 = @ors.

It is not true in general that the correspondence (C, sy, s2) is isomorphic to a
disjoint union of Hecke correspondences. However this is almost the case in a way
we now explain.

We first construct another correspondence (C’, s}, s5) between Sk, and Sk,. Let
k1,...,kn be as in proposition [£.2.3} Now let C" = [, Sk, ngrag—1n(gk:h) Ka(ghih) 1
let s} : C" — Sk, be the forgetful map on each component, and let s5 : C' — Sk,
be the action map [gk;h] followed by the forgetful map. Then we note that while
the components of C’ are not necessarily Hecke correspondences themselves, we
nonetheless have commutative diagrams

SKlﬂgK2g7lﬁ(gkih)Kg(gk‘ih)71

|

SKlﬁ(gk,‘,h)Kg(gk‘ih)71

S T

Sk, Sk,

where the vertical arrow and rightward arrows are forgetful maps and the leftward
arrows are the action maps for [gk;h] followed by forgetful maps. In particular the
bottom correspondence is exactly the Hecke correspondence corresponding to the
double coset K1gk;hKs.

Proposition 4.2.4. There is an isomorphism of correspondences (C,s1,82) =~
(C', s, 55).

We will use the following group theoretic lemma.

Lemma 4.2.5. Let K be a group and Hy, Hy, C K subgroups. Let X be a right
principal homogeneous K -set. Then there is a bijection

]_[ X/gH\g"*NHy, — X/H, x X/H>
HygH>€eH\\K/H>
x(ngg_lﬂHg) — (xgHy,zHs)

Proof of proposition[{.2.]}] We recall that a point of the Shimura variety Sk over
a connected locally Noetherian base is some data which is independent of K (an
isogeny class of abelian varieties with Hodge tensors) to which one associates a
right G(Af)-torsor, and a K level structure is just a K orbit in this G(Ay)-torsor.
Moreover for any K’ C K the forgetful map Sk — Sk at the level of points sends
the K’-orbit to the K-orbit generated by it, and the action map [g] : Sk — Sy-1k4
is given by right multiplication by g.



HIGHER COLEMAN THEORY 57

With this observation the proof of the proposition proceeds formally. We can
consider a slightly expanded diagram.

o 9] C
/ \ *
SKzr‘nthh*1 nglKlgm(2 -~ SK1ﬂngg’1
SKg SK2 SK1

Here all three quadrilaterals are Cartesian. We can compute C* using lemma [4.2.5]
Indeed giving a point of C” lying over a point of Sk, is the same as giving a pair
of an Hy = Ko NhKsh™! and Hy = ¢ ' K9 N K> orbit inside a K = Ky-torsor X.
We deduce from lemma [4.2.5] an isomorphism

n

"o
C" = T So- 1 anian(my i (o)
=1

where on each factor, the map to Sg-1x, 4nx, is the forgetful map, while the map
to Sk,nnksh-1 is the action map [k;| followed by the forgetful map. Then the
isomorphism C' ~ C” is obtained as the composition

n
[ [)
cor s 1 So-: kionmcanteamy sy = €

i=1

Moreover from the descriptions of the maps out of C” above one immediately
deduces the compatibility between s1, s} and sa, s5. O

The following proposition is readily deduced from [Har90b, Prop. 2.6], but we
give an alternative proof which will also work for cohomology with support.

Proposition 4.2.6. We have [K19K3] o [KohK3| = [K19K3][K2hK3] as maps
RIU(SR s, Viiea w) = RU(SE 53, Vi i, 5)-

Proof. We can choose toroidal compactifications of all the Shimura varieties occur-
ring in this section: SK,” = 1, 27 3, SKlﬁgKggflaSKgﬁthhﬁla SKlﬂ(gkih)Kg(gkih)*la
SKingKag—1n(gkih)Ks(gk;h)~1 SO that all the diagrams appearing above extend to
the compactifications (we will not be particularly consistent or careful with our
labelling of the various cone decompositions in this argument, and they will be
denoted by X, where x is an index). In particular we obtain a compactification
Ct°" of the correspondence C' which is isomorphic to a disjoint union of toroidal
compactifications of Shimura varieties. Moreover using this description, we can
construct cohomological correspondences over C*°" as in section [4.2.1] using the ac-
tion maps for gk;h. We first claim that this cohomological correspondence acts on
cohomology by the linear combination of Hecke operators on the right hand side of
the formula in proposition [£.2.3]
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Consider a commutative diagram

Stor
KingKag—1N(gk:h)Ks(gkih)— 1,3,

lc
tor

K1N(gkih)Ks3(gk:h)—1,3,

?:,23 Sﬁ(oiz4
We claim that the following diagram commutes (where the vertical map is in-
duced by the adjunction Id = c,c*, the other maps are given by the cohomological
correspondence, and c¢(k;) is the generic degree of the generically finite flat map c):

try

Rp/*(q/)*VK7K37ES K, K1,
T c(k;)try

Rp.(9)* Vi, k5,55

These are maps of locally free sheaves by theorem and the commutativity
of the diagram follows from its commutativity away from the boundary which is
clear.

Hence to prove the proposition, we need to see that the action of the cohomo-
logical correspondence C*°" is equal to [K1gKs| o [KohK3).

Consider the diamond from the proof of proposition [4.2.4

C//to’l“
/ ’
/ \
tor tor
SKzﬂhK?,h’l,Ea SgilKlng%Zh
\ /
tor
SKQ,E/

which is cartesian away from the boundary. We would like to know that

1tor Iy *
RI(C ,(q") Vﬁ,gflxlgmkz,zb)

)

il tor
k,KgNhKgh—1,5, R (nglxlng%Zb’VmgflklgﬂKz,Eb)

t
RF(S;;Z, s vn,Kg,E’)

tor
RF(SKthKB}rl Sq’ v

commutes, and similarly for cuspidal cohomology. Note that here what we write
as (p/)* is really the composition

t
RU(Sr hkcan—1 5,0 Ve KanhKsh-1,5,) = RO(C” W)V karhisn-1s,) =
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tor *
RF(CW ) (q/) Vﬁ,g*1K1gﬁK2,Eb)

*

where the first map is literally (p’)* and the second map is described on each

component of C"**" as the action map [k;] (see the description of p/,¢’ given in the

proof of Proposition )

We claim that the following diagram commutes:

R(¢)« (") T Vi, kanhksh-1,5, = R(€) (@) P Vi kannksh-1,5, — D Ve g-1K1gnKs, 5

A

* *
P RUGVik,nhksh—1,5,

This is a diagram of locally free sheaves by theorem [4.1.8] and therefore the
commutativity can be checked away from the boundary, where this is clear. O

Remark 4.2.7. We remark that for K’ C K C G(Ay) open compact subgroups,
the Hecke operator [K'1K]| and [K1K'] are the pullback and trace for the forgetful
map Sk s — Sk . Moreover if g € G(Ay) then [Kg(g~'Kg)] is simply the action
map [g]*. Finally for K1, K> C G(Ay) open compact subgroups and g € G(Ay), we
have a factorization

[K19K2] = [K11(K1NgK2g™ M [(KiNgKag™ ) g(g™ ' K1gNKa)][(g7 K1gNK2) 1Ky

of [K1gK5] into a pullback map, an action map, and a trace, which is essentially
the definition of [K;gK5].

Remark 4.2.8. Let K C G(Ay) be a compact open subgroup and Z[K\G(Af)/K] be

the Hecke algebra. Propositionimplies that the cohomology groups H* (S, Vi ke 52)
are Z[K\G(Ay)/K]-modules. As pointed out by a referee, this is not enough to

view RI’(S}?’T?VN, k,) as an object of the derived category of the Hecke algebra.
However, the construction in [Har90b| implies this stronger assertion.

4.2.9. Serre duality. The dualizing sheaf of St‘”" is V_ap,..k,x(—Dg,x) where p,.
is half the sum of the non-compact positive roots. Indeed, recall our choice of non-
compact positive roots being in g/p“d and that g/p“d is the tangent space at the
identity of FLStd and then apply [Har90b], proposition 2.2.6.

The Serre dual of the automorphic sheaf Vy; 5 is therefore V_o,  —w, yrs, K, s(—Dky)
where wq s is the longest element of the Weyl group of M,,. Serre duality is:

Proposition 4.2.10. There is a Serre duality isomorphism
DF(RF(S%OE? K K,Z))[_d] =~ RF(S?,TEa V*QPnc*wo,M“KyKyz(_DK,E))

where Dp(—) = RHomp(—, F) is the dualizing functor for F-vector spaces and d
is the dimension of Sk. Moreover this isomorphism, is compatible with the Hecke
action in the sense the action of [KgK] on the left matches the action of [KgK|]t =
[Kg~'K] on the right.

Proof. For the existence of the duality pairing we refer to [Har66]. We simply prove
the formula for the adjoint. We denote by

Dir(=) = RHom(—, Vs, k"5 (=D, 2))

the dualizing functor on Sﬁ(of sy for any compact open K’ (and cone decomposition
2. Let f = [KgK] be a characteristic function to which we associate a Hecke
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P .
correspondence S’y el Sﬁ?gg K15 =3 572", The action of f on the cohomology

arises from a cohomological correspondence (see section [4.2.1):

fr Id®trp, |
sV ks =01 Vers — piVeks.

Since the maps p; are local complete intersection morphisms, for any coherent sheaf
¢, the natural map (pi)!ﬁs?rz @ prd — (p;)'9 (adjoint to the projection formula)

is a quasi-isomorphism. Moreover, (pi)!ﬁsgg is an invertible sheaf. It follows that

Dirgrg-1(P\Vexs) = RHom(p) Ve ks,p1V-2p,..k5(—Dks))
= RHom(p, Oster, ®p;VK,K,vaiﬁS}€TZ ® piV-2p,.. Kk 5(~Dkx))
= RHom(piVk k5, p1V-2p,..k,5(—Dkx))
= PiDrx(Vikx)

Dingrcg-1(P3Ve ) = RHom(p3Ve ks, pV—-2p,..5.5(—Dks))
— m(pgvn,l(,27p§V72pnC,KVE(*DK7E) ®p;ﬁs}?&)
= p3Drk (Vi k) ®p!2€S§ng

= pyDrk(Veks)
and Dy rgrcg—1 (p{Ve,k5) = Pt Dk (Vi k,5). In other words, duality switches * and
'and we get

Id®trp,
Dgngrg—(f) 01Dk (Ve xz) — P Dx(Vars) = poDi (Ve k)

Remark that
PiDk(Veks) = PIViks®@piVo2,. ks(—Dks)
Py Dk (Ve k) = PV sy @ PyV-2p,..k.5(—Dr x)
We have a canonical isomorphism
Id : piV_sp,.5(~Dxx) = PyV-2p,.. 55 (—Dr s,

as both sheaves identify with the canonical sheaf of S}?ggKg,l - The map Py Dx Ve kx) —

Py D (Ve k.52) therefore writes f¥ ® Id. Let f' = [Kg~'K]. We observe that
I = (f")—wo.rr by definition (this identity boils down to A* = ((A~!)~1)* for a
matrix in GL,,). We now claim that we have a commutative diagram:

Id@tr [y ®ld
PiDk (Viks) —= Pi Dk (Ve xs) — > Py D (Ve x5

IdT Id®trp1 T Id®tr,,2 T

PiDk(Vixs) — i D (Vi k,x) P53 D (Ve kx)

This implies that D,k -1 (f) = f. The commutativity of the diagram now boils
down to the commutativity of:

t
P g g —20me

Id

p!IV*QPncstE(_DKvZ) pI2V72p,LC,K,Z(_DK,Z)
trplT
ff

trp, T
—2pnc

PiV-2p,. k2(—Dks) ————=p5V_2,,. kx(—Dkx)
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It is sufficient to prove the commutativity outside of the boundary. For any level
K, the identification of the canonical sheaf of Sk with V_5, x is functorial in
the tower of Shimura varieties. Therefore, for the action map [g] : Sxngrg-1 —
Skng-1Kg, We find that the map [g]*V_5, . kng-1kg — V-2p,.,Kngkg-1 is the
canonical isomorphism between canonical sheaves. We finally deduce that the map
(f")=2pne 1 PTV—2p,0. k6 — D5V—2,,.. K decomposes as:

* * *
P1V=2p,0. 8 = V-2p,. Kngkkg=t = 9 V_2p,.. Kng-1Kg = P2V—-2p,0. K

where the first map is induced by tr,,, the second map is the canonical isomorphism,
and the last map is induced by g*(trplz)_1 where py : Sgng-1ky — Sk. This is
telling us that the diagram commutes. O

Remark 4.2.11. One proves more generally that the adjoint of an Hecke operator
[K1gK>] for two (not necessarily equal) compact open subgroup K; and K is
[K1gK>]t = [K2g~ ' K1]. Details are left to the reader.

4.2.12. The finite slope part of classical cohomology. We now assume that Gg, is
quasi-split. We assume that K = K? x K}, where K, = K ,,, s form >b>0,m >0
is one of the subgroups with an Iwahori decomposition introduced in section [3.5.1]
We recall that for a choice of + or — we have commutative sub-algebras H;Jt,m,b of
L Kpmp\G(Qp)/Kpmp]. The subalgebra ’H;E,m’b is generated by the double cosets
[KpmptKpmsp] with t € TT. We have isomorphisms H;m’b = Z[T*)T,). We
also have the ideals H;i,b generated by the double cosets [Kj m st Kp mp] with
t € T**. The anti-involution of Z[K}.ns\G(Qp)/Kpm] defined by inversion
exchanges Hy  with #,,, and H I with H, .
We let

tor +,fs _
RU(S%h i, s Ve Kr iy m) 1% =

RF(S?;,KP,M,M» Vi KP Ky p,S) ®é[Ti/Tb] Q[T(Qp)/Th]

be the finite slope direct factor of RT'(Si x| v, Vi, k7K, ,.,.5) for the operators
in [Kp m ot Kpmp) for ¢ € T* (this is a direct factor because the cohomologies are
finite dimensional.) We have a similar definition for cuspidal cohomology. We note
that the monoids T* have the property that for any t € T** and s € T* there is
an s € T* and an n > 0 such that ss' = t". It follows that the finite slope part
can also be described as the finite slope part of the single operator [Kp m st Kp m b
for any t € T*+.

We note that the Serre duality pairing of Proposition [£.2.10| restricts to a duality

Dr (RF(S?’T'Kp.m.b,E’ V&K”Kp,m,b,z)i,fs)[fd} = RF(S?;KpJ,l,b,E’ V_Qpnc_wO,I\/IKprKpJn,,b72(7D)

on finite slope parts.

Remark 4.2.13. Assume that the group Gq, is unramified. Then, as explained in
remark we can arrange so that the compact K, 1 is an Iwahori, and the
compact K, 11 is a pro-p Iwahori. Let K, = K11 or K,1,0. All the Hecke
operators [K,tK,] for t € T+ or t € T~ are already invertible in Q[K,\G(Q,)/ K]
(see [Vig05l Cor. 1])and so

t +,fs _ t
(SR, 50 Vi tcrsc, 2) 51 = RU(SRD 5, Vi e, )

and similarly for cuspidal cohomology.

ﬂF,fS)
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Next we recall how the finite slope part behaves under certain changes of level.
We first recall some classical relations in these Hecke algebras.

Lemma 4.2.14. Let K;, Ko, K3 C G(Q)) be open compact subgroups with Iwahori
decompositions K; = K; KYK;". Let t1,ts € T(Q,). Suppose that tfletl N
oKty C Ky Ct Kty 7 Kt Nte Kty € K C oKty and KYNKY C
Kg g K?Kg Then [KlthQ][KQtQKS] = [KltthKg]

Proof. This is an immediate consequence of proposition [4.2.3] upon noting that our
hypotheses imply Ky = (Ko Nt K1t1)(Ko NtaKsty ') and ¢ K1ty NtaKaty ' C
K. |

Lemma 4.2.15. Let m/ > b >0 and m > b > 0 satisfy m’ > m > 0 and b’ > b.
(1) For allt € T* we have
[prm/,b’th,m’,b’}[Kp,m’yb/le,myb] = [Kp,m’yb/le,myb] [prm,bth,m,b}
(2) For allt € T~ we have
[Kpﬂn,btK ,m,b][Kp,m,ble,MQb’] = [Kp,m,ble,M’7b’][Kp,m’,b’tKnm’,b’]'
(3) For allt € T+ with min(t) > 1 (see[3.4]) we have factorizations:
[Kp,m ot Kpm,b] = [Kp,m bt Kpm+1,6][Kp,m+1,61Kp,m,b)]
and
[Kp,erl,bth,erl,b] = [Kp,erl,ble,myb] [Kp’m,bth,erl,by
(4) For allt € T~ with min(t) > 1 we have factorizations:
(K ot Kp,m.p] = [Kpm o L p oy 1,6 [ p 1,58 Kp,m ]
and
[Kpmt 1,0t Kpm+1,0] = [Kpm+1,60Kpm b] [Kpm o 1K p,m+1,]-

Proof. We note that the second and fourth points are just the transposes of the
first and third. The first and third points are immediate consequences of lemma

42174 O

Here are the consequences on cohomology:

Corollary 4.2.16. Let m' >V >0 and m > b > 0 satisfy m’ > m >0 and b’ > b.
(1) For allt € T, the following diagram commutes:

p,m/,

lipﬂn’,b’tli b’ﬁ "
I (S oy Vn KPK !yt E)
Kpr,m’,b'!Z, s p,m/’ b/

T

t
RE(SEk, pss Vi KP Ky ,5)

tor
RF(SKprﬁm,,b, S VR KPK, 0 5

T

[Kp m bth m b]
t ch ;M
RU(SErK, 050 Ve KP Ky p8) =

(2) For allm’ > m and t € T, the following diagram commutes:

Kp m/ b/th m/ ')/
R BN T Stor V )
( KPK, 0 pr520 KaKpr,m/,b/7E

ltr

tor
RF(SKpr,m,b,X” VﬁaKpr,'m,byZ)

t
RU(SRI K, 20 Ve KPK, 8

ltr

[Kp,m, 6t Kp m,b]
tor e e
RF(SKpr,m,b,E’ V’QvaKp,nL,byE)
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(3) For allm and t € TTF with min(t) > 1, there is a factorization:

[S( m41,bt K, m+1ﬁ
tor P, ) P, tor
RF(SKPKp,,n+1)b,E7Vﬁ,Kpr,mH,b’E > F(SKpr,m,_',l‘b,E’VHprKp,m-Fl,byE)

L e

tK
tor p,m, bt p,m,b] tor
RE(SEr K, 050 Vi KP Ky m.E) RU(SEr K, 1y 50 Vi KP Ky .)

(4) For allm and t € T~~ with min(t) > 1, there is a factorization:

[S{p m41,0tKp m,+1ﬁ
tor i ’ i tor
(SKPKP;,,rFLb,E’ V"Qvlfplfpﬂn+1,bvz (SKpr,7n+1,b,E7 Vﬁikpkp,'mﬁ»l,bv} )

ltr / ltr
[ th,7YL,b]

K b
tor M, tor
RE(SE K, 050 Vi KP Ky 5) RE(SE K, yss Vi K2 Ky ,5)

(5) We have the same results for cuspidal cohomology.
We deduce the following classical corollary

Corollary 4.2.17. (1) For allm' > m > b with m > 0, the pullback map

tor +.,fs tor +,fs
RF(SKPKp,m,b,E’Vﬁ,Kpr,m,mE) / %RF(SKPKPM/ 1,727VN7Kpr,m/,b72) /

and the trace map

RF(S}?ZK Z7VK,KT‘K

p,m’,b>

—, t —
2) 7 S RU(Sik, om0 Viko Ky 2) 77

p,m’ b
are quasi-isomorphisms, compatible with the action of Q[T'(Q,)/Ts], and
the same statements are true for cuspidal cohomology. Moreover these iso-

morphisms are compatible with Serre duality.
(2) For allm >0 > b with m > 0, the pullback map

tor +,fs tor +,fs\T /T,
RF(SKPKP,,W,,DVH,KPKp,m,b,E) s — (RF(SKPKP m b/,Z7V’§7KprTme/7E) ! ) o/ T
and the trace map
tor —,fs\Tv /Ty tor —,fs
(RF(SKPKPYmYb/,EvVI%KPKp,m,b/,E) ) = RE(SKr K, 50 Vi KPRy 0,5)

are quasi-isomorphisms, compatible with the action of Q[T(Q,)/Ts], and
the same statements are true for cuspidal cohomology. Moreover these iso-
morphisms are compatible with Serre duality.

Proof. ITmmediate from corollary and theorem O

Now let x : T(Z,) — F” be a finite order character. For all m > b >
cond(x) with m > 0, the spaces RI'( }?Zprmyb}Z,VK,KpKwM,g)J“fS[X] are canonm-
ically isomorphic. We denote this space by RI'(KP,k,x)"¥*. We define in the
same way RI'(KP, k,x) /%, and the cuspidal versions RI'(KP, k, x, cusp)™/* and
RI(KP, k, X, cusp)—f*

These are the classical finite slope cohomologies, for the tame level K?, M-
dominant algebraic weight s, and nebentypus x. They satisfy a Serre duality:

Dp(RT(K?, ,5)"7%)[~d] = RD(K?, ~2pnc — wo,nr, ki, X~ cusp) T7°.
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Remark 4.2.18. We explain some constraints on the possible nebentypus x for
which we have non trivial cohomology in the case that the subgroup Z(G) of
the center Z(G) of G is non-trivial (a case that may only occur for non Hodge
type Shimura datum). For simplicity we put Z = Z(G) and Z; = Z;(G). Re-
call that Sk (C) = G(Q)\X x G(As)/K. Passing to the limit over K, we find
that S(C) = limg Sk (C) = G(Q)\X x G(Af)/Z(Q) where Z(Q) is the closure
of Z(Q) in G(Ay) (see [Del79), sect. 2.19). Let K’ C K be two compact open
subgroups, with K’ normal in K. The map Sk/(C) — Sk(C) is a covering
with Galois group K/(K'.Z(Q) N K). If K is neat, Z(Q) N K is a subgroup of
Zs(Q). In the case that Z;, = {1}, we deduce that Sk/(C) — Sk(C) is a Ga-
lois covering with group K/K’. In general, it follows that the action of T(Z,)
on R (S x5 Vi, kv K, ,s) T7* factors through an action of T(Z,)/Z'(KP),
where Z'(K?) = Im((Z;(Q) N KK}, m0) = T(Z,)). We deduce that when Z, # 1,
if x does not factor through T(Z,)/Z'(KP), then RT(KP, k,x)*/* = 0 for all &.

To avoid this situation, we will often impose that x factors through a character of
T(Zyp)-

4.3. Jacquet Modules. In this section we translate the finite slope condition into
more representation theoretic terms. We keep assuming that G, is quasi-split with
Borel B. We let U be the unipotent radical of B. Let m be a smooth admissible
representation of G(Q,,) with coefficient in a field of characteristic 0. We let 7(U) C
7 be the submodule generated by the elements n-v—v forn € U(Q,,) and v € m. We
let 7y = 7/7(U) be the Jacquet module of 7 (with respect to U). This is a smooth
admissible representation of 7'(Q,) by [Cas|, thm. 3.3.1. Moreover, the functor 7
7y is an exact functor by [Cas|, prop. 3.3.2. We can define similarly the Jacquet
module 7 with respect to U. Note that conjugation by the longest element wq of
the Weyl group realizes an isomorphism from 7y to 7. Let 1) : T(Q,) — C* be a
smooth character. We let 1% () = {f : G(Q,) — C, smooth, f(bg) = ¥(b)f(g)},
equipped with the left action induced by right translation of G(Q,) on itself. We
define similarly L%(w).
The adjunction formula of [Cag|, thm. 3.2.4 states that

Homg(Qp) (7T, Lg (’l/))) = HomT(@p) (7T'U7 1/))

and
Homg(q,) (T, L%W))) = Homyp(q,) (77, ¥).
Let K = K, m5. The algebra H;m,b = Z[T*/T;] (by lemma [3.5.9)) acts on
K K

7Kpmo and we can define 7/pm0:%:fs C 7Kpmb a5 the sub-vector space where the
operators [Kp m, ptKp m s for t € T act invertibly.

Proposition 4.3.1. The natural map w5pmetFs 775” s an isomorphism which
is T /Ty equivariant, and the natural map w&emv:—Ffs Tl'g’ is an isomorphism
which is T~ /Ty equivariant.

Proof. See [Cas|, Lemma 4.1.1 and proposition 4.1.4. O

Proposition 4.3.2. For a smooth irreducible representation m of G(Q,), the fol-
lowing properties are equivalent:

(1) There exists m > b > 0 such that 7lpmotfs £,

(2) There exists m > b > 0 such that 7%rmo =5 £
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(3) There exists a character ¢ of T(Q,) such that m — 151,
(4) There exists a character ¢’ of T(Q,) such that m — L%’(/)/.

Proof. The points (1) and (2) are equivalent because the non-vanishing of 7%r.m.0-+.fs
is equivalent to the non-vanishing of 7rlT]b and W%” respectively by proposition
But conjugation by wq realizes an isomorphism between these spaces. Similarly (3
is equivalent to (4). If we assume (3), the adjunction formula shows that my # 0,
hence there exists b such that 71'5” £ 0 and 7HpmetIs £ (0 for any m > b by
proposition Conversely, if 7/rmo:H:/5 £ 0, then 7. # 0 and by adjunction,
there is a non zero map: 7 — (%1 for a character 1. Since 7 is irreducible, this
map is injective. t

If one of the equivalent properties of the proposition is satisfied, we say that an
irreducible smooth representation 7 is a finite slope representation.

Let m be an admissible representation of G(Q,). By adjunction, we have a
morphism © — L%TI’U and we let 7/ be the image of this morphism. We call m/*

the finite slope part of 7.

Proposition 4.3.3. The following properties are satisfied:

(1) The G(Q,)-representations w/* is a direct summand of .

(2) Any irreducible factor of 71 is a finite slope representation.

(3) Any irreducible factor of © which is a finite slope representation lies in 7¥*.

(4) ©/¢ is the sub-representation of ™ generated by the wivrmo-F:15 for all m >
b>0.

Proof. By the Bernstein decomposition of the category of smooth representations
(|Renl0], VI.7.2) we find that 7 = 7’ & ©” where 7’ satisfies the properties (1),
(2) and (3) of the representation 7/* of the proposition. We have that 77, = 0
because the Jacquet functor is exact and 7" has no finite slope irreducible sub-
quotient. We deduce that my = 7j;. Moreover the morphism © — Lgﬂ'U factors

into 7' — (G and it follows again from the exactness of the Jacquet functor

that the map 7 — Gy is injective. Therefore ' = 7/¢. Let 7" be the sub-

representation of m generated by aBemeESs for all m > b > 0. We see that
7" C wfs. But it follows from proposition m that 7}/ = W,J;S. Therefore /% /7"
has trivial Jacquet module, hence contains no finite slope sub-quotient and has to
be trivial. ([l

Let us denote by
H'(K?, k) = colimg, H' (Si g, 51, Ve k7 K, %),

HY(K?, k, cusp) = ColiprHi(ngZsz, Ve, krk, 2(—Dkri, s))
and . ‘ .
H (K? k) = Im(H* (K?, k, cusp) — H'(K?, k)).

These are smooth admissible G(Q,)-representations. We can consider their fi-
nite slope parts H'(K?, x)7¢, H (KP, k, cusp)’* and ﬁi(Kp, )75, These are direct
summands of H (K?, k), H'(K?, k, cusp) and H'(K?, k) respectively, and are gen-
erated respectively as G(Q,)-representations by the vector spaces H (K?, , x)*7$,
HY(KP, K, x, cusp)*7* and ﬁi(K”, K, X)H 7% = Im(H (KP, k, x, cusp)™/* — HY(KP, K, x)T /%)
for all characters x : T(Z,,) — T
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4.4. The Hodge-Tate period morphism. In this section we recall a number
of results concerning the Hodge-Tate period morphism and infinite level Shimura
varieties. We now assume (unless explicitly mentioned) that F' is a finite extension
of Q, such that we have an embedding £ — F' and such that G splits over F'. In this
paper, the rationality questions with respect to E are not very important. We will
frequently allow ourselves to enlarge F if necessary. Let S = (Sk x Spec F)%",
Sic = (Sk x Spec F)*", Sg', = (Sg'y, x Spec F)*", FLg,, = (FLg,, x Spec F)*"
(see section for the meaning of the superscript an). The first of these spaces
is not quasi-compact if the Shimura variety is not proper, the other three spaces
are quasi-compact. We will also consider the groups G* = (G x Spec Q,)*",
Py = (Pu x Spec F))*", M{" = (M), x Spec F)*".

4.4.1. Inverse limit of adic spaces. We start by a definition following [SW13]|, sect.
2.4. Our definition is slightly more restrictive but fits in our setting.

Definition 4.4.2. Let {X;}icr be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F,Op), with finite transition maps. Let X be a perfectoid
space with compatible maps X — Xj.

We say that X ~ lim;er X; if:

(1) The maps X — X; induces an homeomorphism of topological spaces |X| =

(2) There is a covering of X by open affinoids U = Spa(A, A") such that U is
the preimage of an affinoid U; = Spa(Ai,A;.") C X; for a cofinal subset of
I and the map colim;A; — A has dense image.

If X ~ lim;e; X;, then the diamond lim; Xio is representable by the perfectoid
space X by [SW13|, prop. 2.4.5. In particular, X is unique up to a unique isomor-
phism.

In the notation of point (2), we see that A° is a ring of definition of A (because
A is uniform) and A is the completion of colim;AY with respect to the p-adic
topology.

Definition 4.4.3. Let {X;}icr be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F, Op) with finite transition maps. Let X be a perfectoid space
and assume that X ~ lim; X;. We say that an open affinoid subset U — X is good
if it satisfies the second property of definition [[.4.34 We say that an open affinoid
U, = X; is pregood if the open subset X X x, U; of X is good.

Remark 4.4.4. We remark that a rational subset of a good open affinoid is also
good by [Schi3d|, proposition 2.22.

Remark 4.4.5. Tt is conjectured in [Sch13c], conjecture 2.24 and proposition 2.26
that any open affinoid in & is pregood.

We end this paragraph with two useful lemmas.

Lemma 4.4.6. Let {X;}icr be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F, O) with finite transition maps. For each i let T1; be the set
of connected components of X; which we assume to be finite. Let Il = lim; IT;. For
any e € II we get a cofiltered inverse system {X; .}. If there is a perfectoid space X
such that X ~ lim; X; then for all e € 11, there is a perfectoid space X, ~ lim; X; .
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Proof. We reduce to the affine case. Let X; = Spa(A4;, A]). For each e € II;, we
have X; . = Spa(Ai,e,Axe) and A4; = HeGHi A; .. We may assume that all rings
A; are reduced (by taking the reduction). In particular A? is open and bounded.
This does not affect the ~-limit because perfectoid spaces are reduced. We may
also assume that all maps A; — A; are injective for ¢,5 € I and j — i (replacing
A; by its image in A;).

We assume that there is a perfectoid space X = Spa(A4, A*) ~ lim; X;. Then A°
is the p-adic completion of colim;A? and A is a perfectoid Op-algebra: there is
w € A° with @? | p and the Frobenius morphism ¢ : A°/w? — A /wP is surjective.
Moreover, A = A°[1/p] and A* is the closure of colimA;" in A. By approximation,
we may assume that @ € A? and by projection we get an element w € A; ..

We need to see that the map ¢ : colimiA%e [P — colimiAa ./wP is surjective.
Let z;, € A;e¢/w?. Since AC is perfectoid, we see that there exists j — ¢ and
Yj.e € Aje/w? such that y]’»”e =Tie. O

Lemma 4.4.7. Let {X;}icr be a cofiltered inverse system of locally of finite type
separated adic spaces over a perfectoid field Spa(F, Op) with finite transition maps.
Let G be a finite group acting on the inverse system via Spa(F, Op)-morphisms.
Let X be a perfectoid space such that X ~ lim; X;. Assume that for some index
i, we have a G-invariant covering of X; by pregood affinoids. Then the categorical
quotient Y; = X;/G is representable by an adic space of finite type for a cofinal
subset of I, the categorial quotient Y = X /G is representable by a perfectoid space,

Proof. The quotient X;/G exist by [Hanl9], thm. 1.3. We may reduce to the
affine case with X = Spa(A, A*) and X; = Spa(4;, A]). By [Han19], thm 1.4, A
is perfectoid. It is clear that colimA% is dense in A® since we have a projector
A— AC a \TIHZgEGg'a' d

4.4.8. Siegel Shimura varieties. We assume in this paragraph that (G, X) is the
Siegel Shimura datum (GSp,,, Hy). Let K = KPK,, C G(Ay) be a compact open
subgroup. The reflex field is Q and the Shimura variety Sk is a moduli space of
abelian varieties A, with a level structure and polarization (prescribed by K).

The Shimura variety Sk carries a right pro-étale G(Q,)-torsor. Namely, equip
(@}279 with the standard symplectic form and consider the torsor of isomorphisms
(@12,9 — H; (4, Qp), respecting the symplectic forms up to a similitude factor, where
A is the universal abelian scheme (defined up to isogeny) and H; (4, Q,) = V,(A4) is
the rational Tate module of A. After choosing a geometric point T — Sk, this torsor
corresponds to a representation of the algebraic fundamental group m(Sk,T) —
G(Qp). The image of this morphism lies in the compact open subgroup K, C G(Q,)
and the corresponding K -torsor is realized geometrically by the tower of Shimura
varieties lim K, CK, Skr K- By pullback to the adic space S¥*, we get a pro-étale
G(Qp)-torsor Go7, . If K;, € G(Z,), this torsor has a G(Z,)-reduction of group
structure that we denote by Gpet p.

The (relative) Hodge-Tate filtration [Schibl p. 1005| is the exact sequence of
pro-étale sheaves over Si*:

0 — Lie(A) ®6sgn 5)5;("(1) — Hi1(4,Qp) ®q, Osic — war ®Osn 55}2” =0
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The groups P;", G*" and M}" are naturally sheaves over the étale site of SE”.
We extend them to sheaves on the pro-étale site of S as follows: if H is any of

these groups, and if U — S§* is an object of the pro-étale site, we let
H(U) = H( By (U), 6 ().

Remark 4.4.9. There is also an extension to the pro-étale site of P;", G** and My"
where one takes sections with values in the uncompleted structure sheaf, but we
will not need to consider this extension.

The Hodge-Tate filtration gives a P;"-reduction of structure group Py of the
Ge"-torsor Go7}, ) x 9" (@) Gan Namely, we consider trivializations of Hy (4, Q,)®g,
ﬁsK which respect the filtration. This is a right Pp"-torsor.

We can consider the pushout P, x7i" M = M. This pro-étale torsor
actually identifies canonically with (the pull back to the pro-étale site of) the an-
alytic torsor M%7, which is the analytification of Myr (see section after a
cyclotomic twist via p.

Namely, we let Z,(1) be the Tate twist, which we think of as a Z)- pro-étale

torsor over Spa(Qp,Z;). The cocharacter y restricts to a morphism Z; — My",

whose image lies in the center of M{". We let T X 2 7 »(1) be the quotient
of M3k Xspa(,.z,) Zp(1) by the diagonal action of Z;. This is still a M{"-torsor
since y(Z,) is central. The precise compatibility is M$p, = Mgh x* 25 7 »(1).
The pro-étale K,-torsor limKég K, Skp K}, Over Sk extends to a pro-Kummer
étale Kp-torsor limg, ck, Sih K% Over S5, We can pull it back to the analytic

space Si’y; (see [DLLZ23] for the definition of the pro-Kummer étale site). By
pushout along K, = G(Qp), we get a pro-Kummer étale G(Qj)-torsor over Si'y;
extending Go7, Wthh we also denote by Go7, . If K, C G(Z,) we also have the
pro-Kummer étale G(Z,)-torsor Gy, over Si's,.

Let Ax; be the semi-abelian scheme over Stm" The Hodge-Tate exact sequence
extends to a sequence over the pro-Kummer etale site

0— Lie(Az) Re

S

3{07‘2 ﬁs;{o,rz(l) — Hl(AE7Qp) ®Qp ﬁS%OS: — OJA;D ®ﬁ$}é’f2 ﬁs%n — O

Therefore, the torsors P4 and M%7 extend over Si¢%., and as usual, we con-
tinue to use the same notation for the extensions. Moreover, again by construction,
the torsors M and MG}% are canonically identified up to a Tate twist via .

4.4.10. Perfectoid Siegel Shimura varieties. By [Sch15|, thm. 3.3.18 there is a per-
fectoid space Sy, ~ limg, S}‘@Kp.

By [Schl15], we have a G(Q,)-equivariant map g1 : Sk — FLG . Moreover,
there exists an affinoid covering FLq , = U;V; such that for each i, wﬁlT(Vi) is a
good affinoid perfectoid open subset of S}, (see definition .

The construction of the map wpr : Sk, — FLg,u is delicate at the boundary,
but over the complement of the boundary Sg, ~ limg, S§ K, it has a simple
description which is given below.

By [PS16], thm. 0.4, for any cone decomposition %, there is also a perfectoid
space Si& 5 ~ limg, SiF K, (it is important that the cone decomposition does
not depend on K, for the limit to be perfectoid) and we have a map S} v — Sie»
of perfectoid spaces induced by the maps at finite level K.
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The torsor Ggti , becomes trivial over SiZ7 5, and we therefore get a Hodge-Tate
period map 7% : S}gﬂ’z — FLa,,. Let us explain very concretely how this map
is defined. Let Spa(R, RT) be a perfectoid affinoid open subset of S}é’;z. We can

evaluate the sequence

0 — Lie(4y) ®¢ ﬁg;{n —0

s

r

to
K,x

ﬁsggrz(l) — Hl (AE, Qp) ®Qp ﬁs}(arg — (JJA% ®ﬁs}g17'2
on (R, R*) (viewed as an object of the pro-Kummer-étale site of Si'y;) and use the

trivialization Q%g ~ H;(Ayx,Q,) to get an exact sequence:
0 — Lie(As) ® R = R* = wy @ R —0

After localizing, we may even assume that Lie(As) ® R and w AL ® R are free
R-modules. Now let 0 — RY — R?9 — RY — 0 be the (polarized) chain with
automorphism group P,(R). We have that P¢% (R, Rt) =

Isomgymp (0 = R — R*7 — RY — 0,0 — Lie(An) ® R = R* — wyy, ® R —0)

and P (R, RY) C Isomgymp(R?) = GSpy,(R). This is a right P,(R)-torsor and
there is an element x € G(R) such that P¢%. (R, RT) = P, (R). The automorphism
group of 0 — Lie(Ay) ® R — R% — war ® R — 01is zP,(R)z~!. Finally we let
i (Spa(R, RT)) = 27! € FLg .(R).

Remark 4.4.11. We are forced to use z~! above because FL¢,, = P,\G. Note that
taking the quotient by the left action of P, is natural because right translation on G
defines a right G-action of F'Lg,, and the map myr : Sk — F L, is equivariant
for the right G(Qj)-action. We chose to define P as a right Pjj"-torsor, because
we want to identify the torsors M%, and MG%. But in the classical theory, Mgr
is a right torsor. It means that in our convention, the torsor Pg. is pulled back

via 7. from the torsor G** — FLq 1y @ > 7t

The maps 7495 and 7y coincide by construction on the open subset Si%. We

deduce that we have a commutative diagram:

tor
SKP,E
\L %

THT

Sier — = FLapu

The key properties of this diagram that we will use are:

(1) The pull back of the torsor G*" /Upsn — FLg,, via T} is M7y and this
is canonically identified with the pull back via S . — Si2h K,,x of Mgk,
up to a Tate twist by pu.

(2) The map 7wy is affine.

Remark 4.4.12. Here is a more down-to-earth way of explaining the compatibility of
the torsors (1). For any x € X*(T)M:* we can define a G-equivariant sheaf V,, 7,
over FLgq, (using the same recipe as in section . The compatibility is the
property that (77 ) Vi 7o(— (1, k) = Ti Virr, w5 for mr, : S s = Sk, 5
the projection.
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4.4.13. Formal models of perfectoid Siegel Shimura varieties. We need to consider
formal models of the perfectoid Siegel Shimura varieties in order to be able to use
the vanishing result below (theorem which is crucially used in the proof of
theorem. We first recall a number of statements from [PS16]. Let K = KPK,.
For K, = GSpQg(Zp), we have natural models over Spec Z,, for Skrk,, S;@Kp, and
S}?{,sz that we denote Skrx,, Skrg,, and S’}?ZKP,E. We can also consider the
corresponding p-adic formal schemes Skrk,, Skr, , and Sher K, We denote by
A the semi-abelian scheme over G4, K,.S (it is defined up to prime-to-p isogeny by
our choice of level structure). By the construction of the minimal compactification,
the line bundle detws on Ggk» K, extends to a line bundle that we also denote
by detwy on G, g , and whose pullback to (S k,,x agrees with the extension
defined by the semi-abelian scheme A.

Now let K, C GSp,,(Z,) be an open subgroup. We can define Sxrk,,, Skrk,
and GtI?ZKWZ as the normalizations of & grasp,, (z,), G%PGszg(Zp)’ and G%ZGSPZQ(ZP),E

in Skrrc,: Sgor, and S 5, respectively.

Let us denote by K, , = {M € GSpy,(Z,), M =1 mod p"}. This is the prin-
cipal level p™ subgroup. Consider the module Z29 with canonical basis eq, - - - , €25
equipped with the standard symplectic form (,) given by (e;, eaq—i+1) = 1 for
1 <i<g,and (e,e;) =0if i + 5 # 29 + 1. Over Skrk,, We have a symplectic
isomorphism (Z/p"Z)?9 — A[p"] (up to a similitude factor), and it extends to a
morphism of group schemes over Sxr i, ., (Z/p"Z)*? — A[p"]. We have the Hodge-
Tate morphism HT,, : A[p"] — wa:/p™. Using the prime-to-p polarization, we can
identify w4+ and wa. We therefore have sections HT,,(¢e;) € H(Skrk, ,.,wa/p™).
We also have a map AYHT, : A9(Z/p"7Z)?9 — detwa/p™. Let r :(2;7). Let
fi,--, fr be a basis of A9Z29 obtained by taking exterior products of ey, - - - , €24
We get sections AYHT,,(f;) € H(Skrk, .. detwa/p").

By [PS16], proposition 1.5 and corollary 1.7, the sections HT,,(e;) extend to
sections HT,,(e;) € HO(Gﬁgngmz,wA/p") and the sections AYHT,,(f;) extend to
sections AYHT,,(f;) € H( krk,,, detwa/p").

It follows that over G, = we have a morphism AYHT, : AY(Z/p"Z)* —
detwa/p™. These morphisms satisfy the natural compatibilities as n varies. The
cokernel of this morphism is killed by pﬁ (resp. 49 if p = 2) by [Farl0], theorem
7. We let det wrmi’" be the subsheaf of detw, which is the inverse image of

Im(AYHT,,(AY(Z/p"Z)*) @ Oss. ., —detwa/p")

in det wy. We have pﬁ det wa C det wT’d’” C detwya (resp. 49 detwa C det wTOd’” C
detwy if p=2) .
Let f : G%PKP,TLH
det w74 5 Im(f* detw7°*" — detw,). This map is an isomorphism if
n > zﬁ (resp. n > 2g if p = 2). We now assume that n is larger than ny = -4

p—1
(resp. ng = 2g if p = 2). We simply denote det w;l”(’d’" by detw? this is a

subsheaf of detw4. The sheaf det w7°? is not locally free. We can perform a blow
up to make it locally free. Let us start with a definition:

— GX%rg,, be the projection. We clearly have a map

Definition 4.4.14. Let X be a p-adic formal scheme, locally of finite type over
Spf Zy,, and let T be a coherent sheaf of ideals such that p € VZ. We let BLz(X) be
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the p-adic formal scheme obtained by taking the admissible blow-up of X at Z. We
let NBLz(X) be the normalization of BLz(X), this is the normalized blow-up.

Remark 4.4.15. The normalization of a formal scheme is well defined in our context
by [Con99], coro. 1.2.3.

Let Z,, be the sheaf of ideals of ﬁ@;{p}( givenby Z,, = {a € Os+ ,adetwy C

KP Kp,n
det w4}, We let G%TIC(’Z . =NBLz, (&%, ). Over G%Tfé‘z _, the sheaf det w*?
is locally free and moreover the map

AYHT,, : AY(Z/p"7)* — detwa/p™

induces a surjective map

9

AYHT), : AY(Z)p"7)?9 — detwyod /p"~ o1
(resp. AYHT), : A9(Z/p"Z)?9 — det wiod /p"=29 if p = 2).
Lemma 4.4.16. Let n > ng. We have a commutative diagram

*,mod *
6K”Kp,n+1 - GKpr,n-H

Y

where the vertical maps are finite. Moreover, h* det w°? = det w°? and h* AIHT,, (f;) =
AYHT,, (i) € OS0! detwyod [p"~7°7) (resp. € HO(Gp! | detwiod /pn=29)
ifp=2).

Proof. We first observe that Im(f*Z, — Og+

kap’nJrl) = 4n+1-
sal property of blow-ups, we have proper surjective maps BLz, &% Kpon XSiensc

: b
G;(”Kp,nﬂ — BLInJrlGj(,,KWL+1 — BLz, 6”;(”(17 . and the composite map is finite.

The map BLIn+16}<PKP,n+1 — BLLLG‘;{,,KWL is therefore finite, and so is the map

By the univer-

. ~*,mod *,mod : . * mod mod
h: 6Kpr,n+1 — GKT’K,),H' We have a surjective map h* det w}°* — det w’}

vertible sheaves. This map is therefore an isomorphism. The last compatibility fol-
lows from the property that f*AYHT,,(f;) = AYHT,,+1(f;) € HO(G}@KP detwy /p™).
O

of in-
n41’

We can similarly define 6;{2’?{‘2 for any open K, C K, ,. The ideal Z,, pulls

back to an ideal Zg, of &7, and we let 6}:}3? =NBLz, (Skuy,) UKy =K,n
for n > ng, we recover the previous definition.

We finally let 6’;&;”0‘1 = lim,, G}T};ﬁ _ where the inverse limit is taken in the
category of p-adic formal schemes. This inverse limit exists because the transition

morphisms are affine. In the limit we have a map AYHT : Angg — det w3°? whose

linearization is surjective. It follows that we have a morphism 7y : (‘B}’TOd —
P"—1. Let X1, -, X, be the homogeneous coordinates on P*~!. For all 1 <4 < r,
let 4; be the formal open subscheme defined by the condition X; # 0. Let U; be

its generic fiber.

Proposition 4.4.17. (1) The formal scheme G}’T(’d is integral perfectoid and
its generic fiber is the perfectoid space S, .
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(2) The Hodge-Tate map factors through a map wyr : 6;(’:,”0[[ — §Lq,, and it
induces the Hodge-Tate period map wur : Sicy — FLa,,u of section[{.4.10
on the generic fiber.
(3) For all1 < i <r, we have that 771}1T(Z/{Z-) is a good open affinoid subset of
Skep-

Proof. See |[PS16], proposition 1.15 and théoréme 1.18. This relies on the main
theorems of [Sch15]. O

Remark 4.4.18. For n large enough, the open subsets 71;&(1/{7;) come from open
subsets T (Ui) K, , < Skrk, - One can define ([Sch15], p. 1030) a formal model

6}}%:1”’ by gluing the formal schemes Spf H (7 (Ui) i ﬁ’;Kprm). We will

p,n

p,n’?

not use this formal model.

We can perform similar constructions with the toroidal compactification at level
K, C Kpn,- Namely, the ideal Ty, pulls back to an ideal Jk, of thg’;[{p’z. We de-

tor,mod __ tor . tor,mod
note by &, "y, = NBLy, (67, x). We have natural morphisms &7, "5, —
G*,mod
KPK,"

Remark 4.4.19. The space 63?2;(”:% is not exactly the space considered in [PS16].
Namely, in that reference, we considered further blow ups in order to make the
sheaf denoted w3°? in loc. cit. (the subsheaf of w4 generated by the image of the
Hodge-Tate period map) locally free.

tor,mod __ . tor,mod . e sgs .
Welet Sy = limy, GKPK,,,",E where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Proposition 4.4.20. The formal scheme 63?2:”5“ is integral perfectoid and its
generic fiber is Sip .

Proof. This follows from almost verbatim from [PS16], section A.12, taking into ac-
count remark [4.4.19| (the construction of the spaces appearing before [PS16] propo-
sition A. 14 has to be obviously adapted). O

We now let U — FLg,,, be a quasi-compact open subset. Our goal is to define
formal models for 75 (U) and (7i95) =1 (U).

We first need a formal model for ¢. By [Liit90], thm. 1.6, there exists an ideal
T of Ozs,,, and an open subscheme 4 of NBLz(§£¢ ;) such that the generic fiber
of Uis U.

We can define 6’}?27;0&1 — 6}’?&‘1 which is a formal model for (7t7.)~1(U) —
T(U) as follows. The ideal Z pulls back to ideals Z; and Zy of G'}?Z’f;()d and

(‘5}?0‘1 respectively. We now wish to consider the normalized blow up of Gt[?;”;‘)d

and G}(’;"Od at Z; and Z, respectively. We actually show that the ideals come from
finite level, perform the normalized blow-up at a finite level, and then pass to the
limit.

Lemma 4.4.21. The ideal Zy and Iy are pull backs of ideals Iy i, and Iy i, of
G?Z’?ﬁé and GETio(dpn for K, small enough.
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Proof. 1t suffices to prove the claim for Zo. We need to prove that 75 is locally
generated by K, ,-invariant sections for n large enough. First observe that the ideal
Z contains p® for some integer s. Over each standard affine {;, we have Z(Ll;) =

(81, »8k,i). We can find sections s} ;,--+, s, ; € HO (7 (Us), ﬁ;ﬁp) such that
) K

si; = sj; mod p*, and s’ ; comes from some finite level K, ,, by proposition 4.4.17]

(3). Thus, the s}, and p* generate T, over the image of T (Us) in Sy Kpn- D

We can therefore consider
NBL (Gtor,mod )
T1, Ky KPK,,%

and
NBLz, ., (G75%0)
for K, small enough.
We let NBLz, (83,5 = limg, NBLz, . (8%7%°%) and NBLz, (S3'%) =
limg, NBLz, KP(G’;;TEZE) (the limits are taken in the category of p-adic formal

schemes).
We have maps

NBLz, (87,2°%) — NBLgz, (637°%) = NBLZ(FLc,.)-

We let 61}?27;(’5 nd (‘5}’2’% be the preimages of 4. These open formal subschemes

tor,mod *,mod tor,mod
come from open formal subschemes &, s, o and GKPK wOof NBLz, , (S s)

and NBLgz, (G}Tﬁj) for large enough K, (the equations defining il are defined
at finite level).

4.4.22. The Hodge type case. We fix an embedding (G, X) < (GSpy,, HF) of a
Hodge type Shimura datum into a Siegel Shimura datum. Let V' be a 2g-dimensional
vector space over Q, equipped with a symplectic pairing so that G — GSpy, —
GL(V). We can view G — GL(V) as the group stabilizing a finite number of
tensors {so} € V® (where V® = ®p nez.,VE™ @ (VV)¥"). The group GSp,, will
be denoted by G in this section. All the objects corresponding to this group will
carry a ~.

Over Skrr, we have a pro-étale K-torsor represented by the tower of Shimura
varieties limg;ck, Skrky. By pushout along the map K, — G(Qp) we get a
G(Qy)-torsor.

One can give a more “modular” description of this torsor using the closed embed-
ding Sg < S %, where S 7 is a Siegel Shimura variety (over E) and the embedding
is the one induced by (G, X) < (GSp,, H;t) for a suitable compact open subgroup
K. The tensors {s, } can be used to produce sections {s,,, € H*(Sk,H;(4,Q,)®)}.
More precisely, one first produces tensors {s, g € H*(Sk (C),H;(A4,Q)®)} using the
complex uniformization of Sk (C). They give tensors {s, , € H*(Sk(C),H;(4,Q,)%®)}.
Lemma 2.3.2 of [CS17] proves that these tensors are defined over E. Therefore, we
can consider the torsor of isomorphisms V ®q Q, — H1(A,Q,), preserving all the
tensors sq p.

There is also the M, -torsor Myr over Sk. We recall its description. The ten-
sors {s,} can be used to produce sections {s, ar € H°(Sk,H1 ar(A)®)}. One first
define the Pjtd—torsor Pir, to be the the torsor of isomorphisms V ®q Os,, —
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H; 4r(A) matching the filtration on V' corresponding to Pitd with the Hodge fil-

tration, and preserving the tensors s, qr. By pushout along Pjtd — M,,, we have
std

Magr = Pyp x5+ M,,.
Remark 4.4.23. The closed immersion Sg < S  extends to a closed immersion
Mr < MdR where MdR is the Mj- “de Rham” torsor over S~

By pull back to the analytic space S§* we get a pro-étale G(Qp)-torsor
as well as a MJ"-torsor MGh

In section 2.3 of [CS17] the authors define two other pro-étale torsors over S¢*
P and Mg, under the groups P;" and My". These definitions extend those
given in the Siegel case (see section and use the tensors s, j,. Moreover,
Pop. xPu" gon = gan < G(@) gan and My, = Pifr xPu" Man. By [CSIT], prop.
2.3.9, there is a canonical identification of torsors M3} and M%%. up to a cyclotomic

pet P

twist via p. Namely, the precise identification is MG% x* Zy 7, p(1) = M.

4.4.24. Perfectoid Hodge type Shimura varieties. By [Schl5], there is a perfectoid
space Sifp ~ limg, Sgh g . Since the torsor GJ7%i |, becomes trivial over Sg7,, we
obtain a Hodge-Tate period map ([CS17], thm 2.1.3): wgr : S¥ — FLg,, which

G(Qyp)-equivariant.

A key property is that the pull back of the M- torsor g‘m/Upﬁn — FLq,, via
mhr is MY and this is canonically identified with the pull back via Sifp — Sk
of M%% up to a cyclotomic twist via u.

Moreover, the relation with the Siegel datum is expressed by the following dia-
gram, where the horizontal maps are closed immersions:

an an
Sy —— S[{p

.

FLau Hfﬁéﬁ

4.4.25. Compactifications in the Hodge case. For any compact open K C G(Ay), w

have the minimal compactification Sy and there is a finite surjective map 83, — S*?
where St is defined before [Sch15], thm. 4.1.1. This is the schematic image of the
morphism Sj — 5;% where S}i( is the minimal compactification of the Shimura
variety for G, and K is a small enough compact open subgroup of é(Af) such
that K N G(As) = K. By [Sch15], thm. 4.1.1 there is a perfectoid space S ™~
limp, &% and there is a map mgy7p : 8% — FLg,,. Strictly speaking the map

KPK,
constructed in [SchiB|, took values in FLg ;. Since FLg, — FLg ; is Zariski
closed and the map is known to factors through 7L, over the Zariski dense open
subset S, by [CS17], thm 2.1.3, we deduce that we have a map 7y : S
FLg

Since the tower {SKPK }k, carries a G(Qp)-action, the space St inherits a

G(Qp)-action, and the map g is G(Qp)-equivariant. Moreover, the map mgr is
affinoid in the sense that there exists an affinoid covering FLq , = U;V; such each
ﬂﬁ%(Vi) is a good affinoid perfectoid open subset of S (see definition .
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We also know that there is a perfectoid space Sy, = limg, S}}g K, (this last
inverse limit is taken in the category of diamonds) by [BS22|, thm. 1.17. We
therefore have a G(Qp)-equivariant map Sk, — Sk It is not known whether

kp ~ Im Sk g in general.

By [Lan22] thm. 2.2, for a cofinal subset of cone decompositions ¥, we have

a perfectoid space Si25 s, ~ lim S k,,x- More precisely, for each such cone de-

composition X, there exists a cone decomposition ¥ and a closed immersion of
perfectoid spaces S% s < S}?; - Let us call these cone decompositions perfect

cone decompositions because they give rise to perfectoid toroidal compactifications.

Remark 4.4.26. We did not prove that there is a perfectoid space SiZ 5, ~ lim S%’ZKWE
for any cone decomposition ¥. It seems likely that one could reproduce the argu-
ment of [PS16] in the Hodge case, using the explicit description of the boundary of
the integral toroidal compactifications given in [MP19].

For a perfect cone decomposition ¥, we have a series of maps S 5, — Sg» —
Sz and we therefore get a map 777 : S v — FLGy-

The relation to the Siegel Shimura varieties is given by the following diagram
where all horizontal maps are closed immersions:

.7:[,@7” —— .7:[,@’,1

Using the map 79%. we can define a canonical extension of the torsors P and

U to S 55, by simply by pulling back the universal P2"-torsor over FLg,,, and
pushing out along the map P;" — M{"™. There is also the torsor Mg% over S}é’fz
which is pulled back from the map SiZ} s, — Si&F Kk,,n- Lhe following proposition is
corollary 5.2 of [EH19].

Proposition 4.4.27 ([EHI9|). The torsors M%t. and ( g%x“z; Zp(1)) X stor

KPKp,2
Sier <. are canonically isomorphic.
:

Proof. Let us denote by M the restriction to Sier 5 of the torsor A9 5 P25 7, (1) =

Y 4 defined over the Siegel perfectoid Shimura variety S &» 5~ By construction, M
is a Mg"-torsor. The two torsors M and Mgp x 2y Zp(1) are Mj"-reductions
of this torsor. They coincide over S} by [CS17]|, prop. 2.3.9. But M. (resp.
My x Ty Zp(1)) is equal to the Zariski closure of M§py|san (resp. Mgk x Ly

Zp(1)|san, ) in M. Therefore, these torsors have to coincide everywhere. O
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Remark 4.4.28. These isomorphisms of torsors (for varying K? and ¥) are compat-
ible with the action of G(Ay) acting on limg» s S 5, (which lifts to an action on
both torsors on the limit).

4.4.29. Integral models in the Hodge case. We need to consider formal models. This
section is entirely parallel to section 4.4.13] Let K = KPK,, with K = K N G(Ay).
Suppose that K, C G(Z,). We can define Sxrk,, G, , and 65, 5 as the
normalizations of &, é}(, and é’;i(’ri in Skrk,, Skri,, and Ster K,,x respectively.

e *,mod tor,mod . .
Similarly, for K, small enough, we define G}, K, Srp K5 S the normalizations

of 6* o4 and Gtw ™ol in Sk, k, and Si s respectively. Alternatively, these
can also be constructed as normalized blow ups of &,y and & Kk, for the
ideals IKP and J; K, which are the pull back of the ideals 7 and Jjz from St

~ g P P K
and th”“

We let (G mod _ Jim K, 6}’;}0(?, where the inverse limit is taken in the category of
p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine. In the limit we have a map G}, ymod _, 6* mod and therefore a map

mod
THT 6 — %”Q’G,ﬁ

mod

Proposition 4.4.30. The Hodge-Tate map factors through a map wur : G —
SSG,,U.

Proof. One first checks that the space &79¢ (the complement of the boundary
in 8% mOd) is integral perfectoid and its generic fiber is the quasi-compact open
perfectoid Shimura variety Sgr. This follows from the Siegel case, using that
Skr — S %» 15 a Zariski closed immersion. Therefore the factorization of the
period morphism through §£s ,, holds over the Zariski dense subspace 6}’;2‘1, and
thus everywhere. O

Remark 4.4.31. We do not know if &37'°? is integral perfectoid.

tor,mod __ 1. tor,mod . el .

We let & Kry = limg, Gy Ky where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Gtor mod -

Proposition 4.4.32. Assume that X is perfect. The formal scheme &Sy, 5™ is

integral perfectoid and its generic fiber is 3%5,2'

Proof. This follows from the Siegel case. (]
Remark 4.4.33. We do not know if G?Z’gw is integral perfectoid for all X.

We now let U — FLg,, be a quasi-compact open subset. It is induced by a
quasi-compact open subset U of FLs i Our goal is to define formal models for
Tar(U) and (wigp) " (U). )

There exists an ideal Z of Oz . . and an open subscheme 4 of NBLi(Ssé,pé)

such that the generic fiber of PisU.

*,mod tor,mod . .
For K, small enough, we define &7}, Kyt (Gt K,5,u 3 the normalizations of

é;é";fd and ét}gr’imgd in 75 (U) and (7497.) "1 (U) respectively. Alternatively, these
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. . . d
can also be constructed as suitable opens in normalized blow ups of &35 and

63?:?:% at the ideals 7 r, and Iy i, which are the pull back of the ideals 7,

< *x,mod ~tor,mod
and I27Kp from 61”( and 61”(,2 .

4.4.34. Description of toroidal compactifications. The following theorem shows that
the spaces &%) Kp5 G?Z’}?ﬁ% and thgz’;{n:%,u admit the usual description at the
boundary in terms of certain formal charts. The case of &%, k,,x is available in
the literature. The other cases are deduced from the case of &%, K5 by tracing
down what happens with the various normalized blow ups at the level of formal
charts. This is possible because the Hodge-Tate period map behaves nicely for
degenerations of abelian varieties, since the Hodge-Tate period morphism for étale
and multiplicative p-divisible group is trivial. We recall that blowing up &%, Kp.®

Gtor,mo

. tor,mo
at Jk,, we obtain &,y 6

dz and that blowing up &/, Kp,dz at 7y , and passing to

ot d
an open formal subscheme we obtain & I?ZV;(nZz,u

)

Theorem 4.4.35. (1) Let K = KK, with K, € G(Z,). We have a decompo-
sition 6%, 5, = |1y Zr (®) into locally closed formal subschemes, indexed

by certain cusp label representatives ®.
— Zi(®)
(2) The formal completion thgng_’E “ admits the following canonical de-

scription:
e There is a tower of p-adic formal schemes:

Sk (Qa, Do) = Sk, (Qas Do) — Sky(Gap, Do)

where Sk, (Qa, Da) — Sk, (Qo, Da) is a torsor under a torus Ex (®),
and Sk, (Ga n, Do 1) is an integral model of a lower dimensional Shimura
variety.

o There is a twisted torus embedding Sk, (Qas, Do) = Sk4(Qa, Do, X(P))
depending on X.

e There is an arithmetic group Ag(®) acting on X*(Ex(®P)) and on

SKq) (Q‘i’y D‘I)) — Squ (Q‘I’) D‘I’? Z((D))
o We have a Ak (®)-invariant closed subscheme Zy, (Qs, Dy, 5(P)) —

SK@ (Q@a D¢'7 E((I)))
o There is a finite morphism Sk, (Gs n, Do n) = G-
o There is a series of morphisms:

Zko(Qa, Do, S(®)) = Sk (Qps Do) = Sky(Gapn, D).
o We have a canonical isomorphism Zx (®) = Ag (P)\Zk, (Qs, Do, X(P)).
e We have a canonical isomorphism
7 (®) —
SKs ~ Ak (®)\(Sky (Qa; Do, X(P))

(3) For small enough K,,:
e 7 (®

)
o The ideal Jk, restricted to &%y, is the pull back of an ideal
Jk,.» of Sky(Ga ny Do p).
o Let Z72°4(Qa, Do, S(®)) = NBLy,. ,Zr, (Qa, Do, S(®)) and Z3°*(®) =
Ag(PNZ7NQg, Dy, X(®)). We have a decomposition 63?2’;?:% =
[T ZR(®).

Zk4(Qe.De,2(2))

).
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o Let STKngd(G¢,h,D¢,h) = NBLJKP,@(SK@ (G‘i’,hde),h))- We have a ﬁ—
nite morphism S%gd(G¢7h, Dg ) — G%lei
o Let SR4(Qg, Da) = NBLy, ,Sks(Qas Do), SR (Qa, Da) = NBLy, Sk, (Qa, Da)
and S72%(Qa, Do, X(®)) = NBLy,, 4 Sk, (Qe, Do, X(®)). The map
ST Qq, De) — SR Qg, De) is a torsor under the torus B (P)
and the map ST (Qe, Do) — SR (Qa, Do, () is a twisted torus

embedding.
e We have a canonical isomorphism

—— ZR°N(®)

K —_—
Sy ~ A (@)\(SRe(Qa, Do, 2(P))
(4) For all small enough K,:

272" (Qa. D 5(®))

— ZpeN®)
o The ideal I, g, restricted to G?T’Zm"d is the pull back of an

ideal Ty i, & of S%gd(ch’h, Ds ).
o We have a decomposition 67}?2}(":‘12# = [1p Z7o%( @)y where Z7°4(P)g
is an open subset of NBLz, (Zmed(P)).
e There is an open subset S%gd(Gq,,h, Do 1)y ofNBLILKp,(b(S}’(L;d(G@’h, Dg 1))
such that we have a finite morphism S?gd(G¢7h,D¢7h)u — 6;(’2";;?&.
e There is an open subset ST (Qg, Do)y of NBLIl,Kp&S%gd(@@,E@),
an open subset ST (Qq, Do)y = NBLIl,Kp‘q)S’I’(Lgd(Q@,D@) and an
open subset ST (Qq, Do, X(®))y of NBLILK%@S%gd(Q@ Dy, % (D))
and the map S7°(Qq, Do)y — SH(Qq, Do)y is a torsor under the
torus Ex (®) and the map SE°(Qa, Do)y — SH(Qa, D, X(P))y
is a twisted torus embedding.
e There exists an open subset Z7°(Qq, Do, X(P) )y ofNBLILKPYCD(Z?gd(Qq,, Dg,%(®)))

such that we have a canonical isomorphism

ZReN(®)u

nggfd ~ Ak (®)\ (S Qs Da, B(®))u

Z}?;d(Q%D%E(‘I’))u

Remark 4.4.36. The main observation needed to prove this theorem is the property
that the ideals Jk, and 7y g, come from ideals 7, K, and 71 i, ¢ on each formal
chart (first item in (3) and (4)). This is reminiscent of the concept of well positioned
subset or subscheme of [LS18§]|, def. 2.2.1.

Proof. The first two items follow from [Lan17|, [MP19] or [PS16] (for principal level
structures in the Siegel case). The point (3), follows from [PS16], section A.12 in
the Siegel case, the Hodge case is similar. It remains to check the point (4). The key
— Zmed(9)
property is that the ideal 7 g, restricted to Gt;g'wd - is the pull back of an
ideal 7; f, @ of S%gd(Gq>, n, Do ). The rest follows easily. We argue as follows. Let
® be a cusp label at some finite level K¥ K,,. We pick a cofinal sequence of compact
open subgroups {K,, C K,}nez.,, we let {®,}, be a compatible sequence of
cusp label of level KPK,, ,, mapping to ®. We let Z7¢%(®,.) = lim,, Z}?,?}i(p’n(‘l)n).

We can consider the completion of G?Z’g"d at Z79%(®,). Then we have a map

— Z7N(Poo)
tor,mod mod mod : :
GKP,E — SKg (G@yh,Dq)’h) where SKg (G<I>,h7D<I>,h) 1S a perfectmd
oo oo
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formal scheme attached to a Shimura datum of lower dimension. Moreover, we
have a factorization of the Hodge-Tate period map as follows (compare with [CS24],
coro. 4.2.2):

28 (P jtor

tor,mod HT
6Kp,2 > S’QG,M

d THT
S?% (G@JH D‘I%h) - gsG@,h,MG@h

The sheaf of ideals 7 of §£ restricts to a sheaf of ideals Zg of SSGQ}M% L We

- Z?gd(q%O)

deduce that at infinite level, the sheaf Z; restricted to 6’}?2’)7;‘” is the pull

back of a sheaf of ideals 7; ¢ on Spgd (Go.n, D p). We can then prove that Z; ¢
Too

comes from finite level K, as in lemma [£.4.21] O

Theo?em 4.4.37. Consider the map 7 : 63?;’}?:1272[ — 6;(”;"}3?73. Then we have
that R, O gior,moa (—=nD) =0 for alli >0 and n > 1.

KPKp, 2,4

Proof. The proof of theorem transposes verbatim, given theorem [£.4.35] [

4.4.38. General Shimura varieties. We now extend part of the preceding to general
Shimura varieties. For the moment, let (G, X) be an arbitrary Shimura datum
and let K = KPK,, C G(Ay) be a compact open subgroup. We consider the
compactified Shimura variety S}?”E For any algebraic representation W of G¢, we
have a local system on the pro-kummer-étale site YW, as well as a filtered vector
bundle with integrable log-connection Wyr. We need some period sheaves relative
to S§2%, (see [Schi3bl, sect. 6 and [DLLZ23|, sect. 2): B, Bar, ﬁBz{RJOg and
OBar,10g- The following property is a consequence of [DLLZ23|, thm. 5.3.1. The
local system W, and the filtered vector bundle with integrable log-connection Wyr
are associated ([Sch13b], def 7.5) in the sense that there is a canonical isomorphism
compatible with filtrations, connection and Hecke action:

Wy ®q, OBar,iog = War ®6

S

tor. OBdR log
K,z
Remark 4.4.39. This identity is a consequence of the comparison theorems for
(semi)-abelian varieties in the Siegel case. In the Hodge case and outside of the
boundary, it is proved in [CS17] section 2.2 and 2.3, as a consequence of the com-
parison theorems for abelian varieties, together with results on Hodge tensors under
comparison isomorphisms due to [Bla94].

Using this canonical isomorphism, we define the Hodge-Tate filtration on W, ®
ﬁ’s?& as follows. Let M = W, ®q, B(’;R’log and My = Wyr ®@S?& ﬁIB%;RJOg)VZO.

These are two BZ{R—local systems and are lattices inside M ®Ed+R Bar = My ®B§R
Bgr. There are therefore two filtrations on this Byz-local system Fil‘M and Fil'M.
One defines an ascending filtration by:

Fil_jW, @q, Osier. = (MNFVMP)/(Fil'M N FiM°).
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and we have the relation

Gr;W, ®q, ﬁgi\gj (j) = Gr]WdR ®@Stor ﬁS}é’,"E'

This construction is functorial with respect to the Hecke action and compatible

with the Tannakian formalism. One can therefore derive consequences at the level

of torsors. Over Si's;, we have a pro-kummer-étale G°(Q,)-torsor G537, | as well

as a principal G“*"-torsor GJp (defined over the étale site). The torsor Gip has a

reduction of structure group to a Pﬁtd’c’a"—torsor (corresponding to the ﬁltratlon
on Wyr) that we denote by Pj5, and we have

»Pstd c,an

c,an
dR_PdRX H Mp‘ .

On the other hand, the torsor g7, , x G (@) Gean hag a reduction of structure
group to a P;*"-torsor (corresponding to the filtration on W), ®q, % Ster, ) that we

denote by P+, and we define
fr = Phr x P MC >,
We have the identification of torsors on the pro-étale site M%7, = MR x* o/ ( ),
compatible with the Hecke action. This implies that a cyclotomic twist of M is
already defined on the étale site.
We can consider the inverse limit in the category of diamonds S§§;‘ % = limg, S;?,f ﬁp,Z‘

To summarize the situation, we have the following theorem, which is really a
consequence of [DLLZ23|, thm. 5.3.1.

Theorem 4.4.40. The torsor G&7,  is trivial over S;?;’g, and we therefore obtain

i pet,p
a morphism:

t
T S = FLa-

Moreover, the pull back of the torsor ng“"/Upﬁn — FLq, via T : Sﬁ(o,f% —

FLa, is My, and this is also the pull back of MGy via the map S;g;% —

S%ng,E: up to a cyclotomic twist by p.

We have thus extended the picture to the case of general Shimura varieties at the
expense of working with diamonds. This is unfortunately not enough information
for our purposes. In particular, we need to address the question of affineness of the
Hodge-Tate period map. For this reason, we restrict to abelian type Shimura data
and work out the connection between abelian and Hodge type Shimura varieties in
the next section.

4.4.41. Abelian type Shimura varieties. We now consider an abelian type Shimura
datum (G, X). This means that there is a Hodge type Shimura datum (G, X1)
such that there is a central isogeny G¢¢" — G%" inducing an isomorphism of the as-
sociated connected Shimura data (G, X*) and (G$%, X|") (see [Mil05], definition
4.4).

We recall a nice way to connect the Shimura data (G, X) and (Gy,X;) from
[ILov17], section 4.6. Let E be the composite of the reflex fields of both Shimura



HIGHER COLEMAN THEORY 81

data. One can construct a diagram of Shimura data

(B17X31) - (BvXB)

| i

(leXl) (G,X)

where B; — G and B — G induce isomorphisms B{" ~ G{¢" and Bde" ~ Gder,
and the map B; — B is a central isogeny.

Actually B; = G, X gab Resg /@Gy, for a suitable map Resg /oG, — G‘fb induced
by the cocharacter ug,. We let T'= Resg /oG-

Since we are going to deal with several Shimura varieties at the same time in this
section, we change our notation, and denote by S(G, X )k the Shimura variety at-
tached to a datum (G, X) and compact open K. We will similarly write My (G, X)
rather than Myg, etc. We also adopt the standard notation that for H/Q a reduc-
tive group, H?¥(Q)* is the intersection of H*¢(Q) with the identity component of
H(R), while H(Q) is the preimage of H*¥(Q)* under H(Q) — H*(Q).

Let us first recall some classical results. We choose connected components
Xgl, X'g, Xi" and X+ compatibly with our morphisms of Shimura data. This
allows us to identify the set of geometric connected component of a Shimura va-
riety S(H, Xpg)x with H(Q);\H(Ay)/K. We let S°(H,Xp)k be the connected
component corresponding to the class of 1 (we allow ourselves to extend the base
field). We have SO(H, X )k (C) = I'x\X;; where 'y = H(Q); N K. We adopt
the same notation of adding a supscript 0 for the connected components of minimal
and toroidal compactifications.

We recall a functoriality between Shimura data and compactifications. Let g :
(H,Xpn) — (S,Xs) be a morphism of Shimura data. We assume that g induces
an isomorphism H% = S, Let K' C H(Ay) and K C S(Ay) be compact open
subgroups such that g(K’) C K. Let ¥ be a cone decomposition for S.

Proposition 4.4.42. The following point are satisfied.

(1) The morphism S(H, X))k — S(S, Xs)k is finite étale.

(2) The cone decomposition ¥ for S induces a cone decomposition for H and
the morphism S*"(H, X )k 5; — S (S, Xs)k,» is finite.

(3) If g(K') is normal inside K, the morphism S°(H, X )k — S°(S, Xs) Kk
is Galois with finite group A(K,K'). The action of A(K,K') extends to
an action on S*™O(H,Xpy)k: x, and S*"0(S, Xg)k 5 is the quotient of
StorO(H, X )+ by the action of A(K, K').

Proof. For the first point we reduce to check this on connected components over the
complex numbers. We have X;; = X& = XT. We have S(H, Xg)r = X /T
and S°(S,Xs)xk = XT/T'x. The images of T'yy and I'y in H*(Q)*, denoted
respectively T%¢ and T'¢%, are arithmetic subgroups by [Mil05], prop. 3.2. We
deduce that T'%¢ has finite index in ['%¢. We next claim that ¥ also induces a cone
decomposition for H. By our assumption, the map P + g~!(P) induces a bijection
between the rational parabolics of S and H and this is basically all we need. See
[Har89|, sect. 2.5. The finiteness of the map follows from the description of the
local charts. For the last point, the group A(K, K') is %4 /T'%4. By normality, the
action of A(K, K') extends and the last point follows. O
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We also recall a construction of fiber products of torsors. Let S be a scheme and
let Hy, Hs, H3 be three group schemes with morphisms H; — Hs and H3 — Hy. We
assume that we have H;-torsors P; over S and isomorphisms 6y : Pp, x 1 F, ~ Py,
and 63 : Py, x* Hy ~ Pg,. Then one can form Py, x 1, Hs = PHy X Py, P, which
is an Hy X g, H3 torsor.

Theorem 4.4.43. The following points are satisfied:

(1) The towers of connected components of the Shimura varieties limgc g, () S%(By, Xp,) K
and limg ca, (a;) S%(G1, X1)k are canonically isomorphic. The same holds
for the minimal and toroidal compactifications.
(2) Let KP C By (A’}) be compact open. There exists a compact open subgroup
(KP)" C G1(A}) such that we have a finite étale Galois morphism:
li SYUGy, X)) (kry i — i S%By, X, ) krK, -
K;glGnll(Qp) (G1, X1) (kry iy Kpggl(Qp) (B1,XB,)KrK,
(3) Let K C B1(Ay) be a compact open subgroup and ¥ be a cone decomposition
for Gi. There are compact open subgroups K1 C G1(Ay), Ko C T(Ay),
K3 C G{"(Ay),

S (By, Xp, ) k.x —— S (G1, X, ) e, =

S(Tv XT)KQ - S(G%ba XG‘II”)K:s

Denote by 73 : S*"(B1, X, )iz — S(GSY, Xgav) iy The torsor Mar(Bi1, Xp, )
over S’t"T(Bl7 XBI)K;)KP,E is canonically isomorphic to the fiber product

ﬂfMdR(Gl,Xl) XﬂgMdR(G‘fb,Xc%b) ’/TgMdR(T, XT)

(4) Let g : B1 = G. Let K C G(Ay) be neat open compact. There exists a
compact open subgroup K' C Bi(Ay) such that g(K') C K and the mor-
phism S°(B1, Xp, )k — S°(G, X))k is finite étale and Galois with group
A(K,K').

(5) Let X be a cone decomposition for G. The torsor Mar(G, X) over S*™%(G, X))k »
is the quotient by A(K, K') of the torsor

Mag(By, X1) x e M

over StOT’O(Bl,XBl)K/’E.
(6) Let K» C G(A%). There evists a compact open subgroup (K')P C By (A})
such that g((K")?) C KP and the morphism

li S%(B;, X li SYG, X) ke
Kégg?(@p) (B, Bl)(K)Kp%Kpglg%Qp) (G, X)krK,

is finite étale and Galois.

Proof. We recall that for a reductive group H defined over QQ, the topologies on
H(Q)7T defined by the images of congruence subgroups of H(Q), and H%"(Q)
are the same. This implies that the connected components of the tower of Shimura
varieties is determined by the connected Shimura datum. By construction, the
datum (G§°", X;F) and (B‘fer,Xgl) are the same.
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We now check the second point. Let us fix a decreasing sequence of compact
open subgroups K, C B1(Q,) with N, K, , = {1} and K, , normal inside K, 1.
Let K;,i be the image of K, , in B{%(Q,). Let I';, = B1(Q)4+ N KK, ,, and let
I'¢d the image of I',, in B§4(Q)™.

By the first point, there exists a compact open subgroup (K?)'K} ; C G1(Ay)
such that I = G1(Q)4 N (K?)'K], ; has the property that its image in B{#(Q)" is
a finite index normal subgroup of I'¢¢. Actually, we may also choose I'j such that
I} € G{"(Q), (this follows from the fact that G is of Hodge type, hence G$*(Q)
is discrete in G{*(Ay)).

We may also assume that the map G9¢"(Q);, — B¢4(Q)* induces an isomor-
phism from T"} to its image (indeed, the kernel of this map is finite). Let us denote
by I, = T2¢NTY. Let A, = '%/T" . Clearly A,, — A, is injective and therefore
A =lim, A, is a finite group.

Since the map G{*"(Q,) — B¢(Q,) is a local homeomorphism, there is for n
large enough a subgroup Kgﬁf C G{"(Q,) which maps isomorphically to Kg,‘fl,
the image of K, in B{*(Q,). We deduce that I'j, = T') N KJ". Finally, we can
find a decreasing sequence of compact open subgroups {K,,,, C G1(Q;)} such that
ﬂnKZI])n = {1} and Kz/)7anllie7,(Qp) = Kg?{ We deduce that th;’:,n SO(Gl, Xp, )(Kp)le,mt —
limg, , S°(B1, XB,)krk,,, is finite étale with group A. For the third point, using
the various functorialities of Shimura varieties (see for instance [LovI7], lemma
3.1.6), we see that we have a map of torsors

Mar(Bi1, Xp,) — 71 Mar(G1, X1) X Man(GE X gg1) w3 Mar(T, Xr).

and a map of torsors is an isomorphism. We check the fourth point. We can
find a normal compact open subgroup K’ C g~ !(K) and we apply proposition
{442 The fifth point follows again from the functorialities between Shimura va-
rieties. We now check the last point. Let us fix a decreasing sequence of compact
open subrgoups {K,, C G(Q,)} with N, K,, = {1} and K, ,, is normal inside
K,1. Let us define I';, = G(Q)+ N KPK,,,. Let us fix a compact open subgroup
(K"K, C Bi(Ay) with g((K')PK}, ;) € KPKp,. Let K, = g~ (Kpn) N K}, ;.
Let Kder — K! N Bir(Q,). Let I, = Bi(Q)y N (KPYK),,. Let I'der —
r,n Bl(Q)i”. For any of T',,, I/, T, we add a subscript ad to mean their im-
age in G*(Q)*. We see that (['d°r)ed C (I7)34 C T are all arithmetic sub-
groups. Let A,, = I'2¢/(T'der)ad We see that A, — A,_; is injective and therefore
A =lim, A,, is a finite group. We observe that N, K1 = Ker(B{*"(Q,) — G(Q,))
is a finite group. Let us fix a compact open subgroup L, C Bf”((@p) such that
L, N Ker(B{"(Q,) — G(Q,)) = {1}. We let T'%"" = 9" 0 L,,. The morphism
lim,, D%\ X+ — lim, T',\X* is finite étale and Galois. Since this map factors
the map ]imK{ggBl(Qp) SO(B1,XB1)(K’)PK;)(C) — thng(Qp) SO(G,X)K;:KP((C),
we conclude.

(]

In this paper, we will be able to reduce a number of statements (and in particular
vanishing theorems) on abelian type Shimura varieties to the Hodge type case using
the following principle:
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Principle 4.4.44. (1) We can extend a construction (eg. of a torsor) from the
Shimura variety for (G1,X1) to the Shimura variety for (By, Xp,) by per-
forming a (trivial) construction on the Shimura variety attached to T' and
using the identity MﬁBl = MﬁGl X ppabe T

na

(2) The torsors we construct on a connectedlcomponent of a Shimura variety for

(G, X) is obtained from a torsor on a connected component of the Shimura

variety for (B, Xp,) by pushing out along the map B — G° and taking
the quotient by a finite group.

We work until the end of this paragraph over the algebraically closed field C ~ C,,
(this means that all Shimura varieties are base changed to C,). This simplifies our
treatment of connected components of Shimura varieties. We also recall that the
rationality questions with respect to the reflex field are irrelevant for us.

The principle is based on the following theorem:

Theorem 4.4.45. There is a commutative diagram

S*(BMXBl)

e

S*(G1, X1) S*(G, X)

\/

FLa,

where §*(B1, Xp,), S*(G1,X1), and S*(G,X) are perfectoid spaces represent-
ing (in the category of diamonds) limyx S*(B1, Xp, )k, limg S*(G1, Xa, )k, and
limg S*(G, X) k. The maps are equivariant for the respective actions of B1(Ay),
G1(Ay), and G(Ay). The three maps to the flag variety FLG, = FLG, po, =
FLB, up, are Hodge-Tate period maps, and the composite map SrO(G, X))y =

limg SP%(G, X))k — S*(G, X) — FLg,, is the map 7495, of theorem |4.4.40),

Remark 4.4.46. In the course of the proof, we also introduce spaces 3*(G,X) =
limg S*(G, X )7 which depend on the embedding of (G1, X1) in a Siegel datum.
We have finite maps S*(G, X)x — S*(G, X )7 which are isomorphisms away from
the boundary. We prove that 3*(G, X) ~ limg 8*(G, X )% and that the map wgr
factors through an affinoid map 7y : ?(G, X) — FLq - See proposition

Remark 4.4.47. Perfectoid (minimal compactifications of) abelian type Shimura
varieties have been constructed for the first time in [HJ23|. Since we also need to
construct the Hodge-Tate period map and prove several compatibilities, we give a
complete argument. The argument is very similar to [HJ23| in the sense that this
is a reduction to the Hodge type case.

4.4.48. Proof of theorem[{.4.45 We first briefly recall how to reconstruct a Shimura
variety from its connected Shimura variety following [Del79], section 2.1. Let (G, X)
be a Shimura datum. The center Z(G) of G is simply denoted by Z unless some
confusion may arise.

The inverse system S(G,X) = limg S(G, X)k has a right action of the group

A(G) = G(Af)/Z(Q) *q(q), G**(Q)". Here Z(Q) is the closure of Z(Q) in G(Ay).




HIGHER COLEMAN THEORY 85

Remark 4.4.49. 1f Z, = {1}, then Z(Q) = Z(Q). If the morphism G(Q) — G*¢(Q)

is surjective (for example, if Z(G) is a split torus), then A(G) = G(A;)/Z(Q).

There is a canonical bijection mo(S(G, X)) — G(Q)+\G(A[) of right A(G)-
profinite sets where G(Q)4 is the closure of G(Q)+ in G(Ay). This is also the
completion of G(Q)4 for the topology where a basis of open neighborhoods of the
identity is given by the congruence subgroups of G(Q) .

Let us pick 1 € G(Q)+\G(Ay) and let S°(G, X) — S(G, X) be the connected
component corresponding to 1. This is the tower of connected Shimura varieties.
The stabilizer of S°(G, X) for the action of A(G) is A°(G) = G(Q)+/Z(Q) *c(q),
G*(Q)* and we have the formula:

S(G,X) = [5G, X) x AG)]/A*G)

for the action (s,g).h = (sh,h™1g). One important observation is that S°(G, X)
depends only on the connected Shimura datum (G9", X ) and the group A%(G) de-
pends also only on G%". More precisely, we have that A°(G) = G (Q) + *Gder (Q) 4
G (Q)*, and A°(G) is therefore the completion of G24(Q)* with respect to the
topology where a basis of open neighborhoods of 1 is the images of congruence
subgroups of G%"(Q),. We have that S°(G,X) = limg S°(G, X)/K where the
limit runs over the compact open subgroups of G4 (Q),, and (S°(G, X)/K)(C) =
L \X T where T'x = G*"(Q)L N K.

Of course, there is also a simpler formula: S(G, X) = [S°(G, X)xG(Af)]/G(Q)+,
but the disadvantage of this formula is that G(Q)4+ depends on G!

All of this extends to the minimal compactification since a Shimura variety and
its minimal compactification have the same connected components, and group ac-
tions extend by normality of minimal compactifications.

We now go back to our Hodge type datum (G1, X1), and we fix an embedding
in a Siegel datum (é,X) Attached to this fixed embedding, for any compact
open K we have the minimal compactification S*(G1, X1)x together with a fi-
nite surjective map to S*(G1, X1)z, where S*(G1, X1)% is the schematic image of
S*(G1,X1)k — S*(G,X) g for all small enough K with K N G(A;) = K. Let
us denote S™ (G, X;) = limg S*(G1, X1)%- For the Siegel datum (G, X), we have
that A(G) = G(A;)/Z(G)(Q). We deduce that the closed subgroup A(G;) of
A(G) acts on S*(Gy,X;) and S*(Gy,X1) in a compatible way. We also deduce
that the Hodge-Tate period map S*(G1, X1) — 3*(6'1, X1) — FLG, pg, 18 A(Gy)-
equivariant (by reduction to the Siegel case). We remark that the A(G1)-action on
FLG, e, factors through the map A(G1) — G4 (Af) — G49(Qp).

We are now ready to extend things to (B, X, ). First, we have that S*(By, Xp,) =
[S%0(Gy, X1) x A(B1)]/A%(By). We may also define " (By, Xp,) = [S™° (G1, X1) x
A(By)]/A°(By). By taking K-invariants, we define S*(By, Xp, )%= = S (B1, X5,)/K.

Our first lemma is:

Lemma 4.4.50. There is a perfectoid space S*(B1, X, )77 ~ limg, S*(B1, X, e
and a perfectoid space S*(B1, Xp, )g» = limg, S*9(By, XB,)KrK,-
Proof. We prove the first statement. Fix a compact open subgroup K, C B1(Q,).

It acts on the scheme S*(Bi, Xp, )%, and it acts on the connected components
with finitely many orbits. We choose representatives for the orbits, which are all of
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the form S*°(By, Xp,) for suitable elements k; € Bi(A%}). Let S(k;) be the

k;KPk; !
stabilizer of the connected component S*°(By, Xp, )W in K. This is a closed
subgroup of K. We deduce that S*(Bi, X, )5 = H;[S*’O(BLXBl ) T X
Kp]/S(ki).-

By theorem [4.4.43) (2), we can find compact open subgroups (K})" C G1(A%)
such that we have finite morphisms S*’O(Gl,Xl)W — S*’O(Bl,XBl)W,
identifying S*°(By, X3, )W as the quotient of S*’O(Gl,Xl)W by a finite

group.
Now we pass to analytic geometry. It follows from lemma and the results
of [4.4.25| that the $*%(G1, X1)r=m are perfectoid. We deduce from lemma W

that the S*0(By, XBI)W f(;r{é )perfectoid spaces.

We now want to define S*(B1, Xp, ) %7 = [[,[S*°(Bx, XBl)W x Kp)/S(ki).
The product S*°(By, Xp, )W x (K,/S(k;)) is a perfectoid space, being the
product of a perfectoid space with a profinite set. Checking that S* (B, Xp, )z ~
limp, S*(B1, Xp, )z, is now an easy exercise, again using We deduce
that S*(By, Xp, ) k» = limg, S*°(B1, Xp,)krk, by [BS22], thm. 1.17. O

We can now construct the Hodge-Tate period map.

Lemma 4.4.51. We have a Hodge-Tate period map
THT 8*(B13X31)Kp — 8*(B1aXB1)ﬁ — ]:ACBDMBI

which agrees on connected components with Hodge-Tate period map for G1. The
Hodge-Tate period map is B1(Qp)-equivariant and Hecke equivariant away from
p. The map S*(B1, X, )5z — FLBy up, 8 affinoid in the sense that FLp, 115,
has a cover by affinoid opens whose preimages in S*(B1, Xp, )iw are good affinoid
perfectoid opens.

Proof. We may pass to the limit over KP and consider the map g*(Bl,Xgl) =
[$(Gh, X1) X A(B1)]JA°(B1) = FLp, 0, sending (z,a) € 8 (G1, X1) x A(By)
to a.mgr(r) where mur(x) € FLBy s, = FLG ug, and A(B1) acts via its
quotient B{4(Q,) on FLpBy up,- Since the map 3*’0(G1,X1) — FLpBy g, 18
A°(G1)-equivariant, we deduce that we have a well-defined A(Bj)-equivariant map
S (By,Xp,) — FLB, up, - The affine property follows from the Hodge case. O

We now consider the descent from (Bj, Xp,) to (G,X). We have a map f :
B; — G inducing an isogeny B¢ — Gder.

Lemma 4.4.52. (1) We have a continuous surjective map A°(By) — A°(G)
with kernel a pro-finite group A.
(2) We have a pro-finite étale morphism S°(By,Xp,) — S°(G,X) which is
Galois with group A.

Proof. Let Cong(B;) be the set of congruence subgroups of B{*"(Q),, and let
Cong(G) be the set of congruence subgroups of G%"(Q),. We claim that the map
[ B (Q)y — G9(Q) induces a map f~! : Cong(G) — Cong(Bi). Indeed,
let K C G%"(Ay) be a compact open subgroup, then f~1(K) is compact open
in BT (Ay) and f1(GU7(Q), N K) = BET(@)4 N f-(K). LT € Cong(By),
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then f(T) is an arithmetic subgroup of G9"(Q), but not necessarily a congruence
subgroup!

We consider the index set I of compact open subgroups (K, K') € B (Ay) x
G (Ay) such that f(K) C K'.

Let T = B{*"(Q)+ N K and T'gr = G4 (Q); N K'. Let A(K,K') =T \I'k'.

We observe that for any sufficiently small I' € Cong(B;) or I' € Cong(G), the
map fog:I — GQ)* or f: T — G*Q)* is injective. Indeed, remark that
the kernel of G%"(Q), — G%4(Q)* is a finite group.

The groups g o f(Cong(B;1)) and f(Cong(G)) are the basis of open neigh-
borhoods of 1 for two topologies 7(B;) and 7(G) on G%4(Q)*. We know that
A%(B;) and A°(G) are the completion of G?(Q)* for the topologies 7(B;) and
7(G) respectively. Therefore, A°(B1) = limrecong(s,) G*H(Q)T /T and A°(G) =
limpecong(e) G*(Q)T/T. By the Mittag-Leffler criterion the sequence

. ! . ad + : ad +
1— (K}}(I%EIA(K’K ) — h}nG QF/Tk) — h}nG Q" /T —1

is exact and equals 1 - A — A%(B;) - A°(G) — 1. O

We are now ready to descend everything from (By, Xp,) to (G, X). First, we
have that S*°(G,X) = S*°(By, Xp,)/A and we may also define g*’O(G,X) =
5By, Xp,)/A. We have S*(G, X) = [S*(G, X) x A(G)]/A°(G). We may also
define §°(G, X) = [S™°(G, X) x A(G)]/A°(G). By taking K-invariants, we define
SNG, X)/K = 5*(G, X)%.

Proposition 4.4.53. Let (G, X) be an abelian type Shimura datum as above.
(1) There is a perfectoid space S*(G, X )z ~ limg, S*(G,X)KTKP and a per-
fectoid space S*(G, X)kr = limg, S*7O(G,X)KPKP.
(2) We have a Hodge-Tate period map mur : S*(G,X)kr — S*(G, X))z —
FLq,, which is G(Qp)-equivariant and Hecke equivariant. The map S*(G, X )75 —
FLaq, is affinoid in the sense that FLq, has a cover by affinoid opens
whose preimages in S*(G, X )z are good affinoid perfectoid opens.

Proof. For the first point, we observe that the group A acts trivially on the flag
variety. Since myr was affinoid for (By, Xp, ), we can use theorem (6), and
apply lemma and lemma to deduce that S*°(G, X )z is perfectoid. We
may now extend the result from S*°(G, X)z7 to S*(G, X)%7 as in the proof of
lemma [£.4.501 o
Passing to the limit over K?, we have a Hodge-Tate period map S” (B1,XB,)/A =

3*7O(G,X) — FLau = FLB, pp, which is A%(G)-equivariant. We deduce that
there is a A(G)-equivariant Hodge-Tate period map ?(G,X) — FLq,u. The
representability of limg, S*°(G, X))k, follows from [BS22], thm. 1.17.

O

4.5. The truncated Hodge-Tate period map. In most of this paper, we work
on finite level Shimura varieties rather than perfectoid Shimura varieties. For this
reason we introduce some truncated Hodge-Tate period map.

Let (G,X) be an abelian type Shimura datum. Let K = KPK, C G(A;) be
a compact open subgroup. The group K, acts on FLg . We form the quotient
space FLg . /K,, equipped with the quotient topology from the surjective map
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7K, FLau = FLGu/ Ky We merely view FLg /K, as a topological space. We
adopt some definitions. We say that an open U C FL¢ /K, is affinoid if wf}i(U )
is affinoid. If V. C U C FLg /K, are open we say that V is a rational subset
of U if ﬂ;{i(V) is a rational subset of FI_{i(U) We let the residue field of a point
x € FLq /K, be the residue field of any lift of this point to FL¢ . To illustrate
all these definitions, we have the following lemma;:

Lemma 4.5.1. Any point x € FLq, /K, with finite residue field over Q, (i.e. a
classical point in the sense of rigid analytic geometry) has a basis of neighborhoods
consisting of affinoids {Uy,}n>1 with the property that U,+1 C U, is a rational
subset.

Proof. The group G admits a filtration by open affinoid normal subgroups G,, which
form a basis of neighborhoods of the identity (take G, the subgroup of elements
which reduce to 1 modulo p™). Let y € FL¢q , be a lift of 2. Then yG, — FLq
is an affinoid for any n > 1 (this is a closed tube centered at the point y, this is
also where we use that x has finite residue field over Q,). We now consider the
group G, K, C G. The connected component of the identity of this group is G, and
the quotient G, K,/G, is a finite group. Then we find that yG, K, = [[,c; vk:iGn
for a finite set I and elements k; € K, and is therefore an affinoid which is K-
invariant. The {yG, K, /K, },>1 form a basis of open neighborhoods of z. Moreover,
Y9, K, C yG,-1K), is a rational subset because yk;G, C yk;G,—1 is a rational
subset. O

The main result of this section is the following:
Theorem 4.5.2. There is a continuous map:
THT,K, - S}(( — ]:LG,M/Kp

which is equivariant for the action of the Hecke algebra C°(K\G(Ay)/K,Z) by
correspondences.

Moreover, any point © € FLq, /K, with finite residue field over Q, (i.e. a
classical point in the sense of rigid analytic geometry) has an affinoid neighborhood
U such that for any rational subset V C U, (ﬂHT,Kp)_l(V) is affinoid.

By proposition there is a map 7wy : 81*(7 — FLq,, which is equivari-
ant for the action of the G(Q,). For any point € FLg ,, there is an affinoid
neighborhood U of x such that 755 (U) is affinoid, and moreover, myn(U) =
limg, 775 (U) i, where for K, small enough, w5 (U)g, < is affinoid and

SR,
(m7p(U)k,) is dense in ﬁg;{ip(’ﬂl_{;([])). We call an open affinoid

COthp ﬁg;{pk
P

in FLg,,, with these properties a very good affinoid. Clearly, a rational subset of a
very good affinoid is a very good affinoid.
We can define truncated Hodge-Tate period maps:

. O *
THT,K, * SKpr — SiKPKp — ‘F‘CG7M/KP'
Lemma 4.5.3. The map THT K, 15 continuous.

Proof. We have a continuous map (of topological spaces) limg, Skrgr — 81*(7 —
p
FLg, For all normal subgroup K, C K, the map S}‘QK% — Skr i, I surjective
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and the target carries the quotient topology ([Hanl9], theorem 1.1). The continuity
of the map of the lemma follows. ([

Lemma 4.5.4. Let V C FLg,, be a very good affinoid invariant under a compact
open subgroup K,. Let V be its image in FLg ,./K,. Then myy K, (V) C Skrk,
is affinoid.

Proof. Tt is part of the definition that 7 ;5 (V') is the pullback of an affinoid 74 (V') K} C

Sﬁ for some KI’) C K,, a normal compact open subgroup. We can further pull
P

back WﬁlT(V)KL to an affinoid U C Skriy- The space Sie g, s the categorical

quotient of Sk, by K,/K,, and the image of U in Skri, 1s indeed affinoid. [

Lemma 4.5.5. Let V C FLg,, be a very good affinoid. Let {V,,}nen be rational
localizations of V' such that V,, C Vy,41. Let W = U, V,,, a quasi-stein space. We
assume that all these spaces are invariant under a compact open subgroup K. Let
= . . -1 294 * . . .

W be the image of W in FLGu/Kp. Then Ty o (W) € Sgenge, is quasi-stein.

Proof. For any n, there is a compact open subgroup K, , C K, such that W;IlT(V)
and 755 (V,,) are the pullback of affinoids 755 (V)k, , € mpr(V)k,, C SE—

pyn pyn K?K, .,

where 75 (V)k,, is a rational localization of m;7-(V)k, . We can further pull

back WEI%«(V)K to affinoids U,, C U C Sk, where U, is a
1 on

rational localization of U. Taking the quotient by K, /K, , we get affinoid spaces

Un €U C Skrg, where the functions on U restrict to a dense subset of the

p,n

and 7 (V) ke

p,n p,n

function of U, (this statement is deduced from the similar statement for U and
U, by applying the projector | K,/ K, | ~* Zker/Kpm k). Finally we deduce that
7r;11T’ K, (W) = U,U,, where all U, are affinoid and the restriction maps 0y, , —
Oy, have dense image. d

Proof of Theorem[{.5.2 The continuity of the map is lemma Letx € FLg,u/Kp
with finite residue field over Q,. Let y be a lift of z in FLg,. For n large
enough, 2G, — FLg, is a very good affinoid (where G, is the subgroup of ele-
ments which reduce to 1 modulo p™ as in lemma . We form the group G, K.
Then yG, K, = Hie[ xk;Gy, for a finite set I and elements k; € K,. Moreover,
yk:Gn, = yGrk; is a very good affinoid (because the property of being a very good
affinoid is preserved under G(Q,)-action). A finite disjoint union of very good affi-
noids is a very good affinoid. We can apply lemma to yG, Kp. The image of
yGn K, in FLg /Ky provides the open neighborhood U of x as in the theorem. Fi-
nally, since any rational subset of a very good affinoid is again a very good affinoid,
a second application of lemma [£.5.4] proves the last point. O

THT,K
We also adopt the notation 7% ro : iy s = Sir, —  FLGu/Kp.
4.6. Reductions of the torsor M}. The group G of the Shimura datum is
defined over Q. We recall that we have fixed a finite extension F' of Q, which splits
G. We have also fixed a representative of the cocharacter p over F' and let P,
and M, be the corresponding parabolic and Levi subgroups of G. We will soon
assume that G is quasi-split over (Q,. When this is the case we assume that P,
contains a Borel B defined over Q,. We take a reductive model for G defined over
Spec Op. By abuse of notation, we also denote this model by G. We also then
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have models for P, and M, over Spec Op. On the analytic side, we have the (non-
quasi-compact) groups G, P;", and M¢", all considered over Spa(F,Or), and
there is an embedding G(Q,) — G*". Because we have fixed an integral model for
G, we also have the quasi-compact groups G — G**, P, — P;", and M, — M.

The goal of this section is to use the Hodge-Tate period morphism to produce
some finer structure on the torsor M4%. These result generalize those obtained in
[AIP15], prop. 4.3.1 for example. These refined structure will allow us to p-adically
interpolate automorphic vector bundles.

4.6.1. Preparations. We start by giving a detailed description of the torsor pulled
back from the map 7307, : SiF & — FLG -

If (G, X) is Hodge type Shimura datum, and ¥ is a perfect cone decomposition,
then 5}?5,2 is a perfectoid space. In the general abelian case, it is only known to
be a diamond.

Let S — S}?;E be a map from a perfectoid space S. By composing with 7494,
we get a map S — FLg,, which can be described as follows. Over S, we have a
map Py — G xS, from the P *"-torsor Py to the trivial G**"-torsor, which
is equivariant for the natural morphism of groups P;" — G4™.

There is an étale cover S — S such that the torsor Py Xs S becomes trivial
and aquires a section gg € G9" (S), unique up to left multiplication by elements

of P;4"(S), so that we get a commutative diagram of torsors:

Py xg § ———= G x §

l~ \le
(P x S‘) cgg — GO X S

Over S x5 S, there is a section hgy.5 € PZ’“”(S’ x g §) such that hgy .5 D195 =
p395- The section hg, s is a 1-cocycle which describes the original torsor Py .

Changing gg by left multiplication by an element of P (S) will change h Gxs§ DY
a coboundary.

The image of g5 € FLg,,(S) descends to give a point in F~Lg ,(S): the mor-
phism S — FLg,, we started with.

The group G** acts on the right on FLg . Concretely this action sends gg to
g5-g- This action does not affect the construction of the torsor Pg%. which is indeed
G%"-equivariant.

4.6.2. Integral structure. Recall that My, is a (quasi-compact) open subgroup of
MG;e™. The following proposition can be interpreted as the existence of an integral
structure on the torsors Mg or M.

Proposition 4.6.3. Let K, C G(Q,) N G(Or). The étale torsor MG}, over
S;?;”Kp‘z has a reduction of structure group to an étale M, -torsor Mag.

Remark 4.6.4. In the Siegel case, the torsor M3} is (ignoring the center) the torsor
of trivializations of the vector bundle w,, the conormal sheaf of the universal semi-
abelian scheme over S K,z (well defined up to prime to p-isogeny by our choice
of level structure). A possible integral structure is obtained by declaring that an
invariant differential form is integral if it extends to an invariant differential form

on an integral model of the universal semi-abelian scheme. However, the integral
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structure we consider here is different. Namely, we declare that a differential form
is integral if it is in the span of the image of the integral Tate module for the
Hodge-Tate period map. By [FarlI], Theorem 2, section 5.3.2. we can explicitly
bound the difference between both integral structures.

Proof. We work over Sg7 5. Let S — S s be a map from a perfectoid space.

We first explain how to define the torsor Mpgr = Mygr x oy Zy(1) over S (in a
functorial way).

The map S — FLg,, is described by an element gz € G>*(S) for some étale
cover S — S. We are free to change gg by left multiplication by an element of
Py an(§ ) Thus, up to passing to some further cover of S, we may actually assume
that gs € QC(S) (because FLg,, = P;\G¢ = P4"\G4"), and this new element
is well defined up to multiplication by an element of 73;(5’) The torsor Pg is
defined by the cocycle hg, s = p3gs (prgs)~t € 776(5' xgS) C Pg (S xg S).
We therefore have produced a reduction of the torsor 73 to a torsor Pur under
the group P;;. We can take the pushout under the map Pﬁ - My, (which amounts
to projecting hg, g in MZ(g X g 5’)) to get the desired torsor Mpyp. We let

Mg = Mpgp xP% Z,(—1).
We now proceed to descend from S s to Sip k,,x- We have an étale torsor
an

T a
iR — SKPK s, and we have defined an open subset Mgr C Mgy X818

S}?{{yz. We claim that this open descends to an open subset of M3%. The map
MGR XSite o Sih s — M identifies the topological space |[M%| with the

quotient of [MgFE Xstor }gl 5| by the action of K. We have an identification
Kp,®

between K,-invariant open subsets of M§% x Sten Ste Kr » and open subsets of MGh.
The only thing to check is therefore that Mg is indeed invariant under the action

tor

of K;,. We go back to considering a map S — S5y, described by an element g5 €

QC(S’). Under right multiplication by k € K, we get a new element ggk € QC(S’)
(it is crucial here that k € K,, C G(Op)) and the corresponding reduction of the
torsor described by the element p3gsk.(pfgs.k) ™' = psgs.(pigs) ' doesn’t depend
on k.

We need to prove that the action map M{" x Mgy — M3k x MGk (which is
an isomorphism), induces an isomorphism M, x Mgr — Mgr X Mgg. In other
words, we need to prove that the two open subsets M, x Mgr and Myp x Mygr
1dent1fy via the action map. This can be checked after pull back to St 7 . and this
is true. Finally, the morphism Mgyr — S}?”E is smooth, and surjective on geometric
points. Therefore, there are sections etale—locally and Myp is an étale torsor. [

Remark 4.6.5. The above argument uses crucially that we know that M$% descends
from S 5 to S 5, because pro-étale descent is not effective in general.

Remark 4.6.6. We briefly explain how the construction in the abelian case connects
with the construction in the Hodge case, in order to illustrate principle [1.4.44] We
consider a diagram of Shimura datum with (G, X) of abelian type and (G1, X;) of
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Hodge type as in section
(B1,Xp,) — (B, Xp)

| i

(G1,X1) (G, X)

We may assume that the various morphisms between the groups G, By, B, G over
Q extend to morphisms over Op. We assume that we have a diagram for suit-
able compacts K', K, Ko, K3 with KZ’, C B1(OF) and K;, C G1(OF), and cone
decomposition for Gy:

8% (B, Xp, ) kv x ——= S (G1, X, )k, 5

S(Ta XT)KZ - S( [11b7 XG‘llb)Ks

We have the first formula:
MdR(BlaXBl) = WfMdR(Gl,Xl) Xﬂ'*MdR(G‘fb,XGab) F;MdR(T, XT)
1

Secondly, we have a finite map: S*"Y (B, Xp, )k 5 — S*"°(G, X)k 5, generi-
cally finite étale with group A(K, K') (possibly after refining ). and the second
formula

M .
(Mar(B1, Xp,) x~ 21 M;, ) /A(K, K') = Mar(G, X¢)

(valid for the restrictions of the torsor to the connected component).

For k € X*(T¢)M«* the sheaf V, is modeled on the representation V. of
M" defined over F'. Recall that V; is defined as the module of sections f(m) €
HO(Mﬁ",ﬁMﬁn) such that f(mb) = —wo k(D) f(m) for b € B N Mg". Using
that

M /(BT M) = M/ (BAM,)
we find that this is also the module of sections f(m) € H(M,,, Oprq,) such that
f(mb) = —wo ark(b) f(m) for b e BNM,,.

We can define an Op-submodule V& C V, by considering sections f(m) €
HO(M,,, ﬁj\'/l“) such that f(mb) = —wo nr,#(b)f(m). Since H(M,,, ﬁ’x,tu) is open
and bounded in HO(MW O, ), we deduce that V.t is a lattice in V,;, stable under
the action of M,,.

Corollary 4.6.7. Assume that K, C G(Op). For all k € X*(T¢)Mw™t the locally
free sheaf V,; over S}é’fz has an integral structure VI in the sense of definition|2.6. 1)

Proof. We consider the map g : Mgr — SE’. We let VI be the subsheaf of
g*ﬁj\',lm of sections f(m) which satisfy f(mb) = —wo amk()f(m). 0

4.6.8. Further reductions of the group structure. We assume that K, = K 'y for
m' >V € Z>o and m’ > 0 (see section . This is a compact open subgroup of
G(Qp) with an Iwahori decomposition. For any w € MW, we let K, a, be the
projection of wK,w™! NP, to M,.
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We will describe this group. We can define N, M, = Ky w, M, N UMM and
Npwm, = Kpwn, NUn,, where we let By, be the Borel subgroup of M, which
is the image of B in M), By, the opposite Borel, and Uy, (resp. Uy, ) be the
unipotent radical of By, (resp. Buy,). We also recall that Ty = Ker(T(Op) —
T(Or p) NT(Q,) = TN K,

Proposition 4.6.9. For anyw € MW, the group K. w,M, 18 a subgroup of the Iwa-
hori subgroup of M, (OFp). Moreover, it admits an Iwahori decomposition. Namely,
the product map:

—1 NT
Np,w,M“ X wa/w X Np,w,MH — K Jw,M,,

is an isomorphism.

When G is unramified, M,, is defined over Qp, w is Gal(F/Q,)-invariant, and
K, = K, 1,0 is the Iwahori subgroup of G(Zy,), then Ky, . w1, is the Twahori subgroup
of My(Zyp).

Proof. Let U and U be respectively the unipotent radicals of B and B. We have the
Iwahori decomposition K, = N, x Ty (Z,)x N, where N, = K,NU is U(Q,)NU (OF)
and N, = K, NU C U(Q,) is the subgroup of elements reducing to 1 modulo pm/
It is useful to give a more precise version of this decomposition. We let ® be the
set of roots (defined over F). We have ® = &F [[®,, [[@TM [[®—M, where
®pr = &F, [P, is the set of roots in M. We also let &g = ®/Gal(F/Q,) and have
g = of [[®; (because G is quasi-split).

For all ag € ®¢, we let Uy, < G be the corresponding unipotent group. For
all « € ® we also denote by U, — G, the one parameter subgroup. We have
Uao XSpec @, Spec F' = Hae@,m—ng Ua Xspec 0 Spec F'. We consider the product
map (in any order of the factors):

100 (@) x T(@,) = G(@,).

@0

This maps induces a bijection between K, and the set of elements ((nag)agedy,t)
which satisfy: ng,, t € G(OF), no, =1 mod p™ if ag € ®;,andt=1 mod .
We get that wK,w~' N P, identifies (via the product map) with the set of elements
(Wnayw ™ Haged, € WU (Qp)w ™ wtw™ € wT(Q,)w™!) such that:

® Noy, t € G(Op), /

e Ny, =1 modp™ if ag € Py,

et=1 modp”,

® Ng, € Ué«, = Ker(UaO (Qp) N G(OF) — Haew%@*»M,ar—mo Ua(oF))'

We let U/, =Im (U}, — Hocw19y 0500 Ua(OF)). We deduce that K, a1, is
in bijection (via the product map) with the elements ((wna,w™")ased, € WUL w™ wtw™! €
wTyw™t) such that n,, =1 mod pm/ if ag € ®;,. The fact that any element of
Ky w,m, can be written in this way follows from the previous discussion. The
injectivity of the product map is a general fact.

We now observe that w € MW and therefore ®3, C w(®*) and ®;, C w(®~).
We deduce that w™1®y N @~ = w 1@, and wldy NET = w10},

It follows that if ag € ®f, wUY w™" C Up, (OF) and if g € @y, wU w™! C
U, (Op). Therefore, we deduce that Ky w1, = Npawng, X wTyw™ x Ny, -
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By the condition that n, =1 mod p™ if ag € &, we deduce that Kywm, is a
subgroup of the Iwahori of M,(OF).

Finally, if G is unramified, and M, is defined over Q,, the partition ® =
O 1Py, [12HM ] @M descends to a partition @y = @an [T 2 11 arM1e, M.
If w is rational, then it acts on ®y. Assume that K, = K, 1. The description of
Ky w1, simplifies and we find that U} = {1} if ag ¢ w™ '@ pr, U = Uq, (Zy) if
ag € w g 5. Tt follows that Ky w,m, is the Iwahori of M, (Z,).

t

Example 4.6.10. The group Kj, ,, v, may be a little strange. Let us consider the
following example. We assume that Gg, is Res@p2 /0, GLa2, with standard diagonal
torus Tp, and upper triangular borel Bg,. We let K, = K, 10. We identify
G@p2 = GLy x GLy. We assume that p is defined over Q,> and is given by the
cocharacter ¢ — diag(,1) x diag(1,1) of Ty ,. We deduce that P, is Bg , x GLo,
and that M, is Tg, x GLz. We finally observe that K, N P, is Bg,(Z,) and
therefore K1, is the image of Bg,(Zp) in T(Qp2) x GL2(Qp2).

For all m,n € Qxg, we let g;m be the subgroup of G of elements which reduce

to U modulo p™*¢ for all ¢ > 0 and to U modulo p™ (see section [3.3.13). We let
Ml C M,, be the group of elements which reduce to U4, modulo p™Te for all

Hm,m

€ >0 and to HMH modulo p”.

Lemma 4.6.11. Let w € MW and let K, = K »y withm' € Zsq and b' € Z>g.
Let m,n > 0 and assume that 0 < m —n < m' — 1. Then Ky wom, normalizes
M},

Proof. Observe that K, C G,_y, 0. By lemma K, normalizes G, . More-
over, Im(wG}, , w™ ' NP, = M,) =M,

wym,ne

O
It follows from this lemma that K}, . a7, M is a subgroup of M,,.

wm,mn
Proposition 4.6.12. Let w € MW and let K, = Ky, sy 1y withm' € Zso and m’ >
b'. Letm,n > 0 and assume that 0 < m—n < m’—1. Over (Wg’%pr)_l(]ka[m,nKp) C
5%’&,2: the torsor Magr has a reduction to an étale torsor Mag mn K, under the
group K;JU,MMM}L’,STI,'H'
Proof. The proof is very similar to the proof of proposition [£.6.3] We observe that
1Cw klmnKp = Pﬁ”\Pﬁ"wQ}anp. Since K), normalizes G, ., g}anp = K,G}\,
is a group. It follows that

1Cw k[mnKp = (P N prg}wal)\prg;ww*.w

1,c
Hym,m

Uy"™n wKSGH S w N\ wKSGE wThw — (PN wK, G, yw  N\wK,Gy, swhw

and we proceed to pull back and descend this torsor.
We first construct the torsor Myg m,n, Kk, as an open subset of

Mar % ster, (T577) " (1Cu k[ ,n ),

and prove it is K,-invariant to descend it to an open subset of

Observe that we have the following K-equivariant K Mu./\/l -torsor:

Mar Xster, (7i7,x,) " (Cu el Kp)-
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Let S — (7%97.) 7 (JCw k [m.nKp) be a map from a perfectoid space S. The torsor
Pur is described as follows: there is a cover S — S and an element gs € G(S )
such that hg, s = p3g5-(Pigg) " € P.(S xg S) is a l-cocycle descrlblng~ the
torsor. By assumption, we may assume gg € wg,, ,K,, so that hgy.5 € PulS xs
~) N wgl RKpw™! and its image in M, describes a reduction MgET mn K, of
Myt ><St07 (w}‘I”T) '(1Cuw k[mnKp) to a Ky a, M}, ,,, ,-torsor. One checks easily
that this torsor is Kp-invariant. If the field F' is large enough so that the composite
Gal(F/F) ! Zx % Mo factors through Ky ar, M}, . We can twist the
torsor by the cyclotomlc character via p. This defines a torsor Myg m n, i, Which

descends to a torsor over (77 x ) 1Cw k[ Kp)-
(]

Remark 4.6.13. The connection between the abelian case and Hodge case can be
described similarly as in remark We may use section to make sure that
the subset |Cy g[m nKp of the flag variety doesn’t change when we consider the
different groups G1, By, G.

Proposition 4.6.14. Let w € MW and let K, = K,y with m' € Zsq and
m’ > b. Let KZ/, = Kpmrpr with m” > m' and m” > b" > b'. Let m,n > 0
and assume that 0 < m—n < m/ — 1. Letr,s > 0 withr > m, s > m and
0<r—s<m” —1. There is a commutative diagram:

MaRr,s,K;, Marmn i,

| |

(773?% K')il(}cw,k[r,sK{o) - (W?;K )~ 1(]Cw,k[m,nKp)

The top horizontal map is equivariant for the map K, M, /\/l” rs = Kpwm Mu mon-

Proof. This follows from the construction of the torsors. (I

We have a map M, ,, , — M, , where M, ,, is the affinoid sub-group of M,
of elements reducing to 1 modulo p". Let K, = K, ;,,» iy with m’ >0, m’ > b’ and
let n > 0. Over (ﬂ'ﬁ’r} K, )" (Cuw.k[n.nKp), we define the pushout:

M — M Koot Miltn K&y MG
dR,n,K, = MdRnn K, X P78 " pyw, M, " un

It is sometimes more convenient to work with this torsor because the group Mﬁn
is affinoid.

Proposition 4.6.15. Assume that (G, X) is a Hodge-type Shimura datum and 3 a
perfect cone decomposition. Let K, = Ky . For any affinoid open Spa(R, RT) —
(T3 Kp)’l(]Cw,k[n,nKp) which we assume to be pregood (see deﬁnition, there
exists K, C K, such that over Spa(R, RT) XSt o S}(‘?;’K;,E the torsor Magr.n k,
is trivial.

Remark 4.6.16. It will be important for certain vanishing theorems that we are

able to prove the triviality of the torsor after a finite flat cover for pregood affinoid
opens.
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Proof. Let us consider a decreasing sequence of compacts K, with K, = K,
and NgK,, = {1}. Let Spa(Ry, Rf) = Spa(R,R*t) x St 5 Sihw, o5 Let
Spa(Reo, RE) = lim Spa(Ry, ;) be an affinoid open of Sih s We first observe
that the torsor M |spa(r, r+) is a Stein space, which can be written as an increas-
ing union of quasi-compact affinoid subsets:

MGRlspa(r,r+) = Uizo(Mgp)i-

Over Spa(R.o, RY,) we observe that the the torsor Mg, k,, is trivial. Indeed, this
torsor is pulled back from the following torsor (over the flag variety):

(Up, N wK'pgnufl)\u}[(pgnuf1 — (P, N prgnwfl)\prgnwfl

which is trivial because of the Iwahori decomposition of the group wK,G,w™!.
There is also a Tate twist, but over R, we have a compatible system of roots of
unity. It follows that Mgp n, k, X Spa(Rs, RL) is affinoid, and is a rational open
subset of (M4%); x Spa(Rs, RY,) for i large enough.

We deduce that Mgrn kx, X Spa(Rk,R,i') is a rational subset of (MY%); X
Spa(Ry, R;) for k large enough (by approximating the equations defining Mag,n,x, X
Spa(Rs, RL,))). Therefore, Magpn i, X Spa(Rg, Rf) = Spa(T, T+) where (T, T)
is an (Rk,RZ') algebra topologically of finite type. Moreover, there is a section
T® RY R} — RY. We now prove that this section can be approximated to a sec-

tion T+®R: R}, — R}, for k' large enough. By [EIK73|, theorem 7, there is a finite

type R} -algebra A, such that A[1/p] is smooth over R}’ [1/p], and whose p-adic com-
pletion is isomorphic to 7. By [EIK73|, theorem 2, there exists integers ng,r > 0
with the property that for any n > ng, for any map of R;—algebras f:A—> R,:, /p"
there is a map f A — R',j, with the property that f mod p™™" = f mod p" "
(the ideal denoted Hp of the reference contains p” for a large enough integer h,
because A[1/p] is smooth over R; [1/p]). Let n = ng + r. We consider the section
s: A — RYE. Tts reduction mod p" factors through s mod p" : A — RZZ /p" for K/
large enough and therefore we find a lift to a section §: A — Rg,. O

Remark 4.6.17. We ask the following question: let S be an affinoid adic space and
let H be an affinoid group over S. Let T — S be a H-torsor for the étale topology.
Is 7 affinoid? It follows from propositionthat the torsor M g7 K, is affinoid
over any pregood affinoid open.

4.6.18. Maps between torsors. We consider for the moment the following abstract
situation. We assume that we have two analytic groups KX — G. For i € {1,2},
we let IC; be K-torsors over an adic space X'. We let G; be their push-out via
the map K < G. Let a: G; — G2 be a map of G-torsors over X. Over any cover
U — X which trivializes both K; and K2, we can represent the map « by an element
g € G(U), well defined up to right and left multiplication by IC(/). We shall say
that the map « is locally represented (over U) by KgK. When K is clear from the
context, we also say for simplicity that the map is locally represented by g.

Let (G, X) be an abelian Shimura datum. Let t € G(Q,). Let KPK,, C G(Ay) be
a compact open subgroup. For suitable choices of polyhedral cone decomposition,
we have a correspondence:
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KP(K NtK,t—1),5"

ST T

tor tor
S
KrK, X KPKP,E/

We get an associated map of pro-Kummer-étale right torsors:

*2an *oan
Py pet P2 pet

|

p{ gpet p§ gpet

which by definition is locally represented by t. We also deduce a map of étale right
torsors:

PIMGp ——= ps MR
PIMar psMar

Let w € MW and let K, = Ky with m > 0and ¥ > 0. Let m,n > 0
and assume that 0 < m —n < m/ — 1. Over pgl((wg},{ ) (1Cw ki Kp)) N
py((wien K, ) (JCw klm,nKp)), we have a map of étale right torsors:

* an * an
P1Mar PoMar
pPiMar psMar

PIMaR mn K, PsMaRr.mn K,

Proposition 4.6.19. Let w € MW. Let t € T(Qp). The map pfM3% — psMa%
restricted to

Py (i k) (Cuklmn Kp)) 007 (77 1,) ™ (1C [ Kp))
is locally represented by

1g-c 1,c
w, M, Mumnwtw K wMNMM’mn

Proof. By definition of the Hecke correspondence, the map piGys; — p3G,e; is
locally represented by ¢. This means that locally for the pro-Kummer-étale topology
we have sections zo € p5Gper and x1 € piGper and there is an isomorphism

. an
pl pet b2 pet

| !

$1G(Qp) — 3«"2G(Qp)
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where the bottom map is 19 — x29 = x1tg. We now get by pushforward to G*” a
diagram:

PiGpet XG(@y) 9" — P5Ypet Xa(@,) 9"

| !

t
1 gan ‘r2gan
a an an

The torsors p1Gpy; and p5Gpl, arise by pushforward from torsors pyPi and
p5 P and we have a diagram:

*an *(an
P pet P2 pet

]

PPy — 03Pt
We pick w € MW and we work locally over

pz_l ((77}%“,1(?)_1(]Cw,k[m,nKp»mpl_l ((WE%,KP)_l(]Cw,k[m,nKp)) - S?Z(Kpthptfl),E”'

Concretely, this means that we can find trivializations =} and x5 of p{P#L and
p5Pif of the form 25 = zhwhy and x; = xjwhy for h; € G145, K§.
We deduce that
xhy = ahwhythy 'w™!
This forces whythy 'w™! € Py
By pushforward to M%. we get:

* an * an
My ——=DP2Mpyr

where 25 and 2 are now viewed as sections of p5 Mag, m n,k, and pfMar,m.n x,
and the bottom map is given by
zhm = ) (whithy *w=1)m
where (whithy 'w=1) is the image of (whithy 'w™!) via the map Pit = M. By

lemma 4.6.20|7 (whithy 'w=1) € Kf a0 My, qwtw™ Kg oy ML

uym,n wym,n”

U
Lemma 4.6.20. For any t € T(Q,), we have that
Im(wkK Gy, Wt Kp G, ™ PR = MO™) = Ky a1, My, ™ K oy a1, M,
Proof. We will prove that (wK,G,, ,tK,G} ,w™") NP =
((prg,ln’nw_l) N Pﬁ”)wtw‘l((wlfpg}n}nw_l) N PZ")

Any element in k € prQ}nynwfl writes uniquely [],ce ko (for any fixed ordering
of the roots). Let

kwtw 'k € (wK,G, wilwtwflepg}nmw*l) nPy"

m,n

7n.
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with k= Hae<1>+u<1>;1 ka Ha€®—>M ko and k= Haefb—=M k:x Hae@*U@z@ klo‘ A nec-

essary and sufficient condition that kwtw 'k’ € Py is that E'wtw k" € P

where k" =[] co-.m ka and " = [, co-a k. But K" wtw™ k" € Upan x T
I

and necessarily, k" = k"' = 1. O

5. OVERCONVERGENT COHOMOLOGIES AND THE SPECTRAL SEQUENCE

Our goal in this section is to introduce a spectral sequence which computes
classical finite slope cohomology in terms of the finite slope parts of certain over-
convergent cohomologies indexed by w € M. Moreover we will prove a classicality
theorem comparing the small slope part of classical cohomology in regular weight
with the small slope part of a single overconvergent cohomology for a w determined
by the weight. We will also prove a vanishing theorem for the classical cohomology
in all weights, including non regular ones.

5.1. The finite slope part. We briefly recall the spectral theory of compact op-
erators over a non-archimedean field.

5.1.1. Slope decomposition. Let I be a non archimedean field extension of Q. The
valuation v on F is normalized by v(p) = 1. A polynomial @Q € F[X] has a Newton
polygon. The slopes of the newton polygon are the inverse of the valuations of
the roots of ) (in an algebraic closure of F). We let Q* = X9€QQ(1/X) be the
reciprocal polynomial. Let h € Q. A polynomial @ is said to have slope < h if
the slopes of its Newton polygon are < h (equivalently, the roots of @*(X) have
valuation less or equal to h). Let M be a vector space over F' and let T' be an
endomorphism of the vector space M. Let h € Q. Following [AS0§]|, def. 4.6.3,
an h-slope decomposition of M with respect to T is a direct sum decomposition of
F-vector spaces M = M="& M>" such that:

(1) M=" and M>" are stable under the action of T
(2) M=" is finite dimensional over F.
(3) All the eigenvalues (in an algebraic closure of F) of T acting on M<" are
of valuation less or equal to h.
(4) For any polynomial Q with slope < h, the restriction of Q*(T) to M>" is
an invertible endomorphism.
By [Urbll], coro. 2.3.3, if such a slope decomposition exists, it is unique. If
M has an h-slope decomposition for all A € Q, we simply say that M has slope
decomposition. In this situation we can obviously define submodules M=" and
M<h of M for all h € Q. We let Mf* =lim;, M=" be the projective limit of all the
slope < h factors of M and we call it the finite slope part of M with respect to T
There is a projection M — M¥*. The kernel of this projection is the space M>*
of infinite slope vectors.

Lemma 5.1.2. Let u : M — N be a map of F-vector spaces. Let Th; and Ty
be endomorphisms of M and N respectively, such that Ty ou = uoTy;. Assume
that M and N have h-slope decompositions for Thy and Txn. Then u(MSh) -
N=M and w(M>") C N>". Moreover, ker(u), Im(u) and coker(u) have h-slope
decompositions.

Proof. The inclusions u(M<") C N=" and u(M>") C N>" are evident from the
property that u is equivariant. It follows that ker(u) = ker(u) N M=" & ker(u) N
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M>" and this is an h-slope decomposition. The remaining points are left to the
reader. (]

5.1.3. Compact operators. Let F' be a non archimedean field extension of Q,. Let
M € Ob(Ban(F)), and let T be a compact endomorphism of M. Then by [Ser62],
M has a slope decomposition with respect to 7. We can generalize this slightly.

Proposition 5.1.4. Let M* € D(F') and let T € Endp(p)(M*®) be a compact op-
erator (in the sense of definition . Then for any h € Q, we have a direct
sum decomposition in D(F), M®* = M*<h @ M*>" characterized by the prop-
erty that the cohomology groups H!(M®) have h-slope decompositions for T, and
Hi(Mo)gh — Hi(Mo,gh)‘

Proof. We first check that if we have such a decomposition, then it is unique.
Indeed, let M® = M*<h @ M*>h = N*<h ¢ N*>" be two decompositions. Then
we see that the map M*<" — N*=" obtained by composing the inclusion into M*®
and the projection orthogonal to N*>" induces a quasi-isomorphism. We deduce
similarly that the map M*>" — N*>"is a quasi-isomorphism. On the other hand,
the map M*<P — N*>" and M*>" — N*=h are the zero map on cohomology,
and they are therefore the zero map (since F is a field).

Now check the existence. First assume that T is represented by a compact
morphism in KP"%(Ban(F)). Then, by applying the spectral theory to each term
of the complex, we get a direct sum decomposition M® = M*=<" @ M*>" where
for each i, M* = M»<I @ M*»>" is the h-slope decomposition of M*. Moreover,
one deduces from lemma that H(M*®) has an h-slope decomposition with
Hi(Mo)gh — Hi(Mo,gh), Hi(Mo)>h — Hi(M">h).

Now assume that M*® is represented by “lim; " M? € Ob(Proy(KP™/ (Ban(F))))
and T by a compact operator of “lim;”M? € Ob(Proy(KP™%/(Ban(F)))). By
lemma T induces canonically a compact endomorphism 7; of M for ¢ large
enough and there are factorization diagrams:

For any h € Q, we deduce that M;ﬁ’_%h — M><" is a quasi-isomorphism. We

7

also deduce that M55" — M>7" and M25" — M>=" are the zero map on
cohomology. Using that we are over a field, we deduce that these are the zero map.
We therefore deduce that “lim;” M? = “lim;” M;’Sh @ “lim;” MZ-°’>h. By taking
the limit, we deduce that there is a decomposition M® = M®*<F @ M*>" We
now immediately check that this gives an h-slope decomposition on cohomology.
The case where M*® is represented by “colim;” M? € Ob(Indy(KP™% (Ban(F)))) is
similar and left to the reader.

O

We have natural projections M*sh —y Mesh for any b/ > h € Q. We let
MeTs = limy, >0 M* =" be the finite slope part of M*®. There is a map M* — MeTs,
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5.1.5. Action of an algebra. Let TT be a commutative monoid (with neutral el-
ement) and 7T+ C T+ be a sub-semigroup (possibly without neutral element),
such that TT. 7T+ C TTT. We also assume that for any ¢,#' € T, there exists
n € N, ¢ € T such that t" = t't". Let M € Ban(F). We assume that we have
an algebra action Z[T"] — Endg (M), such that the ideal Z[T"*] acts by potent
compact operators.

Lemma 5.1.6. For any t,t' € TTT acting compactly on M, and any h € Q, there
exists h' € Q such that M=h C Mgt’h/, where M<th and M<v? are the slope < h
part for t and < h' part for t' respectively.

Proof. We see that M=t" is stable under 7. In particular it is stable under the
action of . Moreover, t' is invertible since there exists n € N, ¢ € T such that
tn = . Tt follows that M<th C M<¢h" where A’ is the maximum of the valuation
of the eigenvalues of t' on M<t*, O

Let M* € Ob(D(F)). We assume that we have an algebra action Z[T*] —
Endpry(M*), such that the ideal Z[T*F] acts by potent compact operators.

Lemma 5.1.7. For any t,t’ € T acting compactly on M®, the corresponding
finite slope parts M*t=15 and M*t 7% are quasi-isomorphic.

Proof. We deduce from lemma that for any h € Q, the projection M*® —
M*=th factors through M® — M*<v" for some I € Q. Passing to the limit
over h and k' we deduce that we have a map M**~fs — M** /s This map is a
quasi-isomorphism. O

In view of this lemma, we use the notation M*/$ to mean M®*?~7% for any
compact operator t € T++.

5.2. Correspondences and cohomology with support. We now discuss the
action of a cohomological correspondence on the cohomology with support of a
sheaf. Let (F,Op) be a non-archimedean local field and let X’ be a separated adic
space of finite type over Spa(F, Or). Let

C
7N
X X
be a correspondence, where C is separated of finite type and p; and py are morphisms
of adic spaces.

5.2.1. Action of the correspondences on subsets of X. Let P(X) be the set of subsets
of X. Let us denote by T : P(X) — P(X) the map which takes B € P(X) to
p2(pyH(B)) and T* : P(X) — P(X) the map which takes B € P(X) to p1(p; *(B)).

Lemma 5.2.2. If p; is proper (see [Hub96|, section 1.3), the map T® preserves
closed subsets. If p1 is flat, the map T* preserves open subsets, quasi-compact open
subsets. If p1 is flat and proper, it preserves closed subsets with quasi-compact
complements.

Proof. Let Z be a closed subset of X. Then p;*(Z) is a closed subset of C, and
T!(Z) is closed by properness. We now assume that p; is flat. Flat morphisms are
open by [Hub96], lemma 1.7.9. We claim that p; maps quasi-compact open subsets
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to quasi-compact open subsets. Let U C C be a quasi-compact open. By [Bos93],
theorem 5.2 and [Liit90], thm. 1.6, we can find a formal model for the projection
p1, p1 ¢ € — X, which is flat and has the property that U/ is the generic fiber of
an open subset il of €. Therefore p;(U) = sp~!(p1(Ui)) where Uy, is open in the
special fiber Cj of €. We conclude since p;(Uy) is quasi-compact open (in the
quasi-compact, separated scheme X} ) as flat morphisms of schemes of finite type
over a field are open. ([

5.2.3. Action of the correspondence on cohomology. Let .7 be a sheaf of &x-modules.
Let U4 C X be an open subset of X and let Z C X be a closed subset. We assume
that T'(U) is open and that p; is finite flat. We also assume that we have a map
T :p5F — pt.%. We can define a map

T : Rl zaren(TU), F) — Rl pezynu U, F)

as the following composite:

a, — * b — *
RE zar@y (TU), F) — Rrpgl(zﬁT(u))(pQ NTM)),ps7) = RE v zymprt ) (py ' (U), p5F)

c — d
— Rl"pz)_l(z)mpl_l(u) (pl 1(“),}?’{?) — RFTt(Z)mu(u, ﬂ),
where:
e qa is a pull back map along p5 ( Uu)) = TW),
e bis a pull back map along p1 YU) — p;'(T(U)). Notice that py *(Z N
TU))Npy (Z/I) 123 (Z) Npy (Z/l),
¢ is given by the map T : p5.% — p1F,
e d is given by the trace map of lemma Notice that p;(p; *(Z) N
pr ) © TH(Z) NU.

Remark 5.2.4. We observe that in the definition of the correspondence, the map
p5F — p1.% is only used in a neighborhood of

2 H(2) Opy Hu).
Indeed, let V be a neighborhood of p; *(Z) Npy H(U) in p;*(U), then we have

Rrpgl(z)npfl(u)(m U),p; F) =Rl *1(z)np*1(u)(v p;F)
fori=1,2.

5.2.5. Representing the correspondence by a map of complexes. In this section, we
prove under some mild assumptions that the map T of the last section can be
represented by a morphism of complexes of Banach spaces. We assume that % is
a locally projective Banach sheaf.

Lemma 5.2.6. Assume that U and T'(U) are quasi-compact open subsets, and that

Z and T*(Z) have quasi-compact complements. Then the map T : RT zaren (T(U), F) —
Rt (zynu (U, F) is represented by a morphism in KPT* (Ban(F)).

Proof. We consider finite affinoid .%-acyclic coverings T'(U) = U;c;U; and U =
UierUj. We also let Z = NjesZ;, THZ) = Njey Z; where Z§ and (Z))¢ are
affinoid and .#-acyclic and J, J' are finite. We see that RI'znpu (T(U), F) is
represented by a cone of a map of Cech complexes

Cone(C({Us}ier, F) — C{U; N Z§ Yagerxs F)) =1l
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and similarly RT'pe(z)qy (U, .7 ) is represented by

Cone(C({Uj}ier, F) = CHUU; N (Z)) Y i jyerxars F)) 1]
We now proceed to represent the map 7. We first have a map (pullback under ps):
A: Cone( {Utier, F) = C{U; N Zc}(”)gx],y))[ 1] —

Cone(C({py ' (Ui)}ier,p57) = C{p3 " (Ui N Z5)} i jyerx 5 F))[—1]
We then have a restriction map, composed with the map p5.# — p1.#:

B : Cone(C({py "(Us)Yier. v5.F) — C({py (Ui N Z$)}jyerxa, p5.F)) [—1] —

Cone(C({py " (UNw1 ' U)}ier, p1-F) = C{py (UNZ5)Npy ' UNT(2))} i jyerxs, piF)) [-1].
We now observe that {p; *(U;) N\p; * (U) }ies is a covering of p; *(U) since p; ' (U) C
py L(T(U)). We also observe that {p; *(U; N Z5) NpT UNTHE)) Yag)erxs is a
covering of p; (U N TH(Z)°) since py 1(Z) C py H(THZ)).
We now pick an .Z-acyclic finite affinoid covering p; *(U) = Uier»U! which
refines both {p; 'U; NpT (U) }ier and {p;*U!}icrr. We also let p;1(Z2) = NjesnZy
where (Z]')¢ is affinoid and F-acyclic, J” is finite, and the covering Uje s/ (Z])°

of p; 1 (2)° refines both {pl_l(Z’) Yies and {py ' (Z;)° N p; (2)°}jes. We deduce
that there are refinement maps:

C': Cone(C({py ' (Ui)npy ' U) }ier, piF) — C{py (Ui Z5) Ny (UNT (2)°)} i jyerx s, 1)) [-1] =

Cone(C{U] }icrn,p}F) = CHU N (Z]) Y gjyer x> piF)) 1]
and

D+ Cone(C({py " (U }ier - pi.7) = C({pr (U] N (Z)))} ijyerr s PiF))[=1] =
Cone(C({U}' }ZGI”vpl 7) = CUUI N (Z]) Y agper <o piF))[-1].

But since p; is finite, p; ! sends .Z-acyclic affinoids to ptF-acyclic affinoids. Hence
D is actually a quasi-isomorphism, and we can pick an inverse D~' for D up to
homotopy by lemma |2.4.6

We finally have a trace map:

E = Cone(C({py " (UD}ier, pi.F) = C({p1 (U] N (Z)))}jper s piF))[=1] =

Cone(C{U}icr» F) = CHU; N (Z)) Y pyer < F))[—1]
Then Eo D 1oCoBo Arepresents 7. O

Corollary 5.2.7. Assume that U = U,U, is a countable union of quasi-compact
open subsets. Let Z = N, 2, be a countable intersection of closed subsets with
quasi-compact complement. Assume that T (Uy,) is quasi-compact and T (Z,,) is the
complement of a quasi-compact space. Assume also that U, T(U) are a finite union
of quasi-Stein spaces and that the complements of Z and T*(Z) are finite union of
quasi-Stein spaces. Then the map T : RL zapwy(T(U), F) — Rz U, F) is
represented in Proy(KP™ (Ban(F))).

Proof. We can assume that U, C U,y and Z, C Z,_1. By lemma [5.2.6] the
maps: Rz, 7@, ) (TUn),-F) = Rlre(z,)nu, (Un, F) are representable by maps
in KPm°/(Ban(F')). We then pass to the limit over n. See also lemma [2.5.19 O
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Remark 5.2.8. We note that the assumptions of lemmal[5.2.6) and corollary [5.2.7) are
satisfied if p; and p, are finite flat by lemma [5.2.2] In our applications to Shimura
varieties, the maps of the (toroidal compactifications of the) correspondences are
only finite flat for suitable choices of cone decompositions. However, we will only
consider cohomology with support of certain subsets which are “well positioned”
with respect to the boundary which will have the consequence that the cohomologies
we consider can be defined for any choice of cone decomposition and are further
independent of this choice.

5.2.9. Composition. We briefly address the question of composing correspondences
in the setting of cohomology with support. We consider the following diagram of
adic spaces (where the central square is cartesian : C" = C' xr x ,, C):

C//
N
C’ C
N N
X X X

We let plf = p), 0 g2 and p} = p) o g2. We assume that all maps in this diagram are
finite flat.

Let U4 and Z be respectively an open and a closed subset of X. We assume
that py ' U) € py W), () W) C () W), p (2) € P (2), (h)M(Z) C
) 1(2).

These assumptions imply that (p}) =1 (U) C (py)~H(U) and (p§)~1(Z) C (p)~1(2).
We let % be a locally projective Banach sheaf and we suppose that there are maps
T:p5% = ptF and T : (ph)*F — (p))*F. We easily obtain by composition a
map T" : (py)*F — (p{)*%. By applying the construction in section we
obtain endomorphisms T, 7", T" of Rz (U, F).

Lemma 5.2.10. In the ring of endomorphisms of RT zny (U, .F ), we have the re-
lation T =T oT".

Proof. The following square is commutative, as a consequence of the base change
property for the trace of finite flat morphisms:

T]rp/1

RT ()1 @one))-1(2) ((01) ~HU), (p))*F) Rl zru (U, F)

* *
J/qZ lpz

Trq _
RE (4,0) 1 @) (aapy) 1 (2) (@201) 1 U), (g201)*F) == RT ()1 @yn(pa) - (2) (02) "1 U), (p2)

We also have natural maps A : RUzqy (U, F) = RT (1)1 @yneps) - (2) ((01) 7 (U), (01)*F)
and B : RT ()1 @)n(pa) -2 (2) (p2) " (U), (p2)*-F) —> RFZQM(U,ﬂ) By definition
ToT' =BopsoTr, oAand T" = BoTrg, 0g5 o A.

]

5.3. A formal analytic continuation result. In this section we prove a result
which will identify the finite slope part of different cohomologies. This can be seen
as an (abstract) generalization of [Buz03|, thm. 5.2. Let X be a proper adic space

*97)
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over Spa(F,Or), and let py,ps : C — X be a correspondence with p; and py proper.
We further assume that p; is finite flat. We let Z be a closed subset of X and U
be an open subset. We assume that T(Z2) C Z and T'(U) C U. We also let .F be
a locally projective Banach sheaf (see definition 7 defined in a neighborhood
of U N Z, and we assume that we have a map T : p5.% — p;.#, defined in a
neighborhood of p; *(Z) Np; *(U).

5.3.1. The diamond of a correspondence. We can build the following diamond shaped
diagram:

RFZQM U, J
Rz (T R 7o (zyru(U, F)
Rz zynry (T

where the composition of the top and lower triangle res o cores and coresores are
equal. We can define an endomorphism of each of the four cohomologies occurring
in this diagram by suitably composing T with restriction and corestriction maps.
By abuse of notation we also call these endomorphisms T'. One checks immediately
that all the maps in the diamond are equivariant for these endomorphisms.

Proposition 5.3.2. Assume that all the complezes appearing are objects of Proy(KP™/ (Ban(F)))
and that the endomorphisms T are potent compact. After taking finite slope parts,
all the maps in the resulting diamond

Rz (U, F)F

Tes cores

RT zo7 @) (TU), F)/* RO7e 2y U, F)7

cores /

R 7 zynr) (TU), F)7

are quasi-isomorphisms.

Proof. For each map f in the diagram, there is another map ¢ (the composition
of two other arrows in the diagram) so that gf and fg are the endomorphism T
on the source and target of f. As T becomes invertible on the finite slope part, so
does f. (Il

Remark 5.3.3. Under the assumptions of corollary the operator T is potent
compact if the map “restriction-corestriction” obtained by composing the top or
bottom arrows of the diamond RI'pe(zymy (U, F#) — R zapw (T (U), F) is compact
(see lemma for a criterium).

As a corollary, we note the following fact:
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Corollary 5.3.4. Under the hypothesis of propositz'on letU and Z' be open
and closed subsets, such that TU)NZ CU' CU and U’ NTHZ)C Z'NU C Z.
Assume also that RT z/qy (U, F) is an object of Proy(KPr/ (Ban(F))). Then the
operator T 1is well defined and potent compact on RI z/qy (U, F) and the finite
slope part of RUziqy (U',.F) is canonically quasi-isomorphic to the finite slope
part of RTCzry (U, F).

Proof. Under our assumptions, we have restriction-corestriction maps:
Rl zime (U, 7) = Rz U'NTU), F) = R zapan (TU)NU', F) = RT zarw) (TU), F)

and
RI‘T,:(Z)QU(L{, y) — RFTt(Z)mu/(L{’, 9) — Rz (U', y)
We can build the following diagram:

RT zryy (u/a ﬁ)

T

R zAren (T(U), F) L R e (zymu U, F)

and T is therefore well defined and potent compact on R z/qyr (U, . F). We deduce
that RLz/qg (U, .7)7* is quasi-isomorphic to RT zrre (T(U), F)'* which is in
turn quasi-isomorphic to RI" zry (U, F)¥*. O

5.3.5. The infinite diamond. It is interesting to iterate the operator 7. We now
work under the stronger assumption that p; and py are finite flat. These assump-
tions imply that for any n > 0, the n-th iterate C(™) of the correspondence C comes
with two finite flat projections p; , and pa .

Remark 5.3.6. Later we will apply this material to toroidal compactifications of
Shimura varieties. We therefore have to work under slightly more general assump-
tions. Namely, it is not possible in general to find cone decompositions such that all
the maps between compactifications of Hecke correspondences are finite flat. Nev-
ertheless, by allowing suitable changes of the cone decompositions, we can always
assume that a given map is finite flat. Moreover, the composition of compactified
Hecke correspondences and their action on the cohomology has been explained in
detail in section [£.:2:2] Therefore, for the clarity of the exposition, we will keep the
assumption that p; and po are finite flat here.

We let U,, = T™(U) and Z, = (T*)"(Z). We assume that T(U) C U and
T%(Z) C Z. The sequences {Upm }m>0 and {Z, },>0 are therefore decreasing.
We can then construct diamonds as above for all n,m > 0:

(U, F)

RI'z,u,,
/ x

RI'z, ntty sy U1, F RI'z, "ty U, F)

RFZn,Jrl MU 41 (um"r 1
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and we can add them to get an infinite diamond diagram looking like:

(1) R zny (U, F)

res cores

R znyy (U, F) Rl z, ny (U, F)

res cores res cores

Rz, Uz, F) Rz, nuy Ur, F) Rl z,nu (U, F)

We have commutativity of the central diamonds resocores = coresores. We also
have commutativity of the parallelograms coresoT = Tocores and resoT = Tores.
For any m,n with m,n > 0 and (m,n) # (0,0), we can define an endomorphism
Toun : Rz, ru,, U, F) — Rz, u,, U, F) by composing T, res and cores in a
suitable order. There are usually different ways of composing in order to obtain an
endomorphism, but the order does not matter as long as T' appears exactly once.

We abuse notation and denote this operator by T

m

Theorem 5.3.7. Let p1,ps : C = X be a correspondence where X is proper over
Spa(F,Or) and p1,p2 are finite flat. Let U be an open subset of X which is a
finite union of quasi-stein open subsets, and Z be a closed subset of X whose com-

plement is a finite union of quasi-stein open subsets. Assume that T(Ui CU and

TYZ) C Z. Let F be a locally projective Banach sheaf (see definition |2.5.4), de-
fined in a neighborhood of U N Z, and we assume that we have a compact map
T : p5.F — pt.F defined in a neighborhood of py*(Z) Npy (U). Then the coho-
mologies R z, ~u,, U, &) and the maps of the infinite diamond are represented
in Pron(KP oI (Ban(F))) and the operator T is potent compact. On the finite slope
part, all the morphisms of the infinite diamond are quasi-isomorphisms.

Proof. The claim that all objects and maps can be represented in Proy(KP™/ (Ban(F)))
is lemma[2.5.19and corollary[5.2.7 We next claim that there exists a quasi-compact

open U’ with T(U) C U C U. We can write U as a union U;U; of quasi-compact

opens. Since T'(U) is closed, hence compact in the constructible topology, we de-

duce that there exists a quasi-compact open U’ such that T () C U C U. Sim-
ilarly, we can find Z’ a closed subset with quasi-compact complement such that
THZ) CTYZ') C Z2C ZC Z'. Since T(2') C Z' and T(U') C U, we deduce
from lemma that the restriction/corestriction map RI'z¢(znm (U, F) —
R z/qr@)(T(U'), #) is compact. It follows from corollary that the endo-
morphism 7" of RI'zqp @) (T(U),.#) is compact. This implies that T' is potent
compact on any of the R’z ~y,, (Um,#). On the finite slope part, all the mor-
phisms of the infinite diamond are quasi-isomorphisms by proposition [5.3.2] [
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Corollary 5.3.8. Let U’ be an open subset of X which is a finite union of quasi-
stein open subsets, and Z' be a closed subset whose complement is a finite union of
quasi-stein open subsets. Under the hypothesis of theorem [5.3.7, assume that there
is myn,s € Zxo such that (T")"**(Z)NT™U) C Z' NnU' C (T")"(2) is a closed
subset and T™ S (U)N(TH)™(Z) CU" CT™(U). Then the operator T* is well defined
and potent compact on Rz (U, F) and the finite slope part of RT zrqyer (U, F)
is canonically quasi-isomorphic to the finite slope part of RT zry (U, F).

Proof. This follows from corollary (by putting U = T™U), Z = (T")"(Z)
and T' = T in the notation of the corollary). (]

Corollary 5.3.9. Let U, Z and U’', Z' be two open and closed sets satisfying the
hypothesis of theorem , Assume that Ny, T™(U) N (TH™(Z) = N n T™ (U )N
(TH)™(Z'). Then the finite slope parts of RUynz(U,.F) and RTynz (U, F) are
canonically quasi-isomorphic.

Proof. We can assume that U, U’ are quasi-compact and Z, Z’ have quasi-compact
complement by arguing as in the proof of theorem We can also replace (U, Z')
by (UUU', ZU Z'). We therefore reduce to the situation that Y C U’ and Z C Z’.
Let us assume that & C U’ and Z = Z’. One treats similarly the case that U = U’
and Z C Z’. We see that there exists m,n such that T™(U) N (T*)"(Z) C U.
Indeed, we know that N, 7™ (U) N (T")"(Z)U® = 0. But all these sets are
compact in the constructible topology. Therefore, there must exist m,n such that
T™(U) N (TH)™(Z) CU. We may further replace Z by (T*)"(Z). We thus reduce
to the case that 7 (U') N Z C U. We may now use corollary O

5.4. Overconvergent cohomologies. Let (G, X) be an abelian type Shimura
datum such that Gq, is quasi split. Let w € MV, For a choice of + or — and a
weight k € X*(T¢)M«+ we want to define finite slope overconvergent cohomologies
RI',(KP, k)*f* and their cuspidal counterparts RI'y, (KP, s, cusp)®/* by taking
cohomologies with suitable support conditions of neighborhoods of the inverse image
under the Hodge-Tate period map of P,\P,wK,, and by taking finite slope parts
for a suitable Hecke operator. We will also define variants RT,,(K?, &, x)*7* and

RT,, (K?, K, X, cusp) ™7 where x : T(Z,) — 7™ is a finite order character.

5.4.1. First definition. For a level K, = K v p with m’ > b > 0 and m’ > 0 (see
the definition of K, ./, in section [5.4.1)) and a weight x € X*(T¢)Mw+ | we define:

REy (KP Ky, 5) 77 = RD (rer 1104 1o o) (T8, 1,) ™ (1 X i)y Vi) H7%

HT,Kp
The set ]Cw,k[oﬁ is defined in definition [3.3.10} the set X, , is defined in section
and the map 737 5 is defined in section Implicit in this definition is that
this cohomology is an object of Proy(KP"%/(Ban(F))) and that H;m/’b acts on it
in a way that 7—[;/ » acts by potent compact operators (this will be proved below

in Theorem [5.4.3)).

Similarly for a weight x € X*(T¢)Ms* we define:
RT(KPKp, k)7 i= RT (rrer )—1(]cw,k[6,0)((Wﬁfﬂfr,Kp)fl(]Yw,vaVn)f’fs-

HT,Kp

Again implicit in this definition is that this cohomology is an object of Proy(KP™%/ (Ban(F)))
and that H;m,’b acts on it in a way that ”H; b acts by potent compact operators
(this will also be proved below in Theorem [5.4.3)).
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We have similar definitions for cuspidal cohomology.

5.4.2. Existence of finite slope cohomology.

Theorem 5.4.3. Let K, = Ky for some m > b > 0 with m > 0, and fix
we MW and k € X*(T¢)Mu-t.

(1) There is an action ofH;Wb on RT (rior )_1(]Cw,k[016)((W%}’Kp)*l(]ka[), Vi)

HT,Kp
for which H++ 1 acts via potent compact operators. The same statement

holds for RE (ygy 1210, 1000 (780,) ™ (k). V(= D).
(2) There is an action OfH;,m,b on R (rror y-100,, 4[5.0) (T TR K,) Y)Y k), Vi)

HT,Kp
for which M, . 0cts via potent compact operators. The same statement

holds f07’ RF(W};;‘,KT,)il(]ka[ﬁ,O)(( *I-?'%K )_1(]Yw,kD,Vﬁ(—D)).

Proof. We only prove point (1) for non cuspidal cohomology. The rest of the argu-
ment is very similar and left to the reader.

Let U = (197 x,) "' (| Xwk]) and Z = (7397 i )7 ([Yu,k[). By lemma [3.3.24f we

have
REunz (U Ve) = Rl (migr )10 ilo0) (T Tirr,) (1 Xwk[)s Vi)

Now if T is the Hecke operator [K,tK,| for any t € T*, we have T(U) C U
and T%(Z) C Z by lemma (1) and (2), and hence there is an action of T' on
RTynz(U,V,) via the construction explained at the beginning of Section We
claim that this defines an action of the Hecke algebra 'H m,p- Indeed, by lemma
[5.2.10] the composition T” of two operators T = [K, tK ] and T’ = [Kpt' K is
realized as the action of the fiber product of the correspondences for 7' and T".
The discussion of section [1.2.2] justifies why this fiber products acts like the Hecke
operator [Kptt'Kp).

Now suppose that 7' is associated to ¢ € T+. By lemma (7) and (8),
and theorem we see that T is potent compact.

O

5.4.4. The finite slope cohomology and the cohomology of dagger spaces. We con-
struct two exact triangles which give an interpretation of finite slope cohomology
for a given w € MW as being quasi-isomorphic to the cone of a map between finite
slope cohomology of certain dagger spaces, or the cone of a map between cohomol-
ogy with compact support of dagger spaces. This will be useful for duality and
vanishing.

Proposition 5.4.5. Let K, = K}, pp for some m > b > 0 with m > 0, and fix
we MW and k € X*(T¢)Mu:T.

) 1(] [(S?;K E?Vn) Cl/nd

(1) The Hecke algebra ’Hpmb acts on RF( tor
RF(”?%,KP)”(W (SK;,KWX, Vi) and the ideal H'H' » acts by potent

compact operators. We have an exact triangle:

RI (Signg,& V)Tl — RF(W?T (S?SKP,& Vo)t

(ﬂ-}-?;K )~ (] w! >w w’ kD T,Kyp )™ (]Yw k()

— RTW(KPK,, k)t 5
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(2) The Hecke algebra M, ,, acts on RT (7397 i, )" (Y k]), Vi) and RT (7397 K,) HUw sw
Yo k[), Vi) and the ideal M, mp acts by potent compact operators. We have
an exact triangle:

RLy (KPKp, k) 7% = RU((7i57 i, ) (V) Vi) ™7

or — . fs +1
— RTO((mr )™ Y Ui s Yur i), Vi) 75 5
Proof. We have an exact triangle:

R (xtg )= (Cuily o) (T57,56,) ™ (Yo kD), Vi) = RE((757, 1, ) ™ (Vo ) Vi)

— RO((7§7.x,) " (| U Yar ), Vi) 5
since Yy k[=] Uw/sw Yw7k[H]C’w7k[070 by lemma [3.3.25] We also have an exact
triangle

RF (S%ZKP’XHVN) - RF(T‘JO; )71(] w, lc (S?;Kp’zh Vﬁ)

(“}f;,xl,)fl(] w'>w Y k) Kp

or - +1
= R (rior. p)*l(]Cw,k[O,ﬁ)((W%T,Kp) M1 Xwk]), Vi) =

since Yy k[ = | Uwsw Yo k[[1]Cuwklog by lemma 3.3.25L and |X,, [ is an open
neighborhood of ]Cw,k[o,ﬁ in FL\ | Uy'sw Y k[ It therefore remains to prove that
the relevant Hecke algebras act in an equivariant way on the triangle and to take the
finite slope part. We observe that the cohomologies RT'((77%, K, )" (Yw.k[), Vi) and
RE((757 1)~ Y)UwswYur k[), Vi) are represented by complexes in KP"%J (Ban(F))
It follows from 1emma (2) and (7) that H,,, , is acting and that H ., , is

3 3 tor
acting via potent compact operators. We observe that the cohomologies RT" (Wﬁi’%,x )1 (0mrou ¥ 2D (Ster K5 Vi)

and RI' .o ) (VD (S#rrk, 5 Vi) are represented by complexes in Proy(K?"*/ (Ban(F)))

and it follows form lemma|3.5.11|(2) and (7) that ’H+m, , is acting and that 7'
is acting via potent compact operators.

p,m’.b

Remark 5.4.6. One could also consider two other triangles: one for the — theory,
using cohomology with support in the closed subsets (ﬂ?}K )] U <w X k])

and (w}?%K )" (JXw.k[), and one for the + theory using cohomology of the open
subsets (W??%K )7 Y <o X k) and (w577 g, )™ (1 X i )-
By remark [2.7.2] the cohomologies

tor tor
RF(WL”%,KP)”(] U s Yol 1)) (SK”KP»E’V”)’ and RF(Tr“” 1 (Vaal (SKPK,,,DVK)

are the cohomologies with compact support of the dagger spaces
(m577.1,) " (| Vs Yor kDT and (7397 1, )~ (1Yo k)

Therefore, proposition (1) expresses RI',, (KP K, k)™/* in terms of cohomol-
ogy with compact support of dagger spaces.
Similarly,

RE((7577. k) ([YokD), Vi), and RE((757 k)™ ([ Uwr > Yo k[), Vio)
are the cohomologies of the dagger spaces

(W?%K )71(]Yw,kDT and (7"}%“}( )" 1(] U’ >w Yw’,kDT-
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However, in proposition (2), the cohomologies which appear are those of
the quasi-compact adic spaces (ﬂﬁ}’%Kp)*l(] Uw'sw Yur x[) and (ﬂfEKp)’l(]Yw,k[).
This minor discrepancy is irrelevant on the finite slope part as we now explain.

Proposition 5.4.7. The Hecke algebra H, ., acts on RF((WZ%KP)’l(]Yw,k[), V)
and RF((W}}JEKP)A(} Uw >w Yur k), Vi) and the ideal H , acts by potent compact
operators. Moreover, the morphisms:
RE((7ig7 k)~ (Yurl), Vi) = RE(TiE k)™ (Yurl), Vo)
RF((Wi%“,K,,)_l(] U’ > Yw’,k[)vvm) - RF((W?;,K},)_l(] Uw'>w Yw’,kD>VN)

induce isomorphisms on the finite slope part:
RE((w27,5,) " (Yur D V) 7 5 RO((nifr ke, )~ (Yo k) Vi) 7
RF((W%O%,KP)_I(] Uw'>w Yu k), Vf-c)_7fs - RF((T";%“,KP)_I(] Uw>w Yur k), Vﬁ)_7fs

Proof. The cohomologies RF((”;%,KP)_l(m)a V,) and RF((W}%«’KP)A(] Uw'sw Yur k1), Vi)
are represented by complexes in Indy(KP™/(Ban(F'))). The Hecke algebra H_ b
acts and the operators are potent compact as a consequence of lemma (2)
and (7). The same lemma shows the quasi-isomorphism on the finite slope part. O

Corollary 5.4.8. We have an exact triangle:

Ry, (KP K, ’i)_’fs - RP((”??,KP)_l(]Yw’k[% Vﬁ)_7fs

= RE((r7 1) ™ ( Uwrs YorilD), V) ° 5
Proof. This is a consequence of propositions [5.4.5] and [5.4.7] O

5.4.9. Change of support condition. It is important to us that the cohomology
RFw(Kpr,/i)i’f 5 can actually be realized as the finite slope part of cohomol-
ogy groups with different support conditions. The following definition is motivated
by Lemma [2.5.19) and the discussion of Section [5.3] especially Corollary [5.3.8f We
start by fixing an element ¢ € TTT such that min(¢) > 1. We let C = max(t).

Definition 5.4.10. Let m' > b > 0 withm' > 0. A (4, w, Kp m p)-allowed support
is a pair (U, Z) where:
(1) U is an open subset of St which is a finite union of quasi-Stein
p,m’ b
open subsets.
(2) Z is a closed subset of Sigr, | .5 whose complement is a finite union of
p,m/’ by
quasi-Stein open subsets.
(3) There exists m,n,s € Z>q such that:

i ) (Cuilo s Ko ) € 20U € (1851 ) (1CuilocnBpam ),

(77, ) (CuklmrsaBpm ) CUC (77 k)7 (Cwklem—1Kpmb)-
Letm' > b >0 withm' > 0. A (—,w, Ky p)-allowed support is a pair (U, Z)
where:

(1) U is an open subset of Sk, | .5 Which is a finite union of quasi-Stein

p,m’,b?

open subsets.

(2) Z is a closed subset of Sigr, | . whose complement is a finite union of

pom b

quasi-Stein open subsets.
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(3) There exists m,n,s € Z>o such that:
(W;})S",Kp,m,,b)il(]Cw,k[m,nKp,m/,b) czZni < (W?;,Kp,m,,b)il(]Cw,k[Cm,OKp,m',b)7
(W?;,Kp’m,vb)il(]cw,k[W,n-l-st,m’,b) cuc (W?;,Kp,m,’b)il(]Cw,k[—l,CnKp,m’,b)-
Ezxample 5.4.11. For any m’ > b > 0 with m’ > 0 and any s > 0, the pair
U= (mgr k) (1Cukls—1Epmp), Z=(grk ) (1CuklsKpm b)

p,m’ b p,m’ b

isa (4+,w, Kp m p)-allowed support (since ]wak[s’,leym/ﬁbﬁ]wak[57§Kp,m/,b ClXwrNYwrl =
]Cuw,klo)- Similarly, the pair

U= (ng“,prm“b)_l(]Cw’k[fl,st,m’,b)v zZ= (W;})},Kp‘m/,b)_l(]Cw,k[g,ﬁKp’m/,b)
is a (—, w, Kp s p)-allowed support.
Theorem 5.4.12. Let m’ > b > 0 with m’ > 0, and fir w € MW and k €
X*(TC)M“’+.

(1) Let (U, Z) be a (+,w, Kpm p)-allowed support condition. Then RT zqy (U, Vi)
and RT zqy (U, Vi (—D)) are objects of Proy(KP™) (Ban(F))) and carry a
canonically defined, potent compact action of T® where T = [Kp s ptKp m/ ) -
Moreover there are canonical isomorphisms

RT (KP Ky s, 5) 7% ~ RO 200 (U, V)T 7%
and
RL .y (KP Ky i b, 5, cusp) ™7 = RT 2oy (U, Vo (—D)) T2,

(2) Let (U, Z) be a (—,w, Kp m p)-allowed support condition. Then RT zqy (U, Vi)
and RU zry (U, Vi(—D)) are objects of Proy(KP I (Ban(F))) and carry a
canonically defined, potent compact action of T® whereT = [Kpﬁm/ybt’leﬁm/yb].
Moreover there are canonical isomorphisms

REy (KPKp s, ) 7% ~ RO zmge (U, V)T —F*
and
Ry (KP Ky i b, Ky cusp) 7 =~ RT zeqy (U, Vi (— D)) =55,

Proof. We will only prove the first point for non cuspidal cohomology. It follows
from lemma [2.5.19| that RT zry, (U, V,) is an object of Pron(KP™/ (Ban(F))).
For the rest of the statement we will use the infinite diamond construction of sec-

tion(5.3.5/and corollary 5.3.8} For m,n € Zxo welet Up = (77 1, )" HT™ ([ Xw k)

p,m’ b
and Z, = (737 & ,b)_l((Tt)"(]Ymk[)). Since we have already checked in the
proof of theorem that the “restriction-corestriction” map

RTyynz, (Uo, Vi) = Rl nz, (Ur, Vi)
is compact, it follows that the conclusion of corollary hold.

By lemma we have:
UnNZnss S (mgrk, )" (CuklmarsKpm b)
Un+sNZn S (7, )7 (Cuklmssakpm b)
(W%’?,Kp’m/’b)il(]Cw,k[mC,—le,m/,b) C Un
(i, 0 ) (CurlomcKpmp) S Zn.
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It follows from corollary that if (U, Z) is a (+, w, K, s »)-allowed support
condition, then RT'ynz (U, V,;) carries a canonical action of T and we have canonical
quasi-isomorphisms

REunz (U, Vi)™ 1 = Rz, (Uo, V)"~ 2 ROy (K Kyt s 1) 7%
(I

5.4.13. Change of level. Now we investigate how the finite slope cohomologies RI',,(K? K, k)

and R, (KPK,, K, cusp)™/* vary with the level K.

Theorem 5.4.14. (1) For allw € MW and all m’ > m > b >0 with m > 0,
the pullback map

Ry (KPKp b, ) 778 = RT W (KP Ky s, )77
and the trace map
Ry (KPKp iy k) 7% — RE W (KP Ky oy ) 7

are quast-isomorphisms, compatible with the action of Q[T'(Qp)/Ts|, and
the same statements are true for cuspidal cohomology.
(2) For allw € MW and all m > b > b >0 with m > 0, the pullback map

REy (KP K by )77 = (REw (K7 Ko g, 1) 7)1
and the trace map
(RT o (KP K, 1) )T/ T RT (KPP Ky ) 7°

are quasi-isomorphisms, compatible with the action of Q[T'(Qp)/Ts|, and
the same statements are true for cuspidal cohomology.

Proof. This follows from lemma that we have similar factorization diagram
as in corollary so we conclude as in corollary O

As aresult of the theorem, we can let RT',,(K?, x, x)™ /¢ and R, (K?, K, x, cusp) /¢
denote R, (KP Ky m b, k)57 [x] and RTy,(KP Ky m b, &, cusp) =74 [x] for any m >
b > cond(x) with m > 0, as these spaces have been canonically identified.

5.5. The spectral sequence associated with the Bruhat stratification. Re-

call that there is a length function ¢ : W — [0,d] where d = dim FL = dim Sk

with the property that £(w) = dim C,,. We let £ (w) = £(w) and {_(w) = d—L{(w).
The main result of this section is the following theorem:

Theorem 5.5.1. Let k € X*(T¢)Mwt be a weight and let x : T(Z,) — F™ be
a finite order character. For a choice of + or —, there is a Hp,7n7b-equivariant

spectral sequence EP4(KP k,x)T converging to classical finite slope cohomology
HPH(K?P, k, x)5 7, such that

Ezl),q<Kp7 K, X)i = @wEMW,Zi (w):szlaquq(Kpa R, X)i,fs'
There are also spectral sequences EP4(KP K, x, cusp)i
such that

Ezlg’q(va Ky Xs Cusp)i = @MGMW,Ei(w):pHﬁJJFq(va Ky X Cusp)idcs'

+,fs

converging to HPT4(KP k. x, cusp)®7*
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5.5.2. Construction of a filtration. We consider the following two stratifications of
the special fiber of the flag variety F'L;, the first one is by open subsets:

{FL%"' = Ué(w)ZT‘Cw,k}OSTSd
and the second one is by closed subsets:
{FLE"" = Ugguw)<d—rCu k Jo<r<d-

We then define Z;F = |FLZ"[ and Z; = |FL:%""[. This gives two filtrations
FL=Zy2>Zf> D27 D77, =0
by closed subspaces invariant under the Iwahori Iw.

Now let K, = Kpmp for some m > b > 0 with m > 0. We can consider the
pullback of these filtrations by 727 x to get two filtrations S, = zEozE o
-eD fo D Zjﬂ = ) by closed subspaces.

For any weight k, we can consider the associated spectral sequence (see section

23):

HOY o (S Vi) = HPPUSE:, Vo).

By definition and lemma [3.3:22]

* Stor v —
Z;/Z;Zrl( KPK,» n)

* tor -1
H(w}?;,xp (V) 25 Cr MUt ) <p C ) (i1 1,) ™ ([ ey <p Cwl), Vi)
and
* tor _
HZE/Z,?H (SKpr’ V) =
* tor —1
H(”;;);‘,Kp 71(]Ul(w)§d—pcw [ﬂ]an)zdprw [)((WHT’KF) G Ué(w)Zd—p Cw D’ VK)

We also have a cuspidal version
HUW o (8K, Va(=D)) = HPH(SE%, V(= D)).

/25,
We relate the E; pages of these spectral sequences to the overconvergent coho-
mologies considered in the previous section.

Lemma 5.5.3. For all p,
er,jr/z;+1 (ngng,za Vi) =

tor

DweMw, ¢(w)=pRT eor )71(]X7,,,k[mm)((WHT,KP)_l(]Xw,k[)aVn)

HT,Kp
RFZ;/ZP*+1 (S;?ZKP,Ea Vi) =
Duwemw, Z(w):d—pRF(ng;Kp)—l (Y k[N Xw &) ((ﬂ%“,}(p)il (]Yw,k D, Vi)

We have similar results for cuspidal cohomology.

Proof. We have

[Uwyzp Cul N Urwy<p Cowl = [T TVawrklN] X [
w,((w):p
and
] Ul(w)gdfp Cw[ N ] UZ(w)dep Cw[ = H ]Yw,k[ N ]Xw,k[

w,l(w)=d—p
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by lemma [3:3:23] The conclusion follows from lemma [2.1.1} O

; + ¢
Lemma 5.5.4. For a choice of + or —, H,, , acts on RFZpi/ZPiH(S}(O;KP,E,VK),
and the spectral sequence

HUL o (SK', Vi) = HPPI(SIE, Vi)

/200
is ’Himb—equz’variant. The same result holds for cuspidal cohomology.
Proof. For any T = [K} mptKp ms] € H;tm p» we have T'(ZF) C ZF by lemma
3.5.11p This implies that T" acts on all the cohomologies RI'z= -+ (S%’ZKP’Z, Vi)
for s > r (section |5.3.1]), compatibly with all natural triangles between these coho-
mologies. This implies that T" acts on the spectral sequence of section[2.3] Moreover,
the action of T on RI' zE/2E,, (Ster K5 V,.) preserves the decomposition in lemma
o ;

[£.5.3 and coincides with the action of theorem [F.4.3 O

5.5.5. Proof of Theorem [5.5.1 For a choice of £, we have constructed a spectral
sequence

szz}q/zgﬂ (8%, Vi) = HPFU(SI V).

The Hecke algebra ’H;m , acts on this spectral sequence and it makes sense to take

the finite slope part by lemma[5.5.4l Applying the finite slope projector, we obtain
the spectral sequence of the theorem.

5.5.6. Cousin compleres. We now extract from the spectral sequence certain com-

plexes that play a prominent role, in particular in view of corollaries [5.7.7] and
We let Cous(K?, k,x)= be the complex E??(K?, k,x)E. It appears as fol-

lows, where we write Id/w{! to mean Id in the + case and w}! in the — case (WM
is the longest element of ¥ W):

HY e (K7 8,057 = @yenw ey (=1 By (K7, 5,057 —

69wEMVV,Zi(w):2H§u<I(p7 K, X)i’fs o Hfué”/[d(va R, X)i)fs'

Similarly we let Cous(K?, k, x, cusp)® be the complex E;’O(K”, K, X, cusp)t:

+,fs

Y pugr (K7, 15, cusp) =% = @uenwe =1 B (K7, 1, X, cusp) =" —

@wEMW,Zi(w):2Hfu(Kp7 Ky X, cusp):bfs — nyé\/f/]d(Kpa Ry X CUSp):bfs'
5.6. Cohomological vanishing. The following vanishing theorem is crucial in
order to study the spectral sequence.

Theorem 5.6.1. The cohomology complex RT,(KP, K, x, cusp)™7¥* has amplitude
[ng:l: (’LU)]

Proof. We only give the argument for the + case, as the — case follows with minor
modifications. Let b be the conductor of y. We can realize RT', (K, k, cusp)™/*
as the x-isotypic part of the finite slope part of

R (rtgr o 7100wkl 1K skl B ) (THT G, )™ (Cukls -1 Kpnr ), Vio(=D))

for any s > 0 and m’ > b, m’ > 0 by example [5.4.11| and theorem [5.4.12
We fix s large enough so that |Cy, x[s,s—1 is included in an affinoid V' with the
property that for any rational subset U C V, wﬁlT’ K,y (U) if affinoid (see theorem
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. It follows from lemma, that 7r;11T7K , b(]C’w,k[&s_l) is quasi-Stein in

the minimal compactification. We also fix m’ = s. To simplify notations, we let
K, = Kp, b
We observe that under these assumptions, |Cy, k[s,—1 KpN]Cu i [ﬁgK =|Cy ks sKp
by lemma [3:3:20] and therefore the above cohomology writes
RF(w};;,Kp)fl(]Cw,k[s,gxp)((W??,Kp)_l(]cw,k[s,s—le% Vi(=D)).
We shall prove that
RF(W}E’;,KP)*1(]Cw,k[s,§Kp)((ng“,Kp)_l(]Cw’k[s,sfle)a Vﬁ(_D))

has cohomological amplitude [0, £ (w)].

Projecting via mg» : Ster — 57 and using theorem [4.1.7, this coho-
molog;/ is qfasi—isorlr(lof;fic toKpr,Z e i

R (e 1e,) -1 (10w oK) (T, 1) T (O i [s,5-1Kp), (Mo, 5)4 Vi (= D))

Le KZ’, be the principal level m’ congruence subgroup and let TR K, © Sker K,
Skri,- Since

RF(WHT,KP)’I(]CU;JC[s,ng)((W;?%Kp)il(]Cw7k[878—1Kp)7 (TrKPKp,E)*VH(_D)) =

R (K,/ K, RF(wHT,K;D>*1(ch,k[s,§Kp)((WHT,K;)_l(]Cw,k[s,s—le), Tk k5, (kv 5) Ve (=D)))
It will suffice to prove that

Rr(ﬂ'HTYKZ/J)*l(]Cu,,k[s’ng)((WHT,KI’?)il(]Cw,k[s,s—le)y i i, (MK K, )4 Ve (=D))

has cohomological amplitude in [0, {4 (w)].
Since |Cy k[s 5K, is a finite disjoint union of translates of {|Cy, k[ssk:} for ele-
ments k1, --- ,k, by lemma|[3.3.19] we are left to prove that

RE(r 11,1y )= (1 il sk (mr7.r)) " (Culs,s—1ki), T, i, (Trr i, 3) 4 Vi (= D))

for 1 < i < n has cohomological amplitude in [0, ¢, (w)]. Also, using the action
of K, it suffices to treat the case k; = 1. The cohomology fits in a distinguished
triangle:

RE (7,1~ (1w i Le9) (ma7,ry) " (Cukls,s—1), Ty i, (TR0 1,2 )5 Vi (= D)) =
RT (w7, i)~ (1Cukls,s 1), T 1, (kv I, 2)4 Vi (= D)) =

RE((ma1,1,) " (1Cuwkls,s-1 \1Cw kls.5): They i, (Trr . 2) 4 V(= D)) =
Since 71';{}7 K, (]Cw kls,s—1) is quasi-Stein in the minimal compactification Sk, K,
we have that
RT (a7, k1) (1Cuw k[s,5-1); T 1, (TEv i, )+ V(= D))
is concentrated in degree 0 by theorem [2.5.14]
We will now prove that ﬂng’Ké (1Cw kls,5—1\]Cuw,k[s,5) admits a covering by £, (w)
acyclic spaces. This will show that

RF((W?I};,K}Q)_l(]Cw,k[s,sfl \ ]Ow,k[s’g)a W;(;,Kp (WK"KP’E%VN(_D))

has only cohomology in degree 0 to ¢4 (w) — 1 and the theorem will follow.
We recall from corollary [3.3.7] the isomorphism:
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H Ua X H U, — 1Curlrc

ac(w=1e—-M)Ne+ ac(w=1e—M)NP—

(ua)QEw—1¢—,M = w H Uy
(0%

Let us fix coordinates 1 + u, on each of the one parameter groups. For these
coordinates, the equation of |Cy k[s,s—1\]Cuw,k[s 3 is:
o Vo€ (wld=M)yn ot ju,| < |p*7 Y,
o Va € (wld=M)Nd~ Je > 0, |ua| < |p*T,
e Jac (wld=M)Nndt v >0, lus| > [p*7|.

Since #(w =t M) N &+ = {(w) = {4 (w), we deduce that |Cy i[s.s—1 \ ]Cw klss
is indeed covered by ¢(w) acyclic spaces and the same holds for its pre-image by
WHT,K;)- O

Proposition 5.6.2. For the spectral sequence EP9(KP K, X, cusp)® converging to
HPH(KP K, X, cusp)™/* we have EYY(KP, Kk, x,cusp)® =0 if ¢ > 0. In particular
EZA(KP, k, x, cusp)* = GrP (HPHI(KP, &, X, cusp)™7*) = 0 if p < p +q.

Proof. This follows from theorem O

The picture of the first page of the spectral sequence is as follows (w}! is the
longest element of ¥ W):

HO  (KP, K, x,cusp)®fs —— @ (KP, k, x, cusp) T Fs ——> @
1d/w

1
wGAlW,li(w):le

& HY, (KP, kv, x, cusp)©/8 ——> @

weMW, ey (w)=1 weMW, ey (w)=2

DpeM W,y (w)=2

5.7. Duality. In this section we investigate Serre duality on overconvergent coho-
mologies.
Theorem 5.7.1. For all w € MW, there is a pairing:

<_a _> : H:U(Kpa Ry X, Cusp)j;fs X Hi)_i(Kp’ _QPnc - U)Q7MI‘€, X_1)2F7f8 — F

such that for t € T* we have (t—,—) = (—,t7'=). This pairing induces a pairing
between the spectral sequences:

<7a 7>p,q,r : Eg,Q(Kp’ Ky X, cusp)i X Egip’iq(va —2pne — Wo,M R, )(71):F —F

On the abutment of the spectral sequence the pairing (,)pq.0o 5 induced by the
perfect Serre duality pairing:

HPTI(KP, K, X, cusp) =7 x HI7P=9U(KP —2p,. — wo prk, x 1) T/% = F.
Proof. We construct the pairing
(=, =) H! (KP, K, x, cusp) ™I x HEH(KP, —2ppe — wonk, x 1) 7% = F.

wGMW,fi(w)ZQH

w

w

2 (KP, k5, x, cusp)T7¢

HY (K?, &, x, cusp)®>/

HO, (KP, &, X, cusp)£ /2
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Choose b so that y is trivial on T,. We can realize R, (KP, k, X, cusp)™/* as the
x-isotypic part of the finite slope part of

R (rior o )7 00wkl sy (757 x0T (Cw ks~ 1 Kpmr 0), Ve (=D))

for any s > 0 and m' > b, m’ > s, by example |5.4.11| and theorem [5.4.12
We can realize Ry, (K?, —2pyc — wo, MK, x~1)™/% as the x~!-isotypic part of the
finite slope part of

RE e b)—l(]cw,k[mys_lxp,m,,b)((Trfrfr’% Ky y) (Cunlot,sm1Kpm ) V200w 1r0)-

We have a cup-product by proposition 2:2.T}
Hz(lw“” )*1(]Cw,k[s,ngYm,,b)(( f‘%“ K, m/yb)_l(}cw,k[s,flK ,m’,b)7 Vn(_D)) X

HT K i b

d— _
H(wio; Kpﬂm/yh)fl(]CU7=k[er71,sf1Kp,m’,b)(( 2%’ Kp m!, b) ldcw,k[—l,s—lK 7m/yb)a V_Qpnc—wo,Mn)
- H(wg;,Kpﬁm,yb)—l(]cw,k[mjxp,m (@57 )7 (0Cwkls,s—1 Kpm by V-2p,,. (D))
and there is a trace map (by theorem [2.7.1)):

d _

Herter e ) 100l sk ) (T TRy ) (Cuwklss=1Kpm b), V=2p,.(=D)) = F.

This pairing intertwines the actions of ’H+ m b and Hp m b by the same arguments
as in proposwlonm Itis stralghtforward (but painful) to check that the induced
pairing

(=, =) H (K, K, x, cusp) ™7 x HEH(KP, —2ppe — wo ki, x )7 = F

is independent of choices.
The rest of the theorem follows from the functoriality of the trace map.

We now prove the following theorem:

Theorem 5.7.2. The pairing
(= =) s HG (K, w0, x, cusp) ™7 x HET (KP, —2ppe —wonki, X )T = F

is non degenerate. (Equivalently it induces perfect pairings between the finite di-
mensional generalized eigenspaces for T ).

Proof. We consider the pairing (—, —) : Hj,(K?, &, x, cusp)t 7 x HIZH(KP, —2p,,. —
wo vk, X~ 1) /% — F. The other case is similar. Recall from propositions
and corollary the exact triangles:

RLy (KP Ky, ~2pnc — wonr) 7* = RU((Ti )™ (Yo kD) Vo2ppewo nn) 7

1A~ T _ 1
- RF((”%%‘K ) 1(] U’ >w Yw’7k[)7 V72P7L07w0,1\/1’i) /s t>

and

RE it (S, 20 Va(=D))P* = RT oy

_ tor o +,fs
o) 7T Vw0 Yo i D) p 2 VR (7rHT7Kp)*1(]Yw,k[)(SKPKP,EvVﬁ( D))

— R (KPK,, k, cusp) T/ s
Using the naturality of the duality pairing, it is sufficient to show that the pair-
ings:
H (7577 1¢,) " (Yot D)s Vozpn—wo ) 75 xHI 0 (SKr K, Vo(=D))** = F

(w25 1)~ (Vi
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and

Hi((ﬂtHo’}K )71(] Uw’>w Yw,k[)a V72Pnc*wo,Ml€)7’fSXHd:ir B T . (S?;K R Vli(_D))Jr’fs — F
P TrHT,Kp (]Uw’>wa,kD P2
are non degenerate. We only explain how to show that the first pairing is non-
degenerate. The proof for the second pairing is identical. We take a finite affinoid
tor

covering (WHT,KP)_l(]Yw,kD = U;erU;.

We deduce that RF((T&'?;’KT,)_l (JYw,kD)s V=2p,c —wo.aix), Which is the cohomology

tor )—1

of the dagger space (77 x (Y x[)T, is represented by the Cech complex:

M* HHO(UiT’ V*QPnc*wo,Mﬁ) - HHO(<U1 N UJ)T7V*2P7Lc*w0,NIN) —
7 1,7

We deduce that RT" Vil (Ster K,,5» Vx) (which is the cohomol-

(25 1))~ (0o w Vel
tor

ogy with compact support of the dagger space (777 Kp)_l(]Yw,k[)T) is represented
by the Cech complex:

N = [[HE(U N Uy Ve(=D) = [ [HEUT, Va(-D))
1,7 K3

Using the duality for affinoid dagger spaces (see theorem , we see that M*

is a complex of inductive limit of Banach spaces, N*® is a complex of projective limit

of Banach spaces and these complexes are strict dual of each other. More precisely,

the Serre pairing is induced by the perfect duality on each of the modules (which
identifies each module as the strong dual of the other):

Hg((UJ)T7VN(_D)) X HO((UJ)T7V72PTLC71UO,MK/) — F,

where J C I and Uy = N;c; U;. In general, this does not induce a perfect duality
between the cohomology of M*® and N°®. However, we will prove that this is the case
on the finite slope part. Now, let ¢ € T~~ be an operator acting compactly. We
claim that we can represent it by an endomorphism of M*®. Indeed, for all i we can
find an affinoid V; with U; C V; (by [Liit90], thm. 5.1). Let V = UV;. By shrinking
the V;’s, we may assume by lemma 7), that ¢(V) C (W;%,Kp)_l(]yw,k[) cV.
Let us finally take an affinoid covering U] refining ¢(V) N U;. By lemmal5.2.6] there
is a map

t: C‘({U’L(}7V72pnc7w0,lvlﬁ) — C({‘/Z}’ V*QPnc*wo,Mﬁ)'

There are restriction maps A : O({U;}',V72PHC7WO,MN) = C{U}, V-2pn.—worir)
and B : C({Vi}, V-2p..—wo ser) = CHUUI},V_2p..—wo ). We deduce that Boto A
represents ¢ acting on M*® (and is compact since A and B are easily seen to be
compact). We easily deduce that the adjoint of ¢ represents t~! acting on N°.
Passing to the slope < h part on both M*® and N°®, we obtain a perfect pairing
between complexes of finite dimensional vector spaces. It induces a perfect pairing
on slope < h cohomology groups. O

Using duality, we can prove vanishing theorems for non-cuspidal cohomology:
Theorem 5.7.3. The cohomology complex RT,(K?, k, ) 7% has amplitude [(+(w), d].
Proof. This follows by combining theorem [5.7.2] and theorem [5.6.1] O
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Proposition 5.7.4. For the spectral sequence EP4(KP, k, x)* converging to HPTI(KP, k, x)*f*
we have EY(K? k, x)T = 0ifq < 0. In particular ELI(KP, k, x)* = Gr? (HPT(KP Kk, x) /%) =
0ifp>p+q.

Proof. This follows from theorem [5.7.3] ]

Corollary 5.7.5. If the Shimura variety is compact, RT(KP, k, )57 is concen-
trated in degree {4 (w).

Proof. This is a combination of theorems and O

Remark 5.7.6. Even if the Shimura variety is not compact, it can still happen that
for certain w € MW, the locally closed on which RI', (K, k,x)*¥* is computed
does not meet the boundary D, and hence RT, (K?, &, X)i’fs = RI', (KP, k, X, cusp)j[’fS
is concentrated in degree ¢4 (w) just as in the compact case. As a basic example,

consider the Hilbert Shimura datum (Resp;qgGLa, HEF:Q}) and a prime p which is
totally inert in F. Then MW = W = {1, wo}!"*¥ and we have R, (K?, k, x)*/* =
RI(KP, K, X, cusp)™f* unless w = (1,...,1) or (wp, ..., wp).

The following corollary illustrates the importance of the Cousin complex:

Corollary 5.7.7. If the Shimura variety is compact, we have a quasi-isomorphism:
Cous(KP, k,x)* = RT(K?, K, x)57*

Proof. For the spectral sequence EP¢(KP, k, x)T converging to HPY4(KP, k, x)57*,
we have EJ"Y(KP k,x)T = 0if ¢ # 0. O

5.8. Interior cohomology. For non compact Shimura varieties, we can introduce
the interior cohomology:

ﬁi(Kp, H7X)i’fs = Im(HY(K?, s, X,cusp)i’fs — HY(K?, H7X)i’fs).
We can also consider the interior overconvergent cohomology
ﬁ:u(Kpa K, X)i’fs = Im(sz (Kp7 Ky X, C’U,Sp)i - HZJ(KIM K, X)i)
as well as the interior Cousin complex
Cous(KP, K, x)* =
Im(Cous(K”, K, X, cusp)t — Cous(K,, K,X):t).

By definition, Cous(K?,x,x)* is concentrated in degrees in the interval [0, d]
+,fs

and its degree i object is @weNIW7Zi(w):iH;(Kp, Ky X)
Corollary 5.8.1. We have the formula:
ﬁi(Kp7 k)57 = Im(BYO(K?, K, x, cusp)™ — EL0(KP, K, x)F).
Moreover, for all i, ﬁi(Kp, K, X) 57 is a subquotient of H' (Cous(KP, k,x)T).

Proof. We have a commutative diagram:
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Hi(Kpa Ry X5 Cusp)i’fs . Hi(Kp’ K, X)i’fs

| |

EL0(KP, Kk, X, cusp)® ELO(KP, kK, x)*

| |

H(Cous(KP, k, x, cusp)t) —= H'(Cous(K?, r, x)T)

where the map H'(KP, k,x, cusp)™/* — ELO(KP k,x, cusp)® is surjective (this
last module is the last non-zero graded piece in the filtration given by the spectral
sequence) and the map E30(KP, k,x)* — HY(K?, k,x)H7* is injective (the first
module is the first non-zero graded piece in the filtration given by the spectral
sequence).

We deduce that

ﬁi(Kp,/{,X)i’fs = Im(EY0(KP, Kk, x, cusp)® — ELO(KP, k, x)F).
The map
EL0(KP, Kk, x, cusp)® — H' (Cous(KP, k, x, cusp)®) = Eé’O(Kp, K, X, cusp)™
is injective, and the map
H!(Cous(KP, k,x)F) = EQ’O(K”, ko x)E = BLO(KP, k, x)*E
is surjective. '
We deduce that H'(K?, k, x)¥/5 is a subquotient of

Im(H! (Cous(K?, k, x, cusp)™) — H(Cous(K?, k, x)¥)).
This last group is a subquotient of H*(Cous(K?, ,x)T). O

5.9. Lower bounds on slopes. In this section we will write (—, —) for the usual
pairing X, (T) x X*(T) — Z. We denote by T the maximal Q,-split subtorus of T'.
We have a relative root system ®; C X*(T?) with a choice of positive and simple
roots Ay C <I>jlr C ®,4. Because G/Q, is quasi-split, restriction from 7 to T¢ defines
a surjective map r : ® — &4, which restricts to a surjective map r : A — Ay (the
fibers of r are exactly the Galois orbits of absolute roots.)

We have on X*(T')r a partial order < where A < X if and only if ' — A € R>oA.
We have on X*(T%)g a partial order < where A < X\ if and only if ' — \ € R>oAg.
We extend the symbol < to the case that one or both sides are in X*(T)g, in
which case we apply the restriction map X*(T) — X*(T9) (so in particular for
AN e X*(T), A < X implies A < X, but not necessarily conversely.)

Recall that we have monoids T and 7~ in T(Q,). In section we defined
a valuation morphism v : T(Q,) — X,(T%) ® Q, whose image is a lattice, and
whose kernel is the maximal compact subgroup of T'(Q,) which we denoted (slightly
abusively) by T(Z,). For A € X*(T%)g and t € T(Q,) we will abusively write
v(A(t)) for (v(t),\). The partial order < has another characterization that we
frequently use:

Lemma 5.9.1. Let \, N € X*(T%gr. Then A < X if and only if v(A(t)) < v(N(t))
forallt e TT.
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Given a homomorphism X : T(Q,) — FX, the composition with the valuation

v: F° — R factors through a morphism v(T(Qp)) = T(Q,)/T(Z,) — R. This
extends by linearity to a R-linear map X, (7%)g — R and thus defines an element
of X*(T%)g, which we will denote by v(\) and call the slope of \. Unravelling the
definition we have (v(A),v(t)) = v(A(t)).

If we start instead with a monoid homomorphism T+ — FX, we also define the
slope v(A) of A by first extending A to a group homomorphism T'(Q,) — 7 (recall
that T(Q,) is generated by the monoids 7F).

We now formulate a general conjectural lower bound on the slopes of R, (K, &, x)*/*
and RT, (K?, k, X, cusp)™/*

Conjecture 5.9.2. Fizrw € MW, k € X*(T)MeT, and x : T(Z,) — F™ of finite
order.
(1) For any character A of Tt on RT,(KP, K, x) T/ or RT(KP, &, X, cusp) t7*
we have v(\) > w™lwo am (K + p) + p.
(2) For any character X\ of T~ on RT(KP, K, x)™7% or RT,(KP, k, X, cusp) ~/*
we have v(A\) < w (K + p) — p.

Remark 5.9.3. We can spell out the meaning of these inequalities. The inequality
v(X) > wlwg pr(k + p) + p means that for all t € T+ (and corresponding v(t) €
X*(Td)é), we have

A1) = (0(8), w wo,ar (5 + p) + p).

The inequality v(\) < w™(k + p) — p means that for all + € T~ and (and corre-
sponding v(t) € X*(Td)@)7 we have

v(A(1) = (u(t),w™ (5 + p) — p).

Remark 5.9.4. We recall that for any w € W we have p+wp, p—wp € X*(T)T (even
if p is not itself in X*(7").) It follows that for all t € T we have (¢, p-+w ™ wq rrp) €
Z>o and for all ¢t € T~ we have —(t,p — w™1p) € Z>o.

Remark 5.9.5. The bounds of Conjecture [5.9.2] are compatible with duality in the
sense that they are exchanged upon replacing ¢ by t=! and x by —2pp. — wo p5-

On the right hand side of the inequality of conjecture we have w™ wo s (K+
p) +p and w™i(k + p) — p. Each of these expressions can be separated into
(w™two pk) + (wlwo prp + p) and (w™lk) + (w™lp — p) where the first term
depends on k and is related to the action of the Hecke correspondences on the
sheaf, while the second term is independent of x and is related to the geometry of
the correspondence (and in particular to the ramification of integral models of the
correspondence). The second term is the more delicate to study.

The main result of this section is a bound which is slightly weaker than the

conjecture (and concerns only the first term).

Theorem 5.9.6. Fizw € MW, k € X*(T)Mwt | and x : T(Z,) — F* of finite
order.
(1) For any character A of Tt on RT,(KP, 1, x) T/ or RT(KP, &, X, cusp) TF*
we have v(A\) > wtwg prk and v(N) > wlwo prk + W24,
(2) For any character A of T~ on RT,(KP, k, x)™/* or RT(KP, K, X, cusp) ~f*
we have v(\) < w™tk and v(\) < w Tk + w12,
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Remark 5.9.7. Using eigenvarieties, we will be able to prove the conjecture [5.9.2]
for the interior cohomology in theorem [6.10.1]

5.9.8. Proof of theorem[5.9.6. We begin with a reduction. The bounds in theorem
are compatible with the duality theorem Actually, it will suffice to
prove:

(1) For any character A of T+ on Ry, (K?, k, x) ™/ or RT(KP, K, X, cusp) /¢
we have v(\) > w™ wo prk.

(2) For any character A of T~ on RT,,(K?, x, x) /¢ or R[,(KP?, K, x, cusp) ~+/¢
we have v()\) < w™ k.

and the rest will follow from duality.

Let k € X*(T¢)Mu+. The definition of the sheaf V, is given in with the
help of the torsor M% and modeled on the highest weight representation V. By
corollary the sheaf V,; has an integral structure V! (in the sense of definition
, constructed with the help of the M ,-torsor Myr (see proposition and
modeled on the submodule VI C V.

Lemma 5.9.9. Let K, = Kp v p form’ >b>0 and m’ > 0.

(1) Lett € T*. For alln > 1, the isomorphism p3V, — piV, induces a map
psV — plovwonm) pryt o

p2—1 ((ng‘,Kp>_1 (wgnKp)) N pfl ((W%Jg‘,Kp)_l (wgnKp)) .

(2) Let t € T—. For allm > 1, the isomorphism p5V. — pyV,x induces a map
p3VE = pr O RptvE on

p2_1 ((W%);,Kp)il(wgnKp)) N pl_l ((W%’S",Kp)il(wgnKp)) .

Proof. We prove the first point. We have a map ¢ : pf M3} — p3MG%, which is
locally represented by wt by proposition For local trivializations z} and
of pfMgr and p5Myr we have zjwt = xf,. Therefore, we have an isomorphism
t* : p5V,. — p7V, which is locally given by t* f(a}wtm) = f(xbm).

We can now compare the lattices p5VI and piV;}. We assume that f € p3VF.
Since p} VI corresponds to sections g(z;m), taking integral values when m € M,
we deduce that (wt)™L.t* f(xim) = t*f(ziwtm) € piV} for m € M,. Here we
are identifying p7V, with the trivial bundle associated to the representation V; by
using the section .

The map (wt) ! on Vj, has eigenvectors of valuation —((wv(t)), v) where v ranges
through the weights of V. Since t € T4+ and w € MW, it follows that wv(t) €
X*(T)g‘“+ so that —(wuv(t)) € X*(T)g‘“*. The lowest weight of V;; is wog ark and
therefore, p~{(we®)wonk)gx f ¢ pxY+  The proof of the second point is almost
identical, it is enough to observe that now (wv(t))~! € X*(T)é\f‘“Jr and that & is
the highest weight of V.. Details are left to the reader. O

Lemma 5.9.10. Let w € MW, k € X*(T)Mwt and h € Q.

(1) Let U, Z) be a (+,w, Kp mrp)-allowed support condition. Assume further
that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of Hiyr z (U, VE) in Hi (KP,k)T<" is an open and
bounded submodule.
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(2) Let (U, 2) be a (—,w, Kpmp)-allowed support condition. Assume further
that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of i,z (U, V) in HE (KP, k)™= is an open and
bounded submodule.

Proof. We only treat the first item since the second one follows with minor modi-
fications. We can represent the cohomology Rz (U, Vx) by an explicit complex
of Banach modules C'*. We choose an affinoid covering $l; of U and consider the
Cech complex C/(44;, V) which computes RT(U, V,). Next we take an affinoid cov-
ering Uy of U N Z° refining the covering t; N Z° and consider the Cech complex

C(42, V) which computes R['(U N Z¢,V,;). Finally, we represent the cohomology
RIyunz U, V) by

C* = Cone(C(U1, V) = C(8hs, Vi) [—1].
We also consider the subcomplex of open and bounded submodules of C*:
C* = Cone(C(U1, V) = C(Us, VI))[-1].

Any sufficiently regular element 7' of TH* lifts to a compact endomorphism T
of C* and we can consider the direct “slope less or equal than h” factor C'*<F
of C*. This is a perfect complex of F-vector spaces, whose cohomology groups
compute H! (KP, k)" =", Denote the projection of C*+* in C*=" by C**=h_ This
is a perfect complex of Op-modules and the image of H(C**<h) in H(C*<h) =
H? (KP?, k)T =" is therefore an open and bounded submodule. To prove the lemma,
it suffices to show that the map

HY(CT*) = Hynz(U. V)

has kernel and cokernel of bounded torsion. Using the Cech to cohomology spectral
sequence, this follows from lemma [2.6.5] O

Proof of Theorem[5.9.6. We only prove the + case. The — case follows with mi-
nor modifications. We let ¢t € T, and let T = [K, v ptKpmp). We take
(U, 2Z) as in lemma [5.9.10l We find by using lemma that we have an endo-
morphism p~ (W®wo. T - RTynz(U, V) — RTynz(U,VT). Tt follows from
lemma that p—(wv(t)woms) T preserves an open and bounded submodule
in HY (K?,k)t=h for all i and all h € Q. For any character of A of T* on
H (KP, k)T, X occurs in HY (KP,k)"=h for h sufficiently large and this implies
that v(A(t)) > (wv(t), wo,mk). The theorem is thus proven. O

5.10. Comparisons with slope bounds on classical cohomology. In this sec-
tion, we make the connection between the slope bounds on overconvergent coho-
mology with other slope bounds on classical cohomology.

5.10.1. Some combinatorics. Let k € X*(T¢)Mw*. We first attach to x certain
subsets of the Weyl group. We let W (k)™ = {w € W, wwo a(k+p) = wo,m(k+p)}-
Welet W (k)™ = {w € W,w(k+p) = s+p}. Welet C(r)T = {w € W,w wo n(k+
p) € X*(T)g} and C(k)~ = {w € W,w ! (k4 p) € X*(T){}-

Proposition 5.10.2. (1) The set C(k)T is a left principal homogeneous space
under W (k)*.
(2) C(r)* CMW.
(3) K+ p is regular if and only if C(k)* is reduced to a single element.
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(4) We have W (k)" = wo W (k) " wo,m and C(k)T = wo pC (k) wo.
(5) We have C(rk)* = C(—wo nk — 2pne) T

Proof. Left multiplication defines an action of W (k)* on C(x)*. Given a weight \ €
X*(T)~, we have wA > A for allw € W. Tt follows that if w, w’ € C(k)*, w(w')~" €
W(k)*. The elements of ¥ W are characterized among W by the property that
wX*(T)*t C X*(T)Mw7F. Since .+ p is M,,~-dominant and regular, the second point
follows. The remaining points are evident. Note that —wo a(k + p) = —wo mk —
2pne + p- U

We now give some more explanations concerning the meaning of these sets and
the connection with infinitesimal characters. The element —w™lwg ps(k + p) €
X*(T)(g is independent of w € C(k)T, and we denote it by v + p for v € X*(T).

Proposition 5.10.3 ([Har90al, prop. 3.1.4). The character v+ p is the dominant
representative of the infinitesimal character of the automorphic representations con-
tributing to the cohomology of the sheaves Vi, or Vi.(=D) over Si's;(C).

Remark 5.10.4. The infinitesimal character of the automorphic representations con-
tributing to the cohomology of the Serre dual sheaves V_w 1, x—2p,. a0d V_u yrx—2p,.(—D)
is —v — p. Its dominant representative is therefore —wov + p.

It is important to record the formulas that allow us to switch between the infin-
itesimal character and the weight:

v = —w ltwom(k+p)—p, Ywe Okt
k = —womw(v+p)—p, YweCOk)T

v o= —wow (k+p)—p, Yw e C(k)~

Kk = —wwo(v+p)—p, YweC(k)™.

We also introduce the notation £ii (£) = Miny,ec () + f4 (W) = Ming,eo @) - - (w)
and max(K) = Maxy,eo(e)+ f4 (W) = maxy,co@w)- £— (w). Here the equalities follow
from the fact that for w € MW, £, (wo pwwo) = d — 4 (w) = ¢_(w). Moreover
lmin(k) = lmax(k) if and only if k + p is regular. We note that we expect the
automorphic vector bundle V, to have interesting cohomology exactly in the range

wmin ("{)a ‘emax (H)] .

Theorem 5.10.5. Let m be an automorphic representation contributing to the co-
homology of the sheaves V. or V(=D) over SE's,(C). Assume that T, is (essen-
tially) tempered. Then m can only contribute to the cohomology in degree in the

range wmin (”i)a Emax (H)] .

Proof. This follows from a combination of results of Blasius-Harris-Ramakrishnan,
Mirkovie, Schmid and Williams. See [Har90a], thm. 3.4 and thm. 3.5. |

5.10.6. Slope bounds on classical coherent cohomology. In light of the spectral se-
quences of section [5.5 conjecture [5.9.2] suggests the following conjectural slope
bound for classical cohomology:

Conjecture 5.10.7. Let k € X*(T)Mwt and let x : T(Z,) — F™ be a finite
order character. Let v = —w ™ wo p(k + p) — p for any w € C(k)*. For any

eigensystem \ : T+ — F* occurring in the classical cohomologies RT(KP, k, x)*7*
or RI'(KP, k, x, cusp)™7*, we have:
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V.
wol.

(1) In the + case, v(N)

Z —
(2) In the — case, v(\) < —

Remark 5.10.8. The 4+ and — statements are in fact equivalent, in view of the
discussion of section | 3] and in particular the isomorphism between the Jacquet
modules for U and U given by wy.

Proposition 5.10.9. Conjecture implies conjecture[5.10.

Proof. We treat the non cuspidal 4 case, the others are identical. By the spectral
sequence of section A occurs in Ry (K?, K, x)t /¢ for some w' € MW, and
hence by conjecture [5.9.2] we have

s(N) = w' wo (k4 p) +p = —(w T w) v > —v

where the last inequality follows from lemma below, using that v + p €
X*(T)g. O

We are not able to prove conjecture completely, however we will see that
it holds when & + p is regular in theorem [5.10.12] in the next section, and we will
eventually use p-adic interpolation to prove it for interior cohomology in theorem
and so in particular it holds for compact Shimura varieties.

We now explain the relation of this conjecture with other known and conjectured
slope bounds on classical cohomology.

5.10.10. Slope bounds on Betti cohomology. Let v € X*(T¢)*. Let W, be the
corresponding irreducible representation of G with highest weight v defined over
F. Over Sk(C), we can construct a local system W,/ attached to W, and we can
consider the Betti cohomology groups H*(Sk (C), W)) and HX(Sk (C), WY).

Proposition 5.10.11. Assume that K = KPK, with K, = K, mp. Let v €
X*(T¢)*. For any eigensystem X : T — F* for the action of’Him’b on H*(Sk (C), Wy )= /s
or Hx(Sk (C), W)/, we have:

(1) v(A\) > —v in the + case,

(2) v(A) < —wgv in the — case.

Proof. This is a straightforward adaptation of [Lafll], prop. 3.1 which considers
the case where K, is hyperspecial in an unramified group G. Recall that G splits
over F. The representation W)Y admits a lattice W,)>* which is stable under the
action of G(Op) and admits a weight decomposition with respect to the action of
T. For any t € T, we have that t(W)'T) C (—v)()W)>F and for any t € T,
we have that t¢(W,Y) C (—wov)()W,Y, as —v and —wov are the lowest and
highest weights of W,/. The lattice WV gives an Op-local system WV such that
WHY @0, F =W,/. The image of H*(Sk(C), W,V in H*(Sk(C),W)) (resp. of
H*(Sk(C),W,rV) in H:(Sk(C),W))) is a lattice L (resp. L.) by the finiteness
of Betti Cohomology. For any ¢ € TF, we find that [K,tK,](L) C (—v)(t)L and
[KptKp|(Le) C (—v)(t)Le. For any ¢ € T—, we find that [K,tK)](L) C (—wov)(t)L
and [KptKp)(L.) C (—wov)(t)Le. O

Using this proposition, we can prove conjecture[5.10.7| when the weight is regular.

Corollary 5.10.12. Conjecture[5.10.7 holds when k + p is G-regular.
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Proof. Since k + p is G regular, there is a unique v € X*(T')™ and a unique v € W
such that —x — p = v(v + p). By the definition we have C(k)™ = {wo mv} and
C(k)™ = {vwp}.

By the degeneration of Faltings’s dual BGG spectral sequences (see for exam-
ple [Har90a] section 4, [HZ01] Cor. 4.2.3), @, cmyy Hi W) (KP —w/wo (v + p) —
p, X)*/* embeds Hecke-equivariantly in H (S (C), W) and @, ¢y, H ) (KP,
p) — p, X, cusp)t 7% embeds Hecke-equivariantly in H:(Sk(C),WY). The estimate
follows from proposition [5.10.11] O

5.10.13. Connection with [FP21]. We make a digression in order to explain the re-
lation between conjecture and conjecture 4.5 of [FP2I] which concerns the
action of the spherical Hecke algebra on coherent cohomology at spherical level.
This conjecture is inspired by [Lafll], and is a translation of the Katz-Mazur in-
equality on the cohomology of algebraic varieties to the automorphic setting.

Let T' be the Galois group of F/Q,, acting on X*(T'). The restriction map
X*(T)gr — X*(T9)g induces an isomorphism X*(T)k — X*(T%)g, with an inverse
given by A — \T1| Y oer 0.\ where A € X*(T)g is any lift of A € X*(T%)g.

We can therefore identify X*(T%)g as a subspace of X*(T)gr and the partial
order on X*(T?)g is the one induced by the partial order on X*(T)g. This is the
point of view adopted in [EP21].

We will assume that Gg, is of the form Resy, /g, Go where L is a finite extension
of Q, and Gy is an unramified reductive group over L. In [FP21], the group Gg,
was assumed to be unramified, but the same conjecture can be made in this level
of generality, and is interesting for applications. We assume that K, C G(Q,) =
Go(L) is a hyperspecial subgroup of Go(L). We consider the classical cohomology
RIU(Sirk, 50 Vi) of RIS 5, Ve(=D)). We let co(x) € X*(T)* be the domi-
nant representative of —x — p which is the infinitesimal character of automorphic
representations contributing to RT'(SE . v, Vi) or RI(SEI g s, Vie(=D)). Let
H(G(Q,), K,) be the spherical Hecke algebra.

Let Tp be a maximal torus of Go. We can assume that 7" = Resp g, To. Let
T¢ be the maximal split sub-torus of Ty. Then T¢ is naturally defined over Q,
and the diagonal map T < Res;, /QpTg < T identifies T§ and T¢. We let W
be the sub-group of the (geometric) Weyl group of G which stabilizes Tf. We fix
an element p% € F (this is always possible if we enlarge F). We have the Satake
isomorphism:

S H(G(Qy), Kp) @z F — FIX.(TE™
and to any A : H(G(Q,), K,) — F, we can attach a semi-simple o-conjugacy class
c e (XHTP) @ F*)/We = LGo(F)** /o — conj, where “Go(F) = Gy x Z is the
Langlands group of Go. This is the semi-direct product of the dual group Gy by
the free group Z generated by o. The action of o on Gy is the one induced by the
Frobenius which is a generator of the Galois group of the unramified extension of
L which splits Gy. In particular, if Gy is split, this action is trivial.

Applying the valuation to ¢ gives the element Newt,(c) € X*(T¢)r/W§ =
XH(Dy)b /Wi = XA(THE = (X (To)E)T.

We also remark that T(Q,)/T(Z,) = To(L)/To(Or) = X«(T¢) via the map
A € X, (T¢) — M) where wy, is a uniformizing element in L. We have also
defined a valuation map v : T(Q,)/T(Z,) — X+(T?) @ Q. We therefore get a map

—w'wo(v+
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v: X (T¢) — X (T%) ® Q. This map is given by multiplication by v(wy) (via the
identification X, (Tg) = X, (T?)).

We have the following conjecture (which is [FP21], conj. 4.5 in the unramified
case):

Conjecture 5.10.14. Let k € X*(T¢)Mu+t. Let c € LGy (F)** /o — conj arising
via the Satake isomorphism from an eigensystem for the spherical Hecke algebra
action on RI(Si . 5. Vi) or RT(Sihk, 52 Vie(=D)). For any t € X (T, we
have .

{t. Newto (c)) < (v(t), ~wo > o.00(k)).

| |UEF

Remark 5.10.15. If L is unramified, X, (7) is canonically identified with X, (7'%)
via the valuation map v, and the above identity simply writes: Newt, (¢) < —woﬁ > oer 0-00(K)
in X, (T).

We can reformulate this conjecture in another way. Any element t € X, (Téj)"‘
gives a o-equivariant representation of Gy (of highest weight ¢) and therefore a
representation of LGy.

Lemma 5.10.16. The conjecture|5.10.1/| holds if and only if, for anyt € X, (T¢)*
viewed as a dominant character of the Langlands group, and with associated highest
weight representation Vi, we have that for any eigenvalue x of ¢ on Vi,

v(z) 2 —(v(t), 00(k))-

Remark 5.10.17. We remark that —oo(k) is the anti-dominant representative of
K+ p.

Proof. Tt follows from lemma 3.6 of [FP21] that the conjecture is equivalent to the
statement that v(Tr(c|V;)) > (wo(v(t)), —weoo(k)) = (v(t), —oo(k)). Therefore,

the converse implication holds. Let us prove the direct implication. If there is
a unique eigenvalue of ¢ on V; with minimal valuation, we deduce that for any

eigenvalue z of ¢ on Vi, v(x) > v(Tr(c|V;)). Otherwise, let x1,--- ,x; be the i-th
eigenvalues of minimal valuation. Then one considers the representation A*V; and
we find iv(z1) = v(Tr(c x o|AV})) > i(v(t), —oco(k)). O

Before we state our main compatibility, we need to recall certain relations be-
tween the spherical and Iwahori Hecke algebras. We have the spherical Hecke
algebra H(G, K,) and the Iwahori Hecke algebra H(G, K, 1,0). These are alge-
bras for the convolution product for a Haar measure normalized by vol(K,) = 1
(respectively vol(Kp10) = 1). We have also introduced a subalgebra M}, , of
H(G,Kp1,0), isomorphic to Z[T], and generated by the elements [K), 1 0tKp1,0]
with ¢t € TF.

We now consider the twisted embedding

FIX (TH'] = H(G, Kp10) @2 F

which sends t € TH/T(Z,) = X (T$)* to ¢4 K1 0tKp1,0] where g is the
cardinal of Op,/w;, and pg is half the sum of the positive roots in Gy. All the
operators ¢ (P [K, 1 otK, 1] are invertible in H(G, K, 1) ®z F and this map
extends to an embedding

FIX(TH] — H(G, Kp10) ®z F.
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Moreover, F[X,(T¢)]"* is the center of H(G, K 1,0) @z F. Let ex, € H(G, Kp1,0)
be the idempotent equal to characteristic function of K, divided by the volume of
K,. The natural isomorphism:

H(G, Kp) @ F — ek, (H(G, Kp1,0) ® Fek,
induces an isomorphism
H(G,Kp) ® F — e, F[ X, (TgH]"
which is the Satake isomorphism.

Corollary 5.10.18. Let m be an irreducible smooth representation of G(Q,) de-
fined over F. Assume that 7% # 0. Then w&v is one dimensional. Let c €
(X*(Tg) @ F*) /W be the semi-simple o-conjugacy class corresponding to the ac-
tion of H(G, K,) on n%r. Any eigensystem of F[X,.(T§)] acting on w5r1.0 is given
by a lift ¢ € X*(T¢) @ F* of c.

Remark 5.10.19. In particular for any t € TT/T(Z,) = X.(T§)", the eigenvalues
of g~ {t:po) [Kp.1,0tKp1,0) acting on 7Kr.1.0 are among the eigenvalues of ¢ acting on
the representation V; of the Langlands dual group.

Proposition 5.10.20. Let k € X*(T¢)Mwt. Consider the submodule H(G, Kp10)-
H' (S, 50 Vi) of B (Siik, o5 Vi) generated by the cohomology at spherical

level H"'(Sfé’;'Kp’Z, Vi). If conjecture|5.10.14| holds for all eigensystems in Hi<3§?51<p,27 Vi)
then conjecture holds for all eigensystems in H(G, Kp1,0) - H (Sih i 55 Vie)-

Proof. Let ¢ be the semi-simple conjugacy class arising from a spherical eigenclass.

Let A be the character of ’H;LO on the span of this eigenclass at Iwahori level.
For each ty € TH/T(Z,) = X.(T¢)", we see that A(tg)g~{for0) is an eigenvalue
for ¢ acting on V;,. It follows from lemma that v(A(to)) — v(q){to, po) >
{(v(ty), —oo(k)). Where via the valuation map v : X, (T§) — X, (T9) ® Q, to maps
to v(wy)t, where we let t be the element corresponding to ¢y via the isomorphism
X, (Tg) = X, (T9). So this identity can be re-written:

v(A@®)v(wr) — v(q){to, po) = v(wL)(t, —00(k)).

It remains to remark that v(q)v(wy)™ = [L : Qp] and that (¢, po)[L : Q] =
{t,p). O

5.11. Slopes and small slope conditions. We will now define several “small
slope” conditions that will occur in this paper. The reason that there are so many
conditions is explained as follows. First we consider small slope condition on the
coherent cohomology in weight x, but also conditions on the Betti cohomology in
weight —wpv. Second, the conditions needed to obtain a vanishing theorem are
not exactly the same as those needed to obtain classicality theorems. For example,
on a Shimura set the vanishing theorem is trivial and does not require any slope
condition, but when one considers the theory of p-adic algebraic automorphic forms,
there is a slope condition to achieve classicality. Finally, in our setting there are two
types of control theorems. We have control theorems for cohomologies of classical
automorphic sheaves, but also control theorems for cohomologies valued in Banach
sheaves. All this explains the large variety of slope conditions we need. We begin
with the small slope condition and then turn to the strongly small slope condition
which we need to use because we were not able to prove conjecture [5.9.2]
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5.11.1. Small slope conditions.

Definition 5.11.2. Let A € X*(T%)g.
o Letve X*(T) satisfy v+p € X*(T)g.
— We say A satisfies +, ss(v) if for all w € W with w - v # v,

A2 —w- .
— We say A satisfies —, ss(v) if for allw € W with w - v # v,
AL —w- (wov).
o Let k € X*(T)M+.
— We say X satisfies +,ss™ (k) if for allw € MW \ C(k)™F,
A Z w™wo v (K + p) + p-
— We say \ satisfies —, ss™ (k) if for allw € MW \ C(k)~,
AZw Kk +p)—p.

o Letve X*(T)".
— We say X satisfies +, ssp(v) if for allw € MW, X satisfies +, ss™ (—wo prw(v+

p) = p)-
— We say X satisfies —, ssy(v) if for allw € MW, X satisfies —, ss™ (—wo pw(v+
p) —p)-

o Let k € X*(T) and let w € MW.
— We say X satisfies +, ssp0(K) if for allw' € Wiy, w' # 1,

A Z whwo pw' (5 + p) + p.
— We say A satisfies —, ssp (k) if for allw' € Wi, w' # 1,
A Zw ' (k4 p) — p.
To orient the reader, we give a brief summary of how these conditions arise:

e The condition 4, ss™ () will appear in the “geometric” classicality theorem
relating classical cohomology and overconvergent cohomology, as well as
vanishing theorems for classical cohomology in section [5.12

o The condition =+, ssps., (k) will arise in the second classicality theorem “at
the level of the sheaf” relating overconvergent and locally analytic coho-
mologies in algebraic weights in section [6.8]

e The condition +,ss(v) is the usual small slope condition that arises in
works on p-adic modular forms from the Betti perspective. We shall see
in proposition below that it is the combination of the other two
conditions.

e The condition =, ss,(v) is the condition that arises in the vanishing the-
orems for classical Betti cohomology. We shall see in proposition [5.11.12
that it is weaker than +, ss(v).

We first observe that the + and — conditions are related by two symmetries:

Proposition 5.11.3. Let A € X*(T%)g.
(1) Let v € X*(T) satisfy v+ p € X*(T)g. Then the following are equivalent:
o )\ satisfies —, ss(v).
o wy(A) satisfies +, ss(v).
o —\ satisfies +, ss(—wov).
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(2) Let v e X*(T) satisfy v+ p € X*(T)g. Then the following are equivalent:
o )\ satisfies —, ssp(V).
o wg(A) satisfies +, ssp(V).
e —)\ satisfies +, ssp(—wov).
(3) Let k € X*(T)™*. Then the following are equivalent:
e )\ satisfies —, ssM (k).
o wo(N) satisfies +, ssM (k).
o — )\ satisfies +, ssM (—wo prk — 2pne).
(4) Let k € X*(T)™* and let w € MW. Then the following are equivalent:
o )\ satisfies —, $Sprw(K).
o wo(N) satisfies +, 8501 wo. prwwo (K)-
o —\ satisfies +, SSar,uw(—Wo, MK — 2Pne)-

The first symmetry is related to the fact that when we have a smooth, admissible
representation of G(Q,), the action of wy exchanges the + and — finite slope parts
(see section below). The second symmetry is related to Poincare and Serre
duality.

Now we try to further explain the meaning of these small slope conditions and
make them more explicit. In view of the symmetries above we only consider the +
case. For v € X*(T) we introduce the notation W, = {fw e W |w-v = v}.

We will use the following standard lemma.

Lemma 5.11.4. Letv € X*(T)ﬁ{—p and letw,w’ € W. Ifw < w' thenw'-v < w-v.

Proof. By the definition of the Bruhat order and induction, it suffices to treat the
case that w’' = s,w with o € ®* with [(w’) > I(w), which implies that w™'a € &
by [Hum90] 5.7. Then w'-v = w-v — {a¥,w(v + p))a, and (aV,w(v + p)) =
{(wta)V, v+ p) > 0. O

We now give some alternative characterizations of the condition +, ss(v).

Proposition 5.11.5. The following conditions on A € X*(T%)g are equivalent:
(1) A2 —w-v forallw e W\ W,, i.e. X satisfies +,ss(v).
(2) M2 —sq -V for all a € A with s, & W,,.
Moreover if we additionally assume that A\ > —v then we have the further equivalent
condition:

(3) A=—v+> ca, Catt with

Ca < min (BY,v) + 1.
Ber—1(a),sggW,
(We recall here that r : A — A4 denotes the projection from absolute to
relative simple roots, see the start of section .

Proof. Clearly the first condition implies the second. For the converse, given w €
WA\W,, we have w > s, for some a € A, s, & W,, (write w as a reduced product of
simple reflections, not all the factors can fix v as w doesn’t.) Then —w-v > —s,-v
by lemma [5.11.4] and so A # —s, - v implies A 2 —w - v.

Under the hypothesis A > —v, the equivalence of the second and third conditions
is immediate from the formula —sg - v = —v + ((8Y,v) + 1)8. O

Now we consider the condition +, ss* (k). For k € X*(T) we can write —k—p =
v(v + p) for a unique v € X*(T) with v+ p € X*(T)f, and v € W uniquely
determined up to right multiplication by W, .
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Proposition 5.11.6. Let k € X*(T)M*. Then with v and v as above, the follow-
ing conditions on X\ € X*(T%)g are equivalent:
(1) A 2w wonm(k+p)+p for alw € MW\C(k)T, i.e. \ satisfies +, ssM (k).
(2) N —w-v forallwe (MW)=L.C(k)T\ W,,.
(3) A\ # =84 v for all a € A with s, € (MW)~L.C(k)T\ W,.
Moreover if we additionally assume that X\ > —v then we have the further equivalent
condition:

(4) A=—v+3  ca, Cat with

Ca < min (BY,v) + 1.
per—1(a),sge(MW)—1.C(r)T\W,
Proof. The second condition is a direct translation of the first: we have C(k)" =
wo,mvW,,, and we can write

wwo (5 + p) + p = (W wo av)o ™ (k4 p) 4 p = —(w Mg ar0) - v

and so the first condition is equivalent to A ¥ —w - v for w € (MW)~Lwg prv \ W,
which is equivalent to condition 2 because (MW) 1wy proW, = (MW)~1. C(k)™.

The second condition clearly implies the third. For the converse, to argue as
in the proof of proposition [5.11.5 we need to show that for all w € W with w €
MW)~1. (k)T \W,, we have w > s, with a € A and s, € (MW)~L-C(k)T\W,.
To do this, suppose w = (w')"'w” with w’ € MW, w” € C(k)*, and let w =
$1 - S, be a reduced expression as a product of simple reflections. Choose k such
that s, € W, but Sgy1,...,8, € W, (such a k exists as w & W,,.) Then

sp = (w'sy---sp_1) W' spy18,) € (MWL C(r)T

using lemma below to see that w'sy -+ - sp_1 € MW. Moreover s < w, and
sk & Wy, so we are done.

The equivalence of the third and fourth conditions is exactly as in proposition
0.11.9l (I
Lemma 5.11.7. Let w,w’ € MW and let w'w' = s1--- s, be a reduced expression
as a product of simple reflections. Then wsy ---s; € MW for all 1 <14 < n.

Proof. We begin with the following claim: if « € &+, 3 € A, and u € W are such
that I(usg) > l(u) and u='a € &7, then (usg) 'a € ®~. Indeed, (usg)'a =
sg(u=ta) € ®F would imply u='(a) = —f, and hence u € ®~, contradicting
l(usg) > l(u).
Applying the claim inductively we see that if « € ®*, and (s1---s;) ta € &~
for some 4, then (s1---s,) ta € ™.
Now if wsy - -+ s; € MW, there exists f € Ay with (wsy---s8;) 718 = (s1---8;) Hw™1B) €
®~. But w € MW implies w3 € ®*, and so from the above with a = w™'3 we
deduce (s1---s,) " Hw 1(8)) =w''(8) € &, and hence w’ & MW. O

Now we turn to the conditions -+, ssyr (k). Let £ € X*(T)* and let w € MW,
We let v = wp prw and we let v be defined by the formula v(v 4 p) = —k — p. Note
that we have v+ p € X*(T)# if and only if w € C(x)T, which we have not assumed
for the moment.

Proposition 5.11.8. Let k € X*(T)M+ and let w € MW. Let v and v be as
above. The following conditions on A € X*(T%)r are equivalent:
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(1) X # wlwo pmw'(k + p) + p for all w' € Wy, w' # 1, d.e. X\ satisfies
+755M,w("3)

(2) A # —(vtw'v) v for allw' € Wiy, w' # 1.

(3) AN # —(v7lsov) - v for all a € Ay

Proof. The equivalence of the first and second conditions is a direct translation.
For the equivalence of the second and third points, we introduce temporarily the
notation A\; <pz.w A2 if Ao — A1 € Ryoqw 1Ay for A\, Ay € X*(T)g. Since w € MW
we have w™ 1A, € &+ and hence \; =M,w A2 implies Ay < A2 and hence A; < As.
Now applying lemmafor the group M, we see that for v/ € X*(T)HE’M —pM
and w’, w” € Wy with w’ < w” we have w’-v" <pr1 w” v/, hence (wo pyw”)-v" <pr1
(wo,pw’) - V', and hence (w™two prw”) -V 2pp (W two pw’) - V. We apply this

with /' = v-v = =k — p € X*(T)z"™ — pur to deduce that for w' < w” we
have —(v"1w"v) - v > —(v~tw'v) - v, and hence the third condition implies the
second. g

Remark 5.11.9. Note that for w € Wy, (v"lwov) - v = v implies w = 1. Indeed,
then w - (—k — 2p) = —k — 2p or equivalently w(—« — ppr) = —k — par, and hence
that w = 1, since kK € X*(T)M-+.

Note that we have now expressed all the small slope conditions as A 2 —w - v as
w ranges over a certain subset of W. We may use this to compare them.

Proposition 5.11.10. Let k € X*(T)M:* and let w € C(k)T. Let v = wo pw and
let v be given by v(v + p) = —k — p so that v+ p € X*(T). Then a slope \ €
X*(TY)g satisfies +, ss(v) if and only if it satisfies both +, ss™ (k) and +, 887w (k).

Proof. We apply the characterizations of propositions [5.11.5] [5.11.6] [5.11.8] Then
it is clear that +,ss(v) implies both +,ss™ (k) and +, sspr. (k). For the other
direction, we need to show that for each o € A, then either s, € (MW)~1C(k)"
or vsa,v -t € Wyy.

We apply lemma tow € MW and s,. If ws, € MW then s, =
(ws)tw € (MW~hw. Otherwise there exists 3 € Aj so that sgw = ws,
and hence vs, v~ = woijlwsﬁwo’M e Wy Il

Lemma 5.11.11. Letw € MW and o € A. Then either ws, € MW or wsy = sgw
for B e Ay

Proof. 1f ws, ¢ MW then there exists 8 € Ay with s, (w™1(B)) = (wsa) " 1(B) €
®~. But w1(3) € ®F. Hence w™(B) = a, so wlsgw = s,, hence ws, =
S3W. 0

We can write ® = [], ®; where the ®; are simple root systems. Then ®); =
LL; ®ar,i where @575 = ®pr NP5 We let &, = [, BB ®; be the union of the
simple factors where M is a proper levi. Let A, = &, N A.

Proposition 5.11.12. Suppose that v € X*(T)T. Then the following conditions
on a slope X\ € X*(T%)g are equivalent.

(1) A satisfies +, ss™ (—wo,mw(v + p) — p) for all w € MW.
(2) A2 —sq -V for all a € A.
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Proof. By proposition [5.11.6] the first point is equivalent to A 2 —s, - v for all
a € A for which there exists in w € MW with ws, € MW, or equivalently by

lemma [5.11.11) wsqw ™ & Wyy.

The later condition on « is equivalent to wa & @,y for all w € W (since if we
write w = wy;w™ then wa € ®;; implies wMa € @) but wa for w € W span
Q@; where ®; is the simple factor containing o and so the only way that we will
have wa € @) for all w € W is if ®; = ®; ps. It follows that this set of o is exactly
Ay. O

5.11.13. The strongly small slope conditions. We now introduce some slightly stronger
versions of the small slope conditions of the last section. We need these because we
cannot prove the slope bounds of conjecture but only the weaker bounds of
theorem [5.9.6

Definition 5.11.14. Let A € X*(T%)g.
o Let k € X*(T)M+.
— We say X satisfies +, sssM (k) if for allw € MW \ C(k)*,
AP w_lwo,M/f or \ # w_1w07Mﬁ + w2,
— We say A satisfies —, sssM (k) if for allw € MW\ C(k)~,
Aw ks or N L w s+ w 2pp..
o Let k € X*(T) and let w € MW.
— We say A satisfies +, s8Sa (k) if for all w' € Wy, w' # 1,
A # wlwo ! (k) or A # wtwg pw’ (k) + 2w wo arw'2ppe.
— We say A satisfies —, sssarw (k) if for all w' € Wy, w' # 1,
AL w Hw (k+p)—p) or ML w  w' (k) + 2w ' 2ppe.
It is immediate from the definitions that \ satisfies 4, sss (k) if and only if
wo(\) satisfies F, sss™ (k) and if and only if —\ satisfies F, sss™ (—wo ark — 2pne)-
We introduce combinations of these conditions motivated by propositions[5.11.1
and 0. 11.10)
e We say that A satisfies +, sss,, (v) if it satisfies +, sss™ (—wo prw(v+p) —
and +, ss8a7,0 (—wo,mw(v + p) — p). We say that X satisfies —, 555, (V)
it satisfies —, sssM (—wwo(v + p) — p) and —, s85 07, (—wwo(v + p) — p).
e We say that \ satisfies +, sssp(v) if it satisfies &, sss™ (—wo prw(v+p) — p)
for all w € MW.

p)
if

5.12. Small slopes, classicality, and vanishing. We introduce a notation. Let
M be a module or a complex carrying an action of T(Q,) and admitting a slope
decomposition. Let ? be a condition on the slope of characters of T'(Q,,) (for instance
the condition introduced in deﬁnition, then M’ means the factor of M which

satisfies the condition ?.

5.12.1. Coherent cohomology. Theorem [5.9.6] and the definition of the small slope
condition implies the following vanishing.

Corollary 5.12.2. Let k € X*(T)MwF and let x : T(Z,) — F™ be a finite order

character. Then
REy (K7, 1, )52 () = R, (K7, 5, x, cusp) =0

/{):O
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forw & C(k)*.

This implies that if we take the strongly small slope part of the spectral sequences
from finite slope overconvergent cohomology to finite slope classical cohomology of
Theorem all the terms for w ¢ C(k)* vanish. We immediately deduce our
first main classicality theorem.

Theorem 5.12.3. Let k € X*(T)Met and assume that k + p is regular so that
C(k)* = {wy}. Let x: T(Zp) — F™ be a finite order character. Then the spectral
sequences of Theorem [5.5.1] induces isomorphisms
R»Fwi (va R, X)i)SSSM(K) =~ RF(va R, X)i7SSSM (=)
RT. (KP, 5, x, cusp) ™" (%) ~ RT(KP, 1, x, cusp) =+ ()

Remark 5.12.4. Cases of this theorem for the degree 0 cohomology of PEL Shimura
varieties were already proven. See for example [Col96], [Kas06], [Pil11], [BPS16].

We also deduce vanishing theorems for classical cohomology.

Theorem 5.12.5. Let k € X*(T¢)Mwt and let x : T(Z,) — F* be a finite order
character.

(1) RF(K”,K,X,cusp)i’sssM(“) is concentrated in degree [0, bmax(K)].
(2) Rr(Kp,n,x)i’SSSA{(“) is concentrated in degree [{min(K),d).
(3) H'(K?, 1, x)E5" (%) is concentrated in degree [fmin(K), lmax (K)].
Proof. The vanishing result follows from the spectral sequences of theorem [5.5.1

and the vanishing results of propositions [5.6.2] and [5.7.4] together with theorem
0.9.0l ([

Remark 5.12.6. If we assume the conjecture then the strongly small slope
conditions in theorems[5.12.5[can be weakened to small slope condition. In theorem
[6.10.2] we will actually be able to prove the theorems for the small slope condition
for the interior cohomology only, using the eigenvariety.

Remark 5.12.7. In [Lanl6], an analog of theorem [5.12.5|is proved without any small
slope condition, but with a regularity condition on the weight x instead.

Remark 5.12.8. The classical coherent cohomology can be computed in terms of
automorphic forms for G by the result of Su [Su24|. Thus it may be possible to
reprove theorem [5.12.5| with sufficient knowledge of automorphic forms on G.

The following corollary gives a situation for which the interior Cousin complex
computes the classical interior cohomology.

Corollary 5.12.9. Let k € X*(T)Mwt and assume that k + p is reqular. Then
Cous(KP?, k, X):I:,sssM(K,) computes H' (KP, k, X)i,sss“(n).

Proof. We have C(k)* = {w+}. We deduce that
m(Kp, K, X)i,sssM(m) —
Im(Hﬁ)i (w) (K?, K, X, cusp)i’sssM("') —
HGE O (K, )55 09) [l ()]

which computes ﬁ*(Kp, K, X)i’SSSM("”") by theorem [5.12.3| and theorem |5.12.5f [



136 G. BOXER AND V. PILLONI

5.12.10. Betti cohomology. Let v € X*(T¢)*. We let W, be the corresponding
irreducible representation of G with highest weight v and W,/ be its contragredient.
We have an associated local system W)/ over Sk (C).

Using Faltings’s dual BGG spectral sequence (see |[LLZ23|, theorem 6.1.10) we
deduce vanishing results for the small slope parts of Betti cohomology.

Theorem 5.12.11. Let v € X*(T°)*.
(1) HY(Sk(C),WY)F=550() s concentrated in degree [d, 2d).
(2) Hé(SK((C),WI\,/)i’SSSb(”) is concentrated in degree [0,d)].
(3) H'(Sk(C), WY)Es550() s concentrated in degree d.

Remark 5.12.12. If we assume the conjecture then the strongly small slope
conditions in [5.12.11] can be weakened to small slope condition. In theorem
we will actually be able to prove the theorems for the small slope condition for the
interior cohomology only, using the eigenvariety.

Remark 5.12.13. In |[Lanl6], analogs of theorem [5.12.11] are proved without any
small slope condition, but with a regularity condition on the weight v instead.

Remark 5.12.14. The classical Betti cohomology can be computed in terms of au-
tomorphic forms for G by the results of Franke [Fra98|. Thus it may be possible to
reprove theorem [5.12.11] with sufficient knowledge of automorphic forms on G.

5.12.15. Small slope conditions and Jacquet modules. We now use these small slope
condition to define certain direct summands of smooth admissible representations
and apply this to the cohomology of the Shimura variety.

Proposition 5.12.16. Let m be a smooth admissible representation of G(Q,) and
let v e X*(T) satisfy v+ p € X*(T)g. Then the following are equivalent:

(1) There exists m > b > 0 such that aKpmptiss(v) £ 0,
(2) There exists m > b > 0 such that 7 Kpm.b,—s5(v) £ 0.
(3) (mu)T*s®) 0.
(4) (mg) >0 #£0.

We have the same equivalent properties when the condition ss(v) replaced by
ssp(v), sssp(v), or ssM(k), sssM (k) for k € X*(T)M-+.

Proof. The equivalence of (1) with (3) and (2) with (4) is immediate from proposi-

tion The equivalence of (3) and (4) follows from proposition [5.11.3[ and the
isomorphism between 7y and 7z given by wo. [l

Definition 5.12.17. Let m be a smooth admissible representation of G(Qp), let
v € X*(T) satisfy v+ p € X*(T)F and let k € X*(T)M+. We define m*) C
to be the sum of all indecomiosable summands of ™ which satisfy the equivalent

conditions of proposition |5.12.16| for ss(v). We define w5, WSSM(“), mssse (V)
and 755" (®) similarly.

Remark 5.12.18. Tt is not necessarily true that any irreducible subquotient of 755(*)
satisfies the condition ss(v) and similarly for the other conditions.

Remark 5.12.19. If 7 is irreducible, then 7°5(*) = 7 means that = admits an em-
bedding in 1§ for a character ¥ : T(Q,) — @; with v(v¢) satisfying +, ss(v). A
similar remark holds for the other slope conditions.
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With these definition in place, we can deduce (most of) theorems and
1.3.10| of the introduction (we will be able to use the small slope condition for
interior cohomology after we prove theorem [6.10.2)):

Theorem 5.12.20. For any k € X*(T¢)Mu*,

(1) ﬁZ(Kp,/-@)SSSM(“) is concentrated in the range [lmin(K), fmax(K)],
(2) HY(K?, /@,cusp)s“"sM(") is concentrated in the range [0, fmax (%)),
(3) HY(KP, R)SSSM(") is concentrated in the range [lmin(k), d).

For any v € X*(T°)*,
(1) H' (K, WY)*s5:() is concentrated in the middle degree d,
(2) HL(KP, WY)**(") s concentrated in the range [0,d],
(3) HY(KP,WY)****(") js concentrated in the range [d,2d).

Proof. This follows immediately from theorems [5.12.5] and [5.12.11} (]

5.13. De Rham and rigid cohomology. Let v € X*(T°)*. Let W) 5, V)
be the associated filtered vector bundle with integrable logarithmic connection
over S?Tz Over Sk (C), the set of horizontal sections of the corresponding holo-

morphic vector bundle is the local system W,'. Let DR(W)) = W)/ ®g10n.
Lo /r
to W) 4, V). Tts cohomology will be denoted RLqr (S5, W)'). We also consider
the sub-complex DR(W),/(—D)) and its cohomology will be denoted RIyg . (Si's;, W)
where the subscript ¢ stands for compact support.

Faltings’s dual BGG complex for W) is a filtered complex BGG(W)/) in the cat-
egory of vector bundles with maps given by differential operators. See for example
[LPI8] or [LLZ23], sect. 6.1. We have BGGW,))! = @ueriw p(w)=iV—wwo(v+p)—p-
We also have a subcomplex BGG(W)/(—D)) with

BGG(W;/(_D))Z = EBweMW,Z(w):ivfwwo(Ver)fp(_l))-
We have (see for example [LLZ23|, thm. 6.1.10):
Theorem 5.13.1. There is a filtered quasi-isomorphism BGG(W,/) — DR(W,))

in the category of vector bundles over S}?TE, with morphisms given by differential
operators. The stupid filtration on BGG(W)Y) induces a spectral sequence
Ef’q = @wGMW,Z(w):qu(S?,TEa V—wwo(u-i-p)—p) = Hsgq(ség&v Wz\//)
degenerating at Ey. There is a quasi-isomorphism BGG(W,/ (—D)) — DR(W,/ (= D)).
The stupid filtration on BGG(W,/(—=D)) induces a spectral sequence
s or -+ or
E{] != @weMW,Z(w):qu(SﬁﬂZ’ Vfwwo(Ver)fp(_D)) = HZR?C(S%jv W;/)

degenerating at E.

(log(D)) be the filtered de Rham complex with logarithmic poles associated

Remark 5.13.2. Instead of using the stupid filtration on BGG(W)) one can use
the filtration F' corresponding to the Hodge filtration on DR(W)). The associated
graded of this filtration F' are complexes of automorphic vector bundles (featuring
those appearing as objects in BGG(W)/)), with trivial differential. The spectral
sequence for the F-filtration is then the Hodge-to-de Rham spectral sequence. It
also degenerates at F1. The difference between the Hodge-to-de Rham spectral se-
quence and the stupid filtration spectral sequence is therefore basically a reindexing
of the terms.
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We now pass to p-adic geometry. We can consider DR(W)') and BGG(W)) as
complexes of vector bundles with maps given by differential operators over the adic
space Si; and the GAGA theorem ensures that RT' 4 (Si’, W,/) still computes
the algebraic de Rham cohomology groups. If K = KPK,, with K, = K, ;, 5, and

x:T(Z,) — F™ is a finite order character, we can define RT gz (K7, WY, x)£/% as a
direct factor of the complex of RFdR(Sf(O;Kp_’E, W) (see section|4.2.12)). We can also

define RTyr o(K?, W), x)*7# as a direct factor of the complex of RTar,o(Sirk, s Wi)-

For any w € MW, we can also make sense of RFdR’w(Kp,WlY,X)i’fS as in

section Namely, one just copies verbatim this section with the automorphic

sheaf V,; replaced by the complex of automorphic sheaves DR(W)'). Similarly, we

can define RUyg ¢ (KP, W), x)®/* by considering the cohomology of the complex

DR(W)/(=D)).

Remark 5.13.3. It would be interesting to study in depth the cohomologies
RFdR,w(va W;/, X)i’fs'

For example, are the cohomology groups finite dimensional F-vector spaces? In the
Siegel case, the cohomologies RT gp o, (KP, Wy, x)*/* and RT g ¢ (KP, W), x) 5/
for w € {Id,w}!'} are rigid cohomologies with support conditions of certain cov-
erings of the ordinary locus in the Shimura variety. Is this a general phenomena
(with the ordinary locus replaced by the Igusa variety corresponding to w)?

The following theorem is the direct analogue of theorem [5.5.1] The proof pro-
ceeds in the exact same way.

Theorem 5.13.4. Let v € X*(T°)" be a weight and let x : T(Z,) — F* bea
finite order character. For a choice of + or —, there is a ’Him#b-equivariant spectral
sequence EDA(KP W)/, X)T converging to classical finite slope de Rham cohomology
HERU(KP, WY, ) F%, such that

Elf (BPW)00* = @wemwies (w)=pHint (K7 W) ) 577

There are also spectral sequences By (KP, W,/ X)T converging to HZ;?C(KP, Wy, x)E /e

such that
Egﬁ,w (pr Wz\// X):t = @wEMW,Zi (w):pH§+q (va WIY X)i’fs'

R,c,w

It follows that we have two spectral sequences converging to the classical coho-
mology RT'yr(K?, WY, x)*/* (and the compactly supported one). The first one is
associated to the stupid filtration on the de Rham complex (and is basically the
Hodge-to-de Rham spectral sequence). The other one is the spectral sequence of
theorem [5.13.4] and it is really coming from the Bruhat stratification on the Flag
variety.

By comparing both spectral sequences on the strongly small slope part, we obtain
the following decomposition of the de Rham cohomology.

Theorem 5.13.5. For all v € X*(T°)", we have that:
Gr(KP W) )T ) = @D By suy=pHI(KP, —wwo (v + p) = p,x) o)
p+qg=n
and that
(Hip(K?, WY, x)) 7o) = EB Bt (w)y=pHU(KP, —wwo (v + p) — p, x) 555"

pt+g=n
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We have similarly:

ZR,C(KI)’ Wz\//a X)+7383b(’/) = @ EBw,f(w):qu (Kpa —wWwo (V+P)_Pa X5 CUSp)+7SSSb(V)

ptg=n

and that

(Hipo (K7 W 00) 7 = @D G y=pHKP, —wwo(v-tp)=p, x, cusp) =),
ptg=n

Proof. We only prove the first displayed equation. The idea of the proof is that the
two spectral spectral sequences are in a certain sense opposite to each other on the
strongly small slope part, and therefore, not only do we have degeneration at Fj,
but also the induced filtration on cohomology is split.

From theorem [5.12.3] corollary [5.12.2] and recalling that by definition the con-
dition +, sss,(v) is the union of the +, sss™ (—wwo (v + p) — p) for all w € MW, we
have that the BGG spectral sequence reduces to the isomorphism:

HEEL (P W) F) = HEF OO (KP, gy + p) = o) o)
HPt+a—{-(w) (KP, —woprw(v + p) — p, X)Jr,sssb(u)
For the spectral sequence of theorem we deduce that
EZE (K2 WY 0 0 = @y gy —p B0, (K7, W) x) Hesse @)
= @weMW,e(w):pHerq*L(w)(Kp, 7w07Mw(V er) _ p’X)+,sssb(u)
For the spectral sequence of theorem we have
(BP0 0) = @ canyau— HIK?, —wuo(y + p) — p.x) P )

= ELL(KP WY )W) for g =d—p, p+d =p+a.
The spectral sequence of theorem degenerates at E1. Therefore the spectral
sequence of theorem also degenerates at E; (by dimension reasons). We get
two filtrations on the cohomology. Let us denote by {Fili}ogigd and {Fili}ogigd
the filtrations on H,(K?, W)/, x)T*5() induced respectively by the spectral se-
quences of theorem [5.13.1] and theorem [5.13.4] Actually for the first filtration we
have Fil' = 0 for i > n and for the second filtration we have Fil’ = 0 for i < d — n.
We claim that the map Fil? — HZ,(KP, WY, x) ") /Fil“"P*! is an isomor-
phism. It suffices to see injectivity because both spaces have the same dimension.
The filtration {Fil'} induces a filtration {Fil’(Gr? = (E9)+ss5:()) 1. By corollary
we compute that Fil*?(Gr?) = Gr? and Fil* T (Gr?) = 0. We deduce
that Fil? N Fil* 7T = {0}. O

Remark 5.13.6. This theorem is reminiscent of complex Hodge theory, where one
obtains a splitting of the Hodge filtration given by harmonic C°°-differential forms.
In the p-adic setting, the de Rham cohomology comes with additional structure (no-
tably a Frobenius on the Hyodo-Kato cohomology [HK94]). Is the above splitting
induced by this additional structure?

We conclude this section by constructing an interior Cousin bi-complex analogue
to the interior Cousin complex of section [5.8

We define Cous(K?, WY, x)* as the bi-complex concentrated in degrees in [0, d] x
[0,d], where for all (i,5) € Z x Z, we have:

=1

(Cous(KP, W) %)) = @uermwie (w)=i@uw e Hu (K7, —w'wo (v+p)—p, )57
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The horizontal complexes (Cous(K?, WY, x)*)(*7) are
Do eMw,o(w)=;Cous(KP, —w'wo(v + p) — p, )E

and the vertical differentials are those given by the maps in the BGG complexes.
Let us define the interior de Rham cohomology by

(K, WY, ) = Im(Hip (K2, W) ) = Hig (K2, 0)%).

If the Shimura variety is compact we simply write Cous(KP?, WY, x)* instead of
Cous(KP, WY, x)*.
We find:

Proposition 5.13.7. If the Shimura variety is compact, the complex Tot(Cous(K?, WY, x)T)
is quasi-isomorphic to RL4r(KP, WY, X)%. For a general Shimura variety, the in-

terior cohomology ﬁ;R(K”, WY . x)* is a subquotient of
H'(Tot(Cous(K?, WY, x)¥)).
Proof. This follows from corollary O

5.14. Explicit formulas in the symplectic case. Let V' be a Q-vector space
of dimension 2g. Let ¥ be the symplectic form on V' given in the canonical basis
e1, - ,ezq by ¥(e;,e5) =1if i < gand j =2¢9—i+1and ¥(e;,e;) =0if i < g and
J # 2g—i+1. Let G = GSp,,, be the subgroup of automorphisms of V' respecting ¥
up to a similitude factor v. We pick the maximal diagonal torus T in G. A typical
element ¢ € T is labelled (¢1,--- ,tg;c) = diag(tic,--- ,t4c, t;lc,--- ,t7'c). The
character group X*(T') identifies with {(k1, -+ ,kg; k) € Z9T', >~ k; = k mod 2}.
The action is given by (ki,--- ,kg; k)(t1, -+ ,tg¢) = Htfick. We let Pjtd be the
stabilizer of the Lagrangian plan (e1,--- ,e4). We therefore let P, be the stabilizer
of the Lagrangian plan (eg11,--- ,e24). We have M, ~ GLy x G,,. We choose the
upper triangular Borel in M,,, which fixes the positive compact roots. Recall that we
choose the positive non-compact roots to be in g/pffd. It follows that X*(T)Mw+ =
{(kla"' 7kg;k)vk1 >hy > > kg} and X*(T)Jr = {(klv 7k9;k)a0 > k1 > ko >
-+ > kgt Wehave p=(—1,-2,-3,---,¢;0), 2ppc = (—g—1,--- ,—g—1;0). The
usual way to normalize the central character in the theory of Siegel modular forms
is to consider weights of the form (ki,---,kg;—> ki), with ky > --- > k,. For
example (consult [FP21], example 5.2 for the details), when g = 1, Vg, _p) = wk
where F© — S} is the universal semi-abelian scheme and wg is its conormal sheaf.
When g = 2, Vg, kos—ky—ko) = Sym* 7 *2 4 @ det™ wy where A — S}?TE is the
universal semi-abelian scheme and w4 is its conormal sheaf.
A standard basis of Hecke operators in ’H; 1,0 1s given by the classes:

(1) Uy =[Kp1o(—1/2,---,—1/2;-1/2)(p)Kp1,0], where (—1/2,--- ,—=1/2; =1/2)(p) =
diag(pilv'“ 7p71?17”' ﬂl)

(2) Uz = [prl’o(o,"' ,0,—1,"' ,—1;—1)(}7)Kp1170] for 1 S 1 S g — 1 with
i many —1 before the ;. We have that (0,---,0,—1,---,—=1;-1)(p) =

diag(p~'Idg—;, p~21d;, Id;, pIdg—;)
(3) S=[pKpio], S

Remark 5.14.1. Following [FP21], remark 5.6, we justify that for g = 1, the double
class [K, 1 odiag(p~', 1)K 1,0] indeed corresponds to the standard U,-operator! For
simplicity let us assume that K? C GLa([],4,Z¢). The corresponding moduli
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space (ignoring cusps) parametrizes two elliptic curves F1, E5 up to isomorphisms,
with K level structures, together with a quasi isogeny Fs — FEj giving a map
V(E2) — V(E7) where V(E;) = lim E;[N] ® Q is the adelic Tate module, and we
ask that this map is represented by Kdiag(p~*,1)K. Concretely this means that
the quasi-isogeny Fo — FE7 comes from a degree p isogeny E; — F5 and that this
isogeny matches K-level structures on the Tate modules. The K, 1 o level structure
is the data of a rank p-subgroup H; C E;[p]. Because we choose the lower triangular
Borel, we find that the isogeny E; — E5 induces an isomorphism between H; and
Hs.

5.14.2. GL2/Q. In this case, everything is already in [BP22|. Let x = (k; —k). The
Cousin complex is Cous(K?,k,x) : HY(K?, k,x)t7* — HL(K?, k,x)t7* where
Hi(KP, k,x)"/* is the space of finite slope overconvergent modular forms of weight
k, nebentypus x and HY (K?, x, x)T7# is the finite slope part of the cohomology with
compact support of the dagger space “ordinary locus” in weight & and nebentypus Y.
We have wg s = 1 for GLa. For w = 1, we find that w™ wg p (k+p)+p = (k—2; —k)
and that ((—1/2;-1/2),(k — 2; —k)) = 1. The un-normalized U,-operator acts on
g-expansion by > an,q" = p>_ anpg” and has indeed slope greater or equal to 1
on HY(KP, k,x)t /5. For w # 1, we find that w™ wo (K + p) + p = (—k; —k)
and we get that —((—1/2; —1/2), (=k; —k)) = k. On HL (KP, k,x)"7/%, U, acts like
Frobenius, and this explains why it is of slope greater or equal than k. See lemma
5.3 in [BP22]. We deduce from this lemma the classicality theorem.

5.14.3. GSp4/Q. The Weyl group is generated by the following transposition: sqg(k1, keo; k) =
(kao, k15 k) and s1(ky, ko; k) = (—ky, ko; k). The elements of MW are Id, s1, 5150, 515051
We consider the weight x = (k1, k2; —k1 —k2) so that —wo prk = (—ka, —k1; k1+k2).
The following table indicates the value of the pairing
(t,w™ wo,ar(k + p) + p) = (t,w ™ wo nr (K)) + (8w ™ wonr (p) + p)
where t = (—1/2,—-1/2; —1/2)(p) or (0, —1; —1)(p), and w € MW

Id 51 8180 515081
(—1/2,—1/2;—1/2) 3 ke +1 ko +1 k1 + ko
(0,-1;-1) ko+3 | ko+3|2ky+ky | 2k + k1

The table below gives the value
max{(t,w ™ wo,n (k)), {t, w™ wo nr (k) + 2w pre)}

which appears in the strictly small slope condition.

1d $1 8150 518081
(-1/2,-1/2:-1/2) 3 ko ka ki + ko
(0,-1;-1) ko +3 | ko +3 | 2ks+ ki | 2ko + k1

The difference between these two tables illustrates the difference between con-
jecture (first table) and theorem [5.9.6] (second table). Let us explain how to
interpret this information.

Let us take a weight in the interior of the holomorphic chamber: k; > 2. We
assume that Us has slopes < ko+1. This is the “small slope” condition because there
are conjecturally no overconvergent cohomology classes for w # 1 which satisfy this
slope condition. Therefore the Us-slope < ks + 1 part of classical cohomology
identifies conjecturally with the overconvergent cohomology for w = 1. Under the
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bounds of theorem [5.9.6] we have to use the strongly small slope condition < ks
instead.

Let us take a weight in the interior of the “H' chamber™ ks < 2 and k; + ko > 3.
The small slope condition is now Us-slope < 3 and Uj-slope < k1 + 2ks. The first
condition kills the overconvergent cohomology for 1. The second condition kills the
overconvergent cohomology for s159 and s159s1. Therefore, the small slope classical
cohomology identifies with the small slope overconvergent cohomology for w = s;.

6. p-ADIC FAMILIES OF OVERCONVERGENT COHOMOLOGY
6.1. Relative spectral theory and slope decompositions.

6.1.1. Slope decomposition over Tate algebras. Let (A, AT) be a complete Tate ring
topologically of finite type over (F, Of). For any point x € Spa(A, AT), we let k(z)
be the complete residue field. It possesses a rank one valuation v which we normalize
by v(p) =1 (this valuation corresponds to the maximal generalization Z of x).

Definition 6.1.2. A polynomial Q € A[X] whose leading coefficient is a unit is
said to be of slope < h for h € Q if for all z € Spa(A, AT), the image of Q in
k(z)[X] has slope less or equal than h in the sense of section[5.1.1]

Remark 6.1.3. This definition of being of slope < h agrees with [AS08], def. 4.3.2,
in the case that A is reduced, we take the supremum norm as a norm on A, and
the leading coefficient of Q) is a multiplicative unit.

For Q € A[X] we let Q* = X9°82Q(1/X) be the reciprocal polynomial.

Definition 6.1.4. Let M be an A-module and let T' be an A-linear endomorphism
of M. Let h € Q. An h-slope decomposition of M with respect to T is a direct sum
decomposition of A-modules M = M=<" @& M>" such that:
(1) M=" and M>" are stable under the action of T.
(2) M=" is a finite A-module.
(3) There is a unitary polynomial Q € A[X] with slope < h such that Q*(T) is
zero on M <P,
(4) For any unitary polynomial @ € A[X] with slope < h, the restriction of
Q*(T) to M>" is an invertible endomorphism.

This definition fits in the framework of [AS08]|, def. 4.1.1. It is easy to see that
if such a slope decomposition exists, it is unique.

Now let S = Spa(A, A") and let M be a sheaf of Og-modules. We let T' €
Endgg (M) be an endomorphism.

Definition 6.1.5. We say that M has slope decomposition with respect to T if for
any x € S and h € Q, there exists a affinoid neighborhood U of x in S, ' > h, and
a T-stable direct sum decomposition of sheaves of Oy -modules
Mly = (M[)=" & (Mly)™™
such that:
(1) (M|p)=! is a coherent sheaf of Or-modules.
(2) For any affinoid open V = Spa(B,B*) C U,
M(V) = (M|p)=" (V) & (M]v)>" (V)
is a h'-slope decomposition of the B-module M (V') in the sense of definition
10.1.4}
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Remark 6.1.6. It is a subtle but important point in the definition that we only ask
for a slope h’ decomposition for some h’ > h and not for an h-slope decomposition
for any h.

We say that a section s € M(U) for an open U C S has infinite slope if for any
affinoid open V' C U and h € Q such that M(V) admits an h-slope decomposition,
sly € M(V)>". The infinite slope sections form a subsheaf M>* C M. We let
MS$ = M/M>* and call it the finite slope part of M.

Lemma 6.1.7. (1) Let f: M — N be a map of sheaves of Os-modules. Let
Ta and Ty be endomorphisms of M and N respectively, commuting with
f. Assume that M and N have slope decompositions. Then ker(f), im(f),
and coker(f) have slope decompositions.

(2) Let 0 - L - M — N — 0 be an exact sequence of sheaves of Og-
modules. Let T € Endgy (M) be such that T(L) C L. Then if two out
of L, M, N have slope decomposition with respect to T, then so does the
third. Moreover, taking the infinite slope part yields an exact sequence
0 — L% — M™5 — N5 — 0 and taking the finite slope part gives
an exact sequence 0 — LIS — MTs - N'Ts 0.

Proof. We reduce easily to the case of modules where this is [ASO§|, prop. 4.1.2. O

We now explain the construction of the spectral variety Z < Aé"m. For any
affinoid open U = Spa(B, B™) for which we have a slope decomposition M(U) =
MU @ M(U)>", we define a map B[X] — Endg(M(U)<") by sending X
to T~! (note that T is invertible on M(U)="). We let I be the kernel of this
map. We note that B[X]/I is a finite B-algebra as M(U)<" is a finite B-module,
and hence is also topologically of finite type over F. We let Zy ), < Ag™™ be
Spa(B[X]/I,(B[X]/I)*) where (B[X]/I)* is the integral closure of Bt in B[X]/I.
If U’ C U, is an open affinoid, we see (using the flatness of Os(U) — Os(U"))
that 2y, xg U = Zyr . If K > h and M(U) also has an h'-slope decomposition,
we see that Zy, — Zyy is a union of connected components since M(U) =
MU= & (MU 0 MU & MUY

We let Z = ]_[U’h Zu,n/ ~ where ~ is the equivalence relation defined by the
inclusions Zyj, — Zyp for ' > h and Zyrj, — Zyyp for U CU. Let m: 2 — S
be the projection which is locally quasi-finite, and partially proper. There is a
coherent sheaf ML* < Mz = 7*M defined by ML (Zy,) = M(U)Sh. We see
that 71'*/\/125 = MY is the finite slope part of M.

In many applications, there is also a commutative algebra H with T' € H, which
acts on M. It is clear that H acts also on M7*. We can consider @s which is the
coherent Oz-subalgebra of Endg., (M?) generated by H. We let £ be its relative
adic spectrum over Z. The morphism & — Z is finite surjective. This is the
eigenvariety attached to H acting on M.

6.1.8. Finite slope decomposition for an algebra of operators. It is often the case
that we want to consider the finite slope decomposition of a module or a sheaf when
we have an algebra acting. We now let ZZ, be the free monoid on r generators,
generated by element 71, -+ ,T,.. We assume that we have an action of ZZ, on a
sheaf M. We also assume that for all the operators T € Z%,, the sheaf M has
slope decomposition. B
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Proposition 6.1.9. Let T,T' € Z%y, and consider the finite slope projections

pr: M — MTFS and pr : M — MT'Is . Then there is an isomorphism MT /s —
MTFs compatible with the projections pp and pr.

Proof. Let x € S, let h € Q, and let V be a neighborhood of z such that we have
h-slope decomposition with respect to T

M\V M<Th@M>Th.

We claim that M‘S‘,Th has slope decomposition with respect to T’ and that the
projection My, — M‘SVT orthogonal to M>Th factors through MT 75 This
will show that the projection pr : M — MT fs factors M — MT’ ’fs — MT:fs,

Reversing the roles of T' and T” we conclude the proof of the proposition.
We observe that T is invertible on M<Th and therefore T” is also invertible

as there is n € Z>g and u € Z% o such that T"™ = T'w. Note that /\/l Sthoe g
coherent sheaf. For any y € V, we claim that we can find a nelghborhood W of
y and a unitary polynomial @ such that Q(0) is a unit and such that Q*(7") =0

on (MISVTh)‘W. Indeed, consider the stalk (/\/llgvTh)y. This is a finite O ,-module.

By Nakayama’s lemma, we can pick a surjection 0g', — (M<Th) and lift T” to

an invertible endomorphism 7" of og,. Welet Q = det (7" 1 — XId). This is a
unitary polynomial whose constant coefficient is a unit and @*(T") = 0 by Cayley-
Hamilton. It follows that /\/l| =7l has a slope decomposition with respect to 77 and

that it is equal to its finite slope part for 7".
O

6.1.10. Relative spectral theory. We recall briefly the relative spectral theory for
compact operators. The original reference is [Col97]. Let (A, AT) be a finite type
complete Tate (F, Op)-algebra, and let S = Spa(A4, AT). Let M*® € Ob(KP™°/(Ban(A))),
and let M*® be the associated complex of Banach sheaves on S. Let T' € Endpgan(a))(M*®)
be a compact operator. Let H'(M®) be the ith cohomology sheaf.

Proposition 6.1.11. The sheaves H'(M®) have slope decomposition for T. More-
over, there is an object M*/* € D(Mod(0s)) and a morphism M®* — M®*/*
(unique up to a non unique quasi-isomorphism) with the property that H'(M®* /%) =
Hz‘ (M.)fs

Proof. We begin by describing a construction which depends on a lift T € Endy (M*)
which is compact in all degrees. We let

P(X) =[] det(1 — XT|M*) € A[[X]]
k
be the (total) Fredholm determinant of 7' (see [Col97], section A 2). The series [:’(X )
is an entire series, and we let Z < G x Spa(4, A) be the vanishing locus of P.
This is the spectral variety associated to 7. The morphism 7 : Z — Spa(4, A1) is
locally quasi-finite, flat, and partially proper (see [AIP18], thm. B1 for a short proof
in the language of adic spaces). Any point z € Z has a neighborhood U, such that
m CU, and U, — 7(U,,) is finite flat. We can describe such a neighborhood more

precisely. Let z € Spa(A4, AT) be the image of z. Then there is a neighborhood
Spa(B, Bt) of z in Spa(A4, A") and a factorization in B{{X}} (the ring of global
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functions on ASpd(B B+)) P(X) = R(X)Q(X) where R(X) is a Fredholm series
(that is R(0) = 1), QX)=1+4+a X+ + ad{(‘i is a polynomial with aq € B*,
R(X) and Q(X) are prime to each other, and Q(z) = 0. Then U, = V(Q(X)) C
Al x Spa(B, Bt) is a neighborhood of z in Z.

Over Z we have a complex of coherent sheaves ./\/l
recall. Let Q*(X) = X?Q(X ). Over Spa(B, B*) we have a unique decomposition
M*® 4B = M*(Q) @ N*(Q) where Q*(T) is zero on M*(Q) and invertible on
N '(Q) Moreover, the projection on each factor is given by an entire series in T
(see [Ser62], proposition 12).

It follows that M*(Q) has a natural structure of a complex of B[X]/Q(X) mod-
ules of finite type (with X! acting as T'), and we let M;fﬂv@(x)) = M*(Q).
These glue to give the complex ./\/l;;’f * over Z. We observe that by construction

*/* whose definition we briefly

M;fs is a perfect complex of ﬁ_lﬁspa(A7A+)-modules. Moreover, if M*® is concen-

trated in the range [a,b], so is ./\/l°’fS

We can actually assume (after p0551b1y changing the nelghborhood U.) that in
the factorization P(X) = R(X)Q(X), there exists h € Q such that Q(X) has slope
< h and R(X) has slope > h. We deduce that

M*®AB = M*(Q) ® N*(Q) = (M*@aB)=" & (M*@4B)™"
is an h-slope decomposition of the complex. Indeed, for any unitary polynomial
S(X) of slope < h, we deduce that S(X) and R(X) are coprime to each other in
B{{X}} since the resultant Res(S5, R) € B*. It follows from [Col97], lem A4.1 that
S*(T) acts invertibly on (M*®4B)>".

By varying z in the fiber of z, we deduce that M* has a slope decomposition with
respect to T. We let M*/* be the finite slope quotient. Observe that M®/s =
W*Mzifs. The map M® — M®/¢ is given by adjunction by the map 7 M®* —
Mgf * (which in the above notations, is locally given by the projection M*®B —
M*(Q), orthogonal to N*(Q)).

It follows from lemma that HY(M®) has a slope decomposition and that
Hz‘(Mo)fs — Hi(M)fs

We now discuss unicity. We have an exact triangle M®*>% — M*® — MeSs B
in D(Mod(S)). Another choice of compact lift 7" of T gives another exact triangle
Meos 5 Mo MeSs H

Let C* be the cone of the morphism of complexes M®*>®% — M® — M *fs
obtained by taking inclusion in M* followed by projection. The diagram:

M08 M',o,fs

b
Mo,oos M/,o,fs

commutes up to homotopy. We deduce that there is a morphism " :C* = C*
!
which on C™ = M ™ F$ @ M"1:05 is given by (1(; l;g) where b, depends on the

choice of a homotopy between T and T” (see [Sta22], TAG 014F). We deduce that
the complex C* has slope decomposition with respect to T” and we let C'*F* be
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its finite slope quotient. The map MoeSs 5 005 g a quasi-isomorphism. By the
TRA4 axiom on triangulated categories, we find that there is a commutative diagram
M* Mo,fs
Mo Ts C*

and we deduce that in the commutative diagram:

M?* Mo,fs

L

MooFs L e fs

the right vertical map and the bottom horizontal line are quasi-isomorphisms.
O

Remark 6.1.12. The proof reveals that there is a non-canonical spectral variety
7 : Z — S such that M*fs = W*M;‘fs where M;fs is a complex of coherent

0 -modules, perfect as a complex of 7~ !@g-modules, of the same amplitude as
o, fs
~ N Z

on Z given by an entire series in T' with coefficients in 7= 0.

M?*®. Moreover, we have a projection 7* M® — m, M7’'°. This projection is locally

Remark 6.1.13. If 7 : S’ = Spa(A’,(A’)T) — S is a rational localization, then
we have an object 7*M® = (M*)" € Ob(KP"*/(Ban(A’))) and a compact operator
m*T. Applying proposition we obtain sheaves H*((M')*)f* over S’ which
are just the restriction 7*H*((M)®)/*. Thus, the construction which associates to
(M*®,T) the sheaves H!(M?®)/* satisfies analytic descent.

6.1.14. Relative spectral theory for an algebra of operators. We now let ZZ, be the
free monoid on r generators, generated by element 77, --- ,T,.. We assume that we
have an action of ZZ, on an object M*® € Ob(KP™(Ban(A))). We also assume
that the operators T' € Z~, are potent compact.

For any choice of T' € Z%., acting compactly, we have a finite slope projection
M® — M*T:fs and we can consider the cohomlogy H!(M®*T+f$) = Hi(M®*)T+fs,

Lemma 6.1.15. For any T,T’ acting compactly, we have a canonical isomor-
phism HI(M®)TFs ~ HY(M®*)T/S commuting with the projections H'(M®) —
Hi(M®)TFs and HI(M®) — HI(M®)T s,

Proof. This follows from proposition O

Remark 6.1.16. It is not clear to us whether there is a quasi-isomorphism MeT fs
M*T:fs In this paper, what we will do is choose a compact operator T once and
for all. Ultimately, we are only interested in the cohomology, and the ambiguity dis-
appears. We note that we could only prove that the object M* 175 is well defined
up to a non-canonical quasi-isomorphism (in some sense, it depends on the choice
of a compact lift T of T'). It is not even clear to us that 7" will act on M*7-/5. One

can prove this locally on the spectral variety Zp: the projection 7* M® — M;T’f ®
T

is locally given by an entire series in T and if we fix a lift 77 of 7' commuting up
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to homotopy with T one can prove that T’ commutes up to homotopy with the
projector, hence giving an action of 7" on /\/l' TS , locally on Zr.

6.1.17. The case of projective or inductive limits of complexes. We now work in
a slightly more general setting than in section [6.1.10} We consider an object
“lim; " M? € Ob(Proyn(KPmi (Ban(A)))) or “colim;” M € Ob(Indy(KP™/ (Ban(A))))
together with a compact operator T. By lemma T induces a compact oper-
ator T; of M for i large enough.

We let M? be the complex of Banach sheaves over S attached to M?. By
proposition for all ¢ large enough and all k¥ € Z, we have a projection
HF(M3) — HE(M?) .

Lemma 6.1.18. (1) For “lim;”M? € Ob(Proy(KPr°/(Ban(A)))), the maps
HF(M$)fs — HE(MS_,)F* are isomorphisms.
(2) For “colim;” My € Ob(Indy(KP"% (Ban(A)))), the maps H*(M$)s — HF (M2, )/
are isomorphisms.

Proof. We only prove the first item. The action of 7T} factorizes as T} : H*(M?) —

Hk( - * ) — HF(M?). We deduce that there is a bijective map T; : H* (M} )fs —
HE(M?_)fs — H*¥(M?)F5. The action of T;_; factorizes as well as T;_; : H¥(M?$_|) —
HE (M ) — H¥(M?_,) from which we deduce that there is a bijective map T;_; :
HEOME. )% — BE(ME)® — HE (MG, )P o

Let M* € D(Mod(0s)) be either lim; M$ or colim; M?. Then we let H¥(M*®)/s =
H*(M?)/* for any large enough i. We also define M*/¢ = M;’fs for some chosen
1 large enough. We remark that this definition depends on the choice of . But the
ambiguity disappears when we pass to cohomology.

6.2. Locally analytic inductions and the locally analytic BGG resolution.
In this section we recall some basic facts about analytic inductions and BGG reso-
lutions for p-adic groups. Standard references for this material are [Urb11], section
3 and [Jonll]. The notations for this section are as follows. We let I be a finite
extension of Q,, and we let M — Spec Of be a split reductive group. We fix a
maximal torus 7" and a Borel B containing 7. We let ®); = &}, [[ ®}, be the root
system. We also let Ap; C (I)X/[ be the positive simple roots. We denote by Wj;, the
Weyl group, and denote by ¢ : Wy; — Z>( the length function. For all ¢ € Z>¢, we

let W](\}) be the set of elements in Wy, of length ¢. We denote by wg s the longest
element of Wj,. We let pas be half the sum of the positive roots. The Weyl group
acts on T, X, (T) and X*(T'). We also have the dotted action on X™*(T") given by
w-k = w(k+par)—par. We let X*(T)M+ be the cones of dominant characters, and
we let X*(T)™:*+ be the cones of dominant regular characters. We use a — sign to
denote the opposite cones. We assume that Tr =T Xgpec 0, Spec F' is in fact de-
fined over Q,. Namely, there is a torus T, and an isomorphism T, x Spec F' = TF.
We often drop the subscripts F' or Q, when the context is clear.

Remark 6.2.1. In our applications, M will be the Levi My of the group G which is
part of the Shimura datum. A slight warning is that the torus Ty, will in general
be the conjugate of a maximal torus of Gig, by an element of the absolute Weyl
group of G which is not necessarily rational.
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We let T¢ C Ty, be the maximal split subtorus. We let T'(Z,) C T(Q,) be the
maximal compact subgroup. There is a valuation map v : T(Q,) — X, (T9) ® Q
whose image is a lattice and whose kernel is T(Z,). We let T** be the monoid in
T(Q,) of elements ¢ such that v(a(t)) > 0 for all a € @}, and we let TM++ be the
monoid in 7™+ of elements ¢ such that v(a(t)) > 0 for all « € ®7,.

For any k € X*(T'),we let F(k) be the one dimensional F' vector space endowed
with the action of T'(Q,) via the character k. If V is a F-vector space endowed
with an action of (a submonoid of) T(Q,), we let V(k) =V ® F(k).

We let M be the quasi-compact adic space over Spa(F, Or) attached to M and
we denote by M, the subgroup of M of elements reducing to 1 modulo p™. We
define in a similar fashion 7, the quasi-compact torus over Spa(F, Or) attached to
T and 7T, the subgroup of T of elements reducing to 1 modulo p".

We let My € M(OF) be a closed subgroup possessing an Iwahori decomposition,
in the sense that the product map

Nl x Ty x Ny — M,

is an isomorphism, where N1 = My NU, Th = M1 NT, Ny =M NU (for U and U
the unipotent radical of B and the opposite ]331"61 B respectively). We also assume
that Ty = T(Z,), and that T*>~ normalizes N;.

6.2.2. Algebraic inductions. Let k € X*(T)™*. We have the algebraic representa-
tion V,, of M with highest weight k. It can be realized as an algebraic induction:

Ve = Indg(wo’Mn)
= {f: M = Al f(mb) = (wo,nr)(b~ 1) f(m), ¥ (m,b) € M x B}
We have a left action of M given by hf(m) = f(h~'m) for any h € M.

6.2.3. Analytic weights. Let (A, AT) be a complete Tate ring topologically of finite
type over (F, Op) and let x4 be a continuous morphism T'(Z,) — A*. Let n € Z>o.
We say that x4 is n-analytic if the map k4 can be extended to a pairing:

T(Zy)Tn % Spa(A4, AT) — G
where T(Z,)T, is the subgroup of 7 generated by T(Z,) and 7, (this is a finite

union of translates of 7). We recall that any continuous character s 4 is n-analytic
for some n (see [Urb1l], lemma 3.2.5. for example).

6.2.4. Analytic inductions. Let (A, AT) be a complete Tate ring topologically of
finite type over (F,Op) and let S = Spa(A4, A*). We assume that A is uniform
(i.e A% is bounded) and equip A with the supremum norm. Let ny € Z>o be an
integer. We now fix a character k4 : wo_leT(Zp)wO,M — A which is ng-analytic,
or equivalently a character wo aprka @ T(Zy,) — A* which is np-analytic.

Remark 6.2.5. The notation wy k4 may seem strange so let us explain it to orient
the reader. Let k € X*(T) be an algebraic character of T. Then for any w € W)y,
we have (wk,t) = (k, w™t) so that wk(t) = k(w™tw).

Let B be the quasi-compact adic space attached to B. For all n > ng we can
define

n—an __ _ MiM,, _
VI =an IndBﬁ(Man)(wo,MnA) =

{f: MMy)s = AG™™ | f(mb) = (woarka)(b71) f(m), ¥ (m,b) € (MiMy)sx (BN(MiMy,))s ).
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This is a Banach A-module for the supremum norm. We let V"~ *"% be the
module of elements with supremum norm less or equal than one. The space V,'”%"
carries the following actions of the group (M;M,,)s and of the monoid T™::

o hf(m)= f(h=tm) for h,m € (MyM,)s,
o tf(m) = f(t Mmtmt) for t € T+ m € (MiM,)s, and m = Rty
the Iwahori decomposition of m.

These actions respect the submodule V,~"*. We can also introduce the LB-
space of compact type V70" C V'm9". It consists of those sections which
overconverge in a neighborhood of (M3 M,,)s in Mg.

We record the following lemma for later use. Let MY be the quotient of M; by
its maximal normal pro-p subgroup.

Lemma 6.2.6. The representation V'™ ® 4+ AT JATT of My M,, is a countable
inductive limit of finite projective AT /AT T -submodules V; stable under the action of

MiM,,, and with the property that the action on Vi11/V; factors through an action
of MY.

Proof. The character k4 mod ATT factors through a finite character and therefore
it is locally constant on the reduced ring AT /ATT. We may assume it is constant.
We are then reduced to the case that A is a finite field extension of F' and AT /A++
is a finite field. The stabilizer of any vector v € V"7 ®4+ AT /AT is open
in MiM,, and we deduce that V=" @4+ AT/ATT is a countable inductive
limit of finite dimensional representations. Since pro-p groups have non-zero fixed
vectors on non-trivial finite dimensional representations in characteristic p, the
claim follows. d

We also let V%" = colim,, V""" = colim,, V2"~ be the locally analytic in-
duction.

Lemma 6.2.7. The operators t € T+t are compact on Vioam. Moreover, if

s a fie e maps V'~ — — induce isomorphisms on the finite slope
A is a field, th ps VI~ V,f/;“1 a7 gnd ] phi the finite slop
part, and the slopes of t € TM:F on V,ii”vfs are > 0.

Proof. If t € TM:-t+, one sees easily that the map ¢ : Vioam — Vo9 improves
analyticity. In particular, if min,ea,, v(a(t)) > 1, one has a factorization
— 1— —
VnnA an N V’gLA-‘r an N VnnA an
where the first inclusion is compact. Moreover, we deduce from the definition of
the action that if ¢ € T, then t preserves the open and bounded submodule
anan,Jr |:|
KA *
The space V=" embeds in H*(M1M,,, Ong, a4,,) and similarly V%" embeds in
colim,, H* (M M., Orrya,,)-

We have a left action of M M,, on H*(MyM,,, Orp, m,) given by hx f(m) = f(mh).
Passing to the limit over n and differentiating, we get an action of the Lie algebra
m of M on colim, HY(M;M.,,, Opr, a, ) which can be extended to an action of the
enveloping algebra U (m).

Remark 6.2.8. We are not requiring that M; C M(Op) is an open subgroup, and
M will not always be Zariski dense in M. In our definition of the locally analytic
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induction, we consider analytic functions on neighborhoods of M; in M. These
functions are not necessarily determined by their restrictions to M.

6.2.9. Twist by a finite order character. We fix a character k4 : woijle(Zp)wO)M —

A* which is n-analytic. Let woarx : M7 — T be a finite order character which
we assume is trivial on M; N M,,. We also denote by wg prx its restriction to
T(Zp) and by x the corresponding character of w, yT(Zy)wo ar, which is trivial
on w(;]le(Zp)wo’M N 7T, and hence n-analytic. We also denote by wg aprx the
corresponding 1-dimensional representation of M;. We endow it with the trivial
action of T+, We have the following lemma:

Lemma 6.2.10. There is a canonical map V'~ " @p wo,mX — VK”A%‘};L which is
an isomorphism of (My, T™:T)-modules.

Proof. The map is defined by sending a function a ® 1 € V' 7" to the function
awO,MX_l on MiM,. The rest of the lemma follows easily and is left to the
reader. O

6.2.11. Locally algebraic induction. Let k € X*(T)M:*. From k we obtain a charac-
ter k : wo_,}\/[T(Zp)wOJ\/f — F* as the composition of the inclusion w(;}\/[T(Zp)wQM C
T(F)and £ : T(F) — F*. From the definitions, restriction induces a natural inclu-
sion ¢ : V, — V,,f“”. There is an action of M on V,;, and therefore actions of M7 and
TM:+ . The map ¢ is M;-equivariant, but not TM:T-equivariant. More precisely, we
have the following formula:

1(tv) = (wo,m k) (E)te(v)

from which we deduce that the twisted map ¢ : Vi, — V19" (wg prk) is (My, TMF)-
equivariant. We can define the subspace V,!*9 of V1% consisting of elements arising
from functions on M;M,, for some n which on each component of M;M,, are the
restriction of a polynomial function on M. This is a (M, T**)-subrepresentation.
This space contains the space Vi (—wo amk) of algebraic functions. Let

V™ =sm — Ind%}]Mll =
{f: My — F| f(mb) = f(m)V (m,b) € My x BN M, f is locally constant}.
The map V, V™ — V%149 (wq prk) is an isomorphism of (M7, T™:T)-representations.

6.2.12. The BGG complex. For all a € Ay, we fix a generator X,, of the root space
u, € m and we have the corresponding generator X_,, of u_,. Let x € X*(T).

Lemma 6.2.13. For all « € Ay such that (k,av) > —1, we have maps:
On : Vo (wonk) = VI (won(8a - K))

[ Xieadly g

Wo,M&
equivariant for the action of (My, TM:+).
Proof. These maps are constructed in [Urbll], proposition 3.2.11, remark 3.3.11,

proposition 3.3.12, as well as [Jonll], section 5, see also the remark below theorem
13. (]
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Remark 6.2.14. The normalization of [Urbl1] and [Jonl1l] is slightly different from
the one we use here. They realize the highest weight x representation V,; as the
following induction: V! = {f : M — Al | f(bm) = k(b)f(m), V (m,b) € M x B}.
To translate to our setting, one simply applies the involution m +— wo_prm ™ wo as.
We therefore get an isomorphism V,; — V! which sends f to f’ defined by f'(m) =
J(wo, prm ™ wo ar). There is an action of M on V! induced from the right translation
action of M on itself. We find that mf’ = ((wg’meale)f)’. This explains the
twist by wo as appearing in lemma [6.2.13] compared to loc. cit.

Remark 6.2.15. We have
wo,n (Sa - 5 — k) = —({Kk,a") + 1w pa.

In particular, for any t € T+ ((k,a") + 1)(—wo ara, v(t)) > 0. This means that
O, increases the slopes.

Theorem 6.2.16 ([Jonll|, thm. 26, [Urbll], sect. 3.3.9). There is an exact
sequence of (My, TM:+)-representations
0-V,® Vlsm — Vé“”(wo,Mn) — @ Vli(?g(wo,]\/[(w . /{)) — =
wEWJ(\P
D Vi (won(w-r) = - = Vier | (wonr(wor - K)) =0
wGW](é)
where the first map Vi, @ V™ — V1% (wq prk) is the natural inclusion, the second
map V1" (wo mk) — Do Vian(wo ar(w - K)) is a linear combination of the
M
wew () Vasst (wo,nr (w -
K)) — @weW(Hl)Vj]‘?g(wo,M(w - K)) are linear combinations of maps of the form
M
X * - for suitable elements X € U(m).

maps O, for a € Ay, and more generally the differentials @

Definition 6.2.17. Let k € X*(T)M+. We say that a TM+- eigensystem X in
Vien is of M-small slope (abbreviated +,ssy) if
v(A) 2 —((k,a") + Dwo,mrax

for all o € Ayy.

We say that a T™%- eigensystem X in Vi, is of M-small slope (abbreviated
+,880m) if

v(A) # wo mk — ((k, ") + Vwo, max

for all v € Ayy.

Corollary 6.2.18. The map V,F55M — Vian+ssa (yy 3 1k) is an isomorphism of
(M, TM:*)-modules.

Proof. Tt follows from theorem and lemma [6.2.7] that the map V, ® V3" —
Vian(wg prk) is an isomorphism on the small slope part as this condition kills the
second term in the complex. On the other hand, the map V, — V, ® V7 is an
isomorphism on the finite slope part. O

Ezample 6.2.19. Let M = SLy/Q,, with diagonal torus T and upper triangular
Borel B. Then X*(T) = Z, and there is a unique simple root o = 2. For any
k€ X*(T)YM+ = Zso, we have V;, = Sym”(St). The valuation of the eigenvalues of
t = diag(p,p~!) on V} are —k, —k+2,--- , k. The +, ssp; condition on V}, translates
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into the condition that the eigenvalues of ¢ have valuation < —k+2(k+1) = k+ 2.
This condition is always satisfied (in the case of SLy) and we have Vi = V%M,
The space Vk{‘”‘ identifies with the space of locally analytic functions on pZ, and
the action of ¢ is given by f(z) — f(p%2). A basis of finite slope vectors in V" is
given by the monomial functions z — 2" for n € Z>¢. The slopes of ¢ on this basis
are 0,2,---,2n,---. The inclusion Vj — Vkla" identifies Vi with the polynomial
functions of degree < k, which is indeed the space defined by the slope condition
+,85M7-

6.2.20. Distributions. Let k4 : w&}wT(ZP)wO,M — A* be ng-analytic. For all
n > ng, we now consider (V'7*")" the continuous A-dual. Equipped with the
strong topology, this is a Banach A-module. However it is not a projective Banach
A-module in general (it is so if A is a field). In order to remedy this, we introduce

another related space. Let M,, be the open subset of M,, of elements m € M,,
such that m =1 mod p"*¢ for some ¢ > 0 (this is an “open polydisc”). Let

o,n—an _
Ve =

(- (MyiM,)s — Ag™ . f(mb) = (woarka) (b7 f(m), ¥ (m,b) € (MiMy)s x (BN (MiM,))s
f is bounded}

Let Vrmomt C Vom=em he the subset of functions which are bounded by 1.
The space V,2," %% is a projective limit of finite free At-module, which defines
a topology on it, and this determines a topology on V>:"~%" (with this topology
V.29 is not a Banach module).

We have a map V,'~*" — V.2~ " with dense image. We let D! %" = (Vo m)Y
be the continuous A-dual, equipped with the compact open topology. This is a pro-
jective Banach A-module. We can also consider the dual (V,29"~%")" which is a
compact projective limit of Banach spaces. We have a series of maps Dy *" —
(Vamam)V — (Veon—em)V with dense image. We let D *™% be the continuous
At-dual of V2;"~%™* Tt is an open and bounded submodule of D",

We let D! = lim, D" = lim, (V,""")" = lim, (V,29"~*")V. This is a
compact projective limit of Banach A-modules (the distributions of weight k4).
There is a perfect pairing:

V) l
(= =) VS x DI — A
The space fof carries a right action of (M, TM:*) defined by (mf, u) = (f, um),
(tf, ) = (f, ut) for (t,m, f,pn) € TM T x My x V! x D% The space D™ therefore
carries a left action of (My,T™ ™) defined by (m~1f,u) = (f,mu), ¢t 1f, u) =
(fstu) for (t,m, f,p) € TM= x My x V%™ x Dlam The action of "=~ is by
compact operators on Df&”

Let x € X*(T)". By dualizing the exact sequence of theorem [6.2.16 we get the
following complex of (M, T™:~)-representations:

0— Dl (—woas(wonr - k) =+ — B pew® D (—wo,nr (w - K))
e B,y DI (w0 a0 K)) = DI (< arr) 0
This complex is exact except in the last degree. The cokernel of ® cw® Dig"}g(—wo, M (w-
M

Kk)) — DM (—wp pk) maps to VY. Passing to the finite slope part gives an exact
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sequence:

0 = Dy w(=wonr(wonr - 6))7 =0 = @ o Dyt (—woar (w - 1))

lan

= @ ) DI (—wo i (w - 8))/* = D (—wp k) = VY =0
M

Definition 6.2.21. Let k € X*(T)M+. We say that a T ~- ecigensystem \ in
D!an s of M-small slope (abbreviated —,ssyr) if
v(A) £ ((k, @) + Dwo,nrax

for all a € Ayy.

We say that a TM:~- eigensystem \ in V.Y is of M-small slope (abbreviated
) SSM) Zf

v(A) £ —womk + ({K, ") + Dwo pra

for all o € Ayy.

We have the following control theorem:

Corollary 6.2.22. The map (D!)=5M (—wq prk) — (V) 7%5M s an isomor-
phism of (My, T™:~)-modules.

Proof. This is the dual of corollary [6.2.18] O

6.3. p-adic families of sheaves.

6.3.1. Definition of the sheaves. We let K, = K .o with m’ > 0. Let w € MW.
By the results of section for any n > 0, over (nggw,Kp)_l(]Cw,k[n,nKp) the
torsor Mg has a reduction to a torsor Mar,n,k, under the group K, y; M ..

The group K, 5, has an Iwahori decomposition by proposition @ More-
over, Kp , n, NT¢ = wT(Zy)w™t.

Let (A, AT) be a complete Tate ring topologically of finite type over (F, Or). Let
va : T%(Z,) — A* be an n-analytic character. Let k4 : wo pwT(Zy)(wo,prw) ™t —
A* be given by ka4 = —wo mwra — (Wo, mwp + p).

We can construct a sheaf V] " over (nggg“’Kp)il(]Cw,k[n,nKp)v modeled on
Vr-em. Namely consider the torsor m : Mapn,x, — (Wg}’Kp)_1<]Cw7k[n,nKp)
and ™ x 1 : Mypn k, % Spa(A, AT) — (795) " (|Cuwk[n,n Kp) x Spa(A, AT). We
let V)" be the subsheaf of (7 x 1)*6’/\4“,”,}{? xSpa(A,A+) of sections which satisfy
f(mb) = (wo prra)(d 1) f(m) for all b € BEN (K3,w,a1,Mjin)- We also introduce
the subsheaf V70" 79" modeled on V¢ ~9".

We also have Dy " C (V) ") @ V_o,,. = (V] 3,

va—2w"1p,.
modeled on D7 %0 !
KA+2pnc"

)Y, a sheaf locally

6.3.2. First properties. We prove that the interpolation sheaves are locally projec-
tive Banach sheaves.

Proposition 6.3.3. The sheaves V] " and Dy *" are locally projective Ba-

nach sheaves over (W?[)%,Kp)fl(]cw,k[n,nKp) More precisely, for any affinoid U =
Spa(R,RT) — (W}}’}’Kp)_l(]cmk[n,nl(p), VioU) and Dy (U) are projective
Banach R&p A-modules and the maps V=" (U)&r Oy — VI |y and DI (U)Qr Oy —
Dy |y are isomorphisms.
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Proof. Tt follows from proposition [1.6.15] that there is a finite flat morphism f :
U = Spa(R',(R')") — U, a finite group H acting on U’ such that U'/H = U, such
that the torsor Mg, ik, |u is trivial. It follows that VI *"(U) = (V' *"&@R")H
(where H acts semi-linearly) is a direct factor of the projective A®rR-module
Vo @R, Similarly,

Vo Mu = (V;LA*“"@Fﬁu/)H = (V,{";“”@FR'@Rﬁu)H = Vﬁ;a"(U)@)Rﬁu.
The case of the distribution sheaf is similar and left to the reader. O

Corollary 6.3.4. Let U C (wt}%’Kp)’l(]Cw,k[nynKp) be an open subset which is a
finite union of quasi-Stein opens. Then

RL (U, V) ") = REan (U, V) "), and RI¢(U, Dy ") = Rl (U, Dy ")
and they are both representable by objects of Proy(KP™/ (Ban(A))).

Proof. This follows from proposition and lemma|2.5.19| (or a slight elaboration
of it). O

6.3.5. Interpolation sheaves and locally algebraic weights. We clarify the relation
between the big sheaves and the classical sheaves. Let v € X*(T°) and let k =
—wo, mwv — (wo prwp + p) be algebraic characters of 7°. By restriction they also
define characters v : T(Z,) = F*, k : wo pywT(Zy)(wo pyw) ™t — F*.

Proposition 6.3.6. Suppose k € X*(T¢)Mwt. Let K, = Ky form’ >0 >0,

m’ > 0. Over (W}?}pr)_l(}Cw’k[n’nKp) we have maps of sheaves

Ve = V)7 and D) " — V;/Hpm =V _wo rrv—2pme-
Proof. This follows from the construction. Compare with section [6.2.11 O

We would like a similar construction for locally algebraic weights (i.e. incor-
porating a nebentypus). We introduce some notation. Let m’ > b > 0. We let
K}, = Kpm' v Zs(Zp). Then the map Si& 0 5 — Shg , is an étale cover with

b pom/ 0

group T°(Z,)/T¢. For any character x : T°(Z,)/T} — F™, we get an invertible
sheaf Ogtor (x). For any sheaf of Ogtor -modules .#, we let % (x)

p,'m’,O’E pr,?n’,O’E

P
denote F ®g,,, ﬁs}&?;{

KPKP,,"L/,O,E p,m’,0°

S ()

Proposition 6.3.7. Let K, = K, o withm' > 0. Let x : T%(Z,)/T¢ — F " be a
character with b < m/,n. Let va : T°(Z,) — A* be an n-analytic character. Over

(47 1,) " (Cukln,n ) we have Vi 7a™ = Ve (x).

Proof. The map (w}f}’K;)_l(]Cw,k[n’nKz’,) = (77 k)" (|Cwk[n,n Kp) is an étale

cover of group T°(Z,)/T¢ since ]Cw,k[n,nK,/, =|Cy k[nnKp. We also have a map of
torsors MdR,n,Ké — Mypr n, Kk, equivariant for the map K{?,w,MMMM" = Kpw, v, My

We form the quotient:
Kp,w,MuMu,n/Kg/;,w,MﬂMu,n = U’TC(Zp)wil/WTbcwil-

By taking the pushout of the map MdR,mK;D — Marn,k, Via Kpw v, Mun —
wTe(Zyp)w™t JwTfw™!, we get a map:

(m557,10) " 1Cw klnn ) = Marm, i, XKy aa, My (WT(Zp)w ™" [T w™)
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This map is necessarily an isomorphism, because the left hand side is an étale cover
of (migh K, )" (Cuw k[n,nKp) of group T¢(Z,,)/T¢ and the right hand side is an étale
cover of group wTC(Zp)w_1 / waCw_l. Moreover, the map is equivariant under the
isomorphism T¢(Z,)/T¢ — wT(Zy)w™! JwTfw™" given by conjugation by w. It
follows that the étale cover (737 ;)™ (1Cuw,k[n.n k) = (757 1, )~ (1Cw,klnn )

p
can be realized as a pushout of the torsor Myg », K,- We deduce from lemma [6.2.10]
that V' 7" @ wx = Vi 1@ (we prwx-1)- Lhe lemma follows. O

Corollary 6.3.8. Let v = vgyx be a locally algebraic character of T°(Zy), with

Valg € X*(T°) algebraic and x : T°(Zy) — F” a finite order character of conductor

b<n. Let K, = Kp, ur0 form/ > b, m’ > 0. If kaig = —wo mMWVarg — (Wo,mrwp+p)

is M-dominant, then over (w27, K, )*1(]Cw7k[n,nKp) we have maps of sheaves
Vmazg (x) =V, and Dy~ " — V—wo MFEalg—2pne (X_1)~

Proof. This is a combination of propositions [6.3.6] and [6.3.7] O

6.3.9. Definition of the Hecke action. Let t € TT. Let K, = K, ;,v.0. We consider
the Hecke correspondence:

Stor

Kr(K,NtKpt—1),5"
tor tor
SKPKP,Z SKPKP,E’

Over py (7377, 1,) ™' (Cu kel Kp)) (01 (77 16, ) ™ (1Cuw klnin K p)) we have a
map

j2

an an
dR dR

PIMarn K, PsMaRrn K,

2

which is represented by K;,w,M,LM wtwilKCw M, M, ., by proposition (4.6.19
So far, all this discussion depends only on the double coset K,tK, and therefore
only on the image of ¢ in T"/T(Z,). In particular, if ¢t € T(Z,), all the maps are
the identity.
We now consider the following map:
[ PYMER /U™ — Py MR U™

which is given by z/mU*™ — [tz mwtw U™ = xb(wtw™) " Imwtw=! (for suit-
able trivializations «} and 2}, as in proposition [4.6.19)). This map depends on ¢ and
not only on its class in T /T(Z,).

Lemma 6.3.10. (1) The map [;] restricts to a map
PIMarn Kk, /Un = PsMarn K, /Un-
(2) Ift € TTt and n > 1, this map factors
PIMarn x, /Un = PTMaRrn-1,K, /Un—1 = D5MaRn K, Un.
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(3) Let va be an n-analytic weight. Then [t] induces a morphism
[t]: PV, " = PV, "
which is locally modeled on the morphism wtw ™! : Vioen — Vo defined
in section|6.2.4) If t € TTT then this is a compact morphism (in the sense
of definition .
Proof. Easy and left to the reader. Observe that wtw™' € TMwt, O

Now for v4 an n-analytic weight, we can now define a map
t:R(p1)p3V,, " =V, "

as the composite of [t] : R(p1)«p3V0 " — R(p1)«piVi " and (w™ woap +
P)() " Ty, R(pa)upi Vi, " = VT

Lemma 6.3.11. Ift € T(Z,), then
R PV = Vi Vi
acts via scalar multiplication by va(t).

Proof. This follows from the identity v4 = —w ™ wo pka — (W™ wo prp + p). The
scalar multiplication by w ™ wg arr4(t) ™ comes from the map [t] and the multipli-
cation by (w™wo arp+p)(t) ™' comes from the normalization of the trace map. O

By duality we also obtain a morphism: p3D; %" — piDy; " which is locally

modeled on (wtw™")~': DR — DRUYD

6.4. Locally analytic overconvergent cohomology. Fix w € W . For a choice
of + or — and a weight v4 : T%(Z,) - A* we want to define a finite slope, overcon-
vergent, locally analytic cohomology RFw,an(Kp,VA)i’f 5 and the cuspidal coun-
terpart RTy, on(KP,va, cusp)™7* by taking cohomologies of the analytic sheaves
V)" or D" (for n large enough), with suitable support conditions of neigh-
borhoods on the inverse image of P,\P,wkK, by the Hodge-Tate period map, and
passing to finite slope parts for a suitable Hecke operator.

6.4.1. First definition. Let K, = Kp o with m’ > n and let vy : T%(Z,) —
A* be an n-analytic weight. We fix ¢t € TTT and we assume that min(t) =
inf,cq+ v(a(t)) > 1 in order to simplify notations. We let T be the associated

Hecke operator.
We have that

T (i )™ (X w e DI (g, )™ (YurD) € (757 1,) ™ (1Cuk s e )

< (WE%,KP)il(]Cw,k[n,nKp)

by lemma and hence the sheaves V] %" and Dj " are defined over a

neighborhood of T" (w7 xc, )™ (1Xw s [)) N (T)" (w57 ke, )™ (Yaw k]))-

We also have that

T (g re,) ™ (X w e DINT) ™ (i, )™ Yok D) € (77 1,) ™ (Coo bz s Kp)
< (WE;“,KP)_IGCw,k[n,nKp)

and therefore, the sheaves V] ~%" and Dy *" are defined over a neighborhood of

TN ((mi7 ke, )~ (1 Xw k) 0 (T (77 1, ) (Vi ik ])) as well.
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We define:
RLynan(KP K, va) 7% =

R T (ri9 i)~ (1 X kl), Vi) HIe.

T (727 k) ™ (1 Xw k DINT) (77 )~ (Yo, k[))(
Implicit in this definition is that it makes sense to take the finite slope part: namely
the cohomology is an object of Proy(KP"°/(Ban(A))) and that H+ mr,0 acts on it in
a way that H, +, o acts by potent compact operators. This is proved in Theorem
-belovv Note that RT 'y n—an(KPK,, v4) /% is an object of the derived category
of sheaves of Ogp,(a, 4+)-modules, which possibly depends on several choices (see
sections |6 1. 10|, |6 1. 14|, |6 1. 17[) but the cohomologies Hw nan(KPKp,, va) T 7 are
well defined.
Similarly, we define:

Rrw,n—an (Kpra VA)_JS =

t\n+1 tor —1 n—an\—,fs
RE ot ((rtgg, )1 (Ram DN (i e ) 0¥ ) (T (T 1) ™ (YD), D7) ™77

Again implicit in this definition is that it makes sense to take the finite slope part:
namely the cohomology is an object of Proy(K?™%/ (Ban(A))) and that #, ., , acts

on it in a way that H, o acts by potent compact operators. This is also proved
in Theorem [6.4.3] below

We have similar definitions for cuspidal cohomologies RT'y, y,—an(KP K, V4, cusp)"“f s
and Rrw,nfan(Kpra va, Cusp)i’fs

6.4.2. Ezistence of finite slope cohomology. We now justify that the cohomologies

introduced in the previous section are well defined.

Theorem 6.4.3. Let K, = Ky, 1m0 for somem’ >n, w e MW, andva : T¢(Z,) —
A* an n-analytic character.

(1) The cohomologies
n+1 or 1 n—an
RE s (g o) =0+ (i)~ o) T (T06,) ™ (XK kD) V),

HT,K, HT,K,
n+1 or -1 n—an
RE Lot (. e, ) (R m DA (i, e, )~ (Vo) (T (1, )™ (Yoo kD), D)

are objects of Pron(KP %/ (Ban(A4))).
(2) There is an action of H;,m/,o on

RE b1 (nfg, ) 10X kDN 41 (i, )1 (Vo) (T () ™ (X kD) V)

HT,Kp HT,Kp

for which ’H;;,p acts via compact operators.
(3) There is an action of H .. o on

n+1 or —1 n—an
RE L1 (rtgh, )1 D@ (i)~ (Vo) (T (8 1, )™ (YD) D)

HT,Kp HT,Kp

for which M, o o acts via compact operators.
(4) All the analogous statements hold for cuspidal cohomology.

Proof. The property that the objects at hand are objects of Proy(KP™ (Ban(A)))
is corollary [6 The rest of the argument follows almost verbatim the proof of
theorem now using lemmas 7?7 and to see that the operators in H=

are potent Compact. The details are left to t e reader.

pm’O
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6.4.4. Change of analyticity radius.

Theorem 6.4.5. Let m’ > n+ 1. Let va be an n-analytic character. The maps
Hiu,nJrlfan(KpKZN VA)JF’fS - Hztlu,nfan(Kpr7 VA)JF’fS and Hfﬂ,nfan(KpKP7 VA)_’fS -

sz,n+1—an(Kpra’/A)7’f8 are isomorphisms. The same results hold for cuspidal
cohomologies.

Proof. Let T = [Kp ' 0t Kp ms 0] for t € T satisfying min(¢) > 1. The endomor-
phism T of

n+1 or —1 n—an
RE Ftt (i )1 (XD iz e ) (V) T (1,7 (X D) V™)

factors into

RE s (i )20 N1 ) (Vo) T (TR 0e,) ™ 1Kk D) V)

HT,Kp HT,Kp
—

n+1 tor —1 n+1l—an

RE i (457, )1 06w DN 1 (i ) Vo) T (T, )™ (X D) V™)
—

n+1 or -1 n—an
RE o (g, )= 05 eI 41 (o8, ) (T T (T G,) ™ (X D), V).

HT,Kp HT,Kp

The — case follows similarly. O

6.4.6. Change of support condition. It is important to us that the cohomology
RT v n—an(KP K, va)*¥% can actually be realized as the finite slope part of coho-
mology groups with different support conditions. The following definition is similar
to definition We start by fixing an element ¢ € 7" such that min(¢) > 1
and we set C' = max(t).

Definition 6.4.7. Let m' > n. A (+,w, Kp 0,1 — an)-allowed support is a pair
U, Z) where:
(1) U is an open subset of Si%, ,.x Which is a finite union of quasi-Stein
p,m’,0»

open subsets.
(2) Z is a closed subset of S}?ﬂKp

quasi-Stein open subsets.
(3) There exists m,l, s € Z>q such that:

(Wg%,Kp’m,,o)ilGcw,k[mypr,m’,O) czZnuc (”E?,prm/’o)71(]Ow,k[o,ciKp,m’,0)v
(T, 0 o) (Cuklgs i Kpmr0) CUC (w7 g )7 (1Cwklem—1Kpm o),

ZNU C (Trt}%q“,Kp)m/’O)_l(]Cw,k[n,nKp,m’7O)'
Letm' >n. A (—,w, Kp mr.0,n — an)-allowed support is a pair (U, Z) where:

s whose complement is a finite union of

,m’,0>

(1) U is an open subset of S;%Kp,mgo,z which is a finite union of quasi-Stein
open subsets.

(2) Z is a closed subset of S;g’pr,m/,o,E whose complement is a finite union of
quasi-Stein open subsets.

(3) There exists m,l,s € Z>q such that:

(i1, 0 0) " (CuklmsnKpm.0) © 20U C (tig7 ik, )7 (1Cw klemoKpm o),
(717, 0 o) (Cuklmirs Kpmr0) CUC (w7 )7 (1Cwk[-1,01Kpm0),

ZNnuc (Wgﬁ‘,K )_1(]Cw,k[n,nKp,m’,0)-

p,m’,0
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Theorem 6.4.8. Let m' >n, w € MW, and v4 an n-analytic character.
(1) Let U, 2) be a (+,w,Kpm 0,n — an)-allowed support condition. Then
R zry (U, V] %") and RT zy (U, V] %" (=D)) are objects of Pron (P’ (Ban(A)))
and carry a compact action of T® for sufficiently large s. Moreover there
are canonical isomorphisms

o (K B 0,a) 1 o H g (0, V)99
and
Hfz),n—an(Kpr,m/p, VA, C’U,5p)+,fs ~ HiZmz,{ (u’ Vﬁ;an(fD))Tsffs'

(2) Let U, Z2) be a (—,w,Kpm 0,n — an)-allowed support condition. Then
R zqy (U, D)} *") and RT zry (U, D, “"(—D)) are objects of Pron(KP™7 (Ban(A)))
and carry a compact action of T for sufficiently large s. Moreover there
are canonical isomorphisms

Hfumfan(KpKP,m',O’ UA)_JS = HiZﬂl/l (ua DITILA—CMI)TS—fS
and
HY, o an (KP K mr 0, va, cusp) 7 = H (U, D" (= D)) /2.

Proof. This is very similar to the proof of theorem and left to the reader. [

6.4.9. Change of level. Now we investigate how the finite slope cohomologies RTy, »—qn (KP Ky, v4)

and RI'y n—qn(KPKp,va, cusp)®7* vary with the level K,.
Theorem 6.4.10. For all w € MW and all m" > m' > n, the pullback map
H, (K Kpm0,v4) "7 — H, (K Kpmr0,va) "7

w,n—an w,n—an

and the trace map

i, (KP Km0, v4) ™" = H, (KPEpmr0,va)7*

w,n—an w,n—an
are isomorphisms, compatible with the action of T(Q,), and the same statements
are true for cuspidal cohomology.

Proof. This is very similar to the proof of theorem Details are left to the
reader. (I

As a result of the theorems [6.4.5] and we can let
RI‘w,an(KpmA)i’fs and RI‘w,an(Kpﬂ/mcusp)Lfs
denote respectively
RFw,n_an(Kprymzyo,VA)i’fS and R].—‘w7n_an(Kpr7m/70,l/A,Cusp)i’fS
for some choice of n and m’ > n. Although the cohomology complexes depend on

a number of choices, the cohomology groups are independent of any choice.

6.5. Two spectral sequences. We consider two spectral sequences. The first
spectral sequence is a Tor spectral sequence for specialization in the weight space.
The second spectral sequence comes from the locally analytic BGG resolution and
relates locally analytic overconvergent and overconvergent cohomology in classical
weights.

+,fs
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6.5.1. The Tor spectral sequence.

Theorem 6.5.2. Let w € MW, let vy be a weight, and let © € Spa(A, AtT) = S.
Let v, be the corresponding weight. We have spectral sequences:

B = Tor?s (HY, . (KP,va) 51 k(z)) = HEE (K, v,)5/*

w,an w,an

and similarly for cuspidal cohomology.

Remark 6.5.3. Concretely, if we are interested in computing the slope < h part of

RT . an (K, vz) /¢ for a given compact operator ¢ € T+, we first can find ' > h

and Spa(B, B+) < S an affinoid open containing x such that H., .. (K, Vo) 5% spa(m,B+)

have slope < h’' decomposition (actually, we can suppose that z is a maximal point

and we can take h = h"). We can thus consider the finite B-module H K,,v:)E <" (Spa(B, BY)).
The spectral sequence specializes to

Tor (Hq (KpaVA)i’Shl(Spa(B7B+)),k( ) = pr+¢fn(K )i,gh"

w,an

’LUG/’Z(

Proof. Following the above remark, it suffices to show that for any h, there exists
B and h' and a spectral sequence

Tor (Hq (KP7I/A)Z‘:7§h’(Spa(B7B+))7k(x)) HPte (Kp,l/w)i’éh/,

w,an w,an

But by construction (see proposition and remark [6.1.12] m, we can find a
complex M*® of B-modules which computes cohomology with partial support for
the sheaf V7" (for some n large enough), which admits a slope < h' decom-
position for an Hecke operator T € T7%(Q,), and whose slope < h' part is
Rl an(K?,vg)* <h'Similarly M® @ p k(z) will compute cohomology with partial
support for the sheaf V) ~%" and the slope < ' part will compute RT'y, an (K7, v ) <h',
We can therefore apply [Sta??], example TAG 061Z, to produce a spectral sequence
Tor _p(Hq(M°),k( x)) = HPTI(M*® ®p k(w)). Applying the projector "slope < h'"
yields the slope < h' part of the spectral sequence of the theorem. ([

6.5.4. The spectral sequence from locally analytic overconvergent to overconvergent
cohomology. Let w € MW and let v = VaigX : T°(Z,) — F* be a locally algebraic
weight so that Kqig = —wo, MWVarg — (Wo,mwp + p) is M-dominant.

By corollary we have morphisms:

R (K?, Kaig, X) 77 — RDy an (KP, v) ¢

R y.an(KP,v) 7% — RUy (K?, —wo pkaty — 2pne, X 1) °

and similarly for cuspidal cohomology. We remark that these morphisms are not
Hecke equivariant. Namely, on RTy, qn (KP, u)+’f $ we have an action of T with
the property that T(Z,) acts via v and on RIy q,(KP,v)"%, we have an ac-
tion of T~ such that T(Z,) acts by —v (see lemma [6.3.11)). We deduce (compare
with section [6.2.11)) that there is a T -equivariant map: R, (KP, kqy, )T/ —
Ry, an(KP,v) T 7%(—v4,) and a T~ -equivariant map: RFw7an(Kp7I/)7’fs(l/alg) —
RFw(Kpa —Wo,MKRalg — 2pnca X_l)_st

We can study these maps with the help of the locally analytic BGG resolution.

Theorem 6.5.5. In the setting above, there is a H
quence EPA(KP Kk, x)17¢ converging to finite slope overconvergent cohomology HEF4(KP, Kalgs POREAS
such that

».m,0-€quivariant spectral se-

ED (K7, Karg, X) ™1 =
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_ +.f _
DuoeWnr0(0)=pHL an (KP, (wo,nrw) ™ vwo prw)-vaig)x) " (= (((wo,pw) ™ vwo, arw) varg) ).
There is a M,y m,0-€quivariant spectral sequence ERY(KP | K, X)’*fs converging to
finite slope overconvergent cohomology HEF4(KP | —wo Kty — 2Pne, X~ 1) 7%, such
that

Eﬁ;’ql(Kpa Ralg, X)_7fs =

DoeWnr,b(w)=—pHb an (KT, (((wo,Mw)flvwo,M’w)'Vazg)x)7’fs((((wo,Mw)flvwo,Mw)’Valg))-

Proof. This is the spectral sequence associated to the BGG sequence of theo-
rem [6.2.16] as well as its variant for distribution sheaves. We use the following
identities: vay +p = —w twoa(Kag + p) and —w two ar(v - Kag + p) — p =
(wo,prw) ~Lowg prw) - Valg- O

6.6. Cohomological vanishing. The following is the analogue of theorem [5.6.1

Theorem 6.6.1. For allw € MW and weights v4, the cohomology RTwy,an (KP, v4, cusp)i’fs
is concentrated in degree [0, ¢y (w)].

Proof. This is exactly the same as the proof of theorem [5.6.1] granting lemmas
[6.6.2] and [6.6.4] below. O

The key lemma to prove the theorem is the following (this lemma and its proof
are inspired by [AIP15]). To clarify the notations, for any compact open K, C
Ky om0, the sheaves V' " (—D) and D} *"(—D) can be pulled back to sheaves

(still denoted the same way) on (737 )~ (|Cu,k[n.n Kp)-

Lemma 6.6.2. Assume that (G, X) is a Hodge type Shimura datum. Suppose the

weight v4 is n-analytic, and let K, C Kp 0 for some m’ > n. For all affinoid

opensU C|Cuklnn Ky, RO((xig5 o )7 (U). Vi (= D)) and RE((xgh. s ) =L ), DE7o"(~ D))
are concentrated in degree 0.

Proof. We only consider the case of the sheaf V]’ **(—D), the other case is iden-

va
tical. For any compact open K, C K, let 6%} K15 be an integral toroidal com-

pactification, and let &%,/ be an integral minimal compactification (whose ex-
P

istence is given by the main results of [MP19], see also section [4.4.29)). Let &l
be a formal model for U/, realized as an open subset of the normalization of a
blow-up of §£¢ . By theorem {4.4.35, for K; C K, small enough, we have nor-

*,mod * —1 *
mal formal models Skrry s = Skoky for the map THT, K u) — Skrxy and

tor,mod tor tor -1 tor
GKPK;,Z,LL — GKPK;’Z for the map (WHT,KI’) Uu) — SKPKI,ﬁ2 and we have a

tor,mod ,mod
map fK}g : 6}?;11?];0,2,11 — 6’;{21[?1/)_’“.

We may actually assume that K}’7 is a subgroup of the pro p-group Kp 1.

By proposition [4.6.15 for K,/ C K, small enough, the torsor Murnk, ., 18

.. . . 1. tor,mod
trivial on the generic fiber of a Zariski cover of &, Ky 54

We can construct a formal model for the Banach sheaf V7" that we denote
0yt over Gi?;’?jfi&u. Indeed let 6'}?2’?5?2711 = Uik, be a Zariski cov-
ering with the property that the torsor Myg p, Ky is trivial over the generic
fiber VK;;,Z‘ of Q?K;;,i- We fix such a trivialization. We can construct the associ-
ated 1-cocycle: over each intersection ‘BK;/’M = Q]K;D/,i N %K;{,j we have an ele-

. - o L Lp
ment m;; € K7 0 0, My, describing the change of trivialization of the torsor
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Mutp s, .- Over Vg i we let Wy o+ = Vst Qo, ﬁ’ggl%,’i and we glue
these sheaves using multiplication by m; ; on each intersection. The sheaf mg;a"#
is a flat formal Banach sheaf (see section [2.5.3)). We claim that it is also small (see
again section [2.5.3). Indeed, it follows from lemma [6.2.6] that the representation
Viramt @ e AT /AT of K, o\ MG, is an inductive limit of finite free AT /AT
submodules colim;V;, stable under K w, M, /\/l# ns and such that over V;/V;_; the
action factors over the quotient K, ep” w, M, of K7 ., M, by 1ts maximal normal pro-p
subgroup. We find that K7 M, = wTC( p)w ™t /wTfw™! is a finite abelian group.
Moreover, the elements m; ; map trivially to K;’fu M,

It follows that the sheaf U} *" " @44+ AT/ATT = cohmiﬁi is an inductive limit
of locally free sheaves of AT /A‘H‘ ® Ogtor.moa  -modules with the property that

KPK// , 3,4

Z;/F;—1 is the trivial sheaf. We now fix £ an ample line bundle over G%’T;ZZM

(this last formal scheme is quasi-projective, so £ exists).

We claim that there exists m > 0 such that RF(G'}?Z’}}?EH, f;“(;),ﬁm@’nﬁ;“""“(—D K1)
(where —Dpy is the boundary divisor at level K) is concentrated in degree 0.
The cohomology is represented by a complex of AT-modules which are comple-

tions of free AT-modules (take the Cech complex associated with the covering
UQ}K;;J-). It follows from lemma below that it suffices to prove that there

exists m > 0 such that RF(G?;’?I,)??E,H, fien £ QY ™t /AT (—Dg,)) is concen-
trated in degree 0. We are therefore reduced to prove that there exists m such that
RF(G?Z’}?;EH, ficy £ ® Fi) Fi1(=Diy)) is concentrated in degree 0. By the
projection formula,

RF(G%QEEM, fien L7 @Fi ) Fia(=Drky)) = RF(G}TIZZI,EW L"R(fry)«Fi] Fi-1(—Dky)).

We first observe that R(fK;/)*ﬂi/ﬂi_l(fDKu) is a sheaf concentrated in degree 0

by theorem Since L is very ample on G%TI‘;Z/ sy and (fxy )i/ Fio1(—Dky)
is a coherent sheaf independant of i, it follows that there exists m such that

RF(G@?Z’}(";%’H, fiey £ @ Fi) Fi1(—Dxy)) is concentrated in degree 0 for all i.
Let L = HO(G}TI% < £L[1/p]). Thisis arank 1 projective Os:  ((mur,xy) " (U))-

module. Let us write B = Og+ ((ma, Ku)_l(?/{)) to simplify notations. Note

PRI
Kp

KPK!

that fz, L™[1/p] = L™ ®p Og tormod [1/p] We deduce that
ficn £ @6 1o moa mﬁ;“"’Jr(—DK,y)[l/p] = L™ ®@p By, " (=Dxy)[1/p).
KpK” 3,u
It follows that
RF(G%’?;E#, fiey £ @ By ™ (= Dy )[1/p]) =

L™ @p R (W o, U), By ™ (=D [1/p])

and therefore RT(&L07m0%, B0 (=Dxky)[1/p]) is concentrated in degree 0.
9}
Taking a Zariski covering of 63?:;?3‘12 1 We deduce that the associated augmented

Cech complex on the generic fiber is exact. By theorem- affinoids are acyclic for
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Banach sheaves arising as generic fibers of flat small formal Banach sheaves. We de-

duce from the Cech to cohomology spectral sequence that RT((777, K1 )t vy et (=D K1)

is concentrated in degree 0. The lemma follows by taking the invariants under
K,/K}.

O
Lemma 6.6.3. Let AT be a ring, AT" be an ideal of AT. Assume that AT is AT -
adically complete and separated, Let My LI My Iy Ms be a complex of complete,
separated, and torsion free AT-modules. Assume that

My @ a4+ A*’/A“"Ir — M; @4+ 14+/A‘Hr — My @4+ A*‘/A‘Hr
is exact. Then the complex My f@ M, f# Ms is exact.

Proof. Tt follows from the assumptions that Im(fo)+ (AT M;NKer(f1)) = Ker(f1).
Since M, is torsion free, we deduce that (ATt M; NKer(f1)) = AT Ker(f1). Let
m € Ker(f1). By successive approximation, we can construct a sequence of elements
my € Mg for n > 0, with m,, —m, 11 € (ATH)" My and fo(m,)—m € (ATT)" 1M,
The sequence m,, converges to mq and fo(me) = m. O

Lemma 6.6.4. Lemma [6.6.9 holds without assuming that (G, X) is a Hodge type
Shimura datum.

Proof. We consider a diagram of Shimura datum with (G, X) of abelian type and
(G1, X1) of Hodge type as in section 4.4.41

(B1,Xp,) —= (B, Xp)

l l

(Gth) (GvX)

We may assume that the various morphisms between the groups G, By, B, G over
Q extend to morphisms over Op. We will prove that lemma [6.6.2] holds first for
B and second for G. We add decorations H or (H, Xp) to objects depending on
the Shimura datum (H, Xp) in order to make the distinction between the Shimura
data. Let v4 : T(B1)(Z,) — A be a continuous, n-analytic character. It induces
a character v/ : T(G1)(Z,) — A*. We consider the morphism of compact open
subgroups K, = K ' 0(B1) = K, = K} ;v 0(G1) and we deduce a finite morphism
of Shimura varieties:

f:8" (B, XB,)kx = S (G1, Xa, )k »
with K = K?K), and K’ = (K")P K}, and by restriction (see theorem lemma
we have a finite morphism:
I (WE)%KP)_l(]Cw,k[n,nKp) — (ﬂf‘?;,K;)_l(]Cwﬁ[manl))
We claim that there is an isomorphism
f*Vf::a" =V, "

This follows from remark and remark observing that the torsor com-
ming from the Shimura variety (T, Xr) is trivial. We insist that the above formula
does not describe the Hecke action at the level of Bj, but this is irrelevant for
us now. We can then find another compact K” C K’ such that there is a finite,
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generically finite étale morphism f : S*"0(Gy, Xg, )k — S*"Y(B1,Xp, ) k»
with group A. We now deduce that RF((W}_?%7KP)71(U)O,V:};an(*D)) is the di-
rect factor of invariants under A of RI'((7f7, K{],)_l(U)O,V;Z“”(—D)). We wrote
(757 k)~ (U)° for S0(By, Xp, )k,s N (777 )" (U) and similarly for G1. The
lemma is thus proven for B;. We observe that the lemma holds for any refine-
ment of the cone decomposition ¥ by the projection formula. We now deduce the
lemma for G. We reset the notations. Let v4 : T(G)(Z,) — A* be a contin-
uous, n-analytic character. It induces a character v/, : T(B1)(Z,) — A*. Let
K = KP?K, be a compact open subgroup of G(Ay). We can find a compact open
subgroup K’ C B;(Ay) such that there is a finite, generically finite étale morphism
8By, Xp, )k x = S"(G, X¢)k v with group A(K, K’). This map in-
duces a finite map : f : (7327 g )" (|Cu k[n.n K;)° — (ﬂ-ft?g“}[(p)_l(}Cw,k[n,nKp)0~
We find that '
V;LA—an — (f*V;L/A—an)A(K,K’).

We deduce that RL((7597, Kp)—l(u ), Vi e(=D)) is the direct factor of invariants
under A(K,K') of RI‘((W}}’EKI,J)’l(Z/I)O,V;L,A_a”(—D)). The lemma is thus proven
for G. O

6.7. Cup products and Serre duality. We now consider cup-products on locally
analytic overconvergent cohomology.

Theorem 6.7.1. For all w € MW and weights va there is a pairing:
(=, =) HE (K va, cusp) ™8 x HEE (K, va) T — A

w,an w,an
For any t € T(Qp) we have (t—,—) = (—,t7'=). Let v = vggyx be a locally
algebraic weight so that Kaig = —Wo, M WValg — (Wo,pmrwpP + p) is M -dominant. The
above pairing induces a pairing between the spectral sequences:

(= )par  EGE(K?, Katg, X, cusp) ™ x By b= (K?, kg, x )T = F
On the abutment of the spectral sequence the pairing (,)pq.o00 @5 induced by the
pairing of theorem[5.7.1}:
HOFYK? | Kaig, X, cusp) ™7 x HEPUKP | —2p,,. — wo arfarg, X 1) T — F.
Proof. We construct the pairing
(—,—):H (Kp, va,cusp)t/s x HE (KP,VA)*’fS — A.

w,an w,an

We can realize RT'y, o (KP, V4, cusp)+’fs as the the finite slope part of
V1 0Cw oKy ) ((TEE 1 ) (Cw ks~ 1 K 0), Voy @ (= D))

p,m’,0

RF(‘”?;,KP

,m’,0

for s >> 0 and m’ >> s by definition and theorem Similarly we can
realize RT'y on (K7, va) "% as the finite slope part of

R (rtor /0)—1(]Cw,k[mys_1Kp,m/,0)((TFE);,K ) (Cw,kl=1,5-1Kpmr0), Dl ™).

p,m’,0

Moreover, by construction we have a pairing V7" (=D)xD} %" = V_s, (—=D)®
A. We have a cup-product by proposition [2:2:1}

Hzﬂ};’;,K ’ O)_l(]cw,k[sFKp,m/,O)((ﬂ-}(};:K;’,mCO)il(]Ow’k[s7_1K 7"L/70)’V17;an(_D))x

d— — _
H tzor , )71(]Cw,k[msfle,mf,o)((Wﬁ)}’K /0) 1(]Cqu,k[—1,s—1Kp,m/70)7DLLAan)

p,m-,
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- Hd s ’ 0)71(]Cw,k[m,§Kp,m/’0)((ﬂggﬂ,Kp,m/,(])71(]Ow7k[373_1Kp7m/70)7 V_Qpnc(_D)®A)

(TrHT,K
p,m

and there is a trace map (by theorem [2.7.1)):
H((iﬂi]o;,Kp’ ’ )71(]Cw,lc[m,§Kp,m’.D)((ﬂ-?[):}vK )_1(]011;7]@[5’571_[{ ’m/fo)’V72pnc(_D)®A) - A

/.0
m’,0 pomes

pm,o- LU is straightforward

This pairing intertwines the actions of ’H;; m,0 and H
(and painful) to check that the induced pairing
(=, =) HE (K, va,cusp) ™ x HEZE (K, v4) 77 — A

w,an w,an

is independent of choices.
We now work in weight v = v4yx and justify the existence of the spectral

sequence. Over (W?},Kp » 0)_1(]011,7;6[57_1[( m’,0), we can consider the n-analytic

BGG complex (see theorem [6.2.16) :
BGGran : V™" (=D) = @yewnr t(w)=1V|(me

v ((wo, mrw) ~Lvwo, M w)-VaigX

and similarly the dual version
Vv . n—an n—an
BGG, g — 69UGWM,f(v):1:’)((71)0,1\/1111)’1vwo,1\410)'%1_9)(*1) - Dy ’
‘We represent

RP(rier o 10w ilos iy o) (T 1, 0 )T (Cutels, =1 Epmr 0), BGGr—an)

p,m’,0
by a filtered complex M*® with the property that the associated spectral sequence
is the spectral sequence of theorem m (on the finite slope part) by considering a
suitable covering of (7155 . )™ (Cukls—1Kpmr0) and (wif s )7 (1Cubla B )
as in lemma We proceed similarly for

-1
R'F( T /)0)71(]Cw,k[siﬂ,s—le,m/,O)((W?I)’},Kp,mlyo) (]Cng[f]’sf]K 7m,’0)’BGGX7”‘n)

THT,K
p,m

in order to obtain a filtered complex N°®. There is a pairing M* ® N®* — F[—d] of
complexes inducing on finite slope cohomology the pairing we just produced. We
get a map of spectral sequences EP4(M®) @ EP-4 (N*®) — Ep+eatd (F|—d]) which
on finite slope part is the map of the theorem. ([

Theorem 6.7.2. Let w € MW, let A be a field and firx a weight v4. The pairing
(=, =)t HY o (Kp,va, cusp)™7/s x HE7L (K, va)TF% — A is non-degenerate.

w,an w,an

Proof. We follow closely the proof of theorem [5.7.2] Our strategy is to express the
cohomologies as cones of cohomologies (possibly with compact support) of dagger
spaces and to use the duality for affinoid dagger spaces to produce dual complexes
whose finite slope part computes the cohomology. We can realize RT'y g, (K7, V4, cusp) /¢
as the the finite slope part of

1 10Cuwslos Ky ) (T ) )T (Cw ks, 1 K 0), Voy *" (= D))

for s >> 0 and m' >> s by definition [6.4.7| and theorem [6.4.8f We want to realize
the finite slope part using the cohomology of dagger spaces, in order to be able to
use duality. We therefore introduce the following closed subspaces of FLg ,:

]Cw,k[m’EZ me>0]cw,k:[s—1—e,§a and }Cw,k[m’gz]cw,k[ﬁ'7§\}cw,k[s,§~

Rr(ﬂ.tor
HT,K

p,m’,0
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Both are the closure of quasi-compact open subspaces of FLg,,. We have an exact
triangle:

RF( o )71(]Cw’k[[571.3]’31(1,,7”/70)((77;?’9“7[{ ’ )_1(]011)7]9[5*27*1[( ’m,’0)7VSA_an(_D)> -

“HT,KP 0 p,m’,0

tor

RF(W}_}’;‘KP,m/,U)_l(]Cw,k[ilngp_’m/,O)((ﬂ-HT,Kp’m/_’O)il(}Ow»k[S—Qy—leam/7O)v Vo M(=D))

s—1

or - n—an +1
- RF(”};;,K;; m’ 0)71(]Cw.k[S,?Kp,m/,O)((W%TvK ) 1(]Cw7k[5171Kp’ml70)7 VVA (_D)) -

p,m’,0
‘We observe that RF(W;;);va,ml,o)71(]0“”’“ [m’ij,7n’,0) (<W§§%’Kp,m',o)_l(]Cw’k[872’71K 7m',0)» V;LA—an(_D))

and RF(”;—?;",KP m! 0)_1(]Cw,k[ﬁ/,§Kp,m,/,O)((71-3_?9‘71(' )_1(]Cw,k[s—Q,—le,m/,O)a V:}A_an(_D))

p,m’,0

are the cohomoloéy with compact support of the dagger spaces (ﬂ}ff%K%m/ﬁ ) H(Cw ke [[571,5]’,§KP7W70)
and (TFE%KP.T”/ ) (1Cw ki1 sKp,m 0) respectively.

For the — theory, we see that for any € > 0, the cohomology

tor

RE(rigs oy 0Custon ety (W81, 0 ) (Cuil ot B 0), DY)

is quasi-isomorphic to the cone of
RO((rh i ) (Cu sy o Koo 0), Dy ™) [ 1]
Kpm0), Dy ") [=1]

ROl e )" (1Cul
We want to apply the duality theorem of proposition[2.7.3] At this stage we need to
modify slightly the sheaves. We consider instead of V}, " the subsheaf V)¢~
Similarly, we use (V] %)Y ®V_,,. rather than D}} *". There is amap D}, *" —
(Voor=am)V. @ V_s,,. and a map Voo™~ — V' ~*". When we pass to the inverse
limit (respectively the direct limit) on n, these maps become isomorphisms. Passing
to the limit over €, we deduce easily that the finite slope part of the cone of

RF((Wg’},Kp,m/,o)il(]Cwﬁ[;/,ng,m’,O)v (Vl(/);c\,nfan)\/ & V*QPnc)[_]'] -
RE((fh )0l e 0): (57 © Vs, )1
computes RTy qn (KP,v4) /%,

We can consider a finite covering UiUiT of (ﬂ'%’%le 0)_1(]Ow,k[ﬁ’)ng,m’,0)

[871,8]/7576

by affinoid dagger spaces (or equivalently by closed Spaceé which are the closure of
quasi-compact open spaces) and we let U, VjT be a covering of (W?%’K )t (]ka[m/ Kpm0)

p,m’,0

by affinoid dagger spaces, refining U (U] N (7 K )_1(]Cw’k[[ '+ _Kpmo))-

p,m’,0 5_175] »S

We let A® = C.({U]},Voom="(~D)) and B* = C.({V,'}, Vo©"=9"(—D)) be the

Cech cohomology complex with compact support. There is a natural map B®* — A*®
and we let C® be the cone of this map which represents

RE(rizr e 0700wl ) (T 10, 0 o) (Cublscmt B 0), VO™ (= D).

p,m/,

Let t € TT". As explained in lemma, we can lift ¢ to a compact endomor-
phism of C*.

We let D*® be the complex which is the dual of C'*. By the duality for affinoid
dagger spaces proposition [2.7.3] this complex computes the cone of

RE((n8,c, 0 0) " (Cu kst o K 0): (VIS @ Vo, )[-1]

RO((nh i )" (Cu sl o Kpanrio)s (V5" @ Vs, )11,
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For any slope h, taking the slope < h part yields a perfect pairing between C'*="
and D*=" and passing to cohomology gives the theorem.
O

Using duality we can deduce an improved vanishing theorem.

Theorem 6.7.3. Letw € MW and let va be a weight. The cohomology HY, .. (KP,va, cusp)™7$

w,an
is concentrated in degree [0,0+(w)] and the cohomology Hi, ,, (KP,va)*7* is con-

centrated in degree [{4(w),d]. Moreover, if A is a domain, Hﬁf&“)(m, va)tfe is
a torsion free sheaf of Ogpa(a,a+)-modules.

Proof. The case of HY, ,,,(K?, v, cusp)*/* is theorem The case of HY, ,,,(KP,v4)5/*
when A is a field follows from the duality theorem [6.7.2] The case of general co-
efficients can be deduced as follows. First observe that we can suppose that A is
reduced as the universal weight space is reduced. Let us fix a compact operator
t € T*. For any point z € Spa(A4, A*) and any slope h, we can find a slope b’ > h
and an open Spa(B,B*) < Spa(A, A") such that H} ,,(K?,v4)|spa(s,5+) has
slope h' decomposition for ¢, and Hfu,lm(Kp, va)(Spa(B, Bﬂ)iéh/ is computed by
a perfect complex C*® of B-modules. Since we know that for any = € Spa(B, BT),
C* ®p k(z) has cohomology concentrated in the range [¢4 (w), d], we deduce that C'®
is quasi-isomorphic to 7>/, (,)C*®, and this truncated complex is a perfect complex
(by an application of [Mum08|, lemma 2 on p. 49). It follows that its cohomology

in degree ¢4 (w) is torsion free if A is a domain. O

6.8. Slope estimates and control theorem. We now formulate a conjecture
regarding the slopes of the locally analytic overconvergent cohomologies. This is of
course consistent with conjecture [5.9.2

Conjecture 6.8.1. Fiz w € MW, and let v : T¢(Z,) — C) be a continuous
character.
(1) For any character X of T+ on RTy, an(KP,v) /% or RTw,an(K?, v, cusp) s,
we have v(A) > 0.
(2) For any character X of T~ on RI'y, on(K?, V)= or R y,an(KP, v, cusp)~F*,
we have v(A) < 0.

Remark 6.8.2. The inequalities in conjecture are compatible with those of
conjecture due to the way we have renormalized the Hecke operators acting
on locally analytic cohomology. Similarly the slightly weaker bounds we prove in
theorem [6.8.3] are compatible with those of theorem [5.9.6]

We can prove a bound which is slightly weaker than the conjecture.

Theorem 6.8.3. Fizw € MW, and let v : T(Z,) — C, be a continuous character.
(1) For any character X\ of T+ on RTy an(KP,v) "/ and RTy an (KP, v, cusp) ™73,
we have v(A\) > —w ™ wo prp — p and v(N) > —wrwo pp — p+ W 2P0
(2) For any character X\ of T~ on Ry an (KP,v) ™/ and RU 4y an (KP, v, cusp) =%,
we have v(A) < —w tp+p and v(A) < —wlp +w12p,,.

Proof. This is similar to theorem We have integral structures V7~ %"+ and
Dr=am+ on the sheaves V7P~ and D"~ %" by letting for example V7~ be the
subsheaf of sections which are power bounded viewed as functions on the torsor
Ma.dr i, (see section . Moreover, for each ¢t € T, the map of lemma
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(3) induces a map p3V) T — piVIet by lemma Similarly, for each
t € T, we get an induced map p3DI~ ™+ — pyDr=m+  The difference with
lemma [5.9.9] is that there is an optimal normalization in the construction of the
map of lemma[6.3.10] The rest of the argument is identical to the proof of theorem

[£.9.6] and left to the reader. O
Corollary 6.8.4. Fiz w € MW, and let v = vayX be a locally algebraic character.
Let Kalg = —wo, MWy — (wo mwp + p) and suppose karg € X*(T)M+. Then the
morphisms

R, (K?, Kaig, x)Fr5550 (Ra1a) 3 RTy, 4 (K, 1) (— 1) s (Fata)

Rrw’an(Kp, V) (Ualg)—,SSSM,w(—wo,Mfiazg—2pm) — R, (Kp7 —Wo M K—2Pnes X—l)—,sssmw(—wo,Mmazg—me)

and the corresponding morphisms for cuspidal cohomology are all quasi-isomorphisms.

Proof. This follows from the spectral sequence of theorem together with the
slope bounds of theorem [6.8.3 O

Remark 6.8.5. If we assume conjectures @ and we can replace the sssar,u
condition by the ssys,., condition in the above corollary.

6.9. Eigenvarieties. Consider the Iwasawa algebra Z,[[T°(Z,)]] and the weight
space

W = Spa(Zp[[T(Zyp)]], Zp[[T*(Zp)]) Xspa(z,.z,) SPAUQp; Zp)-
For a (A, A*) a complete Tate (F, Op)-algebra,

Hom(Spa(A, AT), W) = {Continuous characters v4 : T°(Z,) — A*}.

Also let T be the analytic adic space of characters of T(Qp), whose restric-
tion to T'(Z,) factor through T¢(Z,). If we fix a splitting £ for the map T(Q,) —
T(Q,)/T(Zy), and we fix an isomorphism T(Q,) /T(Z,) ~ Z" (for r = rank(X*(T?))),
then we have an isomorphism T ~W x (G2, where the map sends a character
Ato (Alzez,)s A(€(e1)), -+ s AM(§(er))) (for the canonical basis eq, - -+ , e, of Z"). We
also observe that there is a natural map 7'(Q,) — 0.

Let Spa(A, AT) C W be an affinoid open and let v4" : T%(Z,) — A* be the
universal character.

For each w € W we have sheaves over Spa(4, AT): @;HY, ., (K?,v4")*/* and
eaiH2u7an(K P 4" cusp)®/4. Gluing these sheaves for an affinoid covering of W (see
remark7 we deduce that there are sheaves of Gy -modules G¢ HE . (KP, u“”)i’fs

i=04 (w) w,an

and @fiéw)Hi (KP, v, cusp)i’fs, admitting slope decomposition.

w,an

Remark 6.9.1. Our weight variable v is morally a translate of the infinitesimal
character. We recall how to switch between the weight of our coherent coho-
mologies and the infinitesimal character. Let v = v*9y be a locally algebraic
weight. Then HY, . (K?,v"™) " f5®4  k(v) and H, ., (K?, 1", cusp)H/* @4, k(v)

w,an w,an

are related to classical or overconvergent cohomology in weight k44 Where vgy =
—w ™ wo ar(Karg + p) — p. On the other hand, HY, ,,,(KP, ")/ @4, k(v) and

w,an

HE o (KP, v cusp)™7% ®4,, k() are related to classical or overconvergent coho-

w,an

mology in weight Ht\z/lg = —wo,MFKalg — 2pne and Vgyy = w’l(fi;/lg +p)—p.
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We also have cup-products:
H, (KPS @ HE L (KP v cup)T7° — Oy

w,an w,an

We modify the action of T'(Q,) on H, . (K?,v*")~/* and Hi, , (K?, "™, cusp)/*,
by composing it with the inverse map ¢ — t~!. With this modification, the opera-
tors t € T(Q)) are self adjoint for the pairing. The action of T(Q,) on the various
sheaves wam(Kp, v s and HfMW(KT’, v, cusp)™ /¢ over W produces a spec-
tral variety, which is a Zariski closed subset Z — T (see section . We have
coherent sheaves HY, ,, (K, V“’L)ié’fs and HY, ., (K?, 1/“”70usp)§’fs of 0z-modules
supported on Z and 0z acts faithfully on the direct sum of all these sheaves. More-
over, if m: T — W is the projection to the weight space, m,H¢, . (KP, V“")ﬁ’fs =

w,an
H@(ITL(KP, v s and W*Hfu7an(Kp, yun, cusp);fS =H:, . (KP, " cusp)™ /.

w,an

We assume that K? = [[ K, and we let S” be the set of primes ¢ # p such
that K, is not hyperspecial. We let S = S’ U {p}. Let K = [Togs Ke and let
HY = C® (G(A}?)//KS, Q) be the spherical Hecke algebra at places away from S
(here K = [Irgs Ki). We let € be the finite adic space over Z whose algebra
is the coherent ¢z-algebra generated by the operators h € H® acting on the sum
of the sheaves HY, (K7, v*")57* and Hi, , (K?,v"", cusp)z”'*, for all i € Z, all
w € MW, and all choices of + or —.

A (classical rigid analytic) point of Z corresponds to a character A, : T(Q,) —
C,. We can attach to A\, the weight v = Ap|re(z,) : T(Z,) — C,. When the
weight v = vg4x is locally algebraic, then we let AJ™ = )\pV;l; with vy viewed as
a character of T'(Qy). Then A\;™ factors through a character of T'(Q,)/T} where b
is the conductor of .

Remark 6.9.2. The superscript sm stands for smooth, because the character A\;™
is the smooth character attached to A,. Remark that the Hecke action on classical
cohomology produces smooth characters. This is visible in point (1) of theorem
below.

A point of &€ corresponds to a pair (A, %) where A% : HS — C, is a character.

Theorem 6.9.3. The eigenvariety w : € — W is locally quasi-finite and partially
proper. It carries graded coherent sheaves

@ (Hﬁ)’an(K!”Vun);,fS EBHk (Kp7yun)§>f8

w,an

weMW,keZ
k +,fs k —,fs
OHy, o (KP, 0" cusp) 27" © Hy, 4, (KP, 0" cusp) z777)

and they satisfy the following properties:

(1) (Any classical, finite slope eigenclass gives a point of the eigenvariety) For
any kag € X*(T¢)M*, finite order character x : T(Z,) — F*, and
any system of Hecke eigenvalues (A}, %) occurring in HY(KP, kqg, x) T/
(resp. H"(Kp,/f;/lg,x’l)f’fs, HY(KP, Kalg, X, cusp)H/¢, orHi(Kp,leg,x’l,cusp)*’fs)
there is aw = wywM € W, so that if v = VaigX With Vgig = —w‘le,M(ﬁalg—i—
p) — p, then ()\Zmualg, M%) is a point of the eigenvariety & which lies in the
support Of@kEZHﬁ)M’an(pr 1/“”)§’fS (resp. @kGZHﬁ)M’an(K‘Da V“”);’fs, @keZHﬁ)M’an(K”, pun, cusp)JZr’fs

or ®rezHF (KP, v, cusp);fs),

wM an
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(2) (Small slope points of the eigenvariety in reqular, locally algebraic weights
are classical) Conversely if v = vqgX is a locally algebraic weight with vy €
X*(T)*, and (\p, \) is a point of € in the support of DrezHE . (KP, V“")g’fs

w,an

(7”68]). ®kEZH§J,an(Kp’ l/un);af$7 @kEZHﬁ,an (K;D) Vun7 Cusp);JSf or @kEZHﬁ,an (KP, Vun’ cusp);,fs)

for some w € MW, and if \3™ = )\pl/(;:] satisfies +, 588, (V) ?Ehen (A, %)
occurs in H (KP, kaig, X) 77 (resp. HY(KP, Fogs x 7 H(KP, Kag, X, cusp) T/,
or Hi(K?, 1%, X, cusp)=1*) for Katg = —wo s w(Vatg + p) — p-

(3) (Serre duality interpolates over the eigenvariety) We have pairings:

H (K?, V“”)ﬁ’f‘q ® Hi—Fk (KP ", cusp)z,’fs — 710k,

w,an w,an

and these pairings are compatible with Serre duality under the classicality
theorem.

Remark 6.9.4. In point (2), only the +, sss,, (v) condition appears (even in the —
theory), as we have composed the original action of T'(Q,) on the the — theory with
the map ¢ + ¢~! (so that the operators ¢t € T(Q,) are self adjoint for the Serre

pairing).

Proof. We only prove the first point for H!(KP?, Iialg7x)+’fs. The other cases are
similar. There is a succession of three spectral sequences, having as input the
sheaves Hﬁhm(K”,y“”)*"f 5 (for varying k and w) and finally converging to the
classical cohomology H*(K?, /falg,x)+’f 5. The first spectral sequence is the Tor
spectral sequence of theorem from the cohomology sheaf over W to the lo-
cally analytic overconvergent cohomology in a given weight. The second spectral
sequence is the BGG spectral sequence of theorem [6.5.5] from locally analytic over-
convergent cohomology to overconvergent cohomology. The third spectral sequence
is the spectral sequence of theorem from overconvergent to classical coho-
mology. Therefore, starting from a classical class, we can lift it successively to the
E; terms of the last two spectral sequences (for suitable choices of wy; and w™)

and then to a class in a suitable Tor?;" (HY, oy (KP, v B8 k(1)) for v = vggx.

w,an
Therefore, (A)™Valg, M%) is in the support of HY, ,,, (KP?,v*m) ™/
We now prove point (2). Let (A, A¥) be a point in the support of @rezHE, ,,, (K?,v4m) T/

over a weight v. Then one sees that there is a corresponding class in @© kHﬁ)’an(K P y)hrs,
Indeed, take k maximal such that (Ap, A%) is in the support of ®rezHE, ,,, (KP, ) /5.
The Tor spectral sequence implies that (),, \°) is in the support of HE . (KP?,v)*/s.

w,an

Then we conclude by the control theorems (corollary and theorem [5.12.3):
opHE (K, v)Tessn ) = @ HE (KP, —wo pw(vag + p) — pox) 7555w ),

w,an

The last point follows from the functoriality of the pairing. |

We now define certain components of the eigenvariety of maximal dimension and
show that they contain all finite slope interior cohomology classes. We first define
sheaves:

—0
oo (P, )50 = () (K0P, 1, cusp) 57— T (7, v £ 7).
—0
Proposition 6.9.5. (1) The sheaves H + )

w.an (KP, V“")é’fs are torsion free sheaves
of Oy -modules.
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(2) For any v : T(Zy) — C,, the map Hwiin)(Kp,V“")i’fS ®oy k(v) —
L+ (w)

ﬁw@n (KP, )57 is surjective.

(3) For any k € X*(T°)Met and x : T(Zy) — F* a finite order character,
let v = vagX with Vay = —w ™ wo pr(k + p) — p. Then the map

2, (K, k)T H (P )t

is injective and the map

—l_(w s —=l_(w —1\—,fs
Ay (kP )= S L (K, —wo prk = 2pme x 1)

18 surjective.
(4) There is a pairing
+(w

w,an

T (K7, o0 s L 00 (B2 0) 0 = 6y

compatible with the preceding maps and the pairings

H£+(w)(Kp )+ fs « HZ (w)

w,an

n (KP )70 = k(v)

and

—{_(w)

Hh(w)(K” o X) TS x Hy  (KP, —wo ke — 2pne, X 1) = FL

Proof. The first point follows from theorem [6.7.3} The vanishing theorem and Tor
spectral sequence imply that Hf,,iéff)(Kp un cusp) @6, k(v) — Hf;‘féqnv)(Kp, v, cusp) ™/
is an isomorphism, which gives the second point. The vanishing theorems and the

BGG spectral sequence imply that H£+(w)(K” K, x) Pl — Hﬁfffﬁ) (KP,v)t/s is in-

jective and HY (g?f{)(Kp v, cusp) 5 — ISl (KP, —wo, MK — 2pne, XL, cusp)
is surjective, which gives the third point. The last point is clear. ([l

Remark 6.9.6. There is an asymmetry between the — and + theories in point
(3). This asymmetry results from our choice to develop the + theory using locally
analytic induction sheaves and the — theory using their dual distribution sheaves.

We let 2!, £ be the supports of H i(w)(K” “”)ﬂE 5 inside Z and £. We let

w,an

Z' and &' be the unions of the Z! and &.

Theorem 6.9.7. The following holds:

(1) The eigenvariety £ and the spectral variety Z' are either empty or equidi-
mensional of dimension dimW. The same is true of the 51!” and qu for
each w € MW .

(2) For all w € MW, Ky € X*(T)M*, and x : T9(Z,) — F a finite
order character, let vqg = —wilwoyM(/{alg + p) — p. Any eigenclass in

ﬁi;(w)(Kp, Hglg,xfl)’*fs or ﬁi+(w)(Kp, Kalg, X) 7 gives a point of £, of
weight v = VgigX.

(3) Let kg € X*(T)MT and x : T*(Zy) — F” be a finite order character.
For any eigenclass ¢ in H (K?, Karg, X) T/ or H (KP, Kol X~ 17 F there is
aw € MW with {+(w) =i so that ¢ gives a point of E., of weight v = vayX
where Vgig = fwfle’M(/ialg +p)—p.
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Proof. We recall the following classical result. Let A be a noetherian domain, let
M be a finite torsion free A-module and let B be an A-algebra acting faithfully on
M. Then B is a finite and torsion free A-algebra. This implies that any irreducible
component of Spec B maps finite and surjectively to Spec A. If (4, AT) is a Huber
pair, we define Bt as the normalization of AT in B and we have a finite surjective
map Spa(B, Bt) — Spa(A, A*). It follows from proposition [6.9.5 (1) that the
eigenvariety €' and the spectral variety Z' are locally constructed by the procedure
we just described (where A is the ring of a suitable affinoid open subset of W).
This proves (1). The second point follows from proposition [6.9.5[ (2) and (3). The
third point follows from the second point and corollary [5.8.1] O

This theorem in particular implies that any finite slope system of Hecke eigen-
values in classical or overconvergent interior cohomology admits an analytic defor-
mation of maximum dimension.

In light of point (3) of the theorem, it is natural to ask: given an eigenclass ¢

occurring in H' (K?, ka4, x) T/, what is the set MW (c) of w € MW with £, (w) =i
for which ¢ occurs in H,, (KP?, Kalg, X)? It is natural to compare MW (c) to the set
C(Kag)", ie. the set of w € MW for which vg, + p € X*(T€)*.

Proposition 6.9.8. Assume that the eigenclass ¢ satisfies +,ss™ (kaiy). Then
Mw(c) C O(r)T.

Proof. By theorem|6.10.1/(2) below, ﬁfU(Kp, Kalg, X)JﬁSSM(H) =0 unless w € C(k)T.
O

In particular if C'(k)™ has only one element of length i (for example if x + p is
regular) then ¥ W (c) is determined under this small slope hypothesis.

Ezample 6.9.9. We give a basic counter-example to the proposition if we drop the
small slope hypothesis. We assume the Shimura variety is compact, so that the
constant function 1 € H°(Sg, @) defines a finite slope interior cohomology class.
Then MW (1) = {Id}, and the corresponding point of the eigenvariety & is in weight
Vglg = —Wo,MP — P = —2pne, and so in particular v4;4 + p is not dominant. On the
other hand we have C(0)* = {w!}.

Remark 6.9.10. If ¢ is a cohomology class represented by an automorphic represen-
tation 7 which is tempered at oo and contributes to coherent cohomology in weight
K, then 7 is a limit of discrete series which is described by the pair consisting
of its infinitesimal character —x — p and a chamber wX*(T)a C X*(T)g“‘ for
w € C(k)T (see [Har90a], sect. 3.3). We can ask if this class lifts to a point in &,

6.10. Improved slope bounds for interior cohomology and applications.
Using the interior eigenvariety we are able to prove that the conjectured slopes
bounds [6.8:1] [5.9-2] and [5.10.7] hold for interior cohomology. The idea is that
classical points in regular weight satisfy the correct slope bound by corollary([5.10.12]
and these points are dense in the interior eigenvariety.

Theorem 6.10.1. (1) Fiz w € MW and a locally algebraic weight v = v49X

for vag € X*(T€) and x : T°(Zyp) — F™ a finite order character. For any

character X of T* on ﬁzi(w)(Kp,V)i“fs we have v(A\) > 0 in the + case

w,an

and v(A) <0 in the — case.
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(2) Fizwe MW, k€ X*(T°)M*, and a finite order character x : T(Z,) —
F*. For any character \ of T* on ﬁii(w)(K”, K, X) 57 we have v(A) >
w™lwo pr (K4 p) + p in the + case and v(\) < w™(k+p) —p in the — case.

(3) Fiz k € X*(T)M:+ and a finite order character x : T¢(Z,) — F*. Let
v=—wtwyr(k+p)—p for anyw € C(k)*. Then for any character X of
T+ on ﬁi(KT’, K, X) T we have v(\) > —v in the + case and v(\) < —wov
in the — case.

Proof. The first point implies the second point by propositionm (3). The second
point implies the third point as in the proof of proposition using corollary
E8I

We now prove the first point. The eigensystem A\ can be lifted to a point
(1, Ap, A) of &' (where \, = X in the + case and \,(¢) = A\(t™1) in the — case). We
can find another point (', A}, \'5) which satisfies v(A,) = v(Ap) and V' =y, x is
locally algebraic, and v/, g € XX(T ©)* is sufficiently regular so that v(\;,) satisfies
+, sss(v). Then this point is classical by theorem m (2), and so the slope bound

is satisfied by corollary O

As a consequence we deduce a vanishing theorem for classical interior cohomology
which improves on theorem [5.12.5]

Theorem 6.10.2. (1) For any k € X*(T)M:+, ﬁi(Kp,n)sssM(“) is concen-
trated in the range [lmin (), bmax (k)]

(2) For any v € X*(T°)+, H (K,, WY)***®) is concentrated in the middle de-
gree d.

Proof. Theorem (2) implies that the complex Cous(K?, k, X)i*ssM("‘) is con-
centrated in the range [liin (K), fmax ()], which implies the first point of the theorem
by corollary The second point follows from the first point and the dual BGG
decomposition as in the proof of theorem [5.12.11 O

As another application we are able to improve our classicality theorem for over-
convergent cuspforms.

Theorem 6.10.3. Let k € X*(T)M:+ satisfy C(k)* = {1}, and let x : T°(Z,) —

iae ) ssM(k ssM (k
F" be a finite order character. Tgen HY,(K?, K, x, cusp)™ (®) HY,(KP, K, x) T (k)
factors through HO(KP, k, x) 55 (%),

Proof. We have a commutative diagram
H?d(Kpa Ry X, Cusp)-hfs I COUSl(Kp, Ry X, CUSp)+

| |

HO,(K?, k,x) /¢ ———— Cous (K”, k,x)*

0 ——= HO(KP, K, x)T7*

where the bottom row is exact by proposition After passing to the +, ss™ (k)
part of this diagram, the right vertical arrow is 0 by theorem [6.10.2 [

Remark 6.10.4. Theorem says that a small slope overconvergent cuspform
comes from a classical eigenform. Although we have not proved it, this eigenform
should also be cuspidal (for instance this would follow from conjeture [5.9.2)). We
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note that it is possible for an overconvergent cuspform which does not have small
slope to come from a non cuspidal eigenform. A basic example is the non-ordinary
p-stabilization of an Eisenstein series for GLs.

6.11. Application: construction of Galois representations and local-global
compatibility at p. Let L be a totally real or CM number field. The class of
regular, algebraic, essentially (conjugate) self dual, cuspidal automorphic represen-
tations for GL,,/L have been studied intensively. In particular, one can attach
to them compatible systems of Galois representations which satisfy many of the
expected properties (see, e.g., [CH13|, [BLGGT14]):

Theorem 6.11.1 (Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse,
Shin, Taylor, ...). Let w be a regular, algebraic, essentially (conjugate) self dual,
cuspidal automorphic representation of GL, /L with ¢ = ©¥ ® x and infinites-
imal character A\ = ((MA1,7,..+, An,r)reHom(L,c)) With A1z > -+ > A, -. Then
for each isomorphism v : @p ~ C there is a continuous Galois representation
pr. G — GL, (@p) such that:

(1) ps,~pl,® 611,_" ® x, where x, is the p-adic realization of x and €, is the
cyclotomic character.

(2) pr,. is pure.

(3) px,. is de Rham at all places dividing p, with = o T-Hodge-Tate weights:
(“Anr + 255 =+ 250,

(4) For all finite place v one has

1-n
WD (], )1 = rec(my ® [ det], T ).

The Galois representations of this theorem are usually found in the étale coho-
mology of unitary Shimura varieties, while in the remaining cases they are con-
structed by p-adic interpolation.

In [FP21], section 9, we defined a certain class of cuspidal automorphic rep-
resentations for the group GL, /L which (when L is CM) realize in the coherent
cohomology of unitary Shimura varieties, by weakening the condition of regular to
weakly regular and odd. To these weakly regular, odd, algebraic, essentially (con-
jugate) self dual, cuspidal automorphic representations, one can still attach com-
patible system of Galois representations ([Box15]|, [GK19|, [PS16]), but at present
many of their expected properties are not known. The techniques of this paper al-
lows for a new construction of the Galois representation via analytic families. The
advantage of this construction is that we can prove some instances of local-global
compatibility at p, using results of Kisin [Kis03| on the interpolation of crystalline
periods in analytic families, as in the work of Jorza and Mok [Jor12], [Mok14].

Theorem 6.11.2. Let 7 be a weakly reqular, odd, algebraic, essentially (conjugate)
self dual, cuspidal automorphic representation of GLy, /L with 7¢ = ¥ ® x and
infinitesimal character X = ((M,7,..., An7)reHom(L,C)) With A1z > -+ > Xy 1.
Then for each isomorphism v : @p ~ C there is a continuous Galois representation

pry s Gp — GLn(Q,) such that:
(1) ps, ~p’'® 611)_” ® x, where x, is the p-adic realization of x.
(2) pr,. is unramified at all finite places v t p for which m, is unramified and
one has

1-n
W D(praler, )T = rec(m, [ det], ).
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(3) px,. has generalized .= o T-Hodge—Tate weights (— Ay + an’ N I
L—l)
)
(4) Let v | p be a place of L and assume that m, is a regular principal series
(i.e. the Jacquet module (m,)y is a direct sum of n! distinct characters of
T(Ly)). Then pr |a,, is potentially crystalline and

1-n
WD (prla,, )" = rec(r, ® [det], ™ ).

Proof. The existence of a Galois representation satisfying points (1) and (2) is
already known (see [FP21], theorem 9.10). In order to prove points (3) and (4), by
solvable base change (JAC89]) we may assume that L is CM with maximal totally
real subfield F', all the primes above p in F split in L, and for all primes v | p of
L, 7, is a constituent of a principal series representation (and so has finite slope in
the sense of section .

Let GU(n)/F be the quasi-split unitary similitude group in n variables, and let
G C Resp/q be the subgroup where the similitude factor lands in G,,, € Resp/qGyn-
The group G admits a PEL Shimura datum (G, X), so that 7 realizes in the interior
coherent cohomology of the corresponding Shimura variety, as explained in the proof
of theorem 9.11 of [FP21] (we note that this is conditional on the main results of
[Mok15]).

The result now follows from theorems[6.9.7 and using the results of [Kis03]

as explained in proof of theorem 4.1 of [Jor12]. [
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