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7.5. Čech cohomology 35
8. Lecture VII : Vector bundles on curves 37
8.1. The category Coh(X) 37
8.2. Subbundles 37
8.3. The category V B(X) 38
8.4. Elementary modifications 39
8.5. Weil’s formula 39
8.6. Cohomology of coherent sheaves on a curve 40
9. Lecture VIII : Stacks 41
9.1. Motivation 41
9.2. Fibered categories 42
9.3. Fibred categories in groupoid 44
9.4. Presheaves and groupoids 45
9.5. Stacks 46
9.6. Morphisms of stacks 47
9.7. Algebraic stacks 48
10. Lecture IX : Harder-Narashiman filtration 49
10.1. Generalities 49
10.2. The category of semi-stable vector bundles 50
10.3. The Harder-Narashiman filtration 50
11. Lecture X : Bunn,X is an algebraic stack 51
11.1. Coherent sheaves on projective space 52
11.2. Cohomology of coherent sheaves 52
11.3. Schemes of homomorphisms of coherent sheaves 55
11.4. The diagonal of Bunn,X is representable by schemes 55
11.5. Flatness 56
11.6. Quot schemes 58
11.7. Bunn,X is an algebraic stack 59
12. Lecture XI : The Harder Narashiman filtration and families 60
12.1. Consequences for Bunn,X 61
13. Leture XII : Topological properties of algebraic stacks 61
13.1. The topological space 61
14. Lecture XIII : Smoothness and dimension 64
14.1. Smoothness 64
14.2. Dimension 69
14.3. The dimension of Bunn,X 69
15. Lecture XV : The Jacobian 70
15.1. The relative Picard functor 70
15.2. Representability of the relative Picard functor 70
16. Lecture XVI : Geometric class field theory 72
16.1. The classical fundamental group 72
16.2. The fundamental group of a field k 72
16.3. The étale fundamental group of a scheme 73
16.4. P1 is geometrically simply connected 73
16.5. Descent of étale covers 74



3

16.6. Pr is geometrically simply connected 74
16.7. Descending étale covers under projective fibration 74
16.8. Geometric class field theory 75
References 77

1. Lecture 0 : Unramified Class field theory

1.1. Galois groups. Let K be a field. We let Ksep be a separable closure of K. We let
GK = AutK(Ksep) be the absolute Galois group of K.

Let L ⊂ Ksep be a finite extension of K. We say that L is Galois if for all σ ∈ GK ,
σ(L) = L. The Galois group of L over K is Gal(L/K) = AutK(L).

Proposition 1.1. Let L/K be a Galois extension.

(1) The natural map GK → Gal(L/K) is surjective.
(2) The group Gal(L/K) has cardinality dimKL.

Any finite extension L ⊂ Ksep is contained in a Galois extension. Therefore, GK =
limL/K,finite galoisGal(L/K).

We equip GK with a topology by declaring that an open basis of neighborhoods of
1 is given by the GL = Gal(Ksep/L) for L/K a finite extension. Then GK is a profinite
group. Moreover the Galois correspondence is :

Theorem 1.1.

{Open subgroups of GK} ↔ {Finite separable field extensions of K}
H 7→ (Ksep)H

GL ←[ L

Example 1. Let q = pr and let K = Fq be the finite field with q elements. Let Fq be an

algebraic closure of Fq. For all n ≥ 0, there is a unique extension of Fq, Fqn ⊂ Fq of degree
n. Its Galois group is isomorphic to Z/nZ, and a generator is given by the Frobenius

Frobq : x 7→ xq. Therefore GFq ' Ẑ and Frobq is a topological generator.

Example 2. Let K = R be the field of real numbers. We have R = C and GR = Z/2Z, the
generator is given by the complex conjugation c : z 7→ z.

1.2. Discrete valuation rings.

1.2.1. Valuations. Let K be a field. A discrete valuation v (of rank 1) on K is a surjective
function : v : K× → Z which satisfies :

(1) v(xy) = v(x) + v(y),
(2) v(x+ y) ≥ inf{v(x), v(y)}.
One extends v to K by setting v(0) = +∞.

Example 3. The trivial valuation on a field K is defined by v(x) = 1 for all x ∈ K×.

Example 4. Let p be a prime number. For all x ∈ Q×, write x = x′pn where p does not
appear in the prime decomposition of x′, and set vp(x) = n. This is the p-adic valuation
on Q.

Example 5. Let k be a field. Let k(T ) be the field of rational functions over k. Let P
be an irreducible polynomial. For any x ∈ k(T )×, write x = x′Pn where P does not
appear in the decomposition of x in product of prime ideals and let vP (x) = n. This is
the P -adic valuation on k(T ). Let deg : k(T )→ Z ∪ {∞} be the degree map. Then −deg
is a valuation.
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Theorem 1.2 (Ostrowski). The only non-trivial valuations on Q are (up to equivalence)
the p-adic valuations vp for prime numbers p.

Proof. [Cas67], section. 3, p. 45. �

Theorem 1.3. The only non-trivial valuation on k(T ) which are trivial on k are the vP
for P an irreducible polynomial and −deg.

1.2.2. Valuation ring. We let A = {x ∈ K, v(x) ≥ 0}. This is the ring of the valuation v.
It is easy to check that A is a discrete valuation ring, namely a principal domain which
has a unique non-zero prime ideal. Conversely, A determines the valuation v. Indeed, we
have a group isomorphism K×/A× ' Z which sends a generator π of the maximal ideal
of A to 1 and we recover v as the composite K× → K×/A× ' Z.

We let |.|v = e−v(.) be the associated norm. It is called non-archimedean because
|x+ y|v ≤ sup{|x|v, |y|v}.

1.2.3. Completion. If A is a discrete valuation ring, we can consider its completion Â with
respect to the norm |.|v. Concretely, Â = limnA/p

n.

1.3. Dedekind rings.

1.3.1. Definition.

Definition 1.1. A Dedekind ring is a noetherian domain which is integrally closed of
dimension one.

Proposition 1.2. A noetherian domain is a Dedekind ring if and only if, for all maximal
ideal p of A, the localization A(p) is a discrete valuation ring.

Proof. See [Ser68], proposition 4 on p. 22. �
For any maximal ideal p of A, we denote by vp the corresponding p-adic valuation.

We will also denote by Ap = Â(p) the completion of A for the p-adic topology.

1.3.2. Fractional ideals. A fractional ideal of a Dedekind ring A is a non-zero finitely
generated submodule of K = Frac(A). The set of fractional ideals is a monoid under
multiplication, with neutral element A itself.

Proposition 1.3. The fractional ideals of a Dedekind ring form a group. Any fractional
ideal a has a unique expression

a =
∏
p

pnp

where almost all the np are zero.

Proof. See [Ser68], corollaire and proposition 7 on p. 24. �

1.3.3. Extension of Dedekind rings. Let A be a Dedekind ring with fraction field K. Let
L be a finite extension of K. Let B be the integral closure of A in K.

Theorem 1.4. If either A is a finite type algebra over a field, or L is a separable extension
of K, B is a finite A-algebra and a Dedekind ring.

Proof. See [Ser68], part I, chap. 4. �

We assume that the assumptions of the theorem hold. There is a (surjective) map
Spec B → Spec A. We say that a prime ideal P in B divides a prime ideal p and write
P | p if P is mapped to p.

If p is a maximal ideal of A, we have p =
∏

P|pP
eP . The integer eP is called the

ramification index at P. The residual degree at P is the degree of the finite extension
A/p→ B/P and is denoted by fP.
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Proposition 1.4. We have the formula
∑

P|p ePfP = dimKL.

Proof. B⊗A(p) is a finite free A(p)-module of finite rank dimKL. By reduction modulo p
we find that B/p→

∏
B/PeP is an isomorphism. The formula is obtained by comparing

the dimensions as A/p-modules on both sides. �

Definition 1.2. We say that B is unramifed over A at P if eP = 1.

1.3.4. Ramification. Let K ⊂ L be a finite separable extension of fields. We have a non-
degenerate bilinear trace map Tr : L × L → K. Let A ⊂ K be a Dedekind ring with
fraction field K. Let B be the integral closure of A in L. We assume that the assumptions
of theorem 1.4 hold.

We can define D−1
B/A = {x ∈ L,Tr(xB) ⊆ A}. This is a fractional ideal of B and its

inverse DB/A is an ideal called the different of B with respect to A.

Proposition 1.5. The set of ramified prime of B over A is exactly the set of primes which
divide the different DB/A. In particular this is a finite set.

Proof. See [Ser68], thm 1 on page 62. �

1.3.5. Unramified extensions in complete discrete valuation rings. Let OK be a complete
discrete valuation ring. Let K be its field of fraction. For any finite separable extension
L of K, we let OL be the inegral closure of OK in L.

Lemma 1.1. The ring OL is a complete discrete valuation ring.

Proof. We know that OL is a Dedekind ring and has finitely many maximal ideals. Each
of these ideals induce a topology on L which extends the topology of K. Since K is
complete, this topology is unique (this is the product topology on Kn identified with L.
Therefore there is a unique maximal prime in OL. �

Let Ksep be a separable closure of K. This is a valued field (in general not complete).
Let mOsepK

be the maximal ideal of OKsep . Let ksep = OKsep/mOsepK
.

Theorem 1.5. ksep is a separable closure of k and there is an equivalence of category :

{Unramified finite extensions L ⊂ Ksep} → {finite extensions ` ⊂ ksep}
L 7→ OL/mOL

Proof. [Fr7], p. 26. �

Assume that L/K is Galois. Let Gal(L/K) be the Galois group. We have a surjective
map Gal(L/K) → Gal(l/k) whose kernel is denoted by IL/K and is called the inertia.
Passing to the limit over L we have an exact sequence :

1→ IK → GK → Gk → 1.

1.4. Global fields.

1.4.1. Definition. A global field K is either a number field or a function field of one variable
over a finite field Fq.

(1) K is a number field. That is K is a field of characteristic 0 and is a finite extension
of Q.

(2) K is a function field of one variable over a finite field Fq. That is, K is a field of
characteristic p and is a finite type extension of transcendance degree 1 over Fp.
Moreover Fq is the integral closure of Fp in K. The simplest example of such field
is Fq(T ).
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If K is a number field, K is finite over Q and we let OK be the ring of integer. If
K is a function field, we can choose T ∈ K which is not algebraic over Fp and K is finite
over Fq(T ). But T is not unique.

1.4.2. Places. A place v of K is an equivalence class of non-trivial rank one norm :

|.|v : K → R≥0.

There is the following description of the places of K.

Proposition 1.6. If K is a number field, the places of K are the non-archimedean norms
|.|P attached to the maximal ideals P ∈ Spec OK and the archimedean norms |.|σ for
embeddings σ : K → C.

Proof. [Cas67], p. 45. �

Remark 1.1. Two conjugate embeddings σ and σ̄ give the same archimedean norm.

Proposition 1.7. If K is a function field, there exists a unique non-singular complete
curve X with function field K and the places of K are the valuations attached to the
closed points of the curve X.

Proof. See lecture II. �

Remark 1.2. If we consider Fp(T ), the associated curve is P1
Fp = A1

Fp ∪ {∞}. The closed

points of A1 are the irreducible monic polynomials P ∈ Fp[T ] with corresponding norms
|.|P , and ∞ corresponds to the valuation −deg.

In all cases, we let X (or KX if the context is unclear) be the set of places of K. In
the number field case, we have X = Xfin ∪X∞ where Xfin = Specmax OK is the set of
finite places and X∞ = {σ : K → C}/{complex conjugation} is the set of infinite places.

1.5. From global to local fields. If v is a place of K, we let Kv be the completion of K
with respect to |.|v. If v is not achimedean, we let Ov or OKv the ring of elements x ∈ Kv

with v(x) ≥ 0. If v is archimedean, then Kv = R or C.
Let L/K be a finite field extension of K. Let w be a place of L. Then w restricts to

a place v of K and we say w | v. Therefore, we have a map LX → KX.
We have the following ”localization” formula :

Proposition 1.8. The canonical map L⊗K Kv →
∏
w|v Lw is an isomorphism.

Definition 1.3. We say that the extension L/K is unramified at a finite place v if all the
extensions Lw/Kv are unramified.

Proposition 1.9. A finite extension L/K is ramified at only finitely many places of K.

1.6. Decomposition group. Let L/K be a finite Galois extension. Let f : LX → KX.
The group Gal(L/K) acts on LX, trivially on KX.

Proposition 1.10. For any v ∈ KX, the action of Gal(L/K) is transitive on f−1(v).

Proof. See [Tat67], prop. 1.2. �

Let w ∈ f−1(v) and let Dv = {σ ∈ Gal(L/K), σw = w}.

Proposition 1.11. The map Dv → Gal(Lw/Kv) is an isomorphism.

Proof. See [Tat67], prop. 1.2. �

The group Dv is independant of w and called the decomposition group at v. Its
embedding in Gal(L/K) depends on w, but its conjugacy class is independent of w.



7

1.7. Frobenius substitution. If we assume that L/K is unramified at a finite place v,
then we have a canonical element Frobv ∈ Dv, and therefore a conjugacy class Frobv ∈
Gal(L/K).

1.8. The Artin reciprocity map. We now assume that L/K is abelian. This implies
that the conjugacy action of Gal(L/K) on itself is trivial. Let Σ be the set of finite places
where L/K is ramified.

Let IΣ be the free abelian group generated by finite places not in Σ.
We define a map :

recL/K : IΣ → Gal(L/K)

v 7→ Frobv

Theorem 1.6 (crude reciprocity law). The map recL/K is onto and there exists ε > 0

such that for all a ∈ K× which satisfy :

(1) |a− 1|v < ε for all v ∈ Σ,
(2) σ(a) > 0 for all σ : K → R in the number field case,

we have recL/K(a) = 1.

Remark 1.3. By recL/K(a) we mean recL/K(
∑

v/∈Σ v(a).v). This is a very hard result, you
can consult [Tat67].

In this course, we will be interested in everywhere unramified extensions of K. Let
H/K be the maximal abelian everywhere unramified extension ofK (also called the Hilbert
class field of K).

In the number field case, we have a map IX∞ → Gal(H/K). We remark that IX∞ is
the group of fractional ideals over Spec OK . Let

Cl+(OK) = IX∞/{a ∈ K×, ∀ σ : K → R, σ(a) > 0}
be the strict class group.

In the function field case we have a map I∅ → Gal(H/K). We remark that I∅ is the
group of divisors on the curve X corresponding to K. Let Pic(X) = Div(X)/div(K×) be
the Picard group.

Theorem 1.7. In the number field case, the map Cl+(OK) → Gal(H/K) is an isomor-
phism. In the function field case, the map Pic(X) → Gal(H/K) is injective with dense
image.

One of the main goal of these lectures is to give Deligne’s geometric proof of this
theorem in the function field case. We can further geometrize the statement by interpreting
Gal(H/K) as π1(X)ab. Therefore the theorem reads as an injection with dense image :

Pic(X)→ π1(X)ab.

One can actually refine the statement. We have a degree map Pic(X)→ Z. We also

have a natural map π1(X)→ π1(Spec Fq) = Ẑ. Let us define the Weil group of X, W (X)
as the preimage of Z in π1(X). Then the refined statement is that we have a commutative
diagram:

Pic(X)

��

// π1(X)ab

��

Z // Ẑ
which induces an isomorphism between Pic(X) and W (X)ab.
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1.9. Adèles and idèles.

1.9.1. Adèles. In this course we will meet at several points the ring AK of adèles of a
global field K. By definition, AK is the subring of

∏
v∈ KX

Kv of elements (xv)v such

that xv ∈ OKv for almost all v (all except finitely many ones). We equip AK with a ring
topology by declaring that a basis of opens of 0 are given by opens

∏
v∈KX Uv where for all

v, Uv is an open neighborhood of 0 in Kv, and for almost all v, Uv = OKv . The diagonal
embedding K →

∏
vKv factorizes through AK .

1.9.2. Idèles. The group of idèles is A×K and it carries the subset topology given by the

inclusion A×K → AK × AK , x 7→ (x, x−1).
Class field theory is best formulated using idèles (see [Tat67], section 5). Let us simply

remark the following :

Proposition 1.12. In the number field case, there is a natural isomorphism :

K×\A×K/(
∏

v∈Xfin

O×v
∏
v∈X∞

K×,◦v )→ Cl+(OK).

In the function field case there is a natural isomorphism :

K×\A×K/
∏
v∈X
O×v → Pic(X).

In the above formula K×,◦v is the component of the identity in K×v .

2. Lecture I : Schemes

2.1. Affine schemes. [Reference : [Har77], II,2; [Sta13], Chapter 01H8]
Let A be a commutative ring. We define Spec A = {prime ideals of A}. We equip

Spec A with the Zariski topology. A basis of open are the {D(f)}f∈A where D(f) =
Spec A[1/f ] ↪→ Spec A.

We construct a sheaf of rings OSpec A on the topological space Spec A by putting
OSpec A(D[f ]) = A[1/f ]. That this defines a sheaf follows from the following proposition.

Proposition 2.1. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following
sequence is exact :

0→ A→
∏
i

A[1/fi]→
∏
i,j

A[1/fifj ]

where the first map is the diagonal map a 7→ (a)i and the second map if (fi) 7→ (fi,j) where
fi,j = fi − fj.

The pair (Spec A,OSpec A) is an affine scheme. Any ring morphism f : A → B
induces a map of topological spaces f : Spec B → Spec A and a map of sheaves OSpec A →
f?OSpec B.

2.2. Schemes.

Definition 2.1. A locally ringed space (X,OX) is a pair consisting of a topological space
X and a sheaf of rings OX over X with the property that for all x ∈ X, the stalk OX,x is
a local ring. A map f : (X,OX) → (Y,OY ) of locally ringed spaces is a map f : X → Y
of topological spaces together with a map of sheaves of rings :

f?OY → OX

such that for all x ∈ X, the map OY,f(x) → OX,x is a local ring map.
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Definition 2.2. A scheme is a locally ringed space (X,OX) which is locally isomorphic
to an affine scheme.

Schemes are therefore a full subcategory of the category of locally ringed spaces.
Inside the category of schemes, we have the full subcategory of affine schemes.

Proposition 2.2. The category of affine schemes is equivalent to the opposite category of
rings via the quasi-inverse functors (X,OX) → H0(X,OX) and A → (Spec A,OSpec A),
which are respectively left and right adjoints of the other.

Remark 2.1. This proposition explains why we insist on working with locally ringed spaces
and not just ringed spaces. Let k be a field and let Spec k[[T ]] be the affine scheme. This
has a special point s and a generic point η. Consider the map Spec k((T ))→ Spec k[[T ]]
obtained by sending (0) = Spec k((T )) to s. This induces a map of ringed spaces, but
not of locally ringed spaces. The point is that the map k[[T ]] = OSpec k[[T ]],s → k((T )) =
OSpec k((T )),0 is not a local map. The good map Spec k((T )) → Spec k[[T ]] is the one
induced by applying Spec to the map k[[T ]]→ k((T )) and it sends (0) to η.

One often fixes a base scheme S and consider the category of S-schemes Sch/S.
This is the category whose objects are given by a scheme X together with a ”structural”
morphism X → S. Maps X → Y between two objects of Sch/S is a map of schemes
which respects the structural morphisms.

Remark 2.2. Sch = Sch/Z.

One is often led to impose finiteness conditions. Here is a brutal list of the most
common finiteness conditions:

Finiteness conditions on a scheme :

(1) A scheme is quasi-compact if its underlying topological space is quasi compact.
(2) Quasi separated if the intersection of two quasi-compact subsets is quasi-compact.
(3) Locally noetherian : each point as an open affine neighborhood Spec R with R

noetherian.
(4) Noetherian : quasi compact and locally noetherian.

Fineteness conditions on a morphism f : X → S.

(1) quasi-compact : for any quasi compact open U ↪→ S, f−1(U) is quasi-compact.
(2) quasi-separated : the diagonal X → X ×S X is quasi-compact.
(3) separated : the diagonal is a closed immersion.
(4) locally of finite type : for every point x ∈ X there are open affine x ∈ Spec R ↪→ X

and Spec A ↪→ S with f(Spec R) ⊆ Spec A and R is a finite type A-algebra.
(5) locally of finite presentation : same as before withR a finite presentation A-algebra.
(6) finite type : locally of finite type + quasi-compact.
(7) finite presentation : locally of finite presentation + quasi-compact + quasi-separated.

We collect useful facts about some of these finiteness conditions.

Proposition 2.3. All the properties of morphisms above are stable by composition, base
change, product, and are local on the target.

Proposition 2.4. Let f : X → S be a morphism of schemes. The following are equivalent:

(1) The morphism f is locally of finite presentation (resp. locally of finite type)
(2) For any open affines U ⊂ X and V ⊂ S such that f(U) ⊂ V , the induced ring

map OS(V )→ OX(V ) is of finite presentation (resp. of finite type).

Proof. See [Sta13], tags 01TQ and 01T2 �

Proposition 2.5. If X is a noetherian scheme, then for any open affine U ⊂ X, OX(U)
is a noetherian ring.
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2.3. Sheaves. In the case of a ring A, we have the abelian category Mod(A) of A-modules
and its full subcategory Modf (A) of finite type A-modules. The category Modf (A) is
abelian if A is Noetherian. To M ∈ Mod(A), we can associate a sheaf of OSpec A-modules

over Spec A, denoted by M̃ and defined by the rule that M̃(D(f)) = M ⊗A A[1/f ]. That
this defines a sheaf follows from:

Proposition 2.6. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following
sequence is exact :

0→M →
∏
i

M [1/fi]→
∏
i,j

M [1/fifj ]

where the first map is the diagonal map m 7→ (m)i and the second map if (mi) 7→ (mi,j)
where mi,j = mi −mj.

Definition 2.3. Let X be a scheme and let F be a sheaf of OX-modules. The sheaf
F is quasi-coherent if there is a covering X = ∪Spec Ai and Ai-modules Mi such that
F |Spec Ai = M̃i. The sheaf is called coherent if theres is a covering as before such that the
modules Mi are finite Ai-modules.

We denote by Qcoh(X) the category of quasi-coherent sheaves on a scheme X and
Coh(X) the category of coherent sheaves on X. This category QCoh(X) is abelian. The
category Coh(X) is also abelian if X is locally Noetherian.

Remark 2.3. One finds in the literature several definitions of coherent sheaves on general
schemes, which all agree in the locally Noetherian case. We have chosen the simplest one.

Proposition 2.7. Let Spec A be an affine scheme. The category QCoh(Spec A) is equiv-
alent to the category Mod(A), and the category Coh(Spec A) is equivalent to the category
Modf (A) of finite A-modules via the quasi-inverse functors : F → H0(Spec A,F ) and

M → M̃ .

2.4. Functor of points. To any scheme X we attach a functor of points :

X(−) : Schopp → SETS

T 7→ X(T )

Lemma 2.1 (Yoneda). The functor Sch→ Func(Schopp, SETS) is fully faithful.

Definition 2.4. A functor F : Schopp → SETS is representable if it is in the essential
image of the Yoneda functor.

Proposition 2.8. The functor Sch → Func(Ring, SETS) → Func(Affop, SETS) that
sends a scheme to the restriction of its functor of points to affine schemes is fully faithful.

Remark 2.4. While the Yoneda lemma is purely formal and category-theoretical, the above
result is not.

2.5. Fibre products. [Reference, [Har77], II, thm. 3.3] Let X,Y, S be schemes and
f : X → S, g : Y → S be maps. Then there is a scheme X ×S Y called the fibre product
of X and Y over S. It fits in a commutative diagram :

X ×S Y //

��

X

��
Y // S

and satisfies the following universal property:

Hom(−, X ×S Y ) = Hom(−, X)×Hom(−,S) Hom(−, Y ).
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In the affine case X = Spec A, Y = Spec B,S = Spec R then X×SY = Spec (A⊗RB)
which is in particular affine. The general case is obtained by gluing.

2.6. Sites. [Reference : [Sta13], Section 00VG]

Definition 2.5. Let C be a category. A family of morphisms with fixed target {φi : Ui →
U}i∈I is the data of an object U of C, a set I and for all i ∈ I, a morphism φi : Ui → U .

Definition 2.6. A site is a category C and a collection Cov(C) of families of morphisms
with fixed target (called coverings) satisfying the following axioms :

(1) An isomorphism φ : V → U is a covering,
(2) If {φi : Ui → U}I is a covering, and {φi,j : Ui,j → Ui}j is a covering then
{φi ◦ φi,j : Ui,j → U}i,j is a covering.

(3) If {Ui → U}i∈I is a covering and V → U is a morphism in C, then ∀i the fiber
product Ui ×U V exists in C, and {Ui ×U V → V }i∈I is a covering.

Definition 2.7. A presheaf F on a site C is a functor Cop → SET . A presheaf F is a
sheaf if for any covering {φi : Ui → U}i∈I , the diagram:

F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ×U Uj)

is exact. If the morphism F (U) →
∏
i F (Ui) is simply injective, the presheaf is said to

be separated. A morphism of presheaves is simply a natural transformation of functors.
Define Sh(C) to be the full subcategory of Func(Cop, SET ) whose objects are sheaves.

Before giving some examples of sites in the theory of schemes we mention a few
examples:

Example 6. (1) Let X be a topological space. Let Op(X) be the category of open
subsets of X, ordered by inclusion. Coverings are jointly surjective maps. A
sheaf on Op(X) is a sheaf in the usual sense, ie a topological sheaf.

(2) Let SETS be the category of sets. We turn it into a site by declaring that the
coverings are the jointly surjective maps.

(3) Let Top be the category of topological spaces. Coverings are open coverings.
(4) Let CompTop be the category of compact Hausdorff topological spaces. Coverings

are finite collections of maps, jointly surjective. A sheaf on CompTop for this
topology is called a “condensed set”

3. Lecture II : Topologies on schemes

[Reference [Sta13], Tag 020K]

3.1. The Zariski topology.

Definition 3.1. Let X be a scheme. Let XZar be the Zariski site with underlying category
the open subsets of X, and the coverings are the families {φi : Ui → U}i∈I such that
U = ∪φi(Ui).

Definition 3.2. The (big) Zariski site has underlying category the category Sch, and a
covering {φi : Ui → U}i∈I is the data of open immersions Ui → U such that U = ∪φi(Ui).
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3.2. The fpqc and fppf topologies. Recall that and R-module M is flat if the functor
on Mod(R) : M ⊗R − is exact.

Definition 3.3. A morphism f : X → S is flat if for all x ∈ X, OX,x is flat over OS,f(x).

Proposition 3.1. A morphism of affine schemes X = Spec A → S = SpecR is flat if
and only if A is R-flat.

Proof. If R→ A is flat then for all x ∈ Spec A mapping to y ∈ Spec R and any Ry-module
M we have that Ax⊗RyM = Ax⊗AA⊗RM . Thus Ax⊗Ry− is exact. Conversely, assume
that Ax is Ry-flat for all x. Let 0→ I → R be an inclusion. Let 0→ K → I ⊗R A→ A.
We see that for all x ∈ Spec A, Kx = 0 thus K = 0. �

Definition 3.4. A family of morphisms {φi : Ui → X}i∈I is an fppf covering if each φi
is flat and locally of finite presentation and X = ∪iφi(Ui).

Definition 3.5. A family of morphisms {φi : Ui → X}i∈I is an fpqc covering if each φi
is flat, X = ∪iφi(Ui) and for each open affine T ⊆ X, there is a finite set K, a map α :
K → I, and for all k ∈ K and open affines Vα(k) ⊂ Uα(k) such that ∪k∈Kφα(k)(Vα(k)) = T .

Definition 3.6. We can define the big fppf (resp. fpqc) sites. It has Sch as its underlying
category and its coverings are the fppf (resp. fpqc) coverings.

Proposition 3.2. Schfppf and Schfpqc are sites.

Proof. This follows from the fact that a composition of flat morphisms is flat and that the
base change of a flat morphism is flat. �

Proposition 3.3. An fppf covering is an fpqc covering.

Proof. Let {φi : Ui → X}i∈I be an fppf covering. Let U ↪→ X be an open affine. Let
U ×X Ui = ∪jUi,j be an affine covering. We have that U = ∪i,jf(Ui,j). By the proposition
below, f is open, therefore since U is quasi-compact, the last covering admits a finite
refinement. �

Proposition 3.4. Let f : X → Y be a flat morphism, locally of finite presentation. Then
f is open.

Proof. We reduce to the affine case. By Chevalley’s theorem [Sta13], Tag 020K, the image
of a constructible subset of X is constructible in Y . Moreover, the morphism X → Y is
generalizing. Therefore, the image of a quasi-compact open subset of X is constructible
and stable under generization. This is an open subset of X. �

3.3. The étale topology.

3.3.1. Smoothness. Let R be a ring and let A be an R-algebra. For any A-module M and
R-derivation from A to M is an R-linear map D : A→M such that D(ab) = aD(b)+bD(a)
for all (a, b) ∈ A2. There is a universal A-module Ω1

A/R equipped with a derivation
d : A → Ω1

A/R for which DerR(A,M) = HomA(Ω1
A/R,M) for any A-module M . There is

a construction by generators and relations

Ω1
A/R = ⊕a∈AAda/〈d(ra) = rda ∀(r, a) ∈ R×A, d(ab) = adb+ bda, ∀(a, b) ∈ A×A〉.

Here is a second construction. We can also consider the exact sequence 0 → I →
A⊗R A→ A→ 0 and we let Ω1

A/R = I/I2, and let d : A→ I/I2 be d(f) = 1⊗ f − f ⊗ 1.

To see that d : A → I/I2 is universal, let M be an A-module and let D : A → M be
a derivation. Consider 1 ⊗ D : A ⊗R A → M be the linearization. One checks that
1⊗D(I2) = 0 and we can consider the A-linear map 1⊗D : I/I2 →M . We recover D as
the composition A→ I/I2 →M .
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3.3.2. Two exact sequences.

Lemma 3.1. If A→ B is a map of R-algebras, we have an exact sequence :

Ω1
A/R ⊗A B → Ω1

B/R → Ω1
B/A → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerA(B,M)→ DerR(B,M)→ DerR(A,M)

is exact. �

Lemma 3.2. If A
α→ B is a surjective map with kernel I, we have :

I/I2 d→ Ω1
A/R ⊗B → Ω1

B/R → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerR(B,M)→ DerR(A,M)→ HomA(I/I2,M)

is exact. �

Example 7. We have that Ω1
R[T1,··· ,Tn]/R = ⊕ni=1R[T1, · · · , Tn]dTi. Indeed, one checks that

the map ⊕ni=1R[T1, · · · , Tn]dTi → Ω1
R[T1,··· ,Tn]/R is surjective using the presentation. We

have the derivation ∂Ti : R[T1, · · · , Tn] → R[T1, · · · , Tn] and they give linear maps : ∂Ti :
Ω1
R[T1,··· ,Tn]/R → R[T1, · · · , Tn] with the property that ∂Ti(dTj) = δi,j . We deduce that

{dT1, · · · , dTn} are indeed a basis of the differentials.

Example 8. Let A = R[T1, · · · , Tn]/(P1, · · · , Pr). Then Ω1
A/R = ⊕ni=1AdTi/(dP1, · · · , dPr).

3.3.3. The naive cotangent complex. Let B be an R-algebra of finite presentation. This

means that we have an exact sequence 0 → I → A
α→ B → 0 where A is a polynomial

algebra over R and I is a finitely generated ideal. To any such presentation, we can

associate the complex : C(α) : I/I2 d→ Ω1
A/R ⊗B.

Lemma 3.3. For any two presentations α, α′, the complexes C(α) and C(α′) are homo-
topic.

Proof. We first prove that if we have a map of presentations :

0 //

��

I //

��

A
α //

λ
��

B

Id
��

0 // I ′ // A′
α′ // B

we get a map λ : C(α)→ C(α′).
Second we show that if λ and λ′ are two maps of presentation, λ and λ′ are homotopic

from C(α) to C(α′). The homotopy is provided by the map λ − λ′ : A → I ′/(I ′)2 which
is a derivation.

Third, we show that given any two presentations, there is a map between them. It
follows that we have maps C(α) → C(α′) and C(α′) → C(α) and both compositions are
homotopic to the identity. �

Definition 3.7. A ring morphism R → B is smooth if it is of finite presentation and

for any presentation α, the complex C(α) : I/I2 d→ Ω1
A/R ⊗ B is injective with projective

cokernel. A ring morphism R→ B is étale if it is smooth and the Naive cotangent complex
is quasi-isomorphic to 0.

Proposition 3.5. (1) Let R → B and B → B′ be smooth (resp. étale) morphisms.
Then R→ B′ is smooth (resp. étale).



14

(2) Let R → B and R → B′ be smooth (resp. étale) morphisms. Then R → B ⊗R B′
is smooth (resp. étale).

Proof. Take a presentation α : R[T1, · · ·Tn] → B with kernel I, and a presentation β :
R[T1, · · · , Tn, X1, · · · , Xr]→ B′ with kernel J inducing a presentation γ : B[X1, · · · , Xr]→
B′ with kernel K.

We get a commutative diagram :

0 // ⊕iB′dTi // ⊕iB′dTi ⊕⊕jB′dXj
// ⊕jB′dXj

// 0

I/I2 //

OO

J/J2 //

OO

K/K2 //

OO

0

From which we deduce that the middle map is injective with projective cokernel. The
second point is left to the reader.

�

Proposition 3.6. A smooth morphism R→ B is flat.

Proof. See [Sta13] TAG 00TA. Note that syntomic morphisms are flat by definition. �

Proposition 3.7. (1) Let R be a field. A morphism R → B is étale if and ony if B
is a product of finitely many finite separable field extensions of R.

(2) Let R be a ring. A morphism R → B is étale if and only if it is of finite presen-
tation, flat, and for all prime ideal p in R, k(p)→ B ⊗R k(p) is étale.

Proof. First, assume that R is a field and B = R[x]/P (x) with (P (x), P ′(x)) = 1. Then

R→ B is étale (the naive cotangent complex is given by B
P ′(x)→ B). In the other direction,

we may assume that R is algebraically closed. Then one needs to see that if R → B is
étale, then B is finite over R and reduced. See [Sta13] TAG 00U3. For the second point,
see [Sta13] TAG 00U6. �

3.3.4. Smooth morphism. If X → S is a map of schemes, we let Ω1
X/S be the quasi-coherent

sheaf over X of relative differentials. One possible definition is to consider the locally closed
immersion ∆ : X → X ×S X, factor it as the composite of a closed immersion, with ideal
I and open immersion X ↪→ W ↪→ X ×S X and to let Ω1

X/S = ∆?I /I 2. We can also

check that for R→ A and f ∈ A, Ω1
A/R⊗AAf = Ω1

Af/R
, so that the construction of Ω1

A/R

is compatible with Zariski localization.

Definition 3.8. A morphism f : X → S is smooth at x ∈ X is x has an affine neigh-
boorhood SpecB over an open Spec R of S containing f(x) and R → B is a smooth map
of rings.

Definition 3.9. A morphism is smooth if it is smooth at all points.

The rank of Ω1
X/S is called the relative dimension of f .

Definition 3.10. A morphism is étale if it is smooth of relative dimension zero.

Proposition 3.8. A morphism f : X → S is étale if

(1) it is locally of finite presentation,
(2) it is flat,
(3) for all s ∈ S, the fiber Xs is a disjoint union of spectra of finite separable extension

of k(s).

Definition 3.11. Let X be a scheme. We define its étale site Xet. The objects are
U ∈ Ob(Sch/X) which are étale over X. The coverings are the étale coverings.



15

Definition 3.12. We can also define the big étale site Schet. It has underlying category
Sch and the coverings are the étale coverings.

We can finally compare the various topologies:

Proposition 3.9. A Zariski covering is an étale covering, an étale covering is an fppf
covering, and fppf covering is an fpqc covering.

In the next lecture we will prove:

Theorem 3.1. Let X be a scheme. The functor of points X(−) is a sheaf for the fpqc
topology.

4. Lecture III : Descent

4.1. Descent for sets. In this introductory section, we consider descent problems in the
category SET . Let S be a set. An S-set is a set T equipped with a map T → S. A map
of S-sets is a map of sets which respects the structural morphisms. Let S be a set, and
let {Ti → S} be a covering. Here are two classical descent problems :

(1) (Descent of maps) Let X, Y be S-sets. Let {fi : X ×S Ti → Y ×S Ti}i be maps of
Ti-sets. Is there a map f : X → Y of S-sets such that fi = f × IdTi ?

(2) (Descent of objects) Let {Xi → Ti}i be Ti-sets. Is there a set X → S such that
Xi = X ×S Ti ?

In order to address these questions, it is harmless to replace Ti by
∐
Ti = T and

we reduce to the situation where the covering is given by one single surjective morphism
T → S. We let p1, p2 : T ×S T → T be the two projections. Let fT : X ×S T → Y ×S T
be a morphism of T -sets. We can define maps p?i fT : X ×S T ×S T → X ×S T ×S T as
follows. The map fT writes fT (x, t) = (ft(x), t). We let p?1fT (x, t, t′) = (ft(x), t, t′) and
p?2fT (x, t, t′) = (ft′(x), t, t′).

Proposition 4.1. Let X, Y be two S-sets, there is a canonical bijection between : HomS(X,Y )
and maps fT ∈ HomT (XT , YT ) such that p?1fT = p?2fT .

Proof. A map from HomS(X,Y ) to HomT (XT , YT ) is defined by f 7→ fT = f × IdT .
It lands in the subset of maps for which p?1fT = p?2fT . Conversely, take fT such that
p?1fT = p?2fT . The equality means that ft(x) = ft′(x) for any (t, t′) ∈ T × T such that t
and t′ have the same image as x in S. We can safely define f(x) = ft(x) for any t ∈ T
with the same image as x in S. �

Remark 4.1. Given the map fT ∈ HomT (XT , YT ), the data of the isomorphism p?1fT =
p?2fT is called a descent datum. Since f exists, we say that the descent datum is effective.

We now consider the question of descent of objects. Let p : XT → T be a T -set.
We define the T ×S T -sets : p?1XT = XT ×S T and p?2XT = T ×S XT . Given a map
φ : p?1XT → p?2XT of T ×S T -sets (which we write (x, t) 7→ (p(x), φt(x))), we can define
three maps of T ×S T ×S T -sets:

(1) p?1,2φ := φ1,2 : XT ×S T ×S T → T ×S XT ×S T , (x, t, t′) 7→ (p(x), φt(x), t′),

(2) p?2,3φ := φ2,3 : T ×S XT ×S T → T ×S T ×S XT , (t, x, t′) 7→ (t, p(x), φt′(x)),

(3) p?1,3φ := φ1,3 : XT ×S T ×S T → T ×S T ×S XT , (x, t, t′) 7→ (p(x), t, φt′(x)).

Proposition 4.2. There is a bijection between S-sets and T -sets XT → T equipped with
bijective maps of T ×S T -sets φ : p?1XT → p?2XT such that p?1,3φ = p?2,3φ ◦ p?1,2φ.
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Proof. Given an S-set X, we get a T -set XT and the map φ satisfying the conditions.
Conversely, let XT → T . To descend it, we need for any (t, t′) ∈ T ×S T an isomorphism
φt,t′ : Xt → Xt′ which are compatible in the sense that if (t, t′, t′′) ∈ T ×S T ×S T , we have:
φt′′,t′ ◦ φt,t′ = φt′′,t. We then pick a section c : S → T . We can then safely define X → S
by setting Xs = Xc(t). We have an isomorphim X ×S T → XT by (x, t) 7→ φc(t),t(x).
The data of the φt,t′ is equivalent to the data of a map φ : XT ×S T → T ×S XT via
(x, t) 7→ (x, φp(x),t(x)). The compatibility φt′′,t′ ◦ φt,t′ = φt′′,t is the condition p?1,3φ =
p?2,3φ ◦ p?1,2φ. �

Remark 4.2. The data of φ satisfying p?1,3φ = p?2,3φ◦p?1,2φ is a descent datum for XT . The
existence of X tell us that the descent datum is effective.

We can reformulate both propositions as follows. Let us define the category of T -sets
with descent datum as the category whose objects are (XT → T, ψ) where XT is a T -set
and ψ : XT ×S T → T ×S XT is an isomorphism of T ×S T -sets, satisfying the cocycle
condition ψ2,3 ◦ ψ1,2 = ψ1,3 and maps φ : (XT , ψ) → (X ′T , ψ

′) are maps φ : XT → X ′T of
T -sets, such that the following diagram commutes :

XT ×S T
ψ //

φ×Id
��

T ×S XT

Id×φ
��

X ′T ×S T
ψ′ // T ×S X ′T

Remark that if X is an S-set, then XT = X×ST comes with a canonical isomorphism
ψ : XT ×S T → T ×S XT , given by (x, t, t′) 7→ (t, x, t′).

Theorem 4.1. The category of S-sets is equivalent to the category of T -sets with descent
datum.

4.2. An example of descent in topological space. We give here another example.
Let f : T → S be a continuous map of topological space. We say that f is a quotient map
if f is surjective and a subset U ⊆ S is open if and only if f−1(U) is open. We remark
that closed or open surjective morphisms are quotient maps.

Proposition 4.3. Consider the site CompTop. Let X be an object of the site. The functor
Hom(−, X) is a sheaf.

Proof. Let ∪iTi → S be a covering. Again, it is harmless to consider
∐
Ti = T . We claim

that the diagram :

Hom(S,X)→ Hom(T,X)⇒ Hom(T ×S T,X)

is exact. Clearly, a map T → X which is constant along the fibers of T → S comes from
a map S → X. This map is continuous because T → S is a quotient morphism. �

4.3. Descent for modules. Let A→ B be a map of rings.

Definition 4.1. We say that A→ B is faithfully flat if B is a flat A-module and Spec B →
Spec A is surjective.

Lemma 4.1. Let A→ B be a faithfully flat map. A complex

0→M1 →M2 →M3 → 0

of A-modules is exact if and only if

0→M1 ⊗A B →M2 ⊗A B →M3 ⊗A B → 0

is exact.



17

Proof. Since B is a flat A-module, we know that if the first complex is exact, then so is
the second one. Conversely, let

C := 0
u // M1

v // M2
w // M3

// 0

be a complex of A-modules such that the complex C⊗AB is exact. Since B is flat, we have
0 = ker(u ⊗ B) ' ker(u) ⊗ B and similar equalities for the kernels, images and cokernels
of u, v and w.
Assume that ker(u) 6= 0, i.e. there is a ∈ Ker(u), a 6= 0. So I := {x ∈ A | x.a = 0}
is a proper ideal of A and let m be a maximal ideal containing I. From the injection
A/I ↪→ ker(u) we get (A/I) ⊗ B ↪→ ker(u) ⊗ B = 0 by flatness of B. It follows that
(A/mA) ⊗ B = 0, which is a contradiction because the spectrum of that last ring is in
bijection with the fiber of m under the surjective map Spec B → Spec A. Therefore we
must have ker(u) = 0.
We show in the same manner that ker(v)/Im(u) = coker(w) = 0. So C is exact.

�

Let φ : A→ B be a map of rings. We can form the complex :

C• := 0→ A
φ→ B

d1→ B ⊗A B
d2→ B ⊗A B ⊗A B · · ·

where di(b1 ⊗ · · · ⊗ bn) = 1⊗ b1 ⊗ · · · ⊗ bn − b1 ⊗ 1⊗ b2 ⊗ · · · ⊗ bn + · · · .

Proposition 4.4. If φ is faithfully flat, the above complex is exact. If M is any A-module,
the complex M ⊗A C• is exact.

Proof. We first assume that the map φ has a section s : B → A. Define sn : B⊗n → A by
sn(b1⊗ · · ·⊗ bn) = s(b1)b2⊗ · · ·⊗ bn. One checks that IdC• = ds•+ s•d. The same applies
to M ⊗A C•. In general we reduce to the case where there is a section. Indeed we tensor
with B, and the map B → B ⊗A B b 7→ b⊗ 1 has a section b1 ⊗ b2 7→ b1b2. �

Remark 4.3. If A → B isn’t flat, then the complex above need not to be exact. Take
A = C[t3, t5] and B = C[t]. In B ⊗A B, we have :

t7 ⊗A 1 = t2t5 ⊗A 1 = t2 ⊗A t5 = t2 ⊗A t3t2 = t5 ⊗A t2 = 1⊗A t7

yet t7 isn’t an element of A.

We now consider the category DDMod(B) of B-modules equipped with a descent
datum. Its objects are pairs (N,ψ) where N is a B-module and ψ : N ⊗A B → B ⊗A N
is a B ⊗A B-module isomorphism such that the diagram:

N ⊗A B ⊗A B
ψ0,2 //

ψ0,1

))

B ⊗A B ⊗A N

B ⊗A N ⊗A B

ψ1,2

55

commutes.
Here we set ψ0,1(n⊗ b2⊗ b3) = ψ(n⊗ b2)⊗ b3, ψ1,2(b1⊗ n⊗ b3) = b1⊗ψ(n⊗ b3) and

ψ0,2(n⊗ b2 ⊗ b3) =
∑
b′i ⊗ b2 ⊗ n′i where ψ(n⊗ b3) =

∑
b′i ⊗ n′i.

Maps (N,ψ) → (N ′, ψ′) are given by B-module maps f : N → N ′ such that the
following diagram commutes :
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N ⊗B
ψ //

f⊗1
��

B ⊗N

1⊗f
��

N ′ ⊗B
ψ′ // B ⊗N ′

We have a natural functor Mod(A)→ DDMod(B), obtained by sending M to N =
M ⊗AB together with ψ : N ⊗AB → B⊗AN given by ψ((m⊗ b1)⊗ b2) = (b1⊗ (m⊗ b2)).

We have a natural functor DDMod(B) → Mod(A) obtained by sending N to M =
{n ∈ N,ψ(n⊗ 1) = 1⊗ n}.

Theorem 4.2. Assume that A→ B is faithfully flat. The two functors induce equivalences
of categories Mod(A)↔ DDMod(B).

Proof. Let us denote by F : Mod(A)→DDMod(B) and by G : DDMod(B) → Mod(A)
the two functors. We first check that G ◦ F = IdMod(A) because if M ∈ Mod(A), the
sequence : 0 → M → M ⊗A B → B ⊗A M ⊗A B where the second map is m ⊗ b 7→
1⊗m⊗ b− b⊗m⊗ 1 is exact by the previous proposition.

We now prove that there is a map F ◦G→ IdDDMod(B). Let N ∈ DDMod(B). Let
M = {n ∈ N,ψ(n⊗ 1) = 1⊗ n}.

We define a map θ : M ⊗A B → N by b ⊗ m 7→ bm. We also have the map
ψM : M ⊗A B ⊗A B → B ⊗AM ⊗A B, given by m⊗ b⊗ b′ 7→ b⊗m⊗ b′. We check easily
that the following diagram commutes:

B ⊗AM ⊗A B
IdB⊗θ // B ⊗A N

M ⊗A B ⊗A B
θ⊗IdB //

ψM

OO

N ⊗A B

ψ

OO

This proves that there is a map F ◦G→ IdDDMod(B). We now prove that this is an
isomorphism. Consider the following diagram:

0 // M ⊗A B
d1 //

θ
��

N ⊗A B
d2 //

ψ
��

B ⊗A N ⊗A B

ψ1,2

��
0 // N

d3 // B ⊗N d4 // B ⊗A B ⊗A N

The first horizontal line is (0 → M → N → B ⊗ N) ⊗A B where the first map is the
inclusion, the second map is m⊗1 7→ 1⊗m⊗1−ψ(m⊗1)⊗1. The second horizontal line
is the beginning of the exact sequence 0 → N → B ⊗N → B ⊗ B ⊗N from proposition
4.4. We claim that this diagram is commutative, and this allows us to conclude that θ is
an isomorphism.

Here is the proof that the first square is commutative :

d3θ(n⊗ 1) = 1⊗ n
= ψd1(n⊗ 1)

Here is the proof that the second square is commutative :
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d4ψ(m⊗ 1) = ψ1,2(1⊗m⊗ 1)− ψ0,2(m⊗ 1⊗ 1)

d2(m⊗ 1) = 1⊗m⊗ 1− ψ(m⊗ 1)⊗ 1

ψ1,2d2(m⊗ 1) = ψ1,2(1⊗m⊗ 1)− ψ1,2ψ0,1(1⊗m⊗ 1)

= ψ1,2(1⊗m⊗ 1)− ψ0,2(m⊗ 1⊗ 1)

�

We can consider a slight variant. Let Alg(A) be the category of A-algebras. Let
DDAlg(B) be the category of pairs (C,ψ) where C is aB-algebra and ψ : C⊗AB → B⊗AC
is a B ⊗A B-algebra isomorphism satisfying the same cocycle condition as before.

Theorem 4.3. We have an equivalence of categories Alg(A)→ DDAlg(B).

Proof. This follows easily from theorem 4.2. �

4.4. Application 1 : the functor of points of a scheme is an fpqc sheaf.

Lemma 4.2. Let F be a contravariant functor from the category of schemes to the category
of Sets. Assume that

(1) F is a sheaf for the Zariski topology,
(2) For any faithfully flat morphism of affine schemes U → V , the following diagram

is exact :
F (U)→ F (V )⇒ F (V ×U V )

Then F is a sheaf for the fpqc topology.

Proof. Let {Ui → X}i∈I be an fpqc covering. Let si ∈ F (Ui) be sections, such that
si|Ui×XUj = sj |Uj×XUj in F (Ui ×X Uj). We need to see that there is a unique s ∈ F (X)
such that s|Ui = si . First, assume that X is affine. We can find J finite with a map
φ : J → I and for each j ∈ J , we can find Vj ↪→ Uφ(j) affine such that {Vj → X}i∈J is a
covering. We get by restriction from sφ(j) the sections sVj . Finally, since F is a Zariski
sheaf, we have that

∏
j F (Vj) = F (

∐
j Vj). The map

∐
j Vj → X satisfies the second

axiom, so we deduce that there is a unique s ∈ F (X) which restricts to
∏
sVj .

Consider the diagram :

∐
i Ui

��

∐
i,j Ui ×X Vj

��

oo

X
∐
j Vj

oo

The section s pulls back to sections sUi ∈ F (Ui) and we need to see that sUi = si.
This holds true over

∐
j Ui ×X Vj by construction. We can check that sUi = si Zariski

locally on Ui (by the first axiom). So we can reduce to the case that Ui is affine, but then
the covering

∐
j Ui ×X Vj → Ui is of the type of the second axiom and so we conclude.

This settles the case that X is affine. In the general case, consider an affine Zariski
covering X = ∪jXj , and from the covering {Ui → X} we get covering {Ui ×Xj → Xj}.
The sections si,j over Ui × Xj come from a unique section sj over Xj . The sections sk
and sj coincide on Xk ×X Xj (cover Xk ×X Xj by open affines U , the sections sk and sj
coincide over U since they coincide on Ui ×X U). Finally the sections si glue to a unique
section s over X. �

Corollary 4.1. Let X be a scheme. The functor of points X(−) is an fpqc sheaf.
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Proof. We first check that X(−) is a Zariski sheaf. Let T be a scheme. Let T = ∪iTi be
a Zariski cover. Let fi : Ti → X be a collection of maps coinciding over the intersections
Ti ×T Tj . Then the maps fi glue to a map of topological space T → X. This is a map of
locally ringed spaces (this last condition being of local nature). Then, let us assume that
X = Spec R is affine. Let T ′ = Spec B → T = Spec A be a faithfully flat map of affine
schemes. We want to see that the diagram

Hom(R,A)→ Hom(R,B)⇒ Hom(R,B ⊗A B)

is exact. For any fB : R→ B with equal pull backs to maps R→ B⊗AB, we deduce from
proposition 4.4 , that fB(r) ∈ A for all r ∈ R. We have therefore completed the proof in
the case that X is an affine scheme.

We now deal with the case where X is not affine. Let T ′ = Spec B → T = Spec A be
a faithfully flat map of affine schemes. The map of topological spaces T ′ → T is a quotient
map by the lemma below. If X is a scheme, let |X| be the underlying topological space.
The map of underlying sets |T ′ ×T T ′| → |T ′| ×|T | |T ′| is surjective. Let f ′ : T ′ → X be a
map whose two pullbacks to T ′ ×T T ′ coincide. Then we get a unique continuous map :
f : T → X. Let X = ∪Xj be an affine Zariski cover. Then {T ′ ×X Xj → T ×X Xj} is an
fpqc cover, and we get a map of schemes f |T×XXj : T ×X Xj → Xj → X. These glue to
f which is therefore a scheme map. �

Lemma 4.3. Let f : Spec A→ Spec B be a faithfully flat morphism. Then f is a quotient
map.

Proof. We first see that f is generalizing because f is flat. This means that if x ∈ Spec A
and f(x) ∈ Spec B and if y is a generization of f(x), there exists z ∈ Spec A with f(z) = y.
Let T ⊆ Spec B. We assume that f−1(T ) = Spec A/J is closed in Spec A. We have that
ff−1(T ) = T and we need to prove that this set is closed. First, we observe that T is
closed under specialization. Indeed, since f−1(T ) is closed, it is stable under specialization
and thus its complementary is stable under generalization. Furthermore, f is surjective
and generalizing so Spec B \T = f(Spec A \ f−1(T )) is stable under generalization, hence
T is stable under specialization.

Now, let I = B ∩ J . We claim that T = Spec B/I. Clearly T ⊆ Spec B/I.
It suffice to see that T contains all generic points of Spec B/I. For any generic point
x ∈ Spec B/I corresponding to an ideal px, the localization (A/J)px 6= 0, so there is a
point z ∈ Spec A/I = f−1(T ) with f(z) = x. �

4.5. Application : descent for quasi-coherent sheaves. Let X be a scheme. Let
{Ui → X}i∈I be an fpqc cover. Let Fi be a quasi-coherent sheaf over Ui.

A descent datum for {Ui → X}i∈I and Fi is the data of Ui ×X Uj-isomorphisms

ψi,j : p?1Fi ' p?2Fj

(where p1 : Ui ×X Uj → Ui and p2 : Ui ×X Uj → Uj are the projections) satisfying the
following cocycle relation. Let (i, j, k) be a triple of indices. Let

q1,2 : Ui ×X Uj ×X Uk → Ui ×X Uj

q2,3 : Ui ×X Uj ×X Uk → Uj ×X Uk

q1,3 : Ui ×X Uj ×X Uk → Ui ×X Uk

q1 : Ui ×X Uj ×X Uk → Ui

q2 : Ui ×X Uj ×X Uk → Uj

q3 : Ui ×X Uj ×X Uk → Uk
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The cocycle condition writes :

q?2,3ψj,k ◦ q?1,2ψi,j = q?1,3ψi,k.

In other words we have :

q?1,3ψi,k : q?1F
q?1,2ψi,j−→ q?2F

q?2,3ψj,k−→ q?3F .

We denote by DDQCoh({Ui → X}i) the category whose objects are ((Fi)i, (ψi,j)i,j)
consisting of quasi-coherent sheaves Fi over Ui and descent datum ψi,j . A morphism
φ : ((Fi)i, (ψi,j)i,j) → ((F ′i )i, (ψ

′
i,j)i,j) is a collection of morphisms of quasi-coherent

sheaves φi : Fi → F ′i such that the following diagrams of morphisms of sheaves over
Ui ×X Uj commute :

p?1Fi

p?1φi //

ψi,j

��

p?1F
′
i

ψ′i,j
��

p?2Fj

p?2φj // p?2F
′
j

Theorem 4.4. The natural functor from QCoh(X) to the category DDQCoh({Ui → X}i)
is an equivalence of category.

Proof. The case of a Zariski cover is essentially a tautology. The case where X is affine
and I is finite and the Ui are affine is a restatement of theorem 4.2. The general case
follows by combining both. See [Sta13], Tag 023T. �

4.6. Application : descent for (quasi-affine) schemes. Let X be a scheme. Let
Aff/X be the category of schemes over X, p : Y → X with p an affine morphism. This
means that for any open affine U ⊆ X, p−1(U) is open affine in Y .

Let {Ui → X}i∈I be an fpqc cover. We now define the category of affine schemes with
descent datum for {Ui → X} that we call DDAff({Ui → X}). Objects of this category
are ((Vi)i, (ψi,j)i,j) that we describe. We have fi : Vi → Ui be affine morphisms of scheme.
We have Ui ×X Uj-isomorphisms of schemes ψi,j : Vi ×X Uj → Ui ×X Vj satisfying the
cocycle relation. Namely the following diagram is commutative :

Vi × Uj × Uk
q?1,3ψi,k //

q1,2ψi,j

((

Ui × Uj × Vk

Ui × Vj × Uk

q?2,3ψj,k
66

A morphism between {Vi, ψi,j} and {V ′i , ψ′i,j} is the data of morphisms in Ui-schemes

fi : Vi → V ′i compatible with the ψi,j and ψ′i,j in a natural sense.
The descent datum is called effective if there is f : V → X and isomorphisms V ×X

Ui = Vi, such that ψi,j becomes the canonical isomorphism. V ×XUi×Uj → Ui×XV ×XUj .
The basic result is:

Theorem 4.5. The functor Aff/X → DDAff({Ui → X}) is an equivalence of cate-
gories.

A map V → X of schemes is called quasi-affine if locally on X, there is an affine
scheme X ′ → X such that V ↪→ X ′ is a quasi-compact open immersion. We can define
the category quasi−Aff/X and similarly a category DDquasi−Aff({Ui → X})
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Theorem 4.6. The functor quasi−Aff/X → DDquasi−Aff({Ui → X}) is an equiv-
alence of categories.

Proof. See [Sta13], Tag 0246. �

5. Lecture IV : curves over a field

5.1. Discrete valuations. A (discrete) valuation on K is a non-constant function v :
K× → Z such that:

(1) v(x+ y) ≥ inf{v(x), v(y)},
(2) v(xy) = v(x) + v(y).

We often extend a valuation v to K by putting v(0) = +∞. Two valuations v and v′

are equivalent if there is a rational number s such that sv = v′. We can normalize the
valuation by asking that v is surjective. We let Ov = {f ∈ K, v(k) ≥ 0}. This is the
valuation ring of the valuation v.

A discrete valuation ring in K is a subring A such that :

(1) for any f ∈ K×, we have f or f−1 ∈ A,
(2) K×/A× ' Z.

Lemma 5.1. The map v 7→ Ov induces a bijection between equivalence classes of dicrete
valuations on K and discrete valuation subrings of K.

5.2. Dedekind rings.

Definition 5.1. A domain R is called Dedekind if it satisfies one of the equivalent condi-
tions :

(1) R is noetherian, integrally closed and all non-zero prime ideals are maximal,
(2) R is noetherian, and for all non zero prime ideal m, Rm is a discrete valuation

ring,
(3) All fractional ideals of R are invertible.

Proof. [Fr7], 2, p.7. �

Remark 5.1. Let K be the fraction field of R. A fractional ideal of R is a sub-R-module
M of K for which there exists d ∈ R \ {0} such that dM ⊆ R. Given a fractional ideal
M , we let M−1 = {n ∈ K,nM ⊆ R}. This is again a fractional ideal. We say that M is
invertible if M.M−1 = R. A fractional ideal is invertible if and only if it is projective.

Proposition 5.1. Let R be a Dedekind ring. Let M be an R-module. Then M is flat if
and only if M is torsion free.

Proof. For a domain, we always have M flat implies M torsion free. For the converse
implication, we use that M is R-flat if and only if all its localizations Mm are Rm-flat. But
Rm is a discrete valuation ring. It suffices to check that for any ideal I ⊆ Rm the map
I ⊗RM →M ⊗R Rm is injective. But I = aRm for some a ∈ Rm. �

Proposition 5.2. Let R be a Dedekind ring with fraction field K. Let L be a finite
extension of K. Let R′ be the normalization of R in L. Then R′ is a Dedekind ring.
Moreover, the map R→ R′ is finite flat in the following two cases :

(1) L is separable over K,
(2) R is a finite type algebra over a field.

Proof. First assume that the extension is separable. We can find a basis x1, · · · , xn of
L over R with xi ∈ R′. Let {x?i } be the dual basis for the Trace map. We have that
⊕iRxi ⊆ R′ ⊆ (R′)? ⊆ ⊕iRx?i , where (R′)? is the set of elements x such that Tr(xR′) ⊆ R.
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It follows that R′ is of finite type over R, and is therefore Noetherian. Let m′ be a non-zero
ideal of R′. Then m = R∩m′ is non-zero and therefore is maximal. Since R→ R′ is finite,
we deduce that m′ is maximal. Next assume the extension is totally inseparable. We see

that K ⊆ L ⊆ K(q−1) where K(q−1) is the extension of K obtained by adjoining all qth-roots

of K for q = pf (and p the characteristic). (We can also think as K(q−1) being the field K

viewed as a K-algebra through the map x 7→ xq.). We deduce that R ⊆ R′ ⊆ R(q−1). Let

I be an ideal in R. Then IR(q−1) is invertible, since R(q−1) ' R is Dedekind. It follows

that 1 =
∑
aibi with ai ∈ I and bi ∈ (IR(q−1))−1. But 1 =

∑
aqi b

q
i =

∑
aia

q−1
i bqi . Now

bqi ∈ I−1 and therefore aq−1
i bqi ∈ I−1. Therefore I is invertible. In general, L is a totally

inseparable extension of a separable extension. It remains to see that R′ is of finite type
over R if R is of finite type over a field k. This is a classical commutative algebra result
(it is easy to prove if k is perfect). �

5.3. Projective schemes.

Definition 5.2. Let S be a scheme. An S-scheme X is projective if it can be embedded
as a closed subscheme of a projective scheme PNS .

We want to recall a criterium for X to be a projective scheme. Recall that over PNS
we have the invertible sheaf OPNS

(1) and it comes with a surjective map ⊕Ni=0OPNS
X0,··· ,Xn−→

OPNS
(1).

Theorem 5.1 ([Har77], II, thm. 7.1). (1) If φ : X → PNS is a morphism, then φ?O(1)
is an invertible sheaf, generated by the section φ?X0, · · · , φ?XN .

(2) Conversely, let L be an invertible sheaf over X together with a surjective map

ON
X

s0,··· ,sn−→ L. Then there is a canonical morphism φ : X → PNS such that φ?O(1) '
L and φ?Xi = si.

Theorem 5.2 ([Har77], II, prop. 7.2). An morphism φ : X → PNS , corresponding to an
invertible sheaf L and sections s0, · · · , sN is a closed immersion if :

(1) For all i, the open D(si) defined by si 6= 0 in X is affine,
(2) The map OS [X1/Xi, · · · , XN/Xi] → H0(D(si),OX) sending Xj/Xi to sj/si is

surjective.

Remark 5.2. A map X → S is proper if :

(1) It is of finite type,
(2) It is universally closed,
(3) it is separated.

If the scheme X → S is projective over S, then the map X → S is proper.

5.4. Curves.

Definition 5.3. A curve C over Spec k is a scheme C → Spec k of pure dimension 1
over Spec k.

Here the dimension is defined as the maximal length of a chain of irreducible subsets.
Pure dimension 1 means that all irreducible components have dimension 1.

It is reasonable to add a few more assumptions.

Definition 5.4. A Dedekind scheme is a quasi-compact, separated scheme which is covered
by affines Spec A where A is a Dedekind ring.

Definition 5.5. A non-singular curve C over Spec k is an irreducible, quasi-compact,
separated, Dedekind scheme over Spec k.
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Let K = OC,η be the fonction field of an irreducible curve.

Definition 5.6. We say that C is geometrically connected if k is algebraically closed in
K.

5.5. Function fields of dimension 1. Let k be a field.

Definition 5.7. A function field of dimension one over k is a field K of finite type,
transcendance degree 1 and such that k is algebraically closed in K.

This means that there exists an element x ∈ K such that K is a finite algebraic
extension of k(x). Actually, this holds true for any x ∈ K \ k (indeed such an element is
not algebraic over k by assumption).

We now attach a set X (or KX) to K: the set of isomorphism classes of valuations
v : K× → Z which are trivial on k× (v(k×) = 0). We put a topology on X as follows : the
opens are ∅ and the complements of a finite set of points. We will also add to X a generic
point η, which belongs to all non-empty open subsets.

We now equip X with a sheaf of rings OX . If U is some open, we let OX(U) = {f ∈
K, v(f) ≥ 0 ∀v ∈ U} = ∩v∈UOv, so that (X,OX) is a locally ringed space.

Theorem 5.3. Let K be a function field over k. The locally ringed space (X,OX) is a
geometrically connected, non-singular, projective curve over Spec k.

Proposition 5.3. The locally ringed space (X,OX) is a non singular curve. Let x ∈ K\k.
We consider U = {v ∈ X, v(x) ≥ 0}. Then U is open in X and OX(U) is the normalisation
of k[x] in K. Moreover, (U,OX |U ) = (SpecB,OSpec B) for B = OX(U).

Proof. Let B be the normalization of k[x] in K. This is a Dedekind ring. We first show
that Spec B = U . Let v ∈ U . The map k[x] → Ov factors over B since Ov is integrally
closed. Consider the map B → Ov. We claim that B ∩ mOv = m is a maximal ideal in
B. Otherwise, B ∩ mOv = {0} and therefore B \ {0} ↪→ O×v and Frac(B) = K ↪→ Ov, a
contradiction. We also claim that Bm = Ov. Indeed, let y ∈ Ov \ Bm. Then y−1 ∈ Bm

(since Bm is a valuation ring) so that y−1 ∈ O×v ∩Bm = B×m . So y ∈ Bm. We have a map
U → Spec B. We can define a map in the other direction : let m be a maximal ideal of B.
Then Bm is a valuation ring, so there is an associated valuation vm and vm(x) ≥ 0. The
bijection Spec B → U is continuous. It remains to prove that the sheaves coincide. Let
V = Spec R ↪→ Spec B an open affine subset. It suffices to see that R = ∩m∈Spec RRm.
This is clear by Zariski descent.

Now let V = {v ∈ X, v(x−1) ≥ 0}. Then X = U ∪ V and moreover U \ (V ∩ U) =
{v, v(x) > 0} = V ((x)) ⊆ Spec B is closed. We deduce that U , V are open in X and that
X is a scheme. Let us see that U ∩ V is affine. This is clearly {v, v(x) = 0} = D(x) =
Spec B[1/x]. �

It actually follows from the proof that the curve associated to k(x) is P1
k and the

choice of x ∈ K \ k provides us with a finite morphism X → P1
k. We will now prove that

the curve X is projective.

Proposition 5.4. The curve X is projective.

Proof. Let us pick a finite morphism π : X → P1. Let O(1) be the tautological sheaf
on P1. We claim that π?OX(d′) for d′ large enough is generated by global sections and
provides a closed immersion X → PNk .

First, let us look at π?OX . This is a coherent sheaf on P1. Over Spec k[x0/x1] = U ,
π?OX(U) is a finite type k-alegbra generated by s0, · · · , sN . Moreover, there exists d
such that the sections s0x

d
1, · · · , sNxd1 extend to global section of OX(d). Similarly, over
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Spec k[x1/x0] = U ′, π?OX(U ′) is a finite type k-alegbra generated by t0, · · · , tN ′ (we can
arrange that N = N ′). Moreover, there exists d′ (we can arrange that d = d′) such that
the sections t0x

d
0, · · · , tNxd0 extend to global section of π?OX(d).

We have a surjective map O2N+4
P1 → π?OX(d) given by xd1, x

d
0, s0x

d
1, · · · , sNxd1, t0xd0, · · · , tNxd0.

By adjunction, this is a map O2N+4
X → π?O(d) and we claim that the corresponding

map X → P2N+3 is a closed embedding.
Clearly the image is included in the two affine opens D(X0) and D(X1) of P2N+3.
The map k[X0/X1, · · · , X2N+4/X1]→ OX(U) is surjective since OX(U) is generated

by s0 = X2/X1, · · · , sN = XN+1/X1. Therefore X → P2N+3 is a closed embedding.
�

Proposition 5.5. H0(X,OX) = k.

Proof. Let x ∈ K \ k. We need to find v ∈ X such that v(x) < 0. Let V = {v ∈
X, v(x−1) ≥ 0}. Then OX(V ) = B and k[x−1] → B is finite flat. We can find a prime
ideal above (x−1) in B and it corresponds to a valuation v for which v(x−1) > 0. �

5.6. An equivalence of category. We now prove that the last construction exhausts
all projective non-singular curves.

Lemma 5.2. Let C be a projective non-singular curve over Spec k. Then there is an
isomorphism C → KX where K is the function field of C.

Proof. We first define a morphism. To any closed point x of C, we have a local ring
OC,x ↪→ K which is a discrete valuation ring because the curve is non-singular. Therefore
we have a map C → KX. This map is injective (the curve C is separated). The map
extends to a locally ringed space map (C,OC)→ ( KX,O KX), since for any open U of C,
OC(U) = ∩x∈UOC,x. The map C → KX is therefore a map of algebraic curve. Its image
is closed since C is projective, it is all of KX. �

Let X and Y be two schemes. A morphism f : X → Y is finite flat if for any affine
Spec A ⊂ Y , f−1(Spec A) = Spec B is affine and A→ B is a finite flat map.

Lemma 5.3. Let f : X → Y be a non-constant morphism between projective non-singular
algebraic curves. Then f maps the generic point ηX of X to the generic point ηY of Y .
The morphism f is finite flat and is determined by the morphism OY,ηY → OX,ηX on
generic points.

Proof. The image of f is a connected closed subset of Y . It is either Y or a closed point of
Y . It is therefore Y and the generic point of X maps to the generic point of Y . Therefore
we have a map K → L where K is the function field of Y and L is the function field of
X. Let x ∈ K be an element which is not algebraic over k. The we have finite flat maps
k[x]→ A→ B where A is the normalization of k[x] in K and B the normalization of k[x]
in B. And Spec(B) = D(f?(x))→ D(x) is finite flat. �

Combining everything, we arrive at the following theorem (compare with [Har77],
corollary 6.12.):

Theorem 5.4. The functor ”generic point” induces an equivalence of categories between:

{Non-singular, geometrically connected projective curves on Spec k, non constant morphisms}

and

{Function fields of one variable over k}.
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5.7. Invertible sheaves and divisors.

Definition 5.8. We let Div(X) be the free abelian group generated by the closed points
x ∈ X.

We have a partial order on Div(X). If D =
∑
nxx and D′ =

∑
mxx, we say that

D ≥ D′ is nx ≥ mx for all x. We say that a divisor D is effective if D ≥ 0.
If f ∈ K×, we let div(f) =

∑
x∈X vx(f)x. These divisors are called principal. We let

deg : Div(X)→ Z which maps
∑
nxx to

∑
nx[k(x) : k]. We let Div0(X) be the kernel of

deg.

Lemma 5.4. For all f ∈ K×, deg(div(f)) = 0.

Proof. [Ser88], prop. 1, p. 8. �

Let D ∈ Div(X). We let OX(D) be the invertible sheaf defined by OX(D)(U) = {x ∈
K, v(x) + v(D) ≥ 0, ∀v ∈ U}.

Lemma 5.5. There is a bijection between :

{Locally free sheaves of rank one L + non-zero rational section f ∈ Lη \ {0}}/isom

and Div(X).

Proof. To D ∈ Div(X) we associate OX(D) equipped with the rational section 1. Con-
versely let (L, f). Then for all x ∈ X, we consider Lx ⊂ Lη. This is an OX,x- rank one
module inside a K-vector space of dimension 1. The module f.OX,x is another rank 1 sub-
module inside Lη. Let tx be a uniformizing parameter at x. Then we have f.OX,x = tnxx Lx
for a unique integer nx. We let D =

∑
nxx. The map OX(D)

×f→ L is an isomorphism
which sends 1 to f . �

Corollary 5.1. There is an isomorphism : Pic(X) = Div(X)/div(K×)

By lemma 5.4, the map deg passes to the quotient and defines a map deg : Pic(X)→
Z. We let Picr(X) = deg−1(r).

5.8. Cohomology.

5.8.1. Cohomology of line bundles.

Theorem 5.5. (1) The k-vector spaces Hi(X,L) are finite dimensional. Let g =
dimkH

1(X,OX) be the genus of the curve.
(2) We have dimkH

0(X,L)− dimkH
1(X,L) = deg(L)− g + 1.

(3) Assume that X/k is smooth. There is an invertible line bundle Ω1
X/k of degree

2g − 2, and a canonical isomorphism H1(X,Ω1
X/k)→ k.

(4) We have a Serre duality perfect pairing :

H0(X,L)×H1(X,Ω1
X/k ⊗ L

−1)→ k.

Proof. See [Ser88], prop. 2 and thm. 1, p. 10 and corollary p. 17, we sketch below the
argument. �

Remark 5.3. We notice that if degL < 0, then H0(X,L) = 0. Using the duality theorem,
we deduce that if degL > 2g − 2, H1(X,L) = 0 and dimkH

0(X,L) = degL − g + 1.

Remark 5.4. A non-singular curve needs not necessarily be smooth in caracteristic p. For
example let k = Fp(t), and consider the curve of equation Y 2 = Xp − t. This curve is
regular at Y = 0 but not smooth.
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5.8.2. Explicit definition of the cohomology. For all x ∈ X, we let Ox be the completed
local ring at x and Kx be its fraction field and tx be a uniformizing element in Ox.

We let AK be the ring of adeles of K. For a divisor D =
∑
nxx, we let Ô(D) =

{(fx) ∈ AK , vx(fx) + nx ≥ 0} =
∏
x t
−nx
x Ox.

Then we have an exact sequence :

0→ H0(X,OX(D))→ K → AK/Ô(D)→ H1(X,OX(D))→ 0

Indeed, we can consider the following resolution of the sheaf OX(D) by skyscraper
sheaves (which are acyclic):

0→ OX(D)→ (ιη)?K → ⊕x∈X(ιx)?Kx/t
−nx
x Ox → 0

where Ox = ˆOX,x and tx is a uniformizing element, ιη : η → X is the inclusion of the
generic point and ιx : x→ X is the inclusion of the closed point x.

Remark 5.5. One can therefore interpret H1(X,OX) as measuring the obstruction to con-
struct a global rational function whose polar part has been given at a finite set of points.

Lemma 5.6. We have H1(P1,OP1) = 0.

Proof. We need to see that the map K → AK/
∏
x Ox = ⊕Kx/Ox is surjective. We may

assume that k = k̄. Let x ∈ P1. If x ∈ A1, then Kx/Ox ' { a1
(T−x) + a2

(T−x)2
+ · · · , ai ∈ k}.

If x =∞, Kx/Ox = {a1T + a2T
2 + · · · , ai ∈ k}. Moreover, we see that a1

(T−x) + a2
(T−x)2

+

· · · ∈ Kx/Ox ⊆ AK/
∏
x Ox is the image of a1

(T−x) + a2
(T−x)2

+ · · · ∈ K and similarly
a1

(T−x) + a2
(T−x)2

+ · · · ∈ Kx/Ox ⊆ AK/
∏
x Ox is the image of a1T + a2T

2 + · · · ∈ K. �

Lemma 5.7. The k-vector spaces Hi(X,L) are finite dimensional. Let g = dimkH
1(X,OX)

be the genus of the curve. We have dimkH
0(X,L)− dimkH

1(X,L) = deg(L)− g + 1.

Proof. Id D ≥ D′ and we set D −D′ =
∑
nxx, we have an exact sequence :

0→ OX(D′)→ OX(D′)→ ⊕x(ιx)?Ox/t
nx
x → 0

It follows that Hi(X,OX(D)) is finite dimensional if and only if Hi(X,OX(D′)) is and in
this case,

dimkH
0(X,OX(D))− dimkH

1(X,OX(D)) =

dimkH
0(X,OX(D′))− dimkH

1(X,OX(D′))− deg(D) + deg(D′).

This settles the case of P1. In the case of a general X, it suffices to prove that H1(X,L) is
finite dimensional. Take a finite map f : X → P1. We have that H1(X,L) = H1(P1, f?L)
and we will see later that f?L is a direct sum of line bundles, so it is finite dimensional. �

5.8.3. Duality. We follow here [Tat68]. We first construct the dualizing sheaf JX/k as
follows. At the generic point, this is the sheaf of continuous linear forms :

` : K\AK → k

On some open U , we let JX/k(U) = {` : K\AK/
∏
x∈U Ox → k}. We see that by definition,

H0(X, JX/k(−D)) = H1(X,OX(D))∨. We now assume that the curve is smooth over k. In
such a case, the following holds

Theorem 5.6 ([Tat68], [Ser88]). (1) For all x ∈ X, there is a local residue map :
resx : Ω1Kx/k → k,

(2) For all x ∈ X(k), we have Kx = k((tx)) and resx(
∑
ant

n
xdtx) = a−1,

(3) For all ω ∈ Ω1
K/k,

∑
x resx(w) = 0.
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This theorem implies that there is an isomorphism given by the residue :

Ω1
X/k → JX/k

ω 7→
∑

resx(fxω)

6. Lecture V : Algebraic spaces

References : [Sta13], Tag 025R, [LMB00], chapitre I. Let Space be the category of
functors Schopp → SET , which are sheaves for the fppf topology. The objects of this
category will be called spaces. We also note that these functors are completely determined
by their value on affine schemes.

Remark 6.1. Some authors use instead the étale topology.

As we have seen, there is a fully faithfull functor Sch→ Space, X 7→ X(−).

Remark 6.2. There is also a variant where one fixes a base scheme S. We let S-Space be
the category of functors Sch/Sopp → SET which are sheavs for the fppf topology. For
simplicity in this lecture we assume that S = Spec Z.

6.1. Second definition of a Scheme. We can give a more categorical definition of
schemes. The basic objects are affine schemes.

6.1.1. Restricting to affine schemes as test objects. Let Ringop be the category of affine
schemes. We turn it into a site by using the fppf topology (for affine schemes). We
can consider the category Space′ of sheaves on Ringop for the fppf topology. We have a
functor Space→ Space′.

Lemma 6.1. The functor Space→ Space′ is an equivalence.

Proof. We produce a quasi-inverse. Let F ∈ Space′. We need to find the value F (X)
on an arbitrary scheme X. Take an fppf cover {Ui → X} by affine schemes. Take an
fppf -cover {Ui,j,k → Ui ×X Uj} by affine scheme. Define F (X) by the exact sequence :

0→ F (X)→
∏
i

F (Ui)⇒
∏
i,j,k

F (Ui,j,k)

We need to prove this is independant of choices. We can reduce to the situation where we
have a covering {Vl → X}l and a covering {Vl,m,n → Vl ×X Vm} and maps Vl → Uφ(l) and
Vl,m,n → Uφ(l),φ(m),φ(n) (for a map φ on indices).

We may define F ′(X) as follows : 0→ F ′(X)→
∏
l F (Vl)⇒

∏
l,m,n F (Vl,m,n). There

is an injective map F (X) → F ′(X). This map is an isomorphism since we have an exact
diagram

0→ F (Ui)→
∏

l,φ(l)=i

F (Vl)⇒
∏
l,m

F (Vl ×Ui Vm)

as well as maps Vl × UiVm → Vl ×X Vm, we can prove that any section (sl) ∈ F ′(X) ⊂∏
l F (Vl) will descend to a section (si) ∈

∏
i F (Ui) and then to F (X). �

6.1.2. Open subscheme of an affine scheme. We now define open subschemes of an affine
schemes. Let X = Spec A be an affine scheme. An open subscheme U of X is a subsheaf
U ↪→ X, with the property that there is a set I, elements fi ∈ A, and maps Spec A[1/fi]→
U → X (where the composite Spec A[1/fi] → X is the natural map) and the map∐
i Spec A[1/fi]→ U is an epimorphism.
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6.1.3. Open subspace of a space. We can now define open subspaces of a space. Let X be
a space. Let U ↪→ X be a subsheaf. We say that U is an open subspace of X if for any
ring A and map Spec A → X, the fiber product U ×X Spec A is an open subscheme of
Spec A.

6.1.4. Schemes. We next define schemes. A scheme X is a space such that there exists a
set I, rings Ai for i ∈ I, and maps Spec Ai → X such that :

(1) Spec Ai is an open subspace of X,
(2) The map

∐
i Spec Ai → X is an epimorphism.

6.2. Algebraic spaces.

6.2.1. Representable maps. Let X → X ′ be a map in Space. We say that the map is repre-
sentable if for any scheme Y and map Y → X ′, the fiber product X×X′ Y is representable
by a scheme.

Let F be a space. We often ask that the diagonal map F → F × F is representable
for the following reason :

Lemma 6.2. Let F be a space with representable diagonal map. Then for any scheme X,
any map X → F is representable.

Proof. Let X → F be a map. Let X ′ → F be another map from a scheme X ′. Then we
find that there is a Cartesian diagram :

X ×F X ′ //

��

F

��
X ×X ′ // F × F

�

Given a property (P ) of a map of schemes that is stable under base change and
fppf -local on the base, we say that a map of spaces f : X → X ′ has property (P ) if it is
representable and for any ring A and any map Spec A → X ′, Spec A ×X′ X → Spec A
has this property.

6.2.2. Algebraic spaces. We say that a space X is an algebraic space if :

(1) The diagonal of X is representable,
(2) there exists a scheme X ′, and a map :

X ′ → X

of spaces which is surjective and étale.

The map X ′ → X is called a presentation of X.

Remark 6.3. Some authors add the condition that the diagonal morphism is quasi-compact.

6.2.3. Equivalence relations. Here is another way to think about an algebraic space. Let
X be a scheme. Let R ⊆ X × X be a monomorphism of schemes (this means that the
map of corresponding spaces is injective). We let s and t be the two projections R→ X.
We say that R is an étale equivalence relation on X if :

(1) For all T ∈ Sch, R(T ) is an equivalence relation on X(T ),
(2) The maps s and t are étale.

Consider the following data :

(1) A scheme X,
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(2) An étale equivalence relation R ↪→ X ×X.

Let us consider the space X/R associated to the presheaf S 7→ X(S)/R(S) where
X(S)/R(S) means the quotient of the set X(S) by the equivalence relation R(S).

Theorem 6.1 ([Sta13], Theorem Tag 02WW). The space X/R is an algebraic space and
X → X/R is a presentation of X/R.

Proof. We will give a complete proof in the case that X and R are affine. For the general
case see [Sta13]. The map X → X/R is surjective. Let us prove that it is representable
by an étale map. Let Y = Spec A→ X/R. We need to prove that Y ×X/R X is a scheme
and that the map Y ×X/R X is an étale map. First assume that Y → X/R lifts to a
map Y → X. Then Y ×X/R X = Y ×X X ×X/R X = Y ×X R is a scheme and the map
Y ×X R→ Y is a base change of an étale map, hence is étale. In general, we can find an
fppf covering {φi : Yi → Y } with the property that Yi → X/R lifts to a map Yi → X. We
see that Yi×X/RX := Ti is a scheme and that the map Ti → Yi is an étale map. Moreover,
the maps Ti → Yi have a descent datum relatively to {φi : Yi → Y }. Namely, we have an
obvious isomorphism ψi,j : Ti ×Y Yj = Yi ×X/R X ×Y Yj → Yi ×Y Tj = Yi ×Y Yi ×X/R X.
By descent (the affine case), the space Y ×X/R X is a scheme. Moreover, this is an étale
scheme as the property of being étale is fpqc local on the target ([Sta13], Tag 02YJ). Hence
the space Y ×X/R X is a scheme, étale over Y . We finally need to prove that the map
X/R→ X/R×X/R is representable. We have a diagram :

R

��

// X ×X

��
X/R // X/R×X/R

Let Y → X/R×X/R be a map. We need to see that Y ×X/R×X/RX is representable
by a quasi-compact scheme. We first suppose that we have a lift Y → X ×X. We then
reduce to this case by fppf descent.

�

Let F be an algebraic space and X → F be a presentation. Let R = X ×F X.

Proposition 6.1. The scheme R is an étale equivalence relation on X. Moreover, F =
X/R.

Proof. We have a cartesian square :

R //

��

X

��
X // F

which proves that s, t are étale. Clearly, R is an equivalence relation, since R(T ) =
{(x, y) ∈ X(T ) × X(T ), x = y ∈ F (T )}. Finally the sheaf F is the quotient of X
by the equivalence relation R. In other words, we claim that F is the sheafification of
T 7→ X(T )/R(T ). The map X → F is an epimorphism. It factors through an epimorphism
X/R → F . We prove that this is a monomorphism. Let s1, s2 ∈ X/R(T ). Assume that
they have the same image in F (T ). There is {Ti → T}i an fppf covering such that we have
lifts s̃1|Ti and s̃2|Ti ∈ X(Ti). They have the same image in F (Ti), so (s̃1|Ti , s̃2|Ti) ∈ R(Ti).
It follows that s1|Ti = s2|Ti ∈ X/R(Ti). Since X/R is a sheaf s1 = s2.

�
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6.2.4. Example 1. Consider the étale morphism Zp → Zp2 , with group Z/2Z. Let X =
Spec Zp, X ′ = Spec Zp2 . Let R = X ′ ×X X ′ ↪→ X ′ × X ′. Then R = X ′ × Z/2Z. We
now modify the equivalence relation as follows : we consider R′ ⊆ R to be the union of
X ′×{1} and Spec Qp2×{σ}. This is an equivalence relation. The quotient X ′/R′ = X ′′ is
an algebraic space and not a scheme. If X ′′ where a scheme, it would be an affine scheme
(it has only two points, a special point and a generic point !). But then R′ should be
closed in X ′ ×X ′, which is not the case. Let A be a Zp-algebra. If A is a Qp-algebra, we
have that X ′′(A) = Hom(Qp, A) = A. If Hom(Qp, A) = 0 (for example if A is a pn-torsion
ring), we have that X ′′(A) = Hom(Zp2 , A).

We have a chain of étale maps X ′ → X ′′ → X.

6.2.5. Example 2. Let X = Spec F̄p. We have the Frobenius φ : X → X. We consider

X/φZ. Remark that X × X = Spec C0(Ẑ, F̄p) = limN Z/NZSpec F̄p is a profinite set.
Thus we consider the equivalence relation which is given by the embedding of ZSpec F̄p ↪→
ẐSpec F̄p . We have a chain of maps X → X/φZ → Spec Fp. Thus, the Galois group of

X/φZ is Z !
Similarly, we can consider Spec W (F̄p)[1/p]/φZ. The Galois group of this algebraic

space is the Weil group WQp ↪→ GQp .

7. Lecture VI : Generalities on Vector bundles

7.1. Vector bundles and locally free sheaves.

Definition 7.1. Let X be a scheme. Let r > 0 be an integer. A geometric vector bundle
of rank r over X is a scheme p : V → X such that there is a Zariski covering X = ∪iUi
and isomorphisms of Ui-schemes ci : V |Ui := V ×X Ui

∼−→ ArUi such that for every affine

open subset U = SpecA ⊆ Ui ∩Uj, the automorphism ci ◦ c−1
j of ArU is linear, i.e., there is

a matrix (al,k) ∈ GLr(A) such that the map between the global sections of ci ◦ c−1
j is given

by

A[T1, · · · , Tr] → A[T1, · · · , Tr]
Tk 7→

∑
al,kTl.

Remark 7.1. Clearly, ArX is a geometric vector bundle (by choosing the Zariski covering
X itself). We call ArX the trivial vector bundle of rank r. In this case, for every scheme
T → X, ArX(T ) = H0(T,OT )r.

From now, we denote X be a scheme and E be a locally free sheaf of finite rank r
over X.

Definition 7.2. (1) We define E∨ = Hom(E ,OX) to be the dual of E.
(2) We define Sym(E) (resp. symmetric powers SymkE) be the sheafification of the

presheaf U 7→ Sym E(U) (resp. U 7→ SymkE(U)).

Remark 7.2. (1) These definitions can be defined for every sheaf over X.
(2) If U = SpecA ↪→ X an open immersion, then E∨(SpecA) ' Hom(E(SpecA), A).
(3) We have Sym E '

⊕
k≥0 SymkE and this is a sheaf of OX -algebra.

(4) Clearly, if E is a finite locally free OX -module, then so is E∨ and (E∨)∨ ' E .
Moreover, if h : T → X be a morphism of schemes, then h∗(E∨) = (h∗E)∨.

(5) For every sheaf of OX -algebra B, HomOX -alg(Sym E ,B) ' HomOX (E ,B).

Lemma 7.1 (see [Gro61], Proposition 1.3.1). Let X be a scheme and A be a quasi-coherent
sheaf of OX-algebra. Then there exists a unique X-scheme up to a unique isomorphism
over X, denoted by p : SpecA → X such that p∗(OSpecA) = A.
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Proof. (Sketch) Let X = ∪iUi be a affine covering. Since A(Ui) is an OX(Ui)-algebra,
there is a map SpecA(Ui) → Ui. By using quasi-coherent property, we can glue these
maps to get a X-scheme p : SpecA → X. �

Lemma 7.2 (see [GW10], Proposition 11.1). Let X be a scheme and A be a quasi-coherent
sheaf of OX-algebra. Then for every X-scheme f : T → X,

HomX(T, SpecA) ' HomOX -alg(A, f∗OT ).

Definition 7.3. We denote V(E) := Spec(Sym(E∨)).

Remark 7.3. If U = SpecA ↪→ X is an open immersion, then V(E)|U = Spec(Sym E∨(U)).

Lemma 7.3. V(E) is a geometric vector bundle.

Proof. Since E is locally free of finite rank, we can choose an affine covering X = ∪Ui,
Ui = SpecAi such that E|Ui ' Or

Ui
' Ãi

r
. Then E∨(Ui) ' E(Ui)

∨ ' (Ari )
∨ ' Ari . Then

there is a isomorphisms

ci : V(E)|Ui = Spec(Sym E∨(Ui)) ' Spec(Sym Ari ) ' Spec(Ai[T1, . . . , Tr]) = ArUi .

For each SpecA ↪→ SpecAi ×X SpecAj , cj ◦ c−1
i is given by a linear change of coordinate.

Thus, V(E) is a geometric vector bundle. �

Lemma 7.4. Let h : T → X be a morphism. We have:

HomX(T,V(E)) = H0(T, h?(E)).

Proof. We have

HomX(T,V(E)) = HomOX−alg(Sym(E∨), h?OT ) (by Lemma 7.2)

= HomOX (E∨, h?OT ) (by Remark 7.2 (5))

= HomOT (h?(E∨),OT )

= (h∗(E∨))∨(T )

= H0(T, h?(E)) (by Remark 7.2 (4)).

�

Proposition 7.1. The assignment E 7→ V(E) defines a covariant functor from the category
of finite locally free sheaves of OX-modules of constant rank to the category of geometric
vector bundles with linear morphisms. This functor is an equivalence of category.

Remark 7.4. The definition of linear morphisms between geometric vector bundles will be
defined in the proof of the proposition.

Proof. We construct a functor in the other direction. Let p : V → X be a geometric
vector bundle of rank r. Let S(V ) be the sheaf on X defined by S(V )(U) = {s : U →
V |U , p ◦ s = IdU}. This is a locally free sheaf of OX -module. Indeed, there is a Zariski
cover X = ∪Ui such that V|Ui = ArUi . Then we have S(V )|Ui ' Or

X|Ui since for every open

subset U in Ui,

S(V )|Ui(U) ' {s : U → ArU , p ◦ s = IdU}
' {t : U → Ar ' Spec Z[T1, . . . , Tr]}
' {t∗ : Spec Z[T1, . . . , Tr]→ OX(U)} ' OX(U)r.

We now check that S(V(E)) = E . By Lemma 7.4, for every open subset U ⊂ X,

S(V(E))(U) = {s : U → V(E)|U , p ◦ s = IdU} ' {s : U → V(E|U )} ' E(U).
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Conversely, let p : V → X be a geometric vector bundle. Since the construction of S(V )
is competible with base change, i.e., for a morphism h : V ′ → X,

h∗S(V ) ' S(V ×X V ′),

we have

HomX(V,V(S(V )) ' H0(V, p∗S(V )) ' H0(V,S(V×XV )) ' {s : V → V×XV, p◦s = IdV }.
Then the diagonal map V → V ×X V which amounts to a map H0(V, p?S(V )) or equiv-
alently to a map V → V(S(V )). And this map is an isomorphism. This also shows that
every geometric vector bundle over X can be of the form V(E) for some finite locally free
sheaf of OX -module E . Then we call a morphism between two vector bundles V(E) and
V(E ′) is linear if it is induced by a morphism E → E ′. This defined a category of vector
bundles with linear morphisms.

It is left to check HomOX (E , E ′) ' Hom(V(E),V(E ′)). Surjectivity is clear by the
definition of linear morphisms between vector bundles. Now let ϕ,ψ : E → E ′ such that
V(ϕ) = V(ψ) : V(E) → V(E ′). This induces that Sym(ϕ∨) = Sym(ψ∨) : Sym(E ′∨) →
Sym(E∨). We have the following diagram:

E ′
ϕ∨,ψ∨ //

��

E∨

Sym
��

Sym(E ′∨) // Sym(E∨)

Then Sym ◦ ϕ∨ = Sym ◦ ψ∨. On the other hand, by checking at stalks and property
that stalk of a direct sum is the sum of stalks, Sym : E∨ → Sym(E∨) is injective. So
ϕ∨ = ψ∨ : E ′∨ → E∨. Hence ϕ = ψ. �

We let Bun(X) be the set of isomorphism classes of vector bundles on X. We let
Bunn(X) be the set of isomorphism classes of rank n vector bundles on X.

7.2. Operation on vector bundles. We can perform basic algebra operations on vector
bundles. For instance if E1 and E2 are vector bundles, so is E1 ⊗ E2 and E1 ⊕ E2. If E is a
vector bundle, we can consider its dual E∨, its exterior powers ΛiE and symmetric power
SymiE . Very important is det E = ΛnE where n is the rank of E .

7.3. Invertible sheaves. Vector bundles of rank r = 1 on X are called invertible sheaves.
In this case we have a monoidal structure : if E and E ′, are invertible sheaves, E ⊗OX E ′
is an invertible sheaf. Moreover, if E is an invertible sheaf, E∨ also and E ⊗ E∨ → OX

is an isomorphism. We let Pic(X) = Bun1(X) be the group of isomorphisms classes of
invertible sheaves on X.

7.4. Torsors. Let X be a topological space and G a sheaf of groups over X. Let T be a
sheaf over X. An action of G on T is a morphism of sheaves G×T → T such that for any
open U of T , G(U)× T (U)→ T (U) is a group action of G(U) on T (U).

Definition 7.4. A G-torsor on X is a sheaf T with a G-action such that :

(1) for all U such that T (U) 6= ∅, G(U) acts simply transitvely on T (U),
(2) There is a cover X = ∪iUi, such that T (Ui) 6= ∅ for all i.

Remark 7.5. The condition (1) is equivalent to for all U such that T (U) 6= ∅, there exists
t ∈ T (U) such that G(U) → T (U), g 7→ g.t is a bijection. The condition (2) is equivalent
to Tx 6= 0 for all x ∈ X.

Definition 7.5. A morphism of G-torsors is a morphism of sheaves ϕ : T → T ′ such that
for all open subgroup U ⊂ X, the map ϕ(U) : T (U)→ T ′(U) is G(U)-equivarent.
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Remark 7.6. (1) Clearly, G is a G-torsor itself by the action G(U) × G(U) → G(U),
(g, g′) 7→ gg′. This torsor is called the trivial G-torsor.

(2) A G-torsor T isomorphic to the trivial torsor if and only if T (X) 6= ∅. Indeed, the
sufficient condition is clear since T (X) ' G(X) 6= ∅. Conversely, for any t ∈ T (X),
we have an isomorphism G(U)→ T (U), g 7→ gt|U for every open subset U of X.

(3) Morphisms of G-torsors are isomorphisms. Indeed, let ϕ : T → T ′ be a morphism
of G-torsor. For all open subsets U such that T (U) 6= ∅, we have the following
diagram,

G(U)
' //

'
��

T (U)

T ′(U)

ϕ(U)

;;

Thus, ϕ : T → T ′ is an isomorphism.

Let X be a scheme and let E be a vector bundle of rank r on X. Define

T (E) = IsomOX (Or
X , E),

with action of G = GLr= IsomOX (Or
X ,O

r
X) by (g, φ) 7→ φ ◦ g−1.

Lemma 7.5. T (E) is a GLr-torsor.

Proof. Let U be an open subset ofX such that T (U) 6= ∅ and φ1, φ2 ∈ T (U) = IsomOX (Or
X|U , E|U )

then there exists uniquely g := φ−1
2 ◦ φ1 in G(U) such that φ1 ◦ g−1 = φ2. And since E

is a vector bundle of rank r, there is a covering X = ∪Ui such that E|Ui ' Or
X|Ui . Then

T (Ui) ' IsomOX (Or
X|Ui ,O

r
X|Ui) contains the trivial morphism, hence is not empty. �

We can also think of T as the space of isomorphisms IsomX(V(Or
X),V(E)) between

the trivial vector bundles and V(E).
Conversely, let T be a GLr-torsor. Then T is representable by a scheme. Indeed, let

X = ∪Ui be an open cover such that T (Ui) 6= ∅ for all i. Then using T|Ui
∼−→ G|Ui , we can

glue them to get a scheme. We can define a geometric vector bundle V(T ) on X via the
following rule :

V(T ) = (T ×X V(Or
X))/GLr

for the diagonal action (φ, v)g = (φ ◦ g, g−1v).

Lemma 7.6. The space V(T ) is a geometric vector bundle.

Proof. By working locally on X, we may assume that T = GLr. In this case, we have a
morphism : T × V(Or

X) → T × V(Or
X), (t, v) 7→ (t, tv). This isomorphism intertwins the

diagonal action of GLr and the action of GLr on T . We deduce that V(T ) ' T/GLr ×
V(Or

X). �

Proposition 7.2. The above rule defines an equivalence of categories between :

{vector bundles of rank r, maps are isomorphisms} → {GLr-torsors}
E 7→ T (E)

V(T ) ←[ T

Proof. Let T = T (E). To any point t ∈ T , we have a morphism φ(t) : Vtriv → V(E).
Moreover, φ(t ◦ g) = φ(t) ◦ g. Thus, there is a map

T ×X Vtriv → T ×X V(E)

(t, x) 7→ (t, φ(t).x)
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This map is equivariant for the diagonal GLr-action on the left hand side and the
GLr-action on T on the right hand side. Passing to the quotient, we deduce that V(T ) =
V(E). �

7.5. Čech cohomology. One can describe the set of isomorphism classes of vector bun-
dles using Čech cohomology.

Definition 7.6. Let G be a sheaf of groups over X. Let U = {Ui}i∈I be an open cover of
X. A Čech 1-cocycle on U is a collection θ = (gi,j)i,j∈I , where gi,j ∈ G(Ui ∩Uj) such that

gi,jgj,k = gi,k on Ui ∩ Uj ∩ Uk ∀i, j, k.

Two cocycles (gi,j) and (g′i,j) are cohomologous when there exists (hi)i∈I with hi ∈ G(Ui)

such that gi,j = h−1
i g′i,jhj on Ui ∩ Uj. This is an equivalence relation. We define :

Ȟ1(U , G) = {cocycles}/ ∼

Remark 7.7. (1) If (gi,j)i,j∈I is a Čech-cocycle, then gi,i = 1 and gi,j = g−1
j,i for all i, j.

(2) Ȟ1(U , G) is a pointed set. The point being given by the cocycle gi,j = Id.

Lemma 7.7. There is a bijection:

{Isomorphism classes of G-torsors, trivial with respect to U} → Ȟ1(U , G).

Remark 7.8. A G-torsor T is called trivial with respect to U = {Ui}i∈I if T|Ui is isomorphic
the trivial G|Ui-torsor for all i. By Remark 7.6 (2), this equivalent to T (Ui) 6= ∅ for all i.

Proof. Let T be the G-torsor is trivial with respect to U . Let ti ∈ T (Ui). Since G(Ui∩Uj)
acts simply transitively on T (Ui ∩ Uj), there exists unique gi,j ∈ G(Ui ∩ Uj) such that

gi,jtj = ti ∀i, j.

This shows that gi,jgj,k = gi,k on Ui ∩ Uj ∩ Uk for all i, j, k. Then the collection (gi,j) is
a cocycle. Different choices of ti give cohomologous cocycles. Indeed, let ti, t

′
i ∈ T (Ui) for

i ∈ I then there exists unique hi ∈ G(Ui) such that hiti = t′i for all i. Moreover, there
exist unique gi,j and g′i,j in G(Ui,∩Uj) such that gi,jtj = ti and g′i,jt

′
j = t′i. Thus,

gi,j = h−1
i g′i,jhj in Ui ∩ Uj ∩ Uk ∀i, j, k.

Conversely, given a cocycle (gi,j), we define a torsor T by the following,

T (V ) = {(ti) ∈
∏
i

G(V ∩ Ui), tit−1
j = gi,j} for V open subset of X.

This definition does not depend on the representation of (gi,j). Indeed, let (gi,j) and (g′i,j)

are cohomologous and T, T ′ be the corresponding torsors. There exists hi ∈ G(Ui) such

that gi,j = h−1
i g′i,jhj . Then for evey open subset V in X, T (V )

∼−→ T ′(V ), (ti) 7→ (hiti).

The G-action is given by (g, (ti)) = (tig
−1). Thus T |Ui = G|Ui via ti 7→ ti. Hence T is a

torsor trivial on U .
Now we show that each map is the inverse of each other. Let T be a G-torsor trivial

on U . Let ti ∈ T (Ui) and (gi,j) be the cocycle given by (ti). Denote T ′ be the G-torsor
corresponding to (gi,j). In order to prove T is isomorphic to T ′, it suffices to construct a
morphism between them. And to define maps T ′|Ui → T|Ui , it is enough to define the maps

on global section T ′(Ui) → T (Ui) because T and T ′ are trivial on U . For all i ∈ I, we
define

ϕi : T ′(Ui) ⊂
∏
j

G(Ui ∩ Uj)→ T (Ui), (vj)j 7→ v−1
i ti.
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This map is G-equivariant since for any g ∈ G, (vj) ∈ T ′(Ui),

ϕi(g(vj)) = ϕi((vjg
−1)) = (vig

−1)−1ti = gv−1
i ti = gϕi((vj)).

For i, j ∈ I, we have ϕi|Ui∩Uj = ϕj |Ui∩Uj . Indeed, for every (vk)k ∈ T ′(Ui ∩ Uj),

ϕi((vk)) = v−1
i ti = v−1

i gi,jtj = v−1
i viv

−1
j tj = v−1

j tj = ϕj((vk)).

So we can glue these map to get a morphism ϕ : T ′ → T and this is an isomorphism.
Conversely, let (gi,j) is a cocycle and define T be a G-torsor as above. Let v = (vj) ∈

T (Ui) with vi = 1 and vj = g−1
i,j for all j 6= i. Let ṽ = (ṽj) ∈ T (Uk) with ṽk = 1 and

ṽj = g−1
k,j for all j 6= k. Now let g′i,k ∈ G(Ui ∩ Uk) such that g′i,kṽ = v. Then ṽkg

′−1
i,k = vk,

then g′−1
i,k = g−1

i,k . Hence gi,j and g′i,k are cohomologous. �

We say that U ′ is a refinement of U if U ′ = {U ′j}j∈J and there is a map α : J → I

with U ′j ⊆ Uα(j). This induces a map

Ȟ1(U , G)→ Ȟ1(U ′, G), (gi,j)i,j∈I 7→
(
gα(i),α(j)|U ′i∩U ′j

)
i,j∈J

Two coverings U and U ′ are called equivalent if each one is a refinement of the other.
Clearly, if U and U ′ are equivalent, then Ȟ1(U , G) ' Ȟ1(U ′, G). We get a commutative
diagram :

{Isomorphism classes of G-torsors, trivial with respect to U} //

��

Ȟ1(U , G)

��
{Isomorphism classes of G-torsors, trivial with respect to U ′} // Ȟ1(U ′, G)

Definition 7.7. We call Ȟ1(X,G) := lim−→U Ȟ1(U , G) be the Čech cohomology of G on X,
where U runs through the set of equivalence classes of open covering of X.

Proposition 7.3. There is a bijection:

{Isomorphism classes of G-torsors} → Ȟ1(X,G).

In particular we deduce that Bunn(X) = Ȟ1(X,GLn).

Proof. By above commutative diagram, we have a map

lim−→
U
{Isomorphism classes of G-torsors, trivial on U} → lim−→

U
Ȟ1(U,G) = Ȟ1(X,G).

Then by Lemma 7.7, this is actually a bijection. And by the fact that

{Isomorphism classes of G-torsors} = lim−→
U
{Isomorphism classes of G-torsors, trivial on U},

we have the first statement. The second statement is immediately induced by the first
statement and Proposition 7.2. �

Corollary 7.1. Pic(X) = Ȟ1(X,Gm).

Remark 7.9. For every abelian sheaf F on X, we have

H1(X,F) ' Ȟ1(X,F).

See Lemma 20.4.3 (tag 02FQ), Stack Project to see that

H1(X,F) ' {Isomorhism classes of F-torsors},
then by Proposition 7.3, we get the result.
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8. Lecture VII : Vector bundles on curves

8.1. The category Coh(X). We now assume that X is a projective, geometrically con-
nected, non-singular curve over Spec k.

Lemma 8.1. Let X be a Dedekind scheme. The following are equivalent for a coherent
OX-module E :

(1) E is a vector bundle,
(2) E is a torsion free OX-module.

Proof. All OX,x are DVR or fields. If E is a vector bundle, then for all x ∈ X, Ex is free
over OXx which is a DVR thus Ex is torsion free, so E is torsion free. Conversely, if E is
torsion free, as OX,x is a PID, Ex is flat, and of finite presentation (E is coherent), so it is
projective of finite rank, and OX,x is local so it is free: E is a vector bundle. �

Let X be a non-singular curve. Let E be a coherent OX -module. We have an exact
sequence :

0→ Etors → E → Ecotors → 0

where Etors is the maximal torsion sub-sheaf of E and Ecotors is a vector bundle.
We have Sup(Etors) = {x1, · · · , xn} because Sup(Etors) is a closed subset (see Stacks

tag 01BA) of dimension 0 of X as it does not contain η (the only torsion OX,η-module is 0)
and Etors = ⊕ni=1(ιxi)?Mi where Mi is a finite length OX,xi-module (A = OX,xi is a DVR
so taking a sequence 0 ⊂ M0 ⊂ · · · ⊂ Mn = M := Exi such that Mj+1/Mj is isomorphic
to A/pj for pj ∈ SpecAi, as A is a DV R, each pj is either 0 or m := mxi , but a 0 would
give a non torsion element, so we get a composition sequence of Mi, which is therefore of
finite lenght)

8.2. Subbundles. We let V B(X) the full subcategory of Coh(X) whose objects are vector
bundles.

Definition 8.1. Let E be a vector bundle on X. A subbundle E ′ ⊆ E is a subsheaf such
that E/E ′ is a vector bundle.

We now explain an important construction. Let E ′ ↪→ E be a subsheaf. First, E ′ is a
vector bundle since it is torsion free. We define a subbundle (E ′)] of E called the saturation
of E ′. This is the kernel of the map E → (E/E ′)cotors. Observe that we have E ′ ⊆ (E ′)] ⊆ E .

Lemma 8.2. We have a bijection :

{subbundles of E} ↔ {subvector spaces of the k(X)-vector space Eη}

Proof. Let E ′ ⊆ E be a subbundle. Taking the fiber at the generic point gives a subvector
space E ′η ⊆ Eη. Conversely, let V ⊆ Eη. We define E ′ by the short exact sequence :

0→ E ′ → E → (ιη)?Eη/V

We see that E ′ is coherent and saturated in E . �

Corollary 8.1. Any rank r vector bundle E on X admits a filtration by subbundles
{FiliE}0≤i≤r with FiliE of rank r − i.

Proof. Take a full flag of the vector space Eη and apply the lemma. �
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8.3. The category V B(X). The category V B(X) is not abelian.

Theorem 8.1. The category V B(X) is an additive category which admits kernels and
cokernels.

Let f : E → G be a morphism in the category V B(X). We let ker(f) be the Kernel
of f in the category Coh(X).

Lemma 8.3. The coherent sheaf ker(f) is a subbundle of E and is the kernel of f in
V B(X).

Proof. It is clear that ker(f) is a vector bundle and it is therefore the kernel of f in
V B(X). The map f passes to the quotient to an injective map : E/ker(f)→ G. Consider
(E/ker(f))tors → G. This map is trivial (there are no nonzero maps from a torsion sheaf
to a vector bundle because its image would be a torsion submodule). This proves that
(E/ker(f))tors = 0. �

We let coim(f) = E/ker(f).

Lemma 8.4. Let im(f) be the image of f in the category Coh(X). This is a vector bundle.
Let im(f)] be the saturation of the image of f in E. Then im(f)] is the image of f in
V B(X). Let coker(f) be the cokernel of f in the category Coh(X). Then coker(f)cotors is
a vector bundle and is the cokernel in the category V B(X).

Proof. It suffices to prove the statement regarding coker(f). We see that we have a map
G → coker(f). For any vector bundle F with a map G → F , such that E → F is zero, we
have a factorization G → coker(f)→ coker(f)/coker(f)tors → F :

E G cokerf cokerf cotors

F

f

0
g

∃!ϕ in Coh(X)

exists because (Imϕ)tors=0

�

Remark 8.1. If f : E → F is a morphisme in V B(X), we have the commutative diagram
with exact columns :

0 0

ker f (cokerf)cotors

E G

coImf (Imf)]

0 0

f

The blue arrow is an isomorphism if and only Imf = (Imf)]. In this case we say that f is
strict morphism.
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8.4. Elementary modifications. Let E be a vector bundle of rank r on X. Let x ∈ X
be a closed point and let Ox = ÔX,x ' k(x)[[tx]] (by [Ser68], II, 4, thm 2 in the case that
k is perfect, and the reference given there for the general case). Let also Kx = Frac(Ox).

A modification of E at x is a vector bundle E ′ such that E|X\x = E ′|X\x.
For A an integral domain of fraction field K, a A-lattice of a K-vector space V is a free
A-submodule which spans V as a K-vector space.

Lemma 8.5. There is a canonical bijection:

{modifications of E at x} ↔ {Ox-lattices in Ex ⊗OX,x Kx}

Proof. Given a modification E ′, we get a lattice E ′x ⊗OX,x Ox. Conversely, let Λx be a
lattice. Replacing E by E(nx) for n large enough. We can assume that Λ ⊆ Ex ⊗OX,x Ox.
We consider the short exact sequence :

0→ E ′ → E → (ix)?Ex/Λ
so that E ′ = E outside of {x}. �

We observe that the set of lattices in Kn
x is in bijection with GLn(Kx)/GLn(Ox).

Corollary 8.2. We have a bijection :

Bunn(P1) = GLn(k[x])\GLn(k((x−1)))/GLn(k[[x−1]]).

Proof. Let E be a rank n vector bundle over P1. We know that E|A1 is trivial, since k[X]
is principal. We fix an isomorphism φ : E|A1 ' On

A1 . Having fixed this isomorphism,
E becomes a modification of the trivial bundle at ∞. Therefore it is given by an ele-
ment in GLn(k((x−1)))/GLn(k[[x−1]]). Forgetting the trivialization amounts to taking
the quotient by GLn(k[x]). �

Corollary 8.3. The map Pic(P1)
deg
' Z is an isomorphism.

8.5. Weil’s formula.

Theorem 8.2. There is a bijection :

Bunn(X) = GLn(K)\GLn(AK)/
∏
x

GLn(Ox).

Proof. Let F be a locally free sheaf of rank n. Let s1, · · · , sn be a basis of sections at
η (this basis is defined modulo GLn(K)). Then for all closed points x ∈ X, there is a
unique element fx ∈ GLn(Kx)/GLn(Ox) and an isomorphism fxO

n
x = Fx ⊗OX,x Ox ↪→

Fη ⊗OX,x Ox = Kn
x because Fx ⊗OX,x Ox is a lattice of Fη ⊗OX,x Ox = Kn

x . Conversely,
given a collection (fx) ∈ GLn(AK) we can define the subsheaf of (ιη)?K

n by F (U) = {s ∈
Kn, ∀x ∈ U, s ∈ fxOnx}. �

Here is a similar, but slightly simpler formula for P1.

Theorem 8.3.

Bunn(P1) = GLn(k[x−1])\GLn(k[x, x−1])/GLn(k[x])

Proof. Since k[x] and k[x−1] are principal, any locally free sheaf F is trivial on Spec k[x]
or Spec k[x−1]. Elements in GLn(k[x, x−1]) give the gluing data. Namely, we can take a
basis e1, · · · , en of F (Spec k[x]) and a basis f1, · · · , fn of F (Spec k[x−1]). Restricting to
Spec k[x, x−1], we find a matrix in GLn(k[x, x−1]) which passes from the basis (ei) to the
basis (fi). �

We let O(n) be a sheaf of degree n. We have the following theorem of Grothendieck :
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Theorem 8.4. Any vector bundle on P1 is a direct sum of line bundles O(n).

Proof. By theorem 8.3, we are reduced to certain matrix computations. See [HM82]. �

8.6. Cohomology of coherent sheaves on a curve. Attached to a coherent sheaf E ,
we have the cohomology groups H0(X, E) and H1(X, E).

8.6.1. Rank and degree. Let E be a coherent sheaf. We let rk(E) = dimk(X)(Eη) be the

rank of the vector bundle Ecotors.
We now define the degree. If E is a torsion sheaf, we have that H0(X, E) is a finite

k-vector space and we let deg(E) = dimkH
0(X, E). If E is a vector bundle, we let deg(E) =

deg(det E).

Lemma 8.6. Assume that E is a vector bundle which corresponds to an element of
(fx)x∈X ∈ GLn(K)\GLn(AK)/

∏
xGLn(Ox). Then we have

deg(E) = −
∑
x

[k(x) : k]vx(det(fx)).

Proof. We have a map det : GLn(K)\GLn(AK)/
∏
xGLn(Ox)→ GL1(K)\GL1(AK)/

∏
xGL1(Ox).

This reduces to the case that n = 1. By construction, we see that L correspond-
ing to (fx) is isomorphic to the O(−

∑
x vx(fx)x). We have that deg(−

∑
x vx(fx)x) =

−
∑

x vx(fx)[k(x) : k]. �

In general we let deg E = deg Etors + deg Ecotors.

Lemma 8.7. The functions rk and deg are additive on short exact sequences.

Proof. For the function rank, this is obvious : any short exact sequence :

0→ E → E ′ → E ′′ → 0

induces a short exact sequence :

0→ Eη → E ′η → E ′′η → 0

For the function degree, we first observe that additivity is obvious in the following case:
0 → E → E ′ → E ′′ → 0 is a short exact sequence of torsion sheaves and of locally free
sheaves. In this second case, we use that det E ′ = det E ′′⊗det E . We deal with the general
case. First, by modding out by E ′tors we have a diagram :

E/Etors // E ′/E ′tors // E ′′/Im(E ′tors)

E //

OO

E ′ //

OO

E ′′

OO

Etors //

OO

E ′tors //

OO

Im(E ′tors)

OO

where all raws and columns are exact. We see that deg is additive on all columns and
on the bottom raw. Therefore additivity of deg on the top and middle raw is equivalent.
We therefore can reduce to the case that E and E ′ are vector bundles.

Next by modding out by the inverse image in E ′ of E ′′tors we get a diagram :
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0 // E ′/π−1(E ′′tors) // E ′′/E ′′tors

E //

OO

E ′ π //

OO

E ′′

OO

E //

OO

π−1E ′tors //

OO

(E ′tors)

OO

with exact raws and columns. We see that deg is additive on all columns and on the
top raw. Therefore the additivity of the middle line is equivalent to that of the bottom
line. We thus reduce to the case that E and E ′ are vector bundles and E ′′ is a torsion
sheaf. Therefore E ′ is a modification of E at a finite set of points x1, · · · , xn and the map
: Exi → E ′xi has elementary divisors t

ni,1
xi , · · · , t

ni,r
xi so that

lengthk(E ′xi/Exi) = [k(xi) : k](

r∑
j=1

ni,j) = [k(xi) : k]vxi(det(Exi → E ′xi)).

�

8.6.2. The Riemann-Roch formula. We let χ(E) be the Euler characteristic of E , defined
by:

χ(E) = dimkH
0(X, E)− dimkH

1(X, E)

Theorem 8.5. For any coherent sheaf E, we have: χ(E) = deg E + rk(E)(1− g)

Proof. Since χ, deg and rk are additive on short exact sequences, if we have an exact
sequence :

0→ E → E ′ → E ′′ → 0

in Coh(X), and the formula holds for two out of three then it holds for all. The formula
holds for torsion sheaves. It also holds for OX . It remains to prove that it holds for
vector bundles. Since any vector bundle is a successive extension of line bundles, it is
enough to check the formula for line bundles. Let D be an effective divisor. Since 0 →
OX → OX(D) → OX(D)/OX → 0 is exact and OX(D)/OX is torsion, the formula holds
for any effective divisor. In general, let D = D1 − D2 with D1, D2 effective. We have
0 → OX(D) → OX(D1) → OX(D1)/OX(D) → 0 is exact and OX(D1)/OX(D) is torsion.
We conclude. �

9. Lecture VIII : Stacks

9.1. Motivation. We are interested in constructing geometric objects using moduli prob-
lems. Here are some examples. Let S be a base scheme.

Example 9. Let r ≥ d ≥ 1. We consider the functor (Sch/S)opp → SET , sending X → S
to pairs (L, φ) consisting of (isomorphism classes) of a locally free sheaf L of rank d over
X, and a surjective map φ : Or

X → L. This functor is a Space and is actually representable
by a projective S-scheme GR(r, d), called a Grassmanian.

Example 10. Let Ell be the functor (Sch/S)opp → SET sending X → S to the set of
isomorphism classes of elliptic curves E → X. An elliptic curve E → T being a proper,
smooth curve of genus 1 such that each fibers are geometrically connected, which admits
a section T → S.
Ell is not representable for the following reason. Let E1 : y2 = x3 +1 and E2 : 2y2 = x3 +1
be two elliptic curves defined over Q. We see that they define elements of Ell(Q). These
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two curves are not isomorphic over Q, but they become isomorphic over Q(
√

2). Indeed,

we can define over Q(
√

2) the map λ : E1 → E2 which sends (x, y) to (x,
√

2
−1
y). This

map is not defined over Q since for σ the non-trivial element of Gal(Q(
√

2)/Q) we have
λσ = −λ. This implies that the functor Ell is not separated (hence not representable)
since otherwise the morphism Ell(Spec Q)→ Ell(Spec(Q(

√
2))) would be injective, since

Spec(Q(
√

2))→ Spec Q is an fpqc cover, which is not the case as E1, E2 are distinct points
of Ell(SpecQ) with the same image in Ell(SpecQ(

√
2)).

Example 11. Let X be a projective, non-singular, geometrically connected curve over
Spec k = S. We define BunX,n the functor sending T → S to Bunn(X ×S T ). This is not
representable. Indeed, take T = P1 and let p : X ×S T → T be the projection. Consider
p?O(1) and p?O. These are non-isomorphic line-bundles, thus define two elements of
BunX,1(T ). They are not isomorphic : indeed, after extending scalars, we may assume
that X has a k-rational point. And taking pull back under the section we recover O and
O(1). Let U

∐
U ′ → T be the standard affine covering of P1 by two affine lines. We see

that the two points become equal on the pull back to U
∐
U ′ since O ' O(1) over U

∐
U ′.

This implies once again that our functor is not separated, hence not representable.

The common feature of the last two examples, is that the objects we are trying to
classify have automorphisms. Any elliptic curve has the automorphism −1. Similarly,
any vector bundle has scalar automorphisms by Gm. More precisely, if U = {Ti → T}i∈I
is a fpqc covering of T , then it is easy to see that local isomorphisms (such as the one
over U

∐
U ′, or the one over SpecQ(

√
2) will glue to a global isomorphism, ensuring

sepratness on the cover, if and only if the Cech cohomology H1
U (T,G) = 1 where G is the

automorphism group of the object over T .
One first idea is to rigidify the functors to kill automorphisms. For example, we could
consider elliptic curves with an invariant differential (at least in characteristic 6= 2, 3, or
with a basis of the N -torsion for N ≥ 3). Nevertheless this idea does not work all the
time. The other idea is to consider also the possibility of objects having automorphisms.

Namely, one can upgrade Ell has a ”functor” whose value on X is the category of
elliptic curves with morphisms being isomorphisms of elliptic curves (rather than the iso-
morphism classes of objects). Similarly, we now redefine Bunn(T ) for any scheme T as the
category whose objects are rank n vector bundles and whose morphisms are isomorphisms
of vector bundles (rather than considering Bunn(T ) as the set of isomorphism classes of
vector bundles). We let BunX,n be the functor sending T to the category Bunn(X ×S T ).

There is actually a foundational question of what is a functor valued in a category.
We address this below using the formalism of fibered category. We then define Stacks
which are the analogue of Spaces, and then algebraic Stacks which are the analogue of
algebraic spaces.

9.2. Fibered categories. Let S, C be two categories and let F : S → C be a functor
between them. Informally, we say that S is fibered over C if there is a good notion of base
change. Namely, let x ∈ Ob(S), and let U = F (x) ∈ Ob(C). Let f : V → U be a map in
C, then we would like to have an element f?x ∈ Ob(S), called the base change of x to V ,
with F (f?x) = V .

Definition 9.1. A strongly cartesian morphism φ : y → x in S is an arrow with the
property that :

HomS(z, y) = HomS(z, x)×HomC(F (z),F (x)) HomC(F (z), F (y))

Where the fibered product is given by :



43

HomS(z, y) HomS(z, x)

HomS(F (z), F (y)) HomC(F (z), F (x))

F (−)

F (φ◦−)

And the bijection is given by ψ 7→ η = (φ◦ψ,F (ψ)). This means that for all map η : z → x
such that F (η) factors through F (y), η factors through an unique ψ : z → y :

z y x C

F (z) V = F (y) U = F (x) S

η

∃!ψ
F

φ

F F F

F (φ)

By the Yoneda lemma, given f : V → U and x ∈ S with F (x) = U , if there is
a strongly cartesian φ : y → x with F (φ) = f , then (y, φ) is unique up to a unique
isomorphism.

Lemma 9.1. The composition of two strongly Cartesian morphisms is strongly cartesian.

Proof. Let φ : x′ → x and φ′ : x′′ → x be two strongly cartesian arrows. Let U, V,W be
the images of x, x′, x′′. We have that

HomS(z, x′′) = HomS(z, x′)×HomC(F (z),F (x′)) HomC(F (z), F (x′′))

HomS(z, x′) = HomS(z, x)×HomC(F (z),F (x)) HomC(F (z), F (x′))

So that
HomS(z, x′′) = HomS(z, x)×HomC(F (z),F (x)) HomC(F (z), F (x′′)).

�

Definition 9.2. Let F : S → C. We say that S is fibered over C if for any x ∈ Ob(S),
and U = F (x) ∈ Ob(C), and any map f : V → U , there is a strongly cartesian morphism
φ : f?x→ x in S with F (φ) = f .

Example 12. Let C be a category, then Arr(C) the category of arrows of C whose morphisms
are the commutative squares is a category over C with the functor ”target”. We can see
that cartesian morphism are just cartesian squares, and that Arr(C) is fibered over C if
and only if C has fiber product.

Let F : S → C be a fibered category. For all U ∈ C we let SU be the fiber category,
its objects are x ∈ C with F (x) = U and arrows f : x→ y in SU are arrows in C with the
property that F (f) = idU .

Lemma 9.2. For any arrow f : V → U , we can construct a pull back functor f? : SU →
SV .

Proof. By the axiom of choice, we can choose for any x ∈ Ob(SU ) a pull back f?x ∈
Ob(SV ). Let g : x → x′ be an arrow in SU . Then we get an arrow f?g : f?x → f?x′ by
using the universal property of strongly cartesian morphism. �

Lemma 9.3. Let F : S → C be a fibered category. We choose pull back functors f? :
SU → SV for any arrow f : U → V . Then the following properties hold :

(1) For any maps f : U → V and g : V → W , there is a unique isomorphism of
functors SW → SU , αf,g : (f ◦ g)? ' f? ◦ g?.

(2) If f = IdU , there is a canonical isomorphism Id?U = IdSU .
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Proof. For any x ∈ SW , (f ◦ g)?x and f?g?x are two pull backs of x. Therefore there is
a unique isomorphism (f ◦ g)?x → f?g?x. This gives the functor. Similarly, there is a
unique isomorphism Id?Ux = x giving the functor of point two. �

Remark 9.1. Thus the fibered category gives rise to U 7→ SU which is a contravariant
pseudo functor from the category C to the category of categories. The category of cat-
egories is a 2-category, with objects being categories, 1-morphisms being functors, and
2-morphisms being natural transformations. The 2-morphisms αf,g appear when trying
to compare various pull backs. All the identities satisfied by the 2-morphisms αf,g (when
varying f and g) are a little bit long to record. For this reason, one prefers the language
of fibered categories.

9.3. Fibred categories in groupoid.

9.3.1. Groupoid, setoid, discrete categories.

Definition 9.3. A groupoid is a category C such that all morphisms in C are invertible.

Definition 9.4. A setoid is a groupoid C such that any object x has a unique endomor-
phism : the identity.

Definition 9.5. A discrete category C is a category whose only morphisms are the identity
morphisms Idx for x ∈ Ob(C).

We can attach to a groupoid C a discrete category Cdisc obtained as follows : its ob-
jects are equivalence classes of object of C where x, y ∈ Ob(C) are equivalent if HomC(x, y) 6=
∅. There is a functor C → Cdisc, X 7→ X.

Lemma 9.4. Let C be a setoid. Then C is equivalent to Cdisc.

Proof. As C is a setoid, there are at most one morphism between two of its objects. We
define a quasi-inverse : if X ∈ Cdisc, we send it to X a chosen representant of the class,
and we send the only morphism X → X to IdX . �

9.3.2. S-groupoids. Let S be a scheme.

Definition 9.6. An S-groupoid is a fibered category X over Sch/S, p : X → Sch/S such
that, for U ∈ Ob(Sch/S), XU is a groupoid.

Example 13. Bunn,X → (Sch/S) is an S-groupoid, where we have defined the category
Bunn,X with Ob(Bunn,X) = {T → S ∈ (Sch/S), E a vector bundle of rank n over XT }
and a morphism (T ′, E ′) → (T, E) is the data of an S-morphism f : T ′ → T , and an
isomophism of vector bundle over XT ′ : ψ : E ′ → f∗E .

We have a trivial ”forgetfull” functor F : Bunn,X → (Sch/S). It is straightforward that
for an S-scheme U , the fiber of F at U is a groupoid.
Furthermore, if we take (T ′′, E ′′) and (T, E) two objects in Bunn,X , T ′ an S-scheme,
(f, ϕ) : (T ′′, E ′′) → (T, E) a morphism in Bunn,X and g : T ′ → T such that f factors
through g. If we let E ′ = g∗E , we can see that ϕ factors as well through E ′ and the mor-
phism inducing the factorization is uniquely determined by (f, ϕ). This show that Bunn,X
is indeed an S-groupoid.

Remark 9.2. Let x→ y be a map in X. Let f : p(x)→ p(y). Let f?y → y be a pull back
of y. Then the morphism x→ y factors as x→ f?y → y where x→ f?y is a map in XU .

Remark 9.3. One proves that equivalently, and S-groupoid X is a category over Sch/S,
p : X→ Sch/S such that
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(1) For any arrow φ : V → U and any object x ∈ X such that p(x) = U , there exists
an object y ∈ X and an arrow Ψ : y → x such that p(Ψ) = φ.

(2) For any diagram in X:

z
h→ x

f← y

in X with image in (Sch/S) :

W
χ→ U

φ← V

and any morphism ψ : W → V , such that χ = φ◦ψ, there is a unique arrow z → y
in X such that h = f ◦ g and p(g) = ψ.

Proof. First, if we take an S-groupoid X, the first point is true, if we take Ψ the strongly
cartesian morphism coming from φ. The second point is similarly true, since it is just the
definition rewritten if we take f = Ψ.
Conversly, we see as before that X must be a fiber category over Sch/S. Now, taking U
an S-scheme, x, y ∈ XU and f : x→ y taking U = V = W and the identity morphism for
χ and φ and for h yields the existence of an unique arrow y → x which is a right inverse
of f . Using the unicity, f is invertible. �

The category of S-groupoids denoted Gr/S is a 2-category. The 1-morphisms are
functors between the objects (the categories). The 2-morphisms are natural transforma-
tions between 1-morphisms (the functors).

Definition 9.7. Let X, Y be two objects of Gr/S. Let F : X→ Y be a 1-morphism. We
say that F is a monomorphism if F is fully faithfull. We say that F is an isomorphism if
F is an equivalence of categories.

Remark 9.4. We see that F is a monomorphism if for all U ∈ Ob(Sch/S), if FU = XU →
YU is fully faithfull. We see that F is an isomorphism if FU : XU → YU is an equivalence.

9.3.3. Fiber products. We want to explain the fiber product construction. Let X
p→ Y

q← Z
be a diagram of 1-morphisms. We construct an S-groupoid X×p,Y,q Z as follows:

For any U ∈ Sch/S, the fiber category (X ×p,Y,q Z)U has objects the triples (x, z, g)
where x ∈ XU , z ∈ ZU and g : p(x)→ p(z) is an arrow in YU .

A map (x, z, f)→ (x′, z′, f ′) is the data of arrow g : x→ x′ and h : z → z′ such that
the following diagram commutes :

p(x)

p(g)
��

f // q(z)

q(h)
��

p(x′)
f ′ // q(z′)

9.4. Presheaves and groupoids. Let X : (Sch/S)opp → SET be a presheaf. We can
turn it into a groupoid over S by letting XU = X(U) (this is the discrete category having
objects X(U) and the only arrows being the identity of the objects) and for any maps
φ : U → V , we let φ? : X(V )→ X(U) be the natural restriction map.

Lemma 9.5. Let X be an S-groupoid such that for all U , XU is a discrete category. Then
X is the groupoid associated to a presheaf.

Proof. The groupoid is entirely described by the pullback maps f? : XU → XV (which are
unambiguously defined) for any f : V → U . We can therefore consider the presheaf F
defined by F (U) = XU . �
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Lemma 9.6. Let X be an S-groupoid. The following are equivalent :

(1) X is isomorphic to a S-groupoid associated to a presheaf.
(2) The diagonal morphism ∆ : X→ X×S X is a monomorphism.

Proof. Let x ∈ XU . We have ∆U : HomXU (x, x) → HomX×SXU ((x, x, IdU ), (x, x, IdU )) =
HomXU (x, x) × HomXU (x, x) given by the diagonal map. This map is an isomorphism if
and only if HomXU (x, x) is {idx}. We can define an S-groupoid Xdisc by letting XdiscU =

(XU )disc. The map X→ Xdisc is an equivalence of categories. �

9.4.1. Schemes and groupoids. Any S-scheme T determines a presheaf and therefore an
S-groupoid. Concreteley, one considers the S-groupoid Sch/T → Sch/S.

We have the 2-yoneda lemma :

Lemma 9.7. Let T be an S-scheme. There is an equivalence of categories :

HomGr/S(T,X)→ XT

It sends a 1-morphism F : T → X to F (T → T ) ∈ Ob(XT ). It sends a 2 morphism
G : F → F ′ to the map F (T → T )→ F ′(T → T ).

Proof. Let x ∈ XT . We define a functor Sch/T → X as follows. We send any f : U → T ,
to f?x. �

We therefore get a fully faithful functor Sch/S → Gr/S.

9.5. Stacks.

Definition 9.8. A groupoid X over S is an S-stack if :

(1) For all (x, y) ∈ XU , the presheaf (Sch/U)opp → SET , V 7→ HomXV (xV , yV ) is a
sheaf,

(2) For all fppf covering {Ui → U}i∈I , any descent datum (xi, fi,j) is effective.

Let us spell out the two conditions. We can define the category DD({Ui → U}) whose
objects are (xi, fi,j) where xi ∈ Ob(XUi). For all i, j, we have maps p1 : Ui ×S Uj → Ui
and p2 : Ui ×S Uj → Uj . We have maps fi,j : p?1xi → p?2xj in XUi×SUj satisfying the
cocycle condition in XUi×SUj×SUk . Morphisms (xi, fi,j)→ (x′i, f

′
i,j) are collection of maps

xi → x′i compatible with the maps fi,j and f ′i,j We have a functor XU → DD({Ui → U}).
Let x ∈ Ob(XU ), we can define p?Uix = xi (for the projection pUi : Ui → U) and we
have canonical maps fi,j : p?1xi → p?2xj . Then condition 1) is asking that the functor
XU → DD({Ui → U}) is fully faithful, and condition 2) that it is essentially surjective.

Lemma 9.8. Let X be an S-stack. Let T → X ×S X (corresponding to (x1, x2) ∈ X2
T .

Then the fiber product :
T ×X×SX X

is the space over T given by V 7→ Hom(x1|V , x2|V ). Assume that ∆ : X → X ×S X is a
monomorphism. Then X is equivalent to an S-space.

Proof. An object of (T ×X×SX X)V is (x1|V , x2|V , x ∈ XV , f1 : x1|V → x, f2 : x2|V → x).
A morphism (x1|V , x2|V , x, f1, f2) → (x1|V , x2|V , x′, f ′1, f ′2) arises from a map h : x → x′

such that h◦fi = f ′i . This category is a Setoid, equivalent to the discrete category of maps
f : x1|V → x2|V . �

Example 14. Let X be an S-scheme. Let G be an affine S-group scheme which is acting
on X. We consider the quotient stack [X/G]. Its objects are (U, T, φ) :

(1) An S-scheme U → S.
(2) A U -scheme p : T → U which is a G×S U -torsor for the fppf topology.
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(3) A G-équivariant morphisme φ : T → X.

The morphisms are (U, T, φ)→ (U ′, T ′, φ′) are given by maps f : U → U ′, maps of torsors
F : T → T ′, such that p′ ◦ F = f ◦ p and φ′ ◦ F = φ.

We prove that this is indeed a Stack. Indeed, fppf -descent of G-torsors is effective
(because G is affine) and the functor of points of X is an fppf sheaf.

We can justify this construction. Let Spec k → S be a geometric point. We see
that [X/G]Spec k is the category with objects X(k) and morphisms Hom(x, x′) = {g ∈
G(k), gx = x′}.

Example 15. We see Bunn,X is a stack. This follows from descent theory for coherent sheaf,
granting the fact that the condition of being a vector bundle of rank n for a coherent sheaf
is local in the fppf -topology.

In order to prove this we first recall the following lemma :

Lemma 9.9 ([Sta13], TAG 00NX). Let M be an A-module. The following conditions are
equivalent :

(1) M is finitely presented and flat,
(2) M is finite and locally free,
(3) M is finite and projective.

Lemma 9.10. Let M be an A-module. Let A→ B be a faithfully flat morphism. Then :

(1) M is finitely presented if and only if M ⊗A B is finitely presented.
(2) M is flat if and only if M ⊗A B is flat.

9.6. Morphisms of stacks. The category of S-stacks is a 2-category that we denote by
Stack/S.

Definition 9.9. We say that a morphism F : X → X′ of S-stacks is an epimorphism
if for any U ∈ Ob(Sch/S) and any x ∈ X′U there is a covering {Ui → U} and objects
yi ∈ Ob(XUi) such that F (yi) is isomorphic to xUi. We say that F is a monomorphism, or
an isomorphism, if the morphism of S-groupoids is a monomorphism, or an isomorphism.

We now discuss representability.

Definition 9.10. An S-stack X is representable by algebraic spaces if there is an S-
algebraic space X and an isomorphism X → X.

Definition 9.11. An S-stack X is representable by a scheme if there exists an S-scheme
X and an isomorphism X → X.

Definition 9.12. Let F : X→ Y be a morphism of S-stack. We say that F is representable
by algebraic spaces if for any S-scheme T and any map T → Y, the fiber product X×Y T
is an algebraic space.

Let ∆ : X→ X×S X be the diagonal.

Lemma 9.11. The morphism ∆ is representable by algebraic spaces (resp. schemes)if and
only if, for any S-scheme T and any x, y ∈ Ob(XT ), the sheaf V 7→ Hom(xV , yV ) is an
algebraic space (resp. a scheme).

Let f : X → Y be a map of algebraic spaces. Recall that f is called representable
if for any scheme T , the fiber product T ×Y X is a scheme. Let P be a property of a
morphism of schemes which is stable under base change. We declared that f has property
P is for any scheme T , T ×Y X → T has property P .

Definition 9.13. A property P of morphisms of schemes is said to be étale local on source
and target if :
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(1) If f : X → Y is étale and g : Y → Z has P , then g ◦ f has P ,
(2) If f : X → Y has P and Y ′ → Y is étale, then X ×Y Y ′ → Y ′ has P ,
(3) Given a morphism f : X → Y , then f has P if and only if, for any x ∈ X, there

is a commutative diagram

U
g //

p

��

V

q

��
X

f // Y

with p, q étale, x ∈ p(U) and g has P .

Definition 9.14. Let f : X → Y be a map of algebraic spaces. Let P be a property of
morphism of schemes which is étale local on source and target. Then we declare that f
has property P if, for any commutative diagram :

U
g //

p

��

V

q

��
X

f // Y

with U, V schemes, p, q étale morphisme, g has property P .

Lemma 9.12. In the situation as above, f has property P if and only if g has property
P for p, q presentations of X and Y respectively.

Definition 9.15. Let F : X → Y be a morphism of S-stacks, representable by algebraic
spaces.

(1) Let P be a property of morphisms of schemes which is étale local on source and
target, stable under base change and fppf-local on the base. Then, we say that F
has property P if for any scheme T , FT : X×Y T → T has property P .

(2) Assume that F is representable by schemes. Let P be a property of morphisms of
schemes stable under base change and fppf-local on the base. Then we sat that F
has property P if for any scheme T , FT : X×Y T → T has property P .

9.7. Algebraic stacks.

Definition 9.16. A 1-morphism X → Y in Stack/S is said to be surjective if for all
U ∈ Ob(Sch/S) and all Y ∈ Ob(YU ), there exists a fppf covering {Ui → U | i ∈ I} and
objects Xi ∈ Ob(XUi) such that F (Xi) ' YUi

Remark 9.5. Compare this to the notion of surjectifity for sheaves.

Definition 9.17. An S-stack X is an algebraic stack if

(1) The morphism ∆ : X→ X×S X is representable by algebraic spaces,
(2) There is an S-algebraic space X and a smooth surjective morphism P : X → X.

Example 16. Let X be an S-scheme and let G be a smooth affine group scheme acting on
X (a : G × X → X). Then [X/G] is an algebraic stack. A presentation is given by the
morphism X → [X/G], mapping f : U → X to (U, T = G× U, φ = a× f : G× U → X).
We see that X ×[X/G] X = G×S X.
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10. Lecture IX : Harder-Narashiman filtration

10.1. Generalities. All quasi-coherent modules will be on a non singular geometrically
connected projective curve X. Let E be a vector bundle. The slope of E is :

µ(E) =
deg(E)

rk(E)

Proposition 10.1. Let E → E ′ be a map of vector bundles which is a generic isomorphism.
Then deg(E ′) ≥ deg(E) and equality holds if and only if the map is an isomorphism.

Proof. Consider a map f : E → E ′. This map induces an isomorphism at the generic
point η. Therefore ker(f) = 0 and coker(f) is a torsion sheaf. We consider the sequence
0→ E → E ′ → E ′/E → 0. Since deg is additive, we have that deg(E ′) = deg(E)+deg(E ′/E).
Since E ′/E is a torsion sheaf, we see that deg(E ′/E) ≥ 0 and is zero if and only if f is an
isomorphism. �

Proposition 10.2. Let 0→ E → E ′ → E ′′ → 0 be a short exact sequence of vector bundles.
We have

µ(E ′) ∈ [inf{µ(E), µ(E ′′)},max{µ(E), µ(E ′′)}].
Moreover, if µ(E) 6= µ(E ′′) then µ(E ′) lies in the interior of this interval.

Proof. Let µ(E) = a
b , µ(E) = a′

b′ , µ(E ′′) = a′′

b′′ with a′ = a + a′′ and b′ = b + b′′. Without
loss of generality (switching the names of E and E ′′), we can assume that µ(E) 6 µ(E ′′) so

that ba′′ − ab′′ > 0. We have a+a′′

b+b′′ −
a
b = ba′′−ab′′

(b+b′)b > 0 and a+a′′

b+b′′ −
a′′

b′′ = b′′a−ab′′
(b+b′)b′′ 6 0, with

equality if and only a
b = a′′

b′′ . �

Definition 10.1. A vector bundle E is called stable if for all subbundle 0 6= E ′ ( E, we
have µ(E ′) < µ(E). A vector bundle E is called semi-stable if for all subbundle 0 6= E ′ ⊆ E,
we have µ(E ′) ≤ µ(E).

Remark 10.1. One can also phrase the definition using quotients of E : A vector bundle E
is called stable if for all quotient E → E ′ 6= E , we have µ(E ′) > µ(E). A vector bundle E is
called semi-stable if for all quotient E → E ′, we have µ(E ′) ≥ µ(E).

Remark 10.2. An invertible sheaf is stable as it is simple.

Proposition 10.3. If E, F are vector bundles over X, then µ(E ⊗ F) = µ(E) + µ(F).
Also, µ(E∨) = −µ(E).

Proof. It results from the formula deg(E ⊗ F) = deg ErkF + degFrkE , which results,
denoting n = rkE and m = rkF from det E ⊗ F ' (det E)⊗m ⊗ (detF)⊗n, if (e1, . . . , en)
and (f1, . . . , fm) are local basis of E and F , then the isomorphism is (e1 ⊗ f1) ∧ (e2 ⊗
f1)∧ · · · (en ⊗ fm) 7→ [1∧ · · · ∧ en]⊗m ⊗ [f1 ∧ · · · ∧ fm]⊗n, which is well defined because for
endomorphism of free modules we have det(f ⊗ g) = det f × det g so that the map does
not depends on the local basis chosen.
For the statement on the slope of the dual, it suffices to show it for the degree. If E
correspond to (fx)x∈X ∈ GLn(K)\GLn(AK)/

∏
xGLn(Ox). Then deg E = degL where

L corresponds to (det fx)x ∈ GL1(K)\GL1(AK)/
∏
xGL1(Ox), then deg E∨ = degL−1, si

by using deg(E) = −
∑

x[k(x) : k]vx(det(fx)), we get deg E = −deg E∨. �

Remark 10.3. A vector bundle E is stable or semi-stable if and only if E∨ is stable or
semi-stable, if and only if E ⊗ L is stable or semi-stable. It follows from the previous
proposition
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Lemma 10.1. Let E , E ′ be semi-stable vector bundles with µ(E) > µ(E ′). Then Hom(E , E ′) =
0.

Proof. Let f be a non-zero morphism. Let E ′′ be the strict image of E in E ′. Then
µ(E ′′) ≥ µ(E) and we have a contradiction because µ(E) = µ(E ′′). �

Lemma 10.2. Let E , E ′ be semi-stable vector bundles with µ(E) + 2g − 2 < µ(E ′). Then
Ext1(E , E ′) = 0.

Proof. We use the corrolary for Serre duality for coherent sheaves : H0(X,Ω1
X/k ⊗ E

∨) '
H1(X, E), then Ext1(E , E ′) = H1(X, E∨⊗E ′) ' H0(X,Ω1

X/k⊗ (E∨⊗E ′)∨) = H0(X,Ω1
X/k⊗

E ⊗E ′∨) = H0(X,HomOX (E ′,Ω1
X/k⊗E)) = 0 because µ(Ω1

X/k⊗E) = 2g−2+µ(E) < µ(E ′)
and we use the previous lemma. �

10.2. The category of semi-stable vector bundles.

Theorem 10.1. Let µ ∈ Q. The full subcategory of Coh(X) of semi-stable vector bundles
of slope µ is an abelian category stable by extension.

Proof. Let E and E ′ be two semi-stable vector bundles of slope µ. Let f : E → E ′ be a
map. We see that

µ(E) ≤ µ(coim(f)) ≤ µ(im(f)) ≤ µ(E ′)
and therefore, coim(f) = im(f) are of slope µ. The morphism f is therefore strict. We
deduce that im(f) is semi-stable of slope µ. It follows that ker(f) and coker(f) are also
semi-stable of slope µ.

The part about extension follow immediately from the convexity property �

10.3. The Harder-Narashiman filtration.

Theorem 10.2. Let E be a vector bundle. Then E has a unique increasing filtration (for
some integer n) :

0 ( E1 ( · · · ( En = E
where Ei/Ei−1 is semi-stable of slope µi and µ1 > µ2 > · · · > µn.

Proof. For any subbundle E ′ ⊆ E , we have deg E ′ + rk(E ′)(1 − g) ≤ dimk H0(E ′) ≤
dimk H0(E). We deduce that deg E ′ is bounded by dimk H0(E) − rk(E)(1 − g) (if g ≥ 1),
and by dimk H0(E) otherwise. Thus, the set {µ(E ′), E ′ ⊆ E} is bounded above and the
maximum is reached. Let µ1 be the maximum. We claim that there is a maximal sub-
bundle with slope µ1. Indeed, let E1 and E2 be two subbundles with slope µ1. They are
semi-stable. Then the subbundle E1 + E2 (defined as the image of E1 ⊕E2 → E ) has slope
less or equal than µ1. Since E1⊕E2 is semi-stable of slope µ1, it has slope greater or equal
than µ1. We deduce that E1⊕E2 has slope µ1. Let E1 be the maximal subbundle with slope
µ1. Consider the short exact sequence 0 → E1 → E → E/E1 → 0. By the maximality of
µ1, any subbundle of E/E1 has slope < µ1. By induction, we deduce that E has a filtration
as in the theorem. It remains to prove uniqueness.

We shall prove that if F is a subbundle of E , then µ(F) ≤ µ1 and that equality implies
that F ⊆ E1. Indeed, the filtration induces a filtration on

F : 0 ( F1 ( · · · ( Fn = F
with Fn = En ∩ F . Moreover, Fi/Fi−1 ↪→ Ei/Ei−1. We deduce that µ(Fi/Fi−1) ≤ µi. It
follows from the convexity property that µ(F) ≤ µ1 with strict inequality if Fi/Fi−1 6= 0
for some i ≥ 2.
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Let 0 ( E ′1 ( · · · ( E ′n′ = E be another filtration. We deduce that µ′1 ≤ µ1 and that
µ1 ≤ µ′1 by symmetry. It follows that E1 = E ′1. By induction on the rank of E we will
conclude. �

Corollary 10.1. Let E be a vector bundle with HN-filtration

0 ( E1 ( · · · ( En = E .

Let E ′ ⊆ E be a subbundle which is a step of the HN filtration of E. The HN-filtration of
E ′ is {E ′ ∩ Ei}. The HN-filtration of E/E ′ is {Ei/(E ′ ∩ Ei)}.

We define the HN-polygon of the filtration to be the convex polygon in the plan with
vertices (0, 0), (deg(E1), rk(E1)), · · · , (deg(E), rk(E)).

Proposition 10.4. The HN-polygon is the convex hull of the set of point (rk(E ′),deg(E ′))
for E ′ ⊆ E.

Proof. Let E ′ ⊆ E . Consider the HN-filtration 0 ( E1 ( · · · ( En = E of E . Let
ri = rk(Ei/Ei−1). We get a filtration {E ′i = Ei ∩ E ′} for which E ′i/E ′i−1 has slope µ′i ≤ µi
and rank r′i ≤ ri. We have deg(E ′) =

∑
r′iµ
′
i. This proves that the point (rk(E ′), deg(E ′))

is below the HN-polygon. �

Example 17. If one take a vector bundle E of rank 4 of degree 4, with a filtratrion with
ranks and degrees (1, 2), (3, 3), (4, 4), the polygon is :

1 2 3 4 5

1

2

3

4

5

We can actually read some informations on the polygon. For example, if it has a
”slope jump” greater to 2g − 2 at an edge (ri, di) (which means that the difference of the
slope after i and before i is greater than 2g − g, then F is not indecomposable. Indeed,
Lemma 1.2 would give Ext1(Fj/Fj−1,Fk/Fk−1) for all k 6 i < j so that the HN filtration
splits at i : F = Fj>i ⊕Fj6i.
Also, as there are only finitely many convex polygones with integer coordinates with slope
jump less than 2g − 2, going from (0, 0) to (r, d) we see that there are only finitely many
possible sequences of (ri, di) that are the ranks and degrees of the HN filtration containing
an indecomposable vector bundle. It can be seen that the only degree of freedom left is
the data of the Ext1(Fj/Fj−1,Fk/Fk−1), which are in finite number, and if k is finite,
are finite, so we get only a finite amount of semi-simple vector bundle of given rank and
degree. Therefore we have only indecomposable ones too.

11. Lecture X : Bunn,X is an algebraic stack

In this lecture, all schemes are noetherian unless explicitly specified.
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11.1. Coherent sheaves on projective space.

Lemma 11.1 ([Har77], II, lem. 5.14). Let X be a scheme. Let L be an invertible sheaf.
Let f ∈ H0(X,L). Let Xf = D(f). Let F be a coherent sheaf on X.

(1) If X is quasi-compact, and s ∈ H0(X,F ) is such that s|Xf = 0. Then there is

n ∈ N, fns = 0 in H0(X,F ⊗ L).
(2) If X is quasi-compact and quasi-separated, and if s ∈ H0(Xf ,F , there exists n ∈ N

such that fns ∈ H0(X,F ⊗ L).

Let A be a noetherian ring, S = Spec A. Let R = A[X0, · · ·Xn]. Let M = ⊕Mn be a

graded R-module. Then we define M̃ a quasi-coherent sheaf on PnS . We have M̃(D(Xi)) =
(M [1/Xi])0 (the subscript 0 means the elements of degree 0). Conversely, let F be a quasi-
coherent sheaf on PnS , we define M(F ) = ⊕nH0(PnS ,F (n)).

Proposition 11.1 ([Har77], II, prop. 5.15). The canonical map ˜M(F ) → F is an
isomorphism.

Corollary 11.1 ([Har77], II, thm. 5.17, coro. 5.18). Let F be a coherent sheaf over the
projective space. There exists n such that we have a surjective map ON

PnS
→ F (n).

11.2. Cohomology of coherent sheaves.

11.2.1. Generalities. Let X be a scheme. The functor Γ(X,−) : Mod(X) → Ab is left
exact. The category Mod(X) has enough injectives. It follows that the functor Γ(X) can
be derived into : RΓ(X,−) : D+(Mod(X))→ D+(Ab).

Let F ∈ Mod(X). We can compute the cohomology as follows : pick an injective
resolution F → I•. Then RΓ(X,−) is represented by H0(X, I•). Actually, we can take
any Γ(X,−) acyclic resolution. Another way to express the cohomology is using Chech
cohomology.

Let X be a scheme and let U = {Ui → X} be a Zariski cover. Then we let

Č•(U ,F ) =
∏
i

H0(Ui,F )→
∏
i,j

H0(Ui ∩ Uj ,F )→ · · ·

We let Ȟi(U ,F ) = Hi(Č•(U ,F )). We let Ȟi(X,F ) = colimU Ȟi(U ,F ). This is the
Chech cohomology.

Lemma 11.2 ([Sta13], TAG 01EW, TAG 01ET). Let X be a scheme. Assume that there
is a basis B of open of X stable under intersection such that for each U ∈ B, Ȟi(U,F ) = 0
for all i > 0. Then Hi(U,F ) = 0 for all i > 0 and Hi(X,F ) = Ȟi(X,F ) = Ȟi(U ,F )
where U is a coverning of elements of B.

Theorem 11.1 ([Har77], III, thm. 3.7). If X is an affine scheme and F ∈ QCoh(X),
Hi(X,F ) = 0 for all i > 0.

Proof. We first check that Chech cohomology vanishes on any affine. The theorem follows
by the above lemma. �

Corollary 11.2 ([Har77], III, thm. 4.5). Let X be a separated scheme. Let F be a
quasi-coherent sheaf. Let ∪iUi be an affine cover. The Cech complex :∏

i

H0(Ui,F )→
∏
i,j

H0(Ui ∩ Uj ,F )→ · · ·

represents the cohomology RΓ(X,F ).

Proof. The resolution F →
∏
i F |Ui →

∏
i,j F |Ui∩Uj → · · · is Γ(X,−) acyclic. �
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11.2.2. Relative cohomology. [[Har77], III, section 8] Let f : X → Y be a morphism
of schemes. We have the functor f? : Mod(X) → Mod(Y ) and it can be derived into
Rf? : D+(Mod(X)) → D+(Ab). Concretely, we can take an injective resolution F → I•

and Rf?F is represented by f?I
•. We let Rif?F = Hi(f?I•).

Lemma 11.3. Rif?F is the sheaf associated to the presheaf U 7→ Hi(X ×Y U,F ).

Proof. We have Hi(f?I•) is the sheaf associated to U 7→ Hi(Γ(XU , I
•)). We see that I•|XU

is a complex of flasque sheaves (hence Γ(XU ,−)-acyclic). So Hi(XU , I
•) = Hi(XU ,F ). �

Theorem 11.2. Assume that F is quasi-coherent. Then Rif?F is a quasi-coherent sheaf
and for any open affine U of Y , Rif?F (U) = Hi(X ×Y U,F ).

Proof. We only give the proof for a separated, quasi-compact morphism. We can assume
that Y = Spec A is affine. We take a finite affine cover U of X. Then Č(U ,F ) represents
RΓ(X,F ). For any A→ B localization, Č(U ,F )⊗A B represents RΓ(X ×Y Spec B,F ).
And since A→ B is flat, Hi(Č(U ,F )⊗A B) = Hi(Č(U ,F ))⊗A B. �

11.2.3. Finiteness theorem.

Theorem 11.3 ([Har77], III, thm. 5.2). Let S = Spec A be a noetherian affine scheme.
Let F be a coherent sheaf on X = PnS. Then

(1) For all i ≥ 0, Hi(X,F ) is a finitely generated A-module.
(2) There is an integer n0 such that for all n ≥ n0, Hi(X,F (n)) = 0 for all i > 0 and

all n ≥ n0.

Remark 11.1. Let X → S be a projective scheme. Let ι : X ↪→ PnS be the closed immersion.
The functor i? : Mod(X)→Mod(PnS) is exact and sends injectives to injectives. It follows
that for any sheaf F , we have RΓ(X,F ) = RΓ(PnS , ι?F ).

Theorem 11.4. Let S = Spec A be a noetherian affine scheme. Let F be a coherent
sheaf on PnS = X. Then M(F ) is finitely generated : there exists n0 such that for all
n ≥ n0 the map :

H0(X,OX(n− n0))⊗H0(X,F (n0))→ H0(X,F (n))

is surjective.

Proof. Pick an exact sequence 0 → G → Os
X → F (n1) → 0. By twisiting we may

assume that for all n ≥ n2, the map Os
X(n) → F (n1 + n) induces a surjective map

H0(X,Os
X(n))→ H0(X,F (n1 + n)). �

Remark 11.2. This implies in particular that H0(X,F (r))⊗OX → F (r) is surjective for
any r ≥ r0.

Proposition 11.2. Let X be a smooth projective curve over a field k. Let L be an
invertible sheaf. Assume that deg(L) > 2g− 2, then Hi(X,L(n))) = 0 for all i > 0 and all
n ≥ 0. Moreover, L(n) is generated by global sections for all for all n ≥ 1.

Proof. By the duality theorem, we know that H1(X,L) = H0(X,Ω1
X ⊗L∨) = 0 if degL >

2g − 2. This proves the first point. For the second point, let us assume that k is infinite
(we may extend scalars). We can find an hyperplane H ⊆ PN such that X ∩H = D is an
effective divisor (just take x ∈ X(k) and find an hyperplane H such that x /∈ H).

We thus have an exact sequence 0→ L(n)→ L(n+ 1)→ L(n+ 1)|D → 0. It induces
an exact sequence 0→ H0(X,L(n))→ H0(X,L(n+ 1))→ H0(X,L(n+ 1)|D)→ 0.

We consider the map H0(PN ,O(1))⊗k H0(X,L(n))→ H0(X,L(n+ 1)).
For all n ≥ 1, the map H0(X,L(n))→ H0(D,L(n)) is surjective, therefore H0(PN ,O(1))⊗k

H0(X,L(n))→ H0(D,L(n+1)) is surjective. We deduce that H0(PN ,O(1))⊗kH0(X,L(n))→
H0(X,L(n+ 1)) is surjective for all n ≥ 1. �
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11.2.4. The semi-continuity theorem.

Theorem 11.5 ([Har77], III, prop. 12.2). Let X → S be a projective scheme of relative
dimension n. Let F be a coherent sheaf on X, flat over A. Then there is a bounded
complex K• of finite flat A-modules, of amplitude [0, n] such that for any A-module M ,
RΓ(X,F ⊗M) is represented by :

K• ⊗AM

Proof. We only give a proof in the curve case. Assume X = U1 ∪ U2 is covered by
two affines. We let L• = [H0(U1,F ) ⊕ H0(U2,F ) → H0(U1 ∩ U2,F )]. This represents
RΓ(X,F ) and L• ⊗AM represents RΓ(X,F ⊗AM). We let x1, · · · , xr be generators of
H1(L•) in L1. We let K1 = Ar and we consider the map g1 : K1 → L1 given by these
generators. Let y1, · · · , ys be generators of Ker(K1 → H1(L•). We choose lifts ŷi of g(yi)
in L0. We let K0

1 = As we have maps K0
1 → K1 (given by y1, · · · , ys) and K0

1 → L0 given
by ŷi. We let z0, · · · , zt be generators of H0(L0). We K0

2 = At we have a map K0
2 → L0

given by z0, · · · , zt.
We see that there is a commutative diagram.

L0 // L1

K0
1 ⊕K0

2
//

OO

K1

OO

If we let (K ′)• be the bottom complex, the map H0((K ′)•) → H0(L•) is surjective,
let K0

3 be its Kernel.
Finally, we let K0 = K0

1 ⊕K0
2/K

0
3 and we get a diagram :

L0 // L1

K0 //

OO

K1

OO

Since the map K• → L• is a quasi-isomorphism, the cone 0 → K0 → K1 ⊕ L0 →
L1 → 0 is exact. It follows that K0 is flat.

We see that K• ⊗AM → L• ⊗AM is a quasi-isomorphism for all A-module M since
the cone : 0→ K0 ⊗AM → K1 ⊗AM ⊕ L0 ⊗AM → L1 ⊗AM → 0 is exact. �

Corollary 11.3. (1) The function s→ dimk Hi(Xs,Fs) is upper semi-continuous.
(2) The function s→

∑
i≥0(−1)i dimk(s) Hi(Xs,Fs) is locally constant.

Proof. For a map An → As, the locus where the rank is ≥ i is open. One deduces the first
claim. For the second we have

∑
i≥0(−1)i dimk(s) Hi(Xs,Fs) =

∑
(−1)i dimk(s)K

i ⊗A
k(s). �

Corollary 11.4. The following conditions are equivalent :

(1) Hi(X,F ) = 0 for all i > 0,
(2) Hi(Xs,Fs) = 0 for all i > 0,

Moreover, if this is the case, H0(X,F ) is a flat A-module and the map H0(X,F )⊗Ak(x)→
H0(Xx,Fx) is an isomorphism.

Proof. In case of 1, we see that 0 → H0(X,F ) → K0 → K1 → · · · is exact. It follows
that H0(X,F ) is flat and tensoring with k(x), the sequence remains exact. In case of 2.
Let i be the smallest degree such that Hi(X,F ) 6= 0. We claim that Hi(X,F )⊗A k(x)→
Hi(Xx,Fx) is an isomorphism. Consider the sequence 0 → ker(di) → Ki → Im(di) → 0.
Since Im(di) is flat (because 0 → Im(di) → Ki+1 → · · · is exact) we see that ker(di) ⊗
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k(x) = ker(Ki ⊗ k(x) → Ki+1 ⊗ k(x)). Since Im(di−1) → ker(di) → Hi(X,F ) → 0 is
exact, tensoring with k(x) shows the claim. We deduce that if i > 0, Hi(X,F ) = 0 by
Nakayama. Therefore i = 0. �

11.2.5. Hilbert Polynomials. Let F be a coherent sheaf on Pnk where k is a field. We let
PF (m) = χ(F (m)) =

∑
i≥0(−1)i dimk Hi(Pnk ,F (m)).

Theorem 11.6. PF (m) is a polynomial of degree the dimension of the support of F .

Example 18. If F is supported on a non-singular curve of genus g, PF (m) = mdegO(1)rk(F )+
deg(F ) + rk(F )(1− g).

Corollary 11.5. Let X → S be a projective scheme. Let F be a coherent sheaf on X, flat
over A. Then the function Spec A→ Q[X] which sends x to PFx(m) is locally constant.

11.2.6. Castelnuovo-Mumford regularity theorem.

Theorem 11.7. Let k be a field and let F ↪→ O`
Pnk

be a coherent sheaf on Pnk . With Hilbert

polynomial P . Then, there is r0 ≥ 0, depending only on P, n, ` such that :

(1) For all r ≥ r0, for all i > 0, Hi(Pnk ,F (r)) = 0,
(2) For all r ≥ r0, H0(X,OPnk (r − r0))⊗H0(Pnk ,F (r0))→ H0(Pnk ,F (r)) is surjective.

Proof. See [Nit05], thm. 2.3. �

11.3. Schemes of homomorphisms of coherent sheaves.

Theorem 11.8. Let π : X → S be a projective scheme. Let F be a coherent sheaf which
is flat over S. There exists a coherent sheaf Q on S and a functorial isomorphism for any
quasi-coherent sheaf G on S :

π?(F ⊗OX π
?G ) = HomOS (Q,G )

Proof. Let G be attached to the A-module G. We have H0(F⊗OX π
?G ) = Ker(K0⊗AG→

K1 ⊗A G). Take Q = coker(K∨1 → K∨0 ). �

Let Q be a coherent sheaf over S. Let V(Q) = SpecS SymOSQ. We have Hom(Q, π?OT ) =
V(Q)(T ).

Theorem 11.9. Let E , F be coherent sheaves over X → S a projective scheme. Assume
that F is flat over S. Consider the functor Hom(E ,F ) : (Sch/S)opp → SET which sends
T to HomXT (E |XT ,F |XT ). Then this is representable by a linear scheme V.

Proof. First assume that E is locally free. Then we want to represent the functor T 7→
H0(XT ,E

∨⊗F ) and by the above theorem this is representable by V(Q). In general, pick a
resolution E1 → E0 → E → 0 by locally free sheaves. Consider the map V(Q0)→ V(Q1).
Then V is the kernel of this map. �

11.4. The diagonal of Bunn,X is representable by schemes.

Proposition 11.3. The diagonal of Bunn,X is representable by schemes.

Proof. Let T be a k-scheme. Let T → Bunn,X ×S Bunn,X be a morphism. Let E , E ′ be
the vector bundles over XT corresponding to this morphism.

Consider the functor (Sch/T )opp → SET sending U to IsomXU (EXU , E ′XU ). We want

to prove that it is representable. We know that Hom(E , E ′), Hom(E ′, E ′), Hom(E , E),
Hom(E ′, E) are representable and we have a map : Hom(E , E ′)×Hom(E ′, E)→ Hom(E , E)×
Hom(E ′, E ′) given by composing.

The preimage of IdE × IdE ′ is the scheme representing U 7→ IsomXU (EXU , E ′XU ). �
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11.5. Flatness.

11.5.1. Preliminary results.

Lemma 11.4. Let F be a coherent sheaf on PNS . Then F is flat over S if and only if
there exists r0 such that for all r ≥ r0, π?F (r) is locally free over S. Moreover r0 =
inf{r,Riπ?F (r′) = 0 ∀r′ ≥ r} works.

Proof. We see that F is flat if and only if F (r) is flat for some r. If π?F (r) if flat for all

r ≥ r0 we deduce that M(F (r0)) is flat and therefore ˜M(F (r0)) is flat. Conversely, we
can use theorem 11.3. �

Lemma 11.5. Let X → S be a finite type morphism where S is an integral scheme. Let
F be a coherent sheaf over X. There is a non-empty open subset U ⊆ S such that F |U
is flat over U .

This is a consequence of the following proposition :

Proposition 11.4. Let A be an integral ring, let B be an A-algebra of finite type. Let M
be a finite B-module. There exists f ∈ A \ {0} such that Mf is free over Af .

Proof. Let K = Frac(A). The proof is by induction on the dimension of the support of
M ⊗ K. We also note that if we have an exact sequence 0 → M1 → M2 → M3 → 0
and the lemma holds for M1 and M3 it holds for M2. Suppose that M ⊗ K is zero.
Let m1, · · · ,mn be generators of M as a B-module. There exists f ∈ A 6= 0 such that
fm1 = · · · = fmn = 0. ThereforeM⊗AAf = 0. In general, we recall thatM is a successive
extension of modules of the form B/p where p is a prime ideal ([Sta13], lem. TAG 00L0).
We reduce to the case that M = B is a domain. By Noether normalization, there exists
f ∈ A and b1, · · · , bn ∈ B such that Af → Af [b1, · · · , bn] → Bf where Af [b1, · · · , bn] is
a polynomial algebra and Af [b1, · · · , bn] → B is finite. We let r be the generic rank of
M over Af [b1, · · · , bn]. We have a map 0 → Af [b1, · · · , bn]r → M → T → 0 and the
dimension of the support of T ⊗K is less than n. �

Corollary 11.6. Let X → S be a finite type morphism where S is a Noetherian scheme.
Let F be a coherent sheaf over X. There are finitely many locally closed subschemes Si
of S such that |S| = ∪i|Si| and F |Si is flat.

Proof. We first assume that S is reduced. Then we can find an open subscheme U1 ⊆ S
such that F |U1 is smooth. We then consider the reduced complement of U1 and so on...
The process ends by Noetherianity. �

Corollary 11.7. Let X → S be a finite type morphism where S = Spec A is a Noetherian
scheme. Let F be a coherent sheaf over X. Then there exists r0 such that for all r ≥ r0,
for all s ∈ S, Hi(Xs,F (r)) = 0 for all i > 0 and the map

H0(X,F (r))⊗A k(s)→ H0(Xs,F (r))

is an isomorphism.

Proof. We consider the finitely many Sj from the previous corollary. We can assume that
they are closed in affine open of S. The first statement follows by taking r0 such that
for all r ≥ r0, Hi(XSi ,F (r)) = 0 for all i > 0 and all j. For the second statement
write Sj = Spec Afj/Ij . The map H0(X,F (r)) ⊗A Afi → H0(X ×S Spec Afj ,F (r)) are
isomorphisms. Consider the maps :

H0(X ×S Spec Afj , IjF (r))→ H0(X ×S Spec Afj ,F (r))

→ H0(X ×S Spec Afj ,F (r)/Ij)→ H1(X ×S Spec Afj , IjF (r))
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We can take r0 such that for all r ≥ r0, all j, H1(X ×S Spec Afj , IjF (r)) = 0 and the

map Ij ⊗A H0(X ×S Spec Afj ,F (r))→ H0(X ×S Spec Afj , IjF (r)) is surjective. �

11.5.2. Flattening stratification. We begin by Fitting ideals. Let R be a noetherian ring.
Let M be a finite R-module. We can choose a presentation : Rn

′ → Rn → M → 0. We
let A be the n′ × n matrix giving the map.

Definition 11.1. We let Fitti(M) be the ideal generated by the n− i×n− i-minors of A.

Proposition 11.5. The ideals Fitti(M) are independent of the choice of the presentation.
Moreover, we have 0 ⊆ Fitt0(M) ⊆ · · · ⊆ Fittn(M) = R.

Let Rn be the free module. We see that Fittn−1(Rn) = 0 and Fittn(Rn) = R.

Lemma 11.6. Let R→ R′ be a ring map. Then Fitti(M ⊗R R′) = Fitti(M)R′.

Proposition 11.6. A module M is locally free of rank k if and only if Fittk−1(M) = 0
and Fittk(M) = R.

Proof. If M is locally free of rank k, we reduce to the free case by Zariski localization.
Conversely, assume that Fittk(M) = R. Let m be a maximal ideal. We see that M/mM
is generated by k-elements. Therefore, (after localization) we may assume that we have

a surjection Rk → M . Take a presentation Rk
′ → Rk → M . We see that the ideal

generated by the coefficients of the matrix is zero. Therefore the map Rk
′ → Rk is zero

and M = Rk. �

Theorem 11.10. Let S be a Noetherian scheme. Let F be a coherent sheaf on PNS . Then
the function S → Q[X] which maps s ∈ S to PFs takes finitely many values. Let I be
the set of values. For any f ∈ I, there exists a locally closed subscheme Sf of S with the
following property

(1) The points of Sf are exactly the points of S with Hilbert polynomial equal to f . In
particular, S is the disjoint union of the Sf .

(2) Let S′ =
∐
Sf . Then the sheaf FS′ is flat over S′. Moreover, a morphism T → S

factors through S′ if and only if FT is flat over T .
(3) Define a partial order on I by declaring that f ≥ g if f(n) ≥ g(n) for all n >>.

Then the closure in S of Sf is contained in the union of the Sg with g ≥ f .

Proof. We can construct finitely many locally closed subscheme S′ of S such |S| = ∪|S′|
and that FS′ is flat. Since the Hilbert Polynomial is locally constant over S′, we conclude
that the set of possible Hilbert Polynomials is finite.

Next, we consider the case that n = 0. Therefore, we have a coherent sheaf over
S. Without loss of generality, we can assume that S = Spec A if affine and we let
H0(S,F ) = M . Let us pick a presentation of M : Ar → As → M → 0, the map
Ar → As is represented by an r × s matrix N . We now consider the ideals Fitti(M) =
{determinant of size s− i of N}. We let S≥i = V (Fitti−1) and we have Si = S≥i\ ⊆
S≥i+1. In this case, PFs = dimk(s)(F |s) and the Sk, k ∈ Z are the flattening stratification.
We now deal with the general case. We claim that there exists r0 such that for all r ≥ r0,
we have :

(1) For all s ∈ S, the maps H0(PNS ,F (r))→ H0(PNs ,Fs(r)) are surjective,
(2) For all s ∈ S, Hi(PNs ,Fs(r)) = 0 for all i > 0.

We now consider the flattening stratification of π?F (r0) : S =
∐
f∈I Sf(r0). Then

we consider the flattening stratification of π?F (r0)⊕ π?F (r0 + 1)...⊕ π?F (r0 + l) : S =
∪f∈ISf(r0),f(r0+1),··· where on Sf(r0),f(r0+1),···, π?F (r0 + i) is flat of rank f(r0 + i). These
stratifications refine each other. We observe that by property 1) and 2) a point s ∈ S such



58

that Fs has hilbert polynomial f lands into the stratum Sf(r0),f(r0+1),···. Now, for l >>,

the map I → Zl, f 7→ f(r0), · · · , f(r0 + l) is injective.
We deduce that the stratification is set theoretically constant for l >>. By Noethe-

rianity it is constant for l >>.
We therefore have found S =

∐
Sf . We see that the map π?F (r)|Sf → π?(F (r)|Sf )

is an isomorphism by property 1). We deduce that F |Sf is flat.
Let T → S be a map such that F |T is flat. We may assume that the Hilbert

polynomial of F is constant over T equal to f . We see from 2) that for all r ≥ r0,
(πT )?F (r) is flat for r ≥ r0 of rank f(r0). We deduce that T factors through Sf .

�

11.6. Quot schemes. Let X → S be a projective scheme. Let F be a coherent sheaf
over X, which is flat over S. We let QuotF/X/S : (Sch/S)op → SET be the functor which
sends T to the set of isomorphism classes of quotients FT → G which are flat over T .

Let P ∈ Q[X]. We can consider the locus QuotPF/X/S where the Hilbert polynomial

of G is constant equal to P .

Theorem 11.11. The functor QuotPF/X/S is representable by a projective scheme.

Remark 11.3. Here we understand projective in the following ”weak” sense : there is a
closed embedding of QuotPF/X/S inside P(W ) where W is a locally free sheaf over S of

constant rank. This means that P(W ) is Zariski locally over S a projective space.

11.6.1. Grassmanians. We consider the case where X = S, therefore F is a vector bundle
of rank r, and P has to be given by an integer 0 ≤ d ≤ r. In this case QuotPF/X/S =

GR(F , d) is a ”twisted” grassmanian. It is the grassmanian when F is free.

Proposition 11.7. The sheaf GR(F , d) is representable by a projective scheme.

Proof. We reduce to the case that F is free (work locally on S). In this case, we let
GR(F , d) = GR(r, d). Let J ⊆ {1, · · · , r} be a set of cardinal d. Let GR(r, d)J be the

subfunctor which parametrizes quotients Or
T

φ→ G such that {φ(ei)}i∈J generate G . We see
that GR(r, d)J is representable by Spec A[xi,j , i ∈ Jc, j ∈ J ] where φ(ei) =

∑
j∈J xi,jφ(ej)

for i ∈ Jc. We also see that GR(r, d)J is an open subsheaf of GR(r, d). Indeed, let
T → GR(r, d) be a map. We see that T ×GR(r,d) GR(r, d)J = T \ sup(G /〈φ(ej), j ∈ Jc〉).
We also see that

∐
J GR(r, d)J → GR(r, d) is a covering. This proves the proposition. �

11.6.2. Reduction.

Lemma 11.7. It suffices to prove the theorem for QuotOPN
S

(r)t/PNS /S
.

Proof. Consider a closed immersion X ↪→ PNS and a surjective map OPNS
(r)t → F . Then

we claim that the map QuotF/X/S ↪→ QuotOPN
S

(r)t/PNS /S
is a closed immersion. Indeed let

F ′ = ker(OPNS
(r)t → F ). Then QuotF/X/S is the fiber of the map QuotOPN

S
(r)t/PNS /S

→

Hom(F ′,G ) at the zero section. �

11.6.3. End of the proof. We fix the Hilbert Polynomial P . We now assume also that
X = PNS and F = OPNS

(r)t.

We claim that there exists ν such that for any map T → QuotPF/X/S and any asso-

ciated short exact sequence 0 → H → F → G → 0 of XT , we have (for the projection
π : XT → T :
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(1) We have Riπ?H (ν) = Riπ?F (ν) = Riπ?G (ν) = 0 for all i > 0. It follows that
π?H (ν), π?F (ν), π?G (ν) are locally free, and the sequence : 0 → π?H (ν) →
π?F (ν)→ π?G → 0 is exact.

(2) The map π?π?H (ν)→H (ν) is surjective.

We deduce that there is a commutative diagram :

0 // π?π?H (ν) //

��

π?π?F (ν) //

��

π?π?G (ν) //

��

0

0 // H (ν) // F (ν) // G (ν) // 0

And the quotient map F (ν)→ G (ν) is determined by the map π?H (ν)→ π?F (ν).
This gives an embeddingQuotPF/X/S → GR(π?F (ν), P (ν)). This identifiesQuotPF/X/S

with a locally closed subscheme of GR(π?F (ν), P (ν)). Indeed, let 0→H1 → π?F (ν)→
G1 → 0 be the universal short exact sequence.

Let us consider the quotient π?H1 → F → F/π?H1 → 0. Then QuotPF/X/S is the

locally closed subscheme of GR(π?F (ν), P (ν)) where F/π?H1 → 0 is flat and has Hilbert
polynomial P (ν +−).

We have proved that QuotPF/X/S is a quasi-projective S-scheme. It suffices to prove it

is proper. We use the valuative criterion. Let R be a discrete valuation ring with quotient
field K. Consider a map Spec K → QuotPF/X/S . And assume that Spec R→ S.

Let FSpec K → G be the quotient. Let G ′ be the image of FSpec R inside G . This
is a flat sheaf over R (because torsion free), and it provides the required unique extension
to a point Spec R→ QuotPF/X/S .

11.7. Bunn,X is an algebraic stack. For any d,N , we let Ud,N be the substack of Bunn,X
defined by Ob(Ud,N )S is the set of E ∈ Ob(Bunn,X)S satisfying :

(1) R1(pS)?E(d) = 0,
(2) p?S(pS)?E(d)→ E(d) is surjective,
(3) (pS)?E(d) is of rank N .

The map Ud,N → Bunn,X is a schematic open immersion. Indeed let S → Bunn,X .
Let us compute the fiber product S×Bunn,X Ud,N . This is the locus in S where conditions
(1), (2) and (3) hold.

Condition (1) holds over the open S′ = S \Support(R1(pS)?E(d)). Condition (1) and
(2) holds over S′′ = S′ \ Support(cokerp?S(pS)?E(d) → E(d)). By (1), (pS)?E(d) is locally
free of rank N , thus condition (3) holds over an open and closed subscheme of S′′.

Note also that N is related to the degree of E by the formula N = ddegO(1)n +
deg(E) + n(1− g).

By the vanishing theorems we have : Bunn,X = ∪d,NUd,N .

Let Yd,N → Ud,N be defined by Ob(Yd,N )S = {E , λ : ON
S ' (pS)?E(d)}. The map

Yd,N → Ud,N is representable by schemes and is a GLN -torsor.
We have a map Yd,N → QuotONX /X/k

. We claim that this is an open immersion. Let

T → QuotONX /X/k
. Let us consider a quotient ON

XT
→ G where G is flat over T . We first

claim that the set of t ∈ T such that Gt is flat over Xt of rank n is open in T . This follows
from the following lemma :

Lemma 11.8 ([Sta13] TAG 00MP). Let R → S be a map of local rings. Let M be an
S-module of finite type which is flat over R. Assume that M/mRM is flat over S/mRS.
Then M is flat over S.
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Let U be this open of T . Then GU is flat over XU . Now the condition that U factors
through Yd,N are open (GU is of rank n + (1), (2), (3)).

We also observe that Yd,N is quasi-projective, since the Hilbert polynomial of GU is
determined by N . We deduce that

∐
d,N Yd,N → Bunn,X is a presentation.

12. Lecture XI : The Harder Narashiman filtration and families

12.0.1. Invariance of the HN filtration under base extension.

Theorem 12.1. Let X → Spec k be a complete, non-singular geometrically connected
curve. Let E be a vector bundle over X. Let k → l be a field extension. Let Xl =
X ×Spec k Spec l. Let p : Xl → X. Let E• be the HN filtration of E. Then p?E• is the HN
filtration of p?E.

12.0.2. Partial order. Let Qn
+ be the cone in Qn of vectors (x1, · · · , xn) with x1 ≥ x2 · · · ≥

xn. We define a partial order in Qn
+ : we say that x = (x1, · · · , xn) ≥ x′ = (x′1, · · · , x′n) if

x1 ≥ x′1, x1 + x2 ≥ x′1 + x′2, · · · ,
∑n−1

i=1 xi ≥
∑n−1

i=1 x
′
i,
∑n

i=1 xi =
∑n

i=1 x
′
i.

Let E be a rank n vector bundle with HN filtration E•. We letHN(E) = (µ(E1)rk(E1), µ(E2)rk(E2), · · · ) ∈
Qn

+ be the HN vector of E .

12.0.3. Behaviour of the HN filtration in families. Let S = SpecA→ Spec k. Let E be a
vector bundle over XS .

Since the functions rk and deg are locally constant on S we can assume (after replacing
S by a connected component) that they are constant. We let µ = µ(Es). For any P ∈ Q+,
P ≥ (µ)n, we let S≤P be the set of points s ∈ S such that HN(Es) ≤ P . We also let S=P

be the set of points s ∈ S such that HN(Es) ≤ P .

Theorem 12.2. S≤P is open in S.

Lemma 12.1. The set S=(µ)n is open.

Proof. First assume S = Specl is a point. Recall that if E ′ ↪→ E is a subbundle, then
deg E ′ + rk(E ′)(1 − g) < dim H0(X, E). We deduce that µ(E ′) ≤ (g − 1) + dim H0(X, E).
Let r = sups∈S dimH0(Xs, Es). We deduce that Es is semi-stable of slope µ if and only if
Es has no subbundle E ′s with slope µ < µ(E ′s) < (g− 1) + r. One similarly deduces that Es
is semi-stable of slope µ if and only if Es has no quotient Gs with slope q < µ(Gs) < µ for
some q. It follows that to prove that Es is semistable, it suffices to show that Es has no
quotient with Hilbert polynomial in a finite list P1, · · · , Pr.

Consider the schemes QuotPiE/XS/S → S. Their image are closed subschemes Si ⊆ S.

And over S \ ∪iSi, we see that E is indeed semi-stable of slope µ. �

Let η be a generic point of S.

Lemma 12.2. The set S=HN(Eη) contains an non empty open subset.

Proof. We have the HN filtration Eη,• of Eη. By general results, after replacing S by its
reduction and then by an open subset containing η, we can extend this to a filtration E• on
E . We see by the lemma that the locus where all Ei/Ei−1 are semistable is open in S. �

Corollary 12.1. We have a stratification into locally closed subsets S =
∐
Si where over

each Si the HN filtration is constant.

Lemma 12.3. Assume that S = {η, s} is the spectrum of a DVR. Then HN(Eη) ≤
HN(Es).

Proof. Let Eη,• be theHN filtration of Eη. Then we let Ei = Eη,i∩E . This is an OS-flat sheaf
and we see that Ei,s → Es. Since µ(Ei,s) = µ(Eη,i) we deduce that HN(Eη) ≤ HN(Es). �
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Corollary 12.2. S≤P is open in S.

Proof. This is a constructible set which is stable under generization, therefore it is open.
�

12.1. Consequences for Bunn,X . For any P ∈ Qn
+, we define the substack Bun≤Pn,X on

Bunn,X whose objets are (S → Spec k, E) such that for all points s ∈ S, HN(Es) ≤ P .

Theorem 12.3. The substack Bun≤Pn,X is open in Bunn,X and of finite type.

Proof. The fact that this is an open substack follows from theorem 12.2. To see that

Bun≤Pn,X is quasi-compact it suffices to prove that for any (S, E), there exists d and N such

that Bun≤Pn,X ⊆ Ud,N . This follows from the proposition below. �

Proposition 12.1. Let µ ∈ Q. Let E be a vector bundle on a projective curve X → Spec k
which is semi-stable of slope µ. For all d ≥ −µ+ 2g :

(1) H1(X, E(d)) = 0,
(2) H0(X, E(d))⊗ OX → E(d) is surjective.

Proof. By the duality theorem, we have that H1(X, E(d))∨ = H0(X, E∨(−d) ⊗ Ω1
X/k).

Since E∨(−d) ⊗ Ω1
X/k is semi-stable of slope −µ − ddegOX(1) + 2g − 2, we see that for

d > −µ+ 2g − 2, H0(X, E∨(−d)⊗ Ω1
X/k) = 0.

For the second point, let us assume that k is infinite (we may extend scalars). We
can find an hyperplane H ⊆ PN such that X ∩ H = D is an effective divisor (just take
x ∈ X(k) and find an hyperplane H such that x /∈ H).

We thus have an exact sequence 0→ E(n)→ E(n+ 1)→ E(n+ 1)|D → 0. It induces
an exact sequence 0 → H0(X, E(n)) → H0(X, E(n + 1)) → H0(X, E(n + 1)|D) → 0 for all
n > −µ+ 2g − 2.

We consider the map H0(PN ,O(1))⊗k H0(X, E(n))→ H0(X, E(n+ 1)).
For all n > −µ + 2g − 1, the map H0(X, E(n)) → H0(D, E(n)) is surjective, there-

fore H0(PN ,O(1)) ⊗k H0(X, E(n)) → H0(D, E(n + 1)) is surjective. We deduce that
H0(PN ,O(1))⊗k H0(X, E(n))→ H0(X, E(n+ 1)) is surjective for all n > −µ+ 2g− 1. �

Corollary 12.3. Let P = (µ1, · · · , µn) ∈ Qn
+. Let (S, E) ∈ Bun≤Pn,X . Then for all d ≥

−µn + 2g, we have that :

(1) R1(πS)?E(d) = 0,
(2) (πS)?(πS)?E(d)→ E(d) is surjective,
(3) (πS)?E(d) is of rank (

∑
µi) + dndeg OX(1) + n(1− g).

13. Leture XII : Topological properties of algebraic stacks

13.1. The topological space.

13.1.1. Points of a stack. Let X be an algebraic stack. We define its points |X| as the
set of equivalence classe of

∐
k,f Ob(XSpec k)/ ∼ where (k, f) runs through the maps f :

Spec k → S from the spectrum of field to S. Two points xk,f , x′k′,f ′ are equivalent if there

is a common field extension k′′ of k and k′ and a map f ′ : Spec k′′ → S over the maps f
and f ′ such that xk,f and x′k′,f ′ become isomorphic in XSpec k′′ .

If X is a scheme then |X| is indeed the underlying set of X.
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13.1.2. Open substacks. Let X be a stack. A substack X′ of X is a strictly full subcategory
X′ of X which is a stack. Strictly full means full and that any object of X isomorphic to
an object of X′ is an object of X′.

Definition 13.1. An open substack X′ ↪→ X is a substack with the property that the map
X′ ↪→ X is representable by open immersion.

Definition 13.2. An closed substack X′ ↪→ X is a substack with the property that the map
X′ ↪→ X is representable by closed immersions.

The opens of the form |U| for U ↪→ X an open substack are the open of a topology
called the Zariski topology.

13.1.3. The Zariski topology on |X|. Let X be an algebraic stack. Let p : X → X be a
presentation.

Proposition 13.1. (1) The map p : |X| → |X| is surjective.
(2) To any open U ↪→ X we can associate an open substack of U of X uniquely deter-

mined by the property that |p(U)| = |U|.
(3) The subsets |U| of |X| where U runs through the open substacks of X are the open

of a topology on X called the Zariski topology.
(4) The map p : |X| → |X| is surjective, continuous and open.
(5) For any morphism of algebraic stacks F : X→ Y the corresponding map F : |X| →
|Y| is continuous.

Proof. For the first point, consider a map Speck → X. We can find a field extension
k′/k such that the map Spec k′ → Spec k → X lifts to Spec k′ → X. For the second
point, we define U to be substack of X whose objects are locally isomorphic to objects
in the image of p(U). We claim that this is an algebraic stack and an open substack of
X. This is clearly a substack (for x,y in U, V 7→ HomUV (xV , yV ) is a sheaf because we
took a full subcategory of X and the fact that the descent is effective in X added to the
local isomorphism condition we chose makes the descent effective) . It is algebraic because
U → U is a presentation. Let us check that U → X is open. We take a map T → X and
we need to see that U×X T is an open of T .

First, this is a space. Second, assume that the map T → X lifts to X. Then U×XT =
U ×X T is open. In general, we can find T ′ → T an fppf covering such that the map
T ′ → X lifts to X. Then we get an open V ′ of T ′ which satisfies a descent datum for
T ′ → T . Therefore it descends to an open V of T which is U ×X T . We deduce that the
map X → X induces a quotient map.

For points (3) and (4), since p : |X| → |X| is surjective and |X| being a scheme has
a Zariski topology which already coincides with the definition of point (3) by our remark
1.1, we only need to prove that the family of subsets defined by (3) is the final topology
associated to p. Explicitly we need to see a substack U of X is open if and only if it satisfies
|U| = |p(U)| with U an open subscheme of X. Since one way was proved in point (2) we
only need the converse, let U→ X be an open substack then the projection X ×X U→ X
is an open immersion, and by the same argument we used in Remark 1.1, it is then an
open subscheme of X. But |p(X ×X U)| = |U| by point (1) because X ×X U → U is a
presentation of U.
It remains to prove point (5) : let F : X → Y be a morphism of algebraic stacks and let
U ↪→ Y be an open substack of Y. We can find x : X → X ,y : Y → Y surjective smooth
morphisms of stacks and f : X → Y a morphism of schemes such that the following square
commutes in the category of stacks :
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X Y

X Y

f

x y

F

Indeed if we have x : X → X and y : Y → Y smooth presentations we can take the fiber
product X ×F◦x,Y,y Y . Because Y is algebraic, this is an algebraic space, and because
it’s a base change of such a morphism the projection of this fiber product to X is smooth
surjective. Taking X ′ an étale surjective presentation of this algebraic space we end up
with the desired diagram.
Suppose we have such a diagram, by our proof of (3) and (4) |x| and |y| are continuous
surjective open. f being a morphism of schemes, using our remark 1.1 we see that |f |
is the usual continuous map corresponding to a morphism of schemes. Therefore using
continuity : (|y| ◦ |f |)−1(|U|) is an open of |X| . But (|y| ◦ |f |)−1(|U|) = |x|−1(|F |−1(|U|))
and |x| is open therefore |F |−1(|U|) is an open subset of |X|. Therefore we proved |F | is
continuous. �

Remark 13.1. To prove that sets of points of open substacks form a topology we used
the final topology associated to a presentation. Therefore one presentation suffices to
exhaust all the open subsets of the space of points of the stack, but those open subsets
are independent of the choice of the presentation

Lemma 13.1. Let X be an algebraic stack and let S ⊂ X be a closed subset. Then there
is a unique reduced closed substack Z of X with underlying set S.

Proof. Take a presentation p : X → X. Let Z ⊆ X be the reduced closed subscheme
corresponding to p−1(S). We define Z has the substack whose points are locally in the
image of p : Z → X. This is an algebraic stack and one proves that Z is closed as in
the last proof. We can see that this is independant of the presentation. Let X ′ → X be
another presentation. We can assume that X ′ → X → X. The map X ′ → X induces a
surjective smooth map Z ′ → Z. �

13.1.4. Spectral spaces.

Definition 13.3. A topological space is called spectral if it is quasi-compact, the quasi-
compact opens are a basis of the topology, stable under intersection, and if any irreducible
subspace has a unique generic point.

Remark 13.2. Some authors add the condition for the space to satisfy the T0 separa-
tion axiom, but this is contained in the uniqueness of the generic point of an irreducible
subspace.

There is a functor Ringop → {Spectral spaces} defined by sending R to Spec R.

Theorem 13.1. (Hochster) The functor Ringop → {Spectral spaces} is essentially surjec-
tive.

Definition 13.4. An algebraic stack is called quasi-compact if it admits a presentation
X → X with X quasi-compact.

Remark 13.3. Equivalently, if |X| is quasi-compact. If X is a quasi compact presentation
then |p| : |X| → |X| being continuous surjective |p|(|X|) = |X| is quasi-compact. If
|X| is quasi-compact, pick a smooth surjective presentation p : X → X, then p being
surjective |p|(U) for U ⊂ |X| quasi-compact open cover |X|. By quasi-compacity we can
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pick U1, . . . , Un quasi-compact opens of X such that∪ni=1|p|(Ui) = |X|. Then ∪ni=1Ui is
an open subset of X, finite union of quasi-compact topological spaces therefore quasi
compact and an open immersion is smooth, therefore the morphism ∪ni=1Ui → X obtained
by composition of p and the open immersion∪ni=1Ui → X is a smooth surjective morphism
: a presentation of X with a quasi-compact scheme.

Definition 13.5. An algebraic stack is quasi-separated if the diagonal ∆ : X→ X×S X is
quasi-compact.

We recall that in a topological space, a point x specializes to y if y ∈ {x}. Equivalently,
this means that x ∈ ∩y∈U,openU .

Theorem 13.2. Let X be a quasi-compact algebraic stack with quasi-compact diagonal.
Then |X| is a spectral space.

Proof. Since X is quasi-compact, we deduce that the quasi-compact open of |X| are a basis
of the topology. Since ∆ : X→ X×S X is quasi-compact, we deduce that the intersection
of two quasi-compact opens is quasi-compact. It remains to prove that every irreducible
component has a unique generic point. Consider an irreducible component. By taking the
corresponding stack, we may assume that this irreducible component is X itself. We now
take a generic point x ∈ X (which we can suppose quasi-compact). Let p(x) ∈ X. We first
see that p(x) has no non-trivial generization : {x} = ∩iUi where Ui are open neighborhood
of x. Therefore p(x) = ∩p(Ui) which are open neighborhoods of p(x). We now want to see
that p(x) is a generic point (i.e. that p(x) belongs to any open subset of |X|). Let U ⊆ X
be an open. We can assume that it is quasi-compact. Since |X| is irreducible, |U| is dense.
Since p : X → X is open, we deduce that

p−1(|U|) = p−1(|U|)

and therefore, p−1(|U|) is dense. Moreover, p−1(|U|) is quasi-compact. It follows that its
closure is the set of all its specializations, so that x ∈ p−1(|U|). �

13.1.5. The connected components of Bunn,X . We have a well defined map deg : |Bunn,X | →
Z. It maps E to deg(E). Moreover this map is locally constant.

Theorem 13.3. The map deg induces an isomorphism deg : π0(|Bunn,X |)→ Z.

14. Lecture XIII : Smoothness and dimension

14.1. Smoothness.

14.1.1. Generalities. Let R be a ring and let A be an R-algebra. For any A-module M and
R-derivation from A to M is an R-linear map D : A→M such that D(ab) = aD(b)+bD(a)
for all (a, b) ∈ A2. There is a universal A-module Ω1

A/R equipped with a derivation
d : A → Ω1

A/R for which DerR(A,M) = HomA(Ω1
A/R,M) for any A-module M . There is

a construction by generators and relations

Ω1
A/R = ⊕a∈AAda/〈d(ra) = rda ∀(r, a) ∈ R×A, d(ab) = adb+ bda, ∀(a, b) ∈ A×A〉.

Here is a second construction. We can also consider the exact sequence 0 → I →
A⊗R A→ A→ 0 and we let Ω1

A/R = I/I2, and let d : A→ I/I2 be d(f) = 1⊗ f − f ⊗ 1.

To see that d : A → I/I2 is universal, let M be an A-module and let D : A → M be
a derivation. Consider 1 ⊗ D : A ⊗R A → M be the linearization. One checks that
1⊗D(I2) = 0 and we can consider the A-linear map 1⊗D : I/I2 →M . We recover D as
the composition A→ I/I2 →M . The following lemma is easy.
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Lemma 14.1. Let B be an R algebra and J ⊆ B be a square zero ideal. Let f1, f2 : A→ B
be R-algebra maps such that f1 = f2 mod J . Then f1 − f2 : A → J is an R-linear
derivation. Conversely, let f : A→ B and let D be an R-linear derivation A→ J . Then
f +D : A→ B is an R-algebra map such that f +D = f mod J .

14.1.2. Two exact sequences.

Lemma 14.2. If A→ B is a map of R-algebras, we have an exact sequence :

Ω1
A/R ⊗A B → Ω1

B/R → Ω1
B/A → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerA(B,M)→ DerR(B,M)→ DerR(A,M)

is exact. �

Lemma 14.3. If A
α→ B is a surjective map with kernel I, we have :

I/I2 d→ Ω1
A/R ⊗B → Ω1

B/R → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerR(B,M)→ DerR(A,M)→ HomA(I/I2,M)

is exact. �

Example 19. We have that Ω1
R[T1,··· ,Tn]/R = ⊕ni=1R[T1, · · · , Tn]dTi. Indeed, one checks

that the map ⊕ni=1R[T1, · · · , Tn]dTi → Ω1
R[T1,··· ,Tn]/R is surjective using the presentation.

We have the derivation ∂Ti : R[T1, · · · , Tn] → R[T1, · · · , Tn] and they give linear maps :
∂Ti : Ω1

R[T1,··· ,Tn]/R → R[T1, · · · , Tn] with the property that ∂Ti(dTj) = δi,j . We deduce

that {dT1, · · · , dTn} are indeed a basis of the differentials.

Example 20. LetA = R[T1, · · · , Tn]/(P1, · · · , Pr). Then Ω1
A/R = ⊕ni=1AdTi/(dP1, · · · , dPr).

14.1.3. The naive cotangent complex. Let B be an R-algebra of finite presentation. This

means that we have an exact sequence 0 → I → A
α→ B → 0 where A is a polynomial

algebra over R and I is a finitely generated ideal.

To any such presentation, we can associate the complex : C(α) : I/I2 d→ Ω1
A/R ⊗B.

Lemma 14.4. For any two presentations α, α′, the complexes C(α) and C(α′) are ho-
motopic.

Proof. We first prove that if we have a map of presentations :

0 //

��

I //

��

A
α //

λ
��

B

Id
��

0 // I ′ // A′
α′ // B

we get a map λ : C(α)→ C(α′).
Second we show that if λ and λ′ are two maps of presentation, λ and λ′ are homotopic

from C(α) to C(α′). The homotopy is provided by the map λ − λ′ : A → I ′/(I ′)2 which
is a derivation.

Third, we show that given any two presentations, there is a map between them. It
follows that we have maps C(α) → C(α′) and C(α′) → C(α) and both compositions are
homotopic to the identity. �

Definition 14.1. A ring morphism R → B is smooth if it is of finite presentation and

for any presentation α, the complex C(α) : I/I2 d→ Ω1
A/R ⊗ B is injective with projective

cokernel.
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14.1.4. Smooth morphism. If X → S is a map of schemes, we let Ω1
X/S be the quasi-

coherent sheaf over X of relative differentials. One possible definition is to consider the
locally closed immersion ∆ : X → X×SX, factor it as the composite of a closed immersion,
with ideal I and open immersion X ↪→ W ↪→ X ×S X and to let Ω1

X/S = ∆?I /I 2. We

can also check that for R→ A and f ∈ A, Ω1
A/R⊗AAf = Ω1

Af/R
, so that the construction

of Ω1
A/R is compatible with Zariski localization.

Definition 14.2. A morphism f : X → S is smooth at x ∈ X is x has an affine neigh-
boorhood SpecB over an open Spec R of S containing f(x) and R → B is a smooth map
of rings.

Definition 14.3. A morphism is smooth if it is smooth at all points.

The rank of Ω1
X/S is called the relative dimension of f .

Definition 14.4. A morphism is étale if it is smooth of relative dimension zero.

14.1.5. Infinitesimal criterium.

Proposition 14.1. Let f : X → S be a morphism which is locally of finite presentation.
Then f is smooth if and only if, for any affine S-scheme Y = Spec A and any ideal I ⊆ A
such that I2 = 0, if we let Y0 = SpecA/I, then the morphism :

HomS(Y,X)→ HomS(Y0, X)

is surjective.

Proof. We show that smoothness implies the lifting property. We first prove this locally
on Y and assume all schemes are affine. We have a diagram :

A/I R[T1, · · · , Tr]/J
ψoo

A

OO

Roo

OO

We can lift ψ to a map ψ̃ : R[T1, · · · , Tr]→ A. It induces ψ̃ : J/J2 → I.
We now have a locally split exact sequence

0→ J/J2 d→ Ω1
R[T1,···Tr]/R ⊗R[T1, · · · , Tr]/J → Ω1

(R[T1,··· ,Tr]/J)/R → 0

and we can lift J/J2 → I to a map Ω1
R[T1,···Tr]/R → I and therefore there is a derivation

D : R[T1, · · · , Tr]→ I whose restriction to J is ψ̃. We now consider ψ̃−D. This is a ring

morphism R[T1, · · · , Tr]/J → A lifting ψ̃. We now consider the global case. On an open

cover Y0 = ∪U0,i such that we can find local lifts ψ̃i : Ui → X. The differences between

lifts are given by derivation ψ̃i − ψ̃j ∈ Hom(ψ?Ω1
X/S ,I )(U0,i ∩ U0,j). This defines a 1-

cocycle. Since the sheaf Hom(ψ?Ω1
X/S ,I ) is quasi-coherent this cocycle is a coboundary,

and we deduce that there is a global lift. We now prove that the lifting property implies
smoothness. Consider a presentation 0 → I → R[T1, · · · , Tn] → B → 0 of B. By the
lifting property, the identity of B lifts to a map s : B → R[T1, · · · , Tn]/I2. It follows that
the sequence 0 → I/I2 → R[T1, · · · , Tn]/I2 → B → 0 has a splitting. The two maps
Id : R[T1, · · · , Tn]/I2 → R[T1, · · · , Tn]/I2 and s ◦α are equal modulo I (to the identity of
B) and therefore their difference is a derivation Ω1

R[T1,··· ,Tn]/R → I/I2, giving the splitting.

�
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Remark 14.1. Given a diagram

Y0
ψ //

��

X

��
Y // S

with Y0 → Y a closed immersion with ideal I . There is an obstruction Ob(ψ) ∈
H1(Y0,Hom(ψ?Ω1

X/S ,I )) which vanishes if and only if ψ lifts to ψ̃ : Y → X.

Remark 14.2. It suffices to check the infinitesimal criterium on schemes Y which are
spectra of local rings. The point is that to check that the sequence

0→ I/I2 → Ω1
R[T1,··· ,Tn]/R → Ω1

B/R → 0

is split we can compute it on stalks. This reduces to the case that B is local. It is
even enough to consider the case that Y is a spectra of a strictly henselian local ring.
Indeed, any local ring A admits a map A → Ash where Ash is strictly henselian and is
a filtered colimit of étale R-algebras. The map A → Ash is faithfully flat. We use that
the formation of Ω1

B/R commutes with étale localization : if we have B → B′ étale then

Ω1
B′/R = Ω1

B/R ⊗B B
′.

14.1.6. Jacobian criterium.

Proposition 14.2. Let ι : X ↪→ Z be a closed immersion of S-schemes with ideal I .
Assume that Z is smooth. Then X is smooth at a point x if and only if there are generators
s1, · · · , sr of the ideal I in a neighborhood of x and ds1(x), · · · , dsr(x) are independant
in Ω1

Z/S ⊗OZ k(x).

Corollary 14.1. Let f : X → S be a smooth map at x. Then there is a neighborhood U =
Spec A of x such that A = R[T1, · · · , Tn]/I where I = (P1, · · ·Pr) and I/I2 = ⊕ri=1PiA.

Proof. We start by taking a neighborhood U = Spec A of x such that A = R[T1, · · · , Tn]/I.
In a neighborhood of x, I is generated by s1, · · · , sr and ds1(x), · · · , ds(x) are a basis
of I/I2 ⊗A k(x). Thus, there exists f ∈ R[T1, · · · , Tn] such that x ∈ Spec Af , If is
generated by s1, · · · , sr and If/I

2
f is the free module generated by the s′is. We now consider

R[T1, · · · , Tn, Tn+1] and I ′ = (s1, · · · , sr, Tr+1f − 1). �

14.1.7. Deformation properties.

Proposition 14.3. Given a diagram

X0

f0
��
S0

// S

with f0 : X0 → S0 smooth and S0 ↪→ S a closed immersion with ideal I such that
I 2 = 0, then there is an obstruction Ob(f0) ∈ H2(X0,Hom(Ω1

X0/S0
, f?0 I ) which vanishes

if and only if there is a cartesian diagram :

X0

f0
��

// X

f
��

S0
// S

with f smooth.

Corollary 14.2. If f0 : X0 → S0 is étale, there is a unique étale lift f : X → S.
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14.1.8.

Proposition 14.4 ([Sta13] TAG 02K5). Let X
f→ Y

g→ S be morphisms of schemes. Let
h = g ◦ f .

(1) If f and g are smooth then h is smooth.
(2) If f is smooth and surjective, h is smooth, then g is smooth.
(3) If the exact sequence 0 → f?Ω1

Y/S → Ω1
X/S → Ω1

X/Y → 0 is locally split exact and

h is smooth, then f is smooth.

14.1.9. Smooth algebraic stack.

Definition 14.5. An alegbraic S-stack X is smooth if it admits a presentation X → X
with X smooth over S.

Lemma 14.5. An algebraic S-stack is smooth if for any presentation X → X, the scheme
X is smooth over S.

Proof. Let X → X be a presentation with X smooth over S. Let X ′ → X be another
presentation. We let X ′ ×X X be the fiber product. This is an algebraic space. Let
Z → X ′×XX be an étale surjective morphism. The map Z → X is smooth and therefore
Z is smooth over S. The map Z → X ′ is smooth and surjective. We deduce that X ′ is
smooth over S. �

Proposition 14.5. An algebraic S-stack X is smooth if it is locally of finite presentation
and if for any S-scheme Y = Spec A with A a strictly henselian ring, and any ideal I ⊆ A
such that I2 = 0, if we let Y0 = SpecA/I, Then any diagram :

Y0
//

��

X

��
Y // S

can be completed into a 2-commutative diagram :

Y0
//

��

X

��
Y //

??

S

Proof. Assume that X is smooth. We have a map Y0 → X. The map admits a lift Y0 → X
because Y0 is strictly henselian : the map X ×X Y0 → Y0 is smooth surjective, hence
has a section because Y0 is strictly henselian. The smoothness of X implies the claim.
Conversely, assume that X satisfies the infinitesimal criterion. Let Y0 → X be a map. The
map Y0 → X lifts to a map Y → X. We now consider X ×X Y → Y which is a smooth
map. We have a map Y0 → X ×X Y over Y and it lifts to a map Y → X ×X Y . Projecting
to X gives a lifting of Y0 → X. �

14.1.10. Bunn,X is smooth.

Theorem 14.1. The stack Bunn,X is smooth.

Proof. The stack is locally of finite presentation. We check the infinitesimal criterion.
Let E0 be a vector bundle over X ×Spec k Y0. We pick a cover XY0 = ∪U0,i trivializing
E0. We have XY = ∪iUi. We have Ui = Spec Ai and U0,i = Spec Ai/Ii. Over each
Ai we can lift M0,i = E(U0,i) (which is free) to the free Ai module Mi. We have maps
αi,j : M0,i ⊗ A0,i,j → M0,j ⊗ A0,i,j . We lift them to maps α̃i,j : Mi ⊗ Ai,j → Mj ⊗ Ai,j .
Now we measure the obstruction to the lifts satisfying the cocycle condition, let δi,j,k =



69

˜αj,kα̃i,j ◦ ˜α−1
i,k − Id. This is an element of Hom(M0,i,j,k,M0,i,j,k) ⊗ I and it defines a

cohomology class in H2(XY0 ,End(E0)⊗ I) which vanishes since X is a curve. �

14.2. Dimension. Let X be a scheme. We define dim(X) ∈ N ∪ {∞} as the Krull
dimension of X : maximal length of a chain of closed irreducible subsets of X. We let
dimx(X) = infx∈Udim(U) where U is open in X. If x ∈ X, we let δx(X) = dim(OX,x).
One proves that dimX = supxδx(X). If X is a locally of finite type scheme over a field k,
we have that dimx(X) = δx(X) + degtrk(x)/k.

If f : X → Y is a morphism, and let x ∈ X. We let dimx(f) = dimx(Xf(x)).

Proposition 14.6. Let X → Y be two locally noetherian schemes. The we have that
dimx(X) = dimx(f) + dimf(x)(Y ).

Let X be an algebraic stack. Let P : X → X be a presentation. Let ξ ∈ X be a point
and x ∈ X be a point mapping to ξ. Let dimxP be the relative dimension of the morphism
X ×X X → X at the point (x, x).

We let dimξX = dimxX − dimxP .

14.3. The dimension of Bunn,X .

Theorem 14.2. Bunn,X has dimension n2(g − 1).

Proof. Let ξ : Spec l→ Bunn,X be a point corresponding to a bundle E over Xl.
We let P : X → Bunn,X be a presentation. We let x ∈ X be a point above ξ. We

consider the l-vector spaces TX,x and TX×XX,(x,x). We have a functor (Bunn,X)Spec l[ε] →
(Bunn,X)Spec l and we let TBunn,X ,ξ be the subcategory of (Bunn,X)Spec l[ε] whose objects
map to ξ and morphisms to the identity of ξ.

This category is equivalent to the category whose objects are TX,x and morphisms
are given by s, t : TX×XX,(x,x) ⇒ TX,x.

Therefore the isomorphisms classes of deformations are given by

coker(s− t : TX×XX,(x,x) → TX,x)

We let Tx×XX = Ker(s). We consider the complex L• = t : Tx×XX,(x,x) → TX,x in degree

−1 and 0. Then H0(L•) is the set of isomorphisms classes of deformations of E to l[ε] and
H−1(L•) is the set of automorphisms of the trivial deformation of E to l[ε]. Thus we see
that dimTX,x−dimTx×XX,(x,x) = dim H1(X,End(E))−dim H0(X,End(E)) = n2(g−1). �

Lemma 14.6. Let E be a vector bundle over Xk. Consider the set Def(E)(k[ε]) of iso-

morphism classes of vector bundles Ẽ on Xk[ε] together with an isomorphisme Ẽ |Xk ' E.

Then Def(E)(k[ε]) is a k-vector space isomorphic to H1(X,End(E)).

Proof. Let Ẽ be a deformation. Take a covering X = ∪iUi = SpecAi such that ψi : E|Ui =

Ani . Then fix ψ̃i : Ẽ |Ui ' Ani [ε] lifting ψi. Let ψ̃i,j : ψj ◦ ψ−1
i . This defines an element

of H1(X,End(E)). Alternatively, any deformation Ẽ can be viewed as an extension (using
multiplication by ε)

0→ E → Ẽ ε→ E → 0

thus giving a class in Ext1(E , E). Conversely, any extension

0→ E → Ẽ→E → 0

can be viewed as a vector bundle over Xl[ε] by letting ε act as the composition of Ẽ→E
and E→Ẽ . �
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15. Lecture XV : The Jacobian

15.1. The relative Picard functor. In this lecture we study the stack Bun1,X . For a
scheme Y we let Pic(Y ) be the group of isomorphism classes of line bundles over Y

Let us define PX : (Sch/S)op → SET as the sheafification of T → Pic(XT ). We see
that Pic(XT ) is Ob(Bun1,X)T / ∼.

Let us describe this. We see that an element of PX(T ) is represented by an invertible
sheaf L ∈ Pic(XT ′) for an fppf covering T ′ → T with the property that there is an fppf
covering T ′′ → T ′×X T ′ and an isomorphism α : p?1L ' p?2L on T ′′. Two invertible sheaves
L1 and L2 in Pic(XT1) and Pic(XT2) represent for Ti → T and fppf covering represent
the same object in PX(T ) if they become isomorphic over an XT3 where T3 → T1×T T2 is
an fppf covering.

Lemma 15.1. The following sequence is exact :

0→ Pic(T )→ Pic(XT )→ PX(T )

Proof. Let L ∈ Pic(XT ). Assume that we have an fppf covering T ′ → T such that
L|XT ′ ' OXT ′ . We let πT : XT → T be the projection. We claim that the map π?T (πT )?L →
L is an isomorphism. Using flat base change, it suffices to check it after pull back to T ′.
But then πT ′OXT ′ = OT ′ . �

Assume that XT → T has a section s : T → XT . Let us define Pic(XT , s) as the
group of isomorphism classes over L ∈ Pic(XT ) and u : s?L ' OT .

Lemma 15.2. We have an isomorphism :

Pic(XT ) → Pic(XT , s)× Pic(T )

L 7→ (L ⊗ π?T s?L−1, s?L)

We see that T ′ 7→ Pic(XT ′ , sT ′) defines an fppf sheaf.

Corollary 15.1. If XT → T has a section s : T → XT , the sequence :

0→ Pic(T )→ Pic(XT )→ PX(T )→ 0

is split exact.

Remark 15.1. Assume that X(k) 6= ∅. Then we see that Bun1,X = PX ×S BGm where
BGm is the classifying stack of Gm. That is (BGm)T is the category of invertible sheaves
over T .

15.2. Representability of the relative Picard functor. We have the classical theo-
rem:

Theorem 15.1. The relative Picard functor is representable and P 0
X is an abelian scheme,

called the Jacobian of the curve.

We sketch the proof. A good reference is [Mil86].

15.2.1. Relative Cartier divisors.

Definition 15.1. An effective relative Cartier divisor D over XS is a closed subscheme
D ↪→ XS such that pS : D → S is finite flat.

Attached to D, we have the invertible sheaf OXS (−D) = ID, to which we can attach
the pair (OXS (D), 1 : OXS → OXS (D)). The set of effective Cartier divisors over S,
Div≥0(S), is the set of isomorphism classes of pairs (L ∈ Pic(XS), f : OXS → L) such
that L/OXS is finite flat over S. This last condition is also equivalent to asking that f is
nowhere identically zero over S.

Let r ≥ 0. We let Divr≥0(−) be the functor which maps S to the set of isomorphism
classes of effective relative Cartier divisors of degree r over XS .
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15.2.2. Quotienting schemes by finite groups. Let A be a ring and let G be a finite group
acting on A. Let B = AG. Let p : Spec A = X → Spec B = Y be the corresponding
morphism.

Proposition 15.1 ([Gro03], exp V, prop. 1.1). (1) The ring A is integral over B.
(2) The morphism p is surjective and closed and the map X → Y induces an homeo-

morphism Y ' X/G (where X/G carries the quotient topology).
(3) For any scheme Z, we have that Hom(Y,Z) = Hom(X,Z)G.

We now let X be a scheme and we assume that G acts on X and that X admits an
affine covering stable by G.

Proposition 15.2 ([Gro03], exp V, prop. 1.8). There is a scheme Y and a surjective
morphism p : X → Y such that :

(1) The morphism p is surjective and closed and the map X → Y induces an homeo-
morphism Y ' X/G (where X/G carries the quotient topology).

(2) For any scheme Z, we have that Hom(Y,Z) = Hom(X,Z)G.
(3) We have OY = p?OG

X .

The scheme Y of the proposition (which is unique up to a unique isomorphism) is
called a categorial quotient of X by G.

15.2.3. Representing Divr≥0(−). We will prove that Divr≥0(−) is representable. Let Xr =
X × · · · ×X be the r-th fold product of the curve. The symmetric group Sr acts on Xr

by permutation of the factors.

Lemma 15.3. The categorical quotient Xr/Sr = X(r) exists and is smooth.

Proof. See [Mil86], prop. 3.2. �

We have a map Xr → Divr≥0 which sends (P1, · · · , Pr) to (OXS (
∑
Pi),OXS →

OXS (
∑
Pi)). This map pass to the quotient to a map X(r) → Divr≥0.

Proposition 15.3. X(r) → Divr≥0 is an isomorphism.

Proof. We need to show injectivity and surjectivity. For surjectivity, it suffices to prove
the surjectivity of Xr → Divr≥0. We will show that if (L ∈ Pic(XS), f : OXS → L) is a

degree r cartier divisor, there is a finite flat map T → S and sections P1, · · · , Pr ∈ X(T )
such that (L, f) ' (OXT (

∑
Pi), 1). We prove this by induction on r. The case r = 1

is trivial. Let us assume r ≥ 2. Let T = V (L−1) ⊂ XS . The map T → S is finite

flat. Over XT we have the degree 1 divisor P : T
∆
↪→ T ×S T ↪→ XT . We see that

fT : OXT → LT (−P ) → LT and LT (−P ) is now of degree r − 1. We conclude by
induction.

We need to show injectivity. We do this when r = 2, the general case is left to the
reader. Let P1, P2 and Q1, Q2 by Spec R-points of X. We assume that OXS (−P1 − P2) =
OXS (−Q1 −Q2).

After localizing in Spec R, we can find an affine open Spec A of XS with the property
that P1, P2, Q1, Q2 factor through Spec A. Therefore, we have morphisms Qi : A → R
with kernel Ii and Pi : A → R with kernel Ji and by assumption I1I2 = J1J2. We
want to deduce that the maps P1 ⊗ P2 : A ⊗ A → R and Q1 ⊗ Q2 : A ⊗ A → R
have the same restriction to (A ⊗ A)Σ2 . We claim that for any a ∈ A, Q1(a)Q2(a) =
P1(a)P2(a) and Q1(a) + Q2(a) = P1(a) + P2(a) because they can be interpreted as the
coefficients of the characteristic polyomial of a acting on A/I1I2 = A/J1J2. We deduce
that P1⊗P2(a⊗ 1 + 1⊗ a) = Q1⊗Q2(a⊗ 1 + 1⊗ a) and P1⊗P2(a⊗ a) = Q1⊗Q2(a⊗ a).
The elements a⊗ 1 + 1⊗ a and a⊗ a generate (A⊗A)Σ2 as an algebra. �
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15.2.4. The Abel-Jacobi map. We call the map AJr : X(r) → P rX the Abel-Jacobi map.
We will use this map to prove the representability of P rX .

Let us assume that r ≥ 2g−1. Let S → Spec k and let L ∈ Picr(XS) (corresponding

to a point x : S → P rX). Then the fiber product X(r) ×AJr,P rX ,x S is the set of nowhere

vanishing sections f ∈ R0(pS)?L, up to isomorphism.
But since r ≥ 2g − 1, R0(pS)?L is a locally free sheaf of rank r − g + 1, and

X(r) ×AJr,P rX ,x S = (R0(pS)?L \ {0})/O×S
is therefore a fibration in projective spaces of dimension r − g.

If we had a section s : P rX → X(r), then we would deduce that P rX is representable.

Indeed, if we let q : X(r) → P rX
q→ X(r) then the morphism p induces an isomorphism

between X(r) ×q,X(r),id X
(r) and P rX .

We will prove that there are local sections. At this stage, we assume that the field k
is separably closed. By Galois descent, we can reduce to this case.

For any r − g-uple of points t = (t1, · · · , tr−g) ∈ X(k)r−g, we let

X
(r)
t = {(P1, · · · , Pr), dimH0(OX(

r∑
i=1

Pi −
r−g∑
i=1

tj)) = 1}.

This is an open of X
(r)
t and moreover, X(r) = ∪tX(r)

t .
We similarly defined (P rX)t has the subfunctor parametrizing L with the property

that dimH0(L(−
∑r−g

i=1 tj)) = 1. The map X
(r)
t → (P rX)t is an isomorphism and therefore

(P rX)t is representable. And we have a covering P rX = ∪(P rX)t.

We finally deduce that P rX is smooth and geometrically connected because X(r) is.
Finally for any line bunde L of degree s over X, the map − ⊗ L : P rX → P r+sX is an

isomorphism. We deduce the representability of P rX for all r.

16. Lecture XVI : Geometric class field theory

16.1. The classical fundamental group. Let S be a connected, locally arcwise con-
nected, locally simply connected topological space. Let s ∈ S be a point. We can define
π1(S, s), the group of homotopy classes of loops γ : S1 → S with γ(0) = s. Let Cov be
the category of coverings of S. Recall that S′ → S is a covering if any point x ∈ S has
a neighborhood Ux such that p−1(Ux) ' Ux × I for a discrete set I. We define a functor
F : Cov → SET by sending p : S′ → S to p−1(s). Let π1(S, s) − SET be the category of
sets equipped with an action of π1(S, s). We have the following classical theorem :

Theorem 16.1. The functor F can be enriched to an equivalence of categories Cov →
π1(S, s)− SET.

Moreover, F is representable functor : let p̃ : S̃ → S be the universal cover of S, and
ξ ∈ F (S̃) = p̃−1(s). Then F (−) = S̃(−).

Remark 16.1. One can recover π1(S, s) abstractly from the functor F , as the group of
automorphisms of F .

16.2. The fundamental group of a field k. Let k be a field. A connected covering of k
is by definition of finite separable field extension of k. A covering of k will be by definition
a finite product of finite separable extension of k (we say also a finite étale extension of
k). Let Cov be the category of coverings of k. Let k be an algebraic closure of k and
ksep ⊂ kalg be the separable closure. We define a functor F : Cov → FSET by mapping
`/k to Hom(`, k) where FSET is the category of finite sets. Let Gal(ksep/k) = Gk and
Gk − FSET the category of finite sets equipped with a continuous left action of Gk.
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Theorem 16.2. The functor F can be upgraded to an equivalence of category Cov →
Gk − FSET.

Proof. This is a reformulation of Galois theory. We exhibit and inverse functor. If I is a
Gk-set. We consider the algebra of functions f : I → ksep which are Gk-equivariant. �

The functor F is pro-representable. We can write ksep = ∪iki has a filtered union of
finite extensions, and F (−) = colimiHom(−, ki).

16.3. The étale fundamental group of a scheme. The original reference is [Gro03].
Another good reference is [Mur67].

16.3.1. Etale covers. We let X be a locally noetherian scheme.

Definition 16.1. A morphism p : Y → X of schemes is finite étale if

(1) For all affine open SpecA ↪→ X, the fiber Spec A×X Y = Spec B is affine and B
is a finite projective A-module,

(2) For all point x ∈ X, Yx is the spectrum of a finite étale extension of k(x).

A finite étale cover p : Y → X is a finite étale map which is surjective. In general,
the image of p is an open and closed subscheme of X. In particular, if X is connected, an
finite étale morphism is a cover. We assume that X is connected.

We let Cov be the category whose objects are finite étale schemes Y → X and
morphisms are X-morphisms of schemes.

16.3.2. The main theorem. We let x ∈ X be a point and we pick x̄→ x a geometric point
above x. We can define a functor F : Cov → FSET by mapping Y to the set Y ×X x̄.

Theorem 16.3 ([Mur67], thm. 4.4.1). (1) There exists a unique profinite group π1(X, x̄)
such the functor F can be enriched to an equivalence of categories :

Cov → π1(X, x̄)− FSET.

(2) Let x′ → X be another point geometric point of X. There exists a topological
isomorphism: π1(X, x̄)→ π1(X, x̄′), which is unique up to an inner automorphism.

If Y → X is a morphism of schemes, the pull-back of étale covers from X to Y induces
a morphism π1(Y, y)→ π1(X,x).

Remark 16.2. We can revisit Frobenius substitution. IfX → Spec Z is a finite type scheme.
Then any closed point s ∈ X has residue field a finite field. Let x be a geometric point of
X. For any s ∈ X and any geometric point s→ s, we get a morphism (well defined up to
conjugacy) π1(s, s) → π1(X,x). If s is a closed point, π1(s, s) is topologically generated
by the Frobenius.

16.4. P1 is geometrically simply connected. In this section we prove :

Theorem 16.4. Let k be an algebraically closed field. Then π1(P1
k, x) = 1.

Proof. Let f : X → P1
k be a finite étale cover. Let f?OX . This is a vector bundle over P1

k.
Therefore, f?OX = ⊕ri=1O(ni) for integers ni. We will prove that this is the trivial bundle
(all ni are 0). This will prove that f?OX = H0(X,OX) ⊗k OP1

k
. Since k is algebraically

closed, H0(X,OX) = kr (as algebra) and X is the disjoint union of r copies of P1
k. There

is a bilinear trace map : f?OX × f?OX → OP1
k

and this is a perfect pairing. Therefore we

deduce that it is enough to prove that for all i, ni ≥ 0. Let i be the index for which ni is
minimal and assume that ni < 0. The product map m : f?OX ⊗ f?OX → f?OX restricts
to a map O(ni) ⊗ O(ni) → f?OX . But there are no non-zero maps O(2ni) → f?OX .
Therefore m(O(ni)⊗O(ni)) = 0. But X is a smooth curve and therefore it is reduced. �
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16.5. Descent of étale covers. We consider the following situation : X is a scheme and
Γ is a finite group acting on X. We assume that X has an affine covering stable under Γ.
We can define the categorical quotient X/Γ (see [Gro03], exposé V, sect. 1). For a point
x ∈ X, we let Γx be the inertia group at x. This is the subgroup of Γ of elements which
stabilize x and act trivially on the residual field at x, k(x).

Let Y → X be an étale cover. We assume that Y carries an action of Γ compatible
with the action on X.

We can therefore consider the quotient Y/Γ and we have a diagram :

Y

��

// Y/Γ

��
X // X/Γ

The following two propositions are [Gro03], exposé IX, rem. 5.8.

Proposition 16.1. The map Y/Γ→ X/Γ is finite étale if for all x ∈ X, if we let Γx the
inertia subgroup at x, then Γx acts trivially on Yx.

Proposition 16.2. We have an equivalence between the category of finite étale cover of
X/Γ and the finite étale cover of X which carry an action of Γ compatible with the action
on X and such that for all x ∈ X, Γx act trivially on the fiber.

16.6. Pr is geometrically simply connected.

Theorem 16.5. Let k be an algebraically closed field. Then π1(Prk, x) = 1.

Proof. We first need to prove that π1((P1
k)
r, x) = 1. We prove this by induction on r. The

case r = 1 is theorem 16.4. We assume r ≥ 2 and consider the map p : (P1
k)
r → (P1

k)
r−1

given by the projection on the first r − 1 coordinates. We now let f : X → (P1
k)
r be a

finite étale cover of degree d. We claim that p?f?OX is a locally free sheaf of algebras over
(P1
k)
r−1. This follows from corollary ??. Indeed, for each point t ∈ (P1

k)
r−1, p−1(t) = P1

k(t)

and Xt → P1
k(t) is isomorphic to P1

k(t) ×Spec k(t) Spec k(t)′ for a finite étale extension of

k(t)′ of degree d. We find that dimk(t)(P1
k(t), (ft)?OXt) = d is constant. Let X ′ be the

spectrum of this sheaf of algebras. We see that X ′ → (P1
k)
r−1 is finite flat and moreover,

X ′ ×(P1
k)r−1 (P1

k)
r ' X. In other words, X ′ descends X. We see that X ′ → (P1

k)
r−1 is

smooth, because X → (P1
k)
r is. Therefore we deduce that X ′ is a finite étale cover. We also

deduce that the map p : π1((P1
k)
r, x)→ π1((P1

k)
r−1, p(x)) is an isomorphism. By induction

we deduce that π1((P1
k)
r, x) = 1. Then we use proposition 16.2. Indeed, Prk = (P1

k)
r/Sr.

Let X → Prk be an étale cover. Its pullback to (P1
k)
r is X̃ and it is isomorphic to (P1

k)
r× I

where I is a finite set over which Γ acts. Take a point in the diagonal x. Then the inertia
group is (Sr)x = Sr and we deduce that Sr acts trivially on I. Therefore X = Prk × I. �

16.7. Descending étale covers under projective fibration.

Theorem 16.6. Let f : X → Y be a projective fibration. Then the map π1(X,x) →
π1(Y, f(x)) is an isomorphism.

Proof. We have seen a proof in theorem 16.5 in the case of a fibration in projective lines.
A similar argument applies. �
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16.8. Geometric class field theory. Let L be a finite abelian group. Let X be a
complete non-singular curve over Fq. We will prove the following theorem :

Theorem 16.7. There is a canonical bijection :

{χ : π1(X)→ L} → {ρ : Pic(X)→ L}
χ 7→ ρ

where ρ is defined by the rule that for all x ∈ X, ρ(O(x)) = χ(Frobx).

As a corollary, we deduce :

Theorem 16.8. We have a commutative diagram:

Pic(X)

��

// π1(X)ab

��

Z // Ẑ

which induces an isomorphism between Pic(X) and W (X)ab.

Proof. The theorem 16.7 implies that the profinite completion of Pic(X) is isomorphic
to π1(X)ab. Now we have an exact sequence 1 → Pic0(X) → Pic(X) → Z → 1 (which
splits non-canonically) and Pic0(X) is a finite group. Therefore the profinite completion

of Pic(X) is Pic0(X)× Ẑ. �

16.8.1. Systems of abelian covers over {X(r)}r≥0, compatible with the monoidal structure.

We recall that we have multiplications m : X(r) × X(r′) → X(r+r′), and projections p1 :
X(r) ×X(r′) → X(r) and p2 : X(r) ×X(r′) → X(r′). It will be convenient to consider also
Div≥0 =

∐
r≥0X

(r). So that we have three maps, m, p1, p2 : Div≥0 × Div≥0 → Div≥0.

We also let π1(Div≥0)ab = ⊕r≥0π1(X(r))ab.
Let L be a finite abelian group. Let χ1 : π1(X)→ L be a character.

Proposition 16.3. There is a unique way to attach to χ1 a character χ =
∏
r≥0 χr :

π1(Div≥0)ab → L such that :

m?χ = p?1χ+ p?2χ

as characters of π1(Div≥0 ×Div≥0)ab.

Remark 16.3. We thus claim that there is a unique system of characters {χr : π1(X(r))→
L}r≥1 which satisfy that the pull backs of χr + χr′ and χ(r+r′) to characters of π1(X(r) ×
X(r′)) coincide:

π1(X(r) ×X(r′)) //

��

π1(X(r+r′))
χr+r′ // L

π1(X(r))× π1(X(r′))

χr+χr′

��
L

Proof. Let Y → X be the abelian cover with group L corresponding to χ1. We construct
an abelian cover over Xr corresponding to χ⊕r1 : π1(Xr)→ L. This is Y r/H → Xr where

H = Ker(Lr
Σ→ L). Then we check that the action of Sr on Xr lifts to Y r and passes
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to the quotient Y r/H. Moreover, the action of the inertia group is trivial on the fibers.

Therefore the cover descends to X(r). �

Lemma 16.1. Let r0 ≥ 0. Assume that we have a system of characters {χr : π1(X(r))→
L}r≥r0 which satisfy that the pull backs p?1χr + p?2χr′ = m?χ(r+r′) has characters of

π1(X(r) ×X(r′)).
Then, there exists a unique character χ1 : π1(X,x)→ L such that this system arises

from χ1.

Proof. Let x0 be a rational point on X(r) for r ≥ r0. We get a map X → X(r+1) by
sending x to (x, x0). We let χ1 : π1(X)→ π1(X(r+1))→ L. �

16.8.2. Systems of abelian covers of PX , compatible with the monoidal structure. Recall
that PX(Fq) = Pic(X). We have maps m : PX × PX → PX as well as projections
pi : PX × PX → PX .

A character ρ : π1(PX) → L is compatible with the monoidal structure if we have
p?1ρ+ p2 ? ρ = m?ρ as characters of π1(PX × PX).

To such a character we can associated a group morphism : ρ̃ : Pic(X) → L by
evaluating on Frobx for each x ∈ Pic(X).

Proposition 16.4. The association ρ 7→ ρ̃ defines an bijection between characters com-
patible with the monoidal structure on PX and characters of Pic(X).

Proof. Let PX
Frobq−1→ PX be the Lang isogeny which maps L to Frob?qL ⊗ L−1. Its

kernel is precisely PX(Fq) = Pic(X). This provides a map ρLang : π1(PX) → Pic(X).
Moreover, for any L ∈ Pic(X), ρLang(FrobL) = L. It is an easy exercise to check that
m?ρLang = p?1ρLang + p?2ρLang.

Let ρ : π1(PX) → L be a character compatible with the monoidal structure. We

need to find a factorization ρ : π1(PX)
ρLang→ Pic(X) → L. We therefore need to prove

that π1(PX)
Frobq−1→ π1(PX)

ρ→ L is the trivial character. But this is nothing else than
Frob?qρ − ρ (because ρ is compatible with the monoidal structure). And we know that
Frob?qρ = ρ.

�

16.8.3. Proof of theorem 16.7. We see that the following sets are in natural bijection :

(1) Characters χ : π1(X)→ L,

(2) Characters {χr : π1(X(r))→ L}r≥0, compatible with the monoidal structure,

(3) Characters {χr : π1(X(r))→ L}r≥r0 , compatible with the monoidal structure,
(4) Characters {ρr : π1(P rX)→ L}r≥r0 , compatible with the monoidal structure,
(5) Characters {ρr : π1(P rX)→ L}r≥0, compatible with the monoidal structure,
(6) Characters ρ̃ : Pic(X)→ L.

• (1)⇔ (2) is proposition 16.3,
• (2)⇔ (3) is lemma 16.1,
• (3)⇔ (4) is proposition 16.6,
• (4)⇔ (5) is similar to lemma 16.1,
• (5)⇔ (6) is proposition 16.4

Remark 16.4. We can restate our theorem as follows. Given a character χ : π1(X) → L,
there exists a unique character ρ : π1(PX)→ L such that for m : X × PX → PX the map
which sends (x,L) to L(x), we have m?ρ = p?1χ+ p?2ρ.
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[Fr7] A. Fröhlich, Local fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965),
Thompson, Washington, D.C., 1967, pp. 1–41.
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