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1. Introduction

Let F be a totally real number field. The theme of this paper is the construc-
tion of eigenvarieties for Hilbert modular eigenforms defined over F . Several
constructions already appeared in the literature :

– A construction by Buzzard in [Buz], where he interpolates automorphic
functions on a quaternion algebra over F , ramified at infinity.

– A construction by Kisin-Lai in [KL] of a 1-dimensional parallel weight ei-
genvariety. Their method is an extension of Coleman’s original construc-
tion for F = Q. It is based on twists by a lift of the Hasse invariant.
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– A construction by Urban in [Ur], who interpolates the traces of the Hecke
operators acting on the Betti cohomology of certain distribution sheaves
defined over the Hilbert variety (Urban actually works in a much more
general setting).

– A yet conjectural construction by Emerton in [E] who applies a Jaquet
functor to the completed cohomology of the Hilbert variety.

– The work of Kassaei in [Ka] for unitary/quaternionic Shimura curves as
a consequence of which a 1 dimensional eigenvariety for Hilbert modular
forms was constructed (for weights of the form (k, 2, 2, ..., 2), where k-
varies.)

– A recent construction of Brasca in [Bra] who also constructs a 1-
dimensional eigenvariety for Hilbert modular forms using Shimura
curves.

In the present paper we work with the Hilbert variety and p-adically inter-
polate modular invertible sheaves over a strict neighborhood of the ordinary
locus. We then prove the existence of finite slope families of cuspidal eigen-
forms. Thus our construction is geometric, in the sense that we work over
(open subsets of) the Hilbert variety and interpolate sections of invertible
sheaves. In the ordinary case, our construction boils down to the construction
of Hida families using Katz’s p-adic modular forms. In the parallel weight case,
our construction is equivalent to Kisin-Lai’s (and the cuspidal hypothesis is
unnecessary).

This article is a natural continuation of both [AIS] and [AIP] and we
would like to discuss what is new here. Let us first point out that the notion of
“Hilbert modular form” is slightly ambiguous in the literature if F 6= Q. More
precisely, given the totally real number field F as above, there are two relevant
algebraic groups associated to it :G := ResF/QGL2 andG∗ := G×ResF/QGmGm,
where the morphism G −→ ResF/QGm is the determinant morphism and the
morphism Gm −→ ResF/QGm is the natural (diagonal) one. The Hilbert mo-
dular varieties considered in [AIS] and in section §3 of this article are models
for the Shimura varieties associated to the group G∗, therefore the classical,
overconvergent and p-adic families of Hilbert modular forms considered there
are all associated to the group G∗. Let us also point out that there are classical
Hecke operators acting on those modular forms, but their definition depends
on non-canonical choices and therefore these operators do not commute (al-
though the Up-operator is canonical.)

On the other hand there is a classical theory of automorphic forms for the
group G, with a natural theory of eigenforms and to these eigenforms one can
attach Galois representations. Moreover, recently D. Barrera in [Bar] showed
that overconvergent modular symbols for the group G can be used in order to
produce p-adic L-functions attached to classical automorphic eigenforms for
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this group. Therefore in view of various arithmetic applications it would be
desirable to define overconvergent and p-adic families of modular forms for G.
The main obstacle in doing this directly is that the moduli problem associated
to G is not representable. If F = Q, the ambiguity disappears as G = G?. As
a result, we suppose that F 6= Q whenever we speak about the group G in the
paper.

Let us now describe what is actually accomplished in this article.

a) In [AIS] we assumed that the prime p was unramified in F ; in the present
article we remove this assumption.

b) We start by constructing overconvergent and p-adic families of modular
forms attached to the group G∗. As was mentioned before the construction is
geometric but we do not follow the line of arguments started in [AIS]. Instead
and for the sake of uniformity, we use the main ideas which appeared in [AIP].

c) We prove that the specialization map from finite slope p-adic families of
cuspforms to finite slope overconvergent cuspforms of a given weight (still for
the group G∗) is surjective, i.e. every overconvergent cuspform of finite slope
can be deformed to a p-adic family. This was not proved in [AIS] even in the
case when p was unramified in F .

d) We construct overconvergent and p-adic families of modular forms for the
group G by descent, using the overconvergent and p-adic families of modular
forms for G∗ constructed at b).

e) We construct the cuspidal eigenvariety for the group G and study the as-
sociated Galois representations.

We shall now explain the main ideas of these constructions. For simplicity of
the exposition, throughout the introduction we will only work with the open
Hilbert modular varieties, but the reader should be aware that the shaves we
construct extend to toroidal compactifications as will be explained in the main
body of the article.
a) Let N ≥ 4 be an integer prime to p, let c denote a fractional ideal of F and
c+ its cone of positive elements. We fix K a finite extension of Qp which splits
F . We denote by M(µN , c) the Hilbert modular scheme over Spec(OK) (for the
group G∗) classifying abelian schemes of relative dimension g := [F : Q], level
structure µN , OF -multiplication and polarization associated to (c, c+) (see
section §3.1 for more details). Let A −→ M(µN , c) be the universal abelian
scheme with identity section e : M(µN , c) −→ A and let ωA := e∗

(
Ω1
A/M(µN ,c)

)
denote the co-normal sheaf of A. The sheaf ωA is a locally free OM(µN ,c)-
module of rank g, with a natural action of OF but if p ramifies in F it is
not locally free as OM(µN ,c) ⊗OF -module. There is a largest open subscheme

MR(µN , c) of M(µN , c) such that the restriction of ωA to it is an invertible
OMR(µN ,c) ⊗OF -module. Therefore the classical Hilbert modular forms are in
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this case defined as sections of the relevant sheaf over the open MR(µN , c) (see
section §2.)

On the other hand the construction of the overconvergent Hilbert modular
forms starts by fixing an integer n > 0, a multi-index v := (vi) satisfying
0 < vi < 1/pn and a strict neighborhood M(µn, c)(v) of width v of the or-
dinary locus in the rigid analytic variety M(µN , c) associated to the generic
fiber of M(µN , c). Let us denote by M(µN , c)(v) the natural formal model of
M(µN , c)(v) described in section §3.2.1

It has the property that the universal abelian scheme Av on it has a
canonical subgroup Hn of order png. We denote by M(Γ1(pn), µN , c)(v)
the finite étale covering of M(µN , c)(v) on which Hn is trivialized and by
M
(
Γ1(pn), µN , c

)
(v) the normalization of M(µN , c)(v) in it. It turns out that

over M(Γ1(pn), µN , c)(v), the canonical subgroup Hn is isomorphic to the
constant group scheme OF /pnOF . This isomorphism is compatible with the
natural OF -actions on the two group schemes.

Therefore the sub-sheaf F of ωA|M(Γ1(pn),µN ,c)(v) defined in proposition 5.1
is a locally free OM(Γ1(pn),µN ,c)(v)⊗OF -module of rank one while the restriction
of ωA is not (if p is ramified in F ).

It follows that the overconvergent modular sheaves are better behaved than
the classical ones and the overconvergent modular forms are defined as sections
of the relevant modular sheaves over opens of the form M(µN , c)(v) wether p
is ramified in F or not.

b) In [AIS] we defined modular sheaves by using certain universal torsors while
in this article we content ourselves to only define their realization on the univer-
sal formal Hilbert modular schemes. Instead of torsors we use overconvergent
Igusa towers as in [AIP]. The present constructions are more restrictive but
they suffice for the applications we have in mind.

c) The surjectiveness of the specialization map is proved as in [AIP] : we study
the descent of our modular sheaves from a smooth toroidal compactification
M(µN , c)(v) of M(µN , c)(v) to the minimal compactification M∗(µN , c)(v).

d) We shall first recall here the descent from the classical modular forms for
the group G∗ to modular forms for the group G ; the latter are known to be
identified, with their Hecke operators, to the classical automorphic forms for
G(AF ), see for instance [P], section §2.

Let us recall the notations at a) above : N ≥ 4 is an integer prime to p, c
denotes a fractional ideal of F and c+ its cone of positive elements. We denote
by M(µN , c) the Hilbert modular scheme over Spec(OK) (for the group G∗)
classifying abelian schemes of relative dimension g := [F : Q], level structure
µN , OF -multiplication and polarization associated to (c, c+) (see section §3.1
for more details). Let A −→ M(µN , c) be the versal abelian scheme and let
ωA be the co-normal sheaf to the identity of A. We denoted by MR(µN , c) the
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largest open subscheme of M(µn, c) such that the restriction of ωA to it is an
invertible OMR(µN ,c) ⊗OF -module.

We denote by T the algebraic group ResOF /ZGm over OK . This group is

identified with the diagonal subgroup inside the derived group G?,der = Gder.
Let T? be the diagonal subgroup in G? and let Gm be the multiplicative group
identified with the center of G?. The surjective map T×Gm → T? has kernel
the group µ2. Let I be the set of embeddings of F into K (recall that K was a
finite extension of Qp which splits F ). Then Z[I] is the character group, over
K, of the group T. If we identify Z with the character group of Gm, then the
character group of T? is the subgroup of Z[I]× Z of elements (

∑
σ∈I kσ.σ, w)

such that
∑
kσ = w mod 2. According to [Mi], III.2, V.6., we can attach

to each (κ,w) ∈ Z[I] × Z an invertible sheaf Ω
(κ,w)
K over M(µN , c)K . Here

we are using that the center of G? is Gm and that Gm(Z) is a finite group.
Actually, this sheaf does not depend on w (which must be considered like a
Tate twist), so we suppress it from the notation as this is customary. This
construction of the sheaf can be made explicit and extended integrally as
follows. Let κ :=

∑
σ∈I kσ · σ ∈ Z[I] and let us set Ωκ := ⊕σ∈IωkσA,σ. The

notation ωA,σ means the sheaf ωA⊗(OK⊗OF ,1⊗σ)OK over MR(µN , c). We refer
to Z[I] as the set of classical weights for G?.

The module M(µN , c, κ) := H0
(
MR(µN , c)K ,Ω

κ
)

is the K-vector space of
tame level N , c-polarized, weight κ Hilbert modular forms (for the group G∗).

Let TG be the diagonal subgroup in G. We have a map p1 : T→ TG given
by the inclusion G? → G. We can also identify T with the center of G. This
provides a second map p2 : T → TG. The map p1 × p2 : T × T → TG is
surjective, with kernel ResOF /Zµ2. As a result, the character group over K of

TG is the subgroup of Z[I]× Z[I] of pairs (
∑

σ kσ.σ,
∑

σ wσ.σ) subject to the
condition that kσ = wσ mod 2. The map from characters of TG to characters
of T? is the one that sends (

∑
σ kσ.σ,

∑
σ wσ.σ) to (

∑
σ kσ.σ,

∑
σ wσ). There is

an important subgroup of the character group of TG : they are the characters
trivial on a finite index subgroup of the center T(Z). This conditions means, by
Dirichlet unit theorem, that wσ = w for all σ ∈ I. We now define the group of
classical weights for G : this is the subgroup of Z[I]×Z ⊂ Z[I]×Z[I] of elements
(
∑

σ kσ.σ, w) such that kσ = w mod 2 for all σ ∈ I. This group is isomorphic
to Z[I] × Z via the map (

∑
σ νσ.σ, w) 7→ (2

∑
σ νσ.σ + w,w). According to

[Mi], one can attach to any classical weight (ν, w) for G an invertible sheaf on
the tower of Shimura varieties for G, with global sections the space of classical
modular forms for that given weight. We will now explain how this space can
be obtained from the space M(µN , c, κ = 2ν+w) by application of a projector.

Let O×,+F denote the group of totally positive units of OF . This group acts
naturally on M(µN , c) as follows. Let y := (A, ι, ψ, λ) be a point of M(µN , c)
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and ε ∈ O×,+F (we recall that : A is an abelian scheme of relative dimension
g, ι : OF → End(A) is a ring homomorphism, ψ is a µN -level structure and
λ : A⊗OF c ∼= At is the polarization.)

We define ε · (A, ι, ψ, λ) := (A, ι, ψ, ελ). In fact as ε : A ∼= A defines an

isomorphism such that ε∗λ = ε2λ, it follows that if ε = η2 with η ∈ O×,+F such
that η is congruent to 1 modulo NOF , then we have for a point y = (A, ι, ψ, λ)
of M(µN , c) :

ε(A, ι, ψ, λ) = (A, ι, ψ, ελ) = η∗(A, ι, ψ, λ) ∼= (A, ι, ψ, λ).

Therefore if we denote by UN the subgroup of O×,+F of units congruent to 1
modulo NOF , then the group U2

N of squares of elements of UN acts trivially

on the points of M(µN , c) and thus the action of O×,+F on M(µN , c) factors

through the finite group ∆ := O×,+F /U2
N .

Now let κ :=
∑

σ∈I ∈ Z[I] be a weight and let us suppose that the kσ’s have
all the same parity. In that case we choose νσ ∈ Z for all σ ∈ I and w ∈ Z
such that kσ = 2νσ + w for all σ ∈ I. Denote by ν :=

∑
σ∈I νσ · σ ∈ Z[I] and

w :=
∑

σ∈I w · σ = wNF/Q ∈ Z[I].
We define an action of ∆ on Ωκ as follows : let f be a (local) section of Ωκ on

MR(µN , c) and let ω be a (local) generator of ωA as OMR(µN ,c) ⊗OF -module.

Let us remark that if ε = η2, with η ∈ UN we have

f
(
A, ι, ψ, λ, ω

)
= f

(
A, ι, ψ, ελ, ηω

)
= κ(η−1)f

(
A, ι, ψ, ελ, ω

)
= ν(ε−1)f

(
A, ι, ψ, ελ, ω

)
.

In other words if we define the action of O×,+F on H0(MR(µN , c),Ω
κ) by

(ε · f)
(
A, ι, ψ, λ, ω

)
:= ν(ε)f

(
A, ι, ψ, ε−1λ, ω

)
,

then the action of U2
N is trivial and therefore the action factors through the

finite group ∆.
We define the projector e : M(µN , c, κ = 2ν + w) −→ M(µN , c, κ = 2ν + w)

by

e :=
1

#∆

∑
ε∈∆

ε.

Explicitly this gives

(ef)(A, ι, ψ, λ, ω) :=
1

#∆

∑
ε∈∆

ν(ε)f(A, ι, ψ, ε−1λ, ω).

Let us remark that this projector is compatible with the action of ∆ on
M(µN , c) defined above and does not depend on the way we write κ as 2ν+w.

Definition 1.1. — We define the K-vector space of classical modu-
lar forms for G of tame level µN , polarization c and weight (ν, w) by :
MG
(
µN , c, (ν, w)

)
:= Im(e).
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More precisely, f ∈ M(µN , c, κ = 2ν + w) is a modular form for G if and only
if it satisfies the descent condition : for every (A, ι, ψ, λ, ω) as above we have

f(A, ι, ψ, ελ, ω) = ν(ε)f(A, ι, ψ, λ, ω), for every ε ∈ ∆, i.e. f is invariant by ∆.

In other words, MG
(
µN , c, (ν, w)

)
:=
(

M(µN , c, κ)
)∆

.

In more geometric terms, if we denote by MG(µN , c)K the quotient stack
MR(µN , c)K/∆, then the morphism π : MR(µN , c)K −→MG(µN , c)K is finite
Galois with Galois group ∆. We have an action of ∆ on Ωκ defined above.

MG
(
µN , c, (ν, w)

)
:= H0

(
MG

(
µN , c

)
K
,Ω(ν,w)

)
, where Ω(ν,w) :=

(
π∗
(
Ωκ
))∆

.

Let now F×,+ be a group of totally positive, non-zero elements of F . This group
acts on the set of pairs (c, c+) by : x(c, c+) := (xc, xc+). If κ = 2ν + wNF/Q,
for ν ∈ Z[I] and w ∈ Z, we have an isomorphism :

L(xc,c) : MG
(
µN , c, (ν, w)

)
−→MG

(
µN , xc, (ν, w)

)
given by

L(xc,c)(f)
(
A, ι, ψ, λ, ω

)
:= ν(x)f

(
A, ι, ψ, x−1λ, ω

)
.

We notice that if x ∈ O×,+F then L(xc,c)(f) = f for all f ∈ MG
(
µN , c, (ν, w)

)
.

Definition 1.2. — We define the K-vector space of modular forms for G of
tame level µN and weight (ν, w), MG

(
µN , (ν, w)

)
to be(

⊕(c,c+)M
G
(
µN , c, (ν, w)

))
/
(
f − L(xc,c)(f)

)
x∈F×,+/O×,+F

.

By choosing representatives of Cl+(F ) we have a non-canonical isomor-
phism

MG
(
µN , (ν, w)

) ∼= ⊕c∈Cl+(F )M
G
(
µN , c, (ν, w)

)
,

which implies that MG
(
µN , (ν, w)

)
is a finite dimensional K-vector space.

This ends the discussion on the descent from G∗ to G for classical modular
forms. To construct overconvergent and p-adic families of modular forms for
G we define the descent from G∗ to G for overconvergent and p-adic families
of forms for G∗.

2. The weight spaces

Let us recall (see section 1) that to a totally real number field F we associate
two algebraic groups G and G∗ and each one of these algebraic groups have
classical modular forms attached to them. In order to define overconvergent
and p-adic families of modular forms for these groups we will first define the
associated weight spaces.
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We start by defining the weight space for G∗. Denote by T := ResOF /ZGm ; it is
a smooth commutative algebraic group over Z of dimension the degree [F : Q],
it is a torus over the open subscheme of Spec(Z) where the discriminant of F
is invertible and the fiber of T at a prime p dividing the discriminant of F has
toric part of dimension equal to the sum of the degrees over Fp of the residue
fields of OF at the primes above p ; see [AGo].

The space of weights for classical modular forms for G∗ is the group of cha-
racters of the torus TK (we recall from section 1 that K was a finite extension
of Qp which splits F ; in particular TK is a split torus.) The yoga of weight
spaces leads us to define the weight space for G∗, denoted W, to be the rigid
analytic space over K associated to the completed group algebra OK [[T(Zp)]].
There is a universal character :

κun : T(Zp)→ OK [[T(Zp)]]×

and in particular W(Cp) = Homcont

(
T(Zp),C×p

)
.

We have an isomorphism

T(Zp) ' H × Zgp

where H is the torsion subgroup of T(Zp). Let H∨ be the character group of
H and B(1, 1−) be the open unit ball of center 1. Then W ' H∨×B(1, 1−)g.

A p-adic character κ ∈ W(K) is called algebraic if it is in Z[I]. It is called
locally algebraic (or arithmetic, classical...) if it is the product κalgκfin of an
algebraic character by a finite character. The decomposition is unique.

Let T̂ be the formal group obtained by completing T along its unit section.

For any w ∈ v(OK), we let T0
w be the formal subgroup of T̂, of elements

congruent to 1 modulo pw. We let Tw be the formal subgroup of T̂ generated
by T0

w and T(Zp).
Let Ĝm be the formal completion along the identity of Gm. Let U be a

rigid analytic affinoid space and U → W be a morphism of rigid spaces. Let
A be the algebra of power bounded functions on U . Let κU : T(Zp) → A× be
the restriction of the universal character to U . We say that κU is n-analytic
for some n ∈ N if the restriction of κU to T0

n(Zp) factors as the composite
exp ◦ψ ◦ logF where logF is the p-adic logarithm

logF : 1 + pnOF ⊗Z Zp → pnOF ⊗Z Zp,

ψ is some Zp-linear map :

ψ : pnOF ⊗Z Zp → pA

and exp is the p-adic exponential pA → 1 + pA. It is easy to see that the
character κU is n-analytic for n large enough depending on U .
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If κU is n-analytic then it extends to a character

κU : Tw × Spf A→ Ĝm × Spf A

for all w ≥ n.
We will denote by χU the restriction of κU to T0

w.
The following lemma is obvious.

Lemma 2.1. — Let n ∈ N such that κU is n-analytic. Let w ≥ n. The charac-

ter χU of T0
w takes values in the formal subgroup of Ĝm of elements congruent

to 1 modulo p.

Now we define the weight space for G which will be denoted WG. We re-
call from section 1 that the space of classical weights for G is the space
{ characters of the torus TK} × Z with the map to the classical weights for
G∗ given by : (ν, w)→ κ := 2ν + wNF/Q.

It is therefore natural to define the weight space forG to be the rigid analytic
space over K associated to the completed group algebra OK [[T(Zp)× Z×p ]].

We also define the natural morphism of rigid spaces ρ : WG −→ W as-
sociated to the morphism of groups T(Zp) −→ T(Zp) × Z×p given by t →(
t2, NF/Q(t)

)
. This map can be described on points by : if (ν, w) ∈ WG(Cp),

where ν : T(Zp) −→ C×p and w : Z×p −→ C×p are continuous homomorphisms,

then ρ(ν, w)(t) := ν(t)2 · (w ◦NF/Q)(t), for t ∈ T(Zp).
The universal character for WG will be denoted κun,G : T(Zp) × Z×p −→(
OK [[T(Zp)× Z×p ]]

)×
.

3. Overconvergent modular forms for the group G∗

3.1. Hilbert modular varieties. — Let F denote a totally real number
field of degree g over Q with ring of integers OF and different ideal DF . Fix
an integer N ≥ 4 and a prime p not dividing N . Let c be a fractional ideal of
F and let c+ be the cone of totally positive elements. Denote by P1, . . . ,Pf

the prime ideals of OF over p. Let e1, . . . , ef ∈ N be the ramification indexes

defined by pOF =
∏
j P

ej
j . Let f1, . . . , ff be the residual degrees.

We fix a finite extension Qp ⊂ K such that F ⊗ K splits completely. Let
M(µN , c) be the Hilbert modular scheme overOK classifying triples (A, ι,Ψ, λ)
consisting of : (1) an abelian scheme A → S of relative dimension g over S,
(2) an embedding ι : OF ⊂ EndS(A), (3) a closed immersion Ψ: µN ⊗D−1

F →
A compatible with OF -actions, (4) if P ⊂ HomOF (A,A∨) is the sheaf for
the étale topology on S of symmetric OF -linear homomorphisms from A to
the dual abelian scheme A∨ and if P+ ⊂ P is the subset of polarizations,
then λ is an isomorphism of étale sheaves λ : (P, P+) ∼= (c, c+), as invertible
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OF -modules with a notion of positivity. The triple is subject to the condition
that the map A ⊗OF c → A∨ is an isomorphism of abelian schemes (the so
called Deligne-Pappas condition).

We write M(µN , c) and M
∗
(µN , c) for a projective toroidal compactifica-

tion, respectively the minimal or Satake compactification of M(µN , c). They
are Cohen-Macaulay flat and projective schemes over OK . Moreover M(µN , c)
admits a versal semiabelian scheme A with real multiplication by OF . We let
D = M(µN , c) \M(µN , c) be the boundary divisor in the toroidal compactifi-
cation. See [Ch] for details.

There exists a greatest open subscheme M
R

(µN , c) ⊂ M(µN , c) such that
ωA, the conormal sheaf to the identity of A, is an invertible O

M
R

(µN ,c)
⊗ZOF -

module (the so called Rapoport condition). The complement is empty if p does
not divide the discriminant of F and, in general, it is of codimension 2 in the
fiber of M(µN , c) over the closed point of Spec(OK). Let T be the algebraic
group ResOF /Z(Gm) over OK . Let I be the set of all embeddings of F into
K (recall that K is chosen to split F ). Then Z[I] is the character group of
the torus T|K . Let κ =

∑
σ∈I kσ.σ. To such a κ on can associate an invertible

modular sheaf Ωκ over M
R

(µN , c) by setting

Ωκ = ⊗σ∈Iω⊗kσG,σ

where ωG,σ = ωG ⊗OK⊗ZOF ,1⊗σ OK .

Its global sections H0(M
R

(µN , c)K ,Ω
κ) = M(µN , c, κ) is the K-vector space

of c-polarized, tame level N , weight κ Hilbert modular forms (let us recall :
for the group G∗). We also let H0(M(µN , c)K ,Ω

κ(−D)) = S(µN , c, κ) be the
submodule of cusp forms.

3.2. The canonical subgroup theory. —

3.2.1. Strict neighborhoods of the ordinary locus. — The Hasse invariant on
the reduction M(µN , c)Fp of M(µN , c) modulo p is the product of f -partial
Hasse invariants hP1 , . . . , hPf according to the decomposition of the Hodge
bundle induced by the idempotents of eP1 , . . . , ePf ∈ OF ⊗ Zp associated to

the prime ideals P1, . . . ,Pf over p. Indeed let A→ M(µN , c)Fp be the versal
semiabelian scheme in characteristic p. Then the pull back ωA of the differen-
tials via the 0-section is a locally free OM(µN ,c)Fp

-module of rank g which we

can decompose into a direct sum of locally free OM(µN ,c)Fp
-modules :

ωA = ⊕fi=1ωA,i, ωA,i := ePi · ωA.

As the OF -action commutes with the Vershiebung isogeny V: A
(p) → A, such

decomposition is preserved by V. For every i = 1, . . . , r we let hPi be the global
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section of detωp−1

A,i
given by the determinant of the induced map V∗i : ωA,i →

ω
(p)

A,i
. In particular

∏f
i=1 hPi is the Hasse invariant.

Remark 3.1. — Over the Rapoport locus M
R

(µN , c)Fp one could consider
refinements of the Hasse invariants hPi according to the emebddings of OF /Pi

in the residue field ofOK ; see [AGo, §7.11 & Def. 7.12] for details. In particular
if ei is the ramification index of Pi and fi is its residue degree then hPi is the
ei-th power of the product of fi partial Hasse invariants constructed in loc. cit.
The advantage of our approach is that we can work over the whole M(µN , c)Fp
and not simply over the Rapoport locus.

We let M(µN , c) and M
∗
(µN , c) be the formal completions of M(µN , c)

and M
∗
(µN , c) along their special fibers. We let M(µN , c) and M∗(µN , c)

be, respectively, their rigid analytic fibers and we let M(µN , c)
ord and

M∗(µN , c)ord be the ordinary open subsets. It is of crucial importance for us

that M∗(µN , c)ord is affinoid.

Given a multi-index v =
(
v1, . . . , vf

)
∈ Qf

>0 with 0 ≤ vi < 1
p , let

M(µN , c)(v) and respectivelyM∗(µN , c)(v) be the neighborhoods of the ordi-

nary locus of M(µN , c) and M∗(µN , c) defined by the conditions |hPi | ≤ pvi .
Away from the boundary, they classify abelian schemes B whose reduction
B1 modulo p satisfy |hPi(B1)| ≤ pvi . We set HdgPiB := logp|hPi(B1)|.

Let M
′
(µN , c)(v) be the formal model of M(µN , c)(v), obtained by ta-

king iterated blow-ups along the ideals (hPi , p
vi) of M(µN , c) and by remo-

ving all the divisors at infinity. We let M(µN , c)(v) be the normalization of

M
′
(µN , c)(v) inM(µN , c)(v). We also define in a similar fashion M

∗
(µN , c)(v)

which is a formal model ofM∗(µN , c)(v). Let M(µN , c)(v) be the open formal
subscheme where the semi-abelian scheme is an abelian scheme.

Lemma 3.2. — For every normal OK-algebra, p-adically complete and sepa-
rated and topologically of finite type R the R-valued points of M(µN , c)(v) are
in one to one correspondence with isomorphism classes of

a) abelian schemes A over R of relative dimension g with real multiplication
by OF such that HdgPiA ≤ vi for i = 1, . . . , f ;

b) an isomorphism λ : (P, P+) ∼= (c, c+), as in §3.1, so that the Deligne-
Pappas condition holds ;

c) a closed immersion Ψ: µN ⊗D−1
F → A compatible with OF -actions ;

3.2.2. The canonical subgroup. — Let n ∈ N and v = (vi) be a multi-index
with vi ≤ 1

pn . Under this assumption, it follows from [Fa2] that there is a

canonical subgroup
Hn ↪→ A[pn]|M(µN ,c)(v).
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This group has rank png. Over K, this is an étale group scheme, locally iso-
morphic to Z/pngZ.

Lemma 3.3. — The group Hn is stable under the action of OF . Moreover,
over Spec K, it is locally (étale) isomorphic as an OF -module to OF /pnOF .

Démonstration. From the functoriality of the canonical subgroup, it follows
that it is stable under OF . To check the remaining properties, let OL be a
valuation ring, extension of OK . Let x : Spec OL → M(µN , c)(v) be an OL-
point and let Ax be the pull-back of A to x.

For every finite and flat group scheme G overOL, theOL-module of invariant
differentials ωG of G is torsion of finite presentation and, thus, isomorphic to
⊕ri=1OL/ai. Define the degree deg G of G to be

∑
i v(ai) where v : L× → R is the

valuation normalized by v(p). The function degree is additive, see [Fa1]. Write

D = ⊕fi=1Di for the p-divisible group associated to Ax, decomposed according
to the primes above p in OF . Each Di is a p-divisible group of dimension eifi.
By functoriality of the canonical subgroup we have Hn = ⊕iHn,i where each
Hn,i is the canonical subgroup of Di of level n of Di. The degree of Hn,i is
degDi[p

n] − degDi[p
r]/Hn,i by additivity. Since Di is a p-divisible group we

have degDi[p
n] = neifi and degDi[p

n]/Hn,i = pn−1
p−1 HdgPiAx ≤

pn−1
p−1 vi by

[Fa1, Thm. 6]. Thus degHn,i ≥ neifi − pn−1
p−1 vi ≥ neifi − 1. On the other

hand, Di is a flat OFPi
-module. In particular degDi[P

r
i ] = rfi. It follows that

degHn,i ≥ (nei − 1)fi = degDi[P
nei−1
i ]. Therefore Hn,i, which is a subgroup

of Di[p
n] = Di[P

nei
i ], is not contained in Di[P

nei−1
i ]. Since Di[P

nei
i ] over an

algebraic closure K of K is finite and free of rank 2 as a OF /Pnei
i -module and

Hn,i,K is free of rank eifi as a Z/pnZ-module, then Hn,i,K has to be free of

rank 1 as an OF /Pnei
i -module as claimed.

For every n ∈ N and every v = (vi) with vi <
1
pn , we define

M(Γ1(pn), µN , c)(v) := IsomM(µN ,c)(v)

(
Hn, µpn ⊗Z D−1

F

)
.

It is a finite, étale and Galois covering of M(µN , c)(v), with Galois group
T(Z/pnZ).

We denote by M(Γ1(pn), µN , c)(v) the normalization of M(µN , c)(v) in
M(Γ1(pn), µN , c)(v).

3.3. The sheaf F . — Let n ∈ N and v = (vi) a multi-index satisfying
vi <

1
pn . We have the following result from [AIP], prop. 4.3.1 :
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Proposition 3.4. — There is a unique subsheaf F of ωA which is locally

free of rank 1 as OF ⊗Z OM(Γ1(pn),µN ,c)(v)-module and contains p
sup{vi}
p−1 ωA.

Moreover, for all w ∈]0, n− sup{vi} p
n

p−1 ] we have OF -linear maps :

HTw : HD
n → h∗n

(
F
)
/pwh∗n

(
F
)

which induce isomorphisms :

HTw ⊗ 1: HD
n ⊗Z OM(Γ1(pn),µN ,c)(v)/(p

w)
∼−→ h∗n

(
F
)
/pwh∗n

(
F
)
.

Démonstration. All statements except the fact that F is locally free of rank 1
as OF ⊗Z OM(Γ1(pn),µN ,c)(v)-module, are proven in [AIP]. The fact that F ⊂
ωG is stable under the action of OF and HTw is OF -equivariant follow from
functoriality. As HD

n
∼= OF /pnOF by lemma 3.3 we conclude that F/pwF is

free of rank 1 as OF ⊗Z OM(Γ1(pn),µN ,c)(v)/(p
w)-module. As F is a coherent

sheaf, we conclude that it is locally free of rank 1 as OF ⊗ZOM(Γ1(pn),µN ,c)(v)-

module as claimed.

3.4. The modular sheaves. — We keep v and n as in the previous
section and we choose w ∈]n − 1, n − sup{vi} p

n

p−1 ]. Define γw : IW+
w −→

M(Γ1(pn), µN , c)(v) to be the formal affine morphism defined as follows. For
every normal p-adically complete and separated, flat OK-algebra R and for
every morphism γ : Spf(R)→M(OK ,Γ(pn), µN , c)(v), its R-valued points over
γ classify isomorphisms α : γ∗(F) ∼= OF ⊗ZR as OF ⊗ZR-modules such that α
modulo pw composed with HTw sends 1 ∈ OF /pnOF ∼= HD

n (R) (isomorphism
defined by the level Γ1(pn)-structure and the fact that HD

n (R) = HD
n (RK) by

the normality of R) to 1 ∈ OF ⊗Z R/p
wR, i.e.,

OF /pnOF ∼= HD
n (R)

HTw−→ γ∗(F)/pwγ∗(F)
α−→ OF ⊗Z R/p

wR

sends 1 7→ 1.

Lemma 3.5. — The formal scheme IW+
w is a formal torsor over M(Γ1(pn), µN , c)(v)

under the subgroup T0
w of R̂esOF /Z(Gm) of units congruent to 1 modulo pw.

Démonstration. There is certainly an action of T0
w on IW+

w . Given a map of
p-adic formal schemes γ : Spf(R) →M(Γ1(pn), µN , c)(v) then γ∗(F) is free of
rank 1 as OF ⊗ZR-module with generator given by any element f reducing to
γ∗
(
HTw(1)

)
modulo pw. Then, any other generator with these properties lies

in T0
w(R)f as claimed.
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Recall that Tw is the subgroup of the formal group R̂esOF /Z(Gm) whose

R-valued points are given by the inverse image of T(Z/pnZ) = (OF /pnOF )×

via the projection

R̂esOF /Z(Gm)(R) =
(
OF ⊗Z R

)× −→ OF ⊗Z R/p
wR.

As T(Z/pnZ) acts on M(OK ,Γ1(pn), µN , c)(v) via its action on the isomor-
phism OF /pnOF ∼= HD

n (R) the action of T0
w extends to an action of Tw on

πw : IW+
w

γw−→M(Γ1(pn), µN , c)(v)
hn−→M(OK , µN , c)(v).

Definition 3.6. — For every n-analytic weight κ ∈ W(K) (see §2) define
the sheaf of OM(µN ,c)(v)-modules

Ωκ
w := πw,∗

(
OIW+

w

)
[−κ].

More precisely, it is the subsheaf of πw,∗
(
OIW+

w

)
on which Tw acts via the

character −κ : Tw → Ĝm.

For technical reasons, it is also useful to introduce an intermediate sheaf.

Definition 3.7. — Define the sheaf of OM(Γ1(pn),µN ,c)(v)-modules

Ωχ
w := γw,∗

(
OIW+

w

)
[−χ].

More precisely, it is the subsheaf of γw,∗
(
OIW+

w

)
on which T0

w acts via the

character −χ : T0
w → Ĝm, where we recall that χ is the restriction of κ to T0

w.

Let us clarify the relation between these sheaves. There is an inclusion
Ωκ
w ↪→ hn,∗Ω

χ
w of sheaves over M(µN , c)(v). The group Tw acts on hn,∗Ω

χ
w. Let

us twist the action by κ. Then the twisted action factors through the finite
group T(Z/pnZ) and we obtain Ωκ

w as the subsheaf of invariants of hn,∗Ω
χ
w(κ)

under T(Z/pnZ).

Proposition 3.8. — The sheaf Ωκ
w is a coherent sheaf of OM(µN ,c)(v)-

modules. Moreover, if n− 1 < w′ ≤ w < n− sup{vi} p
n

p−1 , there is a canonical

isomorphism Ωκ
w′ → Ωκ

w. Its restriction to the rigid analytic generic fiber it is
an invertible OM(µN ,c)(v)-module.

Démonstration. The sheaf Ωχ
w is an invertible sheaf of OM(OK ,Γ1(pn),µN ,c)(v)-

modules, since the map γw is a T0
w-torsor.

As Ωκ
w equals the subsheaf of invariants under T(Z/pnZ) of the sheaf with

twisted action hn,∗Ω
χ
w(κ), it follows that Ωκ

w is coherent. Since hn is finite étale
with group T(Z/pnZ) after inverting p, we deduce that Ωκ

w is invertible over
M(µN , c)(v).

Let n−1 < w′ ≤ w < n−v pn

p−1 . There is a canonical commutative diagram :
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IW+
w

i //

γw
��

IW+
w′

γw′ww
M(Γ1(pn), µN , c)

Moreover, γw is a T0
w-torsor, γw′ is a T0

w′-torsor and the map i and the
actions are compatible with the canonical map T0

w → T0
w′ . It follows that the

canonical map Ωχ
w′ → Ωχ

w is an isomorphism and the proposition follows.

Because the sheaf Ωκ
w does not depend on w, but only on n we simply denote

it Ωκ
n. Similarly, Ωχ

w does not depend on w and is denoted by Ωχ (here the
dependence on n is expressed in the fact that Ωχ is a sheaf of M(Γ1(pn), µN , c).
We now study the dependence on n of our sheaves.

Proposition 3.9. — Let n ≤ n′. Assume that vi ≤ 1
pn
′ . Assume that κ is

n-analytic. There is a canonical map of sheaves :

Ωκ
n′ → Ωκ

n

over M(µN , c) which is an isomorphism of invertible sheaves over M(µN , c).

Démonstration. Let us take n − 1 < w < n − sup{vi} p
n

p−1 and n − 1 < w′ <

n− sup{vi} p
n

p−1 . We have a commutative diagram :

IW+
w′

//

��

IW+
w

��
M(Γ1(pn

′
), µN , c) //

��

M(Γ1(pn
′
), µN , c)

uu
M(µN , c)

The diagram is equivariant under the actions of Tw′ on IW+
w′ , of Tw on

IW+
w with respect to the map Tw′ → Tw. We thus get a natural map :

Ωκ
n′ → Ωκ

n.

At the level of the rigid analytic generic fibers, IW+
w′ and IW+

w become
torsors under the rigid analytic groups associated to Tw′ and Tw. So the above
map of sheaves becomes clearly an isomorphism.
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In the sequel of this paper we always write Ωκ instead of Ωκ
n but the reader

should keep in mind that the integral structure of the sheaf Ωκ depends on n.

Corollary 3.10. — Let κ ∈ W(K) be a classical weight corresponding to an
algebraic character ResOF /ZGm → Gm. Then the sheaf Ωκ constructed in this

section on M(µN , c)(v) is the classical modular sheaf of weight κ.

Démonstration. An algebraic weight is 0-analytic. Setting n = 0 above, one
recovers the classical construction.

Definition 3.11. — Define M(µN , c, κ)(v) := H0
(
M(µN , c)(v),Ωκ

)
to be the

K-Banach space of Hilbert overconvergent modular forms of tame level N , c-
polarization, weight κ and degree of overconvergence v. Define

M(µN , c, κ)† := lim
v→0+

M(µN , c, κ)(v)

to be the K-Frechet space of overconvergent modular forms of tame level N
and weight κ.

We recall that the notion of “Hilbert overconvergent modular form” in de-
finition 3.11 refers to overconvergent modular forms for the group G∗.

3.5. Families of modular sheaves. — Let U be an affinoid rigid space
together with a morphism of rigid spaces U → W. Let n ∈ N such that the
character κU is n-analytic. Let U = Spf A be a formal model of U , where A
consists of power bounded functions on U . Let v ≤ 1

pn and w ∈]n − 1, n −
sup{vi} p

n

p−1 [. Recall that we have a universal character over U,

κU : Tw × U→ Ĝm × U

Definition 3.12. — Define the sheaf of OM(µN ,c)(v)×U-modules

ΩκU := πw,∗
(
OIW+

w×U
)
[−κU ].

as the subsheaf of πw,∗
(
OIW+

w×U
)

on which the formal group Tw over

M(µN , c)(v)× U acts via the universal character −κU : Tw × U→ Ĝm × U.

We also have an intermediate sheaf of OM(Γ1(pn),µN ,c)(v)×U-modules

ΩχU := γw,∗
(
OIW+

w×U
)
[−χU ].

We have an inclusion ΩκU ↪→ hn,∗Ω
χU of sheaves over M(µN , c)(v)× U. We

define ΩκU as the subsheaf of invariants of hn,∗Ω
χU (κU ) under T(Z/pnZ).

The following proposition is a straightforward generalization of propositions
3.8 and 3.9.
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Proposition 3.13. — The sheaf ΩκU is a coherent sheaf of OM(µN ,c)(v)×U-

modules. Its definition does not depend on w. The restriction of ΩκU to the
rigid analytic fiber M(µN , c)(v)× U is invertible and independent of n.

Define M(µN , c, κ
U )(v) := H0

(
M(µN , c)(v) × U ,ΩκU

)
to be the A[1/p]-

module of Hilbert overconvergent modular forms of tame level N , weight
parametrized by U and degree of overconvergence v. Set M(µN , c, κ

U )† :=
limw M(µN , c, κ

U )(v).
Let U ′ be a second rigid space with a map f : U ′→U . Let U′ = Spf A′ be

the formal model where A′ is the algebra of power bounded functions on U ′.
Let κU

′
be the universal character over U′.

Proposition 3.14. — There is a canonical isomorphism

f∗
(
ΩκU

)
→ ΩκU

′

of invertible sheaves over M(µN , c)(v)× U ′.

Démonstration. Consider the following cartesian diagram :

IW+
w × U′

1×f //

γw×1
��

IW+
w′ × U

γw×1
��

M(OK ,Γ1(pn), µN , c)× U′
1×f //M(OK ,Γ1(pn), µN , c)× U

where the vertical maps are torsors under T0
w. We deduce immediately that

we have an isomorphism

f∗ΩχU → ΩχU
′

of invertible sheaves over M(OK ,Γ1(pn), µN , c)× U′.
Let hn : M(OK ,Γ1(pn), µN , c)(v) → M(µN , c)(v) be the finite, generically

étale map. Pushing forward the previous isomorphism on M(µN , c)(v)×U′ by
hn ⊗ 1, passing to the generic fiber and decomposing according to the action
of T(Z/pnZ) we finish the proof.

Remark 3.15. — Note that this base change property may not hold at an
integral level. The eventual obstruction lies in the cohomology of the finite
group T(Z/pnZ).

In particular, for every κ ∈ U(K) we get specialization maps

M(µN , c, κ
U )† −→ M(µN , c, κ)†.
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3.6. The specialization map for cusp forms. — Let U be an affinoid
rigid space, with a morphism of rigid spaces U → W. Let A be the algebra of
power bounded functions on U . Recall that for every multi-index v sufficiently

small, we have defined a coherent sheaf ΩκU over M(µN , c)(v)× Spf A. We let
D be the boundary divisor in M(µN , c). We let

S(µN , c, κ
U )(v) = H0(M(µN , c)(v)× U ,ΩκU (−D))

be the A[1/p]-Banach module of cuspidal overconvergent modular forms of
weights parametrized by U , tame levelN and S(µN , c, κ

U )† = limv→0+ S(µN , c, κ
U )(v).

Theorem 3.16. — The A[1/p]-module S(µN , c, κ
U )† is an inductive limit of

projective Banach module and for any κ ∈ U(K), the specialization map

S(µN , c, κ
U )† −→ S(µN , c, κ)†

is surjective.

Recall that M
∗
(µN , c) is the minimal compactification of M(µN , c). There

is a projection M(µN , c) → M
∗
(µN , c) from the the toroidal to the minimal

compactification. Taking the formal p-adic completion and a certain open in
a blow up, we get a map M(µN , c)(v)→M

∗
(µN , c)(v). Passing to the generic

fiber, there is a commutative diagram where all horizontal map are finite :

M(Γ1(pn), µN , c)(v) //

��

M(µN , c)(v)

��
M?

(Γ1(pn), µN , c)(v) //M?
(µN , c)(v)

Taking the normalization of M(µN , c)(v) and M
∗
(µN , c)(v) inM(Γ1(pn), µN , c)(v)

and M?
(Γ1(pn), µN , c)(v) we obtain formal schemes M(Γ1(pn), µN , c)(v) and

M
?
(Γ1(pn), µN , c)(v) together with a map

ρ : M(Γ1(pn), µN , c)(v)→M
?
(Γ1(pn), µN , c)(v).

Theorem 3.17. — Let D denote the boundary divisor in M(Γ1(pn), µN , c)(v).
We have the vanishing :

Rqρ∗OM(Γ1(pn),µN ,c)(v)(−D) = 0

for all q ≥ 1.

Before proving this theorem, we need to describe the map ρ. Let C be a
cusp on M

∗
(Γ1(pn), µN , c). Following [Ch, §3.1], the cusp C is associated to :

– two fractional ideals of OF , A and B,
– a positive polarization isomorphism β : B−1A ∼= c,
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– a decomposition N = N1N2 where N1 and N2 are prime to each other,
– an isomorphism A−1/pnN1A−1 ' OF /pnN1OF (the cusp is unramified

at N1 and pn),
– an isomorphism N−1

2 B/B ' µN2 ⊗Z δ
−1.

We briefly recall how this data is used to construct 1-motives with level N
and Γ1(pn) structure. We let M := AB ∼= cB2.

Over OK [MN−1
2 ] we have a commutative diagram :

A⊗ BN−1
2

// Gm

pnN1A⊗ B

OO 99

This gives rise to two 1-motives and an isogeny :

Mot(A,B) :

��

B //

��

Gm ⊗Z A−1δ−1

��
Mot(pnN1A, N−1

2 B) : N−1
2 B // Gm ⊗Z p

−nN−1
1 A−1δ−1

The kernel of the isogeny Mot(A,B) → Mot(pnN1A, N−1
2 B) is the group

µpnN1 ⊗Z A−1δ−1 ⊕ N−1
2 B/B and the isomorphisms A−1/pnN1A−1 '

OF /pnN1OF and N−1
2 B/B ' µN2 ⊗Z δ

−1 provide the level N and Γ1(pn)
structure.

In the sequel, we shall suppose that the cusp is unramified (so N2 = 1) and
thus work with M . For ramified cusps, one simply has to work with N−1

2 M .
Let M∗ = Hom(A⊗B,R) and let M∗,+ be the cone of bilinear forms φ such

that φ(A+,B+) ⊂ R≥0.
The group UpnN ⊂ O×F of units congruent to 1 modulo pnN acts on M∗,+

by uΦ = Φ(u., u.). Let {σCα }α∈IC be the smooth projective rational polyhedral
cone decomposition of M∗,+ defining the given toroidal compactification. It is
invariant under the action of the group UpnN . Moreover, {σCα }α∈IC/UpnN is a
finite set. The projectivity means that there exists a polarization function for
{σCα }α∈IC , see 6.1. The existence is shown in [AMRT, Ch. 2]. Then, every σCα
defines an affine torus embedding

S0 := SpecOK [qm]m∈M ⊂ S
(
σCα
)

= SpecOK [qm]m∈M,m≥0 onσCα
.

Let Ŝ
(
σCα
)

be the completion of S
(
σCα
)

along S
(
σCα
)∞

:= SpecOK [qm]m∈M,m=0 onσCα
.

We have

Ŝ
(
σCα
) ∼= SpfOK [[qm]][qs]m,s∈M,m>0,s=0 onσCα

.
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The schemes S
(
σCα
)

and the formal schemes Ŝ
(
σCα
)

glue for varying α ∈ IC to a

torus embedding S0 ⊂ S
(
{σCα }

)
and, respectively, to a formal scheme Ŝ

(
{σCα }

)
which are endowed with an action of UpnN . The action on Ŝ

(
{σCα }

)
is free.

Then, [Ch, Thm. 3.6 & Main Theorem §4.3] state (for a slightly different level
structure) that :

(1) the completion M(Γ1(pn), µN , c)(v)̂ρ
−1(C) of M(Γ1(pn), µN , c)(v) along

ρ−1(C) is isomorphic to the quotient Ŝ
(
{σCα }

)
/UpnN ;

(2) we have Γ
(
Ŝ
(
{σCα }

)
,O

Ŝ
(
{σCα }

)) = OK [[qm]]m∈M+∪{0} where UpnN acts

via its action on M+ ;

(3) the completion M
∗
(Γ1(pn), µN , c)(v)̂C of M

∗
(Γ1(pn), µN , c)(v) at C is

isomorphic to the formal spectrum of OK [[qm]]
UpnN
m∈M+ .

Summarizing we have

Ŝ
(
{σCα }

) hC−→ Ŝ
(
{σCα }

)
/UpnN ∼= M(Γ1(pn), µN , c)(v)̂ρ

−1(C) ρC−→M
∗
(µN , c)(v)̂C ,

where hC is formally étale and ρC is projective due to the existence of a
polarization function, see 6.2.

In order to show that

Rqρ∗OM(Γ1(pn),µN ,c)(v)(−D) = 0

for q > 0, we simply need to show that the stalks of this sheaf are trivial. This
is obvious away from the cusps because ρ is an isomorphism. By the theorem
on formal functions, we are reduced to prove the vanishing of the cohomology
on the formal fibers over the cusps. Let C be a cusp as above (which we take
unramified for simplicity) and set DC := ρ−1

C (C). We are thus left to prove :

RqρC,∗OŜ
(
{σCα }

)
/UpnN

(−DC) = 0

for every q ≥ 1. But this is proposition 6.4 of the appendix. We now explain
how we deduce theorem 3.16 from theorem 3.17.

Let ρ′ : M(Γ1(pn), µN , c)(v)
ρ−→M

?
(Γ1(pn), µN , c)(v)

h−→M
∗
(µN , c)(v).

Lemma 3.18. — We have the vanishing :

Rqρ′∗OM(Γ1(pn),µN ,c)(v)(−D) = 0

for q > 0.

Démonstration. The map h is finite.

Recall the map γw×1: IW+
w×U→M(Γ(pn), µN , c)(v)×U. We let χU : T0

w×
U → Gm × U be the restriction of the character κU to T0

w. We let ΩχU =
(γw × 1)∗OIW+

w×U[−χU ].
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Lemma 3.19. — The sheaf ΩχU/p is isomorphic to OM(Γ1(pn),µN ,c)(v)×U/p.

Démonstration. The character χU mod p is constant by lemma 2.1.

Corollary 3.20. — Let

ρ′ × 1: M(Γ1(pn), µN , c)(v)× U −→M
∗
(µN , c)(v)× U

We have the vanishing :

Rq(ρ′ × 1)∗Ω
χU (−D) = 0

for q > 0.

Démonstration. Apply the functor R(ρ′× 1)∗ to the short exact sequence 0→
ΩχU p→ ΩχU → ΩχU/p→ 0 and use lemma 3.18 and 3.19.

Let (Vi)i∈I be an affine covering of M
∗
(µN , c)(v).

Let i = (i1, . . . , ir) be a multindex and Vi be the intersection of the Vij .
Let

Ci = H0(Vi × U, (ρ′ × 1)∗Ω
χU (−D)).

Lemma 3.21. — The A-module Ci is the p-adic completion of a free A-
module.

Démonstration. This A-module is p-torsion free and p-adicaly complete. Mo-
reover,

Ci/p = H0(Vi×U, (ρ′×1)∗Ω
χU (−D)/p) ' H0(Vi, ρ

′
∗OM(Γ1(pn),µN ,c)(v)(−D)/p)⊗OK/pA/p

by corollary 3.20 and lemma 3.19. It follows that Ci/p is a free A/p-module
and that Ci is the completion of a free A-module.

Proposition 3.22. — The A[1/p]-module S(µN , c, κ
U )† is an inductive limit

of projective Banach modules.

Démonstration. Consider the augmented Cech complex of A-modules K• as-

sociated to the covering (Vi)i∈I and the sheaf ΩχU (−D). The complex K•[1/p]

is exact since M∗(µN , c)(v) is affinoid(1). It thus provides a resolution of

H0(M(Γ1(pn), µN , c)(v)×U ,ΩχU (−D)) by A[1/p]-orthonormalizable modules.

It follows that H0(M(Γ1(pn), µN , c)(v) × U ,ΩχU (−D)) is projective. Since
S(µN , c, κ

U )(v) is a direct factor (cut out by the action of T(Z/pnZ)), it is
also projective.

(1)S. Hattori pointed out to us that the affinoid character of M∗(µN , c)(v) is not clear
because we are using the partial Hasse invariants to define the neighborhood instead of the
global Hasse invariant. To finish the argument, we can restrict ourselves to the affinoid strict
neighborhood {|

∏f
i=1 hPi | ≥ |p− inf vi |} ⊂ M∗(µN , c)(v).
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Proposition 3.23. — For any κ ∈ U(K), the specialization map

S(µN , c, κ
U )† → S(µN , c, κ)†

is surjective.

Démonstration. It follows easily from corollary 3.20 that we have a surjective
map of sheaves :

(ρ′ × 1)∗Ω
χU (−D)→ (ρ′)∗Ω

χ(−D)

Taking the global sections over M∗(µN , c)(v)× U which is affinoid, we get
a surjection :

H0(M(Γ1(pn), µN , c)(v)×U ,ΩχU (−D))→ H0(M(Γ1(pn), µN , c)(v),Ωχ(−D)).

Decomposing both sides according to the action of T(Z/pnZ), we conclude.

We can summarize the results of this section as follows. Let us define the
quasi-coherent sheaf S(µN , c)

† on W by the rule U 7→ S(µN , c, κ
U )†.

Corollary 3.24. — For every affinoid open U → W, S(µN , c)
†(U) is an in-

ductive limit of projective Banach H0(U ,OU )-modules with compact transition
maps. Moreover, for all κ ∈ W(K), the fiber of S(µN , c)

† at κ is S(µN , c, κ)†.

3.7. Hecke operators. — Let ` ⊂ OF be an ideal prime to N . We let

Y`(v) ⊂M(µN , c)(v)×M(µN , `c)(v)

be the subspace classifying pairs (A, ι,Ψ, λ) × (A′, ι′,Ψ′, λ′) and an isogeny
π` : A→ A′ compatible with (ι, ι′, ψ, ψ′, λ, λ′), such that Kerπ` is étale locally
isomorphic to OF /`OF and Kerπ` ∩ H1 = {0}, where H1 is the canonical
subgroup of A of level 1.

Denote by

p1 : Y`(v)→M(µN , c)(v) and p2 : Y`(v)→M(µN , `c)(v)

the two projections.

Lemma 3.25. — 1. The universal isogeny π` : A→ A′ induces an isomor-
phism from the canonical subgroup of A onto the canonical subgroup of
A′.

2. For ` coprime to p the maps p1 and p2 are finite and étale of degree q`+1
where q` := |OF /`OF | .

3. If ` divides some power of p, the map p1 is finite étale of degree q` :=
|OF /`OF |.
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4. For ` = Pei
i for some i = 1, . . . , f , define v′ by requiring that v′j = vj

for j 6= i and v′i = vi
p . Then, the map p2 induces an isomorphism on

M(µN , `c)(v
′).

Démonstration. Let (A, ι,Ψ, λ) ∈ M(µN , c)(v). Let π : A → A′ be an isogeny
whose kernel Kerπ is étale locally isomorphic to OF /`OF and Kerπ∩H1 = {0}.
Let us denote by H ′1 the image of H1 in A′. It follows from the basic properties
of the degree function that degH ′1 ≥ degH1. By [AIP], prop. 3.1.2, it follows
that A′ has a canonical subgroup, H ′1, and that HdgPiA

′ ≤ vi for all i.
For the last statement, we use the following result of Fargues [Fa2, Prop. 16].

Let G be a p-divisible group defined over OL where L is some complete valued
field extension of K with HdgG < p−2

2p−2 so that the canonical subgroup Hcan ⊂
G[p] exists. Let D ⊂ G[p] be a subgroup scheme finite and flat over OL, such
that DL⊕Hcan,L = GL[p]. Then the Hodge height of G′ := G/D is HdgG/p and
the image of Hcan in G′ is the canonical subgroup H ′can of G′. Also, note that
G = G′/H ′can. For an abelian scheme A with RM by OF over OL we apply these
results to the p-divisible group G = A

[
P∞i

]
remarking that HdgPiA = HdgG.

Let U be some affinoid and U → W be a map to the weight space. We
assume that κU is n-analytic.

Corollary 3.26. — The induced map π∗` : p∗2(ωA′) → p∗1(ωA) on invariant
differentials induces an isomorphism :

π∗` : p∗1
(
ΩκU

) ∼−→ p∗2
(
ΩκU

)
of invertible OY`(v)×U -modules.

Démonstration. This follows easily from the functorial properties of the
construction of the sheaves. We refer the reader to [AIP], section 6.1 and
6.2.1 for more details.

We let π∗,−1
` be the inverse of the above map.

We now define an Hecke operator :

T` : M(µN , `c, κ
U )(v)→ M(µN , c, κ

U )(v).

First of all, by Koecher’s principle, we have the identification M(µN , a, κ
U )(v) =

H0
(
M(µN , a)

(
v
)
× U ,ΩκU

)
for all fractional ideals a. We obtain T` as the

composite

H0
(
M(µN , `c)

(
v
)
×U ,ΩκU

) p∗2−→ H0
(
Y`(v)×U , p∗2(ΩκU )

) π∗,−1
`−→ H0

(
Y`(v)×U , p∗1(ΩκU )

)
−→
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1
q`

Trp1

−→ H0
(
M(µN , c)

(
v
)
× U ,ΩκU

)
.

If ` divides some power of p, we use the more traditional notation U` instead
of T`. Let us now prove a fundamental property of the Hecke operator Up.

The multiplication by p is a positive isomorphism c → pc and allows us
to identify the spaces M(µN , pc, κ

U )(v) and M(µN , c, κ
U )(v) and to view Up

as an endomorphism. Similarly if m ∈ Z is a positive integer prime to pN ,
multiplication by m is a positive isomorphism c→ mc and allows us to get an
endomorphism Tm of M(µN , c, κ

U )(v).

Lemma 3.27. — The operator Up is a compact operator.

Démonstration. Since p =
∏
iP

ei
i , it follows from lemma 3.25 4), that we may

write Up as the composite of a morphism H0
(
M(µN , c)

(
v/p
)
× U ,ΩκU

)
→

H0
(
M(µN , c)

(
v
)
× U ,ΩκU

)
with the restriction map

H0
(
M(µN , c)

(
v
)
× U ,ΩκU

)
−→ H0

(
M(µN , c)

(
v/p
)
× U ,ΩκU

)
which is compact. Hence, Up is compact.

For ` an ideal of OF , prime to Np, we also define a map

S` : M(µN , c)(v) → M(µN , `
2c)(v)

(A, ι,Ψ, λ) 7→ (A⊗ `−1, ι′,Ψ′, `2λ),

where ι′ and Ψ′ are induced by ι and Ψ. As before, it is not hard to see

that there is an isomorphism S∗`ΩκU → ΩκU induced by the universal isogeny
A→ A⊗ `−1. We thus get an Hecke operator :

S` : M(µN , `
−2c, κU )(v) → M(µN , c, κ

U )(v)

f 7→ [(A, ι,Ψ, λ) 7→ q−2
` S∗` f(A⊗ `−1, ι,Ψ, `2λ)]

Remark 3.28. — The action of the Hecke operators is clearly functorial in
U and it also respects cuspidality.

4. Overconvergent modular forms for the group G

4.1. Overconvergent descent from G∗ to G. — Let us recall the nota-
tions from the introduction : G = ResF/QGL2, we let det : G → ResF/QGm

be the determinant morphism and let G∗ be the subgroup of G consisting of
elements with determinant in Gm, i.e.

G∗ = G×ResF/QGm Gm.
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As explained in the introduction, the Hilbert variety M(µN , c) is a model
for the Shimura variety for the group G∗. As a result, for classical weights κ,
the modules M(µN , c, κ), are related to automorphic forms on the group G∗.
Therefore also for all p-adic weight κ ∈ W(K), the overconvergent modular
forms defined in the previous sections are overconvergent modular forms for
the group G∗.

The goal of this chapter is to define overconvergent and p-adic families of
modular forms for the group G, using a descent similar to the one used to
define classical modular forms for G.

Let O×,+F be the sub-group of totally positive units in O×F . Let UN be its
sub-group of units which are congruent to 1 modulo N . Let us recall that
we have defined (in section 1) an action of O×,+F on M(µN , c), by sending a

quadruple (A, ι, ψ, λ) to (A, ι, ψ, ε · λ) for any ε ∈ O×,+F . This action factors

through the group ∆ = O×,+F /U2
N . If n > 0 is an integer and v = (vi)1≤i≤f

satisfying 0 < vi < 1/pn for all i, the action of the elements of O×,+F on
M(µN , c) induced from the one on M(µN , c), preserves M(µN , c)(v), as the
definition of the last rigid space does not depend on the polarization.

Let us denote by WG the weight space for G whose Cp-points, let us recall,
are equal to Hom(T(Zp)× Z×p ,C×p ). We have a map k : WG →W induced by
the group homomorphism :

T(Zp)→ T(Zp)× Z×p
given by x 7→ (x2,NF/Q(x)).

Let (ν, w) ∈ WG(K) be a weight for G, its image in W(K) is the weight
κ = k(ν, w) = ν2 · (w ◦ NF/Q). Suppose (ν, w) is n-analytic (it follows that
κ is n-analytic as well) and choose v = (vi)1≤i≤f with 0 < vi < 1/pn for
all i. Let f ∈ M(µN , c, κ)(v) be an overconvergent modular form (for G∗) of
weight κ. By lemma 3.2, section 3.2 and Koecher principle, it can be seen
as a rule which associates to every sequence (A/R, ι, ψ, λ, u, α) an element
f(A/R, ι, ψ, λ, u, α) ∈ RK such that : the association depends only on the iso-
morphism class of (A/R, ι, ψ, λ, u, α), commutes with base change and satisfies

f(A/R, ι, ψ, λ, t
−1u, t−1α) = κ(t)f(A/R, ι, ψ, λ, u, α), for all t ∈ (OF ⊗ Zp)×.

Let us recall that in the sequence (A/R, ι, ψ, λ, u, α) the symbols denote :

1. R denotes a normal, p-adically complete and separated, flat OK-algebra,
which is topologically of finite type ;

2. A → Spf(R) is an abelian scheme of relative dimension g such that
HdgPi(A) ≤ vi for all 1 ≤ i ≤ f ;

3. ι is an OF -multiplication on A ;
4. ψ is a level µN -structure ;
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5. λ is a (c, c+)-polarization ;
6. u is an isomorphism u : Hn,K

∼= µn,K ⊗ D−1
F of group-schemes over RK ,

where Hn is the level n-canonical subgroup of A[pn].
The sub-sequence (A/R, ι, ψ, λ, u) defines a unique morphism

γ : Spf(R) −→ M
(
Γ1(pn), µN , c

)
(v). We also get from the isomorphism

induced by u on Cartier duals an isomorphism HD
n (R) = HD

n (RK) ∼=
OF /pnOF .

7. α is an isomorphism α : γ∗(F) ∼= OF ⊗R such that α (mod pw) compo-
sed with HTw (see Proposition 3.4) sends the section 1 ∈ OF /pnOF ∼=
HD
n (R) to 1 ∈ OF ⊗R/pwR, for all w ∈]0, sup(vi)p

n/(p− 1)].

We define an action of ∆ on M(µN , c, κ)(v) as follows. First, if ε = η2 with
η ∈ UN , then the isomorphism η : A ∼= A gives :

f(A/R, ι, ψ, λ, u, α) := f(A/R, ι, ψ, ελ, ηu, ηα) =

= κ(η−1)f(A/R, ι, ψ, ελ, u, α) = ν(ε−1)f(A/R, ι, ψ, ελ, u, α).

Therefore if we define the action of O×,+F on M(µN , c, κ)(v) by :

(ε · f)(A/R, ι, ψ, λ, u, α) := ν(ε)f(A/R, ι, ψ, ε
−1λ, u, α),

then the action of U2
N is trivial and so the action factors through ∆.

This allows us to define the projector (i.e. the idempotent endomorphism)
e : M(µN , c, κ)(v) −→ M(µN , c, κ)(v) by :

(e · f)(A/R, ι, ψ, λ, u, α) =
1

]∆

∑
ε∈∆

ν(ε)f(A/R, ι, ψ, ε
−1λ, u, α)

Given the definition of classical modular forms for G in section §1, the
following definition is now quite natural.

Definition 4.1. — The K-vector space of overconvergent modular forms for
G of tame level µN , polarization (c, c+) and weight (ν, w), MG

(
µN , c, (ν, w)

)
(v)

is defined to be the image of the projector e.

In other words, an overconvergent modular form for G, of tame level µN ,
polarization (c, c+), weight (ν, w) and degree of overconvergence v is an element
f ∈ M(µN , c, κ)(v) such that f(A/R, ι, ψ, ελ, u, α) = ν(ε)f(A/R, ι, ψ, λ, u, α),
for all ε ∈ ∆ (where of course κ := k(ν, w)). In other words, as for classical
forms, we have

MG
(
µN , c, (ν, w)

)
(v) =

(
M(µN , c, κ)(v)

)∆
.

Moreover, we remark that MG
(
µN , c, (ν, w)

)
(v) is a K-Banach space.

We will now define p-adic families of modular forms for the group G. Let U
be an affinoid with a morphism of rigid spaces U −→ WG. By composing this
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morphism with k we obtain a morphism U −→ W. Let us denote by (νU , wU )
the restriction of the universal character to U and we set κU = 2νU +wU . Let
n ≥ 1 be such that (νU , wU ) is n-analytic (it follows that κU is n-analytic as
well). We recall that in this case κU extends to a formal character

κU : Tw × U −→ Ĝm × U,

where let us recall U = Spf(B), with B the algebra of power bounded elements
on U , for all w ∈]0, sup(vi)p

n/(p− 1)].
Let f ∈ M(µN , c, κ

U )(v). As before, the multiplication by an element η ∈ UN
on A/R, where this time R is a normal, p-adically complete and separated B-
algebra, topologically of finite type, gives us the invariance formula :

f(A/R, ι, ψ, η
2λ, u, α) = νU (η2)f(A/R, ι, ψ, λ, u, α).

This allows us to define an action of ∆ on M(µN , c, κ
U )(v) by :

(ε · f)(A/R, ι, ψ, λ, u, α) := νU (ε)f(A/R, ι, ψ, ε
−1λ, u, α), for all ε ∈ ∆.

As a consequence we have the projector eU on the space of p-adic families
of modular forms (for G∗) with weights parameterized by U , M(µN , c, κ

U )(v)
defined by :

(eU · f)(A/R, ι, ψ, λ, u, α) =
1

]∆

∑
ε∈∆

νU (ε)f(A/R, ι, ψ, ε
−1λ, u, α)

where f is a section overM(µN , c)(v)×U of the sheaf ΩκU . To justify that the

formula makes sense, we remark that the fibers of the sheaf ΩκU at (A/R, ι, ψ, λ)
or (A/R, ι, ψ, ελ) are canonically isomorphic, as the construction of the sheaf

ΩκU does not depend on the polarization, but only on the abelian variety A/R
with action by OF .

Definition 4.2. — Let U , κU , (νU , wU ) as before and v a small enough multi-
index. We define MG

(
µN , c, κ

U)(v) to be the image of the projector eU defined
above.

In particular if U ↪→WG is an open immersion then MG
(
µN , c, (ν

U , wU )
)
(v)

is the (B ⊗ K)-module of p-adic families of modular forms for the group G
with weights parameterized by U .

As above, we have the alterative description :

MG
(
µN , c, (ν

U , wU )
)
(v) =

(
M(µN , c, κ

U )(v)
)∆
.

Remark 4.3. — The attentive reader might have noticed that the construc-
tion of the space MG

(
µN , c, (ν, w)

)
(v) of overconvergent modular forms for G

is a particular case of the construction of MG
(
µN , c, (ν

U , wU )
)
(v), namely it
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is enough to take U := Spm(K) with the map U −→ WG sending the unique
point of U to (ν, w). We preferred to present the two constructions here in
order to make them clearer.

The projector eU is compatible with the restriction to a smaller radius
of overconvergence, is functorial in U and it respects cuspidality. We let
SG
(
µN , c, (ν

U , wU )
)
(v) and SG

(
µN , c, (ν, w)

)
(v) be the cuspidal submodules

of MG
(
µN , c, (ν

U , wU )
)
(v) and MG

(
µN , c, (ν, w)

)
(v). We also have :

Theorem 4.4. — Suppose that U is an admissible open affinoid of WG and
let (νU , wU ), κU , n, v be as above. Then we have

a) SG
(
µN , c, (ν

U , wU )
)
(v) is a projective, Banach-(B ⊗OK K)-module.

b) Let (ν, w) ∈ U(K) be a weight. Then the natural specialization map

SG
(
µN , c, (ν

U , wU )
)
(v) −→ SG

(
µN , c, (ν, w)

)
(v)

is surjective.

Démonstration. The theorem follows immediately from theorem 3.16 and the
fact that the specialization of the idempotent eU at (ν, w) is the idempotent e
defined by the action of ∆ on M(µN , c, κ)(v), where κ = 2ν + w.

Let x ∈ F× be a totally positive element. The multiplication by x is a positive
isomorphism from c to xc.

Lemma 4.5. — Assume that x is also a p-adic unit. The map :

Lx : MG(µN , c, κ
U )(v) → MG(µN , xc, κ

U )(v)

f 7→ [(A/R, ι, ψ, λ, u, α) 7→ νU (x)f(A/R, ι, ψ, x
−1λ, u, α)]

does not depend on the element x, but only on the principal ideal with positivity
(x) and thus defines a canonical isomorphism.

Démonstration. For any f ∈ MG(µN , c, κ
U )(v) and any positive unit ε, we

have

νU (ε)f(A/R, ι, ψ, λ, u, α) = f(A/R, ι, ψ, ελ, u, α).

The above isomorphism is functorial in U , compatible with change of the
radius of overconvergence and preserves cuspidality. The reason we impose
that x be a p-adic unit is to be able to evaluate νU at x. If ν is algebraic, this
condition is unnecessary.



ON OVERCONVERGENT HILBERT MODULAR CUSP FORMS 29

4.2. Arithmetic Hilbert modular forms. — Let Frac(F )(p) be the group

of fractional ideals prime to p. Let Princ(F )+,(p) be the group of positive ele-

ments which are p-adic units. The quotient Frac(F )(p)/Princ(F )+,(p) = Cl+(F )
is the strict class group of F .

Definition 4.6. — The Banach module of v-overconvergent, tame level N ,
weights parametrized by U arithmetic Hilbert modular forms (i.e. p-adic fa-
milies of overconvergent modular forms for the group G over U) is

MG
(
µN , (ν

U , wU )
)
(v) =

( ⊕
c∈Frac(F )(p)

MG(µN , c, κ
U )(v)

)
/
(
Lx(f)−f

)
x∈Princ(F )+,(p)

.

One defines similarly :

– The sub-module SG(µN , (ν
U , wU ))(v) of cuspidal forms for G,

– The associated Frechet spaces MG(µN , (ν
U , wU ))† and SG(µN , (ν

U , wU ))†

for G, by passing to the limit over v,
– The corresponding quasi-coherent sheaf of overconvergent cuspidal arith-

metic Hilbert modular forms SG(µN )† over WG, whose value on an open
affinoid U ⊂ WG is SG(µN , (ν

U , wU ))†.

4.3. Hecke operators. — For all ` prime to Np, we have defined in §3.7
Hecke operators T` and S`, which are homomorphisms from S(µN , c, κ

U )† to
S(µN , `c, κ

U )† and S(µN , `
2c, κU )† respectively. They thus induce operators

on S(µN )†. We have also defined an action of Up on each S(µN , c, κ
U )† (see

the paragraph before lemma 3.27). This induces an action on S(µN )†, as Up
commutes with the projector.

Let HNp be the commutative K-algebra, generated by the operators T` and
S` for ` prime to Np.

In the same vein we now define operators UPi for 1 ≤ i ≤ f . Let us choose
xi ∈ F×>0 such that vPi(xi) = 1 and vPj (xi) = 0 if j 6= i. For all fractional

ideal c ∈ Frac(F )(p), the ideal Pix
−1
i c ∈ Frac(F )(p). Moreover, the multiplica-

tion by xi : Pix
−1
i c→ Pic is a positive isomorphism. Using such isomorphism

we can identify S(µN ,Pix
−1
i c, κU )† with S(µN ,Pic, κ

U )†. Thus we can view

the operator UPi , defined in §3.7, as an homomorphism from S(µN , c, κ
U )†

to S(µN ,Pix
−1
i c, κU )†. This induces an action on S(µN )†. This action is non-

canonical because it depends on the choice of the xi’s (for the Up-operator we
used the canonical choice p).

We let Up be K-algebra generated by the operators UPi . In total, we have

an action of the algebra HNp ⊗K Up on S(µN )†.

Remark 4.7. — It is worth remarking that our normalization of Up does not
coincide with the usual normalization in the classical case. Namely, if (ν, w) is
an algebraic weight, let us set (Up)class = ν(p)Up. Then this operator coincides,
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on classical modular forms of weight κ = 2ν + w, with the usual operator at
p. The quantity ν(p) does not vary analytically with ν, this is the reason for
this renormalisation.

In general if (ν, w) is an algebraic weight and we choose xi ∈ F×>0 such
that vPi(xi) = 1 and vPj (xi) = 0 if j 6= i, let us set (UPi)class = ν(xi)UPi .
Then this operator is canonical and coincides, on classical modular forms of
weight κ = 2ν + w, with the usual operator at Pi. We warn the reader that,
as endomorphisms of S(µN )†, we have (with our normalization)

∏
i U

ei
Pi

=

ν(p
∏
x−eii )Up. This makes sense as p

∏
x−eii is a p-adic unit.

For all (ν, w) ∈ WG, the space S(µN )†(ν,w) has a slope decomposition for

the compact operator Up. On the finite slope part, this slope decomposition
can be refined by considering separately the slopes of the operators UPi . For

a finite slope form f ∈ S(µN )†(ν,w), we shall say that f has slope ≤ h for Pi if

f is in annihilated by a unitary polynomial in UPi whose roots have valuation
less than h.

5. The arithmetic eigenvariety

By the arithmetic eigenvariety in the title of this section we refer to the
eigenvariety parameterizing overconvergent eigenforms for the group G. This
is produced from the data of the action of the commutative algebra HNp⊗KUp
on S(µN )† (see for example [Buz], sect. 1).

Let Z → WG be the spectral variety associated to the compact operator
Up. Let S(µN )Up−fs be the coherent sheaf “generalized eigenspace” over Z.

We define a map Θ: HNp ⊗ Up → EndOZ (S(µN )Up−fs) and let OE be the
sheaf of finite torsion free OZ -algebra generated by the image of Θ. We let
E → Z be the finite map corresponding to the sheaf OE and w: E → WG be
the projection to the weight space.

Theorem 5.1. — The eigenvariety w: E → WG as the following properties :

– The eigenvariety is equidimensional of dimension g + 1 ;
– The map w is, locally on E and WG, finite and surjective ;
– We have a universal Hecke character Θ: HNp ⊗ Up → OE ;
– For all (ν, w) ∈ WG, w−1(ν, w) is in bijection with the finite slope eigen-

systems occuring in S(µN )†|(ν,w) = S(µN , (ν, w))†.

– Let (ν, w) be locally algebraic characters. Set νalg =
∑

σ∈I νσ.σ and

walg = w0(
∑

σ∈I σ) where νσ, w ∈ Z. Set kσ = 2νσ + w0. Let f ∈
S(µN , (ν, w))† be a finite slope overconvergent modular form whose Pi-
slope is less than si for 1 ≤ i ≤ f . Assume that for all σ ∈ I and for all
Pi we have the small slope condition :
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If v(σ(Pi)) > 0, kσv(σ(Pi)) > si + fi

Then f is a classical form.
– Let GF,Np be the Galois group of the maximal extension of F unramified

outside Np. We have a universal pseudo-character T : GF,Np → OE sa-
tisfying T (Frob`) = θ(T`) for all prime ideal ` of OF prime to Np (Here,
Frob` is a geometric Frobenius).

– For all x ∈ E there is a semi-simple Galois representation ρx : GF,Np →
GL2(k̄(x)) characterized by Tr(ρx) = T |x, det(ρx) = Θ|x(S`)NF/Q(`).

Démonstration. The first three points follow by construction. The fourth point
is a consequence of theorem 4.4. The fifth point is the main result of [PS] in
the unramified case, and [Bij] in the general case. Galois representations have
been attached to classical eigenforms of cohomological weight by Carayol [Ca],
completed by Taylor [Tay]. The technique of pseudo-representations gives the
last two points of the theorem (see [BC] sect. 7.5 for example).

Remark 5.2. — For the convenience of the reader, let us add some precision
on our normalisations. Let (ν, w) be an algebraic weight and κ =

∑
σ kσ.σ =

2ν+w with w = w0(
∑

σ σ). The normalisation of our Hecke operator T` acting
on the space of classical arithmetic Hilbert modular forms of weight κ coincides
with Shimura’s operator T ′(`) (see [Shi], p. 650) if w0 = supσ{kσ}. The Galois
representations attached to a cuspidal eigenform of weight (ν, w) as above has
determinant χfχ

1−w0
p where w = w0(

∑
σ σ), χf is a finite character and χp

is the cyclotomic character. Its Hodge-Tate weights are the (kσ+w0
2 , −kσ+w0

2 +
1)σ∈I .

6. An appendix : Some toric geometry

We put ourself in the following context. Let k be a field. Let T be a split torus
over k with character group M and cocharacter group N and let U ⊂ GL(M)
be a subgroup. Fix a rational polyhedral cone C ⊂ N ⊗R stable for the action
of U and a smooth, U -admissible rational polyhedral cone decomposition Σ =
{σα} of C in the sense of [FC, Def. IV.2.2]. Let SΣ be the associated torus
embedding over k with action of U . Recall from [FC, Def. IV.2.4 & Def. V.5.1]
the following :

Definition 6.1. — A U -invariant polarization function for Σ is a continuous
U -invariant function h : C → R≥0 such that :

(a) it is Z-valued on N ∩ C and it is linear on each σ ∈ Σ ;

(b) it is upper convex, i. e., h
(
tx+ (1− t)y

)
≥ th(x) + (1− t)h(y) for every

x and y ∈ C and every 0 ≤ t ≤ 1 ;
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(c) it is strictly upper convex w. r. t Σ, i.e., Σ is the coarsest among the
fans Σ′ of |Σ| for which h is Σ′-linear. Equivalently, the closure of the top
dimensional cones of Σ are exactly the maximal polyhedral cones of C on
which h is linear.

Associated to such a function we get a U -invariant Cartier divisor Dh :=
−
∑

ρ∈Σ(1) αρDρ where Σ(1) is the set of 1-dimensional faces of Σ and the

positive integers αρ are defined as follows. Let n(ρ) be the unique primitive
element of N ∩ ρ such that ρ = R≥0n(ρ). Then αρ := h

(
n(ρ)

)
. Following [FC,

Def. 2.1, Appendix] we say that Dh is a very ample Cartier divisor if the global
sections of OSΣ

(Dh) form a basis of the topology of SΣ. Then,

Proposition 6.2. — The divisor Dh is a very ample Cartier divisor.

Démonstration. Conditions (b) and (c) in Definition 6.1 imply that the mor-
phism

SΣ −→ Proj
(
⊕sH0

(
SΣ,OSΣ

(Dh)
)⊗s)

of schemes over k is a closed immersion due to [Dm, Cor. IV.4.1(i) &
Pf. Thm. IV.4.2]. The conclusion follows.

Let D′ ⊂ SΣ be a U -invariant toric Q-Weil divisor given by D′ =∑
ρ∈Σ(1) aρDρ. As the set Σ(1)/U is finite there exists ` ∈ N such that aρ < `

and `aρ is an integer for every ρ ∈ Σ(1). In particular `D′ :=
∑

ρ∈Σ(1) `aρDρ

is a Cartier divisor. For a ∈ Q define bac as the greatest integer ≤ a. Denote
by bD′c the Cartier divisor (the “round down”) associated to D′ as

bD′c :=
∑
ρ

baρcDρ.

Multiplication by ` on M and N preserves Σ and induces a finite and flat, U -
equivariant morphism Φ` : SΣ → SΣ which realizes SΣ as the quotient of SΣ by
a group scheme G isomorphic to (µ`)

s for some s ∈ N. Moreover, Φ∗` (bD′c) =∑
ρ `baρcDρ so that `D′ − Φ∗` (bD′c) =

∑
ρ `
(
aρ − baρc

)
Dρ is an effective

Cartier divisor. By adjunction we get an injective map Φ`,∗ : OSΣ

(
bD′c

)
→

Φ`,∗
(
OSΣ

(`D′)
)
.

Lemma 6.3. — The map Φ`,∗ admits a U -equivariant left inverse.

Démonstration. It is the content of [CS, Lemma 9.3.4]. The splitting is
constructed on the affine charts given by the σα’s first and it is then proven
to glue. It is easily verified to be U -equivariant.

Take ` ∈ N such that αρ < ` for every ρ. Then, b`−1Dhc =
∑

ρ∈Σ(1)−Dρ =

−D defines the boundary of SΣ. Due to Lemma 6.3 we get a U -equivariant
map Φ` : SΣ → SΣ and a U -equivariant injective morphism Φ`,∗ : OSΣ

(−D)→
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Φ`,∗
(
OSΣ

(Dh)
)

admitting a U -equivariant left inverse. Passing to completions
with respect to the ideal OSΣ

(−D) we get a finite and flat, U -equivariant map

Φ̂` : ŜΣ −→ ŜΣ,

inducing an injective U -equivariant morphism Φ̂`,∗ : O
ŜΣ

(
−D

)
→ Φ̂`,∗

(
O
ŜΣ

(Dh)
)

which admits a U -equivariant left inverse.

Let
˜̂
SΣ (resp. D̃, resp. D̃h) be the quotient of ŜΣ for the action of U . We

we get a finite and flat morphism˜̂
Φ` :

˜̂
SΣ −→

˜̂
SΣ,

inducing a split injective morphism Φ̂`,∗ : O˜̂
SΣ

(−D̃)→ Φ̂`,∗
(
O˜̂
SΣ

(D̃h)
)
. Taking

cohomology, we deduce for ever q ≥ 0 a split injective map

Hq
(˜̂
SΣ,O˜̂

SΣ

(−D̃)
)
−→ Hq

(˜̂
SΣ, Φ̂`,∗

(
O˜̂
SΣ

(D̃h)
)) ∼= Hq

(˜̂
SΣ,O˜̂

SΣ

(D̃h)
)
.

The last isomorphism is induced by the finite map
˜̂
Φ`. The support of the

divisor D is the union of irreducible components Z := ∪i∈IZi which are proper

and smooth over k and the topological space underlying the formal scheme ŜΣ

is the one defined by Z. Then, the support of D̃ is the union of irreducible

components Z̃ = Z/U := ∪nj=1Z̃j which are proper over k and Z̃ defines

the topological space underlying
˜̂
SΣ. We claim that the sheaf O˜̂

SΣ

(D̃h) is

ample, i.e., by definition of ampleness of invertible sheaves on formal schemes,

that its restriction L̃h to the boundary Z̃ is ample. Taking a finite subset

J ⊂ I large enough, the induced map ZJ = ∪i∈JZi ⊂ Z → Z/U = Z̃ is

finite and surjective and, hence, it suffices to prove that the pull–back of L̃
to ZJ is ample. But this coincides with the restriction of OSΣ

(Dh) to ZJ
which is ample thanks to Lemma 6.2. Possibly replacing h by a polarization
function defined by a positive multiple dh, which amounts to replace O˜̂

SΣ

(Dh)

with O˜̂
SΣ

(Ddh) ∼= O˜̂
SΣ

(Dh)⊗
d
, we may even assume that the invertible sheaf

O˜̂
SΣ

(Dh) is very ample. In particular, its cohomology groups in degrees q ≥ 1

vanish. We conclude that

Proposition 6.4. — We have Hq
(˜̂
SΣ,O˜̂

SΣ

(−D)
)

= 0 for all q > 0.
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