
GEOMETRIC REPRESENTATION THEORY

1. Introduction

In this course we will use techniques from algebraic geometry in order to understand represen-
tations of algebraic groups.

Let us consider in this introduction the group SL2 = {
(
a b
c d

)
, ad − bc = 1}. We let B be the

upper triangular Borel. This group naturally acts on the right on the projective line P1 by the
formula

[X,Y ].

(
a b
c d

)
= [aX + cY, bX + dY ].

In fact, P1 = B\SL2. The Picard group of P1 is Z and for every n ∈ Z, we can construct a
line bundle OP1(n). For example, using the Proj construction, we have that P1 = Proj k[X,Y ]
and OP1(n) is associated to the graded module ⊕k≥0Mk where Mk = k[X,Y ]n+k is the set of
homogeneous polynomials of degree n+k. The group SL2 also acts on these modules and therefore
acts equivariantly on the sheaf. When n ≥ 0, H0(P1,OP1(n)) = ⊕p+q=nkXpY q. This is the
irreducible n+ 1-dimensional representation of SL2. In fact, we have :

Theorem 1.0.1. For any n ≥ −1, H1(P1,OP1(n)) = 0. For any n ≤ −1, and H0(P1,OP1(n)) =
0. Moreover, we have a (non-canonical) isomorphism of SL2-representations : H0(P1,OP1(n)) =
H1(P1,OP1(2− n)).

There is a connection between the sheaves OP1(n), OP1(2 − n) and the representation Symnk2.
As we have seen, we can obtain the representation by taking cohomology. In fact it is also possible
to recover the sheaves from the representation by applying a certain localization functor.

Theorem 1.0.2. There are two sheaves of ”twisted” differential operators D−n and Dn−2 on P1

(locally, they look like the Weyl algebra k[X, ∂X ] but the gluing data is non trivial) such that

D−n ⊗U(sl2) Sym
nk2 = OP1(n)

and
Dn−2 ⊗LU(sl2)

Symnk2 = OP1(2− n)[1]

We next want to illustrate that having a sheaf on a space, rather than just a representation
allows for many interesting constructions. We consider the stratification by B-orbits where w0 =(

0 1
−1 0

)
:

P1 = B\Bw0B
∐

B\B = A1
∐
{∞}.

Let π : SL2 → P1 be the projection. Here A1 = π(w0U) (where U is the unipotent radical in B),
and {∞} = π(1). In terms of coordinates, A1 = Spec k[Y/X], and ∞ = [0, 1]. We have an exact
triangle :

(i∞)⋆i
!
∞OP1(n)→ OP1(n)→ j⋆j

⋆OP1(n)
+1→

for i∞ : {∞} → P1 ← A1 : j. We deduce that the following complex computes the cohomology:

Cous(n) : 0→ H0(A1,OP1(n))→ H1
∞(P1,OP1(n))→ 0

If n ≥ 0, we have a short exact sequence 0 → Symnk2 → H0(A1,OP1(n)) → H1
∞(P1,OP1(n)) → 0.

If n ≤ −2, we have a short exact sequence 0→ H0(A1,OP1(n))→ H1
∞(P1,OP1(n))→ Symnk2 → 0.

1
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We claim that there is an action of sl2 on Cous(n) and the two above exact sequence are the
”famous” dual BGG and BGG resolution of Symnk2.

Let us in fact compute everything. We have an isomorphism H0(A1,OP1(n)) = Xnk[Y/X]. One
easily computes the action of T . For t = diag(t, t−1) ∈ T , we have t.Xn(X/Y )s = tn−2sXn(X/Y )s.
Therefore the weights of T on H0(A1,OP1(n)) are n, n− 2, n− 4, · · · .

We can also compute H1
∞(P1,OP1(n))). Let Ū be the opposite unipotent radical. We find that Ū

maps isomorphically via π to a neighborhood (A1)′ of {∞} ∈ P1. We have a short exact sequence:

0→ H0((A1)′,OP1(n))→ H0((A1)′ \ {∞},OP1(n))→ H1
∞(P1,OP1(n)))→ 0

Moreover, H0((A1)′,OP1(n)) = Y nk[X/Y ] and H0((A1)′ \ {∞},OP1(n)) = Y nk[X/Y, Y/X] so
that H1

∞(P1,OP1(n)) = Y nk[X/Y, Y/X]/k[X/Y ]. The weights of T are −n− 2,−n− 4, · · · .
We deduce that Cous(n) is given by the following complex:

0→ Xnk[Y/X]→ Y nk[X/Y, Y/X]/k[X/Y ]→ 0

Let us finally examine all the actions we have on this complex. We have an action of B, where(
1 t
0 1

)
.Y/X = Y/X + t.

There is no action of Ū since

(
1 0
t 1

)
.Y/X = Y/X

1+tY/X . We can however differentiate this action

to get an action of u where

(
1 0
1 1

)
= −(Y/X)2∂Y/X .

The goal of this course will be to generalize these constructions from SL2 to an arbitrary reductive
group G and prove versions of theorems 1.0.1 and 1.0.2 in this setting.

2. Recollections on schemes

2.1. Affine Schemes. Let A be a commutative ring. We define Spec A = {prime ideals of A}.
We equip Spec A with the Zariski topology. A basis of open are the {D(f)}f∈A where D(f) =
Spec A[1/f ] ↪→ Spec A.

We construct a sheaf of rings OSpec A on the topological space Spec A by putting OSpec A(D[f ]) =
A[1/f ]. That this defines a sheaf follows from the following proposition.

Proposition 2.1.1. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following sequence
is exact :

0→ A→
∏
i

A[1/fi]→
∏
i,j

A[1/fifj ]

where the first map is the diagonal map a 7→ (a)i and the second map if (fi) 7→ (fi,j) where
fi,j = fi − fj.

The pair (Spec A,OSpec A) is an affine scheme. Any ring morphism f : A → B induces a map
of topological spaces f : Spec B → Spec A and a map of sheaves OSpec A → f⋆OSpec B.

2.2. Schemes.

Definition 2.2.1. A locally ringed space (X,OX) is a pair consisting of a topological space X and
a sheaf of rings OX over X with the property that for all x ∈ X, the stalk OX,x is a local ring.
A map f : (X,OX) → (Y,OY ) of locally ringed spaces is a map f : X → Y of topological spaces
together with a map of sheaves of rings :

f⋆OY → OX

such that for all x ∈ X, the map OY,f(x) → OX,x is a local ring map.

Definition 2.2.2. A scheme is a locally ringed space (X,OX) which is locally isomorphic to an
affine scheme.
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Schemes are therefore a full subcategory of the category of locally ringed spaces. Inside the
category of schemes, we have the full subcategory of affine schemes.

Proposition 2.2.3. The category of affine schemes is equivalent to the opposite category of rings
via the quasi-inverse functors (X,OX) → H0(X,OX) and A → (Spec A,OSpec A), which are
respectively left and right adjoints of the other.

Remark 2.2.4. This proposition explains why we insist on working with locally ringed spaces and
not just ringed spaces. Let k be a field and let Spec k[[T ]] be the affine scheme. This has a special
point s and a generic point η. Consider the map Spec k((T )) → Spec k[[T ]] obtained by sending
(0) = Spec k((T )) to s. This induces a map of ringed spaces, but not of locally ringed spaces. The
point is that the map k[[T ]] = OSpec k[[T ]],s → k((T )) = OSpec k((T )),0 is not a local map. The good
map Spec k((T )) → Spec k[[T ]] is the one induced by applying Spec to the map k[[T ]] → k((T ))
and it sends (0) to η.

One often fixes a base scheme S and consider the category of S-schemes Sch/S. This is the
category whose objects are given by a scheme X together with a ”structural” morphism X → S.
Maps X → Y between two objects of Sch/S is a map of schemes which respects the structural
morphisms.

Remark 2.2.5. Sch = Sch/Z.

One is often led to impose finiteness conditions. Here is a brutal list of the most common
finiteness conditions:

Finiteness conditions on a scheme :

(1) A scheme is quasi-compact if its underlying topological space is quasi compact.
(2) Quasi separated if the intersection of two quasi-compact subsets is quasi-compact.
(3) Locally noetherian : each point as an open affine neighborhood Spec R with R noetherian.
(4) Noetherian : quasi compact and locally noetherian.

Fineteness conditions on a morphism f : X → S.

(1) quasi-compact : for any quasi compact open U ↪→ S, f−1(U) is quasi-compact.
(2) quasi-separated : the diagonal X → X ×S X is quasi-compact.
(3) separated : the diagonal is a closed immersion.
(4) locally of finite type : for every point x ∈ X there are open affine x ∈ Spec R ↪→ X and

Spec A ↪→ S with f(Spec R) ⊆ Spec A and R is a finite type A-algebra.
(5) locally of finite presentation : same as before with R a finite presentation A-algebra.
(6) finite type : locally of finite type + quasi-compact.
(7) finite presentation : locally of finite presentation + quasi-compact + quasi-separated.

2.3. Sheaves. In the case of a ring A, we have the abelian category Mod(A) of A-modules and
its full subcategory Modf (A) of finite type A-modules. The category Modf (A) is abelian if A is
Noetherian. To M ∈ Mod(A), we can associate a sheaf of OSpec A-modules over Spec A, denoted

by M̃ and defined by the rule that M̃(D(f)) = M ⊗A A[1/f ]. That this defines a sheaf follows
from:

Proposition 2.3.1. Let f1, · · · , fn ∈ A be such that (f1, · · · , fn) = A. Then the following sequence
is exact :

0→M →
∏
i

M [1/fi]→
∏
i,j

M [1/fifj ]

where the first map is the diagonal map m 7→ (m)i and the second map if (mi) 7→ (mi,j) where
mi,j = mi −mj.
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Definition 2.3.2. Let X be a scheme and let F be a sheaf of OX -modules. The sheaf F is
quasi-coherent if there is a covering X = ∪Spec Ai and Ai-modules Mi such that F |Spec Ai = M̃i.
The sheaf is called coherent if theres is a covering as before such that the modules Mi are finite
Ai-modules.

We denote by QCoh(X) the category of quasi-coherent sheaves on a scheme X and Coh(X) the
category of coherent sheaves on X. This category QCoh(X) is abelian. The category Coh(X) is
also abelian if X is locally Noetherian.

Remark 2.3.3. One finds in the literature several definitions of coherent sheaves on general
schemes, which all agree in the locally Noetherian case. We have chosen the simplest one.

Proposition 2.3.4. Let Spec A be an affine scheme. The category QCoh(Spec A) is equivalent
to the category Mod(A), and the category Coh(Spec A) is equivalent to the category Modf (A) of

finite A-modules via the quasi-inverse functors : F → H0(Spec A,F ) and M → M̃ .

2.4. Functor of points. To any scheme X we attach a functor of points :

X(−) : Schopp → SETS

T 7→ X(T )

Lemma 2.4.1 (Yoneda). The functor Sch→ Func(Schopp, SETS) is fully faithful.

Definition 2.4.2. A functor F : Schopp → SETS is representable if it is in the essential image of
the Yoneda functor.

2.5. Fibre products. [Reference, [Har77], II, thm. 3.3] Let X,Y, S be schemes and f : X → S,
g : Y → S be maps. Then there is a scheme X ×S Y called the fibre product of X and Y over S.
It fits in a commutative diagram :

X ×S Y //

��

X

��

Y // S

and satisfies the following universal property:

Hom(−, X ×S Y ) = Hom(−, X)×Hom(−,S) Hom(−, Y ).

In the affine case X = Spec A, Y = Spec B,S = Spec R then X ×S Y = Spec (A⊗R B) which
is in particular affine. The general case is obtained by gluing.

2.6. Sites.

Definition 2.6.1. A site is a category C and a collection Cov(C) of families of morphisms with
fixed target (called coverings) satisfying the following axioms :

(1) An isomorphism ϕ : V → U is a covering,
(2) If {ϕi : Ui → U}I is a covering, and {ϕi,j : Ui,j → Ui}j is a covering then {ϕi ◦ ϕi,j : Ui,j →

U}i,j is a covering.
(3) If {Ui → U}i∈I is a covering and V → U is a morphism in C, then ∀i the fiber product

Ui ×U V exists in C, and {Ui ×U V → V }i∈I is a covering.

Definition 2.6.2. A presheaf F on a site C is a functor Cop → SET . A presheaf F is a sheaf if for
any covering {ϕi : Ui → U}i∈I , the diagram:

F (U)→
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)
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is exact. If the morphism F (U)→
∏
i F (Ui) is simply injective, the presheaf is said to be separated.

A morphism of presheaves is simply a natural transformation of functors. Define Sh(C) to be the
full subcategory of Func(Cop, SET ) whose objects are sheaves.

Before giving an example of site in the theory of schemes we mention a few examples:

Example 2.6.3. (1) Let X be a topological space. Let Op(X) be the category of open subsets
of X, ordered by inclusion. Coverings are jointly surjective maps. A sheaf on Op(X) is a
sheaf in the usual sense, ie a topological sheaf.

(2) Let SETS be the category of sets. We turn it into a site by declaring that the coverings
are the jointly surjective maps.

(3) Let Top be the category of topological spaces. Coverings are open coverings.
(4) Let CompTop be the category of compact Hausdorff topological spaces. Coverings are finite

collections of maps, jointly surjective. A sheaf on CompTop for this topology is called a
“condensed set”.

2.7. The fppf topology. Recall that and R-moduleM is flat if the functor onMod(R) : M⊗R−
is exact.

Definition 2.7.1. A morphism f : X → S is flat if for all x ∈ X, OX,x is flat over OS,f(x).

Proposition 2.7.2. A morphism of affine schemes X = Spec A→ S = SpecR is flat if and only
if A is R-flat.

Proof. If R→ A is flat then for all x ∈ Spec A mapping to y ∈ Spec R and any Ry-module M we
have that Ax ⊗Ry M = Ax ⊗A A ⊗R M . Thus Ax ⊗Ry − is exact. Conversely, assume that Ax is
Ry-flat for all x. Let 0→ I → R be an inclusion. Let 0→ K → I ⊗R A→ A. We see that for all
x ∈ Spec A, Kx = 0 thus K = 0. □

Definition 2.7.3. A family of morphisms {ϕi : Ui → X}i∈I is an fppf covering if each ϕi is flat
and locally of finite presentation and X = ∪iϕi(Ui).

Proposition 2.7.4. Schfppf is a site.

Proof. This follows from the fact that a composition of flat morphisms is flat and that the base
change of a flat morphism is flat. □

Theorem 2.7.5. Let X be a scheme. The functor of points X(−) is an fppf sheaf.

2.8. Differentials and smoothness.

2.8.1. The module of differentials. Let R be a ring and let A be an R-algebra. For any A-moduleM
an R-derivation from A to M is an R-linear map D : A→M such that D(ab) = aD(b)+ bD(a) for
all (a, b) ∈ A2. There is a universal A-module Ω1

A/R equipped with a derivation d : A→ Ω1
A/R for

which DerR(A,M) = HomA(Ω
1
A/R,M) for any A-module M . There is a construction by generators

an relations

Ω1
A/R = ⊕a∈AAda/⟨d(ra) = rda ∀(r, a) ∈ R×A, d(ab) = adb+ bda, ∀(a, b) ∈ A×A⟩.

Here is a second construction. We can also consider the exact sequence 0→ I → A⊗RA→ A→ 0
and we let Ω1

A/R = I/I2, and let d : A→ I/I2 be d(f) = 1⊗ f − f ⊗ 1. To see that d : A→ I/I2 is

universal, letM be an A-module and let D : A→M be a derivation. Consider 1⊗D : A⊗RA→M
be the linearization. One checks that 1 ⊗ D(I2) = 0 and we can consider the A-linear map
1⊗D : I/I2 →M . We recover D as the composition A→ I/I2 →M .
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2.8.2. Two exact sequences.

Lemma 2.8.1. If A→ B is a map of R-algebras, we have an exact sequence :

Ω1
A/R ⊗A B → Ω1

B/R → Ω1
B/A → 0

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerA(B,M)→ DerR(B,M)→ DerR(A,M)

is exact. □

Lemma 2.8.2. If A
α→ B is a surjective map with kernel I, we have :

I/I2
d→ Ω1

A/R ⊗B → Ω1
B/R → 0

If A→ B has a splitting B → A as algebras, then

0→ I/I2
d→ Ω1

A/R ⊗B → Ω1
B/R → 0.

Proof. It suffices to check that for any B-module M , the sequence :

0→ DerR(B,M)→ DerR(A,M)→ HomA(I/I
2,M)

is exact. In case we have a splitting, we check that the map is onto. Indeed, we have A/I2 =
B⊕ I/I2. Given D ∈ HomA(I/I

2,M), we can extend it to a derivation on B⊕ I/I2 by D(b+ i) =
D(i). □

Example 2.8.3. We have that Ω1
R[T1,··· ,Tn]/R = ⊕ni=1R[T1, · · · , Tn]dTi. Indeed, one checks that the

map ⊕ni=1R[T1, · · · , Tn]dTi → Ω1
R[T1,··· ,Tn]/R is surjective using the presentation. We have the

derivation ∂Ti : R[T1, · · · , Tn] → R[T1, · · · , Tn] and they give linear maps : ∂Ti : Ω
1
R[T1,··· ,Tn]/R →

R[T1, · · · , Tn] with the property that ∂Ti(dTj) = δi,j . We deduce that {dT1, · · · , dTn} are indeed a
basis of the differentials.

Example 2.8.4. Let A = R[T1, · · · , Tn]/(P1, · · · , Pr). Then Ω1
A/R = ⊕ni=1AdTi/(dP1, · · · , dPr).

2.8.3. The naive cotangent complex. Let B be an R-algebra of finite presentation. This means

that we have an exact sequence 0 → I → A
α→ B → 0 where A is a polynomial algebra over

R and I is a finitely generated ideal. To any such presentation, we can associate the complex :

C(α) : I/I2
d→ Ω1

A/R ⊗B.

Lemma 2.8.5. For any two presentations α, α′, the complexes C(α) and C(α′) are homotopic.

Proof. We first prove that if we have a map of presentations :

0 //

��

I //

��

A
α //

λ
��

B

Id
��

0 // I ′ // A′
α′
// B

we get a map λ : C(α)→ C(α′).
Second we show that if λ and λ′ are two maps of presentation, λ and λ′ are homotopic from

C(α) to C(α′). The homotopy is provided by the map λ− λ′ : A→ I ′/(I ′)2 which is a derivation.
Third, we show that given any two presentations, there is a map between them. It follows that

we have maps C(α) → C(α′) and C(α′) → C(α) and both compositions are homotopic to the
identity. □
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Definition 2.8.6. A ring morphism R → B is smooth if it is of finite presentation and for any

presentation α, the complex C(α) : I/I2
d→ Ω1

A/R ⊗B is injective with projective cokernel. A ring

morphism R → B is étale if it is smooth and the Naive cotangent complex is quasi-isomorphic to
0.

Proposition 2.8.7. (1) Let R → B and B → B′ be smooth (resp. étale) morphisms. Then
R→ B′ is smooth (resp. étale).

(2) Let R→ B and R→ B′ be smooth (resp. étale) morphisms. Then R→ B⊗R B′ is smooth
(resp. étale).

Proof. Take a presentation α : R[T1, · · ·Tn]→ B with kernel I, and a presentation β : R[T1, · · · , Tn, X1, · · · , Xr]→
B′ with kernel J inducing a presentation γ : B[X1, · · · , Xr]→ B′ with kernel K.

We get a commutative diagram :

0 // ⊕iB′dTi // ⊕iB′dTi ⊕⊕jB′dXj
// ⊕jB′dXj

// 0

I/I2 ⊗B B′ //

OO

J/J2 //

OO

K/K2 //

OO

0

From which we deduce that the middle map is injective with projective cokernel. The second point
is left to the reader.

□

2.8.4. Standard smooth morphisms.

Definition 2.8.8. AnR algebraA is called standard smooth if it has a presentationR[T1, · · · , Tn]/(f1, · · · , fc)
where the Jacobian matrix (∂Tifj)1≤i,j≤c is invertible in A.

Lemma 2.8.9. A standard smooth R-algebra A is smooth.

Proof. Indeed, we observe that df1, · · · , dfc, dTc+1, · · · , dTn is a basis of Ω1
R[T1,··· ,Tn] ⊗R A. □

Lemma 2.8.10. Let A be a standard smooth algebra. There is an étale map R[X1, · · · , Xt]→ A.

Proof. We consider a standard presentation : R[T1, · · · , Tn]/(f1, · · · , fc). We just take X1 =
Tc+1, · · · , Xt = Tn. □

Lemma 2.8.11. A smooth R-algebra A admits a Zariski cover SpecA = ∪i SpecA[1/fi] where
A[1/fi] is a standard smooth R-algebra.

Proof. Let A be a smooth R-algebra. We take a presentation 0→ I → R[T1, · · · , Tn]→ A→ 0. For

any f ∈ A, with lift f̃ , 0→ (I, Tn+1f̃ − 1)→ R[T1, · · · , Tn, Tn+1]→ A[1/f ]→ 0 is a presentation.

We also observe that (I, Tn+1f̃ − 1)/(I, Tn+1f̃ − 1) = I/I2 ⊗A A[1/f ]⊕A[1/f ](fdTn+1 − dfTn+1).
Let x ∈ Spec ¬†A. Since I/I2 is projective, there exists f ∈ A such that I/I2 ⊗A A[1/f ] is free
and f(x) ̸= 0. We can replace A by A[1/f ] and assume I/I2 is free. It has a basis (f1, · · · , fc).
Pick a lift (h1, · · · , hc) in I. By Nakayama, h ∈ I such that (1 + h)(h1, · · · , hc) ⊆ I. We see
that 0 → (h1, · · · , hc, Tn+1(1 + h) − 1) → R[T1, · · · , Tn+1] → A → 0 is a presentation. Thus we
can assume that I is generated by (f1, · · · , fc) which map to a basis of I/I2. We see that one of
the minors of size c of (∂Tifj)1≤j≤c,1≤i≤n is non-zero. Making one more localization, and possibly
reordering, we can assume that (∂Tifj)1≤i,j≤c is invertible in A. □

2.9. Smoothness and flatness.

Proposition 2.9.1. A smooth morphism R→ B is flat.

Proof. See [Sta13] TAG 00TA. Note that syntomic morphisms are flat by definition. □
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Proposition 2.9.2. (1) Let R be a field. A morphism R → B is étale if and ony if B is a
product of finitely many finite separable field extensions of R.

(2) Let R be a ring. A morphism R→ B is étale if and only if it is of finite presentation, flat,
and for all prime ideal p in R, k(p)→ B ⊗R k(p) is étale.

Proof. First, assume that R is a field and B = R[x]/P (x) with (P (x), P ′(x)) = 1. Then R→ B is

étale (the naive cotangent complex is given by B
P ′(x)→ B). In the other direction, we may assume

that R is algebraically closed. Then one needs to see that if R → B is étale, then B is finite over
R and reduced. See [Sta13] TAG 00U3. For the second point, see [Sta13] TAG 00U6. □

2.9.1. Smooth morphism. If X → S is a map of schemes, we let Ω1
X/S be the quasi-coherent

sheaf over X of relative differentials. If X/S is locally of finite type, this sheaf is coherent. One
possible definition is to consider the locally closed immersion ∆ : X → X ×S X, factor it as the
composite of a closed immersion, with ideal I and open immersion X ↪→W ↪→ X ×SX and to let
Ω1
X/S = ∆⋆I /I 2. We can also check that for R → A and f ∈ A, Ω1

A/R ⊗A Af = Ω1
Af/R

, so that

the construction of Ω1
A/R is compatible with Zariski localization.

Definition 2.9.3. A morphism f : X → S is smooth at x ∈ X is x has an affine neighboorhood
SpecB over an open Spec R of S containing f(x) and R→ B is a smooth map of rings.

Definition 2.9.4. A morphism is smooth if it is smooth at all points.

The rank of Ω1
X/S is called the relative dimension of f .

Definition 2.9.5. A morphism is étale if it is smooth of relative dimension zero.

Proposition 2.9.6. A morphism f : X → S is étale if

(1) it is locally of finite presentation,
(2) it is flat,
(3) for all s ∈ S, the fiber Xs is a disjoint union of spectra of finite separable extension of k(s).

2.10. The Tangent sheaf and the Zariski tangent space. Assume that X → S is locally of
finite type.

Definition 2.10.1. The tangent sheaf is TX/S = Hom(Ω1
X/S ,OX/S).

Proposition 2.10.2. Assume that S = Spec R. Then H0(X,TX/S) identifies with the group of
automorphisms of X ×Spec R Spec R[ε] which induce the identity on X.

Proof. Let ϕ be such automorphism. Since X ×Spec R Spec R[ε] and X have the same open
subsets, ϕ will preserve any affine cover. We can assume that X is affine, say X = Spec A. We
therefore have ϕ : A[ε] → A[ε]. We have ϕ(a) = a + εD(a). We check that D is in DerR(A,A) =
HomA(Ω

1
A/R, A). □

Assume that S = SpecR. Let X → S be a scheme and let x : S → X be an S-point. Let Ix
be the ideal sheaf of the immersion. We let V (I2x) be the first neighborhood of x. We remark that
Ix/I

2
x is supported on S and corresponds to an R-module still denoted by Ix/I

2
x. It follows that

V (I2x) = Spec(R⊕ Ix/I2x).

Proposition 2.10.3. Consider the map r : X(R[ε]) → X(R) induced by the map R[ε] → R,
a+ εb 7→ a. Then r−1(x) = HomR(Ix/I

2
x, R).

Proof. An element of r−1(x) corresponds to a morphism R⊕ Ix/I2x → R[ε]. □

We call Hom(Ix/I
2
x, R) the Zariski tangent space at x. We can spell out the connection with

TX/S .
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Lemma 2.10.4. There is a canonical map x⋆TX/S → HomR(Ix/I
2
x, R). If X/S is smooth, this

map is an isomorphism.

Proof. Let us assumeX = SpecA is affine. We have x⋆TX/S = HomA(Ω
1
A/R, A)⊗AR→ HomA(Ω

1
A/R, R) =

HomR(R⊗AΩ1
A/R, R) = HomR(Ix/I

2
x, R). In the smooth case, the first map is an isomorphism. □

2.11. Differential operators. [Reference : [BO78], section 2]
Let X → S be a map of schemes. Let PX/S = OX ⊗f−1OS

OX and PnX/S = PX/S/In+1 where

I is the kernel of the map OX ⊗f−1OS
OX → OX . This quasi-coherent sheaf has two structures of

OX -modules given by left and right multiplication.

Lemma 2.11.1. The map X ×S X ×S X → X ×S X, (x, y, z) 7→ (x, y) induces a map δ : Pn+mX/S →
PnX/S ⊗OX

PmX/S, given by a⊗ b 7→ a⊗ 1⊗ 1⊗ b.

Proof. We have a map δ : PX/S → PX/S ⊗OX
PX/S , given by a⊗ b 7→ a⊗ 1⊗ 1⊗ b. This map sends

the ideal I to I⊗PX/S+PX/S⊗I. It sends Im+n+1 to
∑

a+b=m+n+1(I⊗PX/S)a(PX/S⊗I)b = Ia⊗Ib.
We see that Ia ⊗ Ib ⊆ In+1 ⊗ PX/S + PX/S ⊗ Im+1. □

Remark 2.11.2. Geometrically, the lemma says that if (x, y) are closed to order m and (y, z) are
closed to order n, the (x, z) are closed to order m+ n.

We want to understand the structure of PmX/S .

Definition 2.11.3. (1) Let A be a ring. Let f1, · · · , fc be elements of A. We say that the
elements f1, · · · , fc define a regular sequence if fi is not a zero divisor in A/(f1, · · · , fi−1)
for all 0 ≤ i ≤ c.

(2) Let X be a scheme. An ideal I ⊆ OX is called regular, if for any x ∈ X, there is an
open affine U and elements f1, · · · , fc which generate I(U) and form a regular sequence in
OX(U).

(3) An immersion of schemes Z → X is called regular if there exists an open U ⊆ X such that
Z can be defined by a regular ideal I in U .

Lemma 2.11.4 ([Sta13], Tag 00LN). Let A be a ring and f1, · · · , fc be a regular sequence defining
an ideal I. The map A/I[X1, · · · , Xc] → ⊕n≥0In/In+1, sending

∏
Xei
i to

∏
feii mod In+1 is an

isomorphism.

Proposition 2.11.5. Assume that X is smooth and that X admits an étale map X → AnS. Let xi
be the coordinates on AnS and ξi = 1⊗ xi − xi ⊗ 1 ∈ PX/S. Then PmX/S is the free OX-module with

basis the
∏
i ξ
αi
i with

∑
αi ≤ m.

Proof. (1) The map X → X ×S X is a regular immersion (see [Sta13], Tag 067U). This implies
that ⊕kIk/Ik+1 = Sym(I/I2).

(2) The elements ξi ∈ I map to a basis of I/I2 by our assumption.
(3) We prove by induction on m that the map ⊕αOXξ

α → PmX/S is an isomorphism.

Here is a more direct argument. We can assume X = Spec A and R[X1, · · · , Xn]→ A is étale.
Let J = Ker(R[X1, · · · , Xn] ⊗R R[X1, · · · , Xn] → R[X1, · · · , Xn] and I = Ker(A ⊗R A → A). We
have that J ⊗R[X1,··· ,Xn]⊗RR[X1,··· ,Xn] A ⊗R A injects into I and J/J2 ⊗R[X1,··· ,Xn] A = I/I2. This
implies easily (Nakayama) that J/Jn ⊗R[X1,··· ,Xn]⊗RR[X1,··· ,Xn] A⊗R A = I/In for all n. □

Let E and F be quasi-coherent sheaves over X. Let D : E → F be an f−1(OS)-linear operator.
One can linearize it by considering 1⊗D : OX⊗f−1OS

E → F . Alternatively, we see that OX⊗f−1OS

E = PX/S ⊗OX
E .
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Definition 2.11.6. We say that D is a differential operator of order ≤ n is we have a factorization:

E //

��

F

PnX/S ⊗ E

::

Remark 2.11.7. D is of order 0 if and only if it is a linear map.

Lemma 2.11.8. Let D : E → E ′ and D′ : E ′ → E ′′ be differential operators of order ≤ n and ≤ m.
Then D′ ◦D is of order ≤ m+ n.

Proof. We have maps δ : PX/S → PX/S ⊗OX
PX/S , given by a ⊗ b 7→ a ⊗ 1 ⊗ b. It induces maps

Pn+mX/S → P
m
X/S ⊗OX

PmX/S . We now consider the diagram :

E //

((

��

E ′ //

''

E ′′

Pn ⊗ E

��

OO

Pm ⊗ E ′

OO

Pn+m ⊗ E // Pm ⊗ Pn ⊗ E

77

The top maps are e 7→ D(e) 7→ D′D(e). The map Pn ⊗ E → E is a ⊗ b ⊗ e 7→ aD(be). The map
Pn ⊗ E → Pm ⊗ Pn ⊗ E is a ⊗ b ⊗ e 7→ 1 ⊗ a ⊗ b ⊗ e. The map Pn+m ⊗ E → Pm ⊗ Pn ⊗ E is
a′⊗ b⊗ e 7→ a′⊗ 1⊗ b⊗ e. The map Pm⊗Pn⊗E → Pm⊗E ′ is a⊗ b⊗ c⊗ e 7→ a⊗ b⊗D(ce). □

Definition 2.11.9. We let DX/S be the ring of differential operators on OX .

This is a graded ring with (DX/S)n = HomOX
(PnX/S ,OX) are the differential operators of order

≤ n. This is a subsheaf of Endf−1(OS)(OX).

Lemma 2.11.10. (1) (DX/S)0 = OX

(2) (DX/S)1 = OX ⊕ TX .

Proof. The first point is clear. For the second point, we observe that P1
X/S = Ω1

X/S ⊕ OX . □

Remark 2.11.11. We see that a section D of Endf−1(OS)(OX) is a differential operator of order
m if and only if D((f1⊗1−1⊗f1)....(fm⊗1−1⊗fm)) = 0 for any local sections (fi)1≤i≤m in OX .
Observe that D((f1⊗1−1⊗f1)....(fm⊗1−1⊗fm)) = [D, f1](f2⊗1−1⊗f2)....(fm⊗1−1⊗fm)).
We deduce that D is of order ≤ m if and only if [D, f ] is of order ≤ m− 1 for all f ∈ OX .

Lemma 2.11.12. If D is of order ≤ n and D′ is of order ≤ m, then [D,D′] is of order ≤ m+n−1.

Proof. We prove the lemma by induction on the order of D′ and D, using the above remark. We
have [[D,D′], f ] = [[D, f ], D′] + [D, [D′, f ]]. □

We define gr(DX/S) = ⊕(DX/S)n/(DX/S)n−1.

Corollary 2.11.13. We have that gr(DX/S) is a commutative algebra.

We now put ourselves in the setting of proposition 2.11.5. We assume that X is smooth, and that
X admits an étale map X → AnS . Let xi be the coordinates on AnS and ξi = 1⊗xi−xi⊗ 1 ∈ PX/S .
In the above situation, for any q = (q1, · · · , qn) we let ξq =

∏
i ξ
qi
i . If

∑
qi ≤ m, let Dq be the

differential operator of order ≤ m which satisfies Dq(ξ
q) = 1 and Dq(ξ

q′) = 0 for q′ ̸= q. The Dq

form a basis of DX/S .
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Remark 2.11.14. In particular, form = 1, we see that Dq corresponding to q = (0, · · · , 0, 1, 0, · · · , 0)
with 1 in i-th position is ∂xi. Indeed, ∂xi(1⊗ xi − xi ⊗ 1) = ∂xi(xi)− xi∂xi(1) = 1.

We now need to understand the composition.

Lemma 2.11.15. We have Dq ◦Dq′ =
(q+q′)!
q!q′! Dq+q′.

Proof. We have δ(ξi) = xi ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ xi = ξi ⊗ 1 + 1 ⊗ ξi. We deduce that δ(ξp) =∑
i+j=p

q!
i!(p−i)!(ξ

p−i ⊗ 1)(1⊗ ξi). Applying Id⊗Dq′ first, we find 0, unless i = q′. Then apply Dq,

we see that we must have p− q′ = q otherwise we get 0. □

Proposition 2.11.16. Assume that X is smooth over S and that S is a Q-scheme. Then DX/S is
the sheaf of algebras generated by OX and TX/S, subject to the following relations :

(1) f1.f2 = f1f2, fi ∈ OX ,
(2) f.D = fD, f ∈ OX , D ∈ TX ,
(3) D1.D2 −D2.D1 = [D1, D2],
(4) f.D −D.f = D(f).

In particular, gr(DX/S) = Sym(TX).

Proof. This is a local statement so we can assume that X has an étale map to AnS . The above
description shows that DX/S = ⊕(i1,··· ,in)OX

∏n
l=1 ∂

il
xl

and

(DX/S)k = ⊕(i1,··· ,in),
∑
il≤kOX

n∏
l=1

∂ilxl .

This implies that the map TX/S → gr((DX/S)) induces an isomorphism gr((DX/S)) = Sym(TX).
Let A be the algebra generated by OX and TX/S as above. We have a map A → DX/S . We can
turn A into a graded algebra by declaring that elements of TX/S have degree ≤ 1 and elements
of OX have degree ≤ 0. Now we have Sym(TX) → gr(A) → gr((DX/S)) and the composite is an
isomorphism, while the first map is onto. We deduce that gr(A)→ gr((DX/S)) is an isomorphism,
hence that A → DX/S is an isomorphism. □

We also need to understand the (left) stalks of DX/S .

Lemma 2.11.17. Assume that S = Spec k where k is a field. Let x : S → X be a section. We
have a map : x⋆DX/S → colimnHomk(OX,x/m

n
x, k). This map is an isomorphism if X → S is

smooth.

Proof. We claim that x⋆PmX/S = OX,x/m
m+1
x . We reduce to the affine case, X = Spec A. We have

R ⊗A (A ⊗R A) = A. The ideal R ⊗A I maps to the maximal ideal mx. Now we have x⋆DX/S =
colimnHom(PmX/S ,OX)⊗OX

k → colimnHomk(OX,x/m
n
x, k) where the map is an isomorphism in the

smooth case. □

Corollary 2.11.18. Assume that k is of characteristic 0 and X/S is smooth. We have that
x⋆DX/S = ⊕(i1,··· ,in)k

∏n
l=1 ∂

il
xl

where ∂xl are a basis of the Tangent space at x. The isomorphism

takes
∏
l ∂

il
xl

to the map f 7→ (
∏
l ∂

il
xl
f)(x) where f ∈ OX,x.

2.12. Dimension. Let X be a scheme. A closed subset Z is called irreducible if it is non-empty
and whenever Z = Z1 ∪Z2 where Z1 and Z2 are closed, then Z1 = Z or Z2 = Z. Equivalently, this
means that any non-empty open subset of Z is dense.

Lemma 2.12.1. Let U be an open affine subset of X. We have a bijection between irreducible
closed subsets Z of X such that Z ∩ U ̸= ∅ and irreducible closed subsets Z of U . The maps are
given by Z 7→ Z ∩ U and Z 7→ Z.
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Proof. Let Z be closed in U . We claim that Z ∩U = Z. Indeed, let x ∈ U \Z. Then we can find a
function f in the ideal defining U such that x ∈ D(f). Thus, D(f) is open in X. And Z ⊆ D(f)c,
which proves that x /∈ Z ∩ U . If Z is irreducible, then we claim that Z is irreducible. Otherwise,
Z = Z1∪Z2. Then Z ∩U = Z = Z1∩U ∪Z2∩U . So, we can assume that Z = Z1∩U and Z = Z1.
Let Z be a irreducible subset of X be such that Z ∩ U ̸= ∅. We claim that Z = Z ∩ U . Indeed,
Z = Z ∩ U ∪ U c ∩ Z and Z is irreducible. We also deduce that Z ∩ U is irreducible. Indeed, if
Z1 ∪ Z2 = Z ∩ U , then Z1 ∪ Z2 = Z so that Z1 ⊆ Z2 (or conversely) and therefore Z1 ⊆ Z2.

□

Lemma 2.12.2. Any irreducible closed subset of X has a unique generic point.

Proof. Let Z be an irreducible closed subset. Take U affine open such that Z ∩ U ̸= ∅. Let ξ be
the generic point of Z ∩ U . Then the closure of ξ in X is Z.Let ξ and ξ′ be two points in X with
the same closure. Let U be an affine open containing ξ. If ξ′ /∈ U , we get that ξ′ ∈ X \ U , a
contradiction. So ξ, ξ′ ∈ U . But then ξ = ξ′ correspond to the same prime ideal. □

We say that X is noetherian if every open subset is quasi-compact.

Lemma 2.12.3. If X is noetherian, then any closed subset is a finite union of irreducible closed
subsets.

Proof. Let Z be a smallest closed subset which is not a finite union of irreducible closed subset
(exists by noetherian assumption). Then Z is not irreducible, hence Z = Z1 ∪ Z2 where Zi are
strictly included in Z. Then Zi are finite union of irreducible components. Thus Z is a finite union
of irreducible closed subsets. □

We let dim(X) be the maximal length of chain of irreducible closed subsets Z0 ⊊ Z1 ⊊ · · · ⊊ Zn
(this chain has length n) in X. When A is a ring we let dim(A) = dim(Spec A).

Lemma 2.12.4. Let X be a scheme. Then dim(X) = supx∈X dim(OX,x).

Proof. Let ξ0 → ξ1 → ξ2 · · · → ξn be a chain of specializations in OX,x. They define a chain of
prime ideals in any affine open containing x and thus a chain of irreducible closed subsets in X.
Therefore dim(OX,x) ≤ dim(X). Conversely let ξ1 → ξ2 · · · → ξn be a chain of specializations in
X. These define a chain of specializations in OX,x with x = ξn. □

We let codimX(x) = dim(OX,x).
We now assume that (A,m) be a noetherian local ring. A system of parameters of A is a sequence

of elements (a1, · · · , an) such that
√
(a1, · · · , an) = m.

Theorem 2.12.5 ([Sta13], Tag 00KQ). The minimal number of elements defining a system of
parameters is the dimension of A.

Corollary 2.12.6. Let A be a noetherian scheme, then dimA[X] = dimA+ 1.

Proof. Let p1 ⊆ · · · ⊆ pn be a sequence of prime ideals in A. Then p1 ⊆ · · · ⊆ pn ⊆ (pn, X) is a
sequence of lenght n + 1. Thus, dimA[X] ≥ dimA + 1. Conversely, let x ∈ Spec A[X] mapping
to y. Let (f1, · · · , fn) be a sequence of parameters of y. Observe that A[X]x/my is a localization
of k(y)[X] at a prime ideal. Thus, it is either a field, if which case (f1, · · · , fn) is a sequence of
parameters of x as well, or x defines a closed point corresponding to some irreducible polynomial

P (X) ∈ k(y)[X]. In that case, (f1, · · · , fn, P̃ ) is a sequence of parameters at x. □

Corollary 2.12.7. Let k be a field, then dim k[X1, · · · , Xn] = n. More precisely, for any closed
point x, dim k[X1, · · · , Xn]x = n.
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2.12.1. Dimensions of k-schemes. Let A = k[X1, · · · , Xn]/(P1, · · · , Pr). Let x be a closed point of
Spec A.

Lemma 2.12.8. We have dimAx ≥ n− r.

Proof. If f1, · · · , fk is a system of parameters of x in Spec A, then (f̃1, · · · , f̃k, P1, · · · , Pr) is a
system of parameters of x in Spec k[X1, · · · , Xn]. Thus k + r ≥ n. □

Theorem 2.12.9 ([Sta13], Tag 02JN). If P1, · · · , Pr are a regular sequence in k[X1, · · · , Xn]x,
then dim(k[X1, · · · , Xn]/(P1, · · · , Pr))x = n− r.

Theorem 2.12.10. Assume that X → Spec k is a smooth scheme, then dim(X) = dim(OX,x) for
any closed point x is the rank of Ω1

X/k.

Proof. Locally,X is standard smooth, of the form Spec k[X1, · · · , Xn]/(P1, · · · , Pr). Then P1, · · · , Pr
is a regular sequence by [Sta13] Tag 067U. □

2.12.2. Constructibility theorem. Let X be a qcqs scheme. A subset of X is called constructible if
it is a finite union of sets of the form U ∩ Z where U is a quasi-compact open and Z is a closed
subset with quasi-compact complement.

Theorem 2.12.11. Let f : X → Y be a morphisms where f is locally of finite presentation, and
X,Y are quasi-compact, quasi-separated. Then the image of any constructible set is constructible.

Corollary 2.12.12. Assume that X is noetherian. The image f(X) contains an open subset of its
closure.

Proof. This means that f(X) = ∪i∈IUi ∩ Zi where I is finite, Ui and Zi are quasi-compact opens
and complement of quasi-compact opens respectively. We can also suppose that Zi is irreducible
and Ui dense in Zi. We claim that f(X) contains an open subset of its closure. Let I ′ be a minimal
set such that ∪i∈I′Zi = ∪i∈IZi. Let U ′i = Ui \ {∪j ̸=i∈I′Zj}. Then U ′i is still dense in Zi and open
in ∪iZi. Thus, ∪i∈I′U ′i = V is dense open in the closure of f(X) □

2.12.3. Generic flatness theorem. Let us first recall Noether’s normalization lemma.

Lemma 2.12.13 ([Sta13], Tag 07NA). Let R→ R′ be an injective map of algebras with R a domain.
There exists f ∈ R ̸= 0 and an integer d such that we have a factorization Rf → Rf [T1, · · · , Td] ↪→
R′f with R′f finite over Rf [T1, · · · , Td].

Theorem 2.12.14. Let S be a noetherian scheme. Let X → S be a morphism of finite type, with
S reduced. There is an open dense U ⊆ S such that X|U → U is flat.

This is a consequence of the following.

Proposition 2.12.15. Let A be a noetherian integral ring, let B be an A-algebra of finite type.
Let M be a finite B-module. There exists f ∈ A \ {0} such that Mf is free over Af .

Proof. Let K = Frac(A). The proof is by induction on the dimension of the support of M ⊗ K.
We also note that if we have an exact sequence 0→M1 →M2 →M3 → 0 and the lemma holds for
M1 and M3 it holds for M2. Suppose that M ⊗K is zero. Let m1, · · · ,mn be generators of M as
a B-module. There exists f ∈ A ̸= 0 such that fm1 = · · · = fmn = 0. Therefore M ⊗AAf = 0. In
general, we recall that M is a successive extension of modules of the form B/p where p is a prime
ideal. We reduce to the case that M = B is a domain. By Noether normalization, there exists
f ∈ A and b1, · · · , bn ∈ B such that Af → Af [b1, · · · , bn]→ Bf where Af [b1, · · · , bn] is a polynomial
algebra and Af [b1, · · · , bn] → B is finite. We let r be the generic rank of M over Af [b1, · · · , bn].
We have a map 0→ Af [b1, · · · , bn]r →M → T → 0 and the dimension of the support of T ⊗K is
less than n. □
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Lemma 2.12.16. Let A be a Noetherian ring. Let M be a finite type A-module. Then M is a
finite successive extension of modules of the shape A/p where p is a prime ideal.

Proof. First, we see thatM is a finite successive extension of modules of the shape A/I by induction
on the number of generators of M . So we reduce to M = A/I. Now we consider an ideal I which is
maximal among ideals with the property that A/I is not a successive extension of modules of the
shape A/p. By contradiction, assume I ̸= A. Clearly, I is not prime, so there is a, b with ab ∈ I
but a, b /∈ I. Replace A/I by A. We have 0 → A/ann(a) → A → A/a → 0. But both A/ann(a)
and A/a have the property. So does A. □

2.12.4. Generically smooth.

Proposition 2.12.17. Let X → Spec k be a finite type morphism. Assume that X is geometrically
reduced. Then X is generically smooth.

Proof. We can suppose X = Spec A with A a domain. By Noether normalization, we have k →
k[x1, · · · , xn]→ A where k[x1, · · · , xn]→ A is injective and finite. Passing to the generic point, we
have A⊗k[x1,··· ,xn]k(x1, · · · , xn) is an étale k(x1, · · · , xn)-algebra. Indeed, A⊗k[x1,··· ,xn]k(x1, · · · , xn)
is reduced, so it must be a product of finite field extensions of k(x1, · · · , xn). Being geometricall re-
duced implies these are étale extension. We deduce that there is a map k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr]→
A which induces an isomorphism over k(x1, · · · , xn). This implies that there is f ∈ k[x1, · · · , xn]
such that k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr][1/f ] ≃ A[1/f ]. We look at the determinant d of the
Jacobian (∂YjPi)1≤i,j≤r. We have d ∈ k[x1, · · · , xn, y1, · · · , yr]/[P1, · · · , Pr] and V (d) is nowhere
dense (indeed, d is invertible over k(x1, · · · , xn)). We deduce that

k[x1, · · · , xn][1/f ][y1, · · · , yr, yr+1]/(P1, · · · , Pr, yr+1d− 1) = A[1/fd]

is standard étale over k[x1, · · · , xn][1/f ]. □

3. Group schemes

3.1. Group Schemes. [Reference : [Jan03], part I, section 2] We now work in Sch/S. A group
scheme G → S is a scheme equipped with the following additional structure : m : G ×S G → G,
e : S → G, ι : G→ G, satisfying associativity, neutral element and inverse axioms. Alternatively, a
group scheme is a group functor Fun(Schop, Gr) that is representable by a scheme G. A morphism
of Group schemes is a morphism of schemes, compatible with the group structure. When G is affine
we can completely describe this extra structure in ring theoretic terms.

Definition 3.1.1. Let R be a base ring. An Hopf algebra A over R is a commutative ring equipped
with a comultiplication m⋆ : A→ A⊗R A, counit e⋆ : A→ R and coinverse ι⋆ : A→ A and satisfy
the following axioms :

(1) Co-associative

A
m⋆

//

��

m⋆

��

A⊗A

1⊗m⋆

��

A⊗A m⋆⊗1
// A⊗A⊗A

(2) Inverse A
m⋆

→ A ⊗ A Id⊗ι⋆→ A ⊗ A → A and A
m⋆

→ A ⊗ A ι⋆⊗Id→ A ⊗ A → A are the identity
map.

(3) Neutral element A
m⋆

→ A⊗A Id⊗e⋆→ A and A
m⋆

→ A⊗A e⋆⊗Id→ A are the identity map.

Proposition 3.1.2. Hopf algebras over R are anti-equivalent to afffine group schemes over Spec R

Example 3.1.3. (1) We have Ga = Spec R[X], with m⋆(X) = 1⊗X +X ⊗ 1.
(2) We have Ga = Spec R[X,X−1], with m⋆(X) = X ⊗X.
(3) We have GLn = Spec R[Xi,j , 1 ≤ i, j ≤ n][1/det] with m⋆(Xi,j) =

∑
lXi,l ⊗Xl,j .
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3.2. Action. Let G be a group scheme and let X be a scheme. A left action of G on X is a
morphism : G×X → X such that the action is associative and the unit acts trivially. Equivalently,
for any S-scheme T , we have an action G(T )×X(T )→ X(T ), functorially in T .

3.3. Representations. Let us assume S = Spec R. Let M be an R-module. We can associate to
M the functor M on R-algebras such that M(A) = A⊗RM . A representation of G on M is a map
of functors G×M → M such that for all A ∈ Alg/R, G(A)×M(A)→ M(A) defines an A-linear
action of G(A) on M(A). Let us denote by GL(M) the group functor which sends an R-algebra
B to the group GL(M ⊗R B) of B-linear automorphisms of M ⊗R B. A representation on M is
therefore a group functor map G → GL(M). If M = An is a finite free module, a representation
on M is the same as a group scheme homomorphism G→ GLn. We let ModG(R) be the category
of representations of G on R-modules. Assume that G = Spec A is affine, with A an Hopf algebra.

Definition 3.3.1. A co-module is an R-moduleM equipped with an A-linear map ∆ :M →M⊗A
which satisfies the axioms :

(1)

M
∆ //

��

∆
��

M ⊗A

∆⊗Id
��

M ⊗A Id⊗m⋆
// M ⊗A⊗A

(2) M →M ⊗A Id⊗e⋆→ M is the identity map.

Proposition 3.3.2. The category ModG(R) is equivalent to the category of co-modules.

Proof. Given a co-module ∆ : M → M ⊗ A, and a B and A-algebra, we produce a map G(B) →
GL(M ⊗A B) as follows. Let g ∈ G(B), corresponding to g : A → B. We have an A-linear map

M → M ⊗R A
Id⊗g→ M ⊗R B which extends to a B-linear map Θg : M ⊗A B → M ⊗A B. The

associativity axiom implies that Θg ◦Θh = Θgh. Let us spell out the details. The following diagram
is commutative. The bottom horizontal arrow computes Θg ◦ Θh. The composition of the right
vertical map and upper horizontal map is M →M ⊗R B whose linearization is Θgh:

M

IdM
��

∆ // M ⊗A Id⊗m⋆
// M ⊗A⊗A

IdM⊗A⊗A

��

M

��

∆ // M ⊗A ∆⊗IdA//

Id⊗g
��

M ⊗A⊗A

Id⊗(g⊗h)
��

M ⊗R B
Θg
// M ⊗R B

Θh // M ⊗R B

In particular, Θg−1 ◦Θg = Θe = Id so Θg is an automorphism. Thus, the co-module gives a group
action on M . Conversely, assume we have a group action. Let un ∈ G(A) be the universal element
(corresponding to the identity morphism A → A). Then we set ∆ : M → M ⊗R A be the action
of the universal element. This is the co-module structure. The coassociativity follows as in the
diagram above by taking B = A ⊗ A, g and h the two universal point given by A 7→ A ⊗ A,
a 7→ a⊗ 1, and a 7→ 1⊗ a. □

Example 3.3.3. (1) If G = Spec A is affine, we can consider the regular representation : we
take M = A itself. We claim that the map G → GL(A) is injective (as a map of group
functors).

(2) The category ModGm(R) is equivalent to the category of Z-graded modules.
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(3) The category ModGa(R) is more complicated. When R is a Q-algebra, a representation of
Ga on a module M is equivalent to the data of an endomorphism E of M which is locally
nilpotent.

3.4. The Lie algebra of a group scheme. [Reference [DG70], II, section 4] Let G → S be a
group scheme. For any R-algebra B, we let

1→ Lie(G)(B)→ G(B[ε])→ G(B)→ 1

We see that this defines a group functor Lie(G)(−) on R algebras. Let us put Lie(G) := Lie(G)(R).
Let us also put ωG = e⋆Ω1

G/S . We get a functor Gr/S → ModR, G 7→ Lie(G) := Lie(G)(R).

Remark 3.4.1. This definition of Lie algebra applies more generally to any group functor (not
necessarily representable).

Theorem 3.4.2. We have an isomorphism of groups Lie(G)(B) = HomR(ωG, B).

Proof. By proposition 2.10.3, Lie(G)(B) = HomR(ωG, B). The RHS carries a natural group law
(call it ⋆). The multiplication m : G × G on the group induces a map Lie(G)(B) ⊕ Lie(G)(B) →
Lie(G)(B) which gives a second group law ◦ compatible with ⋆. To show that these two group law
agree, we use the lemma below. □

Lemma 3.4.3. Let X be a set. We assume that X has two group structures, ⋆ and ◦ and that
(a ⋆ b) ◦ (a′ ⋆ b′) = (a ◦ a′) ⋆ (b ◦ b′). Then ⋆ = ◦ are commutative group laws.

Proof. We first check that the units 1⋆ and 1◦ agree :

1⋆ = (1◦ ◦ 1⋆) ⋆ (1⋆ ◦ 1◦)
= (1◦ ⋆ 1⋆) ◦ (1◦ ⋆ 1◦)
= 1◦

We deduce that:

a ⋆ b = (a ◦ 1) ⋆ (1 ◦ b)
= a ◦ b

Finally, we have:

a ⋆ b = (1 ◦ a) ⋆ (b ◦ 1)
= b ◦ a

□

If x ∈ Lie(G)(B), we let eεx be its image in G(B[ε]).

Remark 3.4.4. When ωG is finite projective, then Lie(G)(B) = Lie(G)⊗R B. This is true if R is
a field, and G is of finite type. We often simply restrict to this case.

Example 3.4.5. (1) If we take M an R module, then Lie(M) =M .
(2) If M is an R-module, then End(M) = Lie(GL(M)) via the map sending N to Id + εN .

Remark that Id+ εN has inverse Id− εN .

3.5. Lie bracket. Consider a linear representation ρ of a group G on a module M . This induces
a group morphism dρ : Lie(G)→ End(M), with the property that ρ(eεx) = 1 + εdρ(x).

We now assume that Lie(G)(B) = Lie(G) ⊗R B as in remark 3.4.4. We have a linear adjoint
representation of G on Lie(G) denoted by Ad : G → GL(Lie(G)). Indeed we look at the exact
sequence :

1→ Lie(G)(B)→ G(B[ε])→ G(B)→ 1
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and the group G(B) acts by conjugation on Lie(G)(B). We justify that the elements of G(B) act
B-linearly. For g ∈ G(B), we get an map g : GB → GB, h 7→ ghg−1. By functoriality, this induces
a B-linear map on the tangent space (which is the map we are considering). By derivation, we get
ad : Lie(G)→ End(Lie(G)). We define a Lie bracket by ad(x)(y) = [x, y].

Consider the ring R[ε, ε′] = R[X,X ′]/(X2, (X ′)2). It contains the subrings R[ε], R[ε′] and R[εε′].
We also have an exact sequence 0→ ε′R[ε]→ R[ε′, ε]→ R[ε]→ 0.

Lemma 3.5.1. Let x, y ∈ Lie(G). We have

eεxeε
′ye−εxe−ε

′y = eεε
′[x,y].

Proof. Consider the long exact sequence :

1→ Lie(G)(R[ε′])
eε

′(−)

→ G(R[ε, ε′])→ G(R[ε])→ 1, so that eεx ∈ G(R[ε]). We have

eεxeε
′ye−εx = Ad(eεx)(eε

′y)

= (Id+ εad(x))(eε
′y)

= eε
′y+εε′[x,y]

□

Corollary 3.5.2. Let M be a finite projective R-module. The Lie bracket on End(M) is given by
[x, y] = xy − yx.

Proposition 3.5.3. For any representation ρ of G on M , the map dρ : Lie(G) → End(M) is
compatible with the Lie bracket.

Proof. We work inR[ε, ε′]. We have eεxeε
′ye−εxe−ε

′y = eεε
′[x,y]. Applying ρ we get Id+εε′ad([x, y]) =

(Id+ εad(x))(Id+ ε′ad(y))(Id− εad(x))(Id− ε′ad(y)). □

3.6. Lie algebra and derivations. If X is a scheme, we can define a group functor Aut(X) by
Aut(X)(B) = Aut(X × Spec B/ Spec B). We can in particular consider Lie(Aut)(X).

Proposition 3.6.1. Lie(Aut)(X) = Der(X).

Proof. See proposition 2.10.2. □

Let G be a group scheme acting on the right on X. Then we get a map G → Aut(X) and a
corresponding map Lie(G)→ Der(X). We can make this more explicit. Let x ∈ Lie(G). Then we
have a map eεx : X ×R R[ε]→ X ×R R[ε].

If f is a local function on X, and m ∈ X, then f(meεx) = f(m) + εDx(f)(m).

Proposition 3.6.2. The map Lie(G)→ Der(X) is compatible with Lie bracket.

Proof. We compute :

f(me−ε
′y) = f(m)− ε′Dy(f)(m)

f(me−εxe−ε
′y) = f(m)− ε′Dy(f)(m)− εDxf(m) + εε′DxDy(f)(m)

f(meε
′ye−εxe−ε

′y) = f(m)− ε′Dy(f)(m)− εDxf(m) + εε′DxDy(f)(m) + ε′Dyf(m)− ε′εDyDxf(m)

= f(m)− εDxf(m) + εε′DxDy(f)(m)− ε′εDyDxf(m)

f(meεxeε
′ye−εxe−ε

′y) = f(m)− εDxf(m) + εε′DxDy(f)(m)− ε′εDyDxf(m) + εDxf(m)

= f(m) + εε′[Dx, Dy]f(m)

□
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We can consider the action of G on itself by right translation, ⋆r and by left translation ⋆l.
We have a map Gop → Aut(G), g 7→ g ⋆r (−).

Lemma 3.6.3. The map Gop → Aut(G) induces an isomorphism of Gop on the subspace of
Aut⋆lG(G), of automorphisms which commute with left translation.

Proof. We define a map Aut⋆lG(G) → G, by ϕ 7→ ϕ(e). Observe that ϕ(g) = gϕ(e) and ϕ′ ◦ ϕ 7→
ϕ(e)ϕ′(e). □

Corollary 3.6.4. The map Lie(G) → Der(G) identifies Lie(G) with the space of left invariant
derivations.

Assume G is Spec A. Then we can make explicit what are the left invariant derivation. Let
D : A→ A be a derivation. For any element g ∈ G(T ). We have a map g : A⊗ T → A⊗ T given
by left translation. Then we ask that g−1 ◦D ⊗ 1 ◦ g = D ⊗ 1.

3.7. Lie algebras : general. A Lie algebra g over a ring R is an R-module g endowed with a
braket [, ] : g× g→ g. Such that :

(1) [, ] is bilinear over R,
(2) [X,X] = 0 for all X ∈ g.
(3) (Jacobi identity) For all X,Y, Z ∈ g, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]].

Example 3.7.1. (1) If M is an R-module, then EndR(M), endowed with the braket [X,Y ] =
XY − Y X is a Lie algebra.

(2) If A is an R-algebra, then DerR(A) is a sub-Lie algebra of EndR(A).
(3) If X is a Spec R-scheme, then Der(X) = H0(X,TX/S) is a Lie algebra.

Corollary 3.7.2. Let G be a group scheme. Then Lie(G) with its bracket [, ] is a Lie algebra.

Proof. Indeed, Lie(G) is a sub-Lie algebra of Der(G). □

3.8. Affine algebraic groups over a field. We fix a field k. All schemes are over Spec k.

Definition 3.8.1. An algebraic group is a group scheme G which is of finite type over Spec k. An
affine algebraic group G is an affine group scheme over Spec k which is of finite type.

Concretely, G is an affine algebraic group if G = Spec A, where A is a k-algebra of finite type
and an Hopf algebra.

3.8.1. Smoothness. The following result is known as Cartier’s theorem. See [Mum08], III, sect. 11,
thm. on page 101.

Theorem 3.8.2. Assume that k is of characteristic 0. Let G→ Spec k be a group scheme, locally
of finite type. Then G is smooth over Spec k.

3.8.2. Subgroups.

Lemma 3.8.3. Let U ⊆ G be a dense open subscheme. Then U × U maps surjectively onto G.

Proof. We can suppose k = k̄. It suffices to see that U.U(k̄) → G which is open in G, contains
all k-points. Let g ∈ G(k). Then U ∩ gU−1 is again dense open (indeed, U and gU−1 contain all
generic points). Thus, there are points v, w ∈ U(k̄) such that v = gw−1. □

Let G be an algebraic group and let i : H ↪→ G be an algebraic subgroup.

Lemma 3.8.4. The image of H is a closed subset of G.

Proof. We claim that the image i(H) of H in G is a closed subspace. In order to prove this, we
can assume that k = k̄. The image i(H) in G is constructible. This implies that i(H) contains a

subset V which is dense and open in i(H). Then H(k̄).i−1(V ) = H. We deduce that i(H) is open

in i(H). Note that i(H) is a closed subgroup of G. The above lemma shows that i(H) = i(H). □
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We assume that the map H → G is a monomorphism of sheaves.

Lemma 3.8.5. The group H is a closed subgroup of G.

Proof. We first claim that i : H → G is injective and induces isomorphisms on residue fields.
Consider a point g ∈ G and look at the fiber Hg → g. Then Hg is a subfunctor of g. In particular
Hg ×g Hg → Hg is an isomorphism. This means that Hg has a unique point. So Hg = Spec A for
some artinian alegbra and A ⊗k(g) A = A which implies that A has dimension 1 (as a k(g)-vector
space). So A = k(g).

We next claim that there exists a dense open V of G such that i−1(V )→ V is a closed immersion.
Let h be a generic point of H mapping to h ∈ G. Consider the map OG,h 7→ OH,h. Since OH,h

is Artinian, and they have the same residue field, we deduce that OG,h → OH,h is surjective.
Let SpecA be an irreducible open subset of H mapping to SpecB open in G. We have a map
B → B/I ↪→ A. Moreover B/I and A have the same generic point ξ and (B/I)ξ = Aξ. Let
x1, · · · , xn be generators of A as a B-algebra. There exists f ∈ B with f(ξ) ̸= 0 such that fxi ∈ B.
We deduce that B[1/f ]/I → A[1/f ]/I is an isomorphism. By translation, this finally implies that
H is a closed subgroup of G. □

3.8.3. Existence of representations. Let G be an affine algebraic group and H a subgroup of G
(necessarily closed in G and affine).

Lemma 3.8.6. There exists a finite dimensional representation ρ : G→ GL(V ) with the property
that H is the stabilizer of a line L.

Proof. We let A be the algebra of G and I the ideal of H. We consider the representation of G
on A. We first claim that H is exactly the stabilizor of I. If h ∈ H(R), and f ∈ I ⊗ R, we have
h.f = f(−h). It is clear that if f vanishes on H, then so does h.f . Conversely, if g ∈ G(R) is such
that g.f = f(−g) ∈ I ⊗R for all f , then f(g) = 0 for all f . Thus g ∈ H(R).

We now let W ⊆ A be finite dimesional k-vector space, with the property that V generates A as
an algebra and W ∩ I generates I as an ideal.

We claim that there exists W ⊆ X such that X is a finite dimensional representation of G.
Let (ai) be a k-basis of A. We have ∆(x) =

∑
i xi ⊗ ai and

∑
i∆(xi) ⊗ ai =

∑
i xi ⊗ ∆(ai) =∑

i,j xi ⊗ bij ⊗ aj . We deduce that ∆(xi) =
∑
xj ⊗ bji. Thus, we let X be the space generated by

xi’s. Let n be the dimension of X ∩ I. Then H is stabilizer of X ∩ I. We finally consider ΛnX and
ΛnX ∩ I.

□

Lemma 3.8.7. If H is normal, there exists a finite dimensional representation ρ : G → GL(V )
with the property that H is the kernel.

Proof. Let us take the representation given by the last lemma. Let us consider
⊕

g∈G(k̄) g.L.

Picking representatives, we can write this space ⊕gigiL. This is a representation of G. Moreover,
H preserves each of these lines. We can replace V by ⊕gigiL. We now consider the composition
Ad ◦ ρ : G→ GL(End(V )). Clearly, H is in the kernel. Any element in the kernel of Ad is a scalar
in GL(V ). A scalar in GL(V ) preserves L and therefore the kernel of Ad ◦ ρ consists of elements of
G which stabilize L. This is inside H. □

3.9. Quotient. Our goal is to prove the following theorems.

Theorem 3.9.1. Let G be an algebraic group acting on a scheme of finite type X. For any
x ∈ X(k), the orbit map G→ X, g 7→ gx factors through an immersion G/H → X where H is the
stabilizor of x. Moreover, if G is smooth, the orbit is smooth.

We only give the proof in characteristic 0. Therefore we know that G is smooth (hence reduced).
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Proof. We let H be the pre-image of x under the orbit map. This is obviously a closed subgroup
H of G. The map orb : G→ X has constructible image. Thus there exists V ⊆ orb(G) dense open
such that V ⊆ orb(G). We deduce that orb−1(V ) ⊆ G is open. Assuming k = k̄ we deduce that

G(k)orb−1(V ) = G so that orb(G) is open in its closure. We now equip orb(G) with the reduced
scheme structure and this induces a scheme structure on orb(G). Since G is smooth, the map

G→ X factors through a map G→ orb(G)→ X. By generic flatness, there is a dense open W of
orb(G) such that orb−1(W ) → W is flat. Using group translation, we deduce that G → orb(G) is
flat. This is thus an fppf cover. Moreover, G×orb(G) G = G×H. Thus, orb(G) = G/H. Note that
orb(G) is geometrically reduded, hence generically smooth. By homogenity it is smooth. □

Theorem 3.9.2. Let G be an affine algebraic group. Let H be a closed subgroup. The fppf quotient
G/H is representable.

Proof. We pick a representation ρ : G→ GL(V ) with V finite dimensional k-vector space. We let
n be the dimension of V and we let Gr(n, 1) be the Grassmanian of lines in V . This is the functor
which sends a k-scheme T to isomorphism classes of exact sequence 0 → L → OT ⊗k V → G → 0
where L is an invertible sheaf and G is locally free of rank n−1. The group GL(V ) acts on Gr(n, 1)
and so does G. The line L in V defines a k-point. And G/H is represented by the orbit of L in
Gr(n, 1). □

Theorem 3.9.3. Let G be an affine algebraic group. Let H be a normal subgroup, then G/H is
an affine subgroup.

Proof. We consider a representation ρ : G → GL(V ) with kernel H. The image of ρ is closed, so
that G/H → ρ(G) identifies with a closed subgroup of GL(V ). Hence it is affine. □

4. Equivariant sheaves

4.1. Equivariant sheaves. Let X be an S-scheme. We have a category QCoh(X) of quasi-
coherent sheaves. If X = Spec A is affine, this is simply the category of A-modules. Let G be a
group schemes acting on X on the right.

We consider the following diagram

G×G×X→→
→G×X→←

→X

where the maps G×X → X are act((g, x)) = gx and p(g, x) = x. The map s : X → X×G is s(x) =
(x, e). The maps G × G × X → G × X are m0((g1, g2, x)) = (g1g2, x), m1((g1, g2, x)) = (g2, xg1)
and m2((g1, g2, x)) = (g1, x). We have act ◦m0 = act ◦m1, p ◦m0 = p ◦m2, p ◦m1 = act ◦m2.
Moreover act ◦ s = p ◦ s.

Remark 4.1.1. We give some intuition about this diagram. If f : X → Y is a map of schemes,
we can consider the Chech nerve of this map. This is a simplicial scheme. The first few maps are
given by :

X ×Y X ×Y X→→
→
X ×Y X→←

→
X

with q1,2(x0, x1, x2) = (x1, x2), q0,2(x0, x1, x2) = (x0, x2) and q0,1(x0, x1, x2) = (x0, x1), p0(x0, x1) =
x0 and p1(x0, x1) = x1. Given X and G, we can form the quotient stack [X/G]. There is a
map f : X → [X/G]. We can still consider the Chech nerve of this map. Moreover, we have
G×X = X×[X/G]X (via (g, x) 7→ (x, xg)) and G×G×X = X×[X/G]X×[X/G]X via (g1, g2, x) 7→
(x, xg1, xg1g2).

Definition 4.1.2. We let QCohG(X) be the category whose objects consist of a quasi-coherent
sheaf F on X together with an isomorphism Θ : act⋆F → p⋆F which satisfies :

(1) (identity acts trivially) s⋆Θ = IdF .
(2) (associativity) m⋆

0Θ = m⋆
2Θ ◦m⋆

1Θ.
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A map (F ,Θ)→ (F ′,Θ′) is a map of quasi-coherent sheaves ψ : F → F ′ such that the following
diagram commutes :

act⋆F

Θ
��

act⋆ψ
// act⋆F ′

Θ′

��

p⋆F
p⋆ψ

// p⋆F ′

Remark 4.1.3. One can see that (2) implies (1). Indeed, pulling back the identity m⋆
0Θ = m⋆

2Θ ◦
m⋆

1Θ on {e} × {e} × X, we get s⋆Θ = s⋆Θ ◦ s⋆Θ. Since s⋆Θ is an isomorphism, it must be the
identity.

This notion may be hard to understand. Let us provide some intuition.

Lemma 4.1.4. Let x : Spec k → X. Let g ∈ G(k). The map Θ induces a map Θg : Fxg ≃ Fx

identifying the stalks at xg and x.

Proposition 4.1.5. If G is flat, the category QCohG(X) is abelian.

Proof. Let F → F ′ be a map in QCohG(X). We can form the kernel K and cokernel C in
QCoh(X). Then we observe that K and Q inherit a canonical G-equivariant action. Indeed, we
have long exact sequences 0 → act⋆K → act⋆F → act⋆F ′ → act⋆C → 0 and 0 → p⋆K → p⋆F →
p⋆F ′ → p⋆C → 0 as act and p are flat maps. □

Proposition 4.1.6. If F ,G ∈ QCohG(X) then F ⊗OX
G ∈ QCohG(X). If F ,G ∈ CohG(X) and

G is flat then Hom(F ,G ) ∈ CohG(X).

Proposition 4.1.7. The sheaves OX ,Ω
1
X/S , TX/S ,DX/S are G-equivariant sheaves.

Proof. If Z is a scheme and ψ : Z → Z is a scheme map, then we have a map ψ⋆OZ → OZ . If ψ is
an isomorphism, this map is an isomorphism. Similarly, if Z 7→ S and ψ is a S-morphism, we have
a map ψ⋆Ω1

Z/S → Ω1
Z/S . If ψ is an isomorphism, this map is an isomorphism. Consider the map

λ : G×X → G×X, (g, x) 7→ (g, xg). This map is an automorphism. Moreover, p ◦ λ = act. □

4.2. Special cases.

Proposition 4.2.1. If X = Spec R has trivial action, then the category QCohG(X) is simply the
category ModG(R) of representations of G on R-modules.

Proof. Note that act = p. For any R-algebra B, and any g ∈ G(B), we have a map Θg :M ⊗RB →
M ⊗R B which is B-linear. □

Let f : X → Y be a morphism. The category of quasi-coherent sheaves on X with descent
datum has objects quasi-coherent sheaves F on X, an isomorphism ψ : p⋆0F → p⋆1F such that the
diagram commutes:

q⋆0,1p
⋆
0F

q⋆0,1ψ
//

��

q⋆0,1p
⋆
1F = q⋆1,2p

⋆
0F

q⋆1,2ψ
// q⋆1,2p

⋆
1F

��

q⋆0,2p
⋆
0F

q⋆0,2ψ
// q⋆0,2p

⋆
1F

Theorem 4.2.2 ([Sta13], Tag 023T). Let f : X → Y is an fppf epimorphism. The functor
F 7→ f⋆F identifies QCoh(Y ) with the category of quasi-coherent sheaves on X with a descent
datum.

Proposition 4.2.3. Assume that there is a scheme X/G, such that X → X/G is an fppf epimor-
phism with X ×X/G X = X ×G. Then QCohG(X) = QCoh(X/G).



GEOMETRIC REPRESENTATION THEORY 22

We now investigate the case where X = H\G for some subgroup H of G and for simplicity
S = Spec k with k a field.

Proposition 4.2.4. The H-equivariant map e : Spec k → X induces an equivalence of category
ModH(k)→ QCohG(X).

Proof. We have QCohG(X) = QCohH×G(G) = QCohH(S) = ModH(k). We can also be more
explicit about the construction. The functor QCohG(X)→ ModH(k) is given by taking the stalk
at e. We define a functor ModH(k) → QCohG(X) as follows. To M we associate first the sheaf
M = π⋆OG ⊗k M . This sheaf carries an action ⋆1,3 of H, and a ⋆2 action of G. We take the
H-invariants for ⋆1,3. There remains a ⋆2 action. Very concretely, the section of M over some
U → X which lifts to G can be described as function f : HU → M such that h−1f(hx) = f(x).
It is easy to see that ModH(k) → QCohG(X) → ModH(k) is the identity. We need to see that
any object of QCohG(X) arises from an object of ModH(k). Let F in QCohG(X). Consider the
map π : G → X. Then π⋆F is a G-equivariant sheaf on G. We have maps act, p : G × X → X
and Θ : act⋆F → p⋆F . Restricting to G× {e}, this gives π⋆F = OG ⊗k Fe. Concretely, this map
is given s(g) 7→ Θgs(g). The G-equivariant structure is given by [gg′ 7→ s(gg′)] 7→ [g 7→ Θg′s(gg

′)]
and it transforms into [gg′ 7→ Θgg′s(gg

′)] 7→ [g 7→ ΘgΘg′s(gg
′) = Θgg′s(gg

′)]. This is the trivial
G-equivariant structure. □

4.3. Adjunction. Let C, D be two categories. We consider functors F : C → D and G : D → C. We
say thatG is a left adjoint to F (or that F is a right adjoint toG) if Hom(X,F (Y )) = Hom(G(X), Y )
for all X,Y ∈ ob(C)× ob(D). We say that (G,F ) are adjoint functors.

Example 4.3.1. Let f : X → Y be a map of schemes. Then (f⋆, f⋆) are adjoint.

Example 4.3.2. Let H, G be abstract groups. Let ModH(k) and ModG(k) be the categories of
representations of H and G on k-vector spaces. Let f : H → G be a map. We have a natural map
f⋆ : ModG(k) → ModH(k) sometimes called inflation. We can also define a map f⋆ : ModH(k) →
ModG(k) sometimes called induction, such that (f⋆, f⋆) are adjoint. We let f⋆V = {f : G →
V, hf(gh) = f(g)}.

4.4. Pull back and pushforward of equivariant sheaves. Consider a group H acting on a
scheme Y and a group G acting on a scheme X. We assume that we have maps i : H → G and
f : Y → X such that the diagram commutes :

H × Y actY //

��

Y

��

G×X actX // X

We want to construct adjoint functors (f⋆, f⋆) between QCohG(X) and QCohH(Y ).

Proposition 4.4.1. We have a functor f⋆ : QCohG(X)→ QCohH(Y ).

Proof. Let (F ,Θ) ∈ QCohG(X). We consider (f⋆F , i× f⋆Θ). □

In order to consider the functoriality for direct images, we need the following base change result.

Proposition 4.4.2 ([Sta13], Tag 02KH). Let g : X → S be a map of schemes which is quasi-
compact and quasi-separated. Let T → S be a flat morphism. Consider the following diagram:

X ×S T

g′

��

h′ // X

g

��

T
h // S
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Let F be a quasi-coherent sheaf on X. Then we have h⋆Rig⋆F = Rig′⋆(h
′)⋆F .

Proof. We only give the argument when X is quasi-compact and separated. We also assume
S = Spec A and T = Spec B are affine. Let U = {Ui}i∈I be a finite affinoid cover. Let C(U ,F )
be the Chech complex which computes the cohomology of F . Then C(U ,F ) ⊗A B is the Chech
complex which computes the cohomology of F ′. We see that since B is A-flat, Hi(C(U ,F ))⊗AB =
Hi(C(U ,F )⊗A B). □

Proposition 4.4.3. Assume that H = G. We have functors Rif⋆ : QCohG(Y ) → QCohG(X).
Moreover, (f⋆, f⋆) are adjoint functors.

Proof. We have (actX)
⋆Rif⋆ = Ri(Id× f)⋆act⋆Y . □

Corollary 4.4.4. Let G be a group acting on the right on X, let f : X → Spec k. Then we have
functors Hi(X,−) : QCohG(X)→ModG(k).

Let H ⊆ G be a subgroup.

Corollary 4.4.5. We have functors Hi(H\G,−) : ModH(k)→ ModG(k).

Unravelling the definitions, the functor H0(H\G,−) is the induction functor which sends M to
the space of functions f : G→M with the property that hf(h−1g) = f(g).

For the sake of completeness we construct the functor f⋆ : QCohH(Y )→ QCohG(X) in general.
We can first construct a functor QCohH(Y )→ QCohH(X) (by using the preceeding arguments),

reducing to the case that X = Y . Let K = Ker(H → G). Necessarily, K acts trivially on X. We
construct a functor QCohH(X) → QCohH/K(X), as F 7→ FK . This reduces to the case that H
is a (closed) subgroup of G.

Then we have the equivalences QCohH(X) = QCohG×H(G×X) = QCohG(G×X/H) where H
acts by h(g, x) = h−1g, xh. We use that G×X/H → G/H is representable, hence G×X/H exists.
Finally, we have a G-equivariant map G×X/H → X and we have a functor QCohG(G×X/H)→
QCohG(X).

5. The Borel-Weil-Bott theorem and the Weyl character formula

5.1. The abelian category ModG(k).

Definition 5.1.1. Let C be an abelian category. An object A of C is simple if it is non-zero and
the only sub objects are 0 and A. An object is semi-simple if it is a direct sum of simple objects

Definition 5.1.2. An abelian category is semi-simple if any object is semi-simple.

Let G be an affine algebraic group. The category ModG(k) is the category of representations of
G on k-vector spaces. An object of this category is called finite dimensional if its underlying vector
space is finite dimensional.

Proposition 5.1.3. The category ModG(k) is abelian. Moreover, any object of ModG(k) is a
union of finite dimensional sub-objects.

Proof. We have already seen that ModG(k) is abelian. Let V be a representation. Let X ⊆ V be
a finite subvector space. We want to prove that there exists X ⊆ X ′ with X ′ a finite dimensional
representation. Let (ai) be a k-basis of A. We have ∆(x) =

∑
i xi ⊗ ai and

∑
i∆(xi) ⊗ ai =∑

i xi ⊗∆(ai) =
∑

i,j xi ⊗ bij ⊗ aj . We deduce that ∆(xi) =
∑
xj ⊗ bji. Thus, we let X ′ be the

space generated by xi’s with x ∈ X. □

Lemma 5.1.4. Any non-zero finite dimensional representation V admits a filtration 0 = V0 ⊆
V1 ⊆ · · · ⊆ Vn = V with Vi/Vi−1 simple for i ≥ 1.
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Proof. We do induction on the dimension of V . The theorem holds if V has dimension 1 since any
1-dimensional representation is simple. Assume V is of dimension n. Then either V is simple or it
admits a non-trivial sub-representation V ′. We apply the induction hypothesis to V/V ′ and V ′. □

Definition 5.1.5. Let V be a finite dimensional representation. The socle of V , soc(V ) is the
greatest semi-simple sub-representation of V .

Proposition 5.1.6. The category ModG(k) admits a tensor product, and if V1, V2 are finite dimen-
sional representations, then Homk(V1, V2) is also a finite dimensional representation. Moreover, we
have HomG(V3 ⊗ V1, V2) = HomG(V3,Homk(V1, V2)).

Proof. If V1, V2 are finite dimensional, then for every k-algebra B, we have Homk(V1, V2) ⊗k B =
Homk(V1, V2 ⊗k B) = HomB(V1 ⊗k B, V2 ⊗k B). If g ∈ G(B), we let g act on Homk(V1, V2) ⊗k B
via ψ 7→ ρ2(g)ψ(ρ

−1
1 (g)−). □

Let f : G → G′ be a morphism of groups. We have a pair of adjoint functors (f⋆, f⋆) between
ModG(k) and ModG′(k). We have

HomModG(k)(f
⋆V, V ′) = HomModG′ (k)(V, f⋆V

′).

It is particularly interesting to study the special case where G is a subgroup of G′. In this case, f⋆

is the restriction which we shall denote by ResG
′

G and f⋆ is the induction which we shall denote by

IndG
′

G .

5.2. Representations of a Torus. We let T = Gn
m be a split torus.

We let X⋆(T ) = Hom(T,Gm) be the character group of T .

Lemma 5.2.1. We have X⋆(T ) ≃ Zn, κ = (k1, · · · , kn) corresponding to the map (t1, · · · , tn) 7→∏
i t
ki
i .

Proof. We reduce to check that Hom(Gm,Gm) = Z. Any scheme map Gm → Gm will send T to
aTn for some a ∈ k and n ∈ Z. A group scheme map will send 1 to 1, so we deduce that a = 1. □

For any κ = (k1, · · · , kn) ∈ Zn, we let k(κ) be the one dimensional representation of T where T
acts by κ.

Proposition 5.2.2. The category ModT (k) is semi-simple with simple objects k(κ).

Proof. Let V ∈ ModT (k). We let ∆ : V → V ⊗ OT . We write ∆(v) =
∑

(ki)∈Zn v(ki)
∏
i T

ki
i . For

κ = (ki), we let pκ : V → V be the map given by v 7→ vκ. We see that ∆(vκ) = vκ
∏
i T

ki
i . It follows

that p2κ = pκ and pκpκ′ = 0 if κ ̸= κ′. We also have v =
∑

κ vκ. Hence, V = ⊕κpκ(V )(κ). □

5.3. Representations of the additive group. Let Ga be the additive group. Let (ρ, V ) be a
representation of Ga. We attach to ρ the endomorphism N = dρ(1) of V .

Theorem 5.3.1. Assume that k is a field of characteristic 0. The above functor induces an
equivalence of categories between ModGa(k) and the category of pairs (N,V ) where V is a k-vector
space and N is a locally nilpotent endomorphism of V (i.e. for all v ∈ V , ∃n, Nnv = 0).

Proof. Let (ρ, V ) be a representation ofGa. We have ∆ : V → V ⊗kk[T ]. We let ∆(v) =
∑
pn(v)T

n.
Note that p0(v) = v and p1(v) = N(v). We now use associativity of co-multiplication to get that∑

m,n≥0
pm(pn(v))T

m ⊗ Tn =
∑

a+b=n,a,b≥0
pn(v)T

a ⊗ T b (a+ b)!

a!b!
.

We deduce that pa+b
(a+b)!
a!b! = pa ◦ pb. This implies that pn(v) = 1

n!(p1)
n. We deduce that p1 is

locally nilpotent. A quasi-inverse is given by taking (N,V ) to V equipped with ∆ : V → V ⊗k k[T ]
defined by ∆(v) = exp(TNv) =

∑
n≥0

Nn(v)
n! Tn. □
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5.4. Representations of Unipotent radical and Borel. We let G = GLn, we let B be the
upper triangular Borel, T be the maximal diagonal torus and U be the unipotent radical. We also
let Ū be the opposite unipotent radical and B̄ be the opposite Borel.

Let V ∈ ModU (k). We let V U be the sub-vector space of fixed point for the action of U .
Concretely, V U = {v ∈ V,∆(v) = v⊗ 1}. We let V u be the subspace over vectors anihilated by the
Lie algebra. Clearly, V U ⊆ V u.

Proposition 5.4.1. Let V ∈ModU (k) be non-zero. Then V U ̸= 0. Moreover, if k is of character-
istic 0, V U = V u.

Proof. Let V be a non-zero object of ModU (k). We wish to prove that V U ̸= 0. We can assume
that V is finite dimensional. We consider the projective space Pn which parametrizes lines in V
(where n+1 is the dimension of V ). The group U acts on Pn. We take a filtration of U by normal
subgroups with graded pieces being isomorphic to Ga. By induction, it will suffice to show that
V Ga ̸= 0.

Let Z be an orbit of minimal dimension for the action of Ga. We claim that Z = Z. Indeed, Z is
stable under U and so is Z \ Z which is of dimension less than the dimension of Z. It follows that
Z is a closed, connected, reduced, projective scheme. We claim that it must be a point. The orbit
map is a surjective map from Ga to a connected, reduced, projective scheme. It must be constant.
We deduce that Z is a point. It follows that V admits a stable line. □

Corollary 5.4.2. The only simple objects of ModU (k) if k. The simple objects of ModB(k) are
the k(κ).

5.5. Weights of representations of G. Let V ∈ ModG(k) be a finite dimensional representation,
it admits a weight decomposition V = ⊕κVκ.

We let W = NG(T )(k)/T (k).

Lemma 5.5.1. We have an exact sequence 0 → T (k) → NGT (k) → Sn → 0, identifying Sn with
W .

Proof. Let e1, · · · , en be the canonical basis of kn. The lines kei are the only fixed lines by the
action of T . An element of NG(T )(k) induces a permetutation of these lines. □

This map has a section. Indeed, we define a map W → G(k), by sending w to the automorphism
ei 7→ ew(i).

Corollary 5.5.2. If κ is a weight of V and w ∈W , then wκ is also a weight of V .

The group G has an adjoint action on Lie(G) = g. As a T representation we have g = h⊕ b⊕ b.
The characters of T appearing on b are called the positive roots. We denote by Φ+ that set. They
are the αi,j with i > j, given by αi,j((tk)) = tit

−1
j . The simple roots ∆ ⊆ Φ+ are the αi,i+1. Given

any root α, we let Tα : ker(α). We consider the centralizor of Tα, G
Tα . This is a group isomorphic

to GL2. We let Uα = UTα and U−α = ŪTα . We pick a generator xα of Lie(Uα) = uα so that Id+xα
generates Uα. We also define a cocharacter α̌ : Gm → GTα . We let ρ = 1

2(
∑

α∈Φ+ α). We have

ρ = (n−12 , · · · , 1−n2 ). We let W be the Weyl group of G. Here, W identifies with the symmetric
group via w(t1, · · · , tn) = (tw−1(1), · · · , tw−1(n)). We let sα be the transposition corresponding to

α ∈ Φ+. The simple transposition generated W . We let ℓ : W → N be the length function. We
let X⋆(T )+ be the dominant cone (given by the condition ⟨κ, α̌ ≥ 0 for all α ∈ Φ+). A weight is
regular if ⟨κ, α̌⟩ ≠ 0 for all α ∈ Φ+. We also let X⋆(T )++ be the cone of regular dominant weights.

Lemma 5.5.3. Let V ∈ModG(k). Let κ ∈ X⋆(T ) and α ∈ Φ. Then uα : Vκ → Vκ+α.

Proof. For v ∈ Vκ, t.xαv = txαt
−1.tv = κ(t)α(t)xαv. □

Definition 5.5.4. Let V ∈ ModG(k) be non-zero. A non-zero vector in V U is called a highest
weight vector. A weight of V U is called a highest weight.
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5.6. The geometry of B\G.
Lemma 5.6.1. The Flag variety is proper.

Proof. It suffices to check the valuation criterium for properness with discrete valuation rings by
[Sta13],tag 0CM2. Now, let A be a discrete valuation ring and K be its field of fraction. Let
F0 ⊆ F1 ⊆ · · · ⊆ Fn be a full flag in Kn. We see that F0 ∩A ⊆ F1 ∩A ⊆ · · · ⊆ Fn ∩A is a full flag
in An. □

Lemma 5.6.2. The scheme B\G has dimension n(n−1)
2 . Its tangent sheaf at Be is b\g.

Proof. Since the scheme B\G is smooth, its dimension is the rank of its sheaf of differentials. We

have maps G
f→ B\G → Spec k. We deduce an exact sequence : 0 → f⋆Ω1

B\G/k → Ω1
G/k →

Ω1
G/B\G → 0. We take stalks at e. We have e⋆Ω1

G/k = g∨. We have a cartesian diagram

B //

��

G

��

Spec(k) // B\G

from which we deduce that e⋆Ω1
G/B\G = b∨. We deduce that e⋆Ω1

B\G/k = (b\g)∨. □

Theorem 5.6.3. The scheme B\G admits a finite stratification into B-orbits :
∐
w∈W Xw → B\G

where Xw = B\BwB. Each Xw is a locally closed subscheme. The map
∐
w∈W Xw → B\G is

surjective.

Proof. Using the proposition below we see that the various Xw are distinct as w is the only T -fixed
point of Xw, so if Xw = Xw′ , then Bw = Bw′, which implies w = w′. We next show at the
level of k-points that G(k) = ∪w∈WB(k)wB(k). This is an easy matrix computation. Let Ei,j be
the matrix with 1 on the i-th line and j-th column. If M is a matrix then MEi,j is the matrix
whose j-th column is the i-th column of M (which has zeroes everywhere else). Similarly, Ei,jM
is the matrix whose j-th line is the i-th line of M and with zeroes everywhere else. We explain an
algorithm to turn M ∈ G(k) into an element of W by left and right multiplication by elements of
B.

(1) M has a non-zero coefficient on the first colum. Let mk,1 be the first non-zero coefficient.
(2) Using torus element and left multiplication by Id+Ek,j with j ≥ k we may kill all coefficients

of M on the first column except for the k-th coefficient. We can now assume that M has
zeroes on the first column, except for a mk,1 = 1.

(3) Using multiplication by torus element and right multiplciation by Id+E1,j with j ≥ 1, we
can kill all coefficients on the k-th line, except for the first one. We can now assume that
M has zeroes on the first column and the k-th line, except for a mk,1 = 1.

(4) We now restart the algorithm by looking for the first non-zero coefficient on the second
column.

We deduce a map
∐
wXw → B\G. This map is surjective. Indeed, let ξ ∈ B\G be a point. Let ξ̄

be its closure. We look at Xw ∩ ξ̄. If none of these contain ξ, we deduce that ∪Xw ∩ ξ̄ is contained
in closed subset of ξ̄, thus there must be a k point in the complement. □

Lemma 5.6.4. The map
∏
α∈Φ+ Uα → U is an isomorphism (for any order of positive roots).

Proof. We order the roots α0, α1, · · · with the property that Uαi embedds in the center of U/(Uα0×
· · ·Uαi−1). Let Φ+

≥i = {αj , j ≥ i}. We see that there is a map
∏
α∈Φ+

≥i
Uα → U/(Uα0 × · · ·Uαi−1)

and this map is equivariant for the action of Uαi on both factors (which act without fixed point).
We deduce that the map

∏
α∈Φ+

≥i
Uα → U/(Uα0 × · · ·Uαi−1) is a bijection if and only if the map∏

α∈Φ+
≥i+1

Uα → U/(Uα0 × · · ·Uαi) is a bijection. □
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Proposition 5.6.5. The orbit Xw is isomorphic (as a T -space) to
∏
α∈w−1Φ−∩Φ+ Uα.

We can also consider the stratification into B̄-orbits, with X ′w = Xww0 = B\Bww0w0Bw0.
Thus, X ′w =

∏
α∈w−1Φ−∩Φ− Uα.

Lemma 5.6.6. There is a unique open orbit X ′Id. The map B×Ū → G is a dense open immersion.

Proof. We consider the orbit map X ′Id = Ū → B\G. Since the stabilizor is trivial, this map
identifies Ū with a locally closed subscheme of B\G. We see that Ū and B\G have the same
dimension. Hence, this map must be an open immersion. By pull back to G we get the desired
map. □

We next look at codimension one orbits.

Lemma 5.6.7. The codimension 1 orbits are the X ′sα for α a simple root (sα is a transposition
(i, i+ 1)).

Proof. The codimension 1 orbits correspond to permutations w with the property that w−1Φ+∩Φ+

has cardinality n(n−1)
2 − 1. This means that there are indexes i < j such that w(i) > w(j), while

otherwise k < l implies w(k) < w(l). We see easily that w must be the identity on {1, · · · , i−1} and
{j+1, · · · , n}. Next we consider

∑j−1
k=i w(k+1)−w(k) = w(j)−w(i). If j ̸= i+1 this quantity would

be both negative and positive, a contradiction. Therefore w must be a transposition (i, i+ 1). □

5.7. Induction of a character. [Reference : [Jan03], part II, section 2]
Let κ ∈ X⋆(T ). We let H0(κ) = IndGB(κ).

Proposition 5.7.1. We have that H0(κ) is finite dimensional.

Proof. This follows from properness of B\G. □

Lemma 5.7.2. Let V ∈ ModG(k) be non-zero and finite dimensional. Then there exists κ and a
non-zero homomorphism V → H0(κ).

Proof. We have seen that (V ∨)U ̸= 0. Thus there is λ, such that HomB(λ, V
∨) ̸= 0. Thus

HomB(V,−λ) ̸= 0. We take λ = −κ. □

Lemma 5.7.3. We have that dim(H0(κ)U ) ≤ 1 and H0(κ)U ⊆ H0(κ)w0κ.

Proof. We prove that dim(H0(κ)U ) ≤ 1. There is an injective map OG → OB ⊗ OU and it induces

an injective map H0(κ)U → kfκ where fκ is the function on U × T × Ū defined by f(btū) = κ(t).
Conjugating by w0 we deduce that H0(κ)U ⊆ H0(κ)w0κ. □

Corollary 5.7.4. Assume that H0(κ) ̸= 0. Let λ be a weight of H0(κ). Then κ ≤ λ ≤ w0κ.

Proof. Let λ be a weight and v a vector of weight λ. We see that there is an element of u,
∏
α u

kα
α

such that ukαα v ̸= 0 but u.(ukαα v) = 0. Thus, ukαα v has weight w0κ. If λ is a weight, w0λ is also a
weight. □

Lemma 5.7.5. Assume that H0(κ) ̸= 0. Let L(κ) = soc(H0(κ)). Then L(κ) is a simple G-module
and all simple G-modules are of this form. Moreover, L(κ) has highest weight w0κ and lowest
weight κ.

Proof. We see that dim(H0(κ)U ) ≤ 1. We deduce that L(κ) is simple. □

We say that a weight κ = (k1, · · · , kn) ∈ X⋆(T ) is antidominant if k1 ≤ k2 · · · ≤ kn.

Theorem 5.7.6. We have that H0(B\G,O(κ)) is non-zero if and only if κ is anti-dominant.
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Proof. We consider the function fκ : BŪ → A1, given by f(bū) = κ(b). We will prove that it
extends. It suffices to show that it extends in codimension 1. Let α be a simple root. Then fκ
defines an element in the fraction field of the space of functions on BŪsα = BsαsαŪsα.

Let us write Ū = U−α × Ū ′ with Ū ′ =
∏
β∈Φ−,β ̸=α U−β.

We recall the following identity in GL2.(
1 −X−1
0 1

)(
0 1
1 0

)(
1 X
0 1

)
=

(
X−1 0
0 X

)(
1 0

−X−1 1

)
There is a corresponding identity in GLTαn .
We denote by uα : Spec k[X] → Uα the natural map. We similarly have a natural map u−α :

Spec k[X]→ Uα.
We deduce an identity of the form uα(X

−1)sαuα(X) = α̌(X−1)u−α(X
−1) in GLn(k[X,X

−1]). It
follows that

fκ(bsαuα(X)u′) = fκ(α̌(X
−1)uα(X

−1)) = κ(α̌(X−1)) = X−⟨κ,α̌⟩.

We see that the function fκ is well defined on BŪsα if κ is anti-dominant. □

5.8. Borel-Weil-Bott theorem and Weyl character formula. We say that a weight κ =
(k1, · · · , kn) ∈ X⋆(T )Q is antidominant if k1 ≤ k2 · · · ≤ kn. We let X⋆(T )−Q be the cone of

antidominant weights. We also let X⋆(T )+Q be the cone of dominant weights. We have ρ =

(n−12 , · · · , 1−n2 ) = 1
2

∑
α∈Φ+ α. A weight κ ∈ X⋆(T )Q is regular if ⟨α̌, κ⟩ ̸= 0 for all α ∈ Φ. This

means that κ = (k1, · · · , kn) with ki ̸= kj for all i ̸= j. We let X⋆(T )−− be the subcone of regular
and antidominant weights.

Here are some useful facts.

(1) X⋆(T )Q = ∪wwX⋆(T )−Q.

(2) X⋆(T )regQ =
∐
w wX

⋆(T )−−Q .

(3) X⋆(T )−Q − ρ ⊆ X⋆(T )−−Q .

We also have a length function ℓ : W → N. It is defined as follows. Any element w ∈ W has a
minimal expression w = sα1 · · · sαk

where αi are simple roots and ℓ(w) = k.
The following theorem completely describes induction and derived induction.

Theorem 5.8.1. (Borel-Weil-Bott) Let k be a field of characteristic 0. Let κ ∈ X⋆(T ). Then :

(1) If κ− ρ is not regular, then Hi(B\G,O(κ)) = 0 for all κ.
(2) If κ−ρ is regular, there is a unique w such that w(κ−ρ) is antidominant and RΓ(B\G,O(κ)) =

Hℓ(w)(B\G,O(κ))[−ℓ(w)] and Hℓ(w)(B\G,O(κ)) ≃ H0(B\G,O(w(κ− ρ) + ρ)) is the repre-
sentation with lowest weight w(κ− ρ) + ρ.

The following theorem describes completely the character of each induction :

Theorem 5.8.2. (Weyl character formula) The character of H0(κ) is∑
w∈W

(−1)ℓ(w) (w · (w0κ))∏
α∈Φ−(1− α)

5.9. Proof of the theorem for GL2. Here the group is GL2.
Let us denote by St the standard 2-dimensional representation, and by det the one dimensional

representation. If e1, e2 is the basis of St, then SymkSt has basis ea1e
b
2, a+ b = k.

Here is another way to think of SymkSt. Consider the space Pk of homologenous polynomials
of degree k in X,Y . We consider the action gP ((X,Y )) = P ((X,Y )g).

Proposition 5.9.1. The representations SymkSt⊗detn for k ≥ 0 and n ∈ Z are irreducible. They
have weights (n, n+ k), (n+ 1, n+ k − 1), · · · , (n+ k, n).
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Proof. We first check that SymkSt⊗ detn is irreducible. We compute the action of x on Symk. It
send ea2e

b
1 to aea−12 eb+1

1 . Similarly, x̄ sends ea1e
b
2 to aea−11 eb+1

2 . Now if V is a subrepresentation of

SymkSt, it contains a certain weight. Thus it contains a vector ea2e
b
1. Using x and x̄ we can span

the entire SymkSt. □

We now make the connection with induction. We recall the definition of OP1(n).

Definition 5.9.2. The line bundle OP1(n) is the sheaf of sections on P1 with a pole of order n at
∞.

In other words, OP1(n) = OP1(n∞). If n ≥ 0, we have an exact sequence :

0→ OP1 → OP1(n)→ (i∞)⋆t
−nk[t]/k[t]→ 0

If n ≤ 0, we have an exact sequence:

0→ OP1(n)→ OP1 → (i∞)⋆k[t]/]t
−nk[t]→ 0.

Corollary 5.9.3. We have dimH0(P1,O1
P(n)) = n + 1 if n ≥ 0, and 0 if n ̸= −1. We have

dimH1(P1,O1
P(n)) = 0 if n ≥ −1, and −n− 1 if n ≤ −2.

We have a covering P1 by Spec k[X] = A1 and Spec k[X−1] = A1 glued along Spec k[X,X−1] =
Gm. We define

OP1(n) → OA1 ⊕ OA1 → OGm

(P (X), Q(X−1)) 7→ P (X)−XnQ(X−1)

We see that if n ≥ 1, then (1, X−n) defines a global section of OP1(n) which vanishes at order n.

Lemma 5.9.4. Let κ = (k1, k2). We have an isomorphism of line bundles OP1((κ)) = OP1(k2−k1).

Proof. We have a map π : GL2 → P1. For any open U , we have O(κ)(U) = {f : π−1(U) →

A1, f(bu) = κ(b)f(u)}. On π(w0U) we get O(κ)(π(w0U)) ≃ k[X], via f 7→ f(w0

(
1 X
0 1

)
). On

π(w0Uw0), we get O(κ)(U) ≃ k[X ′], via f 7→ f(

(
1 0
X ′ 1

)
)

We have the following identity :(
1 X−1

0 1

)(
0 1
−1 0

)(
1 X
0 1

)
=

(
X−1 0
0 X

)(
1 0

X−1 1

)
We can let X ′ = X−1, and the gluing data is given by P (X) = Xk2−k1Q(X−1).

□

Lemma 5.9.5. Assume that k2 ≥ k1. We have that H0(P1,OP1((k1, k2))) is the irreducible repre-

sentation Symk2−k1 ⊗ detk1.

Proof. If k1 = k2, we have H
0(P1,OP1((k1, k2))) = k. And clearly, detk1 ∈ H0(P1,OP1((k1, k2))). By

twisting we reduce to the case where k1 = 0. We construct a map Symk2St→ H0(P1,OP1((0, k2)))

by sending P (X,Y ) to the function

(
a b
c d

)
7→ P (c, d). This map is injective, and the spaces have

the same dimension. □

Corollary 5.9.6. The category ModG(k) is semi-simple.

Proof. We consider an extension 0 → H0(κ) → E → H0(λ) → 0. We claim that EU is two
dimensional. We see that H0(λ) has highest weight w0λ. We look at Ew0λ. If this space is one
dimensional, this means that w0λ is not a weight of H0(κ). We deduce that w0λ + α is not a
weight of E. Therefore w0λ is also a highest weight vector. If w0λ is a weight of H0(κ) but λ ̸= κ,
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we see that either Ew0κ+α is one dimensional and therefore the map u : Ew0κ → Ew0κ+α has a
one dimensional kernel. Finally, if λ = κ, then Ew0κ is a two dimensional space of highest weight
vectors. □

In order to study H1 we will use Serre duality.

Lemma 5.9.7. We have Ω1
P1/k = OP1((1,−1)).

Proof. We have that the stalk at identity of the tangent sheaf is g/b. □

The Serre dual sheaf to OP1(κ) is OP1(−κ+ (1,−1)).
Moreover, Serre duality says :

Theorem 5.9.8. We have a perfect pairing

H0(P1,OP1(κ))×H1(P1,OP1(−κ+ (1,−1))→ k

Corollary 5.9.9. Assume that −1 − k2 ≥ 1 − k1. We have that H1(P1,OP1((k1, k2))) = H0((1 −
k1,−1− k2))∨ ≃ H0((k2 + 1, k1 − 1)).

5.10. Digression : relative cohomology and semi-continuity theorem.

Theorem 5.10.1 ([Har77], III, thm. 5.2). Let S = Spec A be a noetherian affine scheme. Let F
be a coherent sheaf on X = PnS. Then

(1) For all i ≥ 0, Hi(X,F ) is a finitely generated A-module.
(2) There is an integer n0 such that for all n ≥ n0, Hi(X,F (n)) = 0 for all i > 0 and all

n ≥ n0.

Remark 5.10.2. Let X → S be a projective scheme. Let ι : X ↪→ PnS be the closed immersion.
The functor i⋆ :Mod(X)→Mod(PnS) is exact and sends injectives to injectives. It follows that for
any sheaf F , we have RΓ(X,F ) = RΓ(PnS , ι⋆F ).

Theorem 5.10.3 ([Har77], III, prop. 12.2). Let X → S be a projective scheme of relative dimension
n. Let F be a coherent sheaf on X, flat over A. Then there is a bounded complex K• of finite flat
A-modules, of amplitude [0, n] such that for any A-module M , RΓ(X,F ⊗M) is represented by :

K• ⊗AM

Proof. We only give a proof in the curve case. Assume X = U1 ∪ U2 is covered by two affines. We
let L• = [H0(U1,F ) ⊕ H0(U2,F ) → H0(U1 ∩ U2,F )]. This represents RΓ(X,F ) and L• ⊗A M
represents RΓ(X,F ⊗A M). We let x1, · · · , xr be generators of H1(L•) in L1. We let K1 = Ar

and we consider the map g1 : K1 → L1 given by these generators. Let y1, · · · , ys be generators of
Ker(K1 → H1(L•). We choose lifts ŷi of g(yi) in L0. We let K0

1 = As we have maps K0
1 → K1

(given by y1, · · · , ys) and K0
1 → L0 given by ŷi. We let z0, · · · , zt be generators of H0(L0). We

K0
2 = At we have a map K0

2 → L0 given by z0, · · · , zt.
We see that there is a commutative diagram.

L0 // L1

K0
1 ⊕K0

2
//

OO

K1

OO

If we let (K ′)• be the bottom complex, the map H0((K ′)•)→ H0(L•) is surjective, let K0
3 be its

Kernel.
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Finally, we let K0 = K0
1 ⊕K0

2/K
0
3 and we get a diagram :

L0 // L1

K0 //

OO

K1

OO

Since the map K• → L• is a quasi-isomorphism, the cone 0 → K0 → K1 ⊕ L0 → L1 → 0 is
exact. It follows that K0 is flat.

We see that K• ⊗AM → L• ⊗AM is a quasi-isomorphism for all A-module M since the cone :
0→ K0 ⊗AM → K1 ⊗AM ⊕ L0 ⊗AM → L1 ⊗AM → 0 is exact. □

Corollary 5.10.4. (1) The function s→ dimk H
i(Xs,Fs) is upper semi-continuous.

(2) The function s→
∑

i≥0(−1)i dimk(s)H
i(Xs,Fs) is locally constant.

Proof. For a map An → As, the locus where the rank is ≥ i is open. One deduces the first claim.
For the second we have

∑
i≥0(−1)i dimk(s)H

i(Xs,Fs) =
∑

(−1)i dimk(s)K
i ⊗A k(s). □

Corollary 5.10.5. The following conditions are equivalent :

(1) Hi(X,F ) = 0 for all i > 0,
(2) Hi(Xs,Fs) = 0 for all i > 0,

Moreover, if this is the case, H0(X,F ) is a flat A-module and the map H0(X,F ) ⊗A k(x) →
H0(Xx,Fx) is an isomorphism.

Proof. In case of 1, we see that 0 → H0(X,F ) → K0 → K1 → · · · is exact. It follows that
H0(X,F ) is flat and tensoring with k(x), the sequence remains exact. In case of 2. Let i be the
smallest degree such that Hi(X,F ) ̸= 0. We claim that Hi(X,F ) ⊗A k(x) → Hi(Xx,Fx) is an
isomorphism. Consider the sequence 0→ ker(di)→ Ki → Im(di)→ 0. Since Im(di) is flat (because
0 → Im(di) → Ki+1 → · · · is exact) we see that ker(di) ⊗ k(x) = ker(Ki ⊗ k(x) → Ki+1 ⊗ k(x)).
Since Im(di−1) → ker(di) → Hi(X,F ) → 0 is exact, tensoring with k(x) shows the claim. We
deduce that if i > 0, Hi(X,F ) = 0 by Nakayama. Therefore i = 0. □

5.11. The general case.

Proposition 5.11.1. For any simple root α and weight κ. Assume that ⟨α̌, κ⟩ ≤ 1 we have

Hi(B\G,O(κ)) = Hi+1(B\G,O(α(κ− ρ) + ρ))

Proof. We let Pα be the minimal parabolic corresponding to α. Let Mα be its Levi quotient (note
that Mα ≃ GL2 × Gn−2

m . We consider the map π : B\G → Pα\G. This is a P1-bundle. We
see that π⋆O(κ) and R1π⋆(O(κ)) are two G-equivariant vector bundle. We claim that π⋆O(κ) =
R1π⋆O(sα(κ− ρ) + ρ). We consider the following cartesian diagram :

B\Pα
j
//

π′

��

B\G

π

��

Pα\Pα
j′
// Pα\G

We note that B\Pα = (B ∩Mα)\Mα. It suffices to show that (j′)⋆π⋆O(κ) = (j′)⋆R1π⋆O(sα(κ −
ρ) + ρ) as Pα-representations (the action factors through Mα). Using the base change formula of
corollary 5.10.5, we are left to prove that

H0((B ∩Mα)\Mα,O(κ)) = H1((B ∩Mα)\Mα,O(sα(κ− ρ) + ρ)).

We see that when ⟨α̌, κ⟩ ≤ 0, H0((B ∩Mα)\Mα,O(κ)) is the representations with highest weight
sακ and H1((B ∩Mα)\Mα,O(κ)) is the zero representation. We see that when ⟨α̌, κ⟩ ≥ 2 they
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are respectively 0 and the representation with highest weight sα(κ − ρ) + ρ. When ⟨α̌, κ⟩ = 1,
they are all zero. If we assume that ⟨α̌, κ⟩ ≤ 0, then we deduce that there is an isomorphism
π⋆O(κ) = R1π⋆O(sα(κ−ρ)+ρ). We deduce that Hi(B\G,O(κ)) = Hi+1(B\G,O(sα(κ−ρ)+ρ)). □

Corollary 5.11.2. (1) If κ− ρ is not regular, then Hi(B\G,O(κ)) = 0 for all κ.
(2) If κ−ρ is regular, there is a unique w such that w(κ−ρ) is antidominant and RΓ(B\G,O(κ)) =

Hℓ(w)(B\G,O(κ))[−ℓ(w)] and Hℓ(w)(B\G,O(κ)) ≃ H0(B\G,O(w(κ− ρ) + ρ)).

Proof. By general vanishing theorems, we know that Hi(B\G,O(κ)) is concentrated in the range

[0, d]. Our last result shows that given κ antidominant, we have Hi(B\G,O(κ)) = Hi+ℓ(w)(B\G,O(w(κ−
ρ) + ρ)). Applying this to w = w0, we deduce that κ antidominant has only cohomology in degree
0. For a general κ, write let w be such that w(κ − ρ) is antidominant. Then Hi(B\G,O(κ)) =

Hi−ℓ(w)(B\G,O(w(κ − ρ) + ρ)). If κ − ρ is regular, then w(κ − ρ) + ρ is antidominant and we
conclude. If κ − ρ is not regular, then there let w(κ − ρ) + ρ = κ′. We deduce that there exists i
such that ki = ki+1 + 1. We see that sα(κ

′ − ρ) + ρ = κ′ where sα = (i, i + 1). We deduce that
Hi(B\G,O(κ′)) = Hi+1(B\G,O(κ′)). Thus the cohomology of κ′, and then κ must vanish.

□

5.12. Semi-simplicity.

Theorem 5.12.1. Assume that char(k) = 0. Then the category ModG(k) is semi-simple. The
simple objects are H0(κ) for κ anti-dominant. They have highest weight w0κ.

6. Lecture IV : Sheaves of differential operators on the flag variety

6.1. The enveloping algebra. Let k be a field of characteristic zero. Let V be a k-vector space.
We let T (V ) = ⊕n≥0V ⊗n. We have natural maps V ⊗n ⊗ V ⊗m → V ⊗n+m. Thus, T (V ) is naturally
a graded algebra.

We let
SymnV = V ⊗n/⟨v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n), σ ∈ Sn⟩.

We let S(V ) = ⊕n≥0Symn(V ). This is the symmetric algebra. This is also a graded algebra.
We have a natural map T (V )→ S(V ) with kernel the two-sided ideal generated by v⊗w−w⊗v.
Let g be a finite dimensional Lie algebra. We define U(g) = T (g)/(x⊗y−y⊗x− [x, y], x, y ∈ g).

Remark 6.1.1. If g is abelian, then U(g) = S(g).

We see that U(g) is a filtered algebra, with U(g)≤i = Im(⊕j≤ig⊗j).
We let Gr(U(g)) be the associated graded algebra.

Theorem 6.1.2. There is a natural isomorphism S(g)→ Gr(U(g)).

Proof. (Sketch) We first observe that Gr(U(g)) is commutative, as for v ∈ U(g)≤i and w ∈ U(g)≤j ,
v.w − w.v ∈ U(g)≤i+j−1. We also have a map g → Gr(U(g)) and it extends to an algebra map
S(g)→ Gr(U(g)) which is easily seen to be surjective. □

Corollary 6.1.3. Let (gj)j∈J be a k-basis of g. Then as k-vector space, U(g) = ⊕(nj)∈ZJ
≥0
g
nj

j k.

Proof. By induction, we check that U(g)≤i = ⊕(nj)∈ZJ
≥0,

∑
nj≤ig

nj

j k. □

6.2. Examples of g-modules. We now let g = gln of sln.
Any representation of GLn or SLn gives an element of Mod(U(g)). One can also consider infinite

dimensional examples.
The most important example is Verma modules.
Let b = Lie(B) and h = Lie(T ). Let λ ∈ Hom(h, k). We let M(λ) = U(g) ⊗U(b) k(λ) be the

Verma module of weight λ.
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Proposition 6.2.1. As a b̄-module, M(λ) = U(ū)⊗k k(λ).

Proof. We have U(g) = U(ū)⊗ U(h)⊗ U(u). □

Proposition 6.2.2. We have HomU(g)(M(λ), N) = Homb(λ,N).

Proof. Use adjunction. □

Example 6.2.3. Let us do the sl2 example. We take x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
and h = [x, y] =(

1 0
0 −1

)
.

We see thatM(λ) = ⊕nyn⊗1. We have y.yn⊗1 = yn+1⊗1. We have h.(yn⊗1) = (λ(h)−2n)yn⊗1.
Finally, we have x.(yn ⊗ 1) = n(λ(h)− (n− 1))yn−1 ⊗ 1.

If λ(h) = n ∈ Z≥0 we have an exact sequence :

0→M(−n− 2)→M(n)→ Symnk2 → 0

6.3. Harish-Chandra isomorphism. We let W be the weyl group. It acts on cocharacters on
the left and also on characters on the left. In particular we have ⟨κ, t⟩ = ⟨wκ,wt⟩ for any w ∈W .

The dotted Weyl group action on X⋆(T )k is given by κ 7→ w.κ = w(κ+ρ)−ρ. We let U(h) be the
envelopping algebra of h. We have SpecU(h)(k) = X⋆(T )k. There is also a dotted action on U(h)
which is given by w.h = w−1h + ⟨h,wρ⟩ − ⟨h, ρ⟩. We see that Spec(U(h)W,.)(k) = X⋆(T )k/(W, .).
We let Z(g) be the center of U(g). Here is a description.

Proposition 6.3.1. We have a map HC ′ : Z(g)→ U(h) given by z⊗1 = 1⊗HC ′(z) in U(g)⊗U(b)

U(h).

Proof. We have Mun = U(ū)⊗k U(h). We claim that EndU(g)(Mun) = U(h). We see that 1⊗U(h)
as weight χuniv : h → U(h) while vectors in ūU(ū) ⊗ ⊗kU(h) have weights of the shape χun −∑

(positive roots). It follows that any endomorphism will map 1 ⊗ 1 to k ⊗ U(h). One map is
f 7→ f(1⊗ 1). The other is left multiplication. It follows that we get a map Z(g)→ U(h).

□

Theorem 6.3.2. The above map identifies Z(g) with U(h)W,..

Proof. We only sketch a proof for SL2. We have U(h) = k[h]. We define a map k[h] →
∏
n∈Z k,

by P (h) 7→ P (n). The composition Z(g) → k given by HC(z)(n) gives the action of z on M(n).
Since M(−n− 2) ↪→M(n) for n ≥ 0, we deduce that Z(g) lands in U(h)W,.. To prove surjectivity,
we can simply exhibit the Casimir element h2 + yx+ xy which maps to h(h+ 2) □

Thus, we see that the map HC ′ is designed in such a way that Z(g) acts on a module with
highest weight µ via the character µ. We will actually consider a variant of this map. We consider
the map HC : Z(g) → U(h) given by HC(z)⊗ 1 = 1⊗ z in U(h)⊗U(b) U(g). With this notation,
we see that via this map Z(g) acts via the character w0µ on the representation of highest weight µ.

6.4. Sheaves of differential operators on the flag variety. We let X = B\G. We recall that
we have a functor ModB(k)→ QCohG(X).

We let g0 = OX ⊗k g, b0, u0 be the images of g, b, u via this functor. We see that g0 is the
constant locally free sheaf, with fiber g. For any x ∈ X, b0x = x−1bx. This is the moving Borel Lie
algebra.

Remark 6.4.1. The G-action on each of these sheaves can be differentiating to a g-action. On
g⊗ OX , the action of g′ ∈ g on g ⊗ f is g′.(g ⊗ f) = [g′, g]⊗ f ⊕ g′ ⊗ g(f).

For any character λ ∈ X⋆(T ), we let OX(λ) be the image of the one dimensional representation
λ by this functor.
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Lemma 6.4.2. The map g→ TX induces an isomorphism g0/b0 → TX .

Proof. Indeed, we have seen that the fiber of TX at B\B is g/b. □

We have an action of U(g) on OX . We can construct a sheaf of rings OX ⊗k U(g) where the
product is defined by the rule :

f ⊗ g.f ′ ⊗ g′ = ff ′ ⊗ gg′ + fg(f ′)⊗ g′.
Remark 6.4.3. For any g ∈ g and f ⊗ y ∈ OX ⊗k U(g), we have that g.(f ⊗ y) − (f ⊗ y).g =
g(f)⊗ y + y ⊗ [g, y].

We deduce that there is a map of sheaf of rings OX ⊗k U(g)→ DX .
Lemma 6.4.4. We have that b0OX ⊗k U(g) = OX ⊗k U(g)b0.

Proof. For any s ∈ g0, we have s(f ⊗ 1) = (f ⊗ 1)s = s(f) for any f ∈ OX , as b0 acts trivially on
OX on derivation, we deduce that if s ∈ b0, s(f ⊗ 1) = (f ⊗ 1)s. Next, we have xb0 − b0x ⊆ b0 for
any x ∈ g, since b0 is g-equivariant.

□

The map OX ⊗k U(g)→ DX passes to the quotient to a map OX ⊗k U(g)/b0 → DX .
Proposition 6.4.5. We have an isomorphism OX ⊗k U(g)/b0 → DX .
Proof. These are G-equivariant sheaves. It suffices to compare stalks at e. We have e⋆OX ⊗k
U(g)/b0 = k ⊗U(u) U(g) ≃ U(ū) = e⋆DX = colimnHom(OX,x/m

n
x, k). More precisely, the big

cell is B\BŪ = Spec k[Xα, α ∈ Φ−1] and DX |B\BŪ = k{Xα, ∂Xα}. Taking stalks we get that

e⋆DX = k[∂Xα , α ∈ Φ−] ≃ U(ū). □

We let D̃X = OX ⊗k U(g)/u0.
There is a map h→ b/u of B-modules, where in fact, h has the trivial B-action. It follows that

we have a map h → b0/u0. We can think of this map as follows. For any h ∈ h, we can consider
the map x 7→ xhx−1 which defines a global section of b0/u0.

Remark 6.4.6. For any x ∈ X, k(x)⊗OX
D̃X = kx ⊗U(ux) U(g) = U(hx)⊗U(ux) U(g).

This induces a map Θhor : U(h)→ D̃X .

Proposition 6.4.7. The map U(h) → D̃X is injective. For any x ∈ X, the composite U(h) →
D̃X → U(hx)⊗U(bx) U(g) is given by h 7→ x−1hx⊗ 1. Moreover, U(h) lies in the center of D̃X .

Proof. Since h ↪→ b0, any element of h acts trivially on f ∈ OX . Also, h = H0(X, b0/u0) carries the
trivial G-action. We deduce that gΘ(h)−Θ(h)g = 0 for all g ∈ g. □

Proposition 6.4.8. We have that U(h) = H0(X, D̃X)G.

For any character λ ∈ X⋆(T )k, we let DX,λ = D̃X ⊗U(h),λ k. This is an algebra of twisted
differential operators.

Proposition 6.4.9. (1) We have DX,0 = DX .
(2) D̃ is a locally free U(h)⊗k OX-module.

Proof. The first point follows from the definition. Next, we claim that D̃ is locally free as a
U(h)⊗kOX -module. For example, consider the big cell V = B\BŪ . We have g0|V = u0|V ⊕b̄⊗kOV .
We deduce that

U(g)⊗k OV = u0(U(g)⊗k OV )⊕ U(b̄)⊗k OV .

As a result,

D̃|V ≃ U(b̄)⊗k OV = U(h)⊗k U(ū)⊗k OV .

□
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Lemma 6.4.10. Let λ ∈ X⋆(T ). Then O(λ) is naturally a Dλ-module.

Proof. The G-equivariant action on O(λ) differentiates to a g-action. This induces a linear action
of b0. This is a map of G-equivariant sheaves : b0 ⊗OX

O(λ) → O(λ). We study this map at the

stalk at B\B. This is a map b ⊗ k(λ) → k(λ) which is induced by b → h
λ→ k. We deduce that

the b0 action factors through an action of h via the character λ. This implies that the U0-action
on O(λ) factors through an action of Dλ. □

Remark 6.4.11. One can prove that for λ ∈ X⋆(T ), we have Dλ = OX(λ)⊗DX ⊗OX(−λ) is the
ring of differential operators on OX(λ).

We also have a natural map Z(g)→ U(g)→ D̃X .
Proposition 6.4.12. We have the following factorization :

U(h) // D̃

Z(g)

HC

bb OO

Proof. As D̃ is a locally free OX -module, it suffices to check the desired factorization at stalks. For

any x ∈ X, we have x⋆D̃ = U(hx) ⊗U(bx) U(g). Moreover, we have 1 ⊗ z = x−1HC(z)x ⊗ 1 by
definition of the map HC. □

As a corollary, we have a map Ũ := U(h)⊗Z(g)U(g)→ H0(X, D̃). Similarly, for any λ ∈ X⋆(T )k,

we have a map Uλ := k ⊗λ,U(h) U(h)⊗Z(g) U(g)→ H0(X,Dλ).

7. Localization

7.1. Statement of the localization theorem. Let λ ∈ X⋆(T )k. We consider the category
Mod(Uλ) of Uλ-modules, as well as the categoryMod(Dλ) whose objects are quasi-coherent sheaves
of OX -modules, equipped with an action of Dλ. We define a localization functor :

Loc :Mod(Uλ) → Mod(Dλ)
M 7→ Dλ ⊗Uλ

M

We also have a global section functor :

Γ :Mod(Dλ) → Mod(Uλ)

M 7→ Γ(X,M )

Lemma 7.1.1. The functors (Loc,Γ) form a pair of adjoint functors.

Proof. Concretely, this means that for M ∈Mod(Uλ) and N ∈Mod(Dλ), we have :

HomUλ
(M,Γ(N )) = HomDλ

(Dλ ⊗Uλ
M,N )

This is clear ! □

We say that a weight ν ∈ X⋆(T )k is antidominant if for all w ∈ W , w ̸= Id, we don’t have
w(ν) ≤ ν. If ν = (ν1, · · · , νn) ∈ X⋆(T ), then this coincides with the condition that ν1 ≤ ν2 · · · ≤ νn.
Theorem 7.1.2. Let λ ∈ X⋆(T )k. Assume that λ− ρ is antidominant.

(1) The functor Γ is exact and the adjonction M 7→ Γ ◦ Loc(M) is an isomorphism.
(2) If we further assume that λ− ρ is regular, then Loc and Γ are inverse equivalences of each

other.

Remark 7.1.3. We see that if λ ∈ X⋆(T )−, then λ− ρ is antidominant and regular. Let Vw0λ be
the highest weight representation w0λ. We have Vw0λ = H0(X,O(λ)). Conversely, we have that
Loc(Vw0λ) = O(λ).
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7.2. Global sections and cohomology of D̃ and Dλ.

Theorem 7.2.1. We have that :

(1) H0(D̃) = Ũ and Hi(D̃) = 0 for all i > 0.
(2) H0(Dλ) = Uλ and Hi(Dλ) = 0 for all i > 0.

For a full proof, see [Mil], sect. II, thm 6.1 and 6.5.

Proof. We only give the proof for SL2. We consider the following resolution of D̃ :

0→ U(g)⊗k u0 → U(g)⊗k OX → D̃ → 0

Notice that u0 ≃ OP1(−2). We deduce that H1(X, D̃) = 0 and we have an exact sequence :

0→ H0(X,U(g)⊗k OX)→ H0(X, D̃)→ H1(X,U(g)⊗k u0)→ 0

Also, notice that the exact sequence 0 → u0 → b0 → b0/u0 → 0 induces an isomorphism
h = H1(X, u0). So we deduce that we have a commutative diagram where all vertical maps are
isomorphisms :

0 // U(g) // H0(X, D̃X) // U(g)⊗H1(X, u0) // 0

0 // U(g) //

OO

U(g)⊗Z(g) U(h) //

OO

U(g)⊗k h //

OO

0

Next, we claim that D̃ is locally free as a U(h)-module. For example, consider the big cell V =
B\BŪ . We have g0|V = u0|V ⊕ b̄⊗k OV . We deduce that

U(g)⊗k OV = u0(U(g)⊗k OV )⊕ U(b̄)⊗k OV .

As a result,

D̃|V ≃ U(b̄)⊗k OV = U(h)⊗k U(ū)⊗k OV .

We deduce that for any λ ∈ X⋆(T )k and for h ∈ h a generator, the sequence :

0→ D̃
h−λ(h)→ D̃ → Dλ → 0

is exact. After taking cohomology, we conclude the proof of the theorem. □

7.3. Translation principle. For any λ ∈ X⋆(T ), we have an invertible sheaf OX(λ), and we have
an equivalence of categories −⊗ OX(λ) :Mod(Dλ′)→Mod(Dλ+λ′).

Now, let V be a finite dimensional representation of G. We let V 0 = V ⊗k OX . This is a G-
equivariant U0 = U(g)⊗k OX -module. We see that V , viewed as a B-module, admits a decreasing
filtration FiliV , with griV = k(νi) where νi is a weight of V .

Let G be a Dλ-module. We see that G ⊗ V is a U0 = U(g)⊗k OX -module. Moreover, it carries
a filtration with graded pieces the G (νi). In particular, we deduce that for any z ∈ Z(g), we have∏
i(z− (λ+νi)(z)) = 0. In particular we can project G ⊗V onto its (λ+νi)-generalized eigenspace,

denoted by (G ⊗ V )λ+νi .

Lemma 7.3.1. Let λ ∈ X⋆(T )k, µ ∈ X⋆(T ). Assume that λ − ρ and −µ are antidominant. The
functor G → (G (−µ)⊗ Vµ)λ is equivalent to the identity functor of Mod(Dλ).

Proof. Let ν be a weight of Vµ. Necessarily, ν ≤ µ. We see that h acts on G (−µ+ ν) via λ−µ+ ν.
We assume that G (−µ + ν) contributes to the λ-generalized eigenspace. That means that there
exists w ∈ W such that λ − µ + ν − ρ = w(λ − ρ). Since λ − µ + ν − ρ ≤ λ − ρ, we must have
λ− ρ = w(λ− ρ). As a result µ = ν. □
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Lemma 7.3.2. Let λ ∈ X⋆(T )k. Assume that λ−ρ is antidominant and regular. Let −µ ∈ X⋆(T )
be antidominant. Let Vw0µ be the highest weight w0µ representation. Let G ∈ Dλ. The map
G ⊗ Vw0µ → G (−µ) induces an isomorphism (G ⊗ Vw0µ)λ−µ → G (−µ).

Proof. Let ν be a weight of Vw0µ. Then ν+λ is a weight of G ⊗Vw0µ. If G (ν) maps non-trivially to
(G ⊗Vw0µ)λ−µ, this means that λ−µ−ρ = w(λ+ν−ρ). We deduce that w(λ−ρ) = λ−µ−ρ−wν.
By −µ ≥ wν so λ− µ− ρ− wν ≤ λ− ρ. We deduce that w = Id and that ν = −µ. □

7.4. Proof of the localization theorem. We recall :

Lemma 7.4.1. A quasi-coherent sheaf on a noetherian scheme is a filtered colimit of coherent
sheaves.

Proof. See [Sta13] tag 01PJ. □

Lemma 7.4.2. The invertible sheaves O(κ) for κ ∈ X⋆(T )− are ample.

Lemma 7.4.3. Let λ ∈ X⋆(T )k. Assume that λ−ρ is antidominant. The functor Γ :Mod(Dλ)→
Mod(Uλ) is exact.

Proof. We can write G as a filtered colimit of coherent sheaves G = colimiGi. We will prove that
Im(Hk(X,Gi),Hk(X,G )) = 0 for all k > 0. Choose −µ antidominant such that Hk(X,Gi(−µ)) = 0.
We look at the following diagram (see lemma 7.3.1) :

G // G (−µ)⊗ Vµ // G

Gi

OO

// Gi(−µ)⊗ Vµ

OO

Taking Hk, we deduce that Im(Hk(X,Gi),Hk(X,G )) = 0. □

Corollary 7.4.4. The functor Γ is exact and the adjonction M 7→ Γ ◦Loc(M) is an isomorphism.

Proof. Let Uλ ⊗k V → Uλ ⊗kW →M → 0 be a resolution of M by free Uλ-modules. This induces
a resolution of Loc(M) : Dλ ⊗k V → Dλ ⊗k W → Loc(M) → 0. Since Γ is exact, we deduce that
the following is exact Uλ ⊗k V → Uλ ⊗k W → Γ ◦ Loc(M)→ 0. □

Lemma 7.4.5. Assume that λ − ρ is regular and anti-dominant. Let G ∈ Mod(Dλ) be non-zero.
Then H0(X,G ) ̸= 0.

Proof. Let −µ ∈ X⋆(T ) be antidominant and such that H0(X,G (−µ)) ̸= 0. Let Vw0µ be the highest
weight w0µ representation. By lemma 7.3.2, the map G ⊗ Vw0µ → G (−µ) induces an isomorphism
(G ⊗ Vw0µ)λ−µ → G (−µ) and therefore we get a surjection H0(X,G )⊗ Vw0µ → H0(X,G (−µ)). □

Corollary 7.4.6. Assume that λ − ρ is regular and anti-dominant. Then the adjunction Loc ◦
Γ(G )→ G is an isomorphism.

Proof. Consider the long exact sequence : 0 → K → Loc ◦ Γ(G ) → G → C → 0. We deduce that
Γ(K) = Γ(C) = 0. It follows that K = C = 0. □
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