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Abstract. We construct Hida and Coleman theories for the degree 0 and 1
cohomology of automorphic line bundles on the modular curve, and we define
a p-adic duality pairing between the theories in degree 0 and 1.

1. Introduction

In the 80’s, Hida introduced an ordinary projector on modular forms and he
constructed p-adic families of ordinary modular forms [Hid86]. In the 90’s, Coleman
developed the finite slope theory [Col97] and Coleman and Mazur constructed the
eigencurve [CM98]. These theories have now been extended to higher dimensional
Shimura varieties.

Hida and Coleman theories combine two ideas. The first is to restrict modular
forms from the full modular curve to the ordinary locus and its neighborhoods. The
additional structure on the universal p-divisible group on and near the ordinary
locus (the canonical subgroups) is used to p-adically interpolate the sheaves of
modular forms and their sections. The second idea is to use the Hecke operators at
p to detect when a section of the sheaf of modular forms defined on (a neighborhood
of) the ordinary locus comes from a classical modular form.

Until recently, Hida and Coleman theories had only been developed for degree
0 coherent cohomology groups. In the recent works [Pil20], [BCGP21] we began
to develop them further in order to study the higher coherent cohomology of auto-
morphic vector bundles on the Shimura varieties for the group GSp4, and we are
now convinced that Hida and Coleman theories should exist in all cohomological
degrees for all Shimura varieties.

The purpose of the current work is to confirm this prediction in the simple setting
of modular curves and to construct Hida and Coleman theories for the degree 1
cohomology groups. We actually construct in parallel the theories for degree 0 and
degree 1 cohomology, as this sheds some new light on the usual degree 0 theory.
We also prove a p-adic Serre duality, which gives a perfect pairing between the
theories in cohomological degree 0 and 1, but our constructions are independent of
this pairing.

Let us describe the results we prove. Let X → SpecZp be the compactified
modular curve of level Γ1(N), where N ≥ 3 is an integer prime to p, and let D
be the boundary divisor. Let X1 → SpecFp be the special fiber and Xord

1 be the
ordinary locus. Let ω/X be the modular line bundle and for a weight k ∈ Z write
ωk for ω⊗k.
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Theorem 1.1 (Hida’s control theorem). There is a Hecke operator Tp acting on
the cohomology groups RΓ(X1, ω

k), RΓc(X
ord
1 , ωk), and RΓ(Xord

1 , ωk), and an as-
sociated ordinary projector e(Tp). Moreover, we have quasi-isomorphisms

e(Tp)RΓ(X1, ω
k)→ e(Tp)RΓ(Xord

1 , ωk) if k ≥ 3

and
e(Tp)RΓc(X

ord
1 , ωk)→ e(Tp)RΓ(X1, ω

k) if k ≤ −1.

The coherent cohomology with compact support appearing in the theorem has
been defined by Hartshorne [Har72]. If SS ⊆ X1 denotes the (reduced) supersin-
gular divisor, then we have

Hi
c(X

ord
1 , ωk) = lim

n
Hi(X1, ω

k(−nSS)), Hi(Xord
1 , ωk) = colim

n
Hi(X1, ω

k(nSS)).

The proof of this theorem relies on a local analysis of the cohomological corre-
spondence Tp at supersingular points. The above theorem may also be viewed as a
vanishing result: e(Tp)RΓ(X1, ω

k) is concentrated in degree 0 if k ≥ 3, and degree
1 if k ≤ −1, because the ordinary locus is affine. Of course, this vanishing result
holds true even without the ordinary projector, from the Riemann-Roch theorem
and the Kodaira-Spencer isomorphism, however the first argument is well suited
for generalizations to higher dimensional Shimura varieties.

Let Λ = Zp[[Z×p ]] be the Iwasawa algebra. Each integer k ∈ Z defines a character
of Z×p , and a morphism k : Λ→ Zp.

Theorem 1.2. There are two projective Λ-modules M and N carrying an action
of the Hecke algebra of level prime to p, and there are canonical, Hecke-equivariant
isomorphisms for all k ≥ 3:

(1) M ⊗Λ,k Zp = e(Tp)H
0(X,ωk),

(2) N ⊗Λ,k Zp = e(Tp)H
1(X,ω2−k(−D)),

Moreover, there is a perfect pairing M ×N → Λ which interpolates the classical
Serre duality pairing.

The modules M and N are obtained by considering the ordinary factor of the
cohomology and cohomology with compact support of the ordinary locus, with
values in an interpolation sheaf of Λ-modules.

Let X0(p) → Spa(Qp,Zp) be the adic modular curve of level Γ1(N) ∩ Γ0(p).
We have two quasi-compact opens X0(p)m and X0(p)et inside X0(p) which are
respectively the loci where the universal subgroup of order p has multiplicative and
étale reduction. We let X0(p)m,† and X0(p)et,† be the corresponding dagger spaces
[GK00].

Theorem 1.3 (Coleman’s classicality theorem). For all k ∈ Z, there is a well de-
fined Hecke operator Up which is compact and has non negative slopes on Hi(X0(p), ωk),
Hi(X0(p)m,†, ωk), and Hi

c(X0(p)et,†, ωk). Moreover, the natural maps (where the
superscript < ? means slope less than ? for Up):

(1) Hi(X0(p), ωk)<k−1 → Hi(X0(p)m,†, ωk)<k−1,
(2) Hi

c(X0(p)et,†, ωk)<1−k → Hi(X0(p), ωk)<1−k

are isomorphisms.
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The proof of this theorem is based on some simple estimates for the operator
Up on the ordinary locus, reminiscent of [Kas06]. We can again deduce a van-
ishing theorem for the small slope classical cohomology (without appealing to the
Riemann-Roch theorem).

Coleman and Mazur constructed the eigencurve C of tame level Γ1(N). It carries
a weight morphism w : C → W whereW is the analytic adic space over Spa(Qp,Zp)
associated with the Iwasawa algebra Λ.

Theorem 1.4. The eigencurve carries two coherent sheavesM and N interpolating
the degree 0 and 1 finite slope cohomology. For any k ∈ Z, we have

(1) M<k−1
k = H0(X0(p), ωk)<k−1,

(2) N<k−1
k = H1(X0(p), ω2−k(−D))<k−1,

and there is a perfect pairing between M and N , interpolating the usual Serre
duality pairing.

1.1. Acknowledgements. We would like to thank Frank Calegari and Toby Gee
for conversations about the topics in this paper, and David Loeffler for his com-
ments. We thank Ben Heuer and the anonymous referee for their corrections
and suggestions. This research was supported by the ERC-2018-COG-818856-
HiCoShiVa, and the first author was supported in part by the NSF postdoctoral
fellowship DMS-1503047.

2. Preliminaries

2.1. Finite flat cohomological correspondences. In this section all schemes
are noetherian. We write Coh(X) for the category of coherent sheaves on a scheme
X.

2.1.1. The functors f?, f? and f !. Let f : X → Y be a finite flat morphism of
schemes. We have a functor f? : Coh(X) → Coh(Y ). It induces an equivalence of
categories between Coh(X) and the category of coherent sheaves of f?OX -modules
over Y .

The functor f? has a left adjoint f? : Coh(Y ) → Coh(X), given by f?f?F =
F ⊗OY

f?OX , as well as a right adjoint f ! : Coh(Y )→ Coh(X) given by f?f !F =
HomOY

(f?OX ,F ). For any F ∈ Coh(X), we have an isomorphism f !F = f !OY⊗OX

f?F .

A finite flat morphism f : X → Y has a trace map trf : f?OX → OY . This trace
is by definition a global section of f !OY or equivalently a morphism f?OY → f !OY .
It follows that the trace map provides a natural transformation f? ⇒ f !.

A finite flat morphism f : X → Y is called Gorenstein if f !OX is an invertible
sheaf. If f : X → Y if a local complete intersection morphism, then it is Gorenstein
(see [Eis95, Cor. 21.19]).

2.1.2. Cohomological correspondences.

Definition 2.1. A finite flat correspondence over a scheme X is a scheme C

equipped with two finite flat morphisms X p2← C
p1→ X.

Definition 2.2. Let F be a coherent sheaf on X. A finite flat cohomological corre-
spondence for F is the data of a pair (C, T ) consisting of a finite flat correspondence
C and a map T : p?2F → p!

1F .
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Given a finite flat cohomological correspondence (C, T ) on F , we get a morphism
in cohomology that we also denote by T :

T : RΓ(X,F )
p?2→ RΓ(C, p?2F )

T→ RΓ(C, p!
1F )

trp1→ RΓ(X,F ).

2.1.3. Restriction. Let X be a scheme and Y ↪→ X be a closed subscheme defined
by a sheaf of ideals I ↪→ OX . For any quasi-coherent sheaf F over X, we let

ΓY (F ) = Ker(F → Hom(I ,F ))

be the subsheaf of sections with scheme theoretic support in Y .

Proposition 2.3. Consider a commutative diagram of schemes:

Y
i //

g

  

X

f

��
Z

where i is a closed immersion and g, f are finite flat morphisms. Let F be a
coherent sheaf on Z. Then i?g!F = ΓY f

!F .

Proof. Let us denote by I the ideal sheaf of Y in X. This follows from the exact
sequence:

0→ Hom(g?OY ,F )→ Hom(f?OX ,F )→ Hom(f?I ,F ).

�

2.2. Local finiteness and ordinary projectors. Let R be a finite artinian ring.

Lemma 2.4. Suppose M is a finite R-module and T ∈ EndR(M). The sequence
(Tn!)n∈N is eventually constant and converges to an idempotent e(T ) ∈ EndR(M).

Proof. We have a decreasing sequence of submodules Tn(M) ofM which is eventu-
ally stationary sinceM is artinian. LetM0 be the limit. T restricts to a bijection on
the finite setM0, and hence for n large enough Tn! is the identity onM0. It follows
that for all n large enough, Tn! is an idempotent projector from M to M0. �

Definition 2.5. Let M be an R-module and let T ∈ EndR(M). We say that T is
locally finite on M if M is a union of finite R-modules which are stable under T .

Remark 2.6. This is equivalent to: for any finite submodule V ⊆M there exists an
n > 0 such that TnV ⊆

∑n−1
i=0 T

iV .

Let M be an R-module and let T ∈ EndR(M) be locally finite. Then for each
v ∈ M , lemma 2.4 implies that the sequence Tn!v is eventually constant, and we
define e(T ) : M →M by e(T )v = Tn!v for n sufficiently large.

Lemma 2.4 further implies that e(T ) is an R-linear idempotent which commutes
with T , and moreover T is an isomorphism on e(T )M and locally nilpotent on
(1 − e(T ))M , in the sense that for each v ∈ (1 − e(T ))M , there exists n > 0 such
that Tnv = 0.

If f : M → N is a morphism of R-modules, equivariant for a locally finite
endomorphism T (i.e. we have locally finite endomorphisms T ∈ EndR(M) and
T ∈ EndR(N) with fT = Tf) then we have e(T )f = fe(T ) and so f(e(T )M) ⊆
e(T )N and f((1− e(T ))M) ⊆ (1− e(T ))N .
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Proposition 2.7. Let 0 → M → N → L → 0 be a short exact sequence of R-
modules with an equivariant endomorphism T .

(1) T is locally finite on N if and only if T is locally finite on M and L.
(2) If this holds, then 0→ e(T )M → e(T )N → e(T )L→ 0 is exact.

Proof. The only point that requires a proof is that if T is locally finite on M and
L, then it is locally finite on N . Let V ⊆ N be a finite submodule. Since T is
locally finite on L, there exists n ≥ 1 such that Tn(V ) ⊆

∑n−1
i=0 T

iV +M . There is
furthermore a finite submodule W ⊆M such that

Tn(V ) ⊆
n−1∑
i=0

T iV +W

Since T is locally finite on M , there exists m ≥ 1 such that:

Tm(W ) ⊆
m−1∑
i=0

T iW.

We finally conclude that Tn+m(V+W ) ⊆
∑n+m−1
i=0 T i(V+W ), so that

∑n+m−1
i=0 T i(V+

W ) is a finite R-module, stable by T , containing V . �

We will also need to work with a different notion of local finiteness, defined on
certain topological R-modules.

Definition 2.8. A topological R-module M is a profinite R-module if it is homeo-
morphic to a cofiltered limit limi∈IMi of finite R-modules, or equivalently, if it is
Hausdorff and has a basis of neighborhoods {Ni}i∈I of 0 consisting of open cofinite
submodules.

Definition 2.9. Let M be a profinite R-module, and let T ∈ EndR(M) be a con-
tinuous endomorphism. We say that T is locally finite on M if M has a basis of
neighborhoods of 0 consisting of submodules {Ni} such that T (Ni) ⊆ Ni.

Remark 2.10. An endomorphism T ∈ EndR(M) is locally finite if and only if for
any open submodule V ⊆ M , ∩∞i=0T

−i(V ) ⊆ M is open. Equivalently, it is locally
finite if and only if for every open submodule V ⊆M , there is some n > 0 such that
∩n−1
i=0 T

−i(V ) ⊆ T−n(V ) (indeed, if ∩∞i=0T
−i(V ) ⊆ M is open, then it is cofinite,

and hence must be ∩n−1
i=0 T

−i(V ) for some n > 0.)

Let M be a profinite R-module and let T ∈ EndR(M) be a locally finite endo-
morphism. Pick a neighborhood basis {Ni}i∈I of 0 with T (Ni) ⊆ Ni. Then for
all v ∈ M and each i ∈ I, lemma 2.4 implies that the sequence Tn!v is eventually
constant in M/Ni. It follows that the sequence Tn!v converges in M , to a limit
that we denote e(T )v.

Lemma 2.4 further implies that e(T ) is a continuous, R-linear idempotent which
commutes with T , and moreover T is an isomorphism on e(T )M and topologically
nilpotent on (1 − e(T ))M , in the sense that for each v ∈ (1 − e(T ))M , {Tnv}n∈N
converges to 0.

If f : M → N is a continuous morphism of profinite R-modules, equivariant for
a locally finite endomorphism T then we have e(T )f = fe(T ) and so f(e(T )M) ⊆
e(T )N and f((1− e(T ))M) ⊆ (1− e(T ))N .



6 G. BOXER AND V. PILLONI

Proposition 2.11. Let 0 → M → N → L → 0 be a short exact sequence of
profinite R-modules with an equivariant continuous endomorphism T .

(1) T is locally finite on N if and only if T is locally finite on M and L.
(2) If this holds, then 0→ e(T )M → e(T )N → e(T )L→ 0 is exact.

Proof. The only point that requires a proof is that if T is locally finite on M and
L, then it is locally finite on N . Let V ⊂ N be an open submodule. Since T is
locally finite on M , we deduce that there is n ≥ 1 such that ∩n−1

i=0 T
−i(V ∩M) ⊆

T−n(V ∩M). It follows that:

(T−nV +M)
⋂
∩n−1
i=0 T

−i(V ) ⊆ T−n(V ).

To shorten notations, let us denote by W = T−nV + M . Since W is open in
N , its image W in L is open (it is closed and finite index.) Since T is locally
finite on L, there is m ≥ 0 such that ∩m−1

i=0 T−i(W ) ⊂ T−m(W ). We deduce that
∩m−1
i=0 T−i(W ) ⊂ T−m(W ). It follows that:

T−(n+m)(V ∩W ) = T−m(T−nV ) ∩ T−(n+m)(W )

⊇ T−m(W
⋂
∩n−1
i=0 T

−i(V ))
⋂
∩m−1
i=0 T−iW

⊇ T−m(W )
⋂
∩m+n−1
i=0 T−i(V )

⋂
∩m−1
i=0 T−iW

⊇ ∩m+n−1
i=0 T−i(V )

⋂
∩m−1
i=0 T−iW

⊇ ∩m+n−1
i=0 T−i(V ∩W )

Therefore, ∩m+n−1
i=0 T−i(V ∩W ) is an open submodule of V which is stable under

T . �

We will also consider the situation that R = limnR/m
n is a complete, semilo-

cal, noetherian ring with Jacobson radical m, and R/m is finite (e.g. R = Zp or
Zp[[Z×p ]]). If M = limnM/mnM is a complete R-module with an endomorphism
T , we say that T is locally finite if for all n (or equivalently for a single n by propo-
sitions 2.7, 2.11) the induced endomorphism T ofM/mnM is locally finite in one of
the two senses considered above. In this case the idempotent endomorphisms e(T )
of M/mnM are compatible and define an idempotent endomorphism e(T ) of M .

3. The cohomological correspondence Tp

Let N ≥ 3 be an integer and let p be a prime. Let X → SpecZp be the
compactified modular curve of level Γ1(N) ([DR73]). This is a proper smooth
relative curve. Denote by D the boundary divisor, and by E → X the semi-abelian
scheme which extends the universal elliptic curve and denote by e the unit section.
We let ωE = e?Ω1

E/X . For any k ∈ Z, we denote by ωk = ω⊗kE .

3.1. The cohomological correspondences Tp. We denote by p1, p2 : X0(p) →
X the Hecke correspondence which parametrizes an isogeny π : p?1E → p?2E of
degree p (compatible with the Γ1(N) level structure). We denote by D0(p) the
boundary divisor in X0(p) (which is reduced, so that D0(p) = (p−1

i D)red). We let
πk : p?2ω

k 99K p?1ω
k be the rational map which is deduced from the pull-back map on

differentials p?2ωE → p?1ωE (this map is regular if k ≥ 0, and is an isomorphism over
Qp for all k). We also denote by π−1

k : p?1ω
k 99K p?2ω

k the inverse of πk. We also have
a dual isogeny π∨ : p?2E → p?1E and we denote by π∨k : p?1ω

k 99K p?2ω
k the rational
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map which is deduced from the pull-back map on differentials p?1ωE → p?2ωE . We
also denote by (π∨k )−1 : p?2ω

k 99K p?1ω
k the inverse of π∨k . We have the following

formula relating πk and π∨k :
πk ◦ π∨k = pkId.

We have natural trace maps trp1 : OX0(p) → p!
1OX and trp2 : OX0(p) → p!

2OX .
Note that since p1 and p2 are local complete intersection morphisms, p!

1OX and
p!

2OX are invertible sheaves.

Lemma 3.1. The restrictions of trp1 and trp2 to OX0(p)(−D0(p)) factor through
maps trp1 : OX0(p)(−D0(p))→ p!

1(OX(−D)) and trp2 : OX0(p)(−D0(p))→ p!
2(OX(−D)).

Proof. The boundary divisors in X and X0(p) are reduced. The lemma boils down
to the statement that the trace of a function vanishing along the boundary on X0(p)
vanishes on the boundary on X. �

We have a “naive” (i.e. unnormalized) cohomological correspondence:

Tnaivep,k : p?2ω
k 99K p!

1ω
k

which is the rational map defined by taking the tensor product of the map πk :
p?2ω

k 99K p?1ω
k and the map trp1 : OX0(p) → p!

1OX , and similarly a map Tnaivep,k :

p?2(ωk(−D)) 99K p!
1(ωk(−D)) defined using p?2(ωk(−D)) = (p?2ω

k)(−p−1
2 (D)) ⊆

(p?2ω
k)(−D0(p)). We finally let Tp,k = p− inf{1,k}Tnaivep,k .

Proposition 3.2. Tp,k is a cohomological correspondence p?2ωk → p!
1ω

k.

Proof. The map Tp,k is a rational map between invertible sheaves over the reg-
ular scheme X0(p) so we can check that it is defined outside of codimension 2.
Since the map is defined over Qp, we can thus localize at a generic point ξ of
the special fiber and we are left to prove that it is well defined locally at these
points. There are two types of generic points corresponding to the possibility
that the isogeny p?1E → p?2E is either multiplicative or étale. Let us first as-
sume that ξ is étale. The differential map (p?2ω)ξ→̃(p?1ω)ξ is an isomorphism and
the map (trp1)ξ : (p?1OX)ξ → (p!

1OX)ξ factors into an isomorphism: (trp1)ξ :
(p?1OX)ξ→̃p(p!

1OX)ξ. It follows that (Tnaivep,k )ξ : (p?2ω
k)ξ→̃p(p!

1ω
k)ξ. Let us next

assume that ξ is multiplicative. The differential map (p?2ω)ξ→̃(p?1ω)ξ factors into
an isomorphism (p?2ω)ξ→̃p(p!

1ω)ξ and the map (trp1)ξ : (p?1OX)ξ→̃(p!
1OX)ξ is an

isomorphism. It follows that (Tnaivep,k )ξ : (p?2ω
k)ξ→̃pk(p!

1ω
k)ξ. We deduce that Tp,k

is indeed a well defined map and that it is optimally integral. �

When the weight is clear, we often write Tp. The map Tp induces a map on
cohomology:

Tp ∈ EndRΓ(X,ωk) and EndRΓ(X,ωk(−D))

obtained by composing the maps:

RΓ(X,ωk)
p?2→ RΓ(X0(p), p?2ω

k)
Tp→ RΓ(X0(p), p!

1ω
k)

trp1→ RΓ(X,ωk)

and similarly for cuspidal cohomology.

Remark 3.3. The proposition 3.2 is a particular instance of constructions performed
in [FP19], where the problem of constructing Hecke operators on the integral co-
herent cohomology of more general Shimura varieties is considered.
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Remark 3.4. One can check that our map Tp,k has the following effect on q-
expansions (of given Nebentypus χ : Z/NZ× → Z×p ): it maps

∑
anq

n to
∑
anpq

n+

pk−1χ(p)
∑
anq

np if k ≥ 1 and to p1−k∑ anpq
n + χ(p)

∑
anq

np if k ≤ 1.

Remark 3.5. Our normalization is consistent with standard conjectures on the ex-
istence and properties of Galois representations associated to automorphic forms
([BG14]). The cohomology groups Hi(X,ωk)⊗C can be computed using automor-
phic forms and for any π = π∞⊗πf contributing to the cohomology, we find that the
infinitesimal character of π∞ is given by (t1, t2) 7→ t

1
2
1 t
k− 1

2
2 and is indeed C-algebraic.

By the Satake isomorphism, we know that Tnaivep |πp = p1/2Trace(Frob−1
p |rec(πp))

(because Tnaivep corresponds to the co-character t 7→ (1, t−1) [FP19, Rem. 5.6]!). It
is convenient to introduce the twist π⊗|.|− 1

2 which is L-algebraic, for which we find
that the infinitesimal character of π∞⊗|.|−

1
2 is (t1, t2) 7→ tk−1

2 . We make the follow-
ing normalizations: the Hodge-Tate weight of the cyclotomic character is −1, and
we normalize the reciprocity law by using geometric Frobenii. With these conven-
tions, the Hodge cocharacter is t 7→ (1, t1−k) and the corresponding Hodge polygon
has slopes 1 − k and 0. We find that Tnaivep |πp = pTrace

(
Frob−1

p |rec(πp ⊗ |.|−
1
2 )
)
.

The Katz-Mazur inequality predicts that the Newton polygon (which has slopes
the p-adic valuations of two eigenvalues of Frobp) is above the Hodge polygon with
same ending and initial point, from which we find that v(Tnaivep |πp) ≥ inf{1, k}
and that Tp is indeed optimally integral.

3.2. Duality. We let DZp
= RHomZp

(·,Zp) be the dualizing functor on the cat-
egory of bounded complexes of finite type Zp-modules [Har66, V]. We let ωX/Zp

and ωX0(p)/Zp
be the dualizing modules. We recall that ωX/Zp

= Ω1
X/Zp

, while
ωX0(p)/Zp

= j?Ω
1
U/Zp

, where j : U → X0(p) is the complement of the super-
singular locus in the special fiber, which is also the smooth locus of X0(p) →
Spec(Zp). Then we have dualizing functors DX = RHom(·, ωX/Zp

[1]) and DX0(p) =
RHom(·, ωX0(p)/Zp

[1]) on the derived category of bounded complexes of coherent
sheaves on X and X0(p). When the context is clear we only write D for any of
these dualizing functors.

We have the following Serre duality isomorphism ([Har66, III, Thm 11.1]):

DZp(RΓ(X,ωk)) = RΓ(X,DX(ωk))

and similarly for cuspidal cohomology.
We now want to understand how this duality isomorphism behaves with respect

to Hecke operators. The Hecke Tp is defined as a composition

RΓ(X,ωk)
p?2→ RΓ(X0(p), p?2ω

k)
Tp→ RΓ(X0(p), p!

1ω
k)

trp1→ RΓ(X,ωk)

and hence dualizes to a composition:

D(RΓ(X,ωk))
p?1→ D(RΓ(X0(p), p!

1ω
k))

D(Tp)→ D(RΓ(X0(p), p?2ω
k))

trp2→ D(RΓ(X,ωk)).

We have
D(RΓ(X0(p), p!

1ω
k)) = RΓ((X0(p), p?1D(ωk)),

D(RΓ(X0(p), p?2ω
k)) = RΓ((X0(p), p!

2D(ωk)),
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by [Har66, III, Thm 11.1 and V, Prop. 8.5], and it remains to understand D(Tp) :
p?1D(ωk) → p!

2D(ωk). We first recall that we have the Kodaira-Spencer isomor-
phism over X [Kat73, A.1.3.17]

KS : ω2(−D)→ Ω1
X/Zp

.

We consider the correspondence Tp : p?2ω
k → p!

1ω
k. Applying the functor DX0(p)

and making a [−1]-shift yields a map D(Tp) : p?1(ω−k⊗ωX/Zp
)→ p!

2(ω−k⊗ωX/Zp
).

If we use the Kodaira-Spencer isomorphism on both sides, we obtain a map: D(Tp) :
p?1(ω−k+2(−D))→ p!

2(ω−k+2(−D)).
We can also consider the transpose correspondence T tp : p?1(ωk(−D))→ p!

2(ωk(−D)),
defined as p− inf{1,k}T t,naivep , where T t,naivep is the tensor product of π∨k : p?1ω

k 99K
p?2ω

k and trp1 : OX0(p)(−D0(p))→ p!
1(OX(−D)). We can consider the diamond op-

erator 〈p〉 onX andX0(p) which multiplies the Γ1(N) level structure by p, as well as
the Atkin-Lehner map w : X0(p)→ X0(p), which sends the isogeny π : p?1E → p?2E
to the dual isogeny π∨ : p?2E → p?1E. We have the formulas w2 = 〈p〉, p1w = p2,
and p2w = 〈p〉p1, and pulling back by w, we see that T tp acts on cohomology as
〈p〉−1Tp.

The main result of this section is now the following:

Proposition 3.6. We have D(Tp) = T tp as maps p?1(ω−k+2(−D))→ p!
2(ω−k+2(−D)),

and hence we have D(Tp) = 〈p〉−1Tp as endomorphisms of DZp
(RΓ(X,ωk)) =

RΓ(X,ω2−k(−D)).

Lemma 3.7. The following diagram is commutative:

ωX0(p)/Zp
(D0(p))

p?2Ω1
X/Zp

(D)

trp2

66

p?2Ω1
X/Zp

(D)

trp1

hh

p?2ω
2

p?2KS

OO

p−1π2 // p?1ω
2

p?1KS

OO

Proof. Over X0(p) we have a map π? : p?2(H1
dR(E/X),∇) → p?1(H1

dR(E/X),∇)
which induces a commutative diagram:

ωX0(p)/Zp
(D0(p))⊗ p?2ω−1

1⊗(π∨−1)−1

// ωX0(p)/Zp
(D0(p))⊗ p?1ω−1

p?2Ω1
X/Zp

(D)⊗ p?2ω−1

trp2

OO

p?1Ω1
X/Zp

(D)⊗ p?1ω−1

trp1

OO

p?2ω

p?2KS

OO

π1 // p?1ω

p?1KS

OO



10 G. BOXER AND V. PILLONI

or equivalently

ωX0(p)/Zp
(D0(p))

p?2Ω1
X/Zp

(D)

trp2

66

p?2Ω1
X/Zp

(D)

trp1

hh

p?2ω
2

p?2KS

OO

π1⊗(π∨1 )−1

// p?1ω
2

p?1KS

OO

It remains to observe that π∨1 π1 = p.
�

Lemma 3.8. D(Tnaivep ) = pk−1T t,naivep .

Proof. The dual of the map p?2ωk 99K p?1ωk → p!
1ω

k is p?1(ω−k⊗ωX/Zp
)→ p!

1(ω−k⊗
ωX/Zp

) 99K p!
2(ω−k⊗ωX/Zp

). The first map p?1ω−k⊗p?1ωX/Zp
→ p?1ω

−k⊗ωX0(p)/Zp

is just 1⊗ trp1 .
The second map p!

1(ω−k⊗ωX/Zp
) 99K p!

2(ω−k⊗ωX/Zp
) is also π−1

−k⊗1 : p?1ω
−k⊗

ωX0(p)/Zp
99K p?2ω

−k ⊗ ωX0(p)/Zp
.

On the other hand, using Kodaira-Spencer we have ωX0(p)/Zp
= p!

1OX⊗p?1ωX/Zp
=

p!
1OX ⊗ p?1ω2(−D) and ωX0(p)/Zp

= p!
2OX ⊗ p?2ωX/Zp

= p!
2OX ⊗ p?2ω2(−D). The

identity map: p!
1OX ⊗ p?1ω2(−D)→ p!

2OX ⊗ p?2ω2(−D) decomposes into:

trp2tr−1
p1 ⊗ (π∨1 ⊗ (π1)−1)

according to lemma 3.7. We get thatD(Tnaivep ) : p?1(ω−k+2(−D)) 99K p!
2(ω−k+2(−D))

is trp2tr−1
p1 ◦ trp1 ⊗ (π∨1 ⊗ (π1)−1)⊗ (π−k)−1. It remains to observe that π1−kπ

∨
1−k =

p1−k. �

Proof of Proposition 3.6. This follows from the identity:

− inf{1, k}+ k − 1 = − inf{1, 2− k}.

�

4. Higher Hida theory

4.1. The mod p theory. We write X1 → SpecFp and X0(p)1 → SpecFp for the
special fibers of X and X0(p). We write Xord

1 ⊆ X1 for the ordinary locus.
We recall that X0(p)1 = X0(p)F1 ∪X0(p)V1 is the union of the Frobenius and Ver-

schiebung correspondences. We let pFi and pVi be the restrictions of the projections
pi to these components. The projection pV2 : X0(p)V1 → X1 is an isomorphism (and
X0(p)V1 parametrizes the Verschiebung isogeny (pV1 )?E ' (pV2 )?E(p) → (pV2 )?E).
The projection pF1 : X0(p)F1 → X1 is an isomorphism (and X0(p)F1 parametrizes
the Frobenius isogeny (pF1 )?E → (pF2 )?E ' (pF1 )?E(p)). We denote by iF and iV
the inclusions X0(p)F1 ↪→ X0(p)1 and X0(p)V1 ↪→ X0(p)1.
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Lemma 4.1. If k ≥ 2, we have a factorization on X1:

p?2ω
k

Tp //

��

p!
1ω

k

iV? (pV2 )?ωk // iV? (pV1 )!ωk

OO

If k ≤ 0, we have a factorization on X1:

p?2ω
k

Tp //

��

p!
1ω

k

iF? (pF2 )?ωk // iF? (pF1 )!ωk

OO

Proof. By proposition 2.3, this amounts to checking that the cohomological corre-
spondence Tp : p?2ω

k → p!
1ω

k vanishes at any generic point of multiplicative type
in X0(p)1 if k ≥ 2, and at any generic point of étale type in X0(p)1 if k ≤ 0. This
follows from the normalization of the correspondence as explained in the proof of
proposition 3.2. �

Remark 4.2. We can informally rephrase this lemma by saying that we have con-
gruences: Tp = Up mod p if k ≥ 2 and Tp = Frob mod p if k ≤ 0, see remark
3.4.

Proposition 4.3. For all k ≥ 2 and n ∈ Z, the cohomological correspondence Tp
induces a map:

p?2(ωk((np+ k − 2)SS))→ p!
1(ωk(nSS)).

For all k ≤ 0 and n ∈ Z, the cohomological correspondence Tp induces a map:

p?2(ωk(−nSS))→ p!
1(ωk((−np+ k)SS)).

Proof. We first prove the claim when k ≥ 2. The cohomological correspondence is
supported on X0(p)V1 by Lemma 4.1. The map pV1 is totally ramified of degree p
and the map pV2 is an isomorphism. It follows that we have an equality of divisors
(pV1 )?(SS) = p(pV2 )?(SS). We deduce that the map (pV2 )?ω2 → (pV1 )!ω2 induces a
morphism (pV2 )?(ω2(npSS))→ (pV1 )!(ω2(nSS)).

This proves the claim for k = 2. For k ≥ 3, we remark that the cohomological
correspondence (pV2 )?ωk → (pV1 )!ωk is the tensor product of the map (pV2 )?ω2 →
(pV1 )!ω2 and the map (pV2 )?ωk−2 → (pV1 )?ωk−2. But (pV1 )?ωE ' ((pV2 )?ωE)p and
the differential of the isogeny (pV2 )?E → (pV1 )?E identifies with the Hasse invariant
and induces an isomorphism: (pV2 )?(ωE(SS))→ (pV1 )?ωE . We deduce that there is
a map p?2(ωk((np+ k − 2)SS))→ p!

1(ωk(nSS)).
We now prove the claim when k ≤ 0. The cohomological correspondence is

supported on X0(p)F1 by Lemma 4.1. The map pF2 is totally ramified of degree p
and the map pF1 is an isomorphism. It follows that we have an equality of divisors
(pF2 )?(SS) = p(pF1 )?(SS). We deduce that the map (pF2 )?OX → (pF1 )!OX induces
a morphism (pF2 )?(OX(−nSS))→ (pF1 )!(OX(−npSS)).

This proves the claim for k = 0. For k ≤ −1, we remark that the cohomological
correspondence (pF2 )?ωk → (pF1 )!ωk is the tensor product of the map (pF2 )?OX →
(pF1 )!OX (the cohomological correspondence for k = 0) and a map (pF2 )?ωk →
(pF1 )?ωk that we now describe. Informally, this map is deduced from the differential
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of the isogeny (pF1 )?E → (pF2 )?E, after normalizing by a factor p−1 (one can make
sense of this over the formal scheme ordinary locus). Equivalently, it is deduced from
the differential of the isogeny of the dual map (pF2 )?E → (pF1 )?E (the Verschiebung
map).

We observe that (pF2 )?ωE ' ((pF1 )?ωE)p and there is a natural isomorphism:

(pF2 )?ωE
(pF1 )?Ha−1

−→ (pF1 )?(ωE(SS)), and therefore, for all k ≤ 0, an isomorphism:

(pF2 )?ωk
(pF1 )?Hak−→ (pF1 )?(ωk(−kSS)) which factors the map (pF2 )?ωk

(pF1 )?Hak→ (pF1 )?ωk.
We deduce that there is a map: p?2(ωk(−nSS))→ p!

1(ωk((−np+ k)SS)). �

Corollary 4.4. (1) The Tp operator acts on RΓ(X1, ω
k(nSS)) for all n ≥

0 and k ≥ 2, and the maps RΓ(X1, ω
k(nSS)) → RΓ(X1, ω

k(n′SS)) are
equivariant for 0 ≤ n ≤ n′,

(2) We have commutative diagrams for all n ≥ 0 and k ≥ 2

RΓ(X1, ω
k((np+ k − 2)SS))

Tp //

++

RΓ(X1, ω
k((np+ k − 2)SS))

RΓ(X1, ω
k(nSS))

Tp //

OO

RΓ(X1, ω
k(nSS))

OO

where the diagonal arrow is the map of proposition 4.3.
(3) The Tp operator acts on RΓ(X1, ω

k(−nSS)) for all n ≥ 0 and k ≤ 0, and
the maps RΓ(X1, ω

k(−n′SS)) → RΓ(X1, ω
k(−nSS)) are equivariant for

0 ≤ n ≤ n′,
(4) We have commutative diagrams for all n ≥ 0 and k ≤ 0

RΓ(X1, ω
k(−nSS))

Tp //

++

RΓ(X1, ω
k(−nSS))

RΓ(X1, ω
k((−np+ k)SS))

Tp //

OO

RΓ(X1, ω
k((−np+ k)SS))

OO

where the diagonal arrow is the map of proposition 4.3.

For any k, we define as usual Hi
c(X

ord
1 , ωk) = limn Hi(X1, ω

k(−nSS)) following
[Har72]. This is a profinite Fp-vector space. We also recall that Hi(Xord

1 , ωk) =
colimn Hi(X1, ω

k(nSS)).

Corollary 4.5. (1) If k ≥ 2, Tp is locally finite on Hi(Xord
1 , ωk).

(2) If k ≤ 0, Tp is locally finite on Hi
c(X

ord
1 , ωk).

(3) If k ≥ 3, we have e(Tp)Hi(Xord
1 , ωk) = e(Tp)H

i(X1, ω
k).

(4) If k = 2, we have e(Tp)Hi(Xord
1 , ω2) = e(Tp)H

i(X1, ω
2(SS)).

(5) If k ≤ −1, we have e(Tp)Hi
c(X

ord
1 , ωk) = e(Tp)H

i(X1, ω
k).

(6) If k = 0, we have e(Tp)Hi
c(X

ord
1 ,OX) = e(Tp)H

i(X1,OX(−SS)).

Corollary 4.6. (1) If k ≤ −1, e(Tp)RΓ(X1, ω
k) is concentrated in degree 1,

(2) If k ≥ 3, e(Tp)RΓ(X1, ω
k) is concentrated in degree 0.

Proof. This follows from H1(Xord
1 , ωk) = 0 and H0

c(X
ord
1 , ωk) = 0 because Xord

1 is
affine. �

Remark 4.7. Of course, we even have H1(X1, ω
k) = 0 for k ≥ 2 and H0(X1, ω

k) = 0
for k < 0 by the Riemann-Roch theorem and the Kodaira-Spencer isomorphism,
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but the given proof is independent of this, and more suitable for generalizations in
higher dimension.

4.2. The p-adic theory. Let X be the p-adic completion of X and let Xn →
SpecZ/pnZ be the scheme obtained by reduction modulo pn. Let Xord and Xord

n

denote the ordinary loci.

4.2.1. The Igusa tower. For all n ≥ 1, we have over Xord a canonical multiplicative
subgroup Hcan

n ⊂ E[pn], which is étale locally isomorphic to µpn . We can consider
the étale Cartier dual (Hcan

n )D = Hom(Hcan
n , µpn) (away from the boundary, the

canonical principal polarization on E defines an isomorphism between (Hcan
n )D and

the étale quotient E[pn]et = E[pn]/Hcan
n ). We can consider the Hodge-Tate map:

HT : (Hcan
n )D → ωE/p

n

which sends a local section s : Hcan
n → µpn of (Hcan

n )D to s? dxx ∈ ωHcan
n

= ωE/p
n,

where dx
x is the canonical generator of the co-lie algebra of µpn = SpecZ[x]/(xp

n −
1). If s is a local generator of (Hcan

n )D, then HT(s) is a local generator of ωE/pn,
and hence the linearized Hodge-Tate map

HT⊗ 1 : (Hcan
n )D ⊗Z/pnZ OXord

n
→ ωE/p

n

is an isomorphism.
Passing to the limit over n we obtain the Hodge-Tate map

HT : Tp((H
can)D)→ ωE

where Tp((Hcan)D) is the pro-étale sheaf limn(Hcan
n )D (pro-étale locally Zp), which

induces an isomorphism

HT⊗ 1 : Tp((H
can)D)⊗Zp OXord → ωE .

This defines a Z×p reduction of the principal Gm-torsor ωE over Xord (in the pro-
étale topology).

We can form π : IG = Isom(Zp, Tp((Hcan)D))→ Xord, the Igusa tower. This is
a p-adic formal scheme, and a profinite étale cover of Xord.

Let Λ = Zp[[Z×p ]] be the Iwasawa algebra, and let κun : Z×p → Λ× be the
universal character. For any k ∈ Z, we have an algebraic character Z×p → Z×p , given
by x 7→ xk and we denote by k : Λ→ Zp the corresponding algebra morphism. We
let ωκ

un

= (OIG⊗̂Λ)Z
×
p where the invariants are taken for the diagonal action.

Lemma 4.8. The sheaf ωκ
un

is an invertible sheaf of OXord⊗̂Λ-modules and for
any k ∈ Z, there is a canonical isomorphism of invertible sheaves over Xord:

ωk → ωκ
un

⊗Λ,k Zp.

4.2.2. Cohomology of the ordinary locus. We may now consider the following Λ-
modules:

H0(Xord, ωκ
un

)

and
H1
c(X

ord, ωκ
un

).

Let us give the definition of the second module. Let mΛ be the kernel of the reduc-
tion map Λ→ Fp[F×p ]. We first define H1

c(X
ord, ωκ

un

/(mΛ)n) = H1
c(X

ord
n , ωκ

un

/(mΛ)n)

as follows: we can take any extension of ωκ
un

/(mΛ)n to a coherent sheaf F of
OXn

⊗ Λ/(mΛ)n-modules (this means that if j : Xord
n → Xn is the inclusion,
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then j?F = ωκ
un

/(mΛ)n) and we let H1
c(X

ord
n , ωκ

un

/(mΛ)n) = liml H
1(Xn,I lF )

for I any sheaf of ideals on Xn whose vanishing locus is the complement of
Xord
n . We remark that this is a profinite Λ/(mΛ)n-module. The profinite module

H1
c(X

ord
n , ωκ

un

/(mΛ)n) is well-defined (it does not depend on the choice of I or F )
following [Har72, §2]. We then define H1

c(X
ord, ωκ

un

) = limn H1
c(X

ord, ωκ
un

/(mΛ)n).
We also define, for k ∈ Z, H1

c(X
ord
n , ωk) = liml H

1(Xn,I lωk), H1
c(X

ord, ωk) =
limn H1

c(X
ord
n , ωk). We remark that for the same reason as above H1

c(X
ord
n , ωk)

can also be computed as liml H
1(Xn,I lF ) for any coherent sheaf F on Xn ex-

tending ωk on Xord
n . We also note that there are natural “corestriction” maps

H1
c(X

ord
n , ωk)→ H1(Xord

n , ωk) and H1
c(X

ord, ωk)→ H1(X,ωk).

4.2.3. Up and Frobenius. There is a lift of Frobenius F : Xord → Xord which is given
by E 7→ E/Hcan

1 , and the Γ1(N) level structure on E/Hcan
1 induced by the isogeny

E → E/Hcan
1 . This map extends to the Igusa tower as a map: F : IG→ IG, which

is given by (E,ψ : Zp ' Tp((H
can)D)) 7→ (E/Hcan

1 , ψ′ : Zp ' Tp((H
can/Hcan

1 )D))

where ψ′ is defined by Zp
pψ→ pTp((H

can)D)←̃Tp((Hcan/Hcan
1 )D).

We also consider a variant F ′ which is defined in the same way as F except that
we give E/Hcan

1 the Γ1(N) level structure via the dual isogeny E/Hcan
1 → E, or in

other words F ′ = 〈p〉−1 ◦ F . The inverse of F ′ viewed as a correspondence is a lift
over the ordinary locus of the Verschiebung correspondence on the special fiber.

We consider two maps, the natural pull-back map on functions: F ?OIG → OIG

and the trace map trF ′ : F ′?OIG → OIG.

Lemma 4.9. We have trF ′(F
′
?OIG) ⊂ pOIG.

Proof. We have trF ′(F
′
?OXord) ⊂ pOXord . Since F ′ × π : IG→̃IG ×π,Xord,F ′ X

ord,
we deduce that trF ′(F

′
?OIG) ⊂ pOIG. �

Corollary 4.10. There are two maps F : F ?ωκ
un → ωκ

un

and Up : F ′?ω
κun →

ωκ
un

.

Proof. The maps F ?OIG → OIG and 1
p trF ′ : F ′?OIG → OIG are Z×p -equivariant.

We can tensor with Λ and take the invariants. �

4.2.4. Up, Frobenius, and Tp. We now describe the specializations of these maps at
classical weight k ∈ Z and compare them with the cohomological correspondence
Tp. Over Xord we have the canonical multiplicative isogeny πcan : E → E/Hcan

1 as
well as its dual étale isogeny π∨can : E/Hcan

1 → E. We consider the induced maps
on differentials π?can : ωE/Hcan

1
→ ωE and (π∨can)? : ωE → ωE/Hcan

1
. The latter is

an isomorphism as π∨can is étale. Then as (π∨can)?π?can = pIdωE/Hcan
1

, we can form
p−1π?can = ((π∨can)?)−1 : ωE/Hcan

1
→ ωE . We can also identify ωE/Hcan

1
with F ?ωE

or (F ′)?ωE .
For k ∈ Z, specializing the maps constructed in corollary 4.10 gives maps maps

F : F ?ωk → ωk and Up : F ′?ω
k → ωk.

Lemma 4.11. F = p−k(π?can)k : F ?ωk → ωk.
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Proof. The étale isogeny π∨can induces an isomorphism Hcan/Hcan
1 → Hcan and it

follows directly from the definition of the Hodge-Tate map that there is a commu-
tative digram

Tp((H
can)D) //

��

Tp((H
can/Hcan

1 )D)

��
ωE

(π∨can)? // ωE/Hcan
1

from which it follows easily that F ?ωk → ωk is given by ((π∨can)?)−k = p−k(π?can)k.
�

We can construct a map:

F ′?ω
k ((π∨can)?)k→ F ′?(F

′)?ωk
1
p trF ′→ ωk.

Lemma 4.12. The above map coincides with the map Up : F ′?ω
k → ωk.

Proof. Similar to lemma 4.11 and left to the reader. �

In section 3.1 we constructed a cohomological correspondence Tp over X0(p):

Tp : p?2ω
k → p!

1ω
k.

We can consider the completion X0(p) and its ordinary part X0(p)ord which is the
disjoint union of two types of irreducible components:

X0(p)ord = X0(p)ord,F
∐

X0(p)ord,V ,

where on the first components the universal isogeny is not étale, and where it is
étale on the other components.

On X0(p)ord,F , the map p1 is an isomorphism and the map p2 identifies with
the Frobenius map F . On X0(p)ord,V , the map p2 is an isomorphism and the
map p1 identifies with F ′. We therefore can think of Up and F as cohomological
correspondences p?2ωk → p!

1ω
k supported respectively on X0(p)ord,V and X0(p)ord,F .

One can also restrict Tp to a cohomological correspondence over X0(p)ord and
project it on the components X0(p)ord,F and X0(p)ord,V . We denote by TFp and TVp
the two projections of the correspondence Tp.

Lemma 4.13. (1) We have TFp = psup{0,k−1}F .
(2) We have TVp = psup{0,1−k}Up.
(3) If k ≥ 1, we have Tp = Up + pk−1F ,
(4) If k ≤ 1, we have Tp = F + p1−kUp.

Proof. Parts (3) and (4) follow immediately from parts (1) and (2) (compare also
with remark 3.4), while parts (1) and (2) are simply a matter of bookkeeping using
lemmas 4.11 and 4.12 and the definition of Tp.

For the benefit of the reader we spell out the details for (1). According to the
definition of Tp and in particular its normalization (recall the proof of proposition
3.2), p− sup{0,k−1}TFp exists and is given on X0(p)ord,F by the composition of p−kπk :

p?2ω
k → p?1ω

k and the trace map for p?1ωk → p!
1ω

k. But in fact p1 is an isomorphism
on X0(p)ord,F , and making this identification p2 becomes F , while the universal
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isogeny over X0(p)ord,F becomes πcan. Thus we can view p− sup{0,k−1}TFp as a map
F ?ωk → ωk, which is F by lemma 4.11 �

We end this discussion with duality.

Lemma 4.14. We have D(F ) = 〈p〉−1Up.

Proof. Compare with proposition 3.6. �

4.2.5. Higher Hida theory.

Theorem 4.15. (1) There is a locally finite action of F on H1
c(X

ord, ωκ
un

)
and e(F )H1

c(X
ord, ωκ

un

) is a finite projective Λ-module. Moreover,

e(F )H1
c(X

ord, ωκ
un

)⊗Λ,k Zp = e(Tp)H
1(X,ωk)

if k ≤ −1.
(2) Up is locally finite on H0(Xord, ωκ

un

) and e(Up)H0(Xord, ωκ
un

) is a finite
projective Λ-module. Moreover,

e(Up)H
0(Xord, ωκ

un

)⊗Λ,k Zp = e(Tp)H
0(X,ωk)

if k ≥ 3.

Proof. We will first construct a continuous action on of F on H1
c(X

ord
n , ωκ

un

/(mΛ)n),
compatible for all n.

We let I ⊆ OXn
be a locally principal sheaf of ideals so that the complement of

the corresponding closed subscheme is Xord
n (for instance the sheaf of ideals defined

by a lift of a power of the Hasse invariant). We take a coherent sheaf F over Xn

extending ωκ
un

/(mΛ)n. We may assume that F is I -torsion free by replacing F
with its quotient by the subsheaf of I -power torsion. Then the multiplication map
I l ⊗OXn

F → I lF is an isomorphism for all l ≥ 0, and we use this to make
sense of I lF for all l ∈ Z. Then if j : Xord

n → Xn denotes the inclusion, we have
j?ω

κun

/(mΛ)n = coliml I −lF .
We writeX0(p)n → SpecZ/pnZ for the reduction mod pn ofX0(p), andX0(p)ordn

for its ordinary locus. Then p?1I and p?2I can be identified with p−1
1 (I )OX0(p)n

and p−1
2 (I )OX0(p)n , and so we view them as locally principal sheaves of ideals

in OX0(p)n . They define the same closed subset of X0(p)n (the complement of
X0(p)ordn ) and so in particular we can pick some m with p?2Im ⊆ p?1I .

We have X0(p)ordn = X0(p)ord,Fn

∐
X0(p)ord,Vn , where X0(p)ord,Fn is the compo-

nent where the universal isogeny has connected kernel, and X0(p)ord,Vn the com-
ponent where the universal isogeny has étale kernel. The graph of the map F :
Xord
n → Xord

n is X0(p)ord,Fn . We can therefore think of F : F ?ωκ
un → ωκ

un

as a
cohomological correspondence on X0(p)ordn :

p?2ω
κun

/(mΛ)n → p!
1ω

κun

/(mΛ)n

which is given by F on the component X0(p)ord,Fn and by 0 on the component
X0(p)ord,Vn . Pushing this forward from Xord

n to Xn we obtain a map

colim
l

p?2(I −lF )→ colim
l

p!
1(I −lF ).
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It follows that there exists some c for which there is a map p?2F → p!
1(I −cF ).

From this and the inclusion p?2Im → p?1I we deduce a map

p?2(I lmF )→ p!
1(I −c+lF )

for all l ≥ 0. Taking cohomology we obtain a map F : H1(Xn,I lmF ) →
H1(Xn,I −c+lF ). Passing to the limit over all l we obtain a continuous endo-
morphism F of H1

c(X
ord
n , ωκ

un

/(mΛ)n).
We now need to prove that F is locally finite. We first deal with n = 1. In that

case, H1
c(X

ord
1 , ωκ

un

/mΛ) =
⊕0

k=−p+2 H1
c(X

ord
1 , ωk) (in this last formula, we can

let k go through any set of representatives of Z/(p − 1)Z in Z) and this isomor-
phism is equivariant for the action of F on the left, and Tp on the right by lemma
4.13. It follows from corollary 4.5 that F is locally finite for n = 1, and also that
e(F )H1

c(X
ord
1 , ωκ

un

/mΛ) is a finite Fp-vector space. We deal with the general case
by induction, using the short exact sequences in cohomology (Xord is affine) and
proposition 2.11:

0→ H1
c(X

ord
n+1, ω

κun

⊗(mnΛ/m
n+1
Λ ))→ H1

c(X
ord
n+1, ω

κun

/mn+1
Λ )→ H1

c(X
ord
1 , ωκ

un

/mnΛ)→ 0

It follows that F is locally finite and e(F )H1
c(X

ord, ωκ
un

) is a finite projective
Λ-module, as it is a complete flat Λ-module whose reduction mod m is finite.

Finally, for all k ∈ Z, we have an isomorphism e(F )H1
c(X

ord, ωκ
un

) ⊗Λ,k Zp =
e(F )H1

c(X
ord, ωk) and we can consider the composition

e(F )H1
c(X

ord, ωk)→ H1
c(X

ord, ωk)→ H1(X,ωk)→ e(Tp)H
1(X,ωk).

where the maps are inclusion, corestriction, and projection. When k ≤ −1 this is a
map of finite free Zp-modules, which is an isomorphism modulo p by corollary 4.5.
Therefore this map is an isomorphism.

The proof of the second point of the theorem follows along similar lines. �

4.3. Serre duality. Recall that we have a residue map res : H1(X,Ω1
X/Zp

)→ Zp.
Therefore, there is a natural map: H1

c(X
ord, ω2(−D)⊗̂Λ)→ Λ which is obtained as

the composite

H1
c(X

ord, ω2(−D)⊗̂Λ)→ H1(X,ω2(−D)⊗̂Λ)→ H1(X,ω2(−D))⊗ Λ

KS⊗1−→ H1(X,Ω1
X/Zp

)⊗ Λ
res⊗1−→ Λ

where the first map is the corestriction (see section 4.2.2).
Let us denote by ω2−κun

(−D) = ω2(−D) ⊗ Hom(ωκ
un

,Λ⊗̂OXord). This is an
invertible sheaf of Λ⊗̂OXord-modules over Xord.

Remark 4.16. The following character Z×p → Λ×, t 7→ t2(κun(t))−1 induces an auto-
morphism d : Λ→ Λ. We have an isomorphism of OXord⊗̂Λ-modules: ω2−κun

(−D) =
ωκ

un

(−D)⊗Λ,d Λ.

We can therefore define a pairing:

〈, 〉 : H0(Xord, ωκ
un

)×H1
c(X

ord, ω2−κun

(−D))→ H1
c(X

ord, ω2(−D)⊗Zp
Λ)→ Λ

Proposition 4.17. For any (f, g) ∈ H0(Xord, ωκ
un

) × H1
c(X

ord, ω2−κun

(−D)), we
have 〈〈p〉−1Upf, g〉 = 〈f, Fg〉.
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Proof. We have a commutative diagram:

H0(Xord, ωκ
un

)×H1
c(X

ord, ω2−κun

(−D)) //

��

Λ

��∏
k∈Z H0(Xord, ωk)×H1

c(X
ord, ω2−k(−D)) // ∏

k∈Z Zp

where the vertical maps are injective (the injectivity of the first vertical map fol-
lows from the fact that for any complete flat Λ-module M , M →

∏
kM ⊗Λ,k

Zp is injective. Indeed, if pk = ker(k : Λ → Zp), then tensoring the injec-
tive map Λ/(p0 · · · pk) →

∏k
i=0 Λ/pi with M , we see that the kernel is contained

in
⋂
k p0 · · · pkM ⊆

⋂
n(mΛ)nM = 0 by completeness.) It suffices therefore to

prove the identity for the pairing 〈, 〉k : H0(Xord, ωk) × H1
c(X

ord, ω2−k(−D)) →
H1
c(X

ord, ω2(−D))→ Zp
We work modulo pn. As in the proof of theorem 4.15 we let I be a locally

principal sheaf of ideals defining a closed subscheme whose complement is Xord
n ,

and we have a cohomological correspondence over X0(p)n

F : p?2I
mlω2−k(−D)→ p!

1I
−c+lω2−k(−D)

so that passing to cohomology and taking the limit over l gives the action of F on
H1
c(X

ord
n , ω2−k(−D)).

We can consider the dual D(F ) : p?1I
−l+cωk → p!

2I
−mlωk. Passing to coho-

mology and taking the colimit over l gives the action of 〈p〉−1Up on H0(Xord
n , ωk)

by lemma 4.14. �

This pairing hence restricts to a pairing:

〈, 〉 : e(Up)H
0(Xord, ωκ

un

)× e(F )H1
c(X

ord, ω2−κun

(−D))→ Λ.

Theorem 4.18. (1) The pairing 〈, 〉 is a perfect pairing,
(2) For any (f, g) ∈ e(Up)H0(Xord, ωκ

un

)× e(F )H1
c(X

ord, ω2−κun

(−D)),

〈〈p〉−1Upf, g〉 = 〈f, Fg〉,
(3) The pairing 〈, 〉 is compatible with the classical pairing in the sense that for

any k ∈ Z, we have a commutative diagram, where the bottom pairing is
the one deduced from Serre duality on X:

e(Up)H
0(Xord, ωk) × e(F )H1

c(X
ord, ω2−k(−D))

��

//

j

��

Zp

e(Tp)H
0(X,ωk)

i

OO

× e(Tp)H
1(X,ω2−k(−D))

44

Proof. The second point follows from proposition 4.17. The first point will follow
from the third point, since the map i and j are isomorphisms for integers k ≥ 3
and the bottom pairing is perfect. Let us prove the last point. First, we consider
the diagram without applying projectors:

H0(Xord, ωk) × H1
c(X

ord, ω2−k(−D))

��

//

j

��

Zp

H0(X,ωk)

i

OO

× H1(X,ω2−k(−D))

55
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which is commutative by construction. For any f ∈ H0(X,ωk) and g ∈ H1
c(X

ord, ω2−k(−D)),
we have 〈i(f), g〉 = 〈f, j(g)〉. If we now assume that f ∈ e(Tp)H

0(X,ωk) and
g ∈ e(F )H1

c(X
ord, ω2−k(−D)), we have that

〈e(Up)i(f), g〉 = 〈i(f), e(F )g〉 = 〈i(f), g〉

and
〈f, e(Tp)j(g)〉 = 〈e(Tp)f, j(g)〉 = 〈f, j(g)〉

and the conclusion follows. �

5. Higher Coleman theory

5.1. Cohomology with support in a closed subspace. We recall the notion
of cohomology of an abelian sheaf on a topological space, with support in a closed
subspace. A reference for this material is [Gro05, I]. Let X be a topological space.
Let i : Z ↪→ X be a closed subspace. We denote by CZ and CX the categories of
sheaves of abelian groups on Z and X respectively.

We have the pushforward functor i? : CZ → CX . The functor i? has a right
adjoint i! : CX → CZ . For an abelian sheaf F over X, we let ΓZ(X,F ) =
H0(X, i?i

!F ). By definition this is the subgroup of H0(X,F ) of sections whose
support is included in Z. We let RΓZ(X,−) be the derived functor of ΓZ(X,−).

Let U = X \Z and let F be an object of CX . We have an exact triangle [Gro05,
I, Cor. 2.9]:

RΓZ(X,F )→ RΓ(X,F )→ RΓ(U,F )
+1→

Some properties of the cohomology with support are:
(1) (Change of support) [Gro05, I, Prop. 1.8] If Z ⊂ Z ′, there is a map

RΓZ(X,F )→ RΓZ′(X,F ).
(2) (Pull-back) If we have a cartesian diagram:

Z //

��

X

f

��
Z ′ // X ′

and a sheaf F on X ′, there is a map RΓZ′(X
′,F )→ RΓZ(X, f?F ),

(3) (Change of ambient space) [Gro05, I, Prop. 2.2] If we have Z ⊂ U ⊂ X for
some open U of X, then the pull back map RΓZ(X,F )→ RΓZ(U,F ) is a
quasi-isomorphism.

We now discuss the construction of the trace map in the context of adic spaces
and finite flat morphisms.

Lemma 5.1. Consider a commutative diagram of topological spaces:

Z //

��

X

f

��
Z ′ // X ′
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with X and X ′ adic spaces, f a finite flat morphism of adic spaces, Z ′ and Z are
closed subspaces of X ′ and X respectively. Let F be a sheaf of OX′-modules. Then
there is a trace map RΓZ(X, f?F )→ RΓZ′(X

′,F ).

Proof. We first recall that the category of sheaves of OT -modules on a ringed space
(T,OT ) has enough injectives ([Sta13, Tag 01DH]). It follows that it is enough
to construct a functorial map ΓZ(X, f?F ) → ΓZ′(X

′,F ) for sheaves F of OX′ -
modules. We have a map ΓZ(X, f?F ) → Γf−1(Z′)(X, f

?F ). Therefore, it suffices
to consider the case where Z = f−1(Z ′). We have a trace map Tr : f?f

?F → F .
Let us complete the above diagram into:

Z //

��

X

f

��

U

g

��

oo

Z ′ // X ′ U ′
j′oo

where U ′ = X ′ \ Z ′ and U = X \ Z. We have a commutative diagram:

f?f
?F //

Tr

��

j′?g?g
?(j′)?F

��
F // j′?(j

′)?F

Taking global sections and the induced map on the kernel of the two horizontal
morphisms, we deduce that there is a map ΓZ(X, f?F )→ ΓZ′(X

′,F ). �

5.2. The modular curve X0(p). We let X0(p) be the compactified modular curve
of level Γ0(p) and tame level Γ1(N) for some prime to p integer N ≥ 3, viewed as
an adic space over Spa(Qp,Zp). We let H1 ⊂ E[p] be the universal subgroup of
order p.

5.2.1. Parametrization by the degree. Let X0(p)rk1 be the subset of rank one points
of X0(p). Fargues defines a map deg : X0(p)rk1 → [0, 1], which sends x ∈ X0(p)rk1

to degH1 ∈ [0, 1]. We briefly recall the definition (see [Far10, §4, Def. 3] for more
details). The groupH1 extends to a finite flat group scheme H̃1 over Spec k(x)+, by
taking the schematic closure in E[p]. There is an isomorphism ωH̃1

= k(x)+/fk(x)+

and degH1 = vx(f) for vx the valuation attached to x, normalized by v(p) = 1. For
any rational interval [a, b] ⊂ [0, 1], there is a unique quasi-compact open X0(p)[a,b]

of X such that deg−1[a, b] = X0(p)rk1
[a,b]. We let X0(p)[0,a[∪]b,1] = X0(p) \X0(p)[a,b].

Remark 5.2. We remark that in this parametrization, the two extremal points 0
(resp. 1) correspond to ordinary semi-abelian schemes equipped with an étale (resp.
multiplicative) subgroup H1.

5.2.2. The canonical subgroup. We let X be the compactified modular curve of level
prime to p. We have an Hasse invariant Ha and we can define the Hodge height:

Hdg : Xrk1 → [0, 1]

obtained by sending x to inf{vx(H̃a), 1} for any local lift H̃a of the Hasse invariant.
For any v ∈ [0, 1], we let Xv = {x ∈ X,Hdg(x) ≤ v} (more correctly, Xv is the
quasi-compact open whose rank one points are those described as above).

We recall the following theorems:
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Theorem 5.3 ([Kat73, Thm 3.1]). If v < p
p+1 , then over Xv we have a canonical

subgroup Hcan
1 ⊂ E[p] which is locally isomorphic to Z/pZ in the étale topology.

Theorem 5.4. (1) For any rank one point of X0(p), we have the identity∑
H⊂E[p] degH = 1. Moreover, either all the degrees are equal or there ex-

ists a canonical subgroup Hcan
1 and for all H 6= Hcan

1 , degH =
1−degHcan

1

p .
(2) If a < 1

p+1 , X0(p)[0,a] carries a canonical subgroup Hcan
1 6= H1 and deg(H1) =

Hdg
p .

(3) If a > 1
p+1 , X0(p)[a,1] carries a canonical subgroup Hcan

1 = H1, and
deg(H1) = 1−Hdg.

Proof. See [Pil11, A.2] and [Far11, Thm. 6]. �

5.3. The correspondence Up. We let C be the correspondence over X0(p) un-
derlying Up. It parametrizes isogenies of degree p: (E → E′, H1

'→ H ′1). We denote
by H = Ker(E → E′). We have two projections p1((E,H1, E

′, H ′1)) = (E,H1),
p2((E,H1, E

′, H ′1)) = (E′, H ′1).
There is actually an isomorphism X0(p2) → C (where X0(p2) parametrizes

(E,H2 ⊂ E[p2]), with H2 locally isomorphic to Z/p2Z), mapping (E,H2) to
(E/H1, H2/H1, E,H1) where H1 = H2[p], and the isogeny E/H1 → E is dual to
E → E/H1. The inverse of this isomorphism sends (E,H1, E

′, H ′1) to (E′, p−1H1/H).
Let us denote by C[a,b] = p−1

1 (X0(p)[a,b]). By theorem 5.4, if a > 1
p+1 , then we

have a canonical subgroup of order p over X0(p)[a,1], Hcan
1 = H1 and if a < 1

p+1 ,
we also have a canonical subgroup of order p over X0(p)[0,a] and H1 6= Hcan

1 . The
map p1 : C[0,a] → X0(p)[0,a] has a section given by Hcan

1 . Let Ccan[0,a] be the image
of this section and let Cet[0,a] be its complement, so that C[0,a] = Ccan[0,a]

∐
Cet[0,a].

Proposition 5.5. (1) If a ≥ 1
p+1 , p2(C{a}) = X0(p){ p−1

p + a
p }
.

(2) If a < 1
p+1 , we have that p2(Ccan{a} ) = X0(p){pa}, and p2(Cet{a}) = X0(p){1−a}.

(3) If a ∈]0, 1[, we have p2(C[a,1]) ⊆ X[a,1].

Proof. We do the case by case argument to check the first two points, using Theorem
5.4, (1):

(1) If a > 1
p+1 , we have H1 = Hcan

1 . If H ⊂ E[p] satisfies H 6= Hcan
1 , then

degH = 1−degH1

p and degE[p]/H = p−1
p + degH1

p . If a = 1
p+1 there is no

canonical subgroup, so degH = 1
p+1 and the computation is the same.

(2) On Ccan[0,a], the isogeny E → E/H is the canonical isogeny and degE[p]/H =

1− degH where degH = 1− p degH1. On Cet[0,a] we have H 6= Hcan
1 , and

degH = degH1. Therefore degE[p]/H = 1− degH1.
We deduce that if a ∈]0, 1[, there exists b > a such that p2(C[a,1]) ⊆ X[b,1], and the
last point follows. �

We now give a similar analysis for the transpose of Up. It is useful to use the
isomorphism C ' X0(p2), for which we have p2(E,H2) = (E,H1) and p1(E,H2) =
(E/H1, H2/H1). We let C [a,b] = p−1

2 (X0(p)[a,b]).
If degH1 <

p
p+1 , we deduce that degE[p]/H1 >

1
p+1 is the canonical subgroup.

If degH1 >
p
p+1 , we deduce that degE[p]/H1 <

1
p+1 is not the canonical subgroup,
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but that E/H1 admits a canonical subgroup. We denote by C [a,1],can the component
where H2/H1 is the canonical subgroup and by C [a,1],et its complement.

Proposition 5.6. (1) If a ≤ p
p+1 , p1(C{a}) = X0(p){ a

p }.
(2) If a > p

p+1 , we have that p1(C{a},can) = X0(p){1−p(1−a)}, and p1(C{a},et)) =

X0(p){1−a}.
(3) For any 0 < a < 1, we have that p1(C [0,a[) ⊆ (X0(p)[0,a[)

◦, the interior of
X0(p)[0,a[.

Proof. We do the case by case argument for the first two points, using Theorem
5.4, (1):

(1) We have degE[p]/H1 = 1 − degH1. If a < p
p+1 , this is the canonical

subgroup. We deduce that degH2/H1 = degH1

p . If a = p
p+1 , there is no

canonical subgroup and the same formula holds.
(2) We have degE[p]/H1 = 1− degH1, is not the canonical subgroup. In case

(E,H2) ∈ C [a,1],can, we deduce that degH2/H1 = 1 − p(1 − degH1). If
(E,H2) ∈ C [a,1],et, we deduce that degH1/H2 = 1− degH1.

We deduce that if 0 < a < 1, there exists b < a such that p1(C [0,a[) ⊆ X0(p)[0,b[. �

5.4. The Up-operator. We work over X0(p). Let a ∈]0, 1[∩Q. The cohomologies
of interest are:

(1) RΓ(X0(p), ωk),
(2) RΓ(X0(p)[a,1], ω

k),
(3) RΓX0(p)[0,a[

(X0(p), ωk).
The category of perfect Banach complexes is the homotopy category of the cat-

egory of bounded complexes of Banach spaces over Qp. A quasi-isomorphism of
perfect Banach complexes admits an inverse up to homotopy ([Sch99, Prop. 1.3.22],
a quasi-isomorphism is always strict by the open mapping theorem).

Lemma 5.7. The above cohomologies can be canonically represented by objects of
the category of perfect Banach complexes by using Čech covers.

Proof. By [Hub94, Lem. 2.6], any finitely generated module over a complete Tate
algebra carries a canonical topology and is complete. We deduce that the sections
of ωk over an affinoid open subset of X0(p) form naturally a Qp-Banach space.
In case (1) and (2) we can take a Čech complex for a finite affinoid covering to
represent the cohomology. Since any two Čech cover can be refined by a third
one, and since quasi-isomorphism admit inverses up to homotopy, we deduce the
independence (up to homotopy) of the Čech complex. In case (3), the cohomology
fits in an exact triangle:

RΓX[0,a[
(X0(p), ωk)→ RΓ(X0(p), ωk)→ RΓ(X0(p)[a,1], ω

k)
+1→

and is quasi-isomorphic to the cone of a continuous map between perfect Banach
complexes, hence is a also a perfect Banach complex.

�

5.4.1. Constructing the action. A morphism in the category of perfect Banach com-
plexes is called compact if it can be represented by a morphism between complexes
which is compact in each degree.
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We define a naive cohomological correspondence Unaivep has follows. The two
ingredients are the differential map p?2ωE → p?1ωE and the trace map (p1)?OC →
OX0(p). Putting all this together, we obtain

Unaivep : (p1)?p
?
2ω

k → ωk.

Proposition 5.8. We have an action of the Unaivep -operator on RΓ(X0(p), ωk),
RΓ(X0(p)[a,1], ω

k) and RΓX0(p)[0,a[
(X0(p), ωk) for any 0 < a < 1. The Unaivep -

operator is compact. Moreover, the Unaivep -operator acts equivariantly on the trian-
gle:

RΓX0(p)[0,a[
(X0(p), ωk)→ RΓ(X0(p), ωk)→ RΓ(X0(p)[a,1], ω

k)
+1→

Proof. The operator Unaivep is compact on RΓ(X0(p), ωk) because this later complex
is a perfect complex of finite dimensional Qp-vector spaces. By proposition 5.5:

p2(C[a,1]) ⊂ X0(p)[a,1].

It follows that we have a compact morphism RΓ(X0(p)[a,1], ω
k)→ RΓ(p2(C[a,1]), ω

k).
Therefore, we have a map:

RΓ(X0(p)[a,1], ω
k)→ RΓ(p2(C[a,1]), ω

k)
p?2→ RΓ(C[a,1], p

?
2ω

k)

→ RΓ(C[a,1], p
?
1ω

k)
trace→ RΓ(X0(p)[a,1], ω

k).

We deduce that Unaivep acts and is compact on RΓ(X0(p)[a,1], ω
k) because the

first map RΓ(X0(p)[a,1], ω
k)→ RΓ(p2(C[a,1]), ω

k) is. Similarly, by proposition 5.6:

p1(C [0,a[) ⊂ (X0(p)[0,a[)
◦.

The operator Unaivep acts like the composite of the following maps:

RΓX[0,a[
(X0(p), ωk)

p?2→ RΓC[0,a[(C, p?2ω
k)→ RΓC[0,a[(C, p?1ω

k)

→ RΓp−1
1 p1(C[0,a[)(C, p

?
1ω

k)
trace→ RΓp1(C[0,a[)(X0(p), ωk)→ RΓX0(p)[0,a[

(X0(p), ωk).

We claim that the map RΓp1(C[0,a[)(X0(p), ωk)→ RΓX0(p)[0,a[
(X0(p), ωk) is com-

pact. This will follow if we prove that the map RΓX0(p)[0,b[(X0(p), ωk)→ RΓX0(p)[0,a[
(X0(p), ωk)

for 0 ≤ b < a ≤ 1 is compact. To see this, we observe that there is a map of exact
triangles:

RΓX0(p)[0,b[(X0(p), ωk) //

��

RΓ(X0(p), ωk) //

��

RΓ(X0(p)[b,1], ω
k)

��

// +1

RΓX0(p)[0,a[
(X0(p), ωk) // RΓ(X0(p), ωk) // RΓ(X0(p)[a,1], ω

k) // +1

and since the two vertical maps on the right are compact, the first vertical map is
also compact.

�

For any h ∈ Q we can consider a direct factor RΓ(X0(p), ωk)≤h, RΓ(X0(p)[a,1], ω
k)≤h

and respectively RΓX0(p)[0,a[
(X0(p), ωk)≤h of RΓ(X0(p), ωk), RΓ(X0(p)[a,1], ω

k) and
respectively RΓX0(p)[0,a[

(X0(p), ωk) called the slope less than h part. It is obtained
by representing Unaivep by a compact map of complexes and by applying the slope
less than h projector in each degree ([Ser62]). The slope ≤ h complexes are perfect
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complexes of Qp-vector spaces (i.e. they are bounded complexes with finite dimen-
sional cohomology). The finite slope part (denote by a supscript fs) is the inverse
limit of the ≤ h-part for h→∞.

We also note the following corollary of the proof:

Corollary 5.9. For any 0 < a < b < 1, the natural maps

RΓ(X0(p)[a,1], ω
k)→ RΓ(X0(p)[b,1], ω

k)

and
RΓX0(p)[0,a[

(X0(p), ωk)→ RΓX0(p)[0,b[(X0(p), ωk)

induce quasi-isomorphism on the finite slope part for Unaivep .

5.4.2. Up and Frobenius. It is worth spelling out the action of Up on RΓX0(p)[0,a[
(X0(p), ωk).

If a < 1
p+1 , we have a correspondence

Ccan[0,a]

pcan
2

yy

pcan
1

$$
X0(p)[0,pa] X0(p)[0,a]

where pcan1 is actually an isomorphism. We can think of this correspondence
as the graph of the Frobenius map X0(p)[0,pa] → X0(p)[0,a], sending (E,H1) to
(E/Hcan

1 , E[p]/Hcan
1 ). We claim that there is an associated operator:

Unaive,canp : RΓX0(p)[0,a[
(X0(p), ωk)→ RΓX0(p)[0,a[

(X0(p), ωk).

We first observe that RΓX0(p)[0,a[
(X0(p), ωk) = RΓX0(p)[0,a[

(X0(p)[0,a], ω
k).

We now construct Unaive,canp as the composite:

RΓX0(p)[0,a[
(X0(p), ωk)→ RΓX0(p)[0,pa[

(X0(p), ωk)
(pcan

2 )?→ RΓCcan
[0,a[

(Ccan[0,a], (p
can
2 )?ωk)

→ RΓCcan
[0,a[

(Ccan[0,a], (p
can
1 )?ωk)→̃RΓX0(p)[0,a[

(X0(p), ωk).

Proposition 5.10. For a < 1
p+1 , we have U

naive,can
p = Unaivep on RΓX0(p)[0,a[

(X0(p), ωk).

Proof. This amounts to comparing the construction of Unaivep (given in the proof of
proposition 5.8) and of Unaive,canp . We see that p1(C [0,a[) ⊂ X0(p)[0,a] and therefore,

p−1
1 p1(C [0,a[) = (p−1

1 p1(C [0,a[) ∩ Ccan[0,a])
∐

(p−1
1 p1(C [0,a[) ∩ Cet[0,a]).

Moreover, p2((p−1
1 p1(C [0,a[)∩Cet[0,a])) ⊂ X0(p)[1−a,a] and therefore, C [0,a[ ↪→ (p−1

1 p1(C [0,a[)∩
Ccan[0,a]). We have

RΓp−1
1 p1(C[0,a[)(C, p

?
1ω

k) =

RΓ(p−1
1 p1(C[0,a[)∩Ccan

[0,a]
)(C, p

?
1ω

k)⊕ RΓ(p−1
1 p1(C[0,a[)∩Cet

[0,a]
)(C, p

?
1ω

k).

Therefore the map RΓC[0,a[(C, p?1ω
k)→ RΓp−1

1 p1(C[0,a[)(C, p
?
1ω

k) factors through
the direct factor RΓ(p−1

1 p1(C[0,a[)∩Ccan
[0,a]

)(C, p
?
1ω

k). �
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5.4.3. Slopes estimates and the control theorem. The following lemma is the key
technical input to proving Coleman’s classicality theorem.

Lemma 5.11. For any a ∈]0, 1[∩Q,
(1) the slopes of Unaivep on RΓ(X0(p)[a,1], ω

k) are ≥ 1.
(2) the slopes of Unaivep on RΓX0(p)[0,a[

(X0(p), ωk) are ≥ k.

Proof. We first observe that the finite slope part of the cohomology RΓ(X0(p)[a,1], ω
k)fs

is independent of a ∈]0, 1[ and is therefore supported in degree 0 by affineness for
a close to 1. It follows that we are left to prove that Unaivep has slopes at least
1 and this is a q-expansion computation. Namely, Unaivep (

∑
anq

n) = p
∑
anpq

n.
For the second cohomology, we again observe that the cohomology is indepen-
dent of a ∈]0, 1[. We may therefore suppose that a is small enough and use that
Unaivep = Unaive,canp (proposition 5.10). We define an invertible sheaf of O+

X0(p)-
modules, ω+

E ⊆ ωE . A section f ∈ ωE(U) belongs to ω+
E(U) if for any x ∈ U ,

fx defines a section of the conormal sheaf on the extension Ẽ → Spec k(x)+ of
the semi-abelian scheme E at x. Alternatively, we have a specialization morphism
sp : X0(p) → X where X is the formal scheme equal to the completion of the
prime-to-p level modular curve X viewed as a scheme over Spec Zp. Then

ω+
E = sp−1ωE ⊗sp−1OX

O+
X0(p)

where ωE is the modular sheaf over X. We let ωk,+ = (ω+
E)⊗k.

We first claim that for any s ∈ Q,

im(Hi
X0(p)[0,a[

(X0(p), ωk,+)→ Hi
X0(p)[0,a[

(X0(p), ωk)=s)

(where the supscript = s means the slope s part for the action of Unaivep ) defines
a lattice in Hi

X0(p)[0,a[
(X0(p), ωk)=s (an open and bounded submodule). We can

indeed represent the cohomology RΓX0(p)[0,a[
(X0(p), ωk) by the Čech complex C•

relative to some open covering U , and we can lift the Up-operator to a compact
operator Ũp on the complex. Note that C• is a complex of Banach modules.

The map from Čech cohomology with respect to U to cohomology

Ȟi
U,X0(p)[0,a[

(X0(p), ωk,+)→ Hi
X0(p)[0,a[

(X0(p), ωk,+)

has kernel and cokernel of bounded torsion by [Pil20, Lem. 3.2.2]. It suffices to
prove that

im(Ȟi
U,X0(p)[0,a[

(X0(p), ωk,+)→ Hi
X0(p)[0,a[

(X0(p), ωk)=s)

defines an open and bounded submodule in Hi
X0(p)[0,a[

(X0(p), ωk)=s. The Čech
cohomology Ȟi

U,X0(p)[0,a[
(X0(p), ωk,+) is obtained by taking the cohomology of an

open and bounded sub-complex C+,• ⊂ C•. The image of C+,• in C•,=s under the
continuous projection C• → C•,=s (the target is now a complex of finite dimensional
vector spaces) is again open and bounded and the claim follows.

Moreover, over Ccan[0,a[, we have a universal isogeny which gives an isomorphism,
p?2ω → p?1ω, for which pp?1ω+ ⊂ p?2ω+ ⊂ p1− a

p p?1ω
+. We deduce that Unaivep induces

a map
RΓX0(p)[0,a[

(X0(p), ωk,+)→ RΓX0(p)[0,a[
(X0(p), pk(1− a

p )ωk,+)
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if k ≥ 0, and

RΓX0(p)[0,a[
(X0(p), ωk,+)→ RΓX0(p)[0,a[

(X0(p), pkωk,+)

if k ≤ 0. We deduce that p−k(1− a
p )Unaivep if k ≥ 0 and p−kUnaivep if k ≤ 0 stabilize a

lattice in the cohomology, and therefore have only non-negative slope. The lemma
follows. �

Remark 5.12. The Lemma 3.2.2 in [Pil20] depends on the main result of [Bar78],
which in turn is a key technical ingredient in [Kas06].

We now define Up = p− inf{1,k}Unaivep and we get:

Theorem 5.13. (1) Up has slopes ≥ 0 on RΓ(X0(p), ωk),
(2) For any a ∈]0, 1[∩Q, the map RΓ(X0(p), ωk)<k−1 → RΓ(X0(p)[a,1], ω

k)<k−1

is a quasi-isomorphism,
(3) For any a ∈]0, 1[∩Q, the map RΓX[0,a[

(X0(p), ωk)<1−k → RΓ(X0(p), ωk)<1−k

is a quasi-isomorphism.

Proof. We consider the triangle

RΓX0(p)[0,a[
(X0(p), ωk)→ RΓ(X0(p), ωk)→ RΓ(X0(p)[a,1], ω

k)
+1→

on which Up acts equivariantly and apply the slope estimates of lemma 5.11. �

5.4.4. Comparison with spherical level. For a > 1
p+1 , the map p1 : X0(p)[a,1] →

X1−a is an isomorphism by theorem 5.4 and therefore the pull back map RΓ(X1−a, ω
k)→

RΓ(X0(p)[a,1], ω
k) is a quasi-isomorphism.

There is an analogous statement for the cohomology with support that we now
explain. We first introduce a cohomology with support at spherical level. For a < 1
we define X<a ⊂ X as the complement in X of the quasi-compact open whose rank
1 points are {x ∈ Xrk1 | Hdg(x) ≥ a} (see section 5.2.2). We may then form the
cohomology with support RΓX<a

(X,ωk).
Let a < 1

p+1 . We have a Frobenius map F : X0(p)[0,a] → X0(p)[0,pa] given by
(E,H1) 7→ (E/Hcan

1 , E[p]/Hcan
1 ). There is similarly a Frobenius map F : X a

p
→

Xa, given by E 7→ E/Hcan
1 .

The Frobenius map fits into the following diagram:

X0(p)[0,a]
F //

p1

��

X0(p)[0,pa]

p1

��
X a

p

88

F // Xa

where the diagonal map is given by E 7→ (E/Hcan
1 , E[p]/Hcan

1 ).
We can define an endomorphism F ? of RΓX<a

p
(X,ωk) as the composite

RΓX<a
p

(X,ωk)→ RΓX<a(X,ωk)→̃RΓX<a(Xa, ω
k)→

RΓX<a
p

(X a
p
, F ∗ωk)→ RΓX<a

p
(X a

p
, ωk)→̃RΓX<a

p
(X,ωκ)

where the first map is the change of support for the inclusion X a
p
⊂ Xa, which is

compact as in the proof of proposition 5.8, the third map is pullback by F , and
the fourth map is induced by the map F ?ωk → ωk which comes from the isogeny
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E → E/Hcan
1 . The same construction applied to X0(p)[0,a] yields the operator

Unaive,canp = Unaivep of section 5.4.2 as the correspondence Ccan[0,a] is the graph of F .

Proposition 5.14. The pull back map p?1 : RΓX<a
p

(X,ωk)→ RΓX0(p)[0,a[
(X0(p), ωk)

induces a quasi-isomorphism on the finite slope parts for F ? and Unaivep

Proof. This follows from the existence of a commutative diagram

RΓX<a
p

(X,ωk)
p?1 //

F?

��

RΓX0(p)[0,a[
(X0(p), ωk)

uu
Unaive

p

��
RΓX<a

p
(X,ωk)

p?1 // RΓX0(p)[0,a[
(X0(p), ωk)

which is deduced from the definitions and the commutative diagram above. �

5.5. p-adic variation. We now consider the problem of interpolation of these co-
homologies.

5.5.1. Reduction of the torsor ωE. We recall here a construction from [Pil13] and
[AIS14]. We let T = {w ∈ ωE , ω 6= 0} be the Gm-torsor associated to ωE . We
let G+

a = Spa(Qp〈T 〉,Zp〈T 〉) be the unit ball, with its additive analytic group
structure. We have subgroups Z×p (1 + prG+

a ) ↪→ Gm for any positive rational
number r.

Proposition 5.15. Let n ∈ Z≥1. Let v < 1
pn−1(p−1) . The Gm-torsor T ×X Xv →

Xv has a natural reduction to a Z×p (1 + pn−v
pn

p−1G+
a )-torsor denoted Tv.

Proof. We denote by ω+
E ⊂ ωE the locally free sheaf of integral relative differential

forms. For v < 1
pn−1(p−1) , there is a canonical subgroup of level n, Hcan

n over Xv.
The isogeny E → E/Hcan

n yields a map ω+
E/Hcan

n
→ ω+

E , with cokernel ω+
Hn

. The
surjective map r : ω+

E → ω+
Hcan

n
induces an isomorphism:

ω+
E/p

n−v pn−1
p−1 →̃ω+

Hcan
n

/pn−v
pn−1
p−1 .

There is a Hodge-Tate map HT : (Hcan
n )D → ω+

Hcan
n

(of sheaves on the étale site,
see [Mes72], p. 117), and its linearization HT ⊗ 1 : (Hcan

n )D ⊗ O+
Xv
→ ω+

Hcan
n

has
cokernel killed by p

v
p−1 . We have a diagram:

ω+
E

r

��
(Hcan

n )D
HT // ω+

Hn

We now introduce a modification of ω+
E : let ω]E = {w ∈ ω+

E , r(w) ∈ im(HT ⊗
1)} ⊂ ω+

E . This is a locally free sheaf of O+
Xv

-modules on the étale site. The
Hodge-Tate map induces an isomorphism:

HTv : (Hcan
n )D ⊗ O+

Xv
/pn−v

pn

p−1 → ω]E/p
n−v pn

p−1 .
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We let Tv be the torsor under the group Z×p (1 + pn−v
pn

p−1G+
a ) defined by

Tv = {ω ∈ ω]E , ∃P ∈ (Hcan
n )D, pn−1P 6= 0,HTv(P ) = ω mod pn−v

pn

p−1 }.

We have a natural map Tv ↪→ T , equivariant for the analytic group map: Z×p (1 +

pn−v
pn

p−1G+
a )→ Gm. �

5.5.2. Interpolation of the sheaf. We letW = Spa(Λ,Λ)×Spa(Qp,Zp) be the weight
space. We let κun : Z×p → O×W be the universal character.

We can write W as an increasing union of affinoids W = ∪0<r<1Wr where
r ∈ Q∩]0, 1[ and each Wr is a finite union of balls of radius r. Over each Wr,
there is t(r) ∈ Q>0 such that the universal character extends to a character κun :
Z×p (1 + pt(r)O+

W)→ O×W .
We now fix r and we choose v small enough and n large enough such that

t(r) ≤ n− v pn

p−1 and we define a locally free sheaf ωκ
un

over Xv ×Wr:

ωκ
un

= (OTv ⊗ OWr )Z
×
p (1+p

n−v
pn

p−1 O+
Xv×Wr

).

Since Tv → Xv is an étale torsor, the sheaf ωκ
un

is a locally free sheaf of OXv×Wr -
modules in the étale topology. It is actually a locally free sheaf of OXv×Wr -modules
in the Zariski topology by the main result of [BG98].

5.5.3. Interpolation of the cohomology. For a ∈]0, vp ], we have a map p1 : X0(p)[0,a] →
Xv and we can therefore pull back the sheaf ωκ

un

to an invertible sheaf over
X0(p)[0,a] ×Wr.

If a ∈ [1 − v, 1[, we have a map p1 : X0(p)[a,1] → Xv and we can pull back the
sheaf ωκ

un

to an invertible sheaf over X0(p)[a,1] ×Wr.
We consider the cohomologies:
(1) RΓX0(p)[0,a[

(X0(p), ωκ
un

)

(2) RΓ(X0(p)[a,1], ω
κun

).

Note that the first cohomology group is well defined because RΓX0(p)[0,a[
(X0(p), ωκ

un

) =

RΓX0(p)[0,a[
(X0(p)[0,a], ω

κun

).
These cohomologies belong to the category of perfect complexes of Banach spaces

over OWr
which is the homotopy category of the category of bounded complexes of

projective Banach modules over OWr
.

5.5.4. The Up-operator on RΓ(X0(p)[a,1], ω
κun

). We need to consider the Up-correspondence
on X0(p)[a,1] for a ≥ 1 − v > 1

p+1 , where by proposition 5.5, it induces to a corre-
spondence

C[a,1]

p1

$$

p2

xx
X0(p)[ p−1

p + a
p ,1] X0(p)[a,1]

Lemma 5.16. There is a natural isomorphism p?2ω
κun → p?1ω

κun

, and we can
define a cohomological correspondence Up : p1?p

?
2ω

κun → ωκ
un

which specializes in
weight k ≥ 1 to Up.
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Proof. Over C[a,1], the universal isogeny π : p?1E → p?2E induces an isomorphism
on canonical subgroups p?1Hcan

n ' p?2H
can
n , and therefore there is a canonical iso-

morphism:

p?2ω
]
E

//

��

p?1ω
]
E

��

p?2ω
]
E/p

n−v pn

p−1 // p?1ω
]
E/p

n−v pn

p−1

p?2(Hcan
n )D

πD
//

HT

OO

p?1(Hcan
n )D

HT

OO

This clearly induces an isomorphism p?1Tv → p?2Tv and from this we get an
isomorphism:

p?2ω
κun

→ p?1ω
κun

which specializes to the natural isomorphism p?2ω
k → p?1ω

k at weight k.

We now define Up : p1?p
?
2ω

κun → p1?p
?
1ω

κun
1
p Trp1−→ ωκ

un

.
�

Corollary 5.17. The operator Up is compact on RΓ(X0(p)[a,1], ω
κun

).

Proof. The operator Up factors as:

RΓ(X0(p)[a,1], ω
κun

)→ RΓ(X0(p)[ ap ,1], ω
κun

)→ RΓ(X0(p)[a,1], ω
κun

).

�

5.5.5. The Up-operator on RΓX0(p)[0,a[
(X0(p), ωκ

un

). We need to consider the Up-
correspondence on X0(p)[0,a] where actually only the canonical part of the corre-
spondance is relevant by proposition 5.10, and therefore it reduces to a correspon-
dence:

Ccan[0,a]

pcan
1

$$

pcan
2

yy
X0(p)[0,pa] X0(p)[0,a]

Lemma 5.18. There is a natural isomorphism (pcan2 )?ωκ
un → (pcan1 )?ωκ

un

, and a
cohomological correspondence Up : (pcan1 )?(p

can
2 )?ωκ

un → ωκ
un

which specializes in
weight k ≤ 1 to U canp .

Proof. Over Ccan[0,a], the dual universal isogeny πD : (pcan2 )?E → (pcan1 )?E induces
an isomorphism on canonical subgroups (pcan2 )?Hcan

n ' (pcan1 )?Hcan
n , and therefore

there is a canonical isomorphism:
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(pcan1 )?ω]E
(πD)? //

��

(pcan2 )?ω]E

��

(pcan1 )?ω]E/p
n−v pn

p−1 // (pcan2 )?ω]E/p
n−v pn

p−1

(pcan1 )?(Hcan
n )D

π //

HT

OO

(pcan2 )?(Hcan
n )D

HT

OO

This clearly induces an isomorphism (pcan2 )?Tv → (pcan1 )?Tv and from this we
get an isomorphism:

(pcan2 )?ωκ
un

→ (pcan1 )?ωκ
un

or rather more naturally its inverse:

(pcan1 )?ωκ
un

→ (pcan2 )?ωκ
un

which specializes to the natural isomorphism (pcan1 )?ωk → (pcan2 )?ωk given by
(πD)?, and its inverse (pcan2 )?ωk → (pcan1 )?ωk is p−k(π?).

Recall that p1 is an isomorphism, and we therefore get Up : (pcan1 )?(p
can
2 )?ωκ

un →
ωκ

un

which specializes in weight k ≤ 1 to p−kU can,naivep = U canp .
�

Remark 5.19. We therefore find that this is really Up and not Unaivep that can be
interpolated over the weight space.

Corollary 5.20. The Up-operator is compact on RΓX0(p)[0,a[
(X0(p), ωκ

un

).

Proof. The operator Up factors as:

RΓX0(p)[0,a[
(X0(p), ωκ

un

)→ RΓX0(p)[0,pa[
(X0(p), ωκ

un

)→ RΓX0(p)[0,a[
(X0(p), ωκ

un

).

�

5.6. Construction of eigencurves. We use these cohomologies to construct the
eigencurve, following the method of [Col97].

5.6.1. First construction. The cohomology RΓ(X0(p)[a,1], ω
κun

) is concentrated in
degree 0, and is represented by H0(X0(p)[a,1], ω

κun

) which is a projective Banach
module over OWr

(see [Pil13, Cor. 5.3]).
The Up-operator acts compactly on this space. We let P ∈ OWr

[[T ]] be the
characteristic series of Up. This is an entire series. We let Z = V (P) ⊂ Ganm ×Wr.
We have a weight map π : Z → Wr which is quasi-finite, partially proper, and
locally on the source and the target a finite flat map.

Over Z we have a coherent sheafM which is the universal generalized eigenspace.
This is a locally free as a π−1OWr

-module and for any x = (κ, α) ∈ Z, x?M =

H0(X0(p)[a,1], ω
κ)Up=α−1

.
We let OC ⊂ EndZ(M) be the subsheaf of OZ -modules generated by the Hecke

operators of level prime to Np, and we let C → Z be the associated analytic space.
The construction of (M, C,Z) is compatible when r changes (and does not de-

pend on auxiliary choices like a, v, n...). We now let r tend to 1, glue everything,
and with a slight abuse of notation we have C → Z → W and a coherent sheafM
over C. This is the eigencurve of [CM98].
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5.6.2. Second construction. We can perform a similar construction, using instead
the cohomology RΓX0(p)[0,a[

(X0(p), ω2−κun

(−D)) where ω2−κun

(−D) = (ωκ
un

)∨ ⊗
ω2(−D), as well as the operator 〈p〉−1Up. The introduction of this twist is motivated
by Serre duality (see Section 5.7.2 below). Recall that the character Z×p → Λ×,
t 7→ t2κun(t)−1 induces an automorphism d : Λ→ Λ, and therefore:

RΓX0(p)[0,a[
(X0(p), ω2−κun

(−D)) = RΓX0(p)[0,a[
(X0(p), ωκ

un

(−D))⊗LOWr ,d
OWr

.

This cohomology is a perfect complex of projective Banach modules over OWr

and for any morphism Spa(A,A+)→Wr, the cohomology RΓ[0,a[(X0(p), ω2−κun

(−D))⊗̂A)
is supported in degree 1.

We choose a representative N• for this cohomology, as well as a compact rep-
resentative ˜〈p〉−1Up representing the action of 〈p〉−1Up. We let Qi be the charac-

teristic series of ˜〈p〉−1Up acting on N i. We let Q̃ =
∏
Qi and we let X = V (Q̃) ⊂

Ganm × Wr. We have a weight map π : X̃ → Wr which is quasi-finite locally on
the source and the target and a bounded complex of coherent sheaves “generalized
eigenspaces” Ñ • over X̃ . This is a perfect complex of finite projective π−1OWr

-
modules. Moreover, Ñ • has cohomology only in degree 1, and we deduce that
H1(N •) = N is a locally free π−1OWr -module. We let Q = V (

∏
iQ

(−1)i

i ) and we
set X = V (Q) ⊂ X̃ . The module N is supported on X . We let OD ⊂ EndX (N )
be the subsheaf generated by the Hecke algebra of prime to Np level, and we let
D → X be the associated analytic space. We can now let r tend to 1, and we have
D → X →W and the sheaf N over D. This is a second eigencurve.

5.7. The duality pairing. In this last section, we prove that Z and X are canon-
ically isomorphic, thatM and N are canonically dual to each other and that C and
D are canonically identified under the pairing betweenM and N .

5.7.1. Preliminaries. We are going to use the theory of dagger spaces [GK00]. Let
X† be a dagger space over Spa(Qp,Zp), smooth of pure relative dimension d. Let F
be a coherent sheaf on X†. Then one can define the cohomology groups Hi(X†,F )
and Hi

c(X
†,F ). Moreover, these cohomology groups carry canonical topologies

([vdP92, 1.6]).
By [GK00, Thm. 4.4], there is a residue map:

resX : Hd
c(X

†,ΩdX/Qp
)→ Qp.

This residue map has the following two important properties. Let f : Y † → X†

be an open immersion. Then the diagram:

Hd
c(Y

†,ΩdY/Qp
)

f? //

resY

((

Hd
c(X

†,ΩdX/Qp
)

resX

��
Qp

is commutative. See [Bey97, Cor. 4.2.12] (although the author is working here in
the “dual” setting of wide open spaces)).
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Let f : Y † → X† be a finite flat map. Then the diagram:

Hd
c(Y

†,ΩdY/Qp
)

trf //

resY

((

Hd
c(X

†,ΩdX/Qp
)

resX

��
Qp

(1)

is commutative. See [Bey97, Cor. 4.2.11] (although the author is working here
again in the “dual” setting of wide open spaces).

Let F be a locally free sheaf of finite rank over X† which is assumed to be
affinoid, smooth of pure dimension d. We let D(F ) = F∨ ⊗ ΩdX/Qp

.
Then the residue map induces a perfect pairing ([GK00, Thm. 4.4]):

H0(X†,F )×Hd
c(X

†,D(F ))→ Qp

for which both spaces are strong duals of each other.

Remark 5.21. Since the topological vector space H0(X†,F ) is a compact inductive
limit of Banach spaces, we deduce from the theorem that the topological vector
space Hd

c(X
†,D(F )) is a compact projective limit of Banach spaces.

5.7.2. The classical pairing. We denote by w the Atkin-Lehner involution over
X0(p) and by 〈p〉 the diamond operator given by multiplication by p. We recall
that w ◦w = 〈p〉. We recall that C is the Hecke correspondence underlying Up (see
section 5.3). We can think of it as the moduli space of (E,H,H1) where H,H1

are distinct subgroups of E[p]. We have the projection p1(E,H,H1) = (E,H1).
We also have a projection p2(E,H,H1) = (E/H,E[p]/H). Exchanging the roles
of H and H1 yields an automorphism ι : C → C and we let qi = pi ◦ ι. Now
one checks easily that w ◦ p1 = q2 and w ◦ p2 = 〈p〉 ◦ q1. We have a residue map
H1(X0(p),Ω1

X0(p)/Qp
)→ Qp and there is a perfect pairing:

〈, 〉0 : H0(X0(p), ωk)×H1(X0(p), ω2−k(−D))→ Qp

where we use the Kodaira-Spencer isomorphism Ω1
X0(p)/Qp

' ω2(−D). We modify
this pairing, and set:

〈, 〉 = 〈., w?.〉0.

Lemma 5.22. For any (f, g) ∈ H0(X0(p), ωk) × H1(X0(p), ω2−k(−D)), we have:
〈Upf, g〉 = 〈f, 〈p〉−1Upg〉.

Proof. For any (f, g) ∈ H0(X0(p), ωk)×H1(X0(p), ω2−k(−D)), we have: 〈Unaivep f, g〉0 =

〈f, (Unaivep )tg〉0 where (Unaivep )t is the operator associated to the transpose of C,
and is obtained as follows:

RΓ(X0(p),D(ωk))
p?1→ RΓ(C, p?1D(ωk))→ RΓ(C, p?2D(ωk))

trp2→ RΓ(X0(p),D(ωk)).

We observe that the determination of the adjoint of Unaivep as the operator associ-
ated to the transpose of C uses the compatibility property of diagram 1. We have
a commutative diagram:
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RΓ(X0(p),D(ωk))
p?1 // RΓ(C, p?1D(ωk)) // RΓ(C, p?2D(ωk))

trp2 // RΓ(X0(p),D(ωk))

RΓ(X0(p),D(ωk))
q?2 //

w?

OO

RΓ(C, q?2D(ωk)) //

ι?

OO

RΓ(C, q?1D(ωk))
trq1 //

ι?

OO

RΓ(X0(p),D(ωk))

w?〈p〉−1

OO

We see that 〈Unaivep f, w?g〉0 = 〈f, w?〈p〉−1Unaivep g〉0. We now check that the nor-
malizing factors are correct so that 〈Upf, g〉 = 〈f, 〈p〉−1Upg〉. �

5.7.3. The p-adic pairing. We now work again over OWr
. We let X0(p)m,† =

colima→1X0(p)[a,1]. We let X0(p)et,† = colima→0X0(p)[0,a]. The Atkin-Lehner
map is an isomorphism w : X0(p)m,† → X0(p)et,† and there is an isomorphism
w : w?ωκ

un → ωκ
un

(compare with sections 5.5.4 and 5.5.5).

Lemma 5.23. We have a canonical perfect pairing 〈, 〉0 : H0(X0(p)m,†, ωκ
un

) ×
H1
c(X0(p)m,†, ω2−κun

(−D)) → OWr
. Moreover, H0(X0(p)m,†, ωκ

un

) is a compact
inductive limit of projective Banach spaces over OWr , H1

c(X0(p)m,†, ω2−κun

(−D))
is a compact projective limit of projective Banach spaces over OWr

, and both spaces
are strong duals of each other.

Proof. The pairing is obtained as follows:

H0(X0(p)m,†, ωκ
un

)×H1
c(X0(p)m,†, ω2−κun

(−D))

→ H1
c(X0(p)m,†,Ω1

X0(p)m/Qp
⊗̂QpOWr )

resX0(p)m→ OWr .

We prove the remaining claims. Let Wi be the connected component of the char-
acter i : x 7→ xi for i = 0, · · · , p− 2 in W. Then for all i, ωκ

un |Wi
r

= ωi⊗̂Qp
OWi

r
is

an “isotrivial” sheaf. This follows from the existence of the Eisenstein family (see
[Pil13], the final discussion below Proposition 6.2). Therefore,

H0(X0(p)m,†, ωκ
un

)⊗OWr
OWi

r
= H0(X0(p)m,†, ωi)⊗̂Qp

OWi
r

H1
c(X0(p)m,†, ωκ

un

)⊗OWr
OWi

r
= H1

c(X0(p)m,†, ωi)⊗̂Qp
OWi

r

and similarly for cuspidal cohomology. All the statements of the lemma are reduced
to the similar statements for the classical invertible sheaves ωi, and they follow
from the usual duality for coherent cohomology of affinoid dagger spaces recalled
in section 5.7.1. �

We deduce form this lemma that there is a canonical pairing:

〈, 〉 : H0(X0(p)m,†, ωκ
un

)×H1
c(X0(p)et,†, ω2−κun

(−D))→ OWr

by putting 〈, 〉 = 〈, w?.〉0. For this pairing, 〈Up., .〉 = 〈., 〈p〉−1Up.〉. We have by
definition that H0(X0(p)m,†, ωκ

un

) = colima→1 H0(X0(p)[a,1], ω
κun

).

Lemma 5.24. We have a canonical isomorphism: H1
c(X0(p)et,†, ω2−κun

(−D)) =
lima→0 H1

X0(p)[0,a[
(X0(p), ω2−κun

(−D)).

Proof. We have a short exact sequence for 0 < a < b small enough:

0→ H0(X0(p)[0,b], ω
2−κun

(−D))→ H0(X0(p)[a,b], ω
2−κun

(−D))

→ H1
X0(p)[0,a[

(X0(p)[0,b], ω
2−κun

(−D))→ 0.

Passing to the limit as a→ 0 proves the lemma. �
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Therefore the operator Up is compact on both cohomology groups. We deduce
from the pairing that the characteristic series of Up in degree 0 is the same as the
characteristic series of 〈p〉−1Up in degree 1, so that X = Z. We have a canonical
perfect pairing 〈, 〉 :M×N → π−1OWr

, for which 〈T`f, g〉 = 〈f, T t` g〉 for any prime
number ` not dividing Np. We recall that T t` = 〈`〉−1T`. We deduce that the
eigencurves C and D are canonically isomorphic.
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