1. SHEAVES ON THE FLAG VARIETY

Let k£ be a field of characteristic zero complete for a rank 1 valuation extending the p-adic
valuation. Let Oy be its ring of integers. All our spaces will be adic spaces over Spa(k, Oy).

Let G = GLo, B be the upper Borel, with unipotent radical U and maximal torus 7. We let
g = Lie(G), u= Lie(U), b = Lie(B) and h = Lie(T).

The characters of the torus are denoted by X*(T'). We identify X*(T') with (k;w) € Z* with
k=w mod 2 via (k,w).diag(tz,t~'z) = tFz.

Let FL = B\G be the corresponding partial flag variety. It carries an action of G by right
translation. We let {oo} = B\B € FL and Al = FL\ {oo} be the Bruhat strata. We let T' be the
maximal diagonal torus.

1.1. G-equivariant sheaves. Let m,p : FIL x G — FL be the action map and the projection
map respectively. We let Cohg(F L) be the category of G-equivariant coherent sheaves over F'L.
Its objects consist of a coherent sheaves .% together with an isomorphism m*.% — p*.# satisfying
certain obvious condition.

We let Rep” (B) be the category of finite dimensional algebraic representations of B on k-vector
spaces. We define a functor :

F :Rep/(B) — Cohg(FL)
V = V=FV)

as follows. The group G acts on itself by left and right translation. It follows that Og carries
two G-actions, denoted #; and %, given by the rule gx; f(—) = f(¢g~'—) and g, f(—) = f(—g).
We consider the projection 7 : G — B\G, g — 00.g. Let (V,p) be an object of Rep(B). We let
F(V) = (m,0g @ V)*1®P. The action *, provides a G-equivariant structure on F (V).

Let is : {00} — F'L be the inclusion. We conversely define a functor :

i, : Cohg(FL) — Rep’/(B)
V o= iV

Proposition 1.1.1. The functors F' and i, are quasi-inverse equivalences of categories.

Ezample 1.1.2. (1) If k = (k;w) € X*(T), we let O}, = F(wok). This twist in the notation is
justified by the fact that 0%, has degree k, and that HY(FL, 0%, ) is the representation of
highest weight x when x € X*(T)*.

(2) If V € Rep(G), one checks that F(V) = Opp, @1 V.

(3) Let St be the standard representation of G. It sits in the exact sequence of B-representations
0 — k((1;1)) — St — k((—1;1)) — 0. By applying F, we get the "tautological” exact
sequence : 0 — ﬁ’g;;l) — Opr, @ St — ﬁ’gg) — 0.

(4) We have u C b C g. Welet u := F(u) Cb%:=F(b) C F(g) :==g" = Orr ® g.

(5) We have Trr, = F(g/b) = g°/b°. This is the tangent sheaf of FL.

(6) We have b%/u® ~ h ® Or,. This is the horizontal Cartan, with global section by, ~ b.

(7) We have u® = QL.

1.2. g-equivariant sheaves. The Lie algebra g acts by derivations on Opr. We let Cohg(F'L) be

the category of g-equivariant coherent sheaves over F'L. Its objects consist of a coherent sheaf .%#

and a k-linear map g — Endy(.#) such that :

(1) v(gaaaf) cgx ﬁFL X ya g(a’f) = g(a)f+ag(f)7
(2) Y(g9,9') € 0% 99' — g9 = [9,¢'] in Endy,(F).

Any such map extends to a map g° — End,(.#) and we observe that the induced map b° —
End,(F) factors through End,_ (). We observe that if u® acts trivially, .# gets an action of
the horizontal cartan b,
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Remark 1.2.1. When b° acts trivially, .F is a D-module. When only u° acts trivially and by
acts via a character \, F is a twisted D-module.

We let Cohg ) (F'L) be the category of (g, G)-equivariant coherent sheaves over F'L. Its objects
consist of a G-equivariant and g-equivariant coherent sheaf .# such that the map g ® F — F is
G-equivariant.

We have a natural functor Cohg (F'L) — Cohy ¢y (F'L), obtained by deriving the action of G.

Exercise 1.2.2. Prove that u° acts trivially on Ot and that by, acts via wok.

Exercise 1.2.3. Prove that Cohy ) (F'L) is equivalent to the category Rep’ ((g, B)) consisting of a

finite dimensional k vector space V equipped with actions of g and B, such that (bgb~').v = b.g.b~ 1w
for all (g,b,v) €gx BxV.

Exercise 1.2.4. Prove that all the rank one objects of Cohy ) (F'L) are of the form O (v) where
v:g—k is a twist by a character of g.

We will also need to consider infinite dimensional sheaves.

Remark 1.2.5. There is no abelian category of quasi-coherent sheaves because localizations are not
exact in this context (they involve a completion which is rarely exact). There is a derived category
of quasi-coherent sheaves defined using the solid formalism. We will below introduce certain exact
categories of topological sheaves.

We let Bang(F L) be the category whose objects are topological sheaves .% of Orp, endowed with
an action of g by derivations as before and such that the following holds : there is a covering {U;}
such that Z|y, = ﬁUi@JQpW for an orthonormalisable Banach space V;, and there are integers n;
such that the action of g integrates to an action of G, = {g € G,g =1 mod p™} of F|y,.

Remark 1.2.6. Without loss of generality, we can assume that U; is affinoid, stable under G,,.
The action is given by a co-module map F (U;) — y(Ui)é@ﬁUi 0c,,. This last condition hides
a smallness condition. Let F (U;)™ be an Oy-lattice. Then, after possibly increasing n;, we can
assume that F (U;)" is stable by Gy, and the action on F(U;)" /p is trivial.

Let F € Bang(FL). We can consider the u’-cohomology of .#, defined as the cohomology of
the complex of amplitude [0, 1] :

RI(W,.7) = [F — Z @ W°)"].

We let .7 be the HO of this complex. We let Cohg(FL)", Bang(FL)" be the subcategories of
objects killed by ug.

Ezample 1.2.7. We consider the sheaf 0r; @0, . Tt is the sheaf of functions on G, x FL. A section
of this sheaf is thus f(g,z) with g € G,,, and € F L. We have three actions :

(1) ¢'*1 f(g,2) = f((9") "9, 2) for g' € Gy,

(2) ¢'*2 f(g,2) = f(99',x) for ¢’ € G,

(3) ¢’ x3 fg,2) = f(g,2g') for ¢’ € G.
Using the composite %3, this becomes a g-equivariant sheaf over F L. We let C"~%" = (0 ®0, )“O.
Concretely, a section of C"~%" is a function f(g,z) which satisfies f(n,g,z) = f(g,z) for n, €
71Uz N G,. There is also an action x3 of g commuting with the j*s-action. We let C'* =
colim,C"~%". This sheaf carries an action x; x2 x3 of G' and is thus an object of LBany ) (FL). It
also has a %9 action of g.

Remark 1.2.8. The sheaf C'* can be seen as an infinite jet space over FL.
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1.3. (g, B)-equivariant sheaves on Bruhat strata. We now consider (g, B)-equivariant sheaves
on Bruhat strata.

Proposition 1.3.1. (1) For all k € X*(T)k, we have a rank one (g, B)-equivariant sheaf O},
over A'. The horziontal Cartan acts via wok.
(2) For all k € X*(T)y, we have a rank one (g, B)-equivariant sheaf 0%, over {oo}f E| The
horizontal Cartan acts via wok.
(8) They are the only rank one objects of Coh(mB)(Al) and Coh(gvg)({oo}T), up to twist by a
character of T'.
(4) If K € X*(T), then 0% (k) and O% (wok) glue to OF ;.

Proof. We sketch the construction of &7F,. We have a map 7 : U\ngU — B\BwOU. This

map is a left T-torsor. We have a right action of G and also an adjoint action of B. We let
oy = mﬁU\BwOU[—woﬁ] (the braket means sections f(z) such that f(tx) = —wok(t)f(x)). This

belongs to Cohy p)(A). O

2. GEOMETRIC SEN THEORY

2.1. Modular curves and the Hodge-Tate period map. Let K = K,K? C G(Ayf) be a
compact open subgroup. Let Xy — Spa(Cp, Oc,) be the compactified modular curve of level K.
We let E be the universal semi-abelian scheme.

Let Xp» = lim X, i» be the perfectoid modular curve of level K?. It carries an action of G(Qy).
The (complete) structural sheaf is Ox,,.

We have a diagram ([Schl15]) :

Xk
THT
TKp

XK, K FL

Here myr is the G(Qp)-equivariant map is defined by the property that
w0 = 055 5 St Opp, — 605 5 0) =0 5wy 5 T,E® Ox,, — wpe — 0
The structural sheaf Ox,, contains the sheaf 0%" = of smooth vectors for the action of G(Qp).
It has the description ﬁj’(’}’zp = colimwl_{i OX,cp Ky

2.2. The functor VB. We now consider a functor

VB : Bang(FL) — Mod(0%7,)
F = (rypF)™
. . . . . —1 ~
This functor is thus constructed in two steps. First we consider nyp.# = 77 Ol gpr OX v

which is a Banach sheaf over Ox,,. We have (7},.%)*™ = colimg, H° (K, 7};;%) where the
action of any small enough K, is well defined on the sections of 7}, % over any given affinoid
subspace.

Remark 2.2.1. This functor can be enriched to a functor : VB : Bang q)(F'L) — MOdG(@p)(ﬁ)S(T(p)
and even VB : LBang ) (FL) — MOdG(Qp)(ﬁfgzp)'

Remark 2.2.2. We also have variants over Bruhat strata.

Lfo0}! is the space {oo}, equipped with the sheaf (in fact module) OFL {00}



2.3. Geometric Sen theory.

2.3.1. The main theorem.

Theorem 2.3.1 ([Pan22|, [Cam22]). (1) We have that V B(F) = colim, H°(Kp, (H°(u0, 75;0.7)))
(2) If # € Bang(FL)", then

VB(ﬂ)®ﬁ§g';{p Oxyp = F 60, OXyer

Remark 2.3.2. More precisely, for all small enough K, there is a Banach sheaf VB(F )k, over
Xk, kv such that

VB(g)KP(gﬁXKPKp Oxyp = ‘g@@m OXyp-
This isomorphism is Kp-equivariant. We have VB(.7) = colimg,V B(.F )k,
Remark 2.3.3. We thus think of objects in Bang(FL)" as admissible objects.
Remark 2.3.4. If # € Cohy(FL), we prove in [Pil22] that R'VB(F) = VB(H(uy, F)). There

is also a formula in this spirit in for Banach sheaves, see [Cam22].

Remark 2.3.5. We can give a heuristic explanation for the fact that one needs to consider objects
killed by u’. The pro-étale descent along 7, : Xgr — Xkrk, 5 not effective because this tower
is very ramified integrally (indeed, X v is a perfectoid space). Basically one is trying to factor the
map mre into Xgr — X /u¥ — Xkrk, where the second map is of effective descent. An object
of Bang(FL)" pulls back to Xg»/u® and descends then to Xkrk,- One can give a meaning to
this factorization over mi(c0). Note that u|os = u. Let us assume that K, = G(Z,) and let
X}}’"EG(ZP) be the ordinary locus. Let IG — X}}’"EG(ZP) be the Igusa tower. This is a T(Zy)-torsor of
trivialization of Ty(E)*t and T,(E)™. There is a lift ® of Frobenius on IG. Let IGP*") = limg IG.
Then mip(00) is the closure of IGP"! and IG = IGP*"f/U(Z,). The map IGP" — IG is
integrally a perfectization, hence is very ramified integrally. The map IG — X%TzflG(Zp) extends to a

T(Zy)-torsor integrally. It is thus of effective pro-étale descent.

2.3.2. A few words about the proof. The proof of the theorem proceeds in roughly two steps. First,
one produces locally over Xg» a geometric Sen operator Ogen, geom € End(7};%) which has the
property that VB(Z) = H(K,, (H°(u’, 75,,.%))). This uses Sen theory as formulated in [BC16]
and [BCO8]. We then need to identify this operator as a generator of the image of u’ in End (7,17 ).
One checks this in the case of Faltings’ extension (see [2.3.4) and deduce it in general.

2.3.3. Special case of the theorem : sheaves of modular forms. We can apply the theorem to the
sheaves 07, € Cohy ) (FL). We let VB(Op) = w™™.

Lemma 2.3.6. We have Colimwf{p where wf{p is the sheaf of weight k modular forms over X kr.

Proof. Let us justify this in the case that k = (1;1) (the general case follows easily). By construction

11
of wyr, we have ﬂ}{Tﬁ}i) = W;(pwEt. O

We can consider RI'(X»,w™*™). This is a complex of smooth G(Q,)-representation, whose H°
computes classical modular forms.

2.3.4. Special case of the theorem : Faltings’s extension. We have HO(uY, St ® Opp) = 6"1(;21;1), and
H' (10, St ® Opp) = 09D @ (u0)V.

The theorem is thus claiming that : VB(St®@0pr) = w("HD5™ and R'WB(St®@ Opr) = wbil)=m,
This is actually a reformulation of some classical computations in p-adic Hodge theory. We have the
following extension (called Faltings’extension, see [Sch13]) of pro-Kummer étale sheaves on Xy, rv:

0— O(1) — gr' OB, — QX (log(cusp)) ®xyc cr 0 =0
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This extension witnesses the fact that kaet,an,*é) = ﬁXKpr and Rlﬂpkemn’*é’(l) = Q}(KPKP log(cusp)
for Tpket,an * Xk, k7 pket — Xk, Kkp an the projection of sites.
We can evaluate gr! @’BIR on Xgr and we get an extension (on the analytic site of Xg») :

0= 0Ox,,(1) = FE — Qﬁ(Kpr (log(cusp)) ®/;XKPKP Ox,p — 0.
Theorem 2.3.7 ([Fal87], [Sch13], [Pan22]). We have the following isomorphism of exact sequences

0 OX,cp T,E @z, Ox,p ® wl=Dsm _(B)sm g ((=Dsm
| | -
0 OXyer FE Q}(KPKP (log(cusp)) ®ﬁXKpKP Oxp —0

This isomorphism together with the computation of the projection to the étale site of the Falting’s
extension recovers our theorem.

2.3.5. Locally analytic vectors. Let n > 0. Let G, C G be the analytic subgroup of elements which
reduce to 1 modulo p". So G,(Qp) = 1+ p"Ms(Z,). Let V be a Qp-banach space equipped with
a continuous G, (Q,)-representation. Then we have an orbit map orb : V — C%(G,(Q,),V) =
CGn(Qp), Qp)&V. And V = C%(Gn(Qp), V)9 @) for the action ¢’ * f(g) = ¢'f((¢')1g).

Definition 2.3.8. We let V"9 = (0g, @ V)(@) be the subset of V of analytic vectors. We
let V'@ = colim,, V"~ be the subset of locally analytic vectors.

Remark 2.3.9. We have an action of g on V. Indeed let v € V"=, Then we let gv =
(g-0rb(v))(1).

By definition ﬁgng — (Ga160¢,0x,., )™ = VB(Oa,bc, OrL).

The theorem therefore reads :
Theorem 2.3.10 ([Pan22]). We have VB(C!*) = ﬁé?}(p and ﬁé?m ®@>§(er Ox1ep = Cppy Ox ey -

Corollary 2.3.11. The action of g on ﬁé?K induces an action of g° on ﬁé?K and the induced
P P
action of u® is trivial.

2.4. The arithmetic Sen operator. Let L be a finite extension of Q,. We let Xgrg, 1 be the
modular curve defined over L, and let .# € Bang(FLy)*. By construction, we see that V B(.F)
carries a semi-linear action of G. We can ask wether VB(.#) descends to a sheaf VB(.%)r of
ﬁ}”}zpl/—modules for some finite extension L’ of L.

Theorem 2.4.1. We have that diag(1,0) € bpor, acting on VB(F) is an arithmetic Sen operator
Osen,arith- If it vanishes, then VB(F) descends to a sheaf VB(.F)r.

Remark 2.4.2. More generally, the action of Osen arith 0f VB(F) exponentiates to an action of
a subgroup T'r; of Z;. Let L’ be the extension of L with the property that Xcya(Gr/) C T If we
twist the action of G on VB(F), using the projection to I'rs, we force the vanishing of the Sen
operator and the sheaf VB(.F) descends to VB(F) .

3. OVERCONVERGENT MODULAR FORMS

3.0.1. Sheaves of overconvergent modular forms. For all K € X*(T)c,, we have defined in propo-
sition sheaves OF, and OF,. These sheaves have vanishing geometric Sen operator. By

geometric Sen theory, we thus get B(Qj)-equivariant sheaves : w5™ on 7j7-(c0) and w}i™ on

WﬁlT(Al). Let us call H(I]d(/i) = HO(WI_{%(OO),(U&SHI) and (H}UO)(/@) = Hi(ﬂﬁ;(Al),wg’l‘sm).
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Proposition 3.0.1. The LB spaces HY,(k) and H%UO(F&) are locally analytic representations of
B(Qp). The action of b is via —wok and —k respectively.

3.0.2. The Cousin complex. The following exact sequence is a first justification for considering
support conditions in our cohomologies:

Proposition 3.0.2. Let k € X*(T'). Then we have a long exact sequence of B(Qp)-smooth repre-
sentations :

0 — HY(Xgpw™ ™) — HYy(k) @ Cpwor) — H,, (k) ® Cp(k) — HY (X fep, w™™) = 0

Proof. Let j : mp(A') < Xg» be the open immersion and i : 7m-({c0}) < Xk» be the closed
immersion. Then we have an exact sequence :

0 — jii*wis™ — wip™ = it = 0.

O

3.0.3. Higher Coleman theory. A reference is [BP20]. Let v : T(Z,) — Cj; be a continuous
character. Let x = log(v) € X*(T)c,. We let Mg, = (H), (k) ® Cp(wor))B@e) and M,,, =
(H}, (k) @ Cp(v))B@»),

Proposition 3.0.3. The spaces Mya, and My, , have an action of U, = B(Z,)diag(1,p~ 1) B(Z,).
The Upy-operator is compact and all the eigenvalues for U, on Mg, have slope > 1, all the eigen-
values for U, on My, , have slope > 0.

Corollary 3.0.4. Let v = (k;—k) € X*(T). If k > 1, any class in Miq, of slope < k —1 is
classical. If k <1, any class in My, . of slope <1 —k is classical.

3.0.4. pfadic families. We can also construct p-adic families. Let % be the character space of T'(Z,).
Let ™ be the universal character. We have a logarithm map : log : #" — X*(T')c,. Let KUY —
log(v"™"). We can define families of overconvergent modular forms by taking (log* H},(k*"") ®

ﬁw(_woyum’v))B(Zp) — Mld,y“"iv and (log* Hleuo (l/univ) ® ﬁw(_yuniv))B(ZP) - M

wo puniv .
?

Proposition 3.0.5. M, univ and M, ,univ define sheaf of LBan-modules over W (which are
locally of the form ﬁUi@)@pVi for Vi an inductive limit of orthonormalizable Banach module).
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