
1. Sheaves on the Flag variety

Let k be a field of characteristic zero complete for a rank 1 valuation extending the p-adic
valuation. Let Ok be its ring of integers. All our spaces will be adic spaces over Spa(k,Ok).

Let G = GL2, B be the upper Borel, with unipotent radical U and maximal torus T . We let
g = Lie(G), u = Lie(U), b = Lie(B) and h = Lie(T ).

The characters of the torus are denoted by X?(T ). We identify X?(T ) with (k;w) ∈ Z2 with
k = w mod 2 via (k,w).diag(tz, t−1z) = tkzw.

Let FL = B\G be the corresponding partial flag variety. It carries an action of G by right
translation. We let {∞} = B\B ∈ FL and A1 = FL \ {∞} be the Bruhat strata. We let T be the
maximal diagonal torus.

1.1. G-equivariant sheaves. Let m, p : FL × G → FL be the action map and the projection
map respectively. We let CohG(FL) be the category of G-equivariant coherent sheaves over FL.
Its objects consist of a coherent sheaves F together with an isomorphism m?F → p?F satisfying
certain obvious condition.

We let Repf (B) be the category of finite dimensional algebraic representations of B on k-vector
spaces. We define a functor :

F : Repf (B) → CohG(FL)

V 7→ V = F (V )

as follows. The group G acts on itself by left and right translation. It follows that OG carries
two G-actions, denoted ?l and ?r, given by the rule g ?l f(−) = f(g−1−) and g ?r f(−) = f(−g).
We consider the projection π : G 7→ B\G, g 7→ ∞.g. Let (V, ρ) be an object of Rep(B). We let
F (V ) = (π?OG ⊗k V )?l⊗ρ. The action ?r provides a G-equivariant structure on F (V ).

Let i∞ : {∞} → FL be the inclusion. We conversely define a functor :

i?∞ : CohG(FL) → Repf (B)

V 7→ i?∞V

Proposition 1.1.1. The functors F and i?∞ are quasi-inverse equivalences of categories.

Example 1.1.2. (1) If κ = (k;w) ∈ X?(T ), we let Oκ
FL = F (w0κ). This twist in the notation is

justified by the fact that Oκ
FL has degree k, and that H0(FL,Oκ

FL) is the representation of
highest weight κ when κ ∈ X?(T )+.

(2) If V ∈ Rep(G), one checks that F (V ) = OFL ⊗k V .
(3) Let St be the standard representation ofG. It sits in the exact sequence of B-representations

0 → k((1; 1)) → St → k((−1; 1)) → 0. By applying F , we get the ”tautological” exact

sequence : 0→ O
(−1;1)
FL → OFL ⊗ St→ O

(1;1)
FL → 0.

(4) We have u ⊆ b ⊆ g. We let u0 := F (u) ⊆ b0 := F (b) ⊆ F (g) := g0 = OFL ⊗ g.
(5) We have TFL = F (g/b) = g0/b0. This is the tangent sheaf of FL.
(6) We have b0/u0 ' h⊗ OFL. This is the horizontal Cartan, with global section hhor ' h.
(7) We have u0 = Ω1

FL.

1.2. g-equivariant sheaves. The Lie algebra g acts by derivations on OFL. We let Cohg(FL) be
the category of g-equivariant coherent sheaves over FL. Its objects consist of a coherent sheaf F
and a k-linear map g→ Endk(F ) such that :

(1) ∀(g, a, f) ∈ g× OFL ×F , g(af) = g(a)f + ag(f),
(2) ∀(g, g′) ∈ g2, gg′ − g′g = [g, g′] in Endk(F ).

Any such map extends to a map g0 → Endk(F ) and we observe that the induced map b0 →
Endk(F ) factors through EndOFL

(F ). We observe that if u0 acts trivially, F gets an action of
the horizontal cartan hhor.
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Remark 1.2.1. When b0 acts trivially, F is a D-module. When only u0 acts trivially and hhor
acts via a character λ, F is a twisted D-module.

We let Coh(g,G)(FL) be the category of (g, G)-equivariant coherent sheaves over FL. Its objects
consist of a G-equivariant and g-equivariant coherent sheaf F such that the map g ⊗F → F is
G-equivariant.

We have a natural functor CohG(FL)→ Coh(g,G)(FL), obtained by deriving the action of G.

Exercise 1.2.2. Prove that u0 acts trivially on Oκ
FL and that hhor acts via w0κ.

Exercise 1.2.3. Prove that Coh(g,G)(FL) is equivalent to the category Repf ((g, B)) consisting of a

finite dimensional k vector space V equipped with actions of g and B, such that (bgb−1).v = b.g.b−1.v
for all (g, b, v) ∈ g×B × V .

Exercise 1.2.4. Prove that all the rank one objects of Coh(g,G)(FL) are of the form Oκ
FL(ν) where

ν : g→ k is a twist by a character of g.

We will also need to consider infinite dimensional sheaves.

Remark 1.2.5. There is no abelian category of quasi-coherent sheaves because localizations are not
exact in this context (they involve a completion which is rarely exact). There is a derived category
of quasi-coherent sheaves defined using the solid formalism. We will below introduce certain exact
categories of topological sheaves.

We let Bang(FL) be the category whose objects are topological sheaves F of OFL endowed with
an action of g by derivations as before and such that the following holds : there is a covering {Ui}
such that F |Ui = OUi⊗̂QpVi for an orthonormalisable Banach space Vi, and there are integers ni
such that the action of g integrates to an action of Gni = {g ∈ G, g = 1 mod pni} of F |Ui .

Remark 1.2.6. Without loss of generality, we can assume that Ui is affinoid, stable under Gni.
The action is given by a co-module map F (Ui) → F (Ui)⊗̂OUi

OGni
. This last condition hides

a smallness condition. Let F (Ui)
+ be an Ok-lattice. Then, after possibly increasing ni, we can

assume that F (Ui)
+ is stable by Gni, and the action on F (Ui)

+/p is trivial.

Let F ∈ Bang(FL). We can consider the u0-cohomology of F , defined as the cohomology of
the complex of amplitude [0, 1] :

RΓ(u0,F ) = [F → F ⊗ (u0)∨].

We let F u0 be the H0 of this complex. We let Cohg(FL)u0 , Bang(FL)u0 be the subcategories of
objects killed by u0.

Example 1.2.7. We consider the sheaf OFL⊗̂OGn . It is the sheaf of functions on Gn×FL. A section
of this sheaf is thus f(g, x) with g ∈ Gn, and x ∈ FL. We have three actions :

(1) g′ ?1 f(g, x) = f((g′)−1g, x) for g′ ∈ Gn,
(2) g′ ?2 f(g, x) = f(gg′, x) for g′ ∈ Gn,
(3) g′ ?3 f(g, x) = f(g, xg′) for g′ ∈ G.

Using the composite ?1?3, this becomes a g-equivariant sheaf over FL. We let Cn−an = (OFL⊗̂OGn)u
0
.

Concretely, a section of Cn−an is a function f(g, x) which satisfies f(nxg, x) = f(g, x) for nx ∈
x−1Ux ∩ Gn. There is also an action ?2 of g commuting with the ?1?3-action. We let Cla =
colimnCn−an. This sheaf carries an action ?1 ?2 ?3 of G and is thus an object of LBan(g,G)(FL). It
also has a ?2 action of g.

Remark 1.2.8. The sheaf Cla can be seen as an infinite jet space over FL.
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1.3. (g, B)-equivariant sheaves on Bruhat strata. We now consider (g, B)-equivariant sheaves
on Bruhat strata.

Proposition 1.3.1. (1) For all κ ∈ X?(T )k, we have a rank one (g, B)-equivariant sheaf Oκ
A1

over A1. The horziontal Cartan acts via w0κ.
(2) For all κ ∈ X?(T )k, we have a rank one (g, B)-equivariant sheaf Oκ

∞ over {∞}† 1. The
horizontal Cartan acts via w0κ.

(3) They are the only rank one objects of Coh(g,B)(A1) and Coh(g,B)({∞}†), up to twist by a
character of T .

(4) If κ ∈ X?(T ), then Oκ
A1(κ) and Oκ

∞(w0κ) glue to Oκ
FL.

Proof. We sketch the construction of Oκ
A1 . We have a map π : Û\B̂w0U → B̂\B̂w0U . This

map is a left T̂ -torsor. We have a right action of Ĝ and also an adjoint action of B. We let
Oκ

A1 = π?OÛ\B̂w0U
[−w0κ] (the braket means sections f(x) such that f(t̂x) = −w0κ(t̂)f(x)). This

belongs to Coh(g,B)(A1). �

2. Geometric Sen theory

2.1. Modular curves and the Hodge-Tate period map. Let K = KpK
p ⊆ G(Af ) be a

compact open subgroup. Let XK → Spa(Cp,OCp) be the compactified modular curve of level K.
We let E be the universal semi-abelian scheme.

Let XKp = limXKpKp be the perfectoid modular curve of level Kp. It carries an action of G(Qp).
The (complete) structural sheaf is OXKp .

We have a diagram ([Sch15]) :

XKp

πKpzz

πHT

""

XKpKp FL

Here πHT is the G(Qp)-equivariant map is defined by the property that

π?HT (0→ O
(−1;1)
FL → St⊗ OFL → O

(1;1)
FL → 0) = 0→ ω−1

E → TpE ⊗ OXKp → ωEt → 0

The structural sheaf OXKp contains the sheaf Osm
XKp

of smooth vectors for the action of G(Qp).

It has the description Osm
XKp

= colimπ−1
Kp

OXKpKp
.

2.2. The functor V B. We now consider a functor

V B : Bang(FL) → Mod(Osm
XKp )

F 7→ (π?HTF )sm

This functor is thus constructed in two steps. First we consider π?HTF = π−1
HTF ⊗̂π−1

HT OFL
OXKp

which is a Banach sheaf over OXKp . We have (π?HTF )sm = colimKpH0(Kp, π
?
HTF ) where the

action of any small enough Kp is well defined on the sections of π?HTF over any given affinoid
subspace.

Remark 2.2.1. This functor can be enriched to a functor : V B : Ban(g,G)(FL)→ ModG(Qp)(O
sm
XKp

)

and even V B : LBan(g,G)(FL)→ ModG(Qp)(O
sm
XKp

).

Remark 2.2.2. We also have variants over Bruhat strata.

1{∞}† is the space {∞}, equipped with the sheaf (in fact module) OFL,{∞}
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2.3. Geometric Sen theory.

2.3.1. The main theorem.

Theorem 2.3.1 ([Pan22], [Cam22]). (1) We have that V B(F ) = colimKpH0(Kp, (H
0(u0, π?HTF )))

(2) If F ∈ Bang(FL)u0, then

V B(F )⊗̂Osm
XKp

OXKp = F ⊗̂OFL
OXKp

Remark 2.3.2. More precisely, for all small enough Kp, there is a Banach sheaf V B(F )Kp over
XKpKp such that

V B(F )Kp⊗̂OXKpKp
OXKp = F ⊗̂OFL

OXKp .

This isomorphism is Kp-equivariant. We have V B(F ) = colimKpV B(F )Kp.

Remark 2.3.3. We thus think of objects in Bang(FL)u0 as admissible objects.

Remark 2.3.4. If F ∈ Cohg(FL), we prove in [Pil22] that RiV B(F ) = V B(Hi(u0,F )). There
is also a formula in this spirit in for Banach sheaves, see [Cam22].

Remark 2.3.5. We can give a heuristic explanation for the fact that one needs to consider objects
killed by u0. The pro-étale descent along πKp : XKp → XKpKp is not effective because this tower
is very ramified integrally (indeed, XKp is a perfectoid space). Basically one is trying to factor the
map πKp into XKp → XKp/u0 → XKpKp where the second map is of effective descent. An object

of Bang(FL)u0 pulls back to XKp/u0 and descends then to XKpKp. One can give a meaning to

this factorization over π−1
HT (∞). Note that u0|∞ = u. Let us assume that Kp = G(Zp) and let

Xord
KpG(Zp) be the ordinary locus. Let IG→ Xord

KpG(Zp) be the Igusa tower. This is a T (Zp)-torsor of

trivialization of Tp(E)et and Tp(E)m. There is a lift Φ of Frobenius on IG. Let IGperf = limΦ IG.

Then π−1
HT (∞) is the closure of IGperf and IG = IGperf/U(Zp). The map IGperf → IG is

integrally a perfectization, hence is very ramified integrally. The map IG→ Xord
KpG(Zp) extends to a

T (Zp)-torsor integrally. It is thus of effective pro-étale descent.

2.3.2. A few words about the proof. The proof of the theorem proceeds in roughly two steps. First,
one produces locally over XKp a geometric Sen operator ΘSen,geom ∈ End(π?HTF ) which has the
property that V B(F ) = H0(Kp, (H

0(u0, π?HTF ))). This uses Sen theory as formulated in [BC16]
and [BC08]. We then need to identify this operator as a generator of the image of u0 in End(π?HTF ).
One checks this in the case of Faltings’ extension (see 2.3.4) and deduce it in general.

2.3.3. Special case of the theorem : sheaves of modular forms. We can apply the theorem to the
sheaves Oκ

FL ∈ Coh(g,G)(FL). We let V B(Oκ
FL) = ωκ,sm.

Lemma 2.3.6. We have colimωκKp
where ωκKp

is the sheaf of weight κ modular forms over XKpKp.

Proof. Let us justify this in the case that κ = (1; 1) (the general case follows easily). By construction

of πHT , we have π?HTO
(1;1)
FL = π?Kp

ωEt . �

We can consider RΓ(XKp , ωκ,sm). This is a complex of smooth G(Qp)-representation, whose H0

computes classical modular forms.

2.3.4. Special case of the theorem : Faltings’s extension. We have H0(u0, St⊗OFL) = O
(−1;1)
FL , and

H1(u0, St⊗ OFL) = O
(1;1)
FL ⊗ (u0)∨.

The theorem is thus claiming that : V B(St⊗OFL) = ω(−1;1),sm and R1V B(St⊗OFL) = ω(1;1),sm.
This is actually a reformulation of some classical computations in p-adic Hodge theory. We have the
following extension (called Faltings’extension, see [Sch13]) of pro-Kummer étale sheaves on XKpKp :

0→ Ô(1)→ gr1OB+
dR → Ω1

XKpKp
(log(cusp))⊗OXKpKp

Ô → 0
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This extension witnesses the fact that πpket,an,?Ô = OXKpKp and R1πpket,an,?Ô(1) = Ω1
XKpKp

log(cusp)

for πpket,an : XKpKp,pket → XKpKp,an the projection of sites.

We can evaluate gr1OB+
dR on XKp and we get an extension (on the analytic site of XKp) :

0→ OXKp (1)→ FE → Ω1
XKpKp

(log(cusp))⊗OXKpKp
OXKp → 0.

Theorem 2.3.7 ([Fal87], [Sch13], [Pan22]). We have the following isomorphism of exact sequences
:

0 // OXKp

��

// TpE ⊗Zp OXKp ⊗ ω(1;−1),sm //

��

ω(1;1),sm ⊗ ω(1;−1),sm //

−KS
��

0

0 // OXKp
// FE // Ω1

XKpKp
(log(cusp))⊗OXKpKp

OXKp
// 0

This isomorphism together with the computation of the projection to the étale site of the Falting’s
extension recovers our theorem.

2.3.5. Locally analytic vectors. Let n ≥ 0. Let Gn ⊆ G be the analytic subgroup of elements which
reduce to 1 modulo pn. So Gn(Qp) = 1 + pnM2(Zp). Let V be a Qp-banach space equipped with
a continuous Gn(Qp)-representation. Then we have an orbit map orb : V → C0(Gn(Qp), V ) =

C0(Gn(Qp),Qp)⊗̂V . And V = C0(Gn(Qp), V )Gn(Qp) for the action g′ ? f(g) = g′f((g′)−1g).

Definition 2.3.8. We let V n−an = (OGn ⊗ V )Gn(Qp) be the subset of V of analytic vectors. We
let V la = colimnV

n−an be the subset of locally analytic vectors.

Remark 2.3.9. We have an action of g on V la. Indeed let v ∈ V n−an. Then we let g.v =
(g.orb(v))(1).

By definition O la
XKp

= (OG,1⊗̂CpOXKp
)sm = V B(OG,1⊗̂CpOFL).

The theorem therefore reads :

Theorem 2.3.10 ([Pan22]). We have V B(Cla) = O la
XKp

and O la
XKp
⊗̂Osm

XKp
OXKp = Cla⊗̂OFL

OXKp .

Corollary 2.3.11. The action of g on O la
XKp

induces an action of g0 on O la
XKp

and the induced

action of u0 is trivial.

2.4. The arithmetic Sen operator. Let L be a finite extension of Qp. We let XKpKp,L be the

modular curve defined over L, and let F ∈ Bang(FLL)u
0
. By construction, we see that V B(F )

carries a semi-linear action of GL. We can ask wether V B(F ) descends to a sheaf V B(F )L′ of
Osm
XKp,L′

-modules for some finite extension L′ of L.

Theorem 2.4.1. We have that diag(1, 0) ∈ hhor, acting on V B(F ) is an arithmetic Sen operator
Θsen,arith. If it vanishes, then V B(F ) descends to a sheaf V B(F )L.

Remark 2.4.2. More generally, the action of Θsen,arith of V B(F ) exponentiates to an action of
a subgroup ΓL′ of Z×p . Let L′ be the extension of L with the property that χcycl(GL′) ⊆ ΓL′. If we
twist the action of GL′ on V B(F ), using the projection to ΓL′, we force the vanishing of the Sen
operator and the sheaf V B(F ) descends to V B(F )L′ .

3. Overconvergent modular forms

3.0.1. Sheaves of overconvergent modular forms. For all κ ∈ X?(T )Cp , we have defined in propo-
sition 1.3.1, sheaves Oκ

A1 and Oκ
∞. These sheaves have vanishing geometric Sen operator. By

geometric Sen theory, we thus get B(Qp)-equivariant sheaves : ωκ,sm∞ on π−1
HT (∞) and ωκ,smA1 on

π−1
HT (A1). Let us call H0

Id(κ) = H0(π−1
HT (∞), ωκ,sm∞ ) and (H1

w0
)(κ) = H1

c(π
−1
HT (A1), ωκ,smA1 ).
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Proposition 3.0.1. The LB spaces H0
Id(κ) and H1

w0
(κ) are locally analytic representations of

B(Qp). The action of b is via −w0κ and −κ respectively.

3.0.2. The Cousin complex. The following exact sequence is a first justification for considering
support conditions in our cohomologies:

Proposition 3.0.2. Let κ ∈ X?(T ). Then we have a long exact sequence of B(Qp)-smooth repre-
sentations :

0→ H0(XKpωκ,sm)→ H0
Id(κ)⊗ Cp(w0κ)→ H1

w0
(κ)⊗ Cp(κ)→ H1(XKp , ωκ,sm)→ 0

Proof. Let j : π−1
HT (A1) ↪→ XKp be the open immersion and i : π−1

HT ({∞}) ↪→ XKp be the closed
immersion. Then we have an exact sequence :

0→ j!j
?ωκ,smFL → ωκ,smFL → i?i

−1ωκ,smFL → 0.

�

3.0.3. Higher Coleman theory. A reference is [BP20]. Let ν : T (Zp) → C×p be a continuous

character. Let κ = log(ν) ∈ X?(T )Cp . We let MId,ν = (H0
Id(κ) ⊗ Cp(w0ν))B(Zp) and Mw0,ν =

(H1
Id(κ)⊗ Cp(ν))B(Zp).

Proposition 3.0.3. The spaces MId,ν and Mw0,ν have an action of Up = B(Zp)diag(1, p−1)B(Zp).
The Up-operator is compact and all the eigenvalues for Up on MId,ν have slope ≥ 1, all the eigen-
values for Up on Mw0,ν have slope ≥ 0.

Corollary 3.0.4. Let κ = (k;−k) ∈ X?(T ). If k > 1, any class in MId,κ of slope < k − 1 is
classical. If k < 1, any class in Mw0,κ of slope < 1− k is classical.

3.0.4. p-adic families. We can also construct p-adic families. Let W be the character space of T (Zp).
Let νuniv be the universal character. We have a logarithm map : log : W → X?(T )Cp . Let κuniv =

log(νuniv). We can define families of overconvergent modular forms by taking (log? H0
Id(κ

univ) ⊗
OW(−w0ν

univ))B(Zp) = MId,νuniv and (log? H1
w0

(νuniv)⊗ OW(−νuniv))B(Zp) = Mw0,νuniv .

Proposition 3.0.5. MId,νuniv and Mw0,νuniv define sheaf of LBan-modules over W (which are

locally of the form OUi⊗̂CpVi for Vi an inductive limit of orthonormalizable Banach module).
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