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1 Introduction

During the 1990’s Robert Coleman constructed finite slope families of overconvergent, elliptic
modular forms parametrized by rigid analytic subspaces of the weight space in [Coll] and [Col2].
This was an extension of Hida’s construction of ordinary families in the mid 80’s in [Hil]. One
striking difference was that while Hida’s theory was completely integral and worked over formal



schemes, Coleman’s theory was Q,-rigid analytic. Nevertheless Coleman observed that the
characteristic series of the U,-operator acting on finite slope p-adic families of overconvergent
modular forms had coefficients in the Iwasawa algebra (i.e. they were integral) and conjectured
that there should exist an integral or positive characteristic theory of overconvergent modular
forms. Following Coleman’s intuition, we obtained such a theory for elliptic modular forms in
[AIPC]. The present paper is an extension of [AIPC] to the case of Hilbert modular forms.

More precisely, in the present paper we accomplish the following. Let us first fix a totally
real number field F of degree g over Q. Then let us recall (see for example [AIPH] or chapter
§8 of the present paper) that there are two relevant algebraic groups attached to F', denoted by
G = Resp)oGLy and G* := G X Res s qGm G,,.

From the point of view of automorphic forms it is useful to work with modular forms on G,
but the Shimura variety associated to GG is not a moduli space of abelian varieties. Instead, the
Shimura variety associated to G* is a moduli space of abelian varieties and so we first construct
our modular sheaves for modular forms on G*, as in [AIPH]|, and then we descend these sheaves
to the relevant varieties associated to G.

a) Modular sheaves associated to G*.

This construction is accomplished in chapters 1 to 7, where we work with toroid al compact-

ifications of the moduli spaces of abelian schemes with Op-multiplication and we denote by G
the semi-abelian scheme which extends the universal abelian scheme.
To fix ideas, let p denote a positive prime integer, T the torus Resp/gG,, and let Ap := Z,[T(Z,)]
be the associated Iwasawa algebra. We denote by Wr the analytic adic space (called the weight
space for modular forms on G*) associated to the formal scheme 2 := Spf Ap and "™ :
T(Z,) — Aj the universal (weight) character. In particular, we have a natural decomposition
of the adic weight space Wp = Wi U Wk ., where Wie is the adic space associated to the rigid
analytic generic fiber of Spf Ar (so this is the “old, p-adic weight space”) and

Wreo ={z €Wr | |pl. =0},

sometimes called the “boundary of the weight space” and consisting in points with values in
characteristic p-rings.

Let now N > 4 be an integer relatively prime to p and let 9 (uy, ¢) be the formal scheme
associated to a projective toroidal compactification of the Shimura variety for G* of level (uy, ¢).
Here ¢ is a fractional ideal of F' (see section §3 for more details.)

Our main result is the construction of an integral family of sheaves of overconvergent modular
forms, parametrized by the formal spectrum of the Iwasawa algebra Ar. This overconvergent
family extends the family of p-adic modular forms defined by Katz in [K] and used by Hida
in [Hi2]. More precisely let us denote by 20% = Spf A% the free” component of 2, where
A% is a complete regular local ring of dimension g + 1 with maximal ideal m and let 3 :=
M (1, ¢) x WY, We consider, for each r > 0 the formal scheme 3,., which should be thought of
as a “formal neighborhood of the ordinary locus in 3” and which is defined as the formal scheme
which represents the functor associating to every m-adically complete A%-algebra R the set of
equivalence classes of tuples (h,n,,m1,m2,...,1,), where h : SpfR — M(pn, ¢) is a morphism

of formal schemes and 7,,n; € H° (Spr, h* (det wfj*p)pr“)), i=1,...,g satisfying

Haprﬂnp = p mod p?, Hapwrln1 =T, mod p?, ... ,Ha””lng =T, mod P2
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See section §6.3 for the definition of the equivalence relation between such tuples. Here A is the
universal semi-abelian scheme over M(uy, ¢), denoted G in the main body of the article, and
T1,Ts,...,T, are chosen elements of m, which together with p generate it (see section §2.1 for
more details.) Let 91, be the base-change, as formal schemes, of 3, to 2. We construct, for
each r > 0, a coherent sheaf ™" on 9,. Let M, denote the adic analytic space associated to
9, and W™ the associated analytic coherent sheaf. Then w®" is invertible and it satisfies the
following properties.

1. The restriction of wi™ to the rigid analytic space M, Xgpaz,.2,) Spa(Qp, Zy) is the sheaf
defined in [AIPH], Definition 3.6.

2. for all classical weights k- x : T(Z,) — Ot where k is an algebraic weight and x a finite

order character, the specialization of w™ to k- is the restriction to M, of the sheaf w ()
of classical modular forms of weight £ and nebentypus Y.

3. The family of sheaves {w!},>¢ is Frobenius compatible.

See §6.4]
b. The modular sheaves associated to G

This construction is done in chapter 8. Let 20%, k% denote the formal weight space and
respectively the universal character associated to the Iwasawa algebra A% for the group G and let
20% — 2 be the natural morphism of formal schemes. Let now 9(uy, ¢)¢ denote the formal
Shimura variety for the group G (i.e. the formal completion along the special fiber of a projective,
toroidal compactification of the Shimura variety for G). The toroidal compactifications for the
Shimura varieties for G* and G can be chosen in such a way that we have a natural morphism
of formal schemes a: M (pun, ¢) — M(pn, ¢)g. Moreover if A denotes the quotient of the group
of totally real units of Op by the square of the units congruent to 1 modulo N, this finite group
acts naturally on (s, ¢) by multiplication on the polarizations, such that:

1. The morphism « is finite, étale and Galois with Galois group A. It follows that M (py, ¢)q =

(M (v, €))/A.

2. For every © > 0, we have a natural action of A on 9, Xgy, WS lifting to an action on
r0,¢ , which is the pull-back of %" to M, Xy, WE. By finite, étale descent we obtain a
coherent sheaf, still denoted 10, , on M, = (‘Jﬁr X 90, mﬁ) JA.

3. If we denote by M, ¢ the analytic adic space associated to the formal scheme 9,  and by
wr ¢ the associated coherent sheaf, then w, ¢ is invertible and the overconvergent modular
forms for G are overconvergent sections of specializations of this modular sheaf. As in
[AIPH], one can show by a cohomological argument that specialization is surjective on

cuspidal forms.

The spectral theory of the operator U, on adic families of overconvergent modular forms
allows us to construct an adic eigenvariety sitting over the analytic adic space associated to the

Iwasawa algebra A%. See .

Finally, this article generalizes and is crucially based on both [AIPC] and [AIPH]. In particular
for many arguments we refer to loc. cit. Let us point out what is really new here:
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1. The boundary of the weight space, both for G and G* are analytic spaces of dimension
g — 1. Therefore the boundary overconvergent Hilbert modular forms (i.e. the overconver-
gent Hilbert modular forms in characteristic p) are parameterized by positive dimensional
analytic spaces if g > 1, i.e. live in true analytic families.

2. In [AIPC], the universal integral modular sheaf ! was a sheaf parameterized by the
formal blow-up of the formal scheme Spf A with respect to the ideal m. Therefore the
descent to the Iwasawa algebra in this paper improves [AIPC].

3. If p is ramified in Op the descent of the perfect sheaves of overconvergent Hilbert modular
forms to finite levels by the use of Tate traces involves new problems due to the non
smoothness of the associated Hilbert modular varieties in characteristic p.

Remark 1.1. In [ATPH] and also in this paper we work with toroidal compactifications M (jy, ¢)
of the integral models of the Shimura varieties associated to G* defined by P. Deligne and
G. Pappas [DP], completing previous work of M. Rapoport [Ra]. These models are singular at

primes dividing the discriminant of F. One could use one of the splitting models M (uy,c) —
M (pn, ¢) of M(puy, ¢) introduced by G. Pappas and M. Rapoport in [PR]. Such models depend
on some auxiliary choices, namely an ordering of the embeddings of F' in an algebraic closure,
but they have the advantage of being smooth. The given map is an isomorphism over an open
dense subscheme (the Rapoport locus, see §3); in particular the two moduli spaces differ only
at primes p dividing the discriminant of F'.

Recall that the complement of the Rapoport locus is characterized by the fact that the sheaf
wg of invariant differentials of the versal semiabelian scheme G over M (uy, ¢) is not locally free
as Op @ Oyj(,y,o-module. On the other hand on a splitting model, we admits a filtration by

invertible Oﬁ " c)—modules, stable for the action of Op. These invertible sheaves allow to define
N>

Hilbert modular forms of non-parallel weight over the whole of M (jux, ¢).

For our purposes, i.e. the construction of modular sheaves, it makes no difference which
model we choose and we prefer to work with the minimal (and more canonical) one, the Deligne-
Pappas model. The main reason is the fact that the key ingredient in the construction of the
modular sheaves is the introduction of a different integral structure F of wg which is locally
free as Or ® Oye,, , ,-module, e.g. even on the complement of the Rapoport locus in the formal
scheme J&,,,.; (see [AIPH], Proposition [4.1] or section §4.1 of the present article).

Acknowledgements. We thank the referee for the careful reading of the manuscript and
his/her remarks which hopefully led to improvements. The remark was written at his/her
request.

Notations Let F' be a totally real number field. Denote by g the degree [F : Q. Fix a prime
p. Denote by By, ..., the prime ideals of O over p. For each ¢ let f; be the residual degree
and e; the ramification index. Write p =33, - - - B for the product of all the primes of O above
p. Set q=pifp>2and g=4if p=2.



2 The weight space

2.1 The Iwasawa algebra

Denote by T := Reso,./zG, and by Ap the completed group algebra Z,[T(Z,)]. We write
k" T(Z,) = A%
for the universal character. Fix an isomorphism of topological groups
p: Hx 78— T(Z,) = (Op ® Zp)"

where H is the torsion subgroup of T(Z,). Write A}, for Z,[Z9] = Z,[T, ..., T,] where 14+T; = ¢,
the i-th vector basis of Z. It is a complete, regular, local ring with maximal ideal m. Furthermore
Ar = A%[H] is a finite flat A%-algebra. Actually, there is also a canonical projection map
Ar — A% obtained by sending all h € H to 1. We let  : T(Z,) — (A%)* be the composition
of k" and the above projection. We let x : H — A} be the composition of the inclusion
H — T(Z,) and the universal character.

We denote by Wr, resp. WY the m-adic formal scheme defined by Ar resp. A%. Then we
have a natural map 20 — 20% which is finite and flat.

Remark 2.1. In [ATPH]| the weight space has been defined over the ring of integers of a finite
extension K of Q, splitting F'. The reason is that the classical weights are defined over K. Here
we prefer to work over Z,. As a consequence it will turn out that the characteristic series of the
U, operator will have coefficients in the Iwasawa algebra A% defined in Theorem 8.4, with no
need to extend scalars.

2.2 A blow up of the formal weight space

Consider the blow up Sp/e;/AF of Spec Ar with respect to the ideal m and let t: QAﬁF — W be
the associated m-adic formal scheme. .

We describe in more detail the formal scheme 2. Notice that by the universal property of
the blow up, the ideal sheaf J := t~}(m) C Oinp is invertible. For every element o € m denote
by W, = D4 (a) = Spf(Ba) C W the open affine formal subscheme where J is generated by
(27, is empty unless & € m \ m?). In particular the m-adic topology on B, coincides with the
a-adic topology. .

One has variants 0% — 20% of the spaces introduced above and associated to the sub-
algebra A% of Ap. We also have a natural finite and flat morphism 20 — 20%. For every
element o € m we write 20° = Spf(B%) C 209 for the open affine formal subscheme defined by

.
2.3 The adic weight space

Let WF be the analytic adic space associated to %F For all open Spf A of %F, the associated
open of Wk is the open subset of analytic points Spa(A, A)*" of Spa(A, A). For every element



a € m, let W, be the open subset of WF consisting of the analytic points of the adic space
associated to 20,. Then W, is affinoid equal to Spa(Ba [ofl} , Ba) = Spa(B,, B,)™™.
Choosing generators (p, T4, ...,T,) of m then Wy is covered by the affinoids

Wpupr"' 7WT~

g9

We let Wi be the analytic adic space associated to 2. Namely, W consists of the analytic
points Spa(Ap, Ap)® C Spa(Ar, Ar). We denote by t: Wr — Wy the morphism of analytic

—

adic spaces associated to t: Wr — We.
Lemma 2.2. The morphism t: VNVF — Wr is an isomorphism of adic spaces.

Proof. For all & € m the subset {z € Wp,0 # |al, > |B|., V8 € m} of Wpg equals W, by

definition. Moreover, Wr is covered by the W,. The conclusion follows. O

Remark 2.3. Let us denote by WE¢™* the subset of rank 1 points of Wp. Then there is a map:

@:Wgerk — IP)Q(R)
r = (Iple, Thle, - [ Tyls)

with image included in [0, 1[9"!. This map may be helpful in order to understand Wy. Let us
denote by (zq,...,z,) the coordinates on PY(R). Then ©~'({zy # 0}) is the set of rank one
points on the usual (adic) weight space over Spa(Q,,Z,) associated to Ap.

Let us denote by WY the analytic adic space attached to 20%. For every element o € m we
denote by W? the analytic adic space associated to 209.

Finally, let us remark that the classical weights are points of the subspace of Wr where p is
invertible.

2.4 Properties of the universal character
2.4.1 Congruence properties

First of all we need to elaborate on the identification p: H X ZJ ~ (OF ® Zp)* of the previous
section.

Lemma 2.4. (1) The group H can be realized as a quotient of ((’)F ® Zp)*/(l +qOr ®Z,). Its
prime to p part is isomorphic to (OF ® Zp)*/(l +pOr ® Zy,).
(2) Given (ay,...,aq) € Z3, we have (p(ay,...,a5)) = [[2, (1 +T;)" € (A%)".

Proof. (1) The group H is finite and its prime to p part maps isomorphically onto ((9 F ®Zp) /(14
pOr ® Z,) via p. Denote by L the quotient ((’)F ® Zp)*/H. The subgroup 1 + ¢Op ® Z, of
(Op ® Zp)* is isomorphic to ¢(Or ® Z,), and hence to ZJ, via the logarithm. In particular
it injects into L via the quotient map and the subgroup H of (OF ® Zp)* injects into (OF &
Zy) /(1 + qOF ® Zy). This proves the first claim.

(2) The standard basis elements €, ..., ¢, of Z% map to 1+ 1T1,...,1+ T, in AY. ]

We define the following ideals in A%:



n—2

o m, — (ap"fl,pap o o, a € (Tl,...,Tg)) ifn>1.

o myg=my = (11,...,1,).

Lemma 2.5. For every n € Z>; we have that /@(p(p”_lZg)) —1 Cm,. In particular we have
for alln € Z>,
k(14 gp"'Op ®Zy) — 1 C m,,.

Moreover, k(T(Z,)) — 1 C my.
Proof. Note that x(p(p"tay,....p" tay)) =TI, (1+Ti)pn71ai. One computes that (14+7})7" —

n—2

1 is contained in the ideal (ﬂpn_l,pﬂp ..., p"'T); see [AIPC] Lemme 2.3).
Notice that & is trivial on H so that it factors via p(Zg) = (Op ® Z,)"/H. Furthermore

(1+qp”_1(9F®Zp) = (1—|—q(’)F<X>Zp)pni1 (using the logarithm). In particular (1+qp"_1(9F®Zp)
is contained in p(p”_lOF ® Zp) via the identification above. The second claim follows. O]

2.4.2 A key lemma

We introduce a formalism inspired by Sen’s theory that will be repeatedly used in the paper.
Let n € Z>; and Ay — Ay --- — A, be a tower of A%-algebras which are domains. We assume
that the group (Op/p"Or)* acts on A, by automorphisms of A%-algebras and that A, is the
sub-ring of A,, fixed by the kernel H; of the map (Op/p"OF)* — (Op/p*OF)*.

Let h € Ag and let pg =0 < p; < --- < p, be a sequence of integers. Let ¢, € h™P" A, be an
element. Set ¢, = Zae 1, 0-Cn. We assume that:

e c, € h™PsA, for all s >0,

e cop = 1.

Set bs = 3, c(0p/pr0p) f(0)o(cs) € h7P A  for s > 1 and by = 1. Here 6 € T(Z,) is a lift of
o so that b, depends on ¢, and on the choices of lifts.

Lemma 2.6. 1. Another system of choices of lifts & for the o’s would give an element b/, and
we have
o b —bs € hPm,A; ifs>1,p>3,
o b —b;e hPmy 1A, if s>2,p=2,
® bll — bl € h_plm(]Al pr = 2.

2. We have the following congruence relations:

L bs - bs,1 € h_psms,lAs ZfS > 1, p > 3,
e by — b1 € h_psms,QAs ZfS > 2, p > 3,
L b1 - bo S h_plmUAo pr = 2.



Proof. The first point follows from lemma [2.5l To prove the second point, assume that s > 1
and notice that

by = > wE)( > (k(6) — 1)a(cs) + com1)

TE(OF/pS_lop)* U€1+p3_IOF/pSOF
= Z K(7)7( Z (k(6) — 1)o(cs)) + bs—1
T€(OF /p*~1Op)* 0€l+p*~1OF /p*OF
One concludes by applying lemma [2.5) and also using the first point. O]

2.4.3 Analyticity of the universal character

We now study the analytic properties of the universal character. The degree of analyticity
depends on the p-adic valuation of Ti,---,T,. This motivates the following definition. For
L € Q> we define the following rational open subsets of W:

° W?,é% = {:L' € W?w, ’0/’|x < ‘p5|x 7& 0, VYa € m},
° W?;’Zg ={z e W), Ja em, [p’|, <|a"|, # 0}.

Set Wi <o := Wi If I = [a,b] is a closed interval with a, b € Q> U {oo}, define Wy, =
Wi, "N Wi, Forall @ € m we let Wy ; = Wi, N Wy,

Remark 2.7. If x € W? is a rank one point, then « is a pseudo-uniformizer of the residue field
k(x). Let us denote by v, : k(z) = R U {oo} the valuation on k(z) normalized by v,(a) = 1.
Notice that the norm p~"=() represents the equivalence class of |.|,. Then = € Wg, ; if and only
if v (p) € I.

We now construct formal models. Take an element o € m. We define B) ; = H'(W,1, O, ).
Set 207 ; = Spf By, ;. The analytic fiber of 207 ; is W ;. For various a’s, the 20, ; glue to a
formal scheme 2% ; with analytic fiber Wy ;. Remark that 203, ; = 5.

If I C [0, 00], then QND% ; is a p-adic formal scheme (the m-adic topology is the p-adic one). In
the lemma below, G,,, G, are considered as functors on the category of p-adic formal schemes
equipped with a structural morphism to 20%. Let e = 1 if p # 2 and € = 3 if p = 2. The group
T(Zy) - (1+ p" O @ G,) is a subgroup of G,,.

Proposition 2.8. Let n > 0 be an integer. Suppose that I C [0,p"]. The character k extends
to a pairing .
Wh; x T(Zy) - (149" 0p @ Gy) — G

It restricts to a pairing
W, % (L+ " Or @ GF) — 1+ qp"' G,
for alln' € Zsy.

Proof. Easy and left to the reader. n



3 Hilbert modular varieties and the Igusa tower

3.1 Hilbert modular varieties

We recall the definition of Hilbert modular varieties following |[Ral and [DP].

Fix an integer N > 4 and a prime p not dividing N. Let ¢ be a fractional ideal of F and let ¢*
be the cone of totally positive elements. Denote by D the different ideal of Op. Let M (puy, ¢)
be the Hilbert modular scheme over Z, classifying triples (A, ¢, U, \) consisting of: (1) abelian
schemes A — S of relative dimension g over S, (2) an embedding ¢: Op C Endg(A), (3) a
closed immersion ¥: puy ® Dp' — A compatible with Op-actions, (4) if P C Homp, (A, AY)
is the sheaf for the étale topology on S of symmetric Op-linear homomorphisms from A to the
dual abelian scheme A" and if P™ C P is the subset of polarizations, then A is an isomorphism
of étale sheaves \: (P, PT) = (¢, ¢"), as invertible Op-modules with a notion of positivity. The
triple is subject to the condition that the map A ®o, ¢ — A" is an isomorphism of abelian
schemes (the so called Deligne-Pappas condition).

We write M (uy, ¢) and M (juy, ¢) for a projective toroidal compactification, respectively the
minimal or Satake compactification of M (uuy,¢) (see [Ra]). Let M (un,¢) (resp. M (pun,¢)) be
the associated formal schemes. They are endowed with a semi-abelian scheme G with Og-action.

There exist maximal open subscheme, respectively formal subscheme MR(MN, ¢) C M(pun,c),

resp. ﬁR(MN ,¢) C M (v, ) such that we, the conormal sheaf to the identity of G, is an invertible
) ®z Op-module, resp. OﬁR(quc) ®z Op-module (the so called Rapoport condition).
The complement is empty if p does not divide the discriminant of F' and, in general, it is of
codimension 2 in the characteristic p special fiber of M (juy, ¢); see [DP].

We denote by Ha € H(M*(un, ), , det w?% 1) the Hasse invariant. We let Hdg C Oy c) PE
the Hodge ideal defined by the Hasse invariant (see [AIPC| §A.1] for a precise definition: locally
on M(py, ¢) it is the ideal generated by p and a (any) lift of a local generator of Ha det wéfp ).

Or,

3.2 Canonical subgroups

Let Aj be a Z,-algebra and a € A a non-zero element. We assume that A satisfies the following:
(¥) Ap is an integral domain, it is the a-adic completion of a Z,-algebra of finite type and
pE O./Ao.
Let M (uy,c) XSpec 7, Spec Ay be the base change of the toroidal compactification via
Spec Ay — Spec Z,, and let ) be the associated formal scheme over Spf Ay.

Definition 3.1. For every integer » € N denote by 2), — 2) the formal scheme over ) repre-
senting the functor which to any a-adically complete Ag-algebra R without a-torsion associates

the equivalence classes of pairs (h: Spf R — 2),n € HY(Spf R, h* det wg_p)pTH) such that

r+1

Ha?"'n=a mod p*

Two pairs (h,n) et (h',n') are declared equivalent if h = b’ and n = /(1 + %Qu) for some u € R.
We also denote by 9F C ), the open formal subscheme where the Rapoport condition holds

(see §3)).
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Proposition 3.2. Assume that p € af" Ag. Then for every integer 1 < n < r+k one has a

canonical sub-group scheme H,, of G[p"] over ), and H, modulo pHngz’f_l1 lifts the kernel of
the n-th power of Frobenius. Moreover H,, is finite flat and locally of rank p™?, it is stable under
the action of O, and the Cartier dual HP is étale locally over Ay [ofl} isomorphic to O /p"
(as Op-module).

Proof. All claims follow from [AIPC| Appendix A].
O

Proposition 3.3. For every r € Z>y the isogeny given by dividing by the canonical subgroup
Hy of level 1 defines a finite morphism ¢: ), — ._1. The restriction to the Rapoport locus
¢: PR — PR | is finite and flat of degree pI.

Proof. This is the content of [AIPC| Cor. A.2] which is written for general p-divisible groups.
The last claim follows as relative Frobenius is finite and it is flat over the (smooth) Rapoport
locus. O

3.3 The partial Igusa tower
3.3.1 Construction

We use the notations of the previous section. Let A := Agla~!]: it is a Tate ring in the sense of
Huber [H1|] with ring of definition Ay. Let AT C A be the normalization of Ay in A. The fact
that Ag is noetherian implies that Spa(A, A™) is an adic space; [H2, Thm. 2.2]. We define

Y, = X Spao,Ao) Spa(A, A™) :

here 924, resp. Spa(Ay, Ag) is the adic space associated to the formal scheme ), resp. Spf A,
and the fibre product is taken in the category of adic spaces.

Assume that p € ozpkAO and let r € N and n € N be an integer such that 1 < n < r + k.
It follows from Proposition that HnD over ), is étale locally isomorphic to Op/p"Or. We
let ZG,., — Y. be the Galois cover for the group (Op/p"Op)* classifying the isomorphisms
Op/p"Op — HP | as group schemes, equivariant for the Op-action.

We define 3&,,, — 2), to be the formal scheme given by the normalization of ), in ZG,, .. See
[ATPC], §3.2] for details. Such morphism is finite and is endowed with an action of (Or/p"Op)*.
One then gets a sequence of finite, (Op/p"*Op)*-equivariant morphisms

3G,y > TG g1y = - = D,

The morphisms h: 3&,,, — J6,,_;, are finite and étale over ),. In particular there is a
trace map Trye: h.Ose,, — Ose,_,.,-

3.3.2 Ramification

Proposition 3.4. We have

n—1

Hdg"”  Ose C Trys (hOse,..,)

n—1,r

foreveryl <n <r-+k.
Moreover if p is unramified one has Trye(hOse, ) = Oy, .
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Proof. The claim for n > 2 follows arguing as in [AIPC| Prop. 3.4]. We recall the argument. By
normality the natural map ZG,,, — HZP over ), associating to an isomorphism Or /p"Op — HP
the image of 1 € Op/p"Op, extends to a morphism of formal schemes J&,,, — HP over 9),. In
particular we get a commutative diagram of formal schemes over ¥),.

3G, HP

L

38,1, — HP |,
which is cartesian over the analytic fiber V,. In particular 3&,,, — J&,,_; , is the normalization
of the fppf (H,,/H,_1)P-torsor over 3&,,_;, obtained by the fibre product of the diagram above.
One reduces to prove the claimed result for the trace of the morphism H? — HP | (over 9),)
and this follows from the relation between the different and the trace and a careful analysis of
the different of (H,,/H,_1)? given in [AIPC| Cor. A.2].

We are left to discuss the case n = 1. If p is unramified then the degree of ZG,, — Y, is
prime to p and the second claim of the proposition follows immediately. If p is ramified we let
p be the product of all primes of O over p. We introduce a variant of ZG, , by setting Ig/m
to be the adic space over ), classifying isomorphisms Op/pOr — H; [p]D , as group schemes,
equivariant for the Op-action. Here H; [p] is the kernel of multiplication by p on H;.

We have a natural map of adic spaces ZG;, — Ig/u — V. Taking normalizations we get
morphisms of formal schemes J&,, — J&), — 9),.

The degree of ZG' , — Y, is the order of (OF/pOF) * which is prime to p so that Trqu(h*(%@/“) =
Oy,. We are left to estimate the image of the trace map associated to the morphism J&,, —
36’17,,. Arguing as at the beginning of the proof we get a commutative diagram of formal schemes
over )., which is cartesian over ),

36, — HP

L

36/1,7" - Hl [p]D

Thus J&;, is the normalization of a torsor under (H,/H,[p])?. We have an exact sequence

0 — (Hy/Hy[p])? — HP — (Hi[p])® — 0. Tt follows that Hdg is contained in the different of
(Hy/H,[p])? over 9), and we conclude.

[

We immediately get the following

Corollary 3.5. Let Spf R be an open of ), such that the ideal sheaf Hdg is trivial and choose a

~ ~ —p -1
generator Ha. For every 0 < n < r+k there exist elements co = 1 and ¢, € Ha "' Oy, . (Spf R)
forn > 1 such that Trye(c,) = cp—1 for every n > 1.

12



3.3.3 Frobenius
Recall from Proposition that we have a Frobenius map ¢: %), — 2,_1.

Proposition 3.6. There ezists an (Op/p"Or)*-equivariant map ¢: IB,, . — IS, ,_; lifting the
map (b: @r — @rfl-

Proof. AsJ®,,, is constructed by normalizing ), in ZG,, ., it suffices to construct a lift ¢: ZG,, , —
121G, at the level of adic spaces.

Notice that H,,1/H; is the canonical subgroup H/, of level n of G’ = G/H; thanks to [AIPC]|
cor. A.2]. As multiplication by p on H,; defines an isomorphism H,,/H; = H, and hence an
isomorphism H,, = H/ (over ), !). Any Op-linear isomorphism map Or/p"Op — HY defines
an Op-linear isomorphism ¥': O /p"Or — (H)P. O

3.4 The basic constructions

Recall from 5 that we have introduced an m-adic formal scheme QAI/TOF, which is a formal model
of the weight space. It is characterized by the property that the inverse image of the maximal
ideal of A% is an invertible ideal sheaf of OiUOF .

For every element o € m we have denoted by 20 := Spf BY the open formal affine subscheme
of 209 defined by o. We have set W° := Spa (B[], BY) to be the analytic adic subspace of
WO defined by 20°.

Applying the construction of section with Ag = B?, one obtains a formal scheme X, ,
over 2%, Set X,., to be the associated analytic adic space over W,.

For all choices of «a, these formal schemes X, , glue into a formal scheme X, — %% We let
X, — WY be the analytic adic space associated to X,.

Let I = [p*,p¥] C [1,00] be an interval. We defined a formal scheme %% ;= QAﬁ% and now

we consider X, ; = X, X g Q’HOFJ and X, o1 = Xro Xano Qﬁgl.
Let n € N be an integer such that 1 < n < r + k. Applying the considerations of we
obtain an étale cover of adic spaces

Ign,'r,oz,[ — Xr,a,la

for the group (Or/p"Op)*, classifying the isomorphisms Op/p"Op — HP as group schemes,
equivariant for the Op-action. This is a morphism of adic spaces associated to a morphism of
formal schemes

I8, a1 = Xrag

For various o € m these adic spaces and formal schemes glue and we obtain ZG,, ,; — X, ; and
j@n,r’[ — xr’].
3.4.1 Equations

In this subsection we give local equations for some of the spaces defined so far. We have:

o

B = Z,([T, ..., T2, 2L, ..., =9).



If @ € m\ m?, this is a regular ring. Otherwise this ring is 0. Consider an interval I = [p*, p"]
with & > 0 an integer and h > k an integer or h = oo. Take a € m'\ m?2. Ifl1 €] and o = p,
then B) ; = By f a =pand 1 ¢ I, B ; = 0. Assume now that a # p.

1. If h # oo then B ;| = Z,[[T, ..., TylJ(&, ... T u,v)/(oﬂ’kv — p,uv — aph_k),

PR ) o)

2. If h = oo then BY ; = Z,[[T1, ... . T,]|(%, ..., %,u>/(oﬂ’ku — D).

In the second case Bg} ; is a regular ring and, in particular, it is normal. In the first case, one
checks that B, ; is normal by verifying that it is Cohen-Macaulay and regular in codimension 1
(Serre’s criterion).

Let U := Spf A be a formal open affine subscheme of M (uy, ¢) over which wy is trivial. Let
Ha be a lift of Ha. The inverse image of U in X, a,[pk,o0) 18 SPE R with

r

R := A®z,B(u, w) /(wHa" o a, o u— p).

Similarly for integers 0 < k < h the inverse image of U in X, , j» ,») is Spf R’ with

(e

, ~ 0 ~ p'+1 k h—k
R = A®z, B, (u,v,w)/(wHa " — o, o uy, — p, upvp, — o

).
Lemma 3.7. The rings R and R’ are normal.

Proof. The ring B (u, w)/(a?" u—p) is Cohen-Macaulay, and the algebra A&y, BY(u, w) /(o u—
p) is BY(u, w)/(a” u—p)-flat. Moreover A is Cohen-Macaulay and flat over Z,, thus A/pA is also
Cohen-Macaulay. As aresult, A&z, B2 (u, w) /(" u—p) is Cohen-Macaulay over B (u, w)/(a? u—
p), so it is Cohen-Macaulay. Since R is a complete intersection in A&z B2 (u, w) /(o u — p), it
is Cohen-Macaulay. Let us check that R is regular in codimension 1. Let 8 be a codimension 1
prime ideal of R. Then Ry is easily seen to be regular if o & 3. Assume that « lies in *B. Then
P is a generic point of

A/pA g, (BY/aB2)[u, w]/(wHa?"").

Either Ha? ' € P and in that case P8 maps to the generic point B’ of an irreducible compo-
nent of A/(pA,Ha). By [AG| the ring (A/pA)g is a DVR so let ¢ be a generator of its maximal
ideal. If t denotes a lift of ¢ in R then t is a generator of the maximal ideal of Ry and we are done.
Otherwise, w € P and in that case P maps to a generic point of A/pA, and w is a generator of
the maximal ideal of Ry. The normality of the ring R’ follows along similar lines. [

Corollary 3.8. The formal schemes X, ;0 are normal.

4 Overconvergent modular sheaves in characteristic 0

In this section we will construct sheaves of overconvergent Hilbert modular forms over the adic
space Wp \ {|p| = 0}. This was already accomplished in [AIPH] but our goal now is to provide
canonical integral models for the modular sheaves constructed in [ATPH].
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4.1 A modified integral structure on wgq

Fix an interval I = [pk,pk’} with k and k" integers such that &' > k > 0. Let r € Z>; and fix a
positive integer n with n < r + k. Let G be the semi-abelian scheme over X, ;. It follows from
Proposition that there exists a canonical subgroup H, C G[p"].

Let ¢,: 38,1 — X, be the partial Igusa tower defined in Let wg be the sheaf
of invariant differentials of G. It follows from [AIPC, Cor. A.2] that the kernel of the map
wg/p'weg — wpy, is annihilated by Hdg%wg. We deduce that the projection map wg —
wa/ p"Hdg_%wG factors via wy,. One then has a commutative diagram of fppf sheaves of
abelian groups over X, :

wa

|

w H,

|

wG/p”Hdg_p"i:lle

HT

where all vertical arrows are surjective and the horizontal arrow is the Hodge-Tate map.
Over J8,,,; we have a universal section P € H,’? which is the image of 1 via the universal
morphism v,,: Op/p"Op — HP.

Proposition 4.1. Let F be the inverse image in wg of the Ose,, . -submodule ofwg/p”Hdg_ppi:lle
spanned by HT(P). Then F is a locally free Op ® Oye. ., -module of rank 1, the cokernel of

F C wg 15 annthilated by Hdgp+1 and the map HT o1, defines an isomorphism of O @ O5s
modules:

n,r, I

n,r,I

HT': Op ® Oss,,,/p"Hdg 7T Ose, ., = F/p"Hdg #-1 F.

n,r,I

Proof. This is a variant of [AIPH], Prop. 3.4. Let U := Spf R C J38,,,.; be an open formal affine

subscheme such that wg|y is free of rank g as an R-module. Write M € M, v, (R / p”Hdg_%R)
for the matrix of the linearization of the map HT over U. Thanks to [AIPC| prop. A.3] it has

determinant ideal equal to Hdgp%l. In particular HdgﬁwG/p”Hdgfpp%lle lies in the span of
HT(P).

Let M € M,,x,(R) be any lift of M. Its determinant J is Hdgﬁ (up to unit). Let S C walu
be the Submodule spanned by the columns of M. Then dwg C S. Since p"Hdg™ = wg =

p"Hdg™ P dwg C S one deduces that F|y coincides with the S. In particular it is a free
R-module of rank g. By definition it is stable for the action of Op.
For every x E Op/p"OF the 1mage y € HT(’(/)n( ) lies by construction in the image of

S in wG/p”Hdg = wg. As Hdg™ = = Hdg 7 = Hdgp T and as wg/F is anmhllated by
Hdgp I it follows that any two lifts 3/ and 3" in S differ by an element lying in Hdg™ =
Hdgp Twe = Hdg 7 %1 .S, We then get a well defined map Op/p”OF — F/p"Hdg"™ = 1.7-"
inducing HT o ¢, when composed with the projection to wg/p"Hdg™ P F, wg. This provides the
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HT'. By construction its restriction to U is a surjective map of free R/ p”Hdg_pij—modules of
rank g and hence it is an isomorphism. It follows that S = F|y is a free Op ® R-module of rank
1 concluding the proof of the Proposition.

O

We denote by f,,: §nrr — I, .1 the torsor for the group 1 +p”Hdg7P%anesoF/ZGa defined
by
Fors(R) = {we F, w=HT(1) in F/p"Hdg 57 F}.
One has an action of (Op ® Z,)* on Fy,rz, lifting the action of (Or/p"Or)* on I8, ,
given by A (w,1) = (Aw, \). We then get a well defined action of the group (Op ® Z,)* - (1 +
andgiﬁReSOF/ZGa) on Sn,r,l-

4.2 The sheaves of overconvergent forms

Fix an interval I = [pk,pk'} with k£ and k" integers such that k" > k > 0. Let r,n € Z>q. We
assume that r >3, r+k>n >k +2 (rtesp. r+k>n>k +4ifp=2). Set ' =n—k —2
(resp. ' =n—k —4if p=2).

Lemma 4.2. We have pHdg™?" C Oy In particular p”Hdg_zﬂpf1 C pk'“(?g@mr’l (resp.

C P05, ifp=2).
Proof. The claim is local on J3&,,;. Let a € m \ m*. We prove the claim over an open
U = Spf R C 38,4, over the open W, ; = Spf BY; of Wy. By construction we have

p/ozpk € BgJ and oszg_pTJrl C R. Hence pHdg_prMH C R. In particular pHdg *" C R and the
second claim follows. O

n,r,I°

Proposition implies that the character x extends to a character

k: (Op @ ZLy)" - (1 +p”Hdg_%Res@F/ZGa) — G,,
over QU% I-
Define w), . ; = fn«Os, ., [7"] as the subsheaf of f, O, of sections transforming according

to the character k! under the action of 1+ p”HdgfpijesoF /2Gq. It is an invertible sheaf over
J8,,,1. Define 1o, , 1 C gn,*m}ml as the subsheaf of (g, o fn)*OgnmI of k™ !-equivariant sections

for the action of (Op ® Z,)* - (1 +p”Hdg7%Res@F/ZGa).
Proposition 4.3. The sheaf v,,,.1 is an invertible Ox, -module of rank 1.

The rest of this section is devoted to the proof of Proposition . We follow closely [ATPC]
§5] by starting with the following:

Lemma 4.4. Let (Ox, )% be the ideal of topologically nilpotent elements of Oy, ,. Suppose that

r>1 (resp. r>2if p=2). Then s((Op ® Z,)*) — 1 C Hdg(@xn,)oo and for every integer ¢
such that 2 < ¢ <r + k we have

pe—l
k(1+p'Op®2Z,) — 1 C Hdg71 (Ox, )"
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Proof. We deal with the case p # 2 leaving to the reader the case p = 2. The claim is local
on X, ;. We restrict ourselves to an open formal affine subscheme U = Spf R mapping to the

open 20° of 209, defined by an element a € m \ m2. By construction, x((Op ® Z,)*) — 1 C aB°
and since aHdg ™' C (Ox,. 1)00, we can conclude that the first point holds. Using lemma we
see that for £ > 2, we have that k(1 + p"'Op ® Z,) — 1 C (o, p)BY. Arguing as in lemma
4.2 we deduce from the assumption that ¢ < r + k that pHdg™® € (Oxr,,)oo. On the other

hand as r > 1, then a € Hdg”g(’)xm so that o * € Hdgp[(’)x“. As f:ll < pt, it follows that

o2 1 00
o "Hdg™ 7t C (Ox,,) - O
We also have the following:

Lemma 4.5. The inclusion Osg

n,r, I

— fusOz, ., defines an isomorphism

! 1 ot
Oj@n,r,]/qpn Oj@n,r,[ — mn,’f‘,[/qpn mn,r,]'

Proof. Consider an open formal affine subscheme U = Spf R C J&,,, ; mapping to the open
formal subscheme 20° of %OF defined by some a € m\ m?. Assume that wg|y is free. The choice
of an element § € F|y lifting s := HT'(1) defines a section of the morphism §, .|l = TG, 1|
and hence an isomorphism fs: w), . ;lv = Ose,, ;|v given by evaluating the functions at 3.

Two different lifts § and s differ by an element of 1+ p”Hdg_ijO r® R thanks to proposition

. Proposition implies that 1 + p"Hdg »T0r @ R C 1 + p! 4" 0p @ R (resp. 1 +
PP Or @ Rif p=2). As I = [p¥, p*'] we conclude that x(1+ p* """ Or @ R) C 1+ p” 'R
(and similarly x(1 + p* 3+ Or @ R) C 1+ o™ R for p = 2). Thus f; = f; modulo gp™. This
provides the inverse to the isomorphism in the lemma. O

Let U = Spf R be an open affine formal subscheme of X, ;. Suppose that wg is free over U.
Thanks to Corollary for every non-negative integer n such that 0 < n < r + k there exist
n_q

~ b -2
elements ¢y = 1 and ¢, € Ha *' Oy, , (Spf R) for n > 1 such that Trye(c,) = -1 for every
n > 1. If n satisfies r + k> n >k + 3 (resp. n > k' + 4 if p = 2) we define a projector:

p"—1

ecn:gn,*m}m[(R) — ﬁafﬁmm,](R)

s Z k(o)o(cps)

O'E(OF/pnOF)*
The following lemma proves Proposition 4.3}

Lemma 4.6. Let s € g,.w).  (R) be an element such that s =1 mod p (in the sense of

n,r,I

Lemmal4.5). Then e, (s) € 0, 1(R) and 10, ;(R) is the free R-module generated by e, (s).

Proof. The proof is entirely analogous to the proof of [AIPC| Lemme 5.4]. Write s = 1+ ph for
a section h € §,.r1(R). We get

eeo(s) = Y. K@)l +p Y. K(6)F(cah).

o€(OF /p"OF)* o€(OF /p"OF)*
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~ oTt+k+1 n
In this formula, & is an arbitrary lift of ¢ to T(Z,). Since Ha’ | p and ppT_ll < prtRHL g
follows that p>_,c (o, spmop- £(5)(cnh) € BTy, 1(R) where R is the ideal of topologically
nilpotent elements in R.

We need to show that
Z Kk(5)5(c,) € 14+ RYF,.1(R).

O'E(OF/p”OF)*

This follows from lemmas 2.6/ and [£.4] As a consequence, e, (s) belongs to w,,,.;(R) and one
checks easily that it is a generator using the normality of R as in [AIPC, Lemme 5.4]. O

4.3 Properties of v, .
4.3.1 Functoriality

Fix intervals I’ C I, v’ and r such that ' > r and integers n’ > n so that (I’,7’,n') and (I,r,n)
satisfy the assumptions given at the beginning of . We have the following commutative
diagram:

—F
Sn’,r’,]’ n,r,

l l

jﬁn’,r’,[’ —_— jﬁn,r,[

N

%r’,l’ :{r I

)

which induces a morphism of Oy , ,-modules:

L*mn,r,l — mn’,r’,[“
Proposition 4.7. The morphism above is an isomorphism.
Proof. Consider O%T,’ o L*I‘O;’; ; @10, . This last sheaf is the subsheaf of (g, o fn/)*Ogn,m,’ y

consisting of sections on which (O ®Z,)*- (14 p"Hdg v 1 0p ®Zy) acts trivially. This coincides
with the sheaf Ox, , by the normality of X,/ ;. The composite map

*eoo—1
OXTI’I/ — L mn’n] ® mn’,'f’,[’ — O:{'r’,l’

is the identity. This proves the claim. O]

We simplify the notations and write to; instead of 1o, ;.
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4.3.2 Frobenius

Propositions and provide compatible morphisms ¢: X,; — X,_i; and J&, 11,5 —
J®,, 1,1 obtained by composing the projection 3&, 41,7 — I&,,; and the Frobenius map
¢ 38, , 1 — IB, 1. Let us recall the description of the morphism I3&,, 1,7 = I, ,_1 .
Let F': G — G/H; = G’ be the canonical isogeny between the semi-abelian schemes G over
X, and G’ over X,_; ;. This morphism induces a surjective morphism of canonical subgroups
H,.1 — H,y1/H; = H/ of G and G’ respectively. Dualizing we get an injective morphism
FD. H,’LD — HP . Themap ¢: 38,41, — TG,/ 1 associates to a morphism ¢): Op/p" 1 Op —
HP | the morphism ¢': Op/p"Or — H,P making the following diagram commute:

. ¥
OF/P HOp — HE—H

XPT FDT

O /p"Op v H.P
We then get the commutative diagram:

Sn+1,r,[ E——— gn,r’,[

| i

~ ~
JQ5n+l,r‘,l - J671,7“/,1

| i

]
%T‘,I }:r’,l

where the morphism §,11,7 — §n,—1,7 is given by mapping a differential w € F to pw €
F' C wgr. One checks that this is well defined by using the following commutative diagram:

'D D
Hn H?’L+1

\LHT lHT
F*

War —— Wqg
and thus obtains a morphism ¢*to; — tv;.
Proposition 4.8. The morphism ¢*vo; — w; is an isomorphism.

Proof. The proof is analogous to the proof of Proposition [4.7] O

5 Perfect overconvergent modular forms

In this section we define a sheaf of perfect overconvergent Hilbert modular forms over the weight
space 2% and in the next we will show that one can undo the perfectisation.
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5.1 The anti-canonical tower

Let I = [p*,p*] C [1,+00] and r,n € Zsp and n < r + k. As explained in §4.3.2] we have
compatible morphisms

~ ~
Jqsn,r—l—l,l I J®n,'r,[

l |

¢
%r—l-l,l %7‘,[

Taking the limits we get formal schemes J&,, .. 1 — X 1 over %% Varying n we get a tower
of formal schemes -+ — T&, 19001 = TOpi1001 = IO, 001 Let T o1 be the projective
limit. As the index r varies now, we denote by G, — X, the semi-abelian scheme and by
Hdg, C Ox, ; the Hodge ideal defined by G,.

Recall from that associated to the finite morphism 38,,, ; — J3&,,_;, ; we have a trace
map Trys: Oze,,, = O These are compatible for varying r» and define a trace map
Trye: Oze — Ose

n—1,r,I1"

n,o00,l n—1,00,I"

Proposition 5.1. We have Hdg,Oss, , ., C Tras(Ose, .. ,) for every s > 1.

Proof. Thanks to Proposition |3.4| we have Hdggn_l(’)m%m , C Trae (huOss, ;). 1t follows from

[AIPC, Cor. A.2] that Hdg?,, = Hdg,. Since Hdg?" Oy C Trye(Ose, .. ,) and s is
arbitrary, the claim follows.

n—1,00,I

[]

5.2 Tate traces

Let @ € m\ m?. Denote by I8 .01 — X001 the base change of the formal schemes above to
Q@ — Wh.
Let h,: Xo,a,1 — X,a,1 be the projection map onto the r-th factor.

Proposition 5.2. One has Tate traces:
Tr'r: (hr)*oxoo,a,l [1/@] - Ox'r,a,l [1/0{]
such that f =lim,_,o Tr,(f). Moreover

TTT((hr)*Ox ) cal. Ox

oo, 1 Tyl

as soon as p"(p—1) > 2g + 1.

Proof. The proof follows closely the proof of [AIPC| Proposition 6.2]. We first provide the
analogue of [AIPC| §6.3.2 & §6.3.3] which reduces the proof to [AIPC, Lemme 6.1].

For every non-negative integer k > r 4 1 define Bgé’ [pk = Bg’ I [apfk}. One proves as in
31 that it is a normal ring. Let Qﬂg’ 1+ De the associated a-adic formal scheme and let
WO

oLk = Spa(BgJ,p,k [ofl] , B° *kD be the associated analytic adic space. Define X, , 1, &

a,l,p
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to be the fiber product & 4 1 X0 , Wg [pt- Define X, , ; ,~¢+1) to be the normalization of X, , 1

in X, ;,-c+» (see §3.3). For general k > r+ 1 let X, ,; -« be the base-change of X, ; -¢+1)

via the map Qﬁgm_k — mg,l,p‘““)‘ The associated analytic adic space is & , ; ,-+ such that
we have morphisms
. 0 _
X rpt = Xy p-oa = Xeag — Mun, ¢) x Wy, ; — M(un, ¢). (1)

5.2.1 An explicit description of diagram [I] in

Let U := Spf A C M(un,¢) be an open formal affine so that the sheaf wg is trivial. We will
describe the fiber of the above chain of morphisms over U. Choose a lift of the Hasse invariant
viewed as a scalar Ha.

The fiber of U in X, , -+ is the formal spectrum of

~ 9 Oél/pTJrl ~ 0 ~ 1/prtl  pk pk’fk
R:=A®B, | -1 i ) =AR®B, +1){u, v, w)/(wHa — a o v —puv — o ).

Here the variable v and the equation uv — o " are missing in case k' = oo. Arguing as in the
proof of Lemma [3.7] it follows that R is a normal ring.

—~ r+1
Set Ry := R ®po - Bglp_k = A®Bglp_k(o‘1/€ ). It is finite and free as an R-module
a’l’p_ r 1. .

Ha
with basis a®?" for 0 < a < pF*1'=" — 1. The associated formal scheme Spf Ry, is the open of
X, q,1p-* over the open U C X.
Then the restriction of the diagram to U is given by the ring homomorphisms:

A — ARBY ;| — A@Bg7l<#> — R — Ry (2)
a

5.2.2 Frobenius
The Frobenius morphism of Proposition [3.3] defines a cartesian diagram

Xr,a,],p*’“ = ra,l (3)

& |

Xr—l,a,[,p*k — = Ar—1l,0,1I-

Due to Proposition the morphism &, ,;,-+ — X,_1,r,-+ is finite. Hence we get a
commutative diagram

%T,aJ,p*’“ xna,l,p‘““) Xra,1

3 | |

%rfl,a,l,p*k - %rfl,a,l,p—(”'l) E—— %rfl,a,l

Over U = Spf A the morphism X, , -+ — X,_1 4.1,-* 1S given by
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~ 0 al/pT ~ 0 al/pT+1
Sk = A®Ba’l’pik<?a> — A®Ba,l,p7k< I—fa > = Rk (4)

It is finite and modulo pa™'/?" is induced by the absolute Frobenius on A/pA. Indeed this holds
true modulo pl-fa_1 due to [ATPC| Cor. A.2] and ]DI-fa_1 = (pa=/7") - (ozl/pTI-fa_l).

5.2.3 The unramified case

We first assume that p is unramified in /. This implies that A is formally smooth over Z,. It
follows from [ATPC, Lemme 6.1] applied to the extension S, C Ry that Spla™!] C Ryla™!] is a

(20+1)
finite and flat extension and that Tr(Ry) C pfa” s Sk. This implies that for all ' > r and
kE>r +1,

2g+1
p—1

Tr(brl_r (Oxr’,a,l,p*k) C pla v ) Oy
In particular, defining

1

Tr, := ZET%S: hy+Ox (o] = Ox, ., [e7],

r+s,a,1

we deduce that, if p"(p — 1) > 2¢g + 1, the image of h, .Ox is contained in ofloxm rr ()
Ox, ., [a!] which is a7! - Ox, ., since X, . r,+ — X, 07 18 a finite and dominant morphism

and X, is normal. The Proposition follows from this. O

r+s,0,1

5.2.4 The general case

We now drop the assumption that p is unramified in F. In this situation ﬁ(uzv,c) is not
formally smooth. Nevertheless the Rapoport locus MM (uy, ¢) C M(uy, ¢) is the smooth locus
and its complement is of codimension at least 2. We let f{ffa’ 1pr C X, o,1,p-+ be the open formal
subscheme where the Rapoport condition holds.

Arguing as in the unramified case, we obtain a map Tr, := I#Trqjs : hn*Oxﬁsyw — a tOxr

Tyl

Lemma 5.3. The formal scheme %faJ is Zariski dense in X, 4 1.

Proof. This follows easily from the explicit equations. Note that we crucially use here that the
complement of the Rapoport locus is of codimension 1 in the non-ordinary locus of the special
fiber of M (puy, ¢). O

Consider the following commutative diagram:

R
’%r—l-s,a,l - %7’-‘!'87041[

FT

xR %r,a,l

r,on ]

We claim that it induces a commutative diagram:
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Proof. Indeed, let Spf R be an open formal subscheme of X, . ;. Take f € Ox, ,, ., (R). Then
aTr,(f) is in Oxr  (R). Moreover, as the morphism ¢*: R[1] = Ox, ., (R)[Z] is finite flat, we
deduce that aTr,.(f) € R[zla]' Since R is normal, R = NqRq where £ runs over all codimension
1 prime ideals in R. Thus we are left to check that aTr,(f) € Rq whenever p € Q.

~ r+1

Ifa ¢ QaswHa® —a =0, we deduce that the image of  in My, ) lies in the ordinary
locus and in particular in the Rapoport locus. Thus aTr,.(f) € Rq. If a € Q, then Q is a
generic point of the special fiber of R and since the Rapoport locus is Zariski dense, £ lies in
the Rapoport locus. Thus aTr,.(f) € Rg. ]

r,a,](

5.3 The sheaf of perfect, overconvergent Hilbert modular forms

Lemma 5.4. Let « € m\ m?. The sheaf Ox is integrally closed in Ox__ , ,[1/a]. Moreover

oo, a,t

(quﬁoo’ooyal) (OF®Zp)* _ O}I

oco,a,l*

Proof. (1) Let U := Spf R be an open formal subscheme of X , ;. For s large enough it is the
inverse image of an open formal subscheme Spf R, of X, .. Let f € R[1/a]. For s large enough
we have f = f; + h with fs € Rs[1/a] and h € R so that we may assume that f € Rs[1/a]. Let
fr+ " ta,_1 + - +ag =0 with ag, ..., a,_1 € R be an integral relation.

Applying Tr, one gets f* + f" 'Try(an_1) + -+ + Trp(ag) = 0 and as a; € R for s large
enough we have Tr,(a;) € RNa 'R,. For h > 0 the morphism R, — R}, is a finite dominant
morphism of normal rings. Hence Ry/a — R/ is injective so that Rs/a — R/« is injective
as well. We deduce that aTrs(a;) € aR, and hence that Try(a;) € Rs. Thus f is integral over
R, and, hence, f € R, proving the first claim of the lemma.

(2) The inverse image of Spf R in J&,, o is equal to Spf R, with R, integral over R
and R[ofl] C R, [ail] finite and étale. In particular (Rn [ail])(OF/pnoF)* = R[ofl] so that

ROFP"OR” contains R and is integral over R and, hence by the first claim, it must be equal to

R. Let R be the inverse image of Spf R in &, o 1. Consider an element z € R fixed by
(OF ®Z,)*. There exists n large enough and x,, € R,, such that z —x,, = az’ for some 2’ € R.
In particular 2’ is fixed by 1+ p"Op ® Z,. Thanks to Proposition for every n’ > n there
exists an element ¢,y € R;, such that Trg ,/g,(cny) = @. In particular the higher cohomology
groups of (1 + p"Op/p” Or) acting on R, are annihilated by a.

For every s there exists n(s) > n such that 2’ € (Ry ) /o) " 7% and hence there exists
ys € R, such that y, = ax’ modulo o®*. We deduce that y, converges to an element y for s — oo
such that ax’ = y. Hence x € ROFP"OR) which is R by the first part of the argument. n

Define 7" to be the subsheaf of Ox_,-modules of Oye_ _, consisting of those sections
transforming via the character k! for the action of (Or ® Z,)*. Then:
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Proposition 5.5. The sheaf m?erf is an invertible Ox__ ;-module. Moreover for every subinterval

J C I the pull-back of m?erf via the natural morphism vyr: X g — Xoo1 coincides with m?erf.

Proof. We prove the first claim. Let U := Spf R be an open formal subscheme of X o1 Suppose
that Hdg, is a principal ideal over Spf R with generator Ha;. Let Spf R, (resp. Spf R.,) be the
inverse image of U in J3&,, o o1 (resp. in I& .a,7). Due to Corollary it suffices to exhibit
an invertible element z € R, such that o(x) = k™! (0)z for every o € (O ® Z,)*.
Propositionimplies that there exist elements ¢, € Hafan such that Trg, /g, ,(cn) = cn1
and co = 1. Define b, := > o, /no,)- (0)o(c) € I—fal_an for n > 1. Here 6 € T(Z,) is
a lift of o. It follows from lemma that b, converges to an element by, € R, such that
0(bso) = K 1(0)bs for every o € (Op ® Z,)* and by, = 1 modulo =% R, so that bis invertible

Haq
in R, as claimed.
The last claim can be proved as in §4.3| O

6 Descent

In this section we prove that the sheaf n?" defined in can be descended to some finite
level.

6.1 Comparison with the sheaf to;

Consider an interval I = [p*, p¥] with k and &’ non negative integers. Thanks to proposition
we have an invertible sheaf to; over X, ;. Recall that we have a projection map h,: Xoo 1 — X, 1.
Then:

el . ) . . £
Proposition 6.1. There exists a canonical isomorphism 5™ ~ h*ro;.

Proof. Over X o1 we have a chain of isogenies

F
"'Gn+r_>Gn+r—1_>"'Gr

where G is the versal semi-abelian scheme over X, ;. Denote by C,, — G,[p"| the kernel
of (FMP: G,[p"]P — G.a[p™?). Clearly C,, = H,(G.y,)”. The isogeny F: G, — G,
induces a morphism C),,+; — C,, which is generically an isomorphism. Over 38, . ; we
have a universal morphism Op/p"Or — H,(G,)” for every s > n — k. The map C,, —
G[p"]/H,(G,) ~ H,(G,)P is generically an isomorphism as both group schemes are generically
étale. Composing we then get an Op-equivariant map Op/p"Op — C, s for every s > n — k.
Using the morphisms C,, 41 — C,, we get an Op-equivariant morphism Op/p"Or — C,,
for every n which is generically an isomorphism. Passing to the projective limit we get a Op-
equivariant map Op®%Z, — lim,, C,, .. Let HT*" be the image of 1 in lim,, C,, , via the Hodge-Tate
map lim,, G,[p"] = wg,. Then HT"" defines an (Op ® Z,)*-equivariant map:

305oo,ooJ — gn,r,]
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fitting in the commutative diagram:

Tj@oo,oo,l - Sn,r,[

_

~ ~
JQ5n,c>o,[ - Jﬁn,r,l

Lo

hy
%0071 %7’71

We then get an injective homomorphism hA’to; — mrjerf. Moreover

f K — (OF®Zp)*
mﬁ-’er ®h7,m]1 C (Oj@ ) P = Oxoo‘l

00,00,

thanks to Corollary [5.4] O

perf

Corollary 6.2. We have a Tate trace map Tr,: h, 08" — o 'y, which is functorial in I.

6.2 Descent along the anti-canonical tower
Fix « € m\ m?. Let I = [1, 00].
Lemma 6.3. The natural morphisms of sheaves

(@) — lim (@) and O — lim O
Xral 1Sk SES0  raslpk o] Xoo,a.1 1Sk SES0 ook pk']

are 1somorphisms.

Proof. We prove the first statement. The second follows arguing as in [AIPC|, Lemme 6.6] using
the Tate traces constructed in Proposition [5.2]

Let U := Spf A be a formal open affine subscheme of MM (uy, ¢) over which wy is trivial. Let
Ha be a lift of Ha. Arguing as in the proof of Lemma one deduces that the inverse image of
Uin X, is Spf R with R := A®z, B, (u, w)/(wﬁar—a, au—p) and that for integers 1 < h < k
1 is Spf Ry, with Ry, . := R{up, Uk)/(aphuh — P, UpUL —ozpk*ph).

the inverse image of U in X, [ p

There are maps Ry, — Ry for h < ' < k < k' given by u; — ozph/*phuh/ and v —
oa?* P . The argument in [AIPC| Lemme 6.4] shows that the map R — lim; Ry is an
isomorphism. This proves the claim. O]

Theorem 6.4. The sheaf m‘])erf descends to an invertible sheaf vo; over X, o 1 for r > sup{4,1+
log, 2g + 1} ifp > 3 and r > sup{6,1 + log, 2g + 1} if p = 2. More precisely vy is the subsheaf
of Ox, ., ,-modules of l*oll’erf characterized by the fact that for every interval J = [p*, p¥'] with
E' >k > 0 integers and denoting ty1: X,.0,.5 — Xrar1 the natural morphism, then Ly Yoy s the
sheaf v of Proposition [{.3 compatibly with the identification of Proposition[0.1].

Moreover oy is free of rank 1 over every formal affine subscheme U C M(pun,¢) such that
welu s trivial.
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Proof. The proof is analogous to the proof of [AIPCl Thm. 6.4]. We set

o7 1= lim tOr Kk
kt1>k>k>0 PR

where the limit is taken over integers k, k’. Let U := Spf A be a formal open affine subscheme
of ﬁ(,u]v, ¢) where wg is trivial. Let W := Spf B be the inverse image of U in X, , ;. We prove
that w;|y is a free Oy-module of rank 1 and it descends perf|w

We prove the claim for the minimal r possible, i.e., r = 4 if p > 3 and r = 6 for if p = 2.
Let Ha, be a lift of the Hasse invariant over U. Thanks to Corollary and Proposition

.~ _p'=1
we can find elements ¢, € Ha, *™' Osg, .., (W) for integers n < 7 and elements ¢, €

Ha;pTOJ@nma’I(W) for general » < n so that ¢ = 1 and Trys(c,) = c,—1. Define b, =

Y 0c(Opjprop) £(0)0(cn) where & is a lift of o in (OF ® Z,)".
Using lemma [2.6] we deduce that:
e The sequence b, converges to an element b,
e bo=1 mod Ha ’ a and in particular b, generates mperf(W),

e b, =b, mod mr,lHNawT (resp. mr,z}fapr if p=2).

Consider an interval J = [p*, p*!] and the commutative diagram:

~ ~
J®c>o,f>o,oz,[ D J®oo,oo,oz,J - SkJrr,r,a,J

| | i

~ ~ ~
J®k+r,oo,a,l I J®k+r,oo,J — J®k+r,r,a,J

| | i

hy
xoo,a,[ %oo,a,J %r,a,J

Let T := Spf C be the inverse image of W in X, , ;. Then |y admlts a generator f as

C-module constructed as follows. For every 0 < n < r + k take ¢, € Ha, T Ose,.,...,(T) such
that ¢ = 1, Trae(c,) = ¢,_; and ¢, = ¢, if n < r. Take a section s € ngJrr,r’a,J(T) which is 1
mod p? and which generates 1,4, s(T") (see lemma [L.5] and note that 1 =k +r — (k+ 1) — 2
fp#2andl=k+r—(k+1)—4ifp=2). . Let f:=3" 0, /prtrop- K(6)0 (c)y5).

Then

. _prtka
f= Z k(6)o(c) ;) mod Ha *' p?
o€(Op /pF+7OF)*
and it follows from [2.6] that
L o_p't _ otk
Z K(G)o(cyy) = Z k(6)o(c,) mod (m,_Ha »7* -+ mpHa 777)

o€(Op /p*+7OFp)* o€(Of /p"OF)*
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. _p' -1 - 7pr+k—1
(resp. mod (m,_oHa *~' -+« m, oHa *' )ifp= 2)_

Over the interval [p*, p**1], we have p € o#" B ;, and it follows that

0 n—1 k+ n—2 n—1 k+1
m, B, C (o ol A S

~ T

+1
Moreover, « € Ha ~ T. Assume p # 2. We claim that

N _p”’*l 5 _pr+k71
(mr_lHa Pt y ,mr+k_1Ha Pt ) - (042).
It is enough to check that :
— _ _ k-1
(mr—la 17 m,Q la ey My P ) C (OéQ)

where the term mr+k,1a_pk71 is missing if £ = 0.
This boils down to the set of inequalities:

o 1+2<p % 1+2<pF+p % 142 <28 +p 2.
o forr<n<r+k-1
P 2 <pt Tl T 2 < gt T 2 < (= 1)pF L

When p = 2, one proves similarly that

pr—1 pr+k71

(mr_2H~a_ Pt y ottt ,mr+k_21-fa_ Pt ) C (O{2).
It follows that -
f - bOO e (a27 I—fa’_ Pt pz)OjQSoo,oo,a,J (T)
p7'+k71

so that by = (1 4+ o2u+Ha ** p?v)f for some elements u,v € Ox....,(T). Taking the Tate
trace Tr,: h, .Ox — a'0x constructed in Proposition we conclude that Tr, (b)) =

_ _pitka
f(L+o?Tr(u) +Ha  *' p?Tr,(v)). As Tr,(u), Tr,(v) € a 'Oy, . ,(T') by Proposition we
deduce that Tr,(b) is a generator of to;|r. Since the construction of Tr,(bs) is functorial in
J we get that to; (W) = Tr,(bso) - limpy15p>k>0 (er,a’[pkvpk,](W) = Tr,(bs)B thanks to Lemma
[6.31 The theorem follows. O

0o, 0, J r,0,J

Proposition 6.5. The sheaves w; over each X, glue to a sheaf still denoted vo; over X, ;.
Let ¢: X, 411 — X, 1 be the Frobenius. We have an isomorphism

to; ~ ¢*t’0].

Proof. Dueto T heoremthe sheaf t; over X,., s is canonically determined by the sheaves ro?*"*

and the sheaves to; for J = [p*, p¥']. These glue for varying a and have compatible Frobenius
morphisms by §4.3.2] The claim follows. O
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6.3 Descent to the Iwasawa algebra

Let 3 = ﬁ(m\;, ) X QU%. For all » > 0, let 3, be the m-adic formal scheme representing
the functor which associates to any m-adically complete A%-algebra R without A%-torsion the
equivalence classes of tuples (h: Spf R — M (pn, ), 0y, M1, -+ 1y € HO(Spf R, h* det wg_p)pT+1))
such that

Ha?

r4+1 r+1 r+1

N, =p mod p?, Ha? "my =Ty mod p? ---, Ha? ng =1, mod P2
Two tuples (h,n,, 71, ,ny) and (R, ny,m1,- - ,1n,) are declared equivalent if A = A’ and

Mo = Mp(1+puy), m=my +nppus, -+, Ng = 1, + Nppuy

for some u,, uy, -+ ,uy € R.
There is a cartesian diagram of formal schemes:

%7'49>37'

|

2w — W
Theorem 6.6. (1) The natural map Oz, — g.Ox, is an isomorphism.
(2) The sheaf g,vo; (here I = [1,00]) is an invertible sheaf over 3, and g*g,vo; = to;.

Proof. Let U := Spf A be a formal open affine subscheme of M (py, ¢) where w is trivial. Let
W := Spf B be the inverse image of U in 3,. In particular we have elements 7,,,...,n, such
that B = A[[T1, -, T, (ps s - -y 1)/ (Ha?" " 1 —p, Ha?" iy =Ty, - - -, Hal”
as in Lemma [3.7 we deduce that B is normal. .

(1) The map g is the base-change of the morphism 20% — 209 which is the m-adic completion
of a blow-up, therefore it is proper. Thus C' := ¢,Ox,. (W) is a finite B-module. The map B — C'
is an isomorphism over the ordinary locus of U and, hence, it is generically an isomorphism. As
X, is also normal it follows that B = C' as claimed.

(2) Let Z := g~ 'W. Thanks to (1) it suffices to prove that ;|7 is a free Oz-module of rank
1. Let ZPf be the inverse image of Z in X,. We will actually prove that m‘[)erf| et 1S a free
O gvet-module of rank 1 and find a generator b, whose trace will be a generator of ;| .

We apply the construction of with Ay = Z,. We thus obtain formal schemes ), together
with partial Igusa towers J69),, , — 9, for n < s.

Passing to the limit over Frobenius, we obtain 3&%),, ., — 2. There is an obvious commu-
tative diagram:

Mg — Tg) . Arguing

j®n,r — jﬁ@n,r

;]

X, 2,

L

~, 0
WY, — Wy
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As in Corollary [3.5] one deduces from Proposition [3.4] the existence of elements

p"—

~ _p =1
C/n S Har Pt Oj@@n,r(W)

for integers n < r and elements ¢, € Ha,_ prOg@@nm(W) for general r < n so that ¢, = 1 and
Trye(c,) = c,_,. We call ¢, the pull back of ¢, in Oy, . (Z). We can now repeat the proof of

Theorem using these elements ¢, to obtain a trivialization b, of m?erf\ zpert Whose trace gives
the trivialization of 1| z.
m

We set 10" = g,to;.

6.4 The main theorem

Let H be the torsion subgroup of T(Z,). Let x: H — A} be the restriction of the universal
character to H. Due to Lemma it is a quotient of (Op/p?OF)* and we view Y as a character

of (Op/p*OFr)*. For all r > 0, let
mtr = 37« XQH(I); QHF.
Let M, be the analytic adic space associated to 9. In other words, M, is the open subset
of the M (puy,¢) XSpec 7, YVr defined by the conditions:

~ pr+1
Ha™ | > sup{|al},
aem

where Ha is a local lift of the Hasse invariant. Over M, we have a canonical subgroup Cs of level

2. Let ZGMs, be the torsor of trivializations of CP. Let JEM;, hy M1, be the normalization.
It carries an action of (Op/p*Or)*.

Let 10X be the subsheaf of (hs),Ozsm,, where (Op/p*Op)* acts via the character x~': H —
A% composed with the projection (Op/p*Or)* — H. This is a coherent sheaf, invertible over
the ordinary locus and over the analytic fiber M,..

We define " = (s*m”) ® X where s: 9, — 3, is the projection. We let w*" be the
associated sheaf over M,..

Theorem 6.7. The sheaf w* over M, enjoys the following properties:

1. the restriction of w*" to the classical analytic space M, X Spa(Zp,Zp) SPUQy, Zy) is the sheaf
defined in [AIPH, Def. 3.6];

2. for all locally algebraic weight kx: T(Z,) — OEP where k is an algebraic weight and x

is a finite character, then W™ |p, = WF(x) is the sheaf of weight k modular forms and
nebentypus x.

3. Ifi: M1 — M, is the inclusion and ¢: M, 1 — M, is the Frobenius, then we have a
canonical isomorphism i*w" ~ ¢*WE .
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7 Overconvergent forms in characteristic p

Specializing the sheaf w"™" of Theorem to characteristic p points of Wr we obtain sheaves of
overconvergent Hilbert modular forms in characteristic p. The goal of this section is to describe
them via a construction purely in characteristic p.

7.1 The characteristic p Igusa tower

Let M (uy, ¢)r, be the special fiber of M (1, ¢) and denote by M oq (g, ¢)r, the ordinary locus.
It is an open dense subscheme of M (uy, ¢)r,, smooth over Spec IF,. Fix a positive integer n.
Over M (puy, ¢)r, we have a canonical subgroup of level n, denoted by H,. It is the kernel of
the n-th power Frobenius map F" : G — G®"). The canonical subgroup over M g.q(in, o),
is of multiplicative type and its dual H? is étale locally isomorphic to Op/p"Or. We denote
by IGpod — Mord(uN,c)Fp the finite, étale and Galois cover for the group (Op/p"OFp)* of
trivializations of HP”. Passing to the projective limit over n we get a scheme Em,ord over
M (i, ¢)r,. For every n define IG, — M(py, ¢)r, to be the normalization of M (py, ¢)p, in
IG,, ora- The scheme IG,, is finite over M (yuy, ¢)r, and carries an action of the group (Or/p"Op)*.
It is characterized by the following universal property:

Lemma 7.1. For every normal Fy-algebra R and every R-valued point © € M(py,¢)(R) such
that the ordinary locus (Spec R)orq is dense in Spec R, the R-valued points of 1G,, over x consist
of the Op-equivariant morphisms Op /p"Op — HP which are isomorphisms over (Spec R)opq.

n,xr’

Here H,, , is the pull back of the canonical subgroup to Spec R via x.

Let hyi1: IGnir — IG,, (with the convention IGy = M (pn, ¢)r,). Let us denote by
Tri: (hn+1)*oﬁn+1 — O,
the trace of this morphism.
Lemma 7.2. For alln > 0, we have Hdg?" C TrIG((hnH)*Omn).
Proof. Similar to the proof of Proposition [3.4] m

Corollary 7.3. Let Spec A be an open subset of M (juy, ¢)r, such that the sheaf Hdg is trivial.
Let us identify Ha with a generator of Hdg. There is a sequence of elements ¢co = 1, ¢, €

Haf%Oﬁn(Spec A) for n > 1 such that Trig(c,) = ¢y_1.

7.2 Formal schemes attached to the Hilbert modular variety in char-
acteristic p

Let m be the maximal ideal (T, -+, T}) of A% /pAj. We set 2%\ = Spf A% /pAj. Recall that

W .y is the blow-up of Wy, along m.
In sectionwe defined an m_—adic formal scheme 3, — 20%. We set 3, (o} = 3, X qu0, WY (oo}
Its ordinary locus is 3ord, {00} = Mora(ftn, ©)F, XSpec ¥, Spf Qﬂ%{oo}.
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" in we defined a formal scheme X, (o, over %% {00} and it follows from the definitions
at:

%r,{oo} = 37‘,{00} X0 QB%,{00}

F,{oc}

Let 383, (0} = 1G,, XSpec ¥, 3r{oc} be the partial Igusa tower of level n over 3, ;.. Passing

to the limit over n, we get an m-adic formal scheme h : J&3 ; (o0} — 37 {0} Which carries an
action of T(Z,).

Lemma 7.4. 1. The formal scheme 3B3,, , 15} i normal.

2. We have I8, (oo} = IB 3, 1 {00} X3, ooy Xr {00}, Where TG, (e} is defined in .

3. (h.Ose3 ) =05

oco,r,{oco}

Proof. Easy and left to the reader. O]

We have the following:

Proposition 7.5. For any normal, m-adically complete torsion free A%/pA%-algebra, the R-
valued points IB3,, , (R) classify tuples (x, Ny 5N, wn) where

o v € M(uy,c)(R),

o 0y, nr, € HY(R, det wg_p)prﬂ) satisfy HapT“nTi -1,
o Uy Op/p"Or — H)) is a Op-linear morphism of group schemes which is an isomorphism
over (Spec R)ord-

7.3 Convergent Hilbert modular forms in characteristic p

Let B: (Op ®Z,)* — (A% / pA%)* be the reduction modulo p of the character x. Following Katz
[K] we define

m{oo} = Oj@Soo,ord,{oo} [R_l]’

It follows from loc. cit. that it is an invertible sheat of O3, ,-modules. Moreover the Frobenius
on IJB 3o ord, {00} defines an isomorphism ¢ 1w o) ~ ).

7.4 Overconvergent Hilbert modular forms in characteristic p

Let h: 383 (o0} — 3r{cc} be the structural morphism. As in the previous section we define
the subsheaf (o} == h.Ose3.. , (o, [ of heOs6.,, (- 1t is a sheaf of O3 _,-modules. Our
main theorem is

{

Theorem 7.6. Assume that r > 2 (resp. r > 3 if p=2). Then the sheaf Wy is an invertible
sheaf of O3 ,-modules. Its restriction to 3ord,{oc} 5 the sheaf defined in .

31



Proof. The proof is local on M (puy, ¢)r,- Let Spec A be an open subset of M (py, ¢)r, where
the Hodge ideal is trivial. We denote abusively Ha a generator. Let Spf R be the inverse image
of Spec A in 3, (o}, Spf R, the inverse image in J&LL, ;. 1oy and Spf R the inverse image in
J63,r{c}- By lemma , (©OrSL)" — R Thus to prove the theorem it suffices to show that
there exists an invertible element x € Ry such that U( ) =% Y(o)z for every o € (O ® Z,)*.

By Corollary there exist elements ¢, E Ha = R, such that Trg, /g,  (cn) = ¢p—1 and
¢o = 1. Define b, := deGnFa( 5)o(c,) € Ha 5 = PR, forn > 1. Here 6 € (O ® Z,,)* is a lift
of o € (Op/p"OF)*. By Lemma 2.6, we deduce that

n—1

¢ by—by 1€ (T, TP Ha 5T R, ifn>1and p >3,

© by—byy € (T TP Ha T R, if 0> 2 and p =2,
o by —1¢€(Ty, - ,T,)Ha 'R, for all p.

One then concludes that {b,}, is a Cauchy sequence of elements of R, converging to a unit
boo := lim,, b, of Ry, having the property that o(bs) = !(0)bs for every o € (Op @ Z,,)*. O

7.5 Comparison with the sheaf o

In this section we work over X, (o) and prove that the specialization at {oo} of the sheaf o
of Theorem [6.4] equals the pull back to X, (o) of the sheaf o) defined in §7.4]

Proposition 7.7. Let a € m. For every integer ko > 1, the obvious inclusion 1k, o C

ko _ko—1_ .
Ose o o factors modulo o™ °~P°" =% as a morphism

00,00,a,[p"0,00

ko _pko—1_1
m[pkopo] — Oj@ /Oép P .

r4kq,r,a,[pF0,00]

The restriction of vy to X, 400} @5 a subsheaf of Ose which identifies canonically to

{0}

00,0, {0}

Proof. Fix an integer ko > 1. Let Spf B be an open affine of X, , k0 o). Assume that Hdg
is trivial on Spf B, generated by Ha. Fix elements ¢y = 1 and, for 1 < n < kg +r, ¢, €
(Spf B) such that Tryg(c,) = ¢,—1. Complete the sequence by choosing,

~ _prtko
P
for n > r + kg 4+ 1, elements ¢, € Ha Oss .
n,00,a,[p™0 00

Set by = 3, c(0p/prop)- (0)0.Cn, where G is a lift of o in T(Z,). The sequence b, converges in

n,r,a,[pF0 00]

(Spf B) satisfying Tryg(c,) = cp_1.

Oss o to a generator by, of the sheaf m?erf. By Lemma for all n > r + ko, b, = byis,
00,00, |p OO
~ _ Ttk ~ _Tt+k
mod m, ,_1Ha ’ (resp. mod m,,x,_oHa T p = 2). It follows that by, = by,

mod PP

Fix now an interval [p¥, p**!] with k > ko. Let Spf C' be the inverse image of Spf B in

nm[pkpk+1](8pf C)forr+ky+1<n<r+k
satisfying Trye(c;,) = ¢, 1 for n > r + ko + 2 and Trye (¢, 4, 41) = Crrko- There is a generator f

P
Xy o phprt1]. Fix elements ¢, € Ha 7 T O

n
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~ _T+k
of the sheaf to; over Spf C' such that f =3 c om0y £()0.¢,y), mod pHa P Asin C we

~ gtk _ _
have o | p and Ha © | o?"" it follows that f = > oc(o)pr+roy K(0)0.¢ . mod R A

Using lemma one more time, we deduce that f = b,,x, mod kozpk: *ﬁkofl. As a consequence,
in Ojgwwa[pk pkH](Spf C) we have f = by, = bryg, mod o’ P° . Using Tate’s traces,
we get [ = Tr.(by) = b mod apkofpko_l’lmz[f;:’];kﬂ](Spf (). As this relation holds on all
intervals [p*, p**1], it follows that Tr,(bs) = by mod apkofpko_lflmf:,:ofoo}(spf B). As a result,
ko kg—1_
Tr;(beo) = brr, mod o "7P 103®m,m,a7[pkovm](spf B). o
It follows that there is a morphism k) o — Ose Ja? =P =1 which on Spf B

ko _nko—1_ .
JaP 7P =1 Comparing

r kgm0 [pF0 0]
sends Tr,(bso) on byyp,. It factors the map ropr, o — Ose .

’ 00,00,a,[p™0,00
the definition of b, and the construction of the sheaf wy.; we obtain that the restriction of

10[1,00] tO %T,{oo} is 0 {0} -
]

7.6 Analytic overconvergent Hilbert modular forms
in characteristic p
We now let M, (o0} = My Xy, W o} Concretely, M, 1} is the open subset of M(puy,c) XSpec 7,

Wk (s} Where

[Ha?""' | > sup|al.
acm

Let us recall that we denoted by ®*" : T(Z,) — (Ar/pAr)* the universal mod p character.
Let w™" be the pull back of w*" to M, (o). An r-overconvergent Hilbert modular form of
weight &' is a global section of w® . Here is the desired, & la Katz, description.

Proposition 7.8. An r-overconvergent modular form f of weight ™ is a functorial rule which
associates to a tuple (R, RT),z: Spa(R, RT) = M, (oo}, ¥: Op @ Z, ~ lim, x*HY) an element
in f(z,v) € R, where:

1. (R, R") is a complete affinoid Tate algebra,

x*HP is the pullback of the dual canonical subgroup of level n to Spa(R, R*),
The isomorphism 1 is T(Z,)-equivariant,

For all o € T(Z,), f(z,Yo0)= (") o)f(x,v).

There exists a rational cover Spa(R, RT) = USpa(R;, R") and for each i a bounded and
open subring R;o C R} such that x*G|Spa(R. r+) comes from a semi-abelian scheme Gy

A

over Spf R;o and the isomorphism wlSpa(Ri r¥) comes from a group scheme morphism

Yo : Op ® Z, — lim,,(Go[F™))P defined over SpfR;o (where [F™] means the kernel of the
n-th power of the Frobenius isogeny).
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Proof. Take (R, R*) as in the proposition. Without loss of generality, we can assume that R
has a noetherian ring of definition. Using 5), we observe that the rule f defines compatible
sections of H(Spf R;, (s}) ®r,, 12 which glue, by the sheaf property, to a section of W on
Spa(R, R"). O

8 Overconvergent arithmetic Hilbert modular forms

8.1 The Shimura variety M (uy,¢)g

Consider the group G' := Resp/qGLy and G* := G X Respr/gGm G,,, where the morphism G —
Resp/@Gyy, is the determinant. So far we have worked on the Shimura variety associated to the
group G*. From the point of view of automorphic forms it is useful to work with the Shimura
variety defined by the group G.

Let O} be the group of totally real units of O and let Uy C O% be the group of units
congruent to 1 modulo N. Consider the finite group A = O5*/U%. For ¢ € O we have
an action [e]: M(un,¢) — M(uy,c) given by multiplying the polarization A by e¢. The action
factors through A (see [AIPH], intro., p. 6).

Lemma 8.1. The group A acts freely on H(ﬁN, ¢). One can form the quotient M(puy,¢)q =
M (pn,c)/A. The quotient map M (pun,¢) — M(un, ) is finite étale with group A.

Proof. Since M (juy, ¢) is a projective scheme, it can be covered by open affine subschemes fixed
by the action of A. Thus we can form the quotient M (uy, ¢)¢. We now show that A acts freely
on M(py,c). This can be proved over an algebraically closed field k where the freeness of the
action amounts to proving the following:

Consider an abelian variety with real multiplication (A, ¢, ¥, \) over k as in §3|and a totally
positive unit € € (9}“*. Let a: A — A be an automorphism commuting with the Op-action, the
level N structure ¥ and such that Ao a = ea¥ o A. Then a € Uy is a totally positive unit,
congruent to 1 modulo N.

As « respects the level N structure, it suffices to prove that « is an endomorphism lying in
Op. Suppose this is not the case. Then E := F[a] € End’(A) would be a commutative algebra
of dimension at least 2¢g. It must be a field, else A would decompose as a product of at least
two abelian varieties of dimension < g, with real multiplication by F' which is impossible. As a
maximal commutative subalgebra of End”(A) has dimension < 2g, it follows that E is a CM field
of degree 2 over F'. Moreover the Rosati involution associated to any Op-invariant polarization
induces complex conjugation on E. As the rank of the group of units in Op is equal to the rank
of the group of units of Op by Dirichlet’s unit theorem, it follows that there exists an integer
n > 2 such that o € Of and a" ' € Of. Hence ( = (/@) is a primitive n-root of unity in
Og. It preserves every Op-equivariant polarization A as A™' o (VY oXo( =((=1. As N >4
it follows from Serre’s lemma that ( = 1 leading to a contradiction. We are left to show that
A acts freely on the boundary D := M(uy,¢)e \ M (un, ¢)e. Recall that the boundary is the
union of its connected components parametrized by the cusps of the minimal compactification.
Each connected component of the boundary is stratified. More precisely, for each connected
component, there is a polyhedral decomposition X of the cone of totally positive elements M™
inside a fractional ideal M C F' determined by the cusp. To every cone o € ¥ corresponds a
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stratum S, C D. By construction of the toroidal compactification, if € € Uy, then S, = S, .
We now claim that the action of A on the set of all strata in D is free. This follows from the
fact that the stabilizer of 0 € ¥ is a finite subgroup of (’);’*, thus trivial. This concludes the
proof.

m

8.2 Descending the sheaf ™"

We follow closely [AIPH]; see especially the Introduction and §4. First of all the weight space
associated to G is the formal scheme 20% defined by the Iwasawa algebra A% := Z,[(Or ®Z,)* x
Zz]. There is a natural map of formal schemes 2% — W defined by the group homomorphism
(Or @ Zy)* — (Op @ Z,)* x L3 given by ¢ — (t*, Nmpg(t)). This induces a map of analytic
adic spaces t: WE — Wp. We denote by &' := (v,w): (Op ® Z,)* X L} — AS* the universal
character.

Consider the formal scheme 9, gy, WE. Let w"¢" be the pull-back of the universal sheaf
to mr X Qﬁg

As a consequence of lemma the group A acts freely on the formal schemes 9, Xgy, 2E.
We denote by 9, the quotients by the group A. We now claim that the action of A on
M, Xgg, W can be lifted to an action on the sheaf "¢

Since "¢ is defined without any reference to polarization we have an isomorphism g, : [e]*ro®¢" —
¢ for all e € O5™. We modify the action by multiplying s, by v(¢). One then verifies, see
[ATPH] §4.1], that this action factors through the group A. By finite étale descent we obtain a
sheaf that we continue to denote "¢ over M, . We let M, ¢ be the analytic fiber of I, ¢ and
denote by w"¢" the invertible sheaf on M, ¢ associated to Vel

8.3 The cohomology of the sheaf w"¢' (—D)

There is an obvious map M, ¢ — M(uy, ¢)g. Let D denote the boundary divisor in M(py, ¢)g.
We also denote by D its inverse image in I, .

Recall that M*(uy, ¢) is the minimal compactification of M (uy,¢). Certainly, the construc-
tion of 9, admits a variant where one uses M*(uy, ¢) as a starting point instead of M (uy, ¢).
Let us denote by 9t* the resulting formal schemes.

We also define

re = (M Xony, W) /A.

Let h: M, — M, be the canonical projection. The main result of this section is the
following cohomology vanishing theorem:

Theorem 8.2. We have Rih, "¢ (—D) =0 for all i > 0.

Proof. This is a variant of [AIPH], Theorem 3.17. Recall that M (uy,c)¢ is the quotient of
M((pn,¢) by A. Let M*(uy,c) be the minimal compactification and let M*(uy,¢)g be its
quotient by A. We have a map ' : M(uy,c)ec — M*(un,c)g. Let £ be a torsion invertible
sheaf on M (i, ¢)g. Then we claim that RALL(—D) = 0 for i > 0. This follows from [AIPH],
Prop. 6.4. Note that in that reference the proposition is stated for the trivial sheaf, but the

proof works without any change for a torsion sheaf.
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The map h: M, ¢ — My ; is an isomorphism away from the cusps and in particular away from
the ordinary locus, so we are left to prove the statement for the map hoyg @ Mora,c — sm;grm
over the ordinary locus. In this case, the sheaf "¢’ (—D) is invertible. Recall that the ring
A% is semi-local and complete. Let n be a maximal ideal of A% corresponding to a character
n: (Op/pOr)* x (Fp)* — Fy where F, is a finite extension of F,. We are left to prove the

un

vanishing for the sheaf F := t"¢'(—D)/n over Myq,c. This is an invertible sheaf on its support

M oea(pin, ©)ar, = Mora,c- Moreover Feml = Oy a(un0)a s, Decause the order of the character
or s JFq

n divides ¢ — 1, and we can conclude. [

Corollary 8.3. Let g: M,.g — W$ be the projection to the weight space.
1. We have the following vanishing result: Rig,w"¢' (—D) =0 for all i > 0.
2. For every point k € Wg,
K guw"d (—=D) = H* (M, ¢, K*'w"¢ (—D))

15 the space of r-overconvergent, cuspidal, arithmetic Hilbert modular forms of weight k.

3. There exists a finite covering of the weight space W = U;Spa(R;, R}") such that
9" (=D)(Spa(R;, RY'))
is a projective Banach R;-module, for every i.

Proof. We have a sequence of maps

g: M, c EAN M:’G = Wﬁ

The map g¢s is affine and therefore has no non zero higher cohomology. Moreover, Theorem
implies that R¥(gy),w"¢ (—D) = 0. The second point follows easily.

For the last point, fix some open Spa(R;, R;) C W§. Since the sheaf w"¢' (— D) is invertible,
there is a finite covering USpa(S;, S;") of MT,G|Spa(Ri7Ri+) such that the sheaf w*&' (—D) is trivial
on every open of this covering. Arguing as in [AIPC| Prop. 6.9] one proves that each S; is
a projective Banach R;-module. We can form the Chech complex associated to the covering
USpa(sS;, S}), which, by (1), is a resolution of g,w*d (—D)(Spa(R;, R;")). Moreover, each term
appearing in the complex is a projective Banach module and thus g,w"¢ (—D)(Spa(R;, R;')) is
a projective Banach module.

0

8.4 Koecher principle and g-expansions

Consider the open moduli scheme M (uy) in place of M (uy). Correspondingly we obtain an adic
open subspace M¢ of the adic space M, introduced in Let g°: M? =+ Wp and g: M, —
Wr be the structural maps. Similarly, in the arithmetic case we have an adic open subspace
M? .. of the adic space M, ¢ and we denote again by g¢°, resp. g the structural morphisms to

T

Wg (see §8.2). The Koecher principle states that:
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Proposition 8.4. The natural morphisms g°w® — gw"  and ¢g°w"é — g,wW G are isomor-
phisms.

Proof. Since the complement of M (uy) in M(puy) is contained in the ordinary locus one may
restrict to proving the two assertions on ordinary loci. This is classical: unravelling the con-
structions one is reduced to prove the claims for the structural sheaves on the adic Igusa tower.
This can be proven at the level of formal schemes and then, by devissage, reducing to the Igusa
tower Effd’o C m‘:d modulo p over M(/LN)I‘;T.

——ord

Let f.: IG, — M(NN)%T be the structural map. Notice that M (uy, )%’;d is smooth, the

minimal compactification M (u ~)Fd is normal and the map v: M (uy)gd — M (u N)# is proper

birational and it is an isomorphism outside a codimension 2 locus. Then 7, f,,«O7zora is a coherent
Oy ( uyerd-module of normal rings and 7, f, « Opgora.o is the complement of a codimension 2-locus.
Fp ’ n

Thus the map on global sections 7y fr,«Ogora = Vs fr s Oggerao 1s an isomorphism concluding
n,r,a,l

n,r,a,l

the proof of the Proposition.
O

The restriction of our construction to the ordinary locus gives back the theory of families of
p-adic modular forms of Katz [K|] and Hida [Hi2]; see [AIPS] §5.4] for details. In particular one
gets g-expansions at the cusps.

8.5 Hecke operators

Consider a polarization module ¢ as in §3 In this section we work with the open moduli scheme
M (jun, ) in place of M (juy, ¢) in order to avoid the problem of finding toroidal compactifications
preserved by the Hecke operators and we’ll use the Koecher principle to extend these operators
over the cusps. Corresponding to the open subscheme M (juy,c¢) of M(uy,c) we get an open
formal scheme X?(c) of X,(c), proceeding as in

Let ¢ be an ideal of Op prime to N. If ¢ is not prime to p we assume that it is either
equal to pOp or that it is prime. Proceeding as in [AIPH| §3.7] we consider the normalization
S C X2(c) x X2(c) of the Hecke correspondence classifying isogenies 7,: G — G’, where G and
G’ are defined by points of X9(¢) and X9(/c) respectively and m, is an isogeny of degree |Op/(OF|
compatible with Op-actions and polarizations, Kerm, C G[¢] and such that (1) Kerm, is étale
locally isomorphic to Op/¢OF, if £ does not divide p or (2) the scheme theoretic intersection
of Kerm, with the canonical subgroup H; of G is trivial, if ¢ is prime and divides p or (3) the
morphism Kerm, — G[p]/H; is an isomorphism, if £ = pOp.

We have the two natural projections p;: Sy, — X9(c) and py: Sy, — X2({c).

Lemma 8.5. The universal isogeny m; induces an isomorphism m, : pjrwo; — psvor, of the pull-
backs via p; and py respectively, of the invertible sheaves vor on X9(¢) and X2(lc) respectively,

defined in Theorem [6.4)

Proof. Over Wg o1 this is the content of [AIPH, Cor. 3.25] using the compatibility given in

Theorem [6.71
We deal with the general case. It follows from [AIPC| Rmk A.1] and our assumptions on 7,
that the isogeny 7,: G — G’ induces an isomorphism from the canonical subgroup of level n of
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G to the canonical subgroup of level n of G'. This implies that m, defines an isomorphism of the
pull-back to &, via p; and p, of the Igusa towers. By the functoriality of the Hodge-Tate map
we also get an isomorphism p3F — piF of the modified integral structures F of we and wg of
Proposition . Thus we get an isomorphism p5§,, 1 — piSnrr of the pull-back to &, of the
torsors §, 1 of . Due to the normality of &,, we get an isomorphism of the pull backs of
the sheaves pito,, , ;1 — P31, 1 of overconvergent forms defined in Proposition .

Similarly, 7, defines an isomorphism between the pull backs of J& o via p; and p, respec-
tively (see for the definition). The analogue of Lemma over the base &, provides an

isomorphism between the pull-backs via p; and p, respectively of the sheaves m?erf of perfect

overconvergent forms defined in Proposition . Thanks to the normality of &,, we deduce the
sought for isomorphism of the pull-backs via p; and p, of the sheaves tv;.

[]

Using the conventions of we also have the normalization of the Hecke correspondences
p1: T — 32(c) and py: Sy, — 32(lc) defined over the Iwasawa algebra. As above we denote
by 32(c) the open formal subscheme of 3, (c) associated to M (uy, ¢). Following the notations of
we let M7(c) be the adic analytic fiber of 37(c) xqpo Wr.

Corollary 8.6. The map m, induces an isomorphism

Hun * K

TPt = pow
of the sheaves w™" defined over M2(c) and MC(lc) respectively.

Proof. We have a morphism ¢: &,, — %,, compatible with the natural projections 3?%(¢) —
X2(c) and X2(c) — 32(c). As in Theorem[6.6{1) and using the normality of Ty, one obtains that
the natural morphism Og,  — ¢.Os,, is an isomorphism. This implies that the isomorphism of
Lemma [8.5induces an isomorphism of the pull backs via p; and ps respectively of the invertible
sheaves " defined on 3?(c¢) and 32(¢c) respectively.

Taking adic analytic fibers and twisting by the invertible sheaf X as in §6.4] we get the
claimed isomorphism. O

Let q; := |Op/tOF|. In order to define the Hecke operators we will need the following:

Lemma 8.7. (1) The morphism p;y is finite and étale of degree q; + 1 if £ is prime to p.
(2) At the level of analytic fibers the morphism py is finite and flat of degree q, if ¢ divides p.

Proof. The first statement is clear. We prove the second statement: the group scheme Kerm, =
G[0]/H,[(] is finite étale at the level of analytic fibers due to [AIPC|, Cor. A.2]. Since it is
isomorphic to H;[(]" it follows from Proposition that it is in fact étale locally on M?(c)
isomorphic to Op/¢Op. Since p; is represented over M?(¢) by the Op splittings of the exact
sequence of group schemes (with Op-action) 0 — H,[{] — G[{] — G[{]/H,[(] — 0, it follows
that p; is a torsor under the finite and flat group scheme H;[¢]. This proves the claim.

O

Denote by g the structural maps of M,.(¢c) and respectively M..(c) to the weight space Weg
and by ¢° their restrictions to M2(¢c) and respectively M?(¢). Taking the global sections of the
sheaves w™" over M2 (fc) and respectively M?2(c) we get the morphism
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*,—1 -1
g2 = g2 (pra(p3o™) " g2 (pra (™)) T gl

Here Tr,, is the trace map of the finite flat morphism p;. One checks on g-expansions that
dividing by the normalization factor ¢ is a well defined operation. Using the Koecher principle
of we get a map g,w" — g.w®  from the global sections of w™" over M,.({c) to the global
sections over M.,.(¢), which are denoted T}, for ¢ not dividing p, and Uy, for £ = pOp or a prime
ideal dividing p. This provides the definition of the Hecke operators for the overconvergent
(cuspidal) forms defined in Theorem for the group G*. Taking the quotient under the group
A we define such Hecke operators also for the arithmetic overconvergent cuspidal modular forms

defined in for the group G.

8.6 The adic eigenvariety for arithmetic Hilbert modular forms

In [ATIPH], Theorem 5.1, we constructed a cuspidal eigenvariety over W% \ {|p| = 0} for the
p-adic, arithmetic Hilbert modular forms. We now extend it over W.

Let Frac(F)® be the group of fractional ideals prime to p. Let Princ(F)*®) be the group
of positive elements which are p-adic units. The quotient Frac(F)® /Princ(F)*®) = CIT(F) is
the strict class group of F.

For all ¢ € Frac(F)® we have defined an adic space M, that we now denote by M,(c) in
order to mark its dependance on ¢ and a sheaf w*¢" over M,(c). Let g.: M,(c) — W¢ be the
projection. For all z € Princ(F)™® we canonically identify (g.),w"¢ (—D) and (gy.),w"¢ (—D)
as in [AIPH], Def. 4.6.

Taking the limit over r we thus obtain a sheaf of projective Banach modules

P (g)w € (=D).
ceCIT(F)

Thanks to this sheaf carries an action of the Hecke algebra H? of level prime to p as well
as an action of the U, operator and of the operators Usy, (see [AIPH], §4.3). Moreover, having
taken the limit over 7 implie the Uy-operator is compact thanks to Proposition [3.3] Applying
[AIPC], Appendice B, we obtain the following theorem.

Theorem 8.8. 1. The characteristic series

PO(X) = det (1 - XU @D (9" (~D))

c€CIT(F)
takes values in AG[[X]].

2. The spectral variety Z¢ =V (P%) — W is locally finite, flat and partially proper over the
weight space.

3. There is an eigenvariety E¢ — ZC, finite and torsion free over Z, which parametrizes
finite slope eigensystems of overconvergent, arithmetic Hilbert modular forms.
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