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Abstract. We show that abelian surfaces (and consequently curves of genus 2)
over totally real fields are potentially modular. As a consequence, we obtain the
expected meromorphic continuation and functional equations of their Hasse–
Weil zeta functions. We furthermore show the modularity of infinitely many
abelian surfaces A over Q with EndC A = Z. We also deduce modularity and
potential modularity results for genus one curves over (not necessarily CM)
quadratic extensions of totally real fields.
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1. Introduction

1.1. Our main theorems. Let X be a smooth, projective variety of dimension m
over a number field F with good reduction outside a finite set of primes S. Asso-
ciated to X, one may write down a global Hasse–Weil zeta function:

ζX(s) =
∏ 1

1−N(x)−s
,

where the product runs over all the closed points x of some (any) smooth proper
integral model X/OF [1/S] for X. (We suppress S from the notation — different
choices of S only change ζX(s) by a finite number of Euler factors.) The func-
tion ζX(s) is absolutely convergent for Re(s) > 1 +m. We have the following:

Conjecture 1.1.1 (Hasse–Weil Conjecture, cf. [Ser70], in particular Conj. C9).
The function ζX(s) extends to a meromorphic function of C. There exists a positive
real number A ∈ R>0, non-zero rational functions Pv(T ) for v|S, and infinite
Gamma factors Γv(s) for v|∞ such that:

ξ(s) = ζX(s) ·As/2 ·
∏
v|∞

Γv(s) ·
∏
v|S

Pv(N(v)−s)

satisfies the functional equation ξ(s) = w · ξ(m+ 1− s) with w = ±1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given ex-
plicitly in terms of the Archimedean Hodge structures of X.) This conjecture
appears to be first formulated in print (albeit in a less precise form and only for
curves) on the final page of [Wei52]. If F = Q and X is a point, then ζX(s)
is the Riemann zeta function, and Conjecture 1.1.1 follows from Riemann’s func-
tional equation [Rie59]. If F is a general number field but X is still a point,
then ζX(s) is the Dedekind zeta function ζF (s), and Conjecture 1.1.1 is a theorem
of Hecke [Hec20]. If X is a curve of genus zero, then (up to bad Euler factors)
ζX(s) = ζF (s)ζF (s− 1), and Conjecture 1.1.1 follows immediately. More generally,
if X is any smooth projective variety whose cohomology is generated by algebraic
cycles over F , then ζX(s) is a finite product of Artin L-functions (up to translation),
and Conjecture 1.1.1 in this case is a consequence of Brauer’s theorem [Bra47]. In
the case when the Galois representations associated to the l-adic cohomology of X
are potentially abelian (e.g. an abelian variety with CM), Conjecture 1.1.1 is also
a consequence of the results of Hecke and Brauer.

The fundamental work of Wiles [Wil95, TW95] and the subsequent work of
Breuil, Conrad, Diamond, and Taylor [CDT99, BCDT01] proved Conjecture 1.1.1
for curves X/Q of genus one, since (again up to a finite number of Euler factors)
ζX(s) = ζQ(s)ζQ(s − 1)/L(E, s) (where E = Jac(X)), and the modularity of E
implies the holomorphy and functional equation for L(E, s). More generally, the
potential modularity results of [Tay02] imply Conjecture 1.1.1 for curves X/F of
genus one over any totally real field. The methods used in these papers have been
vastly generalized over the past 25 years due to the enormous efforts of many people.
On the other hand, these methods have until recently been extremely reliant on the
assumption that the Hodge numbers hp,q = dimHp,q

dR (X) = dimHp(X,Ωq) of X
are at most 1 for all p and q, or at least that such an inequality holds (suitably
interpreted) for the irreducible motives occurring in the cohomology of X. While
many such motives exist inside the cohomology of Shimura varieties, there is a
paucity of natural geometric examples satisfying this condition. For example, if X
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is a curve of genus g, then h1,0 = h0,1 = g, and so the original Taylor–Wiles method
only applies when g = 0 or 1. For genus two curves, we prove the following theorem.

Theorem 1.1.2. Let X be either a genus two curve or an abelian surface over a
totally real field F . Then Conjecture 1.1.1 holds for X.

We prove Theorem 1.1.2 as a corollary of the following theorem.

Theorem 1.1.3. Let X be either a genus two curve or an abelian surface over a
totally real field F . Then X is potentially automorphic.

Here by potentially automorphic we mean that there exists a finite Galois ex-
tension L/F such that the compatible system of Galois representations R attached
to H1(XQ,Qp) (as p varies) over L is automorphic in a precisely circumscribed
sense which we make explicit in Definition 9.1.1. (See also Remark 9.1.9 for a
discussion of how we distinguish between automorphic and modular in this paper;
this distinction is made purely for technical convenience, and can safely be ignored
while reading this introduction.) In particular, an immediate consequence is that
the L-function of H1(XQ,Qp) as a GL-representation extends to a holomorphic
function on all of C. Theorem 1.1.2 follows from Theorem 1.1.3 via a standard
argument with Brauer’s theorem and base change, together (in the case of abelian
surfaces) with known functorialities in small rank. (Some care must be taken in
this deduction if the p-adic Galois representations associated to X become reducible
after restriction to L; this issue does not arise in the most interesting cases of The-
orem 1.1.3, in particular the case of an abelian surface X with EndC(X) = Z.)

Theorem 1.1.3 (and thus also Theorem 1.1.2) is a consequence of Theorem 9.3.1
and Corollary 9.3.3, which in turn are deduced from our main modularity lifting
theorem, Theorem 8.4.1. As a consequence of Theorem 1.1.3, we also deduce the
following potential modularity result for genus one curves (see Theorem 9.3.4):

Theorem 1.1.4. Let X be a genus one curve over a quadratic extension K/F of
a totally real field F . Then X is potentially modular.

When K/F is totally real, this result has been known for some time ([Tay02]).
When K/F is totally imaginary, however, the result was only recently proved
in [ACC+18]. For all other quadratic extensions (such as F = Q(

√
2) and K =

Q( 4
√

2)), the result is new. (See the remarks in §1.4.4 for a comparison between the
methods of this paper with those of [ACC+18].)

Just as elliptic curves over Q can be associated (via the modularity theorem) to
modular forms of weight 2, the Langlands program predicts that abelian surfaces
over Q should be modular in the sense that they correspond to certain weight 2
Siegel modular forms. This is because (due to the existence of polarizations) the
Galois representations associated to the p-adic Tate modules of abelian surfaces
are naturally valued in GSp4(Qp), and GSp4 is its own Langlands dual group.
A consideration of the Hodge–Tate weights then suggests that the corresponding
automorphic forms on GSp4 should be of weight 2 (see §10.3 for a more detailed
discussion of this).

Our methods also have implications for the modularity (as opposed to potential
modularity) of abelian surfaces over totally real fields. Here is an example of what
can be proven by our methods.

Theorem 1.1.5. There exist infinitely many modular abelian surfaces A/Q up to
twist with EndCA = Z.
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As a consequence, one deduces that the L-function associated to A in Theo-
rem 1.1.5 (that is, the L-function associated to the Galois representationH1(AQ,Qp)

for any prime p) has a holomorphic continuation to the entire complex plane. Note
that Theorem 1.1.3 only implies that this L-function has a meromorphic contin-
uation, with no control over any possible poles. (This is for essentially the same
reason that Brauer’s theorem proves the meromorphic continuation of Artin L-
functions, but not the holomorphic continuation.) In fact, we can also prove an
analogous theorem for any totally real field F in which 3 splits completely; see
Theorem 10.2.6.

To put Theorem 1.1.5 into context, note firstly that if EndC(A) 6= Z, then the
Galois representations associated to A become reducible over some finite exten-
sion, and hence one may use (or prove) special cases of functoriality to reduce the
problem to the modularity of representations of dimensions 2 or 1. Results of this
kind appear in the papers [Yos80, Yos84, RS07a, JLR12, DK16, BDPcS15]. (Sev-
eral of these arguments could now be redone more systematically in light of the
monumental work of Arthur [Art04, Art13].)

In the “typical” case that EndC(A) = Z, Brumer and Kramer [BK14] formulated
the paramodular conjecture, which gives a precise prescription for the “optimal”
level structure for an automorphic form corresponding to a given abelian surface;
in particular, this in principle reduces the conjecture for a given A to an explicit
computation of a (finite-dimensional) space of Siegel modular forms. They further-
more showed that the smallest prime conductor of an abelian surface is 277; in
combination with the computations of [PY15], this demonstrates that the conjec-
ture is true in prime conductor less than 277 (because there are neither any abelian
surfaces nor suitable Siegel modular forms).

These considerations are taken further in the recent papers [BPP+19, BK20]. In
particular, these papers succeed in establishing for the first time the modularity of
(finitely many, up to twist) abelian surfaces A with EndC(A) = Z. (The explicit ex-
amples in [BPP+19] are conductors 277, 353, and 587, and the example in [BK20]
is of conductor 731. It should be noted that the abelian surfaces considered in
Theorem 1.1.5 do not include any of these examples; as explained below, Theo-
rem 1.1.5 is proved by proving the existence of infinitely many abelian surfaces to
which our modularity lifting theorems apply, rather than by starting with explicit
examples of small conductor.) These papers ultimately rely on elaborate explicit
computations of low weight Siegel modular forms, developed in part by Poor and
Yuen [PY15, PSY17, BPY16].

1.1.6. Our modularity lifting theorem. We now state our main modularity lifting
theorem as it applies to abelian surfaces. The following theorem is proved in §10,
see Proposition 10.1.1. (It is possible to slightly weaken the hypothesis at v|p to
deal with certain abelian surfaces which have semistable reduction at v|p.)

Theorem 1.1.7. Let F be a totally real field in which p > 2 splits completely.
Let A/F be an abelian surface with good ordinary reduction at all places v|p, and
suppose that, at each v|p, the unit root crystalline eigenvalues are distinct modulo p.
Assume that A admits a polarization of degree prime to p. Let

ρA,p : GF → GSp4(Fp)

denote the dual of the mod-p Galois representation associated to A[p], and assume
that ρA,p is vast and tidy in the sense of Definitions 7.5.6 and 7.5.11. Assume
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that ρA,p is ordinarily modular, in the sense that there exists an automorphic rep-
resentation π of GSp4 /F of parallel weight 2 and central character | · |2 which is
ordinary at all v|p, such that ρπ,p ∼= ρA,p, and ρπ,p|GFv is pure for all finite places v
of F . Then A is modular, corresponding to a Hilbert–Siegel eigenform of parallel
weight two.

Moreover, Proposition 10.1.3 shows that the modularity hypotheses on ρA,p can
be omitted in the following situations:

(1) p = 3, and ρA,3 is induced from a 2-dimensional representation with inverse
cyclotomic determinant defined over a totally real quadratic extension E/F
in which 3 is unramified.

(2) p = 5, and ρA,5 is induced from a 2-dimensional representation valued
in GL2(F5) with inverse cyclotomic character defined over a totally real
quadratic extension E/F in which 5 is unramified.

(3) ρA,p is induced from a character of a quartic CM field H/F in which p splits
completely.

Theorem 1.1.7 may be viewed as the genus two analogue of [Wil95, Thm. 0.2],
which is the main modularity lifting result proved in that paper. Proposition 10.1.3
is then the analogue of [Wil95, Thm. 0.6], which is a modularity result for residually
projectively dihedral representations. The reason one cannot prove an analogue
of [Wil95, Thm. 0.3] (which proves that all ordinary semistable elliptic curves overQ
with ρE,3 absolutely irreducible are modular) is that there is no argument to reduce
the residual modularity of a surjective mod-3 representation ρ3 : GF → GSp4(F3)
(as in §5 of ibid) to special cases of the Artin Conjecture (proved by Langlands–
Tunnell). Note that the difficulty is not simply that GSp4(F3) is not solvable (some
of the indicated representations above for p = 3 and 5 are non-solvable), but also
that Artin representations do not contribute to the coherent cohomology of Shimura
varieties in any setting other than holomorphic (Hilbert) modular forms of weight
one.

For E/F a totally real quadratic extension, the inductions of (modular) repre-
sentations % : GE → GL2(F3) with determinant ε−1 to GF provide a large source
of residually modular ρ. We then show that any such ρ : GF → GSp4(F3) with
suitable determinant and local conditions at places v|3 is equal to ρA,3 for infinitely
many abelian surfaces A/F with EndC(A) = Z and with good ordinary reduc-
tion at v|3 (see Theorem 10.2.1). Theorem 1.1.7 then implies that all such A are
modular, and hence implies Theorem 1.1.5.

1.2. An overview of our argument. Let A be an abelian surface over a totally
real field F . We may assume that EndF (A) = Z as otherwise, A is of GL2-type, in
which case it is known that A is potentially modular. If EndF (A) = Z, a generaliza-
tion of the paramodular conjecture predicts the existence of a holomorphic weight 2
Hilbert–Siegel modular cuspidal eigenform f (for the group GSp4/F ) associated to
A in the sense that we have an equality of L-functions L(f, s) = L(H1(A), s). If
such an equality holds, we say that A is modular.

In this paper, we establish that (under some mild further restrictions on A), after
possibly replacing the field F by a finite totally real extension F ′, the conjecture is
true.
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Remark 1.2.1. There are situations where we don’t prove (even potentially) the
paramodular conjecture for A. This is due to the presence of non-trivial endomor-
phisms of A over Q. Nevertheless, we always express the L-function of A using
automorphic forms on groups GLi/K for i ∈ {1, 2, 4} and K a number field, and
thus establish Conjecture 1.1.1.

On the surface, the modularity conjecture for abelian surfaces appears to be
a generalization of the modularity conjecture for elliptic curves. However, this
analogy is somewhat misleading. Elliptic curves are regular motives with weights
(0, 1), whereas abelian surfaces are irregular motives with weights (0, 0, 1, 1). On
the automorphic side, weight 2 Hilbert modular cuspforms occur in a single degree
of the Betti and coherent cohomology of the Hilbert modular varieties. Under mild
assumptions, there is an elliptic curve associated to any Hilbert modular cuspidal
eigenform with rational Hecke field.

In contrast, weight 2 Hilbert–Siegel modular cuspforms only occur in the coherent
cohomology of the Hilbert–Siegel modular variety. More precisely, a holomorphic
weight 2 Hilbert–Siegel modular cuspidal eigenform can be viewed as a section of
a line bundle ω2 over the Hilbert–Siegel modular variety X; here X is a smooth
algebraic variety defined over Q of dimension 3[F : Q] which parametrizes abelian
schemes of dimension 2[F : Q] equipped with an action of OF , a level structure,
and a polarization. Moreover, in the “generic case”, such an eigenform contributes
to cohomology in degrees 0 to [F : Q]. Since the Hecke eigenvalues associated to
such modular forms are not realized in the étale cohomology of a Shimura variety,
we don’t know how to associate a “motive” to a weight 2 Hilbert–Siegel modular
cuspidal eigenform, but only a compatible system of Galois representations which
should correspond to the system of `-adic realizations of this motive. These Galois
representations are constructed by using congruences.

From a technical point of view, it turns out that the modularity conjecture for
abelian surfaces over a totally real field F is closely related to the 2-dimensional
odd Artin conjecture for F (now a theorem), which is the existence of a bijection
preserving L-functions between the following objects:

• Irreducible, totally odd, two dimensional complex representations of the
absolute Galois group of F , and

• Hilbert modular cuspidal eigenforms (newforms) of weight one.
2-dimensional odd Artin representations have irregular Hodge–Tate weights (0, 0),

and Hilbert modular forms of weight one only occur in the coherent cohomology of
the Hilbert modular variety, where they contribute in degrees 0 to [F : Q].

We now review some of the strategies employed in the proof of Artin’s conjecture,
as they have served as an inspiration for our current work. As with almost all
modularity theorems, one proceeds by combining a modularity lifting theorem with
residual modularity (that is, the modularity of the mod p representation). In the
case of Artin’s conjecture, residual modularity ultimately (if quite indirectly) comes
from the Langlands–Tunnell theorem, whereas in our setting, the residual potential
modularity comes from a straightforward application of Taylor’s method [Tay02]
using a theorem of Moret-Bailly. Accordingly, we ignore the question of residual
modularity for the rest of this introduction, and concentrate on explaining the
modularity lifting theorems.

The first modularity (lifting) theorems which applied to two dimensional odd
Artin representations ρ overQ were obtained by Buzzard–Taylor and Buzzard [BT99,
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Buz03]. There is an obstruction to generalizing the Taylor–Wiles method (which
was originally applied in the regular case of Hodge–Tate weights (0, 1) and weight
two modular forms [Wil95, TW95]) to the irregular case of weights (0, 0) and weight
one modular forms. This obstruction lies in the fact that weight one forms occur in
degrees 0 and 1 of the coherent cohomology and that there exist non-liftable mod p
weight one eigenforms. (There is also a reflection of this obstruction on the Ga-
lois theoretic side — the corresponding local deformation ring at p has dimension
one less in the irregular weight case.) Instead, Buzzard and Taylor proceed quite
differently.

Choose a prime p and view ρ as a p-adic representation with finite image. We also
assume that ρ is unramified at p and let α, β denote the Frobenius eigenvalues. For
simplicity, we also assume that α 6= β (where the bar denotes reduction modulo p).
We have that

ρ|GQp
'
(
λα 0
0 λβ

)
for the unramified characters λα and λβ taking a Frobenius element to α, β respec-
tively.

The strategy of Buzzard and Taylor is to first replace the space of classical weight
one modular forms by a bigger space of ordinary p-adic modular forms of weight
one. On the Galois side, classical weight one eigenforms (of level prime to p) have
associated Galois representations which are unramified at p, while an ordinary p-
adic modular form f of weight one has an associated Galois representation which
may be ramified at p of the form:

ρf |IQp '
(

1 ∗
0 1

)
Moreover, f should be classical if and only if ∗ = 0. A key advantage of working

with ordinary p-adic modular forms is that they are defined as sections of a line
bundle over the ordinary locus, which is affine, and thus only occur in cohomo-
logical degree 0. It follows that ordinary p-adic modular forms of weight one are
unobstructed for congruences and one can (assuming residual modularity) apply the
Taylor–Wiles method in this setting to deduce the existence of two p-adic ordinary
weight one modular forms fα and fβ such that ρfα = ρfβ = ρ and Upfα = αfα,
Upfβ = βfβ .

We observe that the existence of both fα and fβ witnesses the fact that ρ is
unramified at p. In order to show that fα and fβ are classical forms of weight one,
one forms the linear combinations h = (αfα−βfβ)/(α−β) and g = (fα−fβ)/(α−β).
The property that ρfα = ρfβ = ρ and the explicit relation between q-expansions
and Hecke eigenvalues translates into the geometric property that Frob(h) = g.
Using rigid analytic techniques, one can show that this property implies that fα, fβ
are classical forms of weight one. This strategy has been successfully generalized
to any totally real field [Sas13, KST14, Kas16, PS16b, Pil17].

From a different direction, the paper [CG18] introduced an alternate method for
proving modularity lifting results in weight one, by modifying the method of Taylor–
Wiles and exploiting the Galois representations associated to coherent cohomology
classes in all degrees. This method eliminates the delicate classicality theorem
in weight one because one only works with classical (but possibly higher degree)
cohomology. This method allows in principle to deal with any obstructed situation,
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but requires some non-trivial input. For 2-dimensional odd Artin representations
over a totally real fields, one needs to prove that (after suitable localization at a
maximal ideal of the Hecke algebra) the cohomology in weight one is supported in
degrees 0 to [F : Q] (this is actually automatic here for cohomological dimension
reasons), and that the Galois representations in all cohomological degrees satisfy a
form of local-global compatibility (at places above p). This last property has been
proved when F = Q where one can reduce to studying degree 0 torsion cohomology
classes and use the “doubling method” described below, but has not yet been proved
for all primes p over a general totally real field (though see [ERX17] for some partial
results).

After this discussion of Artin’s conjecture, we return to the paramodular con-
jecture. We first assume that F = Q and fix a prime p. We assume that A has
ordinary good reduction at p so that

ρA,p|GQp
'


λα 0 ∗ ∗
0 λβ ∗ ∗
0 0 λ−1

β ε−1 0

0 0 0 λ−1
α ε−1

 ,

where, additionally, we assume that α 6= β. (The Weil bounds together with the
Cebotarev density theorem guarantee an ample source of such primes p.) Tilouine
and his collaborators [TU95, Til98, TU99, MT02, GT05, Til06a, Til09] developed
modularity lifting results for GSp4 /Q in regular weight. In the case of Hodge–Tate
weights (0, 0, 1, 1), the paper [Pil12] applied these techniques to ordinary p-adic
modular forms of weight 2 to produce (under technical assumptions) two p-adic
eigenforms fα and fβ associated to A (see also [Til06a, Til12], where the case of
certain GSp4-type abelian varieties is treated).

Similarly to the case of GL2/Q, an ordinary p-adic modular form of weight 2
has a Galois representation whose restriction to inertia at p has the shape:

1 ∗1 ∗ ∗
0 1 ∗ ∗
0 0 ε−1 ∗2
0 0 0 ε−1

 .

Such a form should be classical if and only if its Galois representation is de Rham
— equivalently: ∗1 = ∗2 = 0 (because of the symplectic structure, the vanishing
of ∗1 is equivalent to the vanishing of ∗2).

As before, the existence of both fα and fβ witnesses the property that A is
de Rham at p. One difficulty, however, is that the Fourier expansions of Siegel
modular forms are not explicitly determined by the Hecke eigenvalues (although
we often have an abstract multiplicity one theorem). In particular, one doesn’t
know how to deduce geometrically from ρfα = ρfβ = ρA,p that there exist suitable
linear combinations of fα and fβ giving rise to the desired form f by mimicking
the Buzzard–Taylor argument.

In another direction, in [CG20] the modified Taylor–Wiles method was applied to
low weight Siegel modular forms over Q. There were a number of serious difficulties
which prevented the authors from deducing any unconditional modularity lifting
for abelian surfaces. The idea of the method is to consider (a suitable localization
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of) the full cohomology complex RΓ(X,ω2) where X is an integral model over Zp
of the Siegel threefold. The required inputs are:

(1) to prove that the cohomology is only supported in degrees 0 and 1, and
(2) to prove local-global compatibility for the cohomology classes.

The first point is subtle in the weight of interest, because the cohomology groups
will not generally vanish before localization at some non-Eisenstein maximal ideal m
(and indeed this point was not established in weight 2 in [CG20]). The paper [CG20]
proved the second point for torsion degree 0 cohomology classes, using a “doubling”
argument that we will return to below.

One crucial new ingredient which allows us to proceed in the symplectic case
and deal with (1) is the higher Hida theory developed for GSp4 over Q in [Pil20].
The idea of [Pil20] is (loosely speaking) to work over the larger space which is
the complement of the supersingular locus (the rank ≥ 1 strata), which is now no
longer affine. (Since we are working in mixed characteristic, one should imagine
this taking place in the category of formal schemes, as in classical Hida theory.)
Since the cohomological dimension of these spaces is one (more precisely, the image
of these spaces in the minimal compactification has cohomological dimension one,
which is sufficient for our purposes), there should exist complexes of amplitude [0, 1]
computing the coherent cohomology of all the relevant vector bundles. The main
result of [Pil20] is that suitably constructed Hida idempotents cut down such a
complex to a perfect complex, and moreover that the cohomology of this perfect
complex is computed in characteristic zero by the space of weight 2 automorphic
forms of interest. A crucial ingredient in order to study the coherent cohomology is
therefore the introduction of Hecke operators at p and their associated projectors.

A version over Q of our modularity lifting theorem could be proved by applying
the patching method of [CG18] to the higher Hida complexes of [Pil20]. It should
nevertheless be noted that, even if we were only interested in theorems over Q, we
are forced to prove a modularity lifting theorem for any totally real field F (and
prime p which splits completely in it). This is because we need to employ Taylor’s
Ihara avoidance technique [Tay08] to deal with issues of level raising and lowering
at places away from p, and this step crucially relies on using solvable base change.
We can then combine this modularity lifting result with base change techniques
and the Moret-Bailly argument to achieve residual potential modularity, in order
to prove our main potential modularity theorem.

In the light of the above discussion, in order to prove a modularity lifting theorem
for Hilbert–Siegel modular forms it is natural to consider (a suitable localization
of) either the cohomology complex RΓ(X,ω2) where X is an integral model over
Zp of the Hilbert–Siegel space, or of the ordinary part of the cohomology complex
for a subspace of X obtained from the p-rank stratification. The required inputs
for the modified Taylor–Wiles method are now:

(1) to prove that the cohomology is only supported in degrees 0 to [F : Q], and
(2) to prove local-global compatibility for the cohomology classes.

It is to some extent possible to solve (1) using higher Hida theory (although there
are some issues), but (2) seems to be a more serious problem because we only know
how to prove that the Galois representations associated to torsion classes in Hi

satisfy the right local-global compatibility condition at v|p if i = 0. Accordingly,
we are unable to argue directly with such complexes.
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Let the number of non-zero degrees of cohomology of the spaces we are consid-
ering be l0 +1; we refer to l0 as the defect. (The original Taylor–Wiles method only
applies if l0 = 0, while if l0 > 0 we use the method of [CG18]. As mentioned above,
l0 also has a Galois-theoretic interpretation: the sum of the dimensions of the local
deformation rings is l0 less than the corresponding dimension in the defect 0 case.)
One key trick we employ in this paper is to reduce to situations where we only have
to consider cohomology in at most two degrees (so the defect is at most one), i.e.
it suffices to work with complexes consisting of at most two terms. This is where
we take advantage of the product situation at p (because p splits in the totally
real field). (Implicitly, what happens in this case is that any cohomology occurring
in H1 can also be seen via the Bockstein homomorphism as coming from H0, pro-
vided that the characteristic zero classes in H1 are also seen by the characteristic
zero classes in H0, and this can be established by automorphic considerations; so
we only have to prove local-global compatibility for H0.) We now explain how we
do this in slightly more detail.

We assume that A has ordinary good reduction at all places v|p, so that

ρA,p|GFv '


λαv 0 ∗ ∗
0 λβv ∗ ∗
0 0 λ−1

βv
ε−1 0

0 0 0 λ−1
αv ε
−1

 ,

where we furthermore assume that αv 6= βv.
Although we expect that there should be a weight 2 eigenform associated to

A of spherical level at p (because A has good reduction at p), it turns out that
because A is ordinary at p, it is more natural to look for an eigenform f associated
to A of Klingen level at p. The Klingen level structure is given by choosing a
subgroup of order p inside A[v] for all v|p. At Klingen level at v, there is a Hecke
operator UKli(v),1 whose eigenvalue on f should be αv + βv, and a second Hecke
operator UKli(v),2 whose eigenvalue should be αvβv. We observe that the second
operator has an invertible eigenvalue (we say that f is Klingen ordinary) and this
corresponds to the fact that the Galois representation ρA,p|GFv is ordinary.

There is another level structure that plays a role: the Iwahori level structure
given by choosing a complete self dual flag of subgroups inside A[v]. For each
v|p, there are two degeneracy maps from Iwahori level to Klingen level, and there
are Hecke operators UIw(v),1, UIw(v),2 = UKli(v),2 at Iwahori level. Pulling back the
expected form f by the degeneracy maps should yield eigenforms at Iwahori level
which have eigenvalues αv and βv for UIw(v),1 (we call them Iwahori ordinary).

We now return to the question of using modularity lifting theorems to find f .
First of all, modularity lifting theorems with p-adic ordinary modular forms (i.e.
with l0 = 0) allow us to construct 2[F :Q] Iwahori ordinary p-adic modular forms
whose eigenvalue for UIw(v),1 is αv or βv, and whose eigenvalue for UKli(v),2 is αvβv.
We suspect that these forms are classical, but as explained before, we don’t know
how to establish any geometric relation between them.

As a second step we apply a modularity lifting theorem in the case that the defect
l0 equals one. Let us isolate a place v|p. Using higher Hida theory, we construct a
perfect complex of amplitude [0, 1] which is obtained by taking the ordinary (more
precisely Iwahori ordinary at w 6= v, Klingen ordinary at v) cohomology of the
open subspace of the Hilbert–Siegel Shimura variety which is ordinary and carries
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an Iwahori level structure at all places w 6= v, and has p-rank at least one at v and
carries a Klingen level structure.

We manage to prove that this cohomology carries a Galois representation which
has the following type of local-global compatibility property:

(1) For all places w|p, w 6= v:

ρA,p|IFw '


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 ε−1 ∗
0 0 0 ε−1

 .

(2) For v:

ρA,p|IFv '


1 0 ∗ ∗
0 1 ∗ ∗
0 0 ε−1 0
0 0 0 ε−1

 .

Using the methods of [CG18], we can prove a modularity lifting theorem, and
produce 2[F :Q]−1 p-adic modular forms (which converge a lot more in the v direc-
tion) whose eigenvalue for UIw(w),1 is αw or βw if w 6= v, and whose eigenvalue for
UKli(v),1 is αv + βv, and whose eigenvalue for UKli(w),2 = UIw(w),2 is αwβw for all
w|p.

Our last step is to prove lots of linear relations between all these forms we have
constructed. This step ultimately relies upon an abstract multiplicity one result
which we prove using the Taylor–Wiles method. Exploiting these linear relations
and using étale descent techniques, we first manage to construct a Klingen ordinary
weight 2 modular form defined on the open subspace of the Hilbert–Siegel Shimura
variety which has p-rank at least one at all v|p and carries a Klingen level structure.
We then manage, using analytic continuation techniques, to prove that this form
extends to the full Shimura variety and is therefore classical.

1.3. An outline of the paper. We briefly explain the outline of the paper; we
refer the reader to the introductions to the individual sections for a further explana-
tion of their contents, and for some elaborations on the overview of our arguments
above.

In §2 we recall some more or less standard background material on Galois rep-
resentations, the local Langlands correspondence, local representation theory, and
related topics. §3 discusses the Shimura varieties which we use, and some prop-
erties of their integral models and compactifications, and recalls the approach to
the normalization of Hecke operators on coherent cohomology via cohomological
correspondences which was introduced in [Pil20].

In §4 we construct the Hida complexes that we work with, and prove some of
their basic properties (in particular, we prove that they are perfect complexes).
In §5 we establish the “doubling” results that we will later use to prove local–
global compatibility for Hilbert–Siegel modular forms over torsion rings. The basic
strategy (employed in a number of other places, see [Gro90, Edi92, Wie14, CG18,
CG20]) is to show that we can embed (via degeneracy maps) two copies of our space
of ordinary modular forms at Klingen level into a space of ordinary modular forms of
Iwahori level. This allows us to show that the corresponding Galois representations
are ordinary (in the Iwahori sense) in two different ways, namely, with αw and βw
as unramified subspaces. Then the genericity assumption αw 6= βw forces there to
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be a 2-dimensional unramified summand of our representation. The key technical
difficulty is proving that the direct sum of the degeneracy maps does indeed give an
embedding. All previous incarnations of the doubling phenomenon ultimately relied
on the q-expansion principle, but our argument is more geometric, and ultimately
rests on analyzing the effect of the Hecke operator Zw = UKli(w),1 − UIw(w),1 along
the w-non-ordinary locus.

In §6 we prove that a characteristic zero classicality result for the H0 of our Hida
complexes, using Coleman theory. We also show that the complexes we consider are
balanced, in the sense that they have Euler characteristic zero, using a somewhat
intricate interplay between three objects — the complex of classical forms, the
complex of overconvergent forms, and our complex of (Klingen) ordinary forms.

In §7 we carry out our main Taylor–Wiles patching arguments in the cases
that l0 = 0 and l0 = 1. We then prove our main modularity lifting theorem in
§8, using analytic continuation, étale descent, and linear algebra arguments based
on the doubling results of §5 to reduce to the classicality results of §6.

In §9, we apply our main automorphy lifting theorem to prove the potential
automorphy of abelian surfaces. The basic idea is to use a version of the p-q trick
(first employed by Wiles as the 3-5 trick), together with an application of a theorem
of Moret-Bailly, to connect general abelian surfaces via a chain of congruences to
the restriction of scalars of an elliptic curve over a totally real quadratic extension
of F , which we know already by [Tay02] to be potentially modular. We are also
left to deal directly with some cases of abelian surfaces with small Mumford–Tate
groups, which can mostly be done immediately with an appeal to the theory of
Grossencharacters. We also include a number of applications as mentioned in the
introduction, including elliptic curves over quadratic extensions of F .

In §10, we give applications to the automorphy of abelian surfaces. We show
that, given any mod 3 representation ρ : GQ → GSp4(F3) with (inverse) cyclotomic
similitude character, it can be realized (in infinitely many ways) as the 3-torsion of
an abelian surface over Q. Here we exploit some classical geometry related to the
Burkhardt quartic, which is isomorphic to a compactification of A2(3). The key
point is to show that the variety given by the twist of A2(3) by ρ has sufficiently
many rational points. We do this by proving it is unirational over Q via a map
of degree at most 6. The argument is similar to that of [SBT97], except that it is
applied not to the twist of A2(3) itself but to a twist of a degree 6 rational cover,
which has the pleasing property (unlike the Burkhardt quartic itself) that the bi-
rational map to P3 over Q can be made equivariant with respect to the action of
the automorphism group PSp4(F3). Finally, we conclude with a discussion of the
paramodular conjecture and its relationship to the standard conjectures, and ex-
plain why the original formulation of this conjecture requires a minor modification.

1.4. Some further remarks. For length reasons, we did not try to optimize all
of our theorems — for example, our arguments would surely extend to prove the
potential automorphy of some GSp4-type abelian varieties, but sticking with abelian
surfaces makes the Moret-Bailly arguments somewhat simpler, and (by using a
trick) we manage to avoid any character building whatsoever. However, we have
gone to some lengths to treat the case p = 3, and to use a weaker notion of p-
distinguishedness than in [CG20]; while this is not necessary for our applications
to potential modularity, it significantly increases the applicability of our theorems
to actual modularity problems.
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1.4.1. The work of Arthur. It should be noted that we use Arthur’s multiplicity
formula for the discrete spectrum of GSp4, as announced in [Art04]. A proof of
this (relying on Arthur’s work for symplectic and orthogonal groups in [Art13]) was
given in [GT19], but this proof is only as unconditional as the results of [Art13]
and [MW16a, MW16b]. In particular, it depends on cases of the twisted weighted
fundamental lemma that were announced in [CL10], but whose proofs have not
yet appeared, as well as on the references [A24], [A25], [A26] and [A27] in [Art13],
which at the time of writing have not appeared publicly.

1.4.2. Curves of higher genus. One may well ask whether the methods of this paper
could be used to prove (potential) modularity of curves of genus g ≥ 3 whose Ja-
cobians have trivial endomorphism rings. At the moment, this seems exceedingly
unlikely without some substantial new idea. All generalizations of the Taylor–
Wiles method to this point require that the automorphic representations in ques-
tion are associated to the Betti cohomology groups of locally symmetric spaces, or
the coherent cohomology groups of Shimura varieties, which have integral struc-
tures and hence allow one to talk about congruences between automorphic forms.
Symplectic motives of rank 2g over Q are conjecturally associated to automorphic
representations for the (split) orthogonal group SO2g+1 (when g = 1 or g = 2,
there are well-known exceptional isomorphisms which allow us to replace SO2g+1

by the groups GL2 and GSp4 respectively). Following [BK14], Gross has made
some precise conjectures concerning the level structures of newforms associated to
such conjectural automorphic representations in [Gro16].

The automorphic representations contributing to the Betti cohomology groups
of locally symmetric spaces have regular infinitesimal characters, so can only be
used for g = 1. The automorphic representations contributing to the coher-
ent cohomology of orthogonal Shimura varieties are representations of the inner
form SO(2g − 1, 2) of SO2g+1 (which is non-split if g > 1), whose infinity compo-
nents π∞ are furthermore either discrete series, or non-degenerate limits of discrete
series.

If g = 1, the representations considered by Gross in [Gro16] are discrete series,
and if g = 2, they are non-degenerate limits of discrete series, but if g ≥ 3, then
neither possibility occurs, so the automorphic representations do not contribute to
the cohomology (of any kind) of the corresponding Shimura variety. (Another way
of seeing this is to compute the possible infinitesimal characters of the automor-
phic representations corresponding to automorphic vector bundles on the Shimura
variety, or equivalently the Hodge–Tate weights of the expected 2g-dimensional
symplectic Galois representations; one finds that no Hodge–Tate weight can occur
with multiplicity bigger than 2, while the symplectic Galois representations coming
from the étale H1 of a curve of genus g have weights 0, 1 each occurring with mul-
tiplicity g.) In particular, the general modularity problem for curves of genus g ≥ 3
seems at least as hard as proving non-solvable cases of the Artin conjecture for to-
tally even representations, and even proving the modularity of a single such curve
with Mumford–Tate group GSp2g seems completely out of reach.

On the other hand, there are some special families in higher genus which may
well be amenable to our method. In particular, the Tate module of a cyclic
trigonal genus three curve (so-called Picard curves, with affine equations of the
form y3 = x4 + ax2 + bx+ c) defined over Q splits (over Q(

√
−3)) into two essen-

tially conjugate self-dual irregular 3-dimensional representations of GQ(
√
−3). These
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Galois representations conjecturally correspond (see the appendix to [Til06a]) to
automorphic representations π for a form of U(2, 1)/Q (splitting over Q(

√
−3))

such that π∞ is a non-degenerate limit of discrete series and contributes to the
coherent cohomology of the associated Shimura variety. The methods of this paper
should apply (in principle) to these curves.

1.4.3. K3 surfaces. Our results should also have applications to the Hasse–Weil
conjecture for K3 surfaces over totally real fields with geometric Picard number ≥
17. While we do not undertake a detailed study of this problem here, we discuss it
in §9.4.

1.4.4. A comparison of this paper with [ACC+18]. It follows from Theorem 1.1.3
that any elliptic curve E over a CM field K/F is potentially modular (simply
consider the abelian surface given by Weil restriction of scalars of E from K to F ).
This result is also proved in [ACC+18]. Perhaps surprisingly, there is relatively little
overlap between the two proofs. For example, our argument does not require any of
the results of Scholze [Sch15] on the construction of Galois representations, nor the
derived version of Ihara avoidance required in [ACC+18]. The only common theme
is the use of the modified Taylor–Wiles method of [CG18]. To further illustrate the
difference, it is also proved in [ACC+18] that the nth symmetric power of any such E
is potentially automorphic, which is not directly accessible from our approach. On
the other hand, we also deduce (Theorem 1.1.4) the potential modularity of elliptic
curves over fields like F = Q( 4

√
2), which seems out of reach using the methods

of [ACC+18].
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2. Background material

In this section we recall a variety of more or less well-known results that we will
use in the body of the paper.

2.1. Notation and conventions.

2.1.1. GSp4. We define GSp4 to be the reductive group over Z defined as a subgroup
of GL4 by

GSp4(R) = {g ∈ GL4(R) : gJgt = ν(g)J}
where ν(g) is the similitude factor (which is uniquely determined by g, and which
we sometimes call the multiplier factor), and J is the antisymmetric matrix(

0 s
−s 0

)
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where s =

(
0 1
1 0

)
. Note that the map ν : g 7→ ν(g) is a homomorphism GSp4 →

Gm.
We let Sp4 be the subgroup with ν = 1, and we let B ⊂ G = GSp4 be the Borel

subgroup of upper triangular matrices, and T ⊂ B be the diagonal maximal torus.
Write WG = NG(T )/T for the Weyl group of (G,T ). It acts on the character

group via w · λ(t) = λ(w−1tw). It is generated by s1 =

(
s 02

02 s

)
and s2 = 1 0 0

0 s′ 0
0 0 1

 where s′ =

(
0 1
−1 0

)
, and admits the presentation

WG = 〈s1, s2|s2
1 = s2

2 = (s1s2)4 = 1〉.

Write X∗(T ) (resp. X∗(T )) for the group of characters (resp. cocharacters) of T .
We identify X∗(T ) with the lattice in Z3 of triples (a, b; c) ∈ Z3 such that c ≡ a+ b
(mod 2) via

λ : t = diag(t1, t2, νt
−1
2 , νt−1

1 ) 7→ ta1t
b
2ν

(c−a−b)/2.

In particular, the central character is given by λ(diag(z, z, z, z)) = zc. The simple
roots are α1 = (1,−1; 0) and α2 = (0, 2; 0); α1 is the short root. Note that the αi
determine the reflections si. The similitude factor is (0, 0; 2).

The root datum (G,B, T ) determines the dual root datum (Ĝ, B̂, T̂ ), where Ĝ
is the dual group GSpin5. We always identify GSpin5 with GSp4 via the spin
isomorphism (see for example [MT02, §3.2] for a detailed explanation of this).
In particular, the cocharacter in X∗(T̂ ) corresponding to the character (a, b; c) ∈
X∗(T ) defined above is given by

t 7→ diag(t(a+b+c)/2, t(a−b+c)/2, t(−a+b+c)/2, t(−a−b+c)/2).

We write g and b for the Lie algebras of GSp4 and B, and g0 and b0 for the Lie
algebras of Sp4 and B ∩ Sp4. If v is a finite place of a number field F , with residue
field k(v), then we have the standard parahoric subgroups of GSp4(Fv):

• The hyperspecial subgroup GSp4(OFv ).
• The paramodular subgroup Par(v), the stabilizer in GSp4(Fv) of OFv ⊕
OFv ⊕OFv ⊕$vOFv , where $v ∈ OFv is a uniformizer.

• The Siegel parahoric Si(v), the preimage in GSp4(OFv ) of those matrices
in GSp4(k(v)) of the form

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 .

• the Klingen parahoric Kli(v), the preimage in GSp4(OFv ) of those matrices
in GSp4(k(v)) of the form

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 .

• the Iwahori subgroup Iw(v), the preimage of B(k(v)) in GSp4(OFv ).
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2.1.2. Algebra. If R is a local ring we write mR for the maximal ideal of R.
If M is a perfect field, we let M denote an algebraic closure of M and GM the

absolute Galois group Gal(M/M). For each prime p not equal to the characteristic
of M , we let εp denote the p-adic cyclotomic character and εp its reduction modulo
p. We will usually drop p from the notation and simply write ε, ε.

If K is a finite extension of Qp for some p, we write Knr for its maximal unrami-
fied extension; IK for the inertia subgroup of GK ; FrobK ∈ GK/IK for the geomet-
ric Frobenius; andWK for the Weil group. If L/K is a Galois extension we will write
IL/K for the inertia subgroup of Gal(L/K). We will write ArtK : K×

∼−→W ab
K for

the Artin map normalized to send uniformizers to geometric Frobenius elements.
If ρ is a continuous representation of GK over Ql for some l 6= p, valued ei-

ther in some GLn or in GSp4, then we write WD(ρ) for the corresponding Weil–
Deligne representation. (By definition, a GSp4-valued Weil–Deligne representation
is just a GSp4-valued representation of the Weil–Deligne group, i.e. it is considered
up to GSp4-conjugacy). If ρ is a de Rham representation of GK on a Qp-vector
space W , then we will write WD(ρ) for the corresponding Weil–Deligne represen-
tation of WK , and if τ : K ↪→ Qp is a continuous embedding of fields, then we
will write HTτ (ρ) for the multiset of Hodge–Tate numbers of ρ with respect to τ ,
which by definition contains i with multiplicity dimQp

(W ⊗τ,K K̂(i))GK . Thus, for
example, HTτ (ε) = {−1}.

Let K/Q be a finite extension. If v is a finite place of K we write k(v) for its
residue field, qv for #k(v), and Frobv for FrobKv . If v is a real place of K, then we
will let [cv] denote the conjugacy class in GK consisting of complex conjugations
associated to v.

We will frequently adopt the following notation: we let p > 2 be prime, and we
let E be a finite extension of Qp with ring of integers O, uniformizer λ and residue
field k.

We will sometimes use the following well-known lemma without comment.

Lemma 2.1.3. Let Γ be a group and let L be an algebraically closed field. Then
a semisimple representation Γ → GSp4(L) is determined up to conjugacy by the
composite Γ→ GSp4(L)→ GL4(L)×GL1(L), where the second factor records the
similitude character.

Proof. This follows (for example) from the proof of Lemma 6.1 of [GT11a]. �

2.1.4. Galois cohomology. If L/K is an extension of fields, k is a field, and V
is a finite-dimensional k-vector space with an action of Gal(L/K), then we write
Hi(L/K, V ) forHi(Gal(L/K), V ), and hi(L/K, V ) for dimkH

i(L/K, V ). We write
Hi(K,V ) and hi(K,V ) for Hi(K/K, V ) and hi(K/K, V ) respectively.

2.1.5. Automorphic representations. We will use the letter π for automorphic repre-
sentations of GSp4, Π for automorphic representations of GLn (usually with n = 4),
and π for automorphic representations of GL2. We decorate these in various ways,
and aim to be consistent in such decorations. For example, Π will usually denote
the transfer to GL4 of π in the sense of §2.9, so that for example Π′2 will denote
the transfer of π′2.

2.2. Induction of two-dimensional representations. We will sometimes want
to induce representations from GL2 to GSp4. Suppose that K/F is a quadratic
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extension of fields, and that r : GK → GL2(L) is a representation, for some field L.
Choose σ ∈ GF \ GK , and assume that det r extends to a character χ of GF
Let ρ := IndGFGK r : GF → GL4(L). The representation ∧2ρ admits the characters χ
and χ ⊗ ηF/K as constituents, where ηF/K denotes the quadratic character. In
particular, the representation ρ generally preserves two symplectic forms, and hence
gives rise to two representations ρ1, ρ2 : GF → GSp4(L) with similitude factors χ
and χ⊗ ηF/K respectively. To describe these more explicitly, let V denote a model
for r so that W = V ⊕ σV is a model for ρ. Then the Galois action of W preserves
(up to scalar) the symplectic form given by choosing an arbitrary non-degenerate
symplectic form on V , letting σV and V be orthogonal, and then defining σv1∧σv2

consistently to be either χ(σ)v1 ∧ v2 or −χ(σ)v1 ∧ v2 = χ ⊗ ηF/K(σ)v1 ∧ v2. The
image of (A,B) ∈ GL2(E)×GL2(E) with det(A) = det(B) inside GSp4 relative to
our choice of J can be given by

∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

 ∩GSp4(E).

In our applications, it will always be the case that det r is the inverse of the cyclo-
tomic character of GK , and we will write simply write IndGFGK r for the corresponding
symplectic representation with similitude factor the inverse of the cyclotomic char-
acter of GF . For example, if K/F is a quadratic extension of number fields, E is
an elliptic curve over K, and r is the dual of the p-adic Tate module of E, then
IndGFGK r is the dual of the p-adic Tate module of the abelian surface A = ResK/F E,
and the corresponding symplectic structure on this representation coincides with
the one coming from the Weil pairing on A. This is because the representation on
the Tate module of A is the induction of the corresponding representation on the
Tate module of E, and because the similitude character on the Tate module of an
abelian variety is always given by the cyclotomic character.

2.3. The non-archimedean local Langlands correspondence. Let K/Ql be
a finite extension for some l. We will let recK be the local Langlands correspon-
dence of [HT01], so that if π is an irreducible complex admissible representation of
GLn(K), then recK(π) is a Frobenius semi-simple Weil–Deligne representation of
the Weil group WK . We will write rec for recK when the choice of K is clear.

If (r,N) is a Weil–Deligne representation of WK we will write (r,N)F−ss for
its Frobenius semisimplification. If πi is an irreducible smooth representation of
GLni(K) for i = 1, 2 we will write π1�π2 for the irreducible smooth representation
of GLn1+n2(K) with rec(π1�π2) = rec(π1)⊕rec(π2). If L/K is a finite extension and
if π is an irreducible smooth representation of GLn(K) we will write BCL/K(π) for
the base change of π to L which is characterized by recL(BCL/K(π)) = recK(π)|WL

.
We denote the local Langlands correspondence of [GT11a] by recGT; this is

a surjective finite-to-one map from the set of equivalence classes of irreducible
smooth complex representations of GSp4(K) to the set of GSp4-conjugacy classes of
GSp4(C)-valued Weil–Deligne representations of WK , which we normalize so that
recGT(π ⊗ (χ ◦ ν)) = recGT(π) ⊗ rec(χ), and ν ◦ recGT(π) = rec(ωπ), where ωπ is
the central character of π.

We fix once and for all for each prime p an isomorphism ı = ıp : C ∼= Qp. We
will generally omit these isomorphisms from our notation, in order to avoid clutter.
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In particular, we will frequently use that ı determines a square root of p in Qp

(corresponding to the positive square root of p in C). We write recp and recGT,p for
the local Langlands correspondences for Qp-representations given by conjugating
by ı. These depend on ı, but in practice this does not cause us any difficulty; see
Remark 2.3.2.

Definition 2.3.1. If ρ : GK → GSp4(Qp) is a continuous representation for
some p 6= l, then we write L(ρ) for the L-packet associated to ρ, which by def-
inition is the set of equivalence classes of irreducible smooth Qp-representations π
of GSp4(K) with the property that recGT,p(π ⊗ |ν|−3/2) ∼= WD(ρ)F−ss.

(In accordance with the convention explained above, note that |ν|−3/2 makes
sense because we have a fixed square root of p.)

Remark 2.3.2. It is presumably possibly to show that the twist of recGT in Defini-
tion 2.3.1 (which will be present whenever we consider recGT,p) gives a local Lang-
lands correspondence for Qp-representations which is independent of the choice of ı,
but we have not tried to establish this, as we do not need it. We make (implicit)
use of this for unramified representations, and of the statement that the rank of
the monodromy operator associated to a representation with Iwahori-fixed vectors
is independent of the choice of ı, both of which are easily verified explicitly.

Remark 2.3.3. We will from now on usually regard automorphic representations as
being defined over Qp, rather than C, by means of the fixed isomorphism ı : C ∼=
Qp. We will not in general draw attention to this, and no confusion should arise
on the few occasions (for example, when considering compatible systems) where we
think of them as being over C.

If L/K is a finite solvable Galois extension of number fields and if π is a cuspi-
dal automorphic representation of GLn(AK), we will write BCL/K(π) for its base
change to L (which exists by the main results of [AC89]), an (isobaric) automorphic
representation of GLn(AL) satisfying

BCL/K(π)w = BCLw/Kv (πv)

for all places w of L where v = w|K is the restriction of w to K. If πi is an
automorphic representation of GLni(AK) for i = 1, 2 we will write π1 � π2 for the
automorphic representation of GLn1+n2(AK) satisfying

(π1 � π2)v = π1,v � π2,v

for all places v of K.
If (r,N) is a Weil–Deligne representation, then we write n((r,N)) for the rank

of N . If π is an irreducible admissible representation of GLn(K) (resp. GSp4(K)),
then we write n(π) for n(rec(π)) (resp. n(recGT(π))).

2.4. Local representation theory. In this section, we recall a number of more
or less well-known results about the representation theory of GSp4(K), where K
is a local field of characteristic zero. Some of these results are in [GT05], but for
convenience we have gathered them all together here, and have usually given proofs.
Since our applications of this material are all global, and some of the definitions we
make (such as the normalizations of Hecke operators at places dividing p) depend
on global information, we have chosen to work in the same global setting that we
consider in the rest of the paper.
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Let p > 2 be prime, and let F be a totally real field in which p splits completely.
Let E/Qp be a finite extension with ring of integers O and residue field k. Let v
be a finite place of F , and fix a uniformizer $v ∈ OFv . For most of this section,
we will allow v to divide p, although at the end of the section, we will prove some
results (which follow those of [KT17] for GLn) under the assumption that qv ≡ 1

(mod p). We fix once and for all a square root q1/2
v ∈ E.

2.4.1. Generalities. We begin by recalling some results on Iwahori Hecke algebras.
It costs us nothing to recall these in a more general setting, so we temporarily
let G/OFv be a split reductive group with T ⊂ B = T · U a maximal torus and
Borel (with unipotent radical U), and let N be the normalizer of T in G. Let
W = N(Fv)/T (Fv) be the Weyl group. Let ∆ ⊂ X∗(T ) be the simple roots. We
write W̃ = N(Fv)/T (OFv ) for the extended affine Weyl group.

Let Iw(v) = ker(G(OFv ) → B(k(v))) be an Iwahori subgroup, and let Iw1(v) =
ker(G(OFv )→ U(k(v))) be a pro-v Iwahori subgroup. Let

H1 = H1(v) = O[Iw1(v)\G(Fv)/Iw1(v)] = O[G(Fv)//Iw1(v)]

be the pro-v Iwahori Hecke algebra. (Here G//K denotes K\G/K — we tend to
prefer the first notation but we also sometimes use the second notation since it is
more compact and some of our expressions are already typographically somewhat
complicated.)

We let T (OFv )1 = (kerT (OFv )→ T (k(v))). We also let

T (Fv)
+ = {x ∈ T (Fv) | α(x) ∈ OFv ,∀α ∈ ∆}.

For g ∈ G(Fv), we write [Iw1(v)gIw1(v)] ∈ H1 for the characteristic function of the
double coset Iw1(v)gIw1(v).

Proposition 2.4.2. For x, y ∈ T (Fv)
+, we have

[Iw1(v)xIw1(v)] · [Iw1(v)yIw1(v)] = [Iw1(v)xyIw1(v)]

and moreover [Iw1(v)xIw1(v)] ∈ (H1[1/p])×. If v - p, then in fact [Iw1(v)xIw1(v)] ∈
H×1 .

Proof. The first statement is a special case of [Cas, Lem. 4.1.5], while the rest is
immediate from [Vig05, Cor. 1]. �

As a result, there is a homomorphism

T (Fv)→ (H1[1/p])×

which is defined as follows: write x ∈ T (Fv) as x = yz−1 with y, z ∈ T (Fv)
+ and

send x to
(δ

1/2
B (y)[Iw1(v)yIw1(v)])(δ

1/2
B (z)[Iw1(v)zIw1(v)])−1

where δB is the modulus character. The kernel of this homomorphism is T (OFv )1.
If v - p, then the image of the homomorphism is in H×1 .

Proposition 2.4.3. Let π be a smooth admissible E[G(Fv)]-module. Then the map
π → πU , where πU is the (normalized) Jacquet module, induces an isomorphism of
E[T (Fv)]-modules

πIw1(v) → (πU )T (OFv )1 .
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Proof. By [Cas, Lem. 4.1.1] (noting that the Jacquet module in this reference is
not the normalized Jacquet module), the map π → πU induces an E[T (Fv)]-module
homomorphism πIw1(v) → (πU )T (OFv )1 . It is an isomorphism by [Cas, Prop. 4.1.4]
and Proposition 2.4.2. �

For a character χ : T (Fv)→ E
×
, write π(χ) = n-Ind

G(Fv)
B(Fv)χ for the corresponding

principal series representation. Then we recall

Proposition 2.4.4. For χ : T (Fv) → E
×

there is an isomorphism of E[T (Fv)]-
modules

(π(χ)U )ss '
⊕
w∈W

E(w · χ).

Proof. This is a special case of [Cas, Thm. 6.3.5]. �

We say that π(χ) is a tame principal series if χ is trivial on T (OFv )1 and an
unramified principal series if χ is trivial on T (OFv ). The results recalled above
immediately imply the well-known facts that if π is an irreducible smooth E[G(Fv)]-
module, then πIw1(v) 6= {0} if and only if π is a constituent of a tame principal series,
and πIw(v) 6= {0} if and only if π is a constituent of an unramified principal series.

Write H := O[Iw(v)\G(Fv)/Iw(v)] for the Iwahori Hecke algebra. This enjoys
similar properties to those of H1 recalled above; in particular, the analogue of
Proposition 2.4.2 gives an embedding E[X∗(T )] ↪→ H[1/p], and if v - p, then this
restricts to an embedding O[X∗(T )] ↪→ H.

2.4.5. Principal series for GSp4. We now specialize our discussion to G = GSp4.
We recall some known results on constituents of unramified principal series repre-
sentations; many of these results are originally due to [ST93], but for convenience
we refer to the tables in [RS07b, App. A]. (Note that the compatibility of the pro-
posed Langlands parameters in [RS07b, App. A.5] with the correspondence recGT

is proved in [GT11b, Prop. 13.1].)
If χ1, χ2, σ are characters of F×v , then we write

χ1 × χ2 o σ := n-Ind
GSp4(Fv)
B(Fv) χ1 ⊗ χ2 ⊗ σ,

where

χ1 ⊗ χ2 ⊗ σ :


a ∗ ∗ ∗

b ∗ ∗
cb−1 ∗

ca−1

 7→ χ1(a)χ2(b)σ(c).

Proposition 2.4.6.
(1) χ1×χ2oσ is irreducible if and only if none of χ1, χ2, χ1χ

±1
2 is equal to |·|±1

v .
(2) If π is an irreducible constituent of χ1 × χ2 o σ, then

recGT,p(π)ss = σ ◦Art−1
Fv
⊗
(
(χ1χ2) ◦Art−1

Fv
⊕ χ1 ◦Art−1

Fv
⊕ χ2 ◦Art−1

Fv
⊕ 1
)
.

(3) If χ1 × χ2 o σ is irreducible, then recGT,p(χ1 × χ2 o σ) is semisimple (that
is, N = 0).

Proof. Part (1) is [ST93, Lem. 3.2]. Parts (2) and (3) follow immediately from rows
I–VI of [RS07b, Table A.7]. �
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2.4.7. Spherical Hecke operators. Define matrices

βv,0 = diag($v, $v, $v, $v),

βv,1 = diag($v, $v, 1, 1),

βv,2 = diag($2
v, $v, $v, 1).

We have the spherical Hecke operators Tv,i = [GSp4(OFv )βv,i GSp4(OFv )], which
are independent of $v. It is easy to check (using Proposition 2.4.6 (2)) that if π is
an unramified representation of GSp4(Fv) (that is, if πGSp4(OFv ) 6= 0, so that π is
a constituent of an unramified principal series), then the characteristic polynomial
of recGT,p(π ⊗ |ν|−3/2)(Frobv) is

(2.4.8) Qv(X) := X4 − tv,1X3 + (qvtv,2 + (q3
v + qv)tv,0)X2 − q3

vtv,0tv,1X + q6
vt

2
v,0,

where we are writing tv,i for the eigenvalue of the operator Tv,i on πGSp4(OFv ).

Definition 2.4.9. We say that the Hecke parameters of π are the roots of Qv(X),
ordered in such a way that the pairs of roots (1, 4) and (2, 3) both multiply to
give the value γv of the similitude character evaluated on Frobv. We write these
Hecke parameters as [αv, βv, γvβ

−1
v , γvα

−1
v ], where implicitly we view these terms

as labelling the vertices of a square:
αv βv

γvβ
−1
v γvα

−1
v

and the ordering is unique up to the action of the Weyl group D8 = Sym(�). In
particular, the data of the quadruple [αv, βv, γvβ

−1
v , γvα

−1
v ] carries with it the value

of the similitude character.

We will be concerned with the case that the central character of π is given by
a 7→ |a|2, in which case the Hecke parameters have the form [αv, βv, qvβ

−1
v , qvα

−1
v ].

2.4.10. Iwahori Hecke operators.

Definition 2.4.11. We say that an unramified principal series π(χ) is general if
the Hecke parameters are pairwise distinct and no ratio of them is qv. In particular,
π(χ) is irreducible, and |W · χ| = 8.

We have Iwahori Hecke operators Unaive
Iw(v),i = [Iw(v)βv,iIw(v)]. The notation

“Unaive” is intended to indicated that we have not yet appropriately normalized
these operators, as we will shortly do in the case that v|p. Then we have

Proposition 2.4.12. Let π be a general unramified principal series with Hecke
parameters [αv, βv, qvβ

−1
v , qvα

−1
v ]. Then πIw(v) is a direct sum of 8 one-dimensional

simultaneous eigenspaces for the Unaive
Iw(v),i. For a given (ordered) choice of αv and

βv the corresponding eigenvalues are uv,0 = q−2
v , uv,1 = αv, and uv,2 = q−1

v αvβv.

Proof. The first part is immediate from Propositions 2.4.3 and 2.4.4. To compute
the eigenvalues, by the definition of the Hecke parameters and Proposition 2.4.6 we
have αv = q

3/2
v (χ1χ2σ)($v), βv = q

3/2
v (χ1σ)($v) and qv = q3

v(χ1χ2σ
2)($v). We

then have uv,i = δB(βv,i)
−1/2(χ1⊗χ2⊗σ)(βv,i), so that uv,0 = (χ1χ2σ)2($v) = q−2

v ,
uv,1 = q

3/2
v (χ1χ2σ)($v) = αv, uv,2 = q2

v(χ2
1χ2σ

2)($v) = q−1
v αvβv, as required. �
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Proposition 2.4.12 has the following converse:

Proposition 2.4.13. Let π be an irreducible admissible representation of GSp4(Fv),
and suppose that πIw(v) contains an eigenvector for the Unaive

Iw(v),i with eigenvalues uvi
satisfying uv0 = q−2

v , uv,1 = αv and uv,2 = q−1
v αvβv such that no ratio of a pair of

[αv, βv, qvβ
−1
v , qvα

−1
v ] is qv. Then π is the unramified principal series with Hecke

parameters [αv, βv, qvβ
−1
v , qvα

−1
v ].

Proof. Reversing the calculation in the previous proof, we let χ = χ1 ⊗ χ2 ⊗ σ be
the unramified character with χ1($v) = αvβvq

−1
v , χ2($v) = αvβ

−1
v , and σ($v) =

α−1
v q
−1/2
v . We see that there is an inequality HomT (Fv)(π

Iw(v), χ) 6= {0}, and hence
Hom(π, π(χ)) 6= {0} by Proposition 2.4.3 and Frobenius reciprocity. Finally, by
Proposition 2.4.6, π(χ) is also irreducible. �

2.4.14. Parahoric level Hecke operators for GL2. We will also need to consider
certain parahoric Hecke algebra and investigate how they relate to the Iwahori
Hecke algebra.

We begin by recalling some standard results for the group GL2. We let Iw(v)′ ⊂
GL2(OFv ) be the Iwahori subgroup of matrices which are upper triangular modulo
$v (we put a prime because Iw(v) is used to denote the Iwahori subgroup in
GSp4(OFv )).

We introduce the following operators in the spherical Hecke algebra HSph[1/p]:

(1) TGL2
v,1 = [GL2(OFv )

(
$v 0
0 1

)
GL2(OFv )],

(2) TGL2
v,0 = [GL2(OFv )

(
$v 0
0 $v

)
GL2(OFv )].

We also define the following operators in the Iwahori Hecke algebra HIw(v)′ [1/p]:

(1) UGL2
v,1 = [Iw(v)′

(
$v 0
0 1

)
Iw(v)′],

(2) UGL2
v,0 = [Iw(v)′

(
$v 0
0 $v

)
Iw(v)′],

(3) eGL2

Sph = [GL2(OFv )].

For any element f of the centre of the Iwahori Hecke algebra, the element eGL2

Sph f
defines an element of the spherical Hecke algebra.

Lemma 2.4.15. The centre Z(HIw(v)′ [1/p]) of the Iwahori Hecke algebra is gen-
erated by UGL2

v,0 and qvUGL2
v,0 (UGL2

v,1 )−1 + UGL2
v,1 , the map eGL2

Sph : Z(HIw(v)′ [1/p]) →
HSph[1/p] is an isomorphism and we have the following identities:

(1) eGL2

Sph U
GL2
v,0 = TGL2

v,0 ,
(2) eGL2

Sph (qvU
GL2
v,0 (UGL2

v,1 )−1 + UGL2
v,1 ) = Tv,1.

Proof. This follows from [HKP10, §1, §2, §4.6]. �

2.4.16. Klingen level Hecke operators. We have Klingen Hecke operators Unaive
Kli(v),i =

[Kli(v)βv,iKli(v)].

Proposition 2.4.17. Let π be a general unramified principal series with Hecke pa-
rameters [αv, βv, qvβ

−1
v , qvα

−1
v ]. Then πKli(v) is a direct sum of 4 one-dimensional

simultaneous eigenspaces for the Unaive
Kli(v),i. For a given choice of {αv, βv}, the eigen-

values are uv,0 = q−2
v , uv,1 = αv + βv, and uv,2 = q−1

v αvβv.
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Proof. This follows from a direct computation, see [GT05, Prop. 3.2.1, Cor. 3.2.2].
�

Remark 2.4.18. We sketch another (related) proof of Proposition 2.4.17. Let us de-
note by HIw(v)[1/p] the Iwahori Hecke algebra and by ZKli(v)(HIw(v)[1/p]) the sub-
algebra generated by Unaive

Iw(v),1 + qv(U
naive
Iw(v),1)−1Unaive

Iw(v),2, U
naive
Iw(v),2, U

naive
Iw(v),0. One checks

that ZKli(v)(HIw(v)[1/p]) commutes with eKli(v) = [Kli(v)] by using Bernstein’s re-
lation ([HKP10, §1.15]). Therefore we get a map: eKli(v) : ZKli(v)(HIw(v)[1/p]) →
HKli(v)[1/p] where HKli(v)[1/p] is the Klingen Hecke algebra. We claim that:

• eKli(v)(U
naive
Iw(v),1 + qv(U

naive
Iw(v),1)−1Unaive

Iw(v),2) = Unaive
Kli(v),1,

• eKli(v)U
naive
Iw(v),2 = Unaive

Kli(v),2,
• eKli(v)U

naive
Iw(v),0 = Unaive

Kli(v),0.

The claim can be checked after restricting all these functions to the Levi GL2 ×
GL1 of the Klingen parabolic by [Vig98, Prop. II.5], so it follows from Lemma 2.4.15.
The result then follows from Proposition 2.4.12.

Remark 2.4.19. Proposition 2.4.17 could also be proved using Jacquet modules
(as could analogous results for invariants at other level structures which admit
parahoric factorizations).

Proposition 2.4.20. Let π be an irreducible admissible representation of GSp4(Fv),
and suppose that πKli(v) contains an eigenvector for the Unaive

Kli(v),i with eigenvalues
uvi satisfying uv0

= q−2
v , uv,1 = αv + βv and uv,2 = q−1

v αvβv such that no ratio
of a pair of {αv, βv, qvβ−1

v , qvα
−1
v } is qv. Then π is the unramified principal series

with Hecke parameters [αv, βv, qvβ
−1
v , qvα

−1
v ].

Proof. As in the proof of Proposition 2.4.13, we deduce from πIw(v) 6= 0 that π is a
constituent of an unramified principal series representation. The central character
of such a constituent is unramified and so is determined by the value on Frobenius.
From the equation uv0 = q−2

v , we deduce that the central character of π is | · |2, and
hence the central character of π ⊗ |ν|−3/2 is | · |−1, and hence that the similitude
character of recGT,p(π ⊗ |ν|−3/2) is the inverse of the cyclotomic character ε−1.
In particular, the value of the similitude character of the Weil–Deligne representa-
tion on Frobv is qv, and thus π is a constituent of an unramified principal series
representation with Hecke parameters [α′v, β

′
v, qv(β

′
v)
−1, qv(α

′
v)
−1]. (Note that the

ordering of these eigenvalues above is determined up to the action of D8.) Compar-
ing to Proposition 2.4.17, without loss of generality, we may rearrange the Hecke
parameters of π so that we deduce the two equations

α′v + β′v = αv + βv, α′vβ
′
v = αvβv,

and thus (again up to reordering) α′v = αv and β′v = βv. By Proposition 2.4.6, the
principal series π is irreducible. �

2.4.21. Generic unipotent representations. We say that a GSp4(E)-valued Weil–
Deligne representation r is generic if ad(r)(1) has no invariants, and is unipotent if
rss is unramified.

Proposition 2.4.22. Let r be unipotent. Then the L-packet corresponding to r
contains a generic representation if and only if r is generic.
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Proof. By the main theorem of [GT11a] (part vii), the L-packet L(r) contains a
generic representation if and only if the adjoint L-factor L(s, ad(rF−ss)) is holomor-
phic at s = 1, which, by definition, is easily seen to be equivalent to the statement
that ad(rF−ss)(1) has no invariants. Thus we are reduced to checking that r is
generic if and only if rF−ss is generic. Let W denote the vector space underlying
the representation ad(r)(1). We are reduced to showing that Hom(E,W ) = 0 if
and only if Hom(E,WF−ss) = 0.

One implication is trivial. For the reverse implication, a map from E toWF−ss is
the same as giving a vector x inW which lies in the kernel of N and is a generalized
eigenvector for the Frobenius φ with eigenvalue 1. For a suitable choice of n ∈ N,
the vector y = (φ − 1)nx will be non-zero and a genuine eigenvector for φ with
eigenvalue one. On the other hand, since x lies in the kernel of N , so does φx,
because Nφx = q−1

v φNx = 0. Similarly, any polynomial in φ applied to x also lies
in the kernel of N . Thus y also lies in the kernel of N and gives rise to a nonzero
element of Hom(E,W ). �

2.4.23. Normalized Hecke operators, ordinary representations, and ordinary projec-
tors. In this section, we assume that v|p. We fix integers k ≥ l ≥ 2, and k ≡ l
(mod 2) (these will correspond to the weights of our automorphic forms; see Sec-
tion 2.6). Then we will consider normalized Hecke operators at Iwahori and Klingen
level defined by

UIw(v),0 = p2Unaive
Iw(v),0 UKli(v),0 = p2Unaive

Kli(v),0

UIw(v),1 = p(k+l)/2−2Unaive
Iw(v),1 UKli(v),1 = p(k+l)/2−2Unaive

Kli(v),1

UIw(v),2 = pk−1Unaive
Iw(v),2 UKli(v),2 = pk−1Unaive

Kli(v),2

We will often write Uv,i for the operators UIw(v),i when the context is clear. We will
also keep writing Uv,0 for the Hecke operator p2[Kvβv,0Kv] for any subgroup Kv

of Iw(v) (because Uv,0 lies in the centre of the Iwahori Hecke algebra and therefore
p2[Kvβv,0Kv] = eKvUv,0). We will also often write Uv,2 for the Hecke operator
UKli(v),2 for the same reason (see Remark 2.4.18). We can and do also normal-
ize the Siegel Hecke operators in the same way, so that for example USi(v),1 =

p(k+l)/2−2Unaive
Si(v),1.

An irreducible smooth E[GSp4(Fv)]-representation with central character | · |2 is
said to be ordinary of weights k ≥ l ≥ 2 if there exists an eigenvector v ∈ πIw(v)

for UIw(v),i with eigenvalues uv,i with vp(uv,i) = 0. If αv and βv are defined by
αv = uv,1, βv = uv,2/uv,1, then, by Proposition 2.4.4, π is a constituent of an
unramified principal series with Hecke parameters

[αvp
2−(k+l)/2, βvp

−(k−l)/2, β−1
v p1+(k−l)/2, α−1

v p(k+l)/2−1].

We say that π is p-distinguished if these four Satake parameters are pairwise dis-
tinct, or in other words if either l > 2 or αv 6= βv.

If l > 2, then again by Proposition 2.4.4, v ∈ πIw(v) is the unique eigenvector (up
to scale) with unit eigenvalues for the UIw(v),i. In this case, the ordered pair (αv, βv)
is uniquely determined by π, and we call (αv, βv) the ordinary Hecke parameters
of π. If l = 2 and π is p-distinguished, then there may also be an eigenvector
v′ ∈ πIw(v) with unit eigenvalues UIw(v),1v

′ = βvv
′, UIw(v),2v

′ = αvβvv
′ (we will

see below that in fact such a v′ always exists.) Thus at least the set {αv, βv} is
determined by π and we again call them the ordinary Hecke parameters of π.
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We let ereg be the ordinary projector (in the sense of Section 2.11) associated
to UIw(v),1UIw(v),2, and let eirreg be the ordinary projector associated to UKli(v),2.

Proposition 2.4.24. Let π be an ordinary p-distinguished representation of weights
k ≥ l ≥ 2, with ordinary Hecke parameters (αv, βv) (or {αv, βv} if l = 2). Assume
that either k > l > 3 or l = 2.

(1) If k > l > 3 or if l = 2 and k > 2, then π is an irreducible principal series.
(2) If k = l = 2, then in the sense of the tables of [RS07c, §1], π is a rep-

resentation of type Va if {αv, βv} = {1,−1}, IIIa if αvβv = 1, IIa if
#{αv, βv} ∩ {1,−1} = 1, or otherwise is an irreducible unramified prin-
cipal series.

In all cases, π is generic and the L-packet L(π) of π contains no other ordinary
representations. Moreover:

(1) k > l > 3 then
dim eregπ

Iw(v) = 1

on which UIw(v),i has eigenvalues 1, αv, αvβv for i = 0, 1, 2.
(2) If l = 2 then

dim eregπ
Iw(v) = 2

and there are two eigenspaces for UIw(v),i, with eigenvalues 1, αv, αvβv and
1, βv, αvβv respectively, and moreover

dim eirregπ
Kli(v) = 1

with UKli(v),i eigenvalues 1, αv + βv, αvβv, for i = 0, 1, 2.

Proof. As remarked above, by Proposition 2.4.4, π is a constituent of an unramified
principal series with Hecke parameters

[αvp
2−(k+l)/2, βvp

−(k−l)/2, β−1
v p1+(k−l)/2, α−1

v p(k+l)/2−1].

If either k > l > 3 or l = 2 and k > 2, no ratio of a pair of these parameters can be
p, and hence π is an irreducible principal series by Proposition 2.4.6.

In the remaining case, k = l = 2, the Satake parameters are [αv, βv, β
−1
v p, α−1

v p],
and the corresponding principal series may be reducible when one of α2

v, β
2
v , αvβv is

equal to 1. The constituents of these principal series are listed in the tables [RS07c,
§1]. The case that either α2

v = 1 or β2
v = 1 but not both corresponds to type II,

the case that α2
v = β2

v = 1 corresponds to type V, and the case that αvβv = 1
corresponds to type III.

For each constituent π of such a principal series, the tables give a computation
of the Jacquet module πssU , which is equal to πU because αv 6= βv. This allows us,
by Proposition 2.4.3, to determine the simultaneous eigenvalues of the UIw(v),i on
πIw(v). At this point the result follows from an inspection of the tables. �

We now turn to the global situation. Recall that we have fixed an isomorphism ı :
Qp
∼= C, so that in particular in the following definition we can and do identify the

infinite places of F with the places dividing p. See Section 2.6 for our conventions
regarding the weights of automorphic representations.

Definition 2.4.25. Let π be a cuspidal automorphic representation of GSp4(AF )
with central character | · |2 and weight (kv, lv)v|∞, where kv ≥ lv ≥ 2 and kv ≡ lv
(mod 2) for all v|∞. Then we say that π is ordinary if for each place v|p, πv is
ordinary of weights kv ≥ lv ≥ 2.
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The following proposition will be useful for going between ordinary p-adic mod-
ular forms and ordinary automorphic representations. For each subset I ⊂ Sp we
set

Kp(I) =
∏
v∈I

Kli(v)
∏
v∈Ic

Iw(v).

We also let e(I) =
∏
v∈I eirreg

∏
v 6∈I ereg.

Proposition 2.4.26. Let π be a cuspidal automorphic representation of GSp4(AF )
of weight (kv, lv)v|∞ with kv ≥ lv ≥ 2 and with central character | · |2, and fix tuples
of p-adic units (αv, βv)v|p. Assume that for each v ∈ Sp, either kv > lv > 3 or
lv = 2 and αv 6= βv.

Let I ′ = {v ∈ Sp | lv = 2} and let I ⊂ I ′ be a subset. Then π is ordinary with
ordinary Hecke parameters (αv, βv)v|p if and only if

(⊗v∈Spπv)Kp(I)

contains a vector which is:
• for each v ∈ Ic, an eigenvector for the normalized UIw(v),0, UIw(v),1, and
UIw(v),2, with respective eigenvalues 1, αv, and αvβv, and

• for each v ∈ I, an eigenvector for UKli(v),0, UKli(v),1, and UKli(v),2 with
respective eigenvalues 1, αv + βv, and αvβv.

Moreover in this case

dim e(I)(⊗v∈Spπv)Kp(I) = 2#(I′−I).

Note that if π is ordinary with ordinary Hecke parameters (αv, βv)v|p but v /∈ I ′,
then the UKli(v),1 eigenvalue will not be of the form αv +βv, but rather, up to some
ordering of αv and βv, be of the form αv + plv−2βv.

Proof. This is simply Proposition 2.4.24 applied for each v ∈ Sp. �

2.4.27. An instance of the local Langlands correspondence. Given a pair of charac-
ters χv,1, χv,2 : k(v)× → O×, which we regard as characters of O×Fv by inflation, we
define a character of χv of T (O) by

χv : T (OFv )→ O×

(a, b, cb−1, ca−1) 7→ χv,1(ab−1)χv,2(abc−1).

Then if M is an H1-module, we write

Mχv = {m ∈M | tm = χv(t)m ∀t ∈ T (k(v))}
and

Mχv = M/〈tm− χv(t)m | t ∈ T (k(v)),m ∈M〉.
Then we record:

Proposition 2.4.28. If π is an irreducible smooth E[GSp4(Fv)]-module with the
property that (πIw1(v))χv 6= {0}, then, for all σ ∈WFv ,

det(X − recGT,p(π)(σ)) = (X − χv,1(Art−1
Fv

(σ)))(X − χv,1(Art−1
Fv

(σ))−1)

(X − χv,2(Art−1
Fv

(σ)))(X − χv,2(Art−1
Fv

(σ))−1).

If, moreover, the characters χv,1, χ−1
v,1, χv,2, χ

−1
v,2 are pairwise distinct, then there is

an equality dimE(πIw1(v))χv = 1.

Proof. This is an immediate consequence of Propositions 2.4.3, 2.4.4 and 2.4.6. �
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2.4.29. The case qv ≡ 1 (mod p). We suppose from now on for the rest of this sec-
tion that qv ≡ 1 (mod p). Recall that we have a homomorphism T (Fv)/T (OFv )1 →
H×1 , and thus an (injective) homomorphism O[T (Fv)/T (OFv )1]→ H1; we identify
O[T (Fv)/T (OFv )1] with its image inH1. Given elements α1, α2 ∈ F

×
p , we let mα1,α2

denote the kernel of the homomorphism O[T (Fv)/T (OFv )1] → Fp induced by the
character T (Fv)/T (OFv )1 → F

×
p sending T (OFv ) 7→ 1, diag($v, $v, $v, $) 7→ 1,

diag($v, $v, 1, 1) 7→ α1, and diag($2
v, $v, $v, 1) 7→ α1α2.

Proposition 2.4.30. Let π be an irreducible smooth E[GSp4(Fv)]-module with
central character |·|2 and with (πIw1(v))mα1,α2

6= {0}. Suppose α±1
1 , α±1

2 are pairwise
distinct. Then

recGT,p(π) = γ1 ⊕ γ2 ⊕ ε−1γ−1
2 ⊕ ε−1γ−1

1

for characters γi of GFv with γi = λαi (the unramified character taking Frobv
to αi), and T (k(v)) acts on (πIw1(v))mα1,α2

via (γi ◦ArtFv )|O×Fv .

Proof. From Proposition 2.4.28, we know the characteristic polynomial of the corre-
sponding representation, and thus immediately deduce that the semi-simplification
of the Galois representation has the required form. It thus suffices to show that, un-
der the hypothesis on αi, that all Galois representations are semi-simple. Suppose
otherwise. Two tamely ramified characters admit an extension if and only if their
ratio is unramified and takes the value qv on Frobenius. Since qv ≡ 1 mod p and ε
is trivial modulo p, this implies that α±1

1 , α±1
2 are not distinct, a contradiction. �

Remark 2.4.31. Let Z be the centre of GSp4, let ∆v be the maximal p-power
quotient of T (k(v))/Z(k(v)), and let ∆′v = ker(T (k(v)) → ∆v). If the π of Propo-
sition 2.4.30 additionally satisfies the condition that (πIw1(v))

∆′v
mα1,α2

6= {0}, then we

immediately deduce that ∆v also acts on (πIw1(v))
∆′v
mα1,α2

via (γi ◦ArtFv )|O×Fv .

We now prove some results about the Iwahori Hecke algebra (under our running
assumption that qv ≡ 1 (mod p)). We follow [KT17, §5] closely, and our proofs
are essentially an immediate adaptation of their arguments from GLn to GSp4. As
recalled above, we have an embedding O[X∗(T )] ↪→ H. This can be refined to
give the Bernstein presentation of H (see e.g. [HKP10, §1]), which is an algebra
isomorphism

H ∼= O[X∗(T )]⊗̃OO[Iw(v)\GSp4(OFv )/Iw(v)],

where the twisted tensor product ⊗̃O is determined by the following relations, where
sα ∈W is simple, corresponding to the simple root α, and µ ∈ X∗(T ):

(2.4.32) Tsαθλ = θsα(λ)Tsα +
(
qv − 1

)θs(λ) − θλ
1− θ−α∨

.

Here we are writing θµ for the image in H of the group element eµ of O[X∗(T )]
corresponding to µ, and for w ∈ W we write Tw := [Iw(v)ẇIw(v)] where ẇ ∈
GSp4(OFv ) is any representative for w.

Lemma 2.4.33. There is a natural isomorphism H⊗O k ∼= k[X∗(T ) oW ].

Proof. We claim that the natural k-linear map k[W ]→ k[Iw(v)\GSp4(OFv )/Iw(v)]
sending w 7→ Tw is an algebra isomorphism. Admitting this claim, note that
since qv ≡ 1 (mod p), the relation (2.4.32) becomes

Tsαθλ = θsα(λ)Tsα
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in H ⊗O k, so that there is an isomorphism k[X∗(T ) o W ] → H ⊗O k sending
eλw 7→ θλTw, as required.

It remains to prove the claim. The Weyl group W is generated by s1, s2 with
s2

1 = s2
2 = (s1s2)4 = 1, so it is enough to show that k[Iw(v)\GSp4(OFv )/Iw(v)]

is generated by the elements Ts1 , Ts2 , subject to the same relations. This follows
from the assumption that qv ≡ 1 (mod p); indeed, we have the usual relations
T 2
si = (qv− 1)Tsi + qv (i = 1, 2), and Ts1Ts2Ts1Ts2 = Ts2Ts1Ts2Ts1 , which are easily

seen to be equivalent to T 2
s1 = T 2

s2 = (Ts1Ts2)4 = 1, as required. �

Recall that by definition an O[GSp4(Fv)]-module M is smooth if every element
of M is fixed by some open compact subgroup of GSp4(Fv), and it is admissible if
it is smooth, and if for each open compact subgroup U ⊂ GSp4(Fv), MU is a finite
O-module.

Lemma 2.4.34. If M is a smooth O[GSp4(Fv)]-module, then the natural inclusion
MGSp4(OFv ) ⊂M Iw(v) is canonically split by the Hecke operator

1

[GSp4(OFv ) : Iw(v)]
eSph(v).

Proof. The Hecke operator eSph(v) ∈ H induces the natural trace map M Iw(v) →
MGSp4(OFv ), so that the composite map MGSp4(OFv ) → M Iw(v) → MGSp4(OFv )

is given by multiplication by [GSp4(OFv ) : Iw(v)]. Since [GSp4(OFv ) : Iw(v)] ≡
|W | = 8 (mod p) is a unit in O, we are done. �

Corollary 2.4.35. IfM is a smooth k[G]-module, thenM Iw(v) is naturally a k[W ]-
module, and MGSp4(OFv ) = (M Iw(v))W .

Proof. This is immediate from Lemmas 2.4.33 and 2.4.34. �

The centre of H is O[X∗(T )]W , and there is an isomorphism

O[X∗(T )]W ∼= O[GSp4(OFv )\GSp4(Fv)/GSp4(OFv )]

given by x 7→ eSph(v)x (where we are regarding x as an element of H); this iso-
morphism agrees with the isomorphism given by the usual Satake isomorphism
(see [HKP10, §4.6]). The classical description of O[X∗(T )] is as follows. Let x0, x1,
and x2 denote the following three cocharacters:

x0 : t→ diag(t, t, 1, 1),

x1 : t→ diag(1/t, 1, 1, t),

x2 : t→ diag(1, 1/t, t, 1).

Then x2
0x1x2 is the cocharacter t 7→ diag(t, t, t, t) and

O[X∗(T )] = O[x0, x1, x2, (x
2
0x1x2)−1] = O[x0, x1, x2, (x0x1x2)−1].

The effect of the involutions s1, s2, and s1s2s1 ∈ W on these cocharacters is to
send (x0, x1, x2) to

(x0, x2, x1), (x0x2, x1, x
−1
2 ), (x0x1, x

−1
1 , x2)

respectively. All of these involutions preserve (x0, x0x1, x0x2, x0x1x2) considered
as an unordered quadruple. Define elements ei(x0, x1, x2) ∈ O[X∗(T )]W , 0 ≤ i ≤ 4,
by the following formulae:

(X − x0)(X − x0x1)(X − x0x2)(X − x0x1x2) =
∑

ei(x0, x1, x2)Xi.



30 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

The relation between the ei and the Hecke operators Tv,i is given by∑
ei(x0, x1, x2)Xi = X4−q3/2

v Tv,1X
3+(q2

vTv,2+(1+q2
v)Tv,0)X2−q3/2

v Tv,0Tv,1X+T 2
v,0.

Since we are assuming that qv ≡ 1 (mod p), and in our applications of these results
in the global setting there is a twist which makes all of the powers of qv integral
(as in (2.4.8)), we will ignore all powers of q1/2

v from now on.
Given any triple γ := (γ0, γ1, γ2) and w ∈ W , let ((wγ)0, (wγ)1, (wγ)2) denote

the triple obtained by substituting in γi for xi in the action of W on O[X∗(T )]
described above.

Lemma 2.4.36. Let M be an H⊗O k-module which is finite-dimensional over k.
Suppose that eSph(v)M 6= 0, and that there is a triple γ0, γ1, γ2 with γ2

0γ1γ2 = 1
such that (γ1 − 1)(γ2 − 1)(γ1 − γ2)(γ1γ2 − 1) 6= 0; equivalently, writing α1 = γ0,
α2 = γ0γ1, suppose that

α1, α2, 1/α2, 1/α1

are pairwise distinct. Suppose also that the following operators act by zero on the
module eSph(v)M :

Tv,0 − 1 Tv,1 − e1(γ0, γ1, γ2), Tv,2 + 2Tv,0 − e2(γ0, γ1, γ2).

Then, for each w ∈W , the maximal ideal

mw = (x0 − (wγ)0, x1 − (wγ)1, x2 − (wγ)2) ⊂ k[X∗(T )]

is in the support of M .

Proof. Let n ⊂ k[X∗(T )]W be the ideal

n = (e1(x0, x1, x2)−e1(γ0, γ1, γ2), . . . , e4(x0, x1, x2)−e4(γ0, γ1, γ2), x2
0x1x2−γ2

0γ1γ2).

Then, by assumption, we have eSph(v)M ⊂ M [n], so that in particular Mn 6=
0. The assumptions on γi imply that all the ideals mw are distinct. We may
view n as an ideal in k[X∗(T )]. The support of n in k[X∗(T )] corresponds to
triples (γ0, γ1, γ2) (or equivalently, pairs (α1, α2)) such that α1, α2, α−1

2 , and α−1
1

are roots of the polynomial
∑
ei(γ0, x1, x2)Xi. Hence the support of n ⊂ k[X∗(T )]

consists exactly of the maximal ideals mw, and the product of the mw is precisely
the radical of n. The ring k[X∗(T )]n is thus a semi-local ring which is isomorphic
to ⊕w∈W k[X∗(T )]mw , and correspondingly we may write Mn = ⊕w∈WMmw . It
follows that Mmw 6= 0 for at least one w ∈W . Considering the action of W on the
set of maximal ideals of k[X∗(T )] in the support ofM , we see that in factMmw 6= 0
for all w ∈W , as required. �

Lemma 2.4.37. Let M be an H⊗O k-module which is finite-dimensional over k.
Suppose that for each maximal ideal n ⊂ k[X∗(T )]W in the support of M , the degree
four polynomial ∑

ei(x0, x1, x2)Xi ∈ k[X∗(T )]W [X]

has roots (γ0, γ0γ1, γ0γ2, γ0γ1γ2) modulo n satisfying (γ1−1)(γ2−1)(γ1−γ2)(γ1γ2−
1) 6= 0 and γ2

0γ1γ2 = 1. Equivalently, writing γ0 = α1, γ0γ1 = α2, assume
that γ2

0γ1γ2 = 1 and that
α1, α2, 1/α2, 1/α1
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are pairwise distinct. Then eSph(v)M 6= 0. If, furthermore, there is a unique
maximal ideal n ⊂ k[X∗(T )]W in the support of M , then for each maximal ideal
m ⊂ k[X∗(T )] in the support of M , the maps

k[W ]⊗kMm →M,

w ⊗ x 7→ w · x,
and

Mm → eSph(v)M,

x 7→ eSph(v) · x
are both isomorphisms.

Proof. After possibly enlarging k, we can and do assume that the γi arising from the
roots of the degree four polynomial above lie in k. As in the proof of Lemma 2.4.36,
there exist |W | = 8 distinct ideals mw such that Mn ' ⊕w∈WMmw , where m =
(t0− γ0, t1− γ1, t2− γ2) ⊂ k[X∗(T )]. Since Mn 6= 0, we may assume that Mmw 6= 0
for some and hence all mw. The operator eSph(v) acts by averaging over the action
of the Weyl group. It follows (because the mw are distinct) that the map eSph(v) :
Mm → ⊕w∈WMmw = Mn is an injection, and thus eSph(v)M 6= 0.

Suppose that n is the only maximal ideal of k[X∗(T )] in the support ofM . Then
the maximal ideals of k[X∗(T )] in the support of M are necessarily of the form mw,
and we have M = ⊕w∈WMmw = ⊕w∈Ww ·Mm, and the rest of the lemma follows
immediately. �

Remark 2.4.38. Note that (using as usual that qv = 1 in k) we have that Unaive
v,0 =

x2
0x1x2, and if this equals 1, then Unaive

v,1 = x0 and Unaive
v,2 = (s1s2s1)x1. Con-

sequently we see for example that if the hypotheses of Lemma 2.4.36 hold then
(Uv,0 − 1, Uv,1 − α1, Uv,2 − α1α2) is in the support of M .

2.5. Purity. Let K be a finite extension of Qp for some p, with residue field of
order q. Following [TY07, §1], we say that a Weil–Deligne representation (W, r,N)
of WK on a vector space W over an algebraically closed field Ω which is of char-
acteristic 0 and of the same cardinality as C is pure of weight w if there is an
exhaustive and separated ascending filtration Fili of W such that

• each FiliW is invariant under r;
• if σ ∈WK maps to Frob

v(σ)
K , then all eigenvalues of r(σ) on griW are Weil

qiv(σ)-numbers;
• and for all j we have N j : grw+jW

∼−→ grw−jW . (Note that necessarily
we have N FiliW ⊂ Fili−2W .)

Recall that for a Weil–Deligne representation (r,N), we defined in Section 2.3
n(r,N) to be the rank of N .

Lemma 2.5.1. If (V, r) is a semisimple representation of WK , then there is at
most one choice of N for which (V, r,N) is a pure Weil–Deligne representation. If
such an N exists, then the corresponding Weil–Deligne representation is the unique
choice which maximizes n(r,N).

Proof. The uniqueness of N is [TY07, Lem. 1.4(4)]. The maximality follows easily,
using that by definition all of the induced maps N j : grw+jW → grw−jW are
isomorphisms if and only if (V, r,N) is pure. �
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2.6. Archimedean L-parameters. We now recall some notation for archimedean
L-parameters following [Mok14, §3.1] (although our w has the opposite sign to this
reference). Recall thatWR = C×∪C×j, where jzj−1 = z and j2 = −1. Let w ∈ R.
For an integer n ≥ 0, let φw,n : WR → GL2(C) be the L-parameter given by

z 7→ |z|w ·
(

(z/z)n/2

(z/z)−n/2

)
= |z|w

(
zn|z|−n

z−n|z|n
)

and

j 7→
(

1
(−1)n

)
.

The determinant of φw,n is equal to |z|2w if n is odd and sgn · |z|2w if n is even,
where sgn : WR → C× is the degree two character which is −1 on j (and triv-
ial on C×). We also write φw,n for the restriction of φw,n to WC. The GL2(R)
and GL2(C) representations corresponding to the L-parameter φw,n are cohomo-
logical if and only if n > 0 and w ∈ Z satisfies w + n ≡ 1 mod 2.

Let m1 > m2 ≥ 0 be integers, and let w ∈ R. Then we write φ(w;m1,m2) : WR →
GSp4(C) for the L-parameter sending

z 7→ |z|w·


(z/z)(m1+m2)/2

(z/z)(m1−m2)/2

(z/z)−(m1−m2)/2

(z/z)−(m1+m2)/2


and

j 7→


1

1
(−1)m1+m2

(−1)m1+m2

 .

Note that φ(w;m1,m2) is viewed as having image in GSp4(C) with respect to our
particular choice of model for GSp4(C) where J is anti-diagonal. In particular,
the image of j under the composite of φ(w;m1,m2) with the similitude character
is (−1)m1+m2 . With respect to the explicit inclusion of

{(A,B) ⊂ GL2(C)×GL2(C) | det(A) = det(B)} ⊂ GSp4(C)

given in §2.2, we immediately observe that the composite of φ(w;m1,m2) with the
inclusion GSp4(C) → GL4(C) identifies φ(w;m1,m2) with φw,m1+m2

⊕ φw,m1−m2

(note that (−1)m1+m2 = (−1)m1−m2). The L-packet of GSp4(R) corresponding
to φ(w;m1,m2) consists of two elements πH(w;m1,m2) and πW(w;m1,m2). When m2 = 0,
they are (up to twist) non-degenerate limits of discrete series, and when m2 > 0,
they are (up to twist) discrete series. The representations πH(w;m1,m2) and π

W
(w;m1,m2)

are respectively holomorphic and generic. Their central character is given by a 7→
aw, and they are tempered when w = 0. The minimal K-type of πH(w;m1,m2) is the
representation detm2+2⊗Symm1−m2−1 C2 of U(2). (See for example [Sch17] for
these facts and their proofs.)

Lemma 2.6.1 (Inductions of real archimedean parameters to GL4(C)).
(1) The induction IndWR

WC
φw,n : WR → GL4(C) is conjugate to φw,n ⊕ φw,n.

(2) The composite map

φ(w;n,0) : WR → GSp4(C)→ GL4(C)
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is conjugate to φw,n ⊕ φw,n.
(3) If ϕ : WC → GL2(C) is such that IndWR

WC
ϕ is conjugate to φw,n ⊕ φw,n,

and n 6= 0, then either ϕ ∼= φw,n, or ϕ is one of the scalar L-parameters
sending z to one of

|z|w ·
(
zn|z|−n 0

0 zn|z|−n
)

or |z|w ·
(
z−n|z|n 0

0 z−n|z|n
)
.

(4) If ϕ,ϕ′ : WR → GL2(C) are such that ϕ⊕ ϕ′ is conjugate to φw,n ⊕ φw,n,
and n 6= 0, then ϕ ∼= ϕ′ ∼= φw,n.

Proof. Since φw,n is already a representation of WR, the first induction is isomor-
phic to φw,n⊕φw,n⊗ sgn. Yet φw,n is itself induced from C×, and so φw,n⊗ sgn '
φw,n. The second claim was already noted above. Now suppose that ϕ : WC →
GL2(C) is a complex L-parameter. All such parameters are of the form

za1 |z|−a1 |z|w1 ⊕ za2 |z|−a2 |z|w2

for integers a1 and a2. The induction of this representation toWR is φw1,a1⊕φw2,a2 .
Now consider the equality of GL4(C)-representations

φw1,a1
⊕ φw2,a2

= φ(w;n,0) = φw,n ⊕ φw,n.

Restricting to S1 ⊂ C× ⊂ WR, we deduce that |a1| = |a2| = n, and then restrict-
ing to the action of C× on the eigenspace where S1 ⊂ C× acts by zn (which is
distinct from z−n), we deduce that w1 = w2 = w, and thus φw1,a1 = φw2,a2 = φw,n.
If a1 and a2 have opposite signs, then ϕ = φw,n; otherwise we get the possibili-
ties outlined in the statement of the lemma. Finally, (4) is immediate from the
irreducibility of φw,n. �

We note in passing that the GSp4(C)-parameter cannot be recovered, in general,
from the GL4(C)-parameter. This is true in particular for φ(0;1,0), since one may
compute that the GL4(C) representation preserves two symplectic forms whose
similitude characters differ by sgn.

If K is a number field and π is an automorphic representation of GL2(AK), we
say that π has weight 0 if for each place v|∞ of K, πv corresponds to φ0,1. If F is a
totally real field and π is an automorphic representation of GSp4(AF ), then we say
that π has weight (kv, lv)v|∞ if for each place v|∞ of F , we have kv ≥ lv ≥ 2 and
kv ≡ lv (mod 2), and πv is in the L-packet corresponding to φ(2;kv−1,lv−2). We say
that π has parallel weight 2 if it has weight (2, 2)v|∞ (we note that the congruence
kv ≡ lv (mod 2) is imposed in order to ensure that π is algebraic.)

2.7. Galois representations associated to automorphic representations.
We now recall some results from [Mok14] on the existence of Galois representa-
tions (adapted to the particular setting of interest for us), beginning with the
existence of Galois representations for certain cuspidal automorphic representation
of GSp4(AF ). The following theorem is essentially due to Sorensen [Sor10], al-
though at the time that [Sor10] was written, some additional assumptions needed
to be made, due to the lack of unconditional results on the transfer of automorphic
representations between GSp4 and GL4.

Theorem 2.7.1. Suppose that F is a totally real field, and that π is a cuspidal
automorphic representation of GSp4(AF ) of weight (kv, lv)v|∞, where kv ≥ lv > 2

and kv ≡ lv (mod 2) for all v|∞. Suppose also that π has central character | · |2.
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Fix a prime p. Then there is a continuous semisimple representation ρπ,p :

GF → GSp4(Qp) satisfying the following properties.
(1) ν ◦ ρπ,p = ε−1.
(2) For each finite place v, we have

WD(ρπ,p|GFv )ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

If furthermore ρπ,p is irreducible, then

WD(ρπ,p|GFv )F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

(3) If v|p, then ρπ,p|GFv is de Rham with Hodge–Tate weights ((kv + lv)/2 −
1, (kv − lv)/2 + 1,−(kv − lv)/2, 2− (kv + lv)/2).

(4) If ρπ,p is irreducible, then for each finite place v of F , ρπ,p|GFv is pure.

Proof. The existence of a representation ρπ,p valued in GL4(Qp) and satisfying (2)
and (3) is part of [Mok14, Thm. 3.5] (note that the results of [Art04] cited in [Mok14]
hold unconditionally by [GT19]). That the representation actually takes values
in GSp4(Qp) with the claimed multiplier follows from [BC11, Cor. 1.3] (cf. [Mok14,
Rem. 3.3(3)]). Finally, for part (4), note that if ρπ,p is irreducible, then π is of
general type in the sense of [Art04] (see Section 2.9), and thus corresponds to an
essentially self-dual algebraic automorphic representation Π of GL4. Purity then
follows from the main results of [Car12, Car14]. �

For representations which are ordinary in the sense of Section 2.4.23, we have
the following variant on Theorem 2.7.1.

Theorem 2.7.2. Suppose that F is a totally real field, and that π is a cuspidal
automorphic representation of GSp4(AF ) of weight (kv, lv)v|∞, where kv ≥ lv > 2

and kv ≡ lv (mod 2) for all v|∞. Suppose also that π has central character | · |2.
Fix a prime p. Assume that πv is unramified at all places v|p, and that π is

ordinary, with ordinary Hecke parameters (αv, βv)v|p. Then there is a continuous
semisimple representation ρπ,p : GF → GSp4(Qp) satisfying the following proper-
ties.

(1) ν ◦ ρπ,p = ε−1.
(2) For each finite place v - p, we have

WD(ρπ,p|GFv )ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

If furthermore ρπ,p is irreducible, then

WD(ρπ,p|GFv )F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

(3) If v|p, then

ρπ,p|GFv ∼=


λαvε

(kv+lv)/2−2 ∗ ∗ ∗
0 λβvε

(kv−lv)/2 ∗ ∗
0 0 λ−1

βv
ε−1−(kv−lv)/2 ∗

0 0 0 λ−1
αv ε

1−(kv+lv)/2

 .

(4) If ρπ,p is irreducible, then for each finite place v of F , ρπ,p|GFv is pure.

Proof. This follows from Theorem 2.7.1; part (3) is a standard consequence of p-
adic Hodge theory, and is in particular immediate from [Ger19, Lem. 2.32] (and
Proposition 2.4.6). �



POTENTIAL MODULARITY OF ABELIAN SURFACES 35

The following theorem is a variant of the main result of [Mok14], which proves
the existence of Galois representations associated to certain automorphic represen-
tations of GL2(K), K a CM field.

Theorem 2.7.3. Let F be a totally real field, and let K/F be a quadratic extension.
Write Gal(K/F ) = {1, τ}. Suppose that π is a cuspidal automorphic representation
of GL2(K) of weight 0 with trivial central character.

Then there is a continuous irreducible representation ρπ,p : GK → GL2(Qp) such
that for each finite place w - p of K, we have

WD(ρπ,p|GKw )ss ∼= recp(πw ⊗ | · |−1/2)ss.

If πw is not a twist of a Steinberg representation, then in fact

WD(ρπ,p|GKw )F−ss ∼= recp(πw ⊗ | · |−1/2).

For each place w|p of K, the representation ρπ,p|GKv is Hodge–Tate, and for each τ :

K ↪→ Qp, the τ -labelled Hodge–Tate weights of ρπ,p are (0, 1).

Proof of Theorem 2.7.3. In the case that K is CM this is a special case of the main
theorem of [Mok14], and essentially the same proof works in the general case. The
argument of [Mok14, §5.1] goes over unchanged to produce a cuspidal automorphic
representation π of GSp4(AF ) (see Theorem 2.9.3 below); to see that πv is in the
L-packet corresponding to φ(2;1,0) at each place v|∞ of F , one uses Lemma 2.6.1
at the places which split in K, and [Mok14, Prop. 5.2] at the places for which Kv

is complex. One then easily checks that the arguments of [Mok14, §5.2-5.3] go over
without any changes to the case of general K, as required. �

2.8. Compatible systems of Galois representations, L-functions, and Hasse–
Weil zeta functions. We now recall some definitions concerning compatible sys-
tems from [BLGGT14b, §5] and [PT15, §1]; in fact, our definition of a “strictly
compatible system” differs slightly from the definitions in those papers, because we
find it convenient to include local-global compatibility at places dividing p. Let F
denote a number field. By a rank n weakly compatible system of l-adic representa-
tions R of GF defined over M we mean a 5-tuple

(M,S, {Qv(X)}, {rλ}, {Hτ})

where
(1) M is a number field considered as a subfield of C;
(2) S is a finite set of primes of F ;
(3) for each prime v 6∈ S of F , Qv(X) is a monic degree n polynomial inM [X];
(4) for each prime λ of M (with residue characteristic l, say)

rλ : GF −→ GLn(Mλ)

is a continuous, semi-simple, representation such that
• if v 6∈ S and v 6 |l is a prime of F , then rλ is unramified at v and
rλ(Frobv) has characteristic polynomial Qv(X),
• while if v|l, then rλ|GFv is de Rham and in the case v 6∈ S crystalline;

(5) for τ : F ↪→M , Hτ is a multiset of n integers such that for any M ↪→Mλ

over M we have HTτ (rλ) = Hτ .
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If R = (M,S, {Qv(X)}, {rλ}, {Hτ}) and R′ = (M ′, S′, {Q′v(X)}, {r′λ}, {H ′τ}) are
two compatible systems, then we write R ∼= R′ if Qv(X) = Q′v(X) for a set of
places v of Dirichlet density one. This implies that Qv(X) = Q′v(X) for all v /∈
S ∪ S′, and that rλ ∼= r′λ for all λ, and H ′τ = Hτ for all τ .

We say that R is regular if for each τ : F ↪→ M , the elements of Hτ are
pairwise distinct. We will call R strictly compatible if for each finite place v
of F there is a Weil–Deligne representation WDv(R) of WFv over M such that
for each place λ of M and every M -linear embedding ς : M ↪→ Mλ we have
ς WDv(R) ∼= WD(rλ|GFv )F-ss.

We will call a strictly compatible system R pure of weight w if for each finite
place v of F the Weil–Deligne representation WDv(R) is pure of weight w.

The following result is well-known (see for example [Fon94, Rem. 2.4.6]), but
as we do not know of a convenient reference for a proof, we briefly explain how it
follows from results in the literature.

Proposition 2.8.1. If A is an abelian variety over a number field F , then, for
each 0 ≤ i ≤ 2 dimX, the l-adic cohomology groups Hi(AF ,Ql) form a strictly
compatible system which is pure of weight i and which is defined over Q.

Proof. Since Hi(A,Ql) = ∧iH1(A,Ql), it is enough to check the case i = 1.
The compatible system satisfies strict compatibility at the places not dividing l
by [Noo13, Cor. 2.7]. In the case that A has semistable reduction, it is fur-
thermore strictly compatible by [Noo17, Cor. 2.2]. One can deduce the general
case from this by a base change trick due to Saito [Sai97], which was exploited
in [Kis08, Ski09, BLGGT14a]. Indeed, as in the proof of [BLGGT14a, Thm. 2.1],
it suffices for each finite place v of F to check that whenever g ∈ WFv maps to a
positive power of Frobenius in the absolute Galois group of the residue field, then
the trace of g on WD(H1(A,Ql)) is independent of l. One can choose an exten-
sion E/F (for example, the fixed field of the subgroup of WF generated by g and
the kernel of the restriction to IF of WD(H1(A,Ql)) for some l) and a place v|w
of E such that AE is semistable and g ∈WEw , and the claim then follows from the
independence of l for AE .

It remains to check purity. By [Ray94, Thm. 4.2.2], it is enough to check purity
for the Weil–Deligne representations associated to 1-motives with potentially good
reduction, which is [Ray94, Prop. 4.6.1, Prop. 4.7.4].

The above is of course not a historically accurate account of a proof; indeed,
the strict compatibility of the compatible system at places not dividing l is stated
in [Del73, Ex. 8.10], and given Fontaine’s definition of the Weil–Deligne represen-
tation associated to a potentially semistable representation, the entire proposition
can be deduced from the results of [GRR72]. We omit the details, but we would
like to thank Brian Conrad for explaining them to us. �

Definition 2.8.2. If A/F is an abelian surface, then we write ρA,l for H1(AF ,Ql),
and RA for the compatible system {ρA,l}. We can think of ρA,l as a representation
ρA,l : GF → GSp4(Ql) with multiplier ε−1

l , and will frequently do so without
comment.

Remark 2.8.3. It will sometimes be convenient to say that a set of GSp4-valued
representations form a compatible system, by which we simply mean that the cor-
responding GL4-valued representations form a compatible system. In particular,
the representations ρA,l : GF → GSp4(Ql) considered in Definition 2.8.2 form a
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compatible system in this sense. (In general, one might wish to ask for a com-
patibility between the symplectic structures; such a compatibility always holds in
the cases that we consider, and in particular we will only consider representations
whose multiplier character is the inverse cyclotomic character, so we ignore this
point.)

We can define the L-function of R as follows:

L(R, s) =
∏
v 6 |∞

L(WDv(R), s).

Furthermore, if R comes from an abelian variety (or more generally, arises in a
geometric structure where the Hodge structure is apparent) then (as in [Ser70]) we
can define Gamma factors Lv(R, s) for each place v|∞ of F , and we set

(2.8.4) Λ(R, s) = L(R, s)
∏
v|∞

Lv(R, s).

In particular, if R arises from an abelian surface over a totally real field F , then the
corresponding Gamma factor is given by Lv(R, s) = ΓC(s)2 for all v|∞ where ΓC(s) =
(2π)−sΓ(s).

We also have a conductorN(R) which is a product of local factors depending only
on the WDv(R). Conjecturally, if R is a strictly compatible system, then Λ(R, s)
admits a meromorphic continuation to the entire complex plane and satisfies a
functional equation of the form

(2.8.5) Λ(R, s) = ε(R)N(R)−sΛ(R∨, 1− s)

for some factor ε(R). (When R arises geometrically, there are natural definitions
of the epsilon factor ε(R), but it is not immediately apparent how to read off ε(R)
directly from the compatible system.)

In particular, if A/F is an abelian variety, then by Proposition 2.8.1

Λi(A, s) := Λ(Hi(AF ,Ql), s)

is well-defined, and we define the completed Hasse–Weil zeta function of A to be

Λ(A, s) :=

2 dimA∏
i=0

Λi(A, s)
(−1)i .

Note that if v is a finite place of F at which A has good reduction with corresponding
reduction A, then the local L-factor

Lv(A, s) :=

2 dimA∏
i=0

L(WD(Hi(AF ,Ql)), s)
(−1)s

can be written as

Lv(A, s) = exp

( ∞∑
m=1

#A(k(v)m)

m
#k(v)

−ms

)
where k(v) is the residue field of Fv and k(v)m/k(v) is the extension of degree m.

We have the following conjectures for the Λi(A, s), which we will prove for abelian
surfaces over totally real fields by showing that they are potentially automorphic.
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Conjecture 2.8.6 ([Ser70], Conj. C9). For each i, Λi(A, s) has a meromorphic
continuation to the entire complex plane, and satisfies a functional equation of the
form

Λi(A, s) = wN
i+1
2 −sΛi(A, i+ 1− s)

where w = ±1 and N ∈ Z≥1.

Corollary 2.8.7. If Conjecture 2.8.6 holds, then Λ(A, s) has a meromorphic con-
tinuation to the entire complex plane, and satisfies a functional equation of the form
Λ(A, s) = εN−sΛ(A, 1 + dimA− s) where ε ∈ R and N ∈ Q>0.

Proof. This follows immediately from Conjecture 2.8.6 by Poincaré duality. �

2.9. Arthur’s classification. We now recall some consequences of Arthur’s clas-
sification [Art04] of discrete automorphic representations of GSp4. The analogous
classifications for Sp4 and SO5 are special cases of the very general results proved
in [Art13], and a proof of the classification announced in [Art04], making use of
the results and techniques of [Art13] is given in [GT19]. This reference establishes
the compatibility of Arthur’s classification with the local Langlands correspon-
dence recGT, which we use below without further comment.

We say that an automorphic representation π of GSp4(AF ) is discrete if it occurs
in the discrete spectrum of the L2-automorphic forms (with fixed central charac-
ter ω = ωπ). Note in particular that all cuspidal automorphic representations are
discrete. Arthur’s classification divides the discrete spectrum into six families of
automorphic representations. We will not need the full details of this classification,
but rather just some consequences that we now recall.

If Π is a cuspidal automorphic representation of GL4(AF ), then we say that Π

is of symplectic type with multiplier χ if the partial L-function LS(s,Π,
∧2⊗χ−1)

has a pole at s = 1 (where S is any finite set of places of F ). Note that this implies
in particular that Π ∼= Π∨ ⊗ χ.

We say that a discrete automorphic representation π of GSp4(AF ) is of general
type in the sense of [Art04] if there is a cuspidal automorphic representation Π of
GL4(AF ) of symplectic type with multiplier ωπ such that for each place v of F ,
the L-parameter obtained from recGT(πv) by composing with the usual embedding
GSp4 ↪→ GL4 is rec(Πv). We say that Π is the transfer of π.

In practice, all of the automorphic representations π that we consider in our
main arguments will be of general type. We will often use the following lemma to
guarantee this. (For example, the lemma will be used to show that when we local-
ize a cohomology group at a non-Eisenstein maximal ideal, the only automorphic
representations that contribute are of general type.)

Lemma 2.9.1. Suppose that F is totally real, and that π is a discrete automorphic
representation of GSp4(AF ), and that at each place v|∞, πv has the same infinites-
imal character as the representations in the L-packet corresponding to ϕ(2;kv−1,lv−2)

with kv ≡ lv (mod 2) and kv ≥ lv ≥ 2. Suppose that π is not of general type.
Then there is a compatible system of reducible Galois representations ρπ,p :

GF → GSp4(Qp) such that for all but finitely many places v of F , we have
WD(ρπ,p|GFv )ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

Proof. We follow the proof of [CG20, Thm. 7.11]. Since π is not of general type,
π falls into one of the five classes (b)-(f) listed at the end of [Art04]. In cases (e)
and (f), we see that the Hecke parameters of π agree with those of a direct sum of 4
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idele class characters. By the hypothesis on the infinitesimal character, these char-
acters are algebraic, so we may take the direct sum of the corresponding compatible
systems of Galois representations.

In case (d), the Hecke parameters of π agree with those of an isobaric direct
sum of the form λ| · |1/2 � λ| · |−1/2 � µ, where λ is an idele class character, and µ
is a cuspidal automorphic representation of GL2(AF ), satisfying ωµ = λ2 = ωπ.
Considering infinitesimal characters, we see that λ is algebraic, so that λ| · |1/2 �
λ| · |−1/2 is regular algebraic. This implies that µ is also regular algebraic, and thus
has an attached compatible system of Galois representations.

In case (b), the Hecke parameters of π agree with those of an isobaric direct
sum of the form µ1 � µ2, where µ1 6= µ2 are cuspidal automorphic representations
of GL2(AF ) with central character µπ. Since their central characters agree, it
follows easily that they both correspond to holomorphic Hilbert modular eigenforms
of paritious weight. Finally in case (c), the Hecke parameters of π agree with those
of an isobaric direct sum of the form µ| · |1/2 � µ| · |−1/2, where µ is a cuspidal
automorphic representation of GL2(AF ) of orthogonal type; that is, it is induced
from a quadratic extension of F . Since µ is certainly algebraic, we again have an
attached compatible system of reducible Galois representations, as required. �

Remark 2.9.2. Suppose that π is of general type but otherwise satisfies the condi-
tions of Lemma 2.9.1. Then the corresponding Galois representations constructed
in [Mok14] (see also Theorem 2.7.1) give rise to a compatible system of Galois rep-
resentations which — in contrast to those occurring in Lemma 2.9.1 — are expected
to always be irreducible.

The following theorem summarizes the consequences that we need from Arthur’s
multiplicity formula.

Theorem 2.9.3. Suppose that F is a totally real field, and that Π is a cuspidal
automorphic representation of GL4(AF ) of symplectic type with multiplier χ. Then
there exists at least one discrete automorphic representation π of GSp4(AF ) with
central character χ such that Π is the transfer of π.

More precisely, for each place v of F , let πv be an element of the L-packet
corresponding to (recp(Πv), χv). Then π := ⊗′vπv is automorphic, and occurs with
multiplicity one in the discrete spectrum.

If, furthermore, Π is algebraic, then π is cuspidal.

Proof. The statements of the first two paragraphs are immediate from the multi-
plicity formula of [Art04] as proved in [GT19] (note that since π is of general type
by definition, the group Sψ considered in [Art04] is trivial). Suppose then that Π
is algebraic; then Π∞ is essentially tempered by [Clo90, Lem. 4.9], so that π∞ is
also essentially tempered (as its L-parameter is essentially bounded), so that π is
cuspidal by [Wal84, Thm. 4.3]. �

2.10. Balanced modules. Let S be a Noetherian local ring with residue field k,
and let M be a finitely generated S-module. As in [CG18, §2.1], we define the
defect dS(M) to be

dS(M) := dimkM/mSM − dimk Tor1
S(M,k).

Definition 2.10.1. We say that M is balanced if dS(M) ≥ 0.
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Lemma 2.10.2. If M is balanced, then there is a presentation

Sd → Sd →M → 0

with d = dimkM/mSM .
Conversely if M admits a presentation

Sr → Sr →M → 0

for some r ≥ 0, then M is balanced.

Proof. Assume firstly that M is balanced, and choose a (possibly infinite) minimal
resolution

· · · → Pi → · · · → P1 → P0 →M → 0

by finite free S-modules Pi of rank ri. (Recall that a minimal resolution is one
whose differentials vanish modulo mS , and that such a resolution always exists.)
Tensoring this resolution with k over S, we see that ri = dimk ToriS(M,k), so that
in particular by our assumptions we have d = r0 ≥ r1, so that there is a presentation
of the form P1 ⊕ S⊕(d−r1) → P0 →M → 0, as required.

Conversely, if M admits a presentation Sr → Sr → M → 0, then let K be the
image of the map Sr → Sr. Then from the exact sequence

0→ Tor1
S(M,k)→ K/mSK → kr →M/mSM → 0

we see that
dS(M) = r − dimkK/mSK;

since K admits a surjection from Sr, it follows that dS(M) ≥ 0, as required. �

2.11. Projectors. Let R be a complete local Noetherian ring with maximal ideal
mR and finite residue field. We letModcomp(R) be the category ofmR-adically com-
plete and separated R-modules. Let M ∈ Ob(Modcomp(R)) and T ∈ EndR(M).

Definition 2.11.1. We say that T is locally finite on M if for all n ≥ 0, M/mnR is
an inductive limit of finite type R-modules which are stable under the action of T .

Lemma 2.11.2. If T1, T2 commute and are both locally finite on M , then T1T2 is
also locally finite on M .

Proof. By definition we can assume that M is mnR-torsion for some n. If v ∈ M
then since T1 is locally finite, the R-submodule ofM generated by the T i1v is finitely
generated. Since T2 is locally finite, it follows that the R-submodule generated by
the T i2T

j
1 v is also finitely generated, and since T1, T2 commute, this submodule is

stable under the action of T1T2, as required. �

The following results from [Pil20] will be used to construct the ordinary projec-
tors associated to certain Hecke operators.

Lemma 2.11.3 ([Pil20, Lem. 2.1.2]). If M is an object of Modcomp(R) and T is
an endomorphism of M , then T is locally finite on M if and only if it is locally
finite on M/mR.

Lemma 2.11.4 ([Pil20, Lem. 2.1.3]). If T is locally finite on M , then limn→∞ Tn!

converges pointwise in the mR-adic topology to a projector e(T ) on M .
The operators T and e(T ) commute, and we have a T -stable decomposition

M = e(T )M ⊕ (1− e(T ))M,

where T is bijective on e(T )M and topologically nilpotent on (1− e(T ))M .
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We call e(T ) the ordinary projector attached to T . Let D(R) be the derived
category of R-modules, let Dflat(R) be the full subcategory of D(R) generated by
bounded complexes of flat, mR-adically complete and separated R-modules and let
Dperf(R) be the full subcategory of D(R) generated by bounded complexes of finite
free R-modules. Let M ∈ Ob(Dflat(R)). We say that an operator T ∈ End(M)
is locally finite if there is a bounded complex of flat modules N representing M
and an operator T0 ∈ End(N) representing T which is degree-wise locally finite.
By [Pil20, Lem. 2.3.1], T is locally finite on M if and only if T is locally finite
on the cohomology groups Hi(M ⊗LR R/mR) and there is a bounded complex of
flat modules N representing M and an operator T0 ∈ End(N) representing T .
Given a choice of representatives (N,T0 ∈ End(N)) for a locally finite operator
T , we get an associated idempotent e(T0) ∈ End(N). In general, we do not know
whether two choices of representatives (N,T0 ∈ End(N)) give the same projector
in EndD(R)(M). But by [Pil20, Lem. 2.3.2], if we assume that for one choice of
representative e(T0)M is an object of Dperf (R) then, for another choice of locally
finite representative (N ′, T1 ∈ End(N ′)), e(T1)M is an object of Dperf (R) and
there is a canonical quasi-isomorphism e(T0)M → e(T1)M . In the sequel, these
conditions will always be satisfied and we will write e(T ) by abuse of notation.

3. Shimura varieties

In this section, we discuss the Hilbert–Siegel Shimura varieties that we work
with, and some properties of their integral models. There are two closely related
algebraic groups here: G1 = ResF/QGSp4 and its subgroup G of elements with
similitude factor in Gm ↪→ ResF/QGm.

The group G admits a standard PEL Shimura variety and there is a good moduli
interpretation, integral models, and a good theory of integral compactification.
Nonetheless, from an automorphic view point we must work with the group G1

which gives rise to a Shimura variety of abelian type.
Going back to the work of Deligne (see in particular [Del79, §2.7]), there is a

standard strategy for handling abelian type Shimura varieties by relating their con-
nected components to quotients of connected components of Hodge type Shimura
varieties by finite groups. As a particular instance of this strategy, the Shimura
varieties for G and G1 are closely related: the connected components of G1-Shimura
varieties are quotients of the connected components of G-Shimura varieties by finite
groups. We therefore study both of them at the same time.

For convenience, our main references for integral models of PEL Shimura varieties
and their compactifications are the papers [Lan13, Lan16, Lan17], although some of
the results we cite from there were proved in earlier papers, in particular [Kot92]; we
refer the reader to the references in [Lan13] for a more detailed historical account.

3.1. Similitude groups. Let F be a totally real field. Let V = O4
F be a free OF -

module of rank 4. We equip V with the symplectic OF -linear form <,>1: V ×V →
OF given by the matrix J . We let <,>:= (TrF/Q◦ <,>1) be the associated Z-linear
symplectic form.

Let G1 = ResF/QGSp4 be the algebraic group of symplectic F -linear automor-
phisms of (VQ, <,>1), up to a similitude factor ν in ResF/QGm.

Let G ⊂ G1 be the algebraic group of symplectic F -linear automorphisms of
(VQ, <,>) up to a similitude factor in Gm; that is, G = G1 ×ν,ResF/QGm

Gm.
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3.2. Shimura varieties over C. We firstly briefly discuss some Shimura varieties
over C. We caution the reader that in the bulk of the paper we will work with
Shimura varieties over Z(p) which are not quite integral models of these Shimura
varieties, but whose geometrically connected components are the same as these; see
Proposition 3.3.9 below for a precise statement. We begin by recalling the definition
of a neat compact open subgroup from [Lan13, Defn. 1.4.1.8].

Definition 3.2.1. Write g = (gl)l ∈ G1(A∞), and for each l, write Γgl for the
subgroup of Q

×
l generated by the eigenvalues of gl (under any faithful linear rep-

resentation of G1). Then we say that g is neat if⋂
l

(Q
× ∩ Γgl)tors = 1.

Similarly, if g ∈ G1(A∞,p), then we say that g is neat if⋂
l 6=p

(Q
× ∩ Γgl)tors = 1.

We say that a compact open subgroup K ⊂ G1(A∞) (resp. Kp ⊂ G1(A∞,p)) is
neat if all of its elements are neat.

We consider the Shimura variety associated to the group G1 and a neat compact
open subgroup K ⊂ G1(A∞):

SG1

K (C) = G1(Q)\
(
G1(R)×G1(A∞)

)
/Z(R)0K0

∞K

where Z(R)0 ' R
Hom(F,R)
>0 is the connected component of the centre in G1(R) '

GSp4(R)Hom(F,R) and K0
∞ is the connected component of the maximal compact

subgroup inside G1(R), so that K0
∞ is a product of copies of U(2). This Shimura

variety carries a natural structure of complex quasi-projective variety, as we have
G1(R)/Z(R)0K0

∞ = (H ∪ −H)Hom(F,R), where H is the Siegel half space of sym-
metric matrices M = A+ iB ∈ M2×2(C) with B positive definite.

Let G1(Q)+ be the subgroup of G1(Q) equal to ν−1(F×,+), where F×,+ is the
subgroup of totally positive elements in F×. Then by strong approximation,

G1(A∞) =
∐
c

G1(Q)+cK

where c runs through a (finite) set of elements in G1(A∞) such that ν(c) are
representatives of the strict class group F×,+\(A∞ ⊗Q F )×/ν(K).

One can then write

SG1

K (C) =
∐
c

Γ1(c,K)\HHom(F,R)

where Γ1(c,K) = G1(Q)+ ∩ cKc−1.
This Shimura variety, although natural from the point of view of automorphic

forms, is not of PEL type. Therefore, it is also necessary to work with another
Shimura variety. We can consider the double quotient

SGK(C) = G(Q)\
(
G(R)×G1(A∞)

)
/R>0K

0
∞K;

this is not strictly speaking a Shimura variety, and in particular we emphasise that
it is not the PEL Shimura variety associated to G! By strong approximation we
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may write

G1(A∞) =
∐
c

G(Q)+cK

where c runs through a set of elements of G1(A∞) such that ν(c) are representatives
of the infinite set Q×,+\(A∞ ⊗Q F )×/ν(K). For all c, we consider the group
Γ(c,K) = G(Q)+ ∩ cKc−1, so that

SGK(C) =
∐
c

Γ(c,K)\HHom(F,R).

The inclusion G(R) ↪→ G1(R) induces a natural surjective map SGK(C) →
SG1

K (C). On connected components, it induces the natural map

Q×,+\(A∞ ⊗Q F )×/ν(K)→ F×,+\(A∞ ⊗Q F )×/ν(K).

For any c ∈ G1(A∞) we have an associated surjective map on the connected
components corresponding to c, given by

Γ(c,K)\HHom(F,R) → Γ1(c,K)\HHom(F,R).

Let Z(Γ1(c,K)) ⊂ Γ1(c,K) be the centre. Then Z(Γ1(c,K)) is a finite index
subgroup of O×F that we denote by O×F (K). Let

∆(K) = Γ1(c,K)/
(
O×F (K),Γ(c,K)

)
.

This is a finite group, independent of c and isomorphic to

ν(Γ1(c,K))/ν(O×F (K)) = (O×,+F ∩ ν(K))/ν(O×F (K)),

having noted the following:

Lemma 3.2.2. There is an equality ν(Γ1(c,K)) = O×,+F ∩ ν(K).

Proof. Recall that by definition Γ1(c,K) = G1(Q)+ ∩ cKc−1, so certainly we have
an inclusion ν(Γ1(c,K)) ⊆ O×,+F ∩ ν(K). Conversely, suppose that ν(γ) = x ∈
O×,+F ∩ ν(K) for some element γ ∈ cKc−1. Since x ∈ O×,+F = ν(G1(Q)+), we can
choose g ∈ G1(Q)+ with ν(g) = x. Then ν(γ−1g) = 1, so by strong approxima-
tion, we may find an h ∈ G1(Q)+ with trivial similitude character such that h is
arbitrarily close to gγ−1, and in particular close enough that hγg−1 lies in cKc−1.
Then hγ ∈ G1(Q)+ ∩ cKc−1 and has similitude character x, as required. �

We also have

Lemma 3.2.3. The map Γ(c,K)\HHom(F,R) → Γ1(c,K)\HHom(F,R) is finite étale
with group ∆(K).

Proof. The group Γ1(c,K) acts through its quotient Γ1(c,K)/O×F (K) onHHom(F,R),
and since K is neat, this action is free. �

3.3. Integral models of Shimura varieties. We now introduce the integral mod-
els of Shimura varieties that we will consider in the rest of the paper.
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3.3.1. Compact open subgroups at p. We let p be a prime that is totally split in F .
Let v be a prime ideal in OF above p. Consider the following chain of OFv -sub
modules of F 4

v :

V0 → V1 → V2 → V3 → V4

where V0 = V ⊗OF OFv = ⊕4
i=1OFvei and Vj = 〈p−1e1, · · · , p−1ej , ej+1, · · · , e4〉.

We can identify V0 and V4 through multiplication by p and sometimes think of the
indices as being in Z/4Z.

From the perfect pairing <,> on V0 we obtain perfect pairings on V2 × V2 and
on V1 × V3.

We now recall the definitions of the parabolic subgroups that we use in terms of
flags; this description is well suited to the definitions of our integral models.

• GSp4(OFv ) = Aut(V0) ∩GSp4(Fv) (the hyperspecial subgroup),
• Par(v) = Aut(V1 → V3) ∩GSp4(Fv) (the paramodular subgroup),
• Si(v) = Aut(V0 → V2) ∩GSp4(Fv) (the Siegel parahoric),
• Kli(v) = Aut(V0 → V1 → V3 → V0) ∩GSp4(Fv) (the Klingen parahoric),
• Iw(v) = Aut(V0 → V1 → V2 → V3 → V0) ∩ GSp4(Fv) (the Iwahori sub-

group).

3.3.2. The moduli problem. Let ALG/Z(p) be the category of Noetherian Z(p)-
algebras and AFF/Z(p) the opposite category. Let K ⊂ G1(A∞) be a compact
open subgroup; we will also refer to such a compact open subgroup as a level struc-
ture.

Definition 3.3.3. We say that a level structure K = KpKp is reasonable if Kp ⊂
G(A∞,p) is neat, and if Kp =

∏
v|pKv where for each v|p we have

Kv ∈ {GSp4(OFv ),Par(v),Si(v),Kli(v), Iw(v)}.

Let K be a reasonable level structure. We consider the groupoid YK over
AFF/Z(p) whose fibre over S = SpecR ∈ Ob(AFF/Z(p)) is the category with
objects (A, ι, λ, η, ηp), where:

(1) A→ SpecR is an abelian scheme,
(2) ι : OF → End(G)⊗ Z(p) is an action,
(3) Lie(A) is a locally free OF ⊗Z R-module of rank 2,
(4) λ : A → At is a prime to p, OF -linear quasi-polarization such that for all

v|p, Ker(λ : A[v∞] → At[v∞]) is trivial if Kv 6= Par(v) and is an order p2

group scheme if Kv = Par(v),
(5) η is a Kp-level structure,
(6) ηp is a Kp-level structure.
Here by a prime to p quasi-polarization λ : A→ At we mean a Z×(p)-polarization

in the sense of [Lan13, Defn. 1.3.2.19]. By a Kp-level structure ηp, we mean the
following list of data:

(1) For all v|p such that Kv = Kli(v), Hv ⊂ A[v] is an order p-group scheme,
(2) For all v|p such that Kv = Si(v), Lv ⊂ A[v] is an order p2 group scheme

that is totally isotropic for the Weil pairing.
(3) For all v|p such that Kv = Iw(v), Hv ⊂ Lv ⊂ A[v] are subgroups such that

Hv is of order p, Lv is of order p2 and Lv is totally isotropic for the Weil
pairing.
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Let us spell out the definition of Kp-level structure. We may assume without
loss of generality that S is connected, and we fix s a geometric point of S. The
adelic Tate module H1(A|s,A∞,p) carries a symplectic Weil pairing

<,>λ: H1(A|s,A∞,p)×H1(A|s,A∞,p)→ H1(Gm|s,A∞,p)
or equivalently an F -linear symplectic pairing:

<,>1,λ: H1(A|s,A∞,p)×H1(A|s,A∞,p)→ H1(Gm|s,A∞,p)⊗ F.
The level structure η is aKp-orbit of pairs of isomorphisms (η1, η2), where (with V =
O4
F the standard symplectic space defined above):
(1) An OF ⊗ZA∞,p-linear isomorphism of Π1(S, s)-modules η1 : V ⊗ZA∞,p '

H1(A|s,A∞,p).
(2) An OF ⊗ZA∞,p-linear isomorphism of Π1(S, s)-modules η2 : F ⊗ZA∞,p '

F ⊗Z H1(Gm|s,A∞,p).
We moreover impose that the following diagram is commutative:

(3.3.4) V ⊗Z A∞,p × V ⊗Z A∞,p
η1×η1 //

<,>1

��

H1(A|s,A∞,p)×H1(A|s,A∞,p)

<,>1,λ

��

F ⊗Z A∞,p
η2 // F ⊗Z H1(Gm|s,A∞,p)

The action of an element k ∈ Kp takes (η1, η2) to (η1k, ν(k)η2).

Remark 3.3.5. The reader will observe that η2 is uniquely determined by η1, but
we find it convenient to record it as part of the data for the sake of comparison to
the PEL setting in Proposition 3.3.9 below.

A map between quintuples (A, ι, λ, η, ηp) and (A′, ι′, λ′, η′, η′p) is an OF -linear
prime to p quasi-isogeny (in the sense of [Lan13, Defn. 1.3.1.17]) f : A → A′ such
that

• f∗λ = rλ′ for a locally constant function r : S → Z×,+(p) ,
• f(ηp) = η′p, and
• H1(f) ◦ η = η′.

This last condition means that η′ is defined by H1(f) ◦ η1 = η′1 and η′2 = r−1η2.
Also, we have denoted Z×,+(p) = Q×>0 ∩ Z×(p).

Remark 3.3.6. Note that we are allowing the similitude factor in the level structure
to be in A∞,p ⊗Q F (1), but we only allow quasi-isogenies with similitude factor in
A∞,p(1).

We denote by Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1) the set Z×,+(p) \(A

∞,p ⊗ F )×/ν(Kp)

equipped with the action of Gal(Q/Q) through the cyclotomic character Gal(Q/Q)→∏
6̀=p Z

×
` ↪→ (A∞,p)×. This action is unramified at p. It follows easily that

Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1) is represented by an infinite disjoint union of finite

étale schemes over SpecZ(p).

Remark 3.3.7. The group Z×,+(p) acts freely on (A∞,p ⊗ F )×/ν(Kp).

Remark 3.3.8. When ν(Kp) = (OF ⊗Z

∏
` 6=p Z`)

×, then the above Galois action
is trivial and Z×,+(p) \(A

∞,p ⊗ F )×/ν(Kp)(1) is simply an infinite disjoint union of
copies of SpecZ(p).



46 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

There is a structural map Π0 : YK → Z×,+(p) \(A
∞,p⊗F )×/ν(Kp)(1) which asso-

ciates to an object (A, ι, λ, η, ηp) of YK the class of η2(1) (where we are identifying
H1(Gm|s,A∞,p) with A∞,p(1)).

As we mentioned at the beginning of §3.2, the complex points of our integral
models are not precisely the double coset spaces considered in §3.2, because our
moduli problem only allows polarizations of degree prime to p. However, the differ-
ence amounts to throwing away some geometrically connected components, as the
following result explains.

Proposition 3.3.9. The groupoid YK is representable by a quasi-projective scheme
Π0 : YK → Z×,+(p) \(A

∞,p⊗F )×/ν(Kp)(1). The morphism Π0 has geometrically con-
nected fibres. Let c ∈ Z×,+(p) \(A

∞,p⊗F )×/ν(Kp) and let c : SpecC→ Z×,+(p) \(A
∞,p⊗

F )×/ν(Kp)(1) be the associated morphism (for the usual choice of primitive roots
of unity in C). Let YK,c be the fibre of YK over c. Then there is an isomorphism
of analytic spaces (YK,c)

an = Γ(c,K)\HHom(F,R).

Proof. This follows from the usual description of integral models of PEL type
Shimura varieties; in the case of hyperspecial level this goes back to Kottwitz [Kot92],
but for convenience we follow the notation of [Lan13]. To this end, we recall the
description of these integral models for the usual Shimura varieties for G. We
let K̃ = K̃pK̃p denote a compact open subgroup of G(A∞), where K̃p is a compact
open subgroup of G(A∞,p), and K̃p is of one of the parahoric subgroups considered
above.

Then we let YG,Kott be the groupoid over AFF/Z(p) whose fibre over S ∈
Ob(AFF/Z(p)) is the category with objects (A, ι, λ, η̃, ηp), where (A, ι, λ, ηp) is as
in the definition of YK above, but now η̃ is given by a K̃p-orbit of pairs of isomor-
phisms (η̃1, η̃2), consisting of:

(1) An OF ⊗A∞,p-linear isomorphism of Π1(S, s)-modules η̃1 : V ⊗Z A∞,p '
H1(A|s,A∞,p).

(2) An A∞,p-linear isomorphism of Π1(S, s)-modules η̃2 : A∞,p ' A∞,p ⊗Z

H1(Gm|s,A∞,p).
We moreover impose that the following diagram is commutative:

(3.3.10)

V ⊗Z A∞,p × V ⊗Z A∞,p
η̃1×η̃1 //

<,>

��

H1(A|s,A∞,p)×H1(A|s,A∞,p)

<,>λ

��

A∞,p
η̃2 // H1(Gm|s,A∞,p)

A map between quintuples (A, ι, λ, η̃, ηp) and (A′, ι′, λ′, η̃′, η′p) is an OF -linear
prime to p quasi-isogeny f : A→ A′ such that

• f∗λ = rλ′ for a locally constant function r : S → Z×,+(p) ,
• f(ηp) = η′p, and
• H1(f) ◦ η̃ = η̃′.

It follows immediately from the definition that there is a natural isomorphism

YK
∼=

∐
g∈G(A∞,p)\G1(A∞,p)/Kp

YG,Kott
gKpg−1∩G(A∞,p),
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given by the maps
g : YG,Kott

gKpg−1∩G(A∞,p) → YK

which are defined by

(A, ι, λ, (η̃1, η̃2), ηp) 7→ (A, ι, λ, (η̃1, η̃2 ⊗Z OF )g, ηp).

(Indeed, one easily checks that this already gives a bijection of tuples before passing
to isogeny classes, and that this bijection is compatible with isogenies.) The result
now follows from [Kot92, §5, §8]. �

We now define an action of (OF )×,+(p) (totally positive elements in F× which are
prime to p) on YK , by scaling the polarization λ. Since this scales the λ-Weil
pairing 〈, 〉1,λ, we see from (3.3.4) that it also scales η2. Explicitly, x ∈ (OF )×(p)
sends (A, ι, λ, (η1, η2), ηp) to (A, ι, xλ, (η1, xη2), ηp). By definition, the subgroup
Z×,+(p) acts trivially on YK .

The group (OF )×,+(p) acts on the set of connected components Π0(YK). Since
the cyclotomic character surjects onto

∏
l 6=p Z

×
l , the stabilizer of each connected

component is

O×,+F (Π0) :=

(OF )×,+(p) ∩ Z×,+(p) ν(Kp)
∏
` 6=p

Z×`

 /Z×,+(p) ,

which we can and do naturally identify with

O×,+F ∩ ν(Kp)
∏
` 6=p

Z×` .

Remark 3.3.11. If ν(Kp) = (OF ⊗Z

∏
` 6=p Z`)

×, then O×,+F (Π0) = O×,+F .

The subgroup O×,+F (ν(Kp)) := O×,+F ∩ ν(Kp) acts trivially on each connected
component of Π0(YK). The quotient stack of connected components is

[((OF )×,+(p) /Z
×,+
(p) )\

(
Z×,+(p) \(A

∞,p ⊗ F )×/ν(Kp)(1)
)
].

It admits a coarse moduli space (OF )×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1) which is a finite

étale covering of SpecZ(p).
We now take the quotient stack

YG1

K := [YK/((OF )×,+(p) /Z
×,+
(p) )].

This is the “Shimura stack” associated to G1 and the level K.
Let us define

O×,+F (Kp) = {x2 | x ∈ O×F ∩K
p},

where O×F is thought of inside G1(A
(p)
f ) as a subgroup of the scalar matrices.

The multiplier of the scalar matrix given by x is x2, and hence the multiplier
of O×,+F (Kp) lands inside ν(Kp), and hence O×,+F (Kp) is a finite index subgroup
of O×,+F (ν(Kp)) and of O×,+F (Π0).

Lemma 3.3.12. The restriction of the action of (OF )×,+(p) on YK to O×,+F (Kp) is
trivial. More precisely, there is a canonical natural transformation going from the
action of O×,+F (Kp) on YK to the trivial action of O×,+F (Kp) on YK .
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Proof. Let x2 ∈ O×,+F (Kp) for a unique x ∈ O×,+F ∩ Kp. The action of x2 sends
(A, ι, λ, η, ηp) to (A, ι, x2λ, η, ηp) (note that since x ∈ Kp, and η is by definition a
Kp-orbit, the action of x2 on η is trivial). On the other hand multiplication by
x−1 : A→ A provides a map (A, ι, λ, η, ηp)→ (A, ι, x2λ, η, ηp) in the groupoid YK .
This provides the natural transformation from the action of x2 obtained from the
action of (OF )×,+(p) to the trivial action. �

Lemma 3.3.13. For any geometric point x ∈ YK , the stabilizer of x for the action
of (OF )×,+(p) is O×,+F (Kp).

Proof. By Lemma 3.3.12, O×,+F (Kp) is contained in the stabilizer of any x =

(A, ι, λ, η). Let ε ∈ (OF )×,+(p) and assume that there is a morphism

f : (A, ι, λ, (η1, η2), ηp)→ (A, ι, ελ, (η1, εη2), ηp)

in the groupoid YK . We need to show that f ∈ O×F ∩Kp. Since f respects η1, it
follows from [Lan13, Lem. 1.3.5.2] that f is an automorphism of A (and not just a
quasi-isogeny).

The polarization λ induces an involution x 7→ x̄ on F (f), and we consider the
automorphism α = ff̄−1 of A. It stabilizes the polarization: α∗λ = λαᾱ = λ.
It also stabilizes the level structure: f̄ acts like the adjoint of f on H1(A,A∞,p).
Since Kp is neat, this implies that α = 1; indeed, all the eigenvalues of α are roots
of unity, because they are algebraic numbers all of whose conjugates have absolute
value 1. It follows that f = f̄ , and f2 = ff̄ = ε. Since f is an automorphism,
it follows that ε ∈ O×F . Hence it suffices to show that f ∈ F , since we then
have ε ∈ O×,+F (Kp).

Assume first that A is simple, so that End(A)Q is a division algebra and F (f) ⊂
End(A)Q is a commutative field on which the Rosati involution x 7→ x̄ is complex
conjugation. Since f = f̄ and f2 = ε, F (f) is a totally real extension of F of degree
at most 2. If F (f) = F , we are done. Otherwise F (f) is a quadratic extension of F .
The level structure η provides aKp-orbit of isomorphismsH1(A,A∞,p) ' V⊗A∞,p,
and the element f acts via some conjugate of

0 ε 0 0
1 0 0 0
0 0 0 1
0 0 ε 0


and has eigenvalues in F̄ : {

√
ε,−
√
ε} with multiplicity two. By neatness, no con-

jugate of this matrix is in Kp, a contradiction.
We now assume that A is not simple. It is easy to see (using the OF -action)

that the only possibility is that A is isogenous to A1 × A2 where A1 and A2 are
two abelian schemes of dimension [F : Q] with F ⊂ End(Ai)Q. If A1 and A2

are not isogenous, then End(A)Q = End(A1)Q × End(A2)Q. Moreover, F (f) is a
commutative subalgebra of End(A1)Q × End(A2)Q and is therefore included in a
product of fields F1×F2 where Fi is either F or a CM extension of F . Since f = f ,
we see that f = (f1, f2) ∈ F ×F and that f2 = (f2

1 , f
2
2 ) = ε. So either f1 = f2, and

we are done, or f1 = −f2; but this second case is again prohibited by neatness.
Lastly, we assume that A is isogenous to A2

1. Then End(A)Q 'M2(End(A1)Q)
and F (f) is a commutative subalgebra, therefore included in M2(E) where E is
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either F or a CM extension of F . Writing f =

(
a b
c d

)
∈ GL2(E), we have

ε = f2 =

(
a2 + bc b(a+ d)
c(a+ d) bc+ d2

)
. If a + d = 0, the matrix of f has eigenvalues

{
√
ε,−
√
ε} and this is again impossible by neatness. We deduce that a + d 6= 0,

so that b = c = 0 and a = d =
√
ε or a = d = −

√
ε. Since f = f and the Rosati

involution induces the complex conjugation on E, we deduce that
√
ε ∈ F and that

f ∈ F , as required. �

We write

(3.3.14) ∆ = (OF )×,+(p) /O
×,+
F (Kp),

(3.3.15) ∆(Π0) = O×,+F (Π0)/O×,+F (Kp),

(3.3.16) ∆(Kp) = O×,+F (ν(Kp))/O×,+F (Kp).

These last two groups are finite groups. Let us set Y G1

K = ∆\YK . This last
quotient exists as a scheme. Indeed, ∆ permutes the connected components of YK
and the stabilizer of any connected component is a finite group ∆(Π0), while the
stabilizer of any geometrically connected component if ∆(Kp). Moreover, the action
of ∆ can be lifted to an action on an ample line bundle on YK (for instance the
tensor product of the line bundles det(Ω1

(A/C)/YK
) where C runs over all subgroups

C =
∏
v|p Cv where for each v | p, Cv is either 1 or whichever of Hv, Lv exist as

part of the level structure, see [Lan16, §6]). The group ∆(Π0) acts without fixed
points by Lemma 3.3.13. The following proposition then follows immediately from
Proposition 3.3.9 and Lemma 3.2.3.

Proposition 3.3.17. There is a canonical map YG1

K → Y G1

K , and Y G1

K is the coarse
moduli of YG1

K . There is a quasi-projective morphism Π0 : Y G1

K → (OF )×,+(p) \(A
∞,p⊗

F )×/ν(Kp)(1) with geometrically connected fibres. Moreover, the map YK → Y G1

K

is étale and surjective.
Let c ∈ Z×,+(p) \(A

∞,p ⊗ F )×/ν(Kp) and let

c : SpecC→ Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1)

be the associated morphism (for the usual choice of primitive roots of unity in C).
Let YK,c be the fibre of YK over c and let Y G1

K,c be the fibre of Y G1

K over c. Then
there is a commutative diagram of analytic spaces where the horizontal maps are
isomorphisms and the vertical maps are finite étale with groups ∆(Kp) = ∆(K):

(YK,c)
an //

��

Γ(c,K)\HHom(F,R)

��

(Y G1

K,c)
an // Γ1(c,K)\HHom(F,R)

3.4. Local models. We now recall some basic results about local models for GSp4;
the cases that we need essentially go back to [dJ93]. Continue to let K be a
reasonable level structure. For each place v|p, we let M loc

Kv
be the moduli space

over OFv of chains of lattices corresponding to Kv; so for example M loc
Par(v) is the

moduli space of totally isotropic direct factors of V1 ⊗OF OFv of rank 2. We write
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M loc
Kp

:= ×v|pM loc
Kv

. Then by the results of [RZ96, §6], each geometric point of the
special fibre of Y GK has an étale neighbourhood which is isomorphic to an étale
neighbourhood of a geometric point in M loc

Kp
. (The description of the local model

in [RZ96, §6] is in terms of chains of OF ⊗ Zp-lattices, but this description can
be immediately rewritten in terms of products over the places v|p of chains of
OFv -lattices.)

Proposition 3.4.1. The scheme YK is flat over SpecZ(p), normal, and a local
complete intersection (so in particular Cohen–Macaulay) of pure relative dimen-
sion 3[F : Q]. If Kv = GSp4(OFv ) for all v|p, then it is smooth, while in general it
is smooth away from codimension 2.

Proof. Note that normality follows from being smooth away from codimension 2
and Cohen–Macaulay. The properties of being flat and a local complete intersection
over SpecZ(p), and of being smooth, or smooth away from codimension 2, can all
be checked étale locally ([Sta13, Tag 03E7,Tag 04R3,Tag 06C3]). Furthermore,
these properties are all preserved by taking products. It therefore suffices to show
that they hold for the local models M loc

Kv
. This has already been carried out in the

literature: the case thatKv = GSp4(OFv ) is trivial, and the cases thatKv = Kli(v),
Si(v) or Iw(v) are covered in [Til06b, §2]. In the case Kv = Par(v) see [Yu11, Prop.
2.5, Thm. 2.11]. �

Corollary 3.4.2. The scheme Y G1

K is normal, flat over SpecZ(p), and a local
complete intersection.

Proof. Since YK → Y G1

K is an étale surjection by Proposition 3.3.17, this is imme-
diate from Proposition 3.4.1. �

3.5. Compactifications. In this section, we state results on the existence of toroidal
compactifications. Toroidal compactifications depend on some combinatorial data
which we first explain. We will follow closely the presentation of [Pin90] and
[HLTT16], see in particular [HLTT16, §5.2] (that this presentation is equivalent
to Lan’s presentation is explained in [HLTT16, App. B]).

In this section, we write VF for V ⊗OF F . Let C be the set of totally isotropic
F -subspaces W ⊂ VF . For all W ∈ C, consider the F ⊗ R-module of Q-bilinear
forms

φ : VF /W
⊥ × VF /W⊥ → R

which satisfy φ(λx, y) = φ(x, λy) for all λ ∈ F , x, y ∈ VF /W⊥. Let C(VF /W
⊥)

be the cone inside this R-vector space given by those forms which are positive
semidefinite and whose radical is defined over F . Let C be the conical complex
which is the quotient of

∐
W∈C C(VF /W

⊥) by the equivalence relation induced by
the inclusions C(VF /W

⊥) ⊂ C(VF /Z
⊥) for W ⊂ Z.

A non-degenerate rational polyhedral cone of C ×G1(A∞) is a subset contained
in C(VF /W⊥)×{γ} for some (W,γ) which is of the form

∑k
i=1 R>0si for elements

si : VF /W
⊥ × VF /W⊥ → Q.

A rational polyhedral cone decomposition Σ of C ×G1(A∞) is a partition C ×G1(A∞) =∐
σ∈Σ σ by non-degenerate rational polyhedral cones σ such that the closure of each

cone is a union of cones.
Let W ∈ C. We let PW be the parabolic subgroup of G1 which is the stabilizer

of W . Let us denote by MW,l the group of F -linear automorphisms of VF /W⊥. We

http://stacks.math.columbia.edu/tag/03E7
http://stacks.math.columbia.edu/tag/04R3
http://stacks.math.columbia.edu/tag/06C3
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also denote by MW,h the group of symplectic similitudes of W⊥/W (so that this
group is isomorphic to ResF/QGSp4−2 dimW , and in particular is non-trivial even
when dimW = 2). The group MW = MW,h×MW,l is the Levi quotient of PW . We
have a surjective map PW → MW,l, and we denote by PW,h its kernel. There is a
surjective map PW,h →MW,h.

The group G1(Q)+ acts on C and also on C. Let W ∈ C, let γ ∈ G1(Q)+ ∩ PW
and φ ∈ C(VF /W

⊥). Let γl be the projection of γ inMW,l. Then we set γφ(x, y) =
ν(γ)φ(γl.x, γl.y).

The set C ×G1(A∞) carries a diagonal left action of G1(Q) and left and right
actions of G1(A∞) (by left and right multiplication on the second factor). For any
compact open subgroup K ⊂ G1(A∞), a rational polyhedral cone decomposition
Σ is K-equivariant if for all h ∈ G1(Q), k ∈ K and σ ∈ Σ, h.σ.k ∈ Σ.

For any compact open subgroup K ⊂ G1(A∞) we say that a rational polyhedral
cone decomposition Σ of C ×G1(A∞) is K-admissible if:

(1) The decomposition is K-equivariant.
(2) For all σ ⊂ C(VF /W

⊥)× {γ}, and all p ∈ PW,h(A∞), we have p.σ ∈ Σ.
(3) For all cones σ, let W ∈ C be such that σ ⊂ C(VF /W⊥) is in the interior

of C(VF /W⊥). Then if there are p ∈ PW,h(A∞), u ∈ K and h ∈ G1(Q)
satisfying σ ∩ hpσu 6= ∅, then in fact h ∈ PW,h(A∞).

(4) G1(Q)\Σ/K is finite.
There exist K-admissible rational polyhedral cone decompositions. Any two

K-admissible rational polyhedral cone decompositions can be refined by a third
one.

If LW ⊂ HomQ(Sym2
FVF /W

⊥,Q) is a lattice, then a cone

σ ⊂ HomQ(Sym2
OF VF /W

⊥,Q)

is said to be smooth with respect to LW if the si can be taken to be part of a basis
of LW . Assume that for all (W,γ) ∈ C×G1(A∞) we have lattices

LW,γ ⊂ HomQ(Sym2
FVF /W

⊥,Q).

We say that a rational polyhedral cone decomposition Σ is smooth with respect to
these lattices if each cone σ ∈ Σ is smooth.

We now assume that K = KpKp is a reasonable compact open subgroup. We
choose a lattice V ′ ⊂ VF with the property that Kp stabilizes V ′⊗ZA∞,p and that
V ′ ⊗OFv = V ⊗OFv for all places v|p such that Kv 6= Par(v) and V ′ ⊗OFv = V3

for all places v such that Kv = Par(v).
Then (OF , V ′, 〈.〉) defines an integral PEL datum and K ⊂ G′1(Ẑ) where G′1 is

the group scheme over SpecZ of symplectic similitudes of V ′.
The theory of toroidal compactification associates a lattice LW,K,γ ⊂ C(VF /W

⊥)
to this integral PEL datum, compact open K,W ∈ C and γ ∈ G1(A∞) (see [Lan13,
§5.3] and [Lan16, §3]). The K-admissible rational polyhedral cone decompositions
which satisfy the following extra properties form a cofinal subset of the set of all
K-admissible rational polyhedral cone decompositions:

(1) The decomposition is projective (in the sense of [AMRT10]).
(2) The decomposition is smooth with respect to the lattices LW,K,γ .
In the rest of the paper, we will consider K-admissible rational polyhedral cone

decompositions which satisfy these extra properties unless explicitly stated.

Theorem 3.5.1.
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(1) Let Σ be a K-admissible polyhedral cone decomposition which is projective.
There is a toroidal compactification XK,Σ of YK . It has a stratification
indexed by (G(Q)+ ∩Kp)\Σ/Kp = G(Q)+\Σ/K. The boundary is the re-
duced complement of YK in XK,Σ. This is a relative Cartier divisor denoted
by DK,Σ.

(2) The universal abelian scheme A → YK extends to a semi-abelian scheme
A→ XK,Σ.

(3) If Σ′ is a refinement of Σ, then there are projective maps πΣ′,Σ : XK,Σ′ →
XK,Σ, and (RπΣ′,Σ)∗OXK,Σ′ = OXK,Σ . Let IXK,Σ and IXK,Σ′ be the invert-
ible sheaves of the boundary in XK,Σ and XK,Σ′ . Then π∗Σ′,ΣIXK,Σ = IXK,Σ′
and (RπΣ′,Σ)∗IXK,Σ′ = IXK,Σ .

(4) Suppose that K is reasonable (in the sense of Definition 3.3.3). Then the
toroidal compactification XK,Σ is flat over SpecZ(p), normal, and Cohen-
Macaulay. If Σ is smooth, then XK,Σ → SpecZ(p) is further a local com-
plete intersection. Finally if Kv = GSp4(OFv ) for all v|p and Σ is smooth
then XK,Σ → SpecZ(p) is smooth.

Proof. This follows from [Lan17, Thm. 6.1]. We simply need to specify the choices
we made to construct the toroidal compactification by normalization (see [Lan16,
§2]). In the first case that Kp = G1(Zp) (the nice case: no level at p, prime to
p polarization), the compactification is constructed in [Lan13]. In the second case
that Kp =

∏
v|pKv where Kv ∈ {GSp4(OFv ),Par(v)}, the compactification can

be constructed as a closed subscheme of some toroidal compactification of a Siegel
modular variety with a prime to p polarization (Zarhin’s trick) (and possibly per-
forming again a blow up or a blow down at the boundary as explained in [Lan17]).
In the general case where we have a parahoric level structure, we consider all possi-
ble degeneration maps YK →

∏
K′p

YKpK′p
where Kp → K ′p and K ′p =

∏
v|pK

′
v with

K ′v ∈ {GSp4(OFv ),Par(v)} and obtain the toroidal compactification as a closed
subscheme of the product of the toroidal compactifications of the YKpK′p

(and pos-
sibly performing again a blow up or a blow down at the boundary as explained in
[Lan17]).

Now, everything apart from (4) is immediate, while (4) follows from Proposi-
tion 3.5.4 together with the explicit description of the formal completions along
boundary strata given in [Lan17, Thm. 6.1 (4)]. �

We also need to consider the action of the group O×,+F,(p). Recall that we defined
a quotient ∆ of this group in (3.3.15).

Lemma 3.5.2. The action of O×,+F,(p) on YK extends to XK,Σ and factors through ∆.

Proof. It is possible to prove this directly by looking at the construction of the
toroidal compactification and the boundary charts. We will instead give a simpler
indirect argument. Since XK,Σ is normal, it follows that XK,Σ is the normalization
of YK in XK,Σ × SpecC. It is therefore sufficient to show that the action extends
over C.

We can now use [AMRT10]. Let c ∈ G1(Af ). By Proposition 3.3.9, the analytifi-
cation of the component YK,c ⊂ YK×SpecC corresponding to c is Γ(c,K)\HHom(F,R),
and we need to show that the group ∆(K) (which is the subgroup of ∆ acting triv-
ially on the geometrically connected components) acts on the compactification of
Γ(c,K)\HHom(F,R). By the main results of [AMRT10], our choice of Σ provides a
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partial compactification HHom(F,R)
Σ which carries an action of Γ(K, c). The compo-

nent of (XK,Σ×SpecC)an corresponding to c is isomorphic to Γ(c,K)\HHom(F,R)
Σ .

This space still carries an action of Γ1(c,K)/Γ(c,K), which is what we claimed. �

Lemma 3.5.3. The action of ∆ on XK,Σ is free.

Proof. Over YK , this is the content of Lemma 3.3.13. We claim that the action
of ∆ is free on the set of non-trivial strata in XK,Σ. This set is simply G+(Q)\

(
Σ\

{0} ×G(A∞)
)
/K. Let c ∈ G1(A∞), Γ(c,K) = G(Q)+ ∩ cKc−1 and Γ1(c,K) =

G1(Q)+ ∩ cKc−1. Let Σc be the restriction of Σ to C × {c}. We need to show that
the stabilizer of Γ1(c,K) acting on Σc \ {0} is included in Γ(c,K). This will imply
that the group ∆(K) acts freely on Γ(c,K)\(Σc \ {0}).

Let W ∈ C \ {0}. We denote by ΓW (c,K) and Γ1,W (c,K) the intersections of
PW with Γ(c,K) and Γ1(c,K) respectively. Let σ ⊂ C(VF /W

⊥)× {c} in the inte-
rior. By our assumption on the cone decomposition, if an element γ ∈ Γ1,W (c,K)
stabilizes σ, then its linear part γl is trivial. We need to see that ν(γ) is trivial. It
is easy to see that we can find an element γ′ ∈ ΓW (c,K) and n ∈ Z≥0 such that
ν(γ)nφ = γ′.φ for all φ ∈ C(VF /W

⊥) (it follows from the very definition of the
action that the image of ΓW (c,K) in the space of automorphisms of C(VF /W

⊥)

contains a finite index subgroup of O×,+F ). We deduce that γ′ stabilizes σ and
therefore γ′l = 1, so that ν(γ)n = 1 and ν(γ) = 1 since O×,+F is torsion free. �

We form the quotient of XK,Σ by the action of O×,+F,(p). This quotient exists be-
cause, on a given connected component of XK,Σ, this is the quotient by a finite
group, and the component is projective because Σ is a projective cone decomposi-
tion. We shall call such a quotient a toroidal compactification XG1

K,Σ of Y G1

K . We
summarize our findings in the following proposition:

Proposition 3.5.4. The space XG1

K,Σ has a stratification indexed by G1(Q)+\Σ/K.
The map XK,Σ → XG1

K,Σ is étale and surjective. If K is reasonable, then XG1

K,Σ is a
flat local complete intersection over SpecZ(p), and is normal.

If not necessary, we drop the subscripts K or Σ and simply write X. We denote
the boundary divisor by D.

3.6. Functorialities. We now briefly discuss some functorial maps between Shimura
varieties at different levels, which we will make use of when we discuss Hecke oper-
ators in §3.8. All of the functorialities that we consider here extend to the toroidal
compactification for suitable choices of cone decompositions, so we confine our dis-
cussions to the interior.

3.6.1. Change of level away from p. Let K = KpKp and K ′ = (Kp)′Kp be two
compact open subgroups of G1(A∞) such that K ⊂ K ′. Then we have finite étale
maps YK → YK′ and Y G1

K → Y G1

K′ , given by “forgetting the level structure”; that is,
by replacing the Kp-orbit by the corresponding (Kp)′-orbit.

3.6.2. Action of the group G1(A∞,p). Let g ∈ G1(A∞,p). Then we can define an
isomorphism

[g] : YK → Yg−1Kg

by sending an object (A, ι, λ, η, ηp) of YK to (A, ι, λ, η◦g, ηp), which is immediately
seen to be an object of Yg−1Kg.
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We deduce isomorphisms [g] : Y G1

K → Y G1

g−1Kg.

3.6.3. Change of level at p: Klingen type correspondences. We now fix Kp and a
place w above p. We let Kp =

∏
v|pKv ⊂ G1(Zp) be a reasonable compact open

such thatKw = GSp4(OFw). We letK ′p =
∏
v 6=wKv×Kli(w) be another reasonable

level structure at p and let K ′′p =
∏
v 6=wKv×Par(w). Set K = KpKp, K ′ = KpK ′p

and K ′′ = KpK ′′p .

Lemma 3.6.4. There are natural proper surjective, generically finite étale forgetful
maps p1 : YK′ → YK and p1 : Y G1

K′ → Y G1

K .

Proof. We simply forget the level structure Hw at w. �

We now choose once and for all an element xw ∈ F×,+ which is a uniformizing
element in Fw and a unit in Fv for all v 6= w above p. This element is well defined
up to multiplication by an element of (OF )×,+(p) .

Lemma 3.6.5. There is a proper, surjective, generically finite étale map p2 : YK′ →
YK′′ depending on xw and sending A to A/H⊥w . It induces a canonical map p2 :

Y G1

K′ → Y G1

K′′ .

Proof. This map is defined to take an object (A, ι, λ, η, ηp) of YK′ to the object
(A′, ι′, λ′, η′, η′p) ∈ YK′′ defined as follows:

• A′ = A/H⊥w , where H⊥w ⊂ A[w] is an order p3 group scheme, the orthogonal
complement of Hw for the Weil pairing. Write π : A → A′ for the natural
isogeny.

• ι′(x) = π ◦ ι(x) ◦ π−1,
• The quasi-polarization λ′ is obtained by descending the quasi-polarization
x2
w.λ from A to A′.

• η′ = π ◦ η.
• η′p is the data of level structures at places v 6= w above p deduced from ηp

by the isomorphisms π : A[v]→ A′[v].
The ambiguity in the choice of xw disappears when we pass to the quotient stacks

by the action of (OF )×,+(p) and pass to the associated coarse moduli. �

Remark 3.6.6. There is another map YK′ → YK′′ obtained by sending an abelian
surface A to A/Hw; however, we will not need to make use of this map.

3.6.7. Change of level at p: Siegel type correspondences. We now fix Kp and a
place w above p. We let Kp =

∏
v|pKv ⊂ G1(Zp) be a reasonable compact open

such that Kw = GSp4(OFw) (resp. Kli(w)). We let K ′p =
∏
v 6=wKv × Si(w) be

another reasonable level structure at p (resp. K ′p =
∏
v 6=wKv × Iw(w)). Set K =

KpKp, K ′ = KpK ′p.

Remark 3.6.8 (Warning). Note that the use of K and K ′ (and p2) in this section
(§3.6.7) differs from that in the previous section (§3.6.3). Thus the reader should
be careful when these maps are used to note whether we are in the Klingen or
Siegel setting (we indicate in any ambiguous context by giving references to the
corresponding section). We made this choice since otherwise the number of required
subscripts would become excessively cumbersome.

Lemma 3.6.9. There are natural forgetful maps p1 : YK′ → YK and p1 : Y G1

K′ →
Y G1

K which are surjective and generically finite.
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Proof. We simply forget the level structure Lw at w. �

Recall that we have chosen an element xw ∈ F×,+ which is a uniformizing
element in Fw and a unit in Fv for all v 6= w above p.

Lemma 3.6.10. There is a map p2 : YK′ → YK depending on xw. It induces a
canonical map p2 : Y G1

K′ → Y G1

K .

Proof. We take an object (A, ι, λ, η, ηp) of YK′ . We define (A′, ι′, λ′, η′, η′p) ∈ YK

as follows:
• A′ = A/Lw, call π : A→ A′ the isogeny.
• ι′(x) = π ◦ ι(x) ◦ π−1.
• The quasi-polarization λ′ is obtained by descending the quasi-polarization
xwλ from A to A′.

• η′ = π ◦ η.
• η′p is a data of level structures at places v 6= w above p deduced from ηp by

the isomorphisms π : A[v]→ A′[v].
• In the case Kw = Kli(w), we define H ′w = H⊥w /Lw ⊂ A′[w].

The ambiguity in the choice of xw disappears when we pass to the quotient stacks
by the action of (OF )×,+(p) and pass to the associated coarse moduli. �

3.7. Automorphic vector bundles. We now work over Zp, and assume from
now on that p splits completely in F . We let Sp be the set of places of F above p.
We have a decomposition OF ⊗Z Zp =

∏
v|p Zp. We also denote by v : OF → Zp

the projection on the v-component.

3.7.1. The principal bundle. Over YK we have a prime-to-p isogeny class of abelian
schemes and therefore we have a canonical Barsotti–Tate group scheme G. We
let ωG be its conormal sheaf. The sheaf ωG carries an action of OF . We have a
decomposition OF ⊗ZZp =

∏
v|p Zp and accordingly, the sheaf ωG decomposes as a

product: ωG =
∏
v|p ωG,v where each ωG,v is a locally free sheaf of rank 2 over YK .

3.7.2. Weights for G and G1. By a dominant algebraic weight κ for G we mean a
tuple (kv, lv)v∈Sp of integers such that kv ≥ lv for all v ∈ Sp. By a classical algebraic
weight we mean a dominant algebraic weight which furthermore satisfies lv ≥ 2 for
all v ∈ Sp. We will frequently write “weight” for “dominant algebraic weight” where
no confusion can result (note though that we will later also consider p-adic weights).
We associate a locally free sheaf ωκ on YK to each weight κ by

ωκ =
∏
v

Symkv−lvωG,v ⊗ detlvωG,v.

By a weight κ for G1 we mean a tuple ((kv, lv)v∈Sp , w) of integers with the
property that kv ≥ lv and kv − lv ≡ w (mod 2) for each v; again, we say that κ is
classical algebraic if lv ≥ 2 for all v ∈ Sp. In fact, we will insist that w is even, and
we will shortly fix the choice w = 2. We claim that given w, there is a canonical
descent datum on ωκ for the map YK → Y G1

K .
For clarity, we describe this descent datum on the level of the groupoid YK . For

all x ∈ (OF )×,+(p) , we define an isomorphism

ωκ(A,ι,x−1λ,η,ηp) = ωκ(A,ι,λ,η,ηp) → ωκ(A,ι,λ,η,ηp)
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by multiplication by
∏
v v(x)(kv+lv−w)/2 (here the first identification is the tauto-

logical one, noting that the definition of ωκ does not depend on the polarization).
To check that this defines a descent datum, we have to show that it respects the

existing identifications from the action of O×,+F (Kp). If x ∈ O×,+F (Kp), then we
may write x = ε2 for some ε ∈ O×F ∩Kp, and we have an isomorphism ε : A → A
which induces an isomorphism in the groupoid YK :

ε : (A, ι, λ, η, ηp)→ (A, ι, ε−2λ, η, ηp)

and an isomorphism

ωκ(A,ι,ε−2λ,η,ηp) = ωκ(A,ι,λ,η,ηp)
ε∗→ ω(A,ι,λ,η,ηp)

which is multiplication by κ(ε) (again, the first equality is the tautological one,
since ωκ does not depend on the polarization). Now, κ(ε) =

∏
v v(ε)kv+lv =∏

v v(ε2)(kv+lv−w)/2NF/Q(ε)w =
∏
v v(x)(kv+lv−w)/2 since NF/Q(ε)w = 1 by our

assumption that w is even, so this agrees with our the isomorphism defined above,
as required.

This defines a descent datum for the étale map YK → Y G1

K . This descent da-
tum is effective. Indeed, after first identifying the sheaf ωκ on various connected
components of YK we are reduced to a finite étale descent for the group ∆(Π0).

Although the descent datum depends on w, we will regard w as fixed (indeed,
in the main arguments of the paper, we always take w = 2), so we omit it from the
notation, and simply denote the resulting sheaf on Y G1

K by ωκ.

Remark 3.7.3. We assume in this remark that we work over Fp rather than Zp. We
denote by YK,1 and Y G1

K,1 the fibres of YK and Y G1

K over SpecFp. Let κ = (kv, lv)v|p
be a weight for G. We further assume that kv ≡ lv ≡ 0 mod (p − 1). In this
case, we claim that we can define a canonical descent datum for the sheaf ωκ, from
YK,1 to Y G1

K,1. This rests on the observation that the character O×F → F×p given by
ε 7→

∏
v|p[v(ε)kv+lv mod p] is trivial. Therefore we can define a descent datum for

the action of x ∈ (OF )×,+(p) , via the tautological isomorphism

ωκ(A,ι,x−1λ,η,ηp) = ωκ(A,ι,λ,η,ηp).

This remark will be applied to the various Hasse invariants we will construct later.

Finally we will need to consider the canonical extensions of these sheaves to
toroidal compactifications. The conormal sheaf ωG/YK has a canonical extension
to XK,Σ given by e∗Ω1

A/XK,Σ
, where A is the semi-abelian scheme of Theorem 3.5.1

(2) and e is its identity section. This gives an extension of the sheaves ωκ to XK,Σ

and an extension of the sheaves ωκG1 to XG1

K,Σ. We will denote these extensions by
the same symbol.

3.8. Coherent cohomology and Hecke operators.

3.8.1. Basics. Let κ = (kv, lv) be a weight. We will study the cohomologies
RΓ(XK,Σ, ω

κ) and RΓ(XG1

K,Σ, ω
κ) as well as their cuspidal variants RΓ(XK,Σ, ω

κ(−D))

and RΓ(XG1

K,Σ, ω
κ(−D)).

Lemma 3.8.2. The cohomologies RΓ(XK,Σ, ω
κ), RΓ(XG1

K,Σ, ω
κ), RΓ(XK,Σ, ω

κ(−D))

and RΓ(XG1

K,Σ, ω
κ(−D)) are independent of Σ.
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Proof. This is immediate from Theorem 3.5.1 (3). �

Because of this lemma, we often drop Σ from the notation. We now clarify the
relationship between RΓ(XK , ω

κ) and RΓ(XG1

K , ωκ).

Proposition 3.8.3. The pull back maps

RΓ(XG1

K , ωκ)→ RΓ(XK , ω
κ)

and
RΓ(XG1

K , ωκ(−D))→ RΓ(XK , ω
κ(−D))

split in the derived category of Zp-modules.

Remark 3.8.4. It is often easier to work over XK rather than XG1

K because the
former has a clear moduli interpretation. Proposition 3.8.3 tells us that we can
easily transfer a good property of the cohomology over XK to a property over XG1

K .

Proof of Proposition 3.8.3. Attached to the weight κ is a descent datum (see §3.7.2)
which takes the form of an action of (OF )×,+(p) on the sheaf ωκ over XK . Namely,
for all ε ∈ (OF )×,+(p) , there is an isomorphism ε : ε∗ωκ → ωκ satisfying the usual
cocycle relation. This map induces a map on cohomology:

ε : RΓ(XK , ω
κ)→ RΓ(XK , ε

∗ωκ)→ RΓ(XK , ω
κ)

and defines the group action.
Recall that there is a commutative diagram:

XK

Π0

��

// XG1

K

Π
G1
0

��

Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1)

π // (OF )×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1)

Each Galois orbit c ∈ [Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1)]/Gal(Q/Q) determines

a connected component of Z×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1), and its fibre is a con-

nected component XK,c of XK,Σ which is a proper scheme over SpecZp. Obviously
RΓ(XK , ω

κ) =
∏
c RΓ(XK,c, ω

κ) and for all ε ∈ (OF )×,+(p) , we have an isomorphism
ε : RΓ(XK,ε·c, ω

κ)→ RΓ(XK,c, ω
κ).

The subgroup that fixes a component XK,c is denoted by O×,+F (Π0) and the
action of this group on XK,c and RΓ(XK,c, ω

κ) actually factors through the finite
group ∆(Π0). Let π(c) be the image of c in

[(OF )×,+(p) \(A
∞,p ⊗ F )×/ν(Kp)(1)]/Gal(Q/Q).

This determines a connected component XG1

K,π(c) of XG1

K and the map XK,c →
XG1

K,π(c) is a finite étale cover with group ∆(Π0).
It follows from Lemma 3.8.5 below that RΓ(XG1

K,π(c), ω
κ) is split in RΓ(XK,c, ω

κ),
and therefore the map

RΓ(XG1

K , ωκ) =
⊕
π(c)

RΓ(XG1

K,π(c), ω
κ)→

∏
c

RΓ(XK,c, ω
κ) = RΓ(XK , ω

κ)

is split. �
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Lemma 3.8.5. Let G be a finite group. Let IG ⊂ Z[G] be the augmentation
ideal. Let f : T → S be a finite étale morphism with Galois group G. Then
f∗OT = OS ⊕ IG ⊗Z[G] f∗OT .

Proof. There is an obvious map of coherent sheaves OS ⊕ IG⊗Z[G] f∗OT → f∗OT .
The sheaf f∗OT is a locally free sheaf (for the étale topology) of OX [G]-modules.
Therefore, the above map is an isomorphism as this can be checked locally for the
étale topology. �

3.8.6. Abstract Hecke algebras. Let H = C∞c (G1(A∞)//K,Zp) be the convolu-
tion algebra of locally constant, bi-K invariant, compactly supported functions
on G1(A∞) with coefficients in Zp. (The Haar measure is a product of local Haar
measures, normalized by vol(Kt) = 1 for all finite places t of F .) If S is a finite set
of places of F , we let HS be the subalgebra of H of functions whose restriction to
GSp4(Fs) is the characteristic function of Ks for all s ∈ S. For all finite places s,
we let Hs be the local Hecke algebra C∞c (GSp4(Fs)//Ks,Zp), so that H = ⊗′sHs.

3.8.7. Cohomological correspondences — motivation. We begin by giving some brief
motivation for the way in which we define Hecke operators on coherent cohomology
(following [Pil20]).

As usual, the geometric interpretation of Hecke operators is via correspondences

C
p1

��

p2

~~

X Y

(Giving an integral definition of the correspondence associated to a Hecke operator
at a place dividing p is in general difficult. This question will be addressed later in
the paper in some very special cases.)

Let F ,G be coherent sheaves on X,Y . We assume that we have a map of sheaves
p∗2F → p∗1G. When F and G are automorphic vector bundles (which will typically
be the case for us), this map is provided by the differential of the universal isogeny
over C.

One would like to use the correspondence to define a corresponding map on
cohomology RΓ(X,F) → RΓ(Y,G). This map could be defined by first taking the
pull back via p2 : RΓ(X,F)→ RΓ(C, p∗2F), then using the map p∗2F → p∗1G to get
to RΓ(C, p∗1G), and finally applying some trace map to RΓ(Y,G). In other words,
the action of the correspondence on cohomology should take the form of a map
T : R(p1)∗p

∗
2F → G. There are, however, at least two serious difficulties with

making such a definition in our context.
The first obvious difficulty is the existence of the trace map, because in general

one cannot assume that p1 is finite flat. Nevertheless, in our cases the existence
of the trace map will follow from the machinery of duality in coherent cohomology
and the existence of certain fundamental classes, which can be constructed because
the schemes C,X, Y will have reasonable geometric properties over the base.

The second difficulty (which already arises for modular forms for GL2 /Q) is that
the action of the correspondences defining the Hecke operators at places dividing p
is typically divisible by a positive power of p, so that one has to divide by this power
in order to define the correct operator mod p. It is hard to check this divisibility
at the level of the derived category.
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The solution to this introduced in [Pil20] (which we also employ here) is as
follows. By adjunction we can view T as a map T : p∗2F → p!

1G, and in favourable
circumstances p!

1G will be a sheaf (and not merely a complex). Furthermore it will
be sufficiently nice that we can check the condition that T is divisible by a power
of p after restricting to the complement of a codimension 2 locus, and define our
normalized Hecke operators.

3.8.8. Duality for coherent complexes. We let S be an affine Noetherian scheme.
We say that a morphism f : X → Y of S-schemes is embeddable if there is a
smooth S-scheme P such that f can be factored as a composite

X
i→ P ×S Y → Y

where i is finite and the second map is the natural projection. We say that f
is projectively embeddable if p can be taken to be a projective space over S. In
our applications of this material all of our maps will be obviously projectively
embeddable (essentially because our Shimura varieties are quasi-projective), and
we will not comment further upon this.

As usual we writeDqcoh(OX) for the derived category of OX -modules with quasi-
coherent cohomology sheaves, and D+

qcoh(OX) for the bounded-below version. Then
if f : X → Y is an embeddable morphism of S-schemes, there is an exact functor
of triangulated categories

f ! : D+
qcoh(OY )→ D+

qcoh(OX).

If f is projectively embeddable, the functor f ! is a right adjoint to Rf∗ and there
is a natural transformation Rf∗f ! =⇒ Id of endofunctors of D+

qcoh(OY ), which we
refer to as the trace map.

If X → S is a local complete intersection then we write KX/S for the relative
canonical sheaf, which may be defined as the determinant of the corresponding
cotangent complex. The following is [Pil20, Cor. 4.1.3.1].

Lemma 3.8.9. Let f : X → Y be an embeddable morphism between two embeddable
S-schemes, such that X → S, Y → S are both local complete intersections of pure
relative dimension n. Then f !OY = KX/S ⊗OX f∗K−1

Y/S is an invertible sheaf.

We will make repeated use of the following lemma.

Lemma 3.8.10. Suppose that f : X → Y is an embeddable morphism of em-
beddable S-schemes, each of which is a local complete intersection of pure relative
dimension n over S. Let h be a section of a line bundle L over Y , and suppose that
neither h nor f∗h is a zero-divisor. Write Yh=0 for the vanishing locus of h, and
Xh=0 for the vanishing locus of f∗h.

Then for any locally free sheaf F on Y , we have an equality of invertible sheaves

(f !F)|Xh=0
= f !(F|Yh=0

).

Proof. This follows from [Har66, Prop. III.8.8]. More precisely, note that OYh=0

is represented by the perfect complex of OY -modules L−1 h→ OY (here we use
that h is not a zero-divisor). In addition, by Lemma 3.8.9, f !F is a sheaf, and
it follows from the assumption that neither h nor f∗h is a zero-divisor that the
derived tensor products in [Har66, Prop. III.8.8] are in our case given by the usual
tensor product ⊗. �
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3.8.11. Fundamental classes. In two particular situations, we now construct a nat-
ural map

Θ : OX = f∗OY → f !OY
which we call the fundamental class.

We firstly consider what we call the lci situation, which is the case that:
• X and Y are local complete intersections over S of the same relative di-

mension,
• X is normal, and
• there is an open V ⊂ X which is smooth over S, whose complement is of

codimension 2 in X, and an open U ⊂ Y which is smooth and such that
f(V ) ⊂ U .

In this situation, f !OY is an invertible sheaf by Lemma 3.8.9, so by the alge-
braic Hartogs’ lemma, it is enough to specify the fundamental class over V (note
that X is normal by assumption). Again by Lemma 3.8.9 we have f !OY |V =
det Ω1

V/S ⊗ f
∗(det Ω1

U/S)−1, so over V , we can define the fundamental class to be
the determinant of the map

df : f∗Ω1
U/S → Ω1

V/S .

The other case we consider is the finite flat situation, in which f : X → Y is a
finite flat map, so that f∗ is exact, and

f∗f
!OY = HomOY (f∗OX ,OY ).

We have the usual trace morphism trf : f∗OX → OY , and we define the fundamen-
tal class f∗OX → HomOY (f∗OX ,OY ) by Θ(1) = trf .

Note that if X → Y is a finite flat morphism and X,Y are both smooth over S,
then the morphism X → Y is automatically a local complete intersection. The
following compatibility between these definitions is [Pil20, Lem. 4.2.3.1].

Lemma 3.8.12. Suppose that X → Y is finite flat, and that X, Y are both smooth
over S. Then

LX/Y
∼−→ [Ω1

Y/S ⊗OY OX
df→ Ω1

X/S ],

and the determinant det(df) ∈ ωX/Y = f !OY is the trace map trf .

3.8.13. Base change for open immersions. Consider a Cartesian diagram

X ′
j
//

f ′

��

X

f

��

Y ′
i // Y

If i is an open immersion, and f is in either of the finite flat or lci situations, then
so is f ′. Since i! = i∗ and j! = j∗, we have j∗f ! = (f ′)!i∗, and if f has fundamental
class Θ, then j∗Θ is the fundamental class of f ′.

3.8.14. Fundamental classes and divisors. We now briefly recall the results of [Pil20,
§4.2.4], which show that the correspondences we define below are suitably well
behaved on the boundaries of our compactified Shimura varieties.

Let DX ↪→ X, DY ↪→ Y be two effective reduced Cartier divisors with respect
to S, with the properties that f : X → Y restricts to a map f |DX : DX → DY , and
the induced map DX → f−1(DY ) is an isomorphism of topological spaces. Write
Xsm, Y sm for the smooth loci of X,Y . The following is [Pil20, Lem. 4.2.4.1].
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Lemma 3.8.15. Suppose either that we are in the finite flat situation; or that we
are in the lci situation and that furthermore DX ∩Xsm and DY ∩ Y sm are normal
crossings divisors.

Then the fundamental class Θ : OX → f !OY restricts to a morphism OX(−DX)→
f !OY (−DY ).

3.8.16. Traces and restriction. In this paper we will have to study how Hecke oper-
ators behave with respect to restriction to subschemes of the Shimura variety. This
section contains some preliminary material. Consider the following setup:

• f : X → Y a finite flat map between smooth varieties over a field k.
• D ⊂ Y is a smooth Cartier divisor.
• f−1(D) = nD′ for D′ ⊂ X a smooth Cartier divisor.

In this setting we have the following:
• Trace maps on canonical bundles

f∗KX → KY

and
f∗KD′ → KD.

• Adjunction isomorphisms

KD ' KY (D)|D
and

KD′ ' KX(D′)|D′ .
If L is a line bundle on Y , we can use the projection formula to get a map:

f∗(KX ⊗OX f∗L) → KY ⊗OY L. We call such a map a twisted trace map. We
use a similar terminology over D. The goal of this section is to prove the following
compatibility between them.

Proposition 3.8.17. There is a commutative diagram

f∗(KX(−(n− 1)D′)) //

��

KY

��

f∗(KD′ ⊗OX(−nD′)|D′) // KD ⊗OY (−D)|D
Here the vertical maps are restriction followed by adjunction, the top horizontal
map comes from the inclusion of KX(−(n−1)D′) in KX followed by the trace, and
the bottom horizontal arrow is the twisted trace for f : D′ → D and the line bundle
OY (−D)|D (note that f∗OY (−D)|D = OX(−nD)|D′).

Proof. We write I = OY (−D) for the ideal sheaf of D and I ′ = OX(−D′) for the
ideal sheaf of D′. First consider the following commutative diagram:

f∗I ′n−1HomOY (OX ,OY ) �
�

//

��

f∗HomOY (OX ,OY ) //

��

OY

��

f∗HomOY /I(OX/I ′,OY /I) �
�

// f∗HomOY /I(OX/IOX ,OY /I) // OY /I

where HomOY (OX ,OY ) is sheaf of OY -homomorphisms from f∗OX to OY , which
we view as a coherent sheaf of OX -modules. By definition HomOY (OX ,OY ) =
f !OY .
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Consider first the square on the right: the horizontal maps are evaluation at 1,
while the vertical maps are given by reduction modulo I, and it is clear that this
square commutes.

Now we consider the left hand square: the horizontal maps are the obvious
inclusions so we must explain why the dotted arrow exists. But a local section s of
I ′n−1HomOY (OX ,OY ) will send I ′ into I (using that I ′n = IOX) and hence the
reduction of s mod I factors through OX/I ′.

Finally we note that the square in the statement of the proposition tensored with
K−1
Y may be identified with the outer rectangle of this diagram because we have

KX ⊗K−1
Y ' f !OY = HomOY (OX ,OY ). �

3.9. Cohomological correspondences — definitions. Let S be a Noetherian
scheme. Let X, Y be two S-schemes.

Definition 3.9.1. A correspondence C over X and Y is a diagram of S-morphisms:

C
p1

��

p2

~~

X Y

where X, Y , C have the same pure relative dimension over S and the morphisms
p1 and p2 are projectively embeddable.

Let F be a coherent sheaf over X and G a coherent sheaf over Y .

Definition 3.9.2. A cohomological correspondence from F to G is the data of a
correspondence C over X and Y and a map T : R(p1)∗p

∗
2F → G.

The map T can be seen, by adjunction, as a map p∗2F → p!
1G. It gives rise to a

map still denoted by T on cohomology:

RΓ(X,F)
p∗2→ RΓ(C, p∗2F) = RΓ(Y,R(p1)∗p

∗
2F)

T→ RΓ(Y,G).

3.9.3. Hecke action away from p. Let K = KpKp be a reasonable compact open
subgroup of G1(Af ). Let Hp = C∞c (G1(Ap,∞)//Kp,Zp) be the Hecke algebra away
from p.

We claim that there is an action of Hp on RΓ(XK,Σ, ω
κ) and RΓ(XG1

K,Σ, ω
κ). To

this end, let g ∈ G1(A∞,p). We will define an endomorphism of RΓ(XK , ω
κ) which

corresponds to the action of the double class [KpgKp].
We define (for suitable choices of cone decompositions omitted from the notation)

a correspondence:

XK∩gKg−1

p1

%%

p2

yy

XK XK

where p1 is the map induced from the inclusionK∩gKg−1 ⊂ K and the functoriality
of §3.6.1.

The map p2 is the composite of the map [g] : XK∩gKg−1 → XK∩g−1Kg (see 3.6.2)
and the natural map XK∩g−1Kg → XK deduced from the inclusion K∩gKg−1 ⊂ K
and functoriality of §3.6.1.
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We have a canonical isomorphism p∗2ω
κ ∼−→ p∗1ω

κ, because the construction of
the sheaf ωκ depends only on the p-divisible group. Moreover, because XK and
XK∩gKg−1 are lci and smooth outside codimension 2 (for a cofinal subset of the set of
all polyhedral cone decompositions), there is a fundamental class p∗1OXK → p!

1OXK ,
extending the trace for the finite étale map p1 on the interior, which we can tensor
with p∗1ωκ to obtain a map p∗1ωκ → p!

1ω
κ = p!

1OXK ⊗ p∗1ωκ.
Composing the maps p∗2ωκ → p∗1ω

κ and p∗1ω
κ → p!

1ω
κ we obtain a cohomo-

logical correspondence Θg : p∗2ω
κ → p!

1ω
κ which induces the operator [KgK] on

cohomology:

RΓ(XK , ω
κ)→ RΓ(XK∩gKg−1 , p∗2ω

κ)
Θg→ RΓ(XK∩gKg−1 , p!

1ω
κ)

Tr→ RΓ(XK , ω
κ)

where the last map is induced by the adjunction Tr : R(p1)∗p
!
1ω

κ → ωκ.
We have a similar definition on cuspidal cohomology. Moreover, all these defini-

tions commute with the action of (OF )×,+(p) and therefore we also get an action on
the cohomology RΓ(XG1

K , ωκ) and RΓ(XG1

K , ωκ(−D)).
The characteristic functions of the double classes [KpgKp] generate Hp as a Zp-

module. In Proposition 3.9.15 below we prove that when Kp =
∏
v|p GSp4(Zp) is

spherical, the actions we just defined of the [KpgKp] are compatible with products
in Hp (the composite action of [Kpg1K

p] and [Kpg2K
p] is equal to the action of

[Kpg1K
p][Kpg2K

p] decomposed into sum of elementary double classes) so that we
get an action of the Hecke algebra Hp.

The difficulties come from the boundary. Away from the boundary, all the cor-
respondences are finite étale and one can follow the discussion of [FC90, Chap. VII,
§3], to show the compatibility. Following that reference, it should be possible to
show in a similar fashion that the action of the double class is compatible with prod-
uct in the Hecke algebra on the compactified Shimura variety, but giving all the
details would involve a delicate study of the composition of the correspondences
at the boundary. We instead give a different ad hoc proof by exhibiting special
complexes computing the cohomology. These complexes are Cousin complexes as-
sociated with the Ekhedal–Oort stratification on the Shimura variety. The action
of all double classes [KpgKp] on the cohomology is given by a canonical action on
the complex. Moreover, each term of the complex is the global sections of a certain
sheaf and the restriction of the sections of this sheaf to the interior of the Shimura
variety is an embedding. We are therefore able to prove that the action of the
double classes is compatible with products in the Hecke algebra because we know
this holds on the non-compact Shimura variety.

Remark 3.9.4. Over Qp, the property that the action of the double class is com-
patible with product in the Hecke algebra follows from [Har90b, Prop. 2.6]. The
strategy of that paper is to define an action of the group G1(Ap

f ) after passing to
the limit over the level Kp and then deduce an action of the Hecke algebra at a
finite level, but this strategy requires more work over Zp because at some points
one needs to control the cohomology of finite groups (which vanishes in character-
istic zero). Nevertheless, this is enough to prove that the Hecke algebra Hp acts
on the torsion free part of the cohomology (which embeds in the cohomology with
Qp-coefficients).

3.9.5. Cousin complexes. Our main reference for this section is [Kem78]. Let X be
a topological space. Let ShX(Ab) be the category of abelian sheaves on X. For



64 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

a subset Z ⊆ X and abelian sheaf F we denote by ΓZ(F) the subsheaf of F of
sections supported on Z. Let Z : Z0 = X ⊇ Z1 ⊇ · · · ⊇ Zn · · · be a decreasing
sequence of closed subsets of X (called a filtration). For any abelian sheaf F on X,
one can build the Cousin complex of F with respect to the filtration Z, denoted by
CousZ(F) [Kem78, p. 357].

The Cousin complex CousZ(F) is a complex of abelian sheaves in positive degree.
The object in degree i is HiZi/Zi+1

(F), where HkZi/Zi+1
(·) is (by [Kem78, Lem. 7.3])

the k-th derived functor of the functor:

ShX(Ab) → ShX(Ab)

G 7→ [U 7→ ΓZi\Zi+1
(U \ Zi+1,G)]

The differential HiZi/Zi+1
(F) → Hi+1

Zi+1/Zi+2
(F) is induced by a certain boundary

map. The Cousin complex has an augmentation F → Cous(F).
We now specialize the discussion: X is a Noetherian scheme and F is a quasi-

coherent sheaf. Then Cous(F) is a complex of quasi-coherent sheaves.
We have the following theorem:

Theorem 3.9.6. Let X be a Noetherian scheme with a filtration Z by closed sub-
schemes that satisfies:

(1) codimX(Zi) ≥ i.
(2) The morphism Zi \ Zi+1 → X is affine for all i.

Let F be a maximal Cohen–Macaulay coherent sheaf on X. Then CousZ(F) is
quasi-isomorphic to F .

Proof. This follows from [Kem78, Thm. 10.9] (by definition a sheaf F is locally
Cohen–Macaulay with respect to a filtration Z if CousZ(F) is a resolution of F ,
see [Kem78, p. 358]). �

Remark 3.9.7. If we further assume that each Zi \Zi+1 is affine, then CousZ(F) is
a complex of acyclic sheaves by [Kem78, Thm. 9.6].

One can sometimes compute the complex CousZ(F) more explicitly. Write
Ui+1 = X \ Zi+1, and write ji+1 : Ui+1 ↪→ X for the inclusion. Under the as-
sumption that Zi \Zi+1 → X is affine, we have by [Kem78, Lem. 8.5(e)] (note that
the spectral sequence there degenerates by [Kem78, Thm. 9.6(c)], as in the proof
of [Kem78, Thm. 9.5]):

(3.9.8) HkZi/Zi+1
(F) = (ji+1)∗R

kΓZi\Zi+1
(F|Ui+1).

In general, for a Noetherian scheme X and a closed subset Z defined by an ideal
sheaf I, we have

RiΓZ(F) = lim−→
n

Exti(OX/In,F)

and these Ext sheaves can be computed by taking projective resolutions of OX/In.
We also remark that in the previous limit, we can replace the ideals In by any
other decreasing sequence of ideals {Jn} with the property that for all n, there is
k and k′ such that Jk′ ⊂ In ⊂ Jk.

Example 3.9.9. We are going to compute these Ext sheaves in a special case. Assume
that we have effective Cartier divisors OX

st→ Lt for 1 ≤ t ≤ i and assume that they
intersect properly, by which we mean that for all n, the “twisted” Koszul complex:
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Kos(sn1 , · · · , sni ) : 0→
⊗
t

L−nt → ⊕t′
⊗
t 6=t′
L−nt → · · · → ⊕tL−nt → OX → 0

is a projective resolution of OX/(L−n1 , · · · ,L−nt ).
We let Z = V (L−1

1 , · · · ,L−1
i ) and let F be a locally free coherent sheaf. We find

that: Extj(OX/(L−n1 , · · · ,L−ni ),F) = 0 unless j = i, and

Exti(OX/(L−n1 , · · · ,L−ni ),F) = Coker(⊕tsnt :
⊗
t′ 6=t

Lnt′ ⊗F → (
⊗
t

Lnt )⊗F).

Taking the direct limit over n gives RiΓZ(F).

3.9.10. The Cousin complex of the Ekedahl–Oort stratification. We now assume
that Kp =

∏
v GSp4(Zp), and let X = XK,Σ and denote by X∗ the minimal com-

pactification. We have a morphism f : X → X∗. We fix an integer n and work over
Xn = X × SpecZ/pnZ and X∗n = X∗ × SpecZ/pnZ, and let Yn denote the interior
of Xn. We consider the filtration Z∗ on X∗n given by taking Z∗i to be the closure of
all Ekedahl–Oort strata of codimension i. Here are some known facts (see [Box15,
Thm. 6.2.3]):

(1) Z∗ is a filtration.
(2) Z∗i \ Z∗i+1 is affine.
(3) Z∗i \Z∗i+1 is a set-theoretic local complete intersection in U∗i+1 = X∗n \Z∗i+1.
We now consider the pull-back Z of Z∗ on Xn. We deduce that:
(1) Z is a filtration.
(2) Zi \ Zi+1 ↪→ Xn is affine.
(3) Zi \Zi+1 is a set-theoretic local complete intersection in Ui+1 = Xn \Zi+1.

Proposition 3.9.11. The cohomology RΓ(Xn, ω
κ(−D)) is computed by

Γ(Xn,CousZ(ωκ(−D))).

Proof. It follows from Theorem 3.9.6 that ωκ(−D) → CousZ(ωκ(−D)) is a quasi-
isomorphism. It suffices to prove that CousZ(ωκ(−D)) is a complex of acyclic
sheaves. By (3.9.8), the sheaf in degree i is equal to (ji+1)∗R

iΓZi\Zi+1
(ωκ(−D)|Ui+1).

This sheaf is supported on Zi\Zi+1. We claim thatRf∗(ji+1)∗R
iΓZi\Zi+1

(ωκ(−D)|Ui+1
)

is concentrated in degree 0. Since f∗(ji+1)∗R
iΓZi\Zi+1

(ωκ(−D)|Ui+1
) is an acyclic

sheaf because it is supported on Z∗i \ Z∗i+1, the proposition will follow from our
claim.

Let us prove the claim. By construction, Zi \ Zi+1 is a finite disjoint union of
Ekedahl–Oort strata and (ji+1)∗R

iΓZi\Zi+1
(ωκ(−D)|Ui+1

) is a finite direct sum in-
dexed by these Ekedahl–Oort strata. Let E be an Ekedahl–Oort stratum appearing
in Zi \Zi+1. It can be written as the intersection of i Cartier divisors in Ui+1, using
the theory of generalized Hasse invariants (one can also assume that these Cartier
divisors are pulled back from X∗n; note that a sufficiently large power of each gen-
eralized Hasse invariant can be lifted to X∗n). Let us denote these Cartier divisors
by OX

st→ It. It follows from Example 3.9.9 that the direct summand of the sheaf
RiΓZi\Zi+1

(ωκ(−D)|Ui+1
) corresponding to E is the inductive limit of the sheaves:

HiHom(Kos(sn1 , · · · , sni ), ωκ(−D)).

The complex Hom(Kos(sn1 , · · · , sni ), ωκ(−D)) is a complex of sheaves acyclic rela-
tively to the minimal compactification, and concentrated in degree i. �
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Lemma 3.9.12. There is an injection of complexes

Γ(Xn,CousZ(ωκ(−D))) ↪→ Γ(Yn,CousZ(ωκ(−D))).

Proof. This follows directly from the description of the objects of the complex
CousZ(ωκ(−D)) given in the course of the preceding proof. �

It remains to prove that our Hecke operators act on Γ(Xn,CousZ(ωκ(−D))) and
Γ(Yn,CousZ(ωκ(−D))). Let g ∈ G(Ap

f ). We consider the correspondence:

XK∩gKg−1

p1

%%

p2

yy

XK XK

and more precisely its reduction modulo pn. We have a cohomological correspon-
dence p∗2ωκ(−D)→ p!

1ω
κ(−D), as defined in §3.9.3.

Lemma 3.9.13. This cohomological correspondence induces a cohomological cor-
respondence of complexes compatible with the augmentation:

p∗2CousZ(ωκ(−D))→ p!
1CousZ(ωκ(−D))

Remark 3.9.14. In the above correspondence, the functors p∗2 and p!
1 are applied

to each object of the complex. Moreover, for each object CousZ(ωκ(−D))i of
CousZ(ωκ(−D)), p!

1CousZ(ωκ(−D))i is a sheaf (i.e it is concentrated in degree 0).

Proof of Lemma 3.9.13. For each index i, we have

CousZ(ωκ(−D))i = (ji+1)∗R
iΓZi\Zi+1

(ωκ(−D)|Ui+1).

We choose (by considering powers of generalized Hasse invariants) an increasing
sequence (Zi \ Zi+1)k of subschemes Ui+1 with support Zi \ Zi+1, which are local
complete intersections, and are cofinal among all subschemes of Ui+1 with support
Zi \ Zi+1.

We have RiΓZi\Zi+1
(ωκ(−D)|Ui+1

) = lim−→k
Exti(O(Zi\Zi+1)k , ω

κ(−D)|Ui+1
). Also

recall that Ext(O(Zi\Zi+1)k , ω
κ(−D)|Ui+1) = Exti(O(Zi\Zi+1)k , ω

κ(−D)|Ui+1)[−i].
We have

p!
1(Ext(O(Zi\Zi+1)k , ω

κ(−D)|Ui+1
) = Ext(p∗1O(Zi\Zi+1)k , p

!
1ω

κ(−D)|Ui+1
)

by [Har66, Prop. III.8.8]. One checks that p∗1O(Zi\Zi+1)k = Lp∗1O(Zi\Zi+1)k because
the pull back of a local regular sequence defining (Zi\Zi+1)k is again a local regular
sequence; we will not comment on the vanishing of higher pullbacks in the rest of
this argument. We deduce that

p!
1(Exti(O(Zi\Zi+1)k , ω

κ(−D)|Ui+1) = Exti(p∗1O(Zi\Zi+1)k , p
!
1ω

κ(−D)|Ui+1).

On the other hand there is by adjunction a map:

p∗2Exti(O(Zi\Zi+1)k , ω
κ(−D)|Ui+1)→ Exti(p∗2O(Zi\Zi+1)k , p

∗
2ω

κ(−D)|Ui+1
).

Since the Ekedahl–Oort stratification is invariant under prime to p isogenies, we
deduce that p−1

2 (Zi \ Zi+1) = p−1
1 (Zi \ Zi+1). Therefore, for each k, for all large

enough t, there is a natural map p∗1O(Zi\Zi+1)t → p∗2O(Zi\Zi+1)k .
We therefore get a map:

p∗2Exti(O(Zi\Zi+1)k , ω
κ(−D)|Ui+1

)→ Exti(p∗2O(Zi\Zi+1)k , p
∗
2ω

κ(−D)|Ui+1
)
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→ Exti(p∗1O(Zi\Zi+1)t , p
!
1ω

κ(−D)|Ui+1
) = p!

1(Exti(O(Zi\Zi+1)t , ω
κ(−D)|Ui+1

).

Passing to the inductive limit over k and t yields the cohomological correspon-
dence:

p∗2RiΓZi\Zi+1
(ωκ(−D)|Ui+1

)→ p!
1RiΓZi\Zi+1

(ωκ(−D)|Ui+1
).

Moreover this construction is canonical and is compatible with all differentials
in the Cousin complex and with the augmentation. �

Proposition 3.9.15. The Hecke algebra Hp acts on RΓ(XG1 , ωκ(−D)) and also
on RΓ(XG1 , ωκ).

Proof. By Serre duality, it suffices to treat the case of RΓ(XG1 , ωκ(−D)). The
cohomology RΓ(X,ωκ(−D)) is represented by

lim←−
n

Γ(Xn,CousZ(ωκ(−D)))

and this complex injects into

lim←−
n

Γ(Yn,CousZ(ωκ(−D))).

The double class 1KpgKp acts everywhere. We can restrict to the “G1” direct factor
(the Ekedahl–Oort stratification is preserved by the action of (OF )×,+(p) ) and the
compatibility with the product in the Hecke algebra is known on

lim←−
n

Γ(Y G1
n ,CousZ(ωκ(−D))).

Therefore it holds everywhere. �

Remark 3.9.16. It follows by an identical argument to the proof of Proposition 3.9.15
that if Kp

1 , K
p
2 , K

p
3 are three choices of tame level, and Σ1, Σ2, Σ3 are suitable

choices of polyhedral cone decompositions, then the composite of the Hecke opera-
tors

[Kp
1g1K

p
2 ] : RΓ(XG1

Kp
2Kp,Σ2

, ωκ)→ RΓ(XG1

Kp
1Kp,Σ1

, ωκ)

and
[Kp

2g2K
p
3 ] : RΓ(XG1

Kp
3Kp,Σ3

, ωκ)→ RΓ(XG1

Kp
2Kp,Σ2

, ωκ)

is the Hecke operator

[Kp
1g1K

p
2 ][Kp

2g2K
p
3 ] : RΓ(XG1

Kp
3Kp,Σ3

, ωκ)→ RΓ(XG1

Kp
1Kp,Σ1

, ωκ).

3.9.17. Hecke operators at p: Siegel type operator. We assume here thatK = KpKp

and Kp = G1(Zp). Let us fix a place w above p. We are going to define an
action of a Hecke operator Tw,1 on RΓ(XK,Σ, ω

κ), RΓ(XG1

K,Σ, ω
κ), and their cuspidal

versions. The action on RΓ(XK,Σ, ω
κ) and RΓ(XK,Σ, ω

κ(−D)) is not canonical, and
depends on the choice of xw made in §3.6.3, but the action on RΓ(XG1

K,Σ, ω
κ) and

RΓ(XG1

K,Σ, ω
κ(−D)) is canonical.

Set K ′ = KpK ′p where K ′p =
∏
v 6=w GSp4(OFv ) × Si(w). In §3.6.7 we defined

maps p1, p2 : XK′ → XK giving a Hecke correspondence:

XK′

p1

""

p2

||

XK XK

The key geometric properties of this correspondence are (see Proposition 3.4.1):
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(1) XK′ and XK are relative complete intersections over SpecZp, and are pure
of the same dimension,

(2) XK is smooth over SpecZp,
(3) XK′ is smooth over SpecZp up to codimension 2 and normal.

In particular, we are in the lci situation in the sense of §3.8.11, so we have an invert-
ible dualizing sheaf p!

1OXK and a fundamental class p∗1OXK → p!
1OXK . Moreover,

for all weights κ = (kv, lv) with lv ≥ 0, we have a natural map p∗2ω
κ → p∗1ω

κ

provided by the differential of the isogeny p∗1G → p∗2G on XK′ .
Composing these maps, we obtain a cohomological correspondence Θ : p∗2ω

κ →
p!

1ω
κ.

Lemma 3.9.18. When lw ≥ 2, this map is divisible by p3.

Proof. We need to prove that Θ factors through p3p!
1ω

κ. As XK′ is normal and the
source and target are locally free sheaves, it is enough to establish this factorization
in codimension one. As this factorization is furthermore trivial over the generic fibre
of XK′ , it is enough to prove it over the completed local rings of the generic points
of the special fibre of XK′ .

There are three types of generic points in the special fibre classified by the
multiplicative rank r = 0, 1 or 2 of the isogeny p∗1G → p∗2G. In each case one calcu-
lates separately the p-divisibility of the map p∗2ωκ → p∗1ω

κ and of the fundamental
class as in the proof of [Pil20, Lem. 7.1.1]. One finds that the fundamental class
p∗1OXK → p!

1OXK is divisible by p3 when r = 0, p when r = 1, and p0 when r = 2,
and the map p∗2ω

κ → p∗1ω
κ is divisible by p0 when r = 0, plw when r = 1, and

pkw+lw when r = 2. The result follows as 3, lw + 1, kw + lw ≥ 3. �

We can thus consider the normalized cohomological correspondence Tw,1 : p−3Θ :
p∗2ω

κ → p!
1ω

κ, and we obtain a Hecke operator:

Tw,1 : RΓ(XK , ω
κ)→ RΓ(XK′ , p

∗
2ω

κ)
p−3Θ→ RΓ(XK′ , p

!
1ω

κ)
Tr→ RΓ(XK , ω

κ).

A similar definition applies to cuspidal cohomology and works over XG1

K .

Remark 3.9.19. One readily checks that the Hecke correspondence used to define
Tw,1 corresponds to the double coset [GSp4(OFw) diag(1, 1, p−1, p−1) GSp4(OFw)]
(see [FP21, Rem. 5.6] for instance) which differs by an element of the centre from
the spherical Hecke operator considered in §2.4.7. We justify this discrepancy as
follows: when doing geometry and working with the moduli interpretation, we
prefer to use this Hecke operator, while when doing local representation theory and
considering Galois representations, we prefer to use the Hecke operators considered
in §2.4. In this paper we will systematically work on spaces with fixed central
character so that the (normalized) action of these two Hecke operators are the
same. The same remark will apply to all the Hecke operators at p considered in
this paper. We hope this will not cause any confusion.

3.9.20. Hecke operators at p: Klingen type operator. We again assume that K =
KpKp and Kp = G1(Zp). Let us fix a place w above p. We are going to define
an action of a Hecke operator Tw on RΓ(XK,Σ, ω

κ), RΓ(XG1

K,Σ, ω
κ) and their cus-

pidal versions. As before, the action on RΓ(XK,Σ, ω
κ) and RΓ(XK,Σ, ω

κ(−D)) is
not canonical and depends on the choice of xw made in §3.6.3, but the action on
RΓ(XG1

K,Σ, ω
κ) and RΓ(XG1

K,Σ, ω
κ(−D)) is canonical.
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Remark 3.9.21. The Hecke operator that we define in this section does not corre-
spond to the double coset operator [GSp4(OFw) diag(1, p−1, p−1, p−2) GSp4(OFw)]
but rather some variant of it that we call Tw. The formula for Tw in terms of double
cosets is

Tw = [GSp4(OFw) diag(1, p−1, p−1, p−1)Par(w)][Par(w) diag(1, 1, 1, p−1) GSp4(OFw)]

= p[GSp4(OFw) diag(1, p−1, p−1, p−2) GSp4(OFw)]

+ (1 + p+ p2 + p3)p−2[GSp4(OFw) diag(p−1, p−1, p−1, p−1) GSp4(OFw)].

Set K ′ = KpK ′p where K ′p =
∏
v 6=w GSp4(OFv )×Kli(w) and K ′′ = KpK ′′p where

K ′′p =
∏
v 6=w GSp4(OFv )×Par(w). In §3.6.3, we defined morphisms p1 : XK′ → XK ,

p2 : XK′ → XK′′ giving a Hecke correspondence:

XK′

p1

""

p2

{{

XK′′ XK

The key geometric properties are again (see Proposition 3.4.1):
(1) XK′ , XK′′ and XK are relative complete intersections over SpecZp of the

same (pure) dimension,
(2) XK is smooth over SpecZp,
(3) XK′ and XK′′ are smooth over SpecZp up to codimension 2 and normal.

We are again in the lci situation, so we have invertible dualizing sheaves p!
1OXK

and p!
2OXK′′ and fundamental classes p∗1OXK → p!

1OXK and p∗2OXK′′ → p!
2OXK′′ .

For all weights κ = (kv, lv) with lv ≥ 0, we have natural maps p∗2ωκ → p∗1ω
κ

provided by the differential of the isogeny p∗1G → p∗2G on XK′ , and p∗1ωκ → p∗2ω
κ

provided by the differential of the isogeny p∗2G → p∗1G. We therefore obtain two
cohomological correspondences Θ1 : p∗2ω

κ → p!
1ω

κ and Θ2 : p∗1ω
κ → p!

2ω
κ.

Lemma 3.9.22. When lw ≥ 2, the map Θ1 is divisible by p2+lw and the map Θ2

is divisible by p.

Proof. This can be proved in exactly the same way as Lemma 3.9.18, by an explicit
check over the completed local rings of generic points of the special fibre of XK′ .
The details may be found in the proofs of [Pil20, Lem. 7.1.1, 7.1.2]. �

We can therefore consider the normalized fundamental classes T ′w = p−2−lwΘ1 :
p∗2ω

κ → p!
1ω

κ and T ′′w = p−1Θ2 : p∗1ω
κ → p!

2ω
κ, and we obtain Hecke operators:

T ′w : RΓ(XK′′ , ω
κ)→ RΓ(XK , ω

κ)

and

T ′′w : RΓ(XK , ω
κ)→ RΓ(XK′′ , ω

κ).

We set Tw := T ′w ◦ T ′′w. Similar definitions apply to cuspidal cohomology and work
over XG1

K .

Remark 3.9.23. Just as the complexes that we are considering are independent
of the choice of compactification by Lemma 3.8.2, so too are the actions of Tw,1
and Tw on them. See [Pil20, Prop. 7.2.1] for the case of Tw; the argument for Tw,1
is similar, but easier, and is left to the interested reader.
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3.10. Cohomology and automorphic representations. Let K =
∏
vKv ⊂

GSp4(A∞F ) = G1(A∞Q ) be an open compact subgroup, let S ⊃ Sp be a finite set of
places such that Kv = GSp4(OFv ) for v /∈ S, and let

T̃ =
⊗
v 6∈S

O[GSp4(Fv)//GSp4(OFv )]

be the ring of spherical Hecke operators away from S. We say that a maximal ideal
m ⊂ T̃ is non-Eisenstein if the residue field T̃/m is a finite extension of Fp, and
for (any) inclusion T̃/m→ Fp there exists an irreducible representation ρ : GF →
GSp4(Fp) with the property that, for each v /∈ S, we have det(X − ρ(Frobv))

≡ X4 − Tv,1X3 + (qvTv,2 + (q3
v + qv)Tv,0)X2 − q3

vTv,0Tv,1X + q6
vT

2
v,0 (mod m).

(cf. (2.4.8)).
Our main aim in this section is to prove the following result.

Theorem 3.10.1. Let κ = (kv, lv)v|∞ with kv ≥ lv ≥ 2 and kv ≡ lv (mod 2) be a
weight and let m be non-Eisenstein.

(1) For i = 0, 1, there is an E[GSp4(A∞F )//K]-equivariant inclusion

(3.10.2)
⊕
π

(π∞)Km ⊗ E ⊆ Hi(XG1

K , ωκ(−D))
|·|2
m ⊗ E

where, on the right hand side, the superscript | · |2 indicates the space on
which the diamond operators at places v 6∈ S act via |·|2; and on the left hand
side, π runs over the cuspidal automorphic representations of GSp4(AF )
with weight κ and central character | · |2 such that
• πv is holomorphic for those v|∞ for which lv > 2, and
• #{v|∞ | πv is not holomorphic} = i.

(2) There is an absolute constant R such that if for each v|∞
• kv − lv > R, and
• either lv = 2 or lv > R,

then the inclusion (3.10.2) is an equality.
(3) If i = 0, then (3.10.2) is an equality. In fact, a version of this statement

holds without having to localize at a non-Eisenstein maximal ideal; there is
an E[GSp4(A∞F )//K]-equivariant isomorphism

(3.10.3) H0(XG1

K , ωκ(−D))|·|
2

⊗ E =
⊕
π

(π∞)K

where π runs over the cuspidal automorphic representations of GSp4(AF )
with weight κ and central character |·|2 which are holomorphic at all infinite
places.

Remark 3.10.4. Theorem 3.10.1 is by no means optimal; the same results should
hold for any cohomological degree i, and with a much weaker regularity assumption
on κ in part (2). However, it seems difficult to deduce results in this generality from
the literature, so we have restricted ourselves to this result, for which we only need
to consider the cohomology of the boundary in degree 0. We explain the proof
below, after proving a corollary and a preparatory lemma.

Theorem 3.10.1 has the following useful corollary.
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Corollary 3.10.5. Suppose that we are in the setting of Theorem 3.10.1 and the
hypothesis on κ in (2) holds. Let l0 denote the number of infinite places v with lv =
2. Then

dimE H
1(XG1

K , ωκ(−D))
|·|2
m ⊗ E = l0 dimE H

0(XG1

K , ωκ(−D))
|·|2
m ⊗ E.

Proof. Since m is non-Eisenstein, the automorphic representations π which con-
tribute to (3.10.2) are all of general type in the sense of [Art04] by Lemma 2.9.1.
There are l0 ways to choose an infinite place v with lv = 2, and we let πv be generic
for this place and holomorphic at the other infinite places. The result then follows
from Theorem 2.9.3. �

Remark 3.10.6. The following lemma is essentially a special case of the much more
general results proved in [HZ01], and can presumably be proved using the techniques
of that paper, but since our Shimura varieties do not satisfy the precise assumptions
needed to cite the results of [HZ01], we have chosen to give a direct proof.

Lemma 3.10.7. Let κ = (kv, lv)v|∞ be a weight, with kv ≥ lv ≥ 2 and kv ≡ lv
(mod 2), and let m be a non-Eisenstein maximal ideal. Let D denote the boundary
of XG1

K . Then H0(D,ωκ)m ⊗ E = 0.

Proof. In the case that F = Q this follows from [Fre83, IV, Satz 4.4], as in the proof
of [Pil20, Cor. 15.2.3.1], so we can and do assume that F 6= Q in what follows. We
let π : XG1

K → X∗,G1

K be the map between toroidal and minimal compactifications.
We let ∂X∗ ⊂ X∗,G1

K be the (reduced) boundary of the minimal compactification,
which we can write as ∂0X

∗∐ ∂1X
∗, where ∂1X

∗ is a union of Hilbert modular
varieties for the group ResF/QGL2, and the complement ∂0X

∗ is a finite union of
points.

Suppose firstly that we are in the case that kv = lv = k for some k inde-
pendent of v. Then ωκ is pulled back from the minimal compactification, and
since π∗(ωκ|D) = ωκ|∂X∗ , we have H0(D,ωκ) = H0(∂X∗, ωκ). (To see that we
have an identification π∗(ωκ|D) = ωκ|∂X∗ , it suffices by the projection formula to
show that π∗(OD) = O∂X∗ . This follows from the facts that π∗OXG1

K
= O

X
∗,G1
K

,
π∗ID = I∂X∗ , and R1π∗ID = 0.)

Suppose now that we are not in the case that kv and lv are equal and inde-
pendent of v. Then it follows from the results of [Lan13], see [BR16, Prop. 1.5.8],
that any element of H0(D,ωκ) vanishes on π−1(∂0X

∗); so the map H0(D,ωκ) →
H0(π−1(∂1X

∗), ωκ) is injective, and it suffices to show that H0(π−1(∂1X
∗), ωκ) is

Eisenstein. Again by [BR16, Prop. 1.5.8] it follows that π∗(ωκ|π−1(∂1X∗)) is zero
if the lv are not all equal, and otherwise is equal to the sheaf ω(kv)v|p (where we
are using the usual labelling of weights for sheaves on Hilbert–Blumenthal modular
schemes).

In either case, we have seen that the space that we are considering either vanishes,
or injects into H0(∂1X

∗, ω(kv)). Now it is convenient to work adelically. Let us fix
W ∈ C with dimF W = 1. Then ∂1X

∗ is as follows (where PW andMW are defined
in §3.5):

P+
W (Q)\H[F :Q]

1 ×G1(A∞)/K

= P+
W (Q)\H[F :Q]

1 × PW (A∞)×PW (A∞) G1(A∞)/K

= M+
W (Q)\H[F :Q]

1 ×MW (A∞)×PW (A∞) G1(A∞)/K.
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We therefore find that

H0(∂1X
∗, π∗ω

(kv)) =
(
Ind

G1(A∞)
PW (A∞)(M)

)K
whereM = limK⊂MW (A∞)H

0(M+
W (Q)\H[F :Q]

1 ×MW (A∞)/K, ω(kv)) from which it
follows that the eigensystems arising from H0(∂1X

∗, ω(kv)) are Eisenstein. Indeed,
since we are assuming that F 6= Q, it follows from Koecher’s principle that the
cohomology groups H0(M+

W (Q)\H[F :Q]
1 ×MW (A∞)/K, ω(kv)) are spaces of Hilbert

modular forms, and thus have associated two-dimensional Galois representations.
More precisely, we have Satake transforms between spherical algebras (say at some
unramified place v):

HG1 → HMW
→ C[X∗(T )]

for which the element [1, 1, $v, $v] is mapped to

[1, $v, 1, $v] + [$v, 1, $v, 1] + [$v, $v, 1, 1] + [1, $v, 1, $v]

= ([1, $v, 1, $v] + [1, $v, 1, $v]) + [$v, 1, 1, $
−1
v ]([1, $v, 1, $v] + [1, $v, 1, $v]).

This expresses the relation between the Hecke operators on G1 and MW , so that if
χ×π is an automorphic representation contributing to M , it will contribute to the
cohomology of G1 via the compatible system of representations ρπ ⊕ (ρπ ⊗ χ). �

Before proving Theorem 3.10.1, we introduce some notation. Let

h : ResC/R(Gm)(R) = C× → GSp4(R)

be the homomorphism sending x+ iy to the matrix(
xI2 yS
−yS xI2

)
.

Let Kh denote the centralizer of h in GSp4(R) (acting by conjugation). Then
since h(i) = J , we see that we may identify Kh = R×U(2), so that U(2) is a
maximal compact subgroup of the identity component of GSp4(R). Let gC =
g0,0⊕g−1,1⊕g1,−1 denote the Hodge structure on g, where g0,0 = kh,C is the complex
Lie algebra of Kh. Let p+ = g−1,1, p− = g1,−1, and Ph = kh,C ⊕ p−. We now
define P− to be the parabolic with Lie algebra Ph with P− ∩GSp4(R) = Kh. We
warn the reader that this parabolic is denoted by Ph in [Har90a], by Q− in [BHR94],
and by Q in [CG18]. (Note, however, that the fundamental object is really the Lie
algebra Ph because P− only intervenes below via its Lie algebra.)

For each place v|∞, we write P−v andKh
v for the corresponding groups for GSp4(Fv) ∼=

GSp4(R). We write Vκv for the representation of Kh
v
∼= R×U(2) such that the

automorphic vector bundle corresponding to Vκ := ⊗v|∞Vκv via Definition 1.3.2
of [BHR94] is identified with ωκ. We set P−∞ :=

∏
v|∞ P−v and Kh

∞ :=
∏
v|∞Kh

v .

Proof of Theorem 3.10.1. We begin by proving (3.10.2). By Lemma 3.10.7 we can
and do replace Hi(XG1

K , ωκ(−D)) by the interior cohomology

H
i
(XG1

K , ωκ) := im
(
Hi(XG1

K , ωκ(−D))→ Hi(XG1

K , ωκ)
)
.

(This is the only place that we use our assumption that i ≤ 1, or the non-Eisenstein
localization.) Let Acusp(G1) ⊂ A(2)(G1) be respectively the space of cuspidal auto-
morphic forms on G1 with central character | · |2, and the space of square integrable
forms with this central character. By [Har90a, Thm. 2.7], we have inclusions
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⊕
π∈Acusp(G1)

(
(π∞)

K ⊗Hi(LieP−∞,K
h
∞;π∞ ⊗ Vκ)

)⊕mcusp(π)

⊆ Hi
(XG1

K , ωκC)|·|
2

and

H
i
(XG1

K , ωκC)|·|
2

⊆
⊕

π∈A(2)(G1)

(
(π∞)

K ⊗Hi(LieP−∞,K
h
∞;π∞ ⊗ Vκ)

)⊕m(2)(π)

where m∗(π) denotes the multiplicity of π in A∗(G1). By Arthur’s multiplicity
formula for GSp4 [Art04, GT19], we in fact have mcusp(π) = m(2)(π) = 1 for all π.

In the proof of [BHR94, Thm. 4.2.3], it is shown that if π ∈ A(2)(G1) with
Hi(LieP−∞,K

h
∞;π∞⊗Vκ) 6= 0 and if the infinitesimal character of π∞ is sufficiently

far away from all the root hyperplanes that it does not lie on, then π∞ is essentially
tempered. In view of the relation between the infinitesimal character of π∞ and
κ arising from the Casselman–Osborne theorem (see [BHR94, Prop. 2.4.5]), the
regularity condition on the infinitesimal character is exactly what we have assumed
on κ in (2). Then by [Wal84, Thm. 4.3], we in fact have π ∈ Acusp(G1), and so the
inclusions above are equalities. In addition, by [Har90a, Thm. 3.5] (a theorem of
Mirković) and [BHR94, Thm. 3.2.1], for each v|∞ we have thatHj(LieP−v ,K

h
v ;πv⊗

Vκv ) = 0 unless either:
• lv > 2, j = 0, and πv is the holomorphic discrete series of weight (kv, lv),

or;
• lv = 2, j = 0, and πv is the holomorphic limit of discrete series of weight (kv, lv),

or;
• lv = 2, j = 1, and πv is the generic limit of discrete series of weight (kv, lv).

Moreover, in each of these cases that Hj(LieP−v ,K
h
v ;πv ⊗ Vκv ) is nonzero, it is

one-dimensional. The first two parts of the theorem then follow from the Künneth
formula.

We now prove (3.10.3). In this case the map from H0(XG1

K , ωκ(−D)) to the
interior cohomology is an isomorphism by definition. Furthermore, by [Har90a,
Prop. 2.7.2], the only π that contribute are automatically cuspidal (without needing
to assume any regularity conditions). It follows from the theory of lowest weight
representations, see for example [PS09, §2.3], that if H0(LieP−v ,K

h
v ;πv⊗Vκv ) 6= 0,

then πv is the holomorphic (limit of) discrete series of weight (kv, lv), as required.
�

4. Hida complexes

In this section, we construct (higher) Hida theories for GSp4(AF ). The classical
Hida theory is developed in [Hid04] and takes the form of a projective module over
the total weight space (which is 2[F : Q]-dimensional). The construction of higher
Hida theory was carried out when F = Q in [Pil20], and takes the shape of a perfect
complex of amplitude [0, 1] over a one dimensional hyperplane of the weight space.

We assume that p splits completely in F and we construct all possible Hida
theories, allowing the weight space at each place above p to be either 1- or 2-
dimensional. Many of our arguments are simply the “product over the places v|p”
of the arguments of [Hid04] and [Pil20]. To keep this paper at a reasonable length,
we will often refer to [Pil20] for the details of arguments which go over directly to
our case.
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The bookkeeping needed to deal with having multiple places above p is con-
siderable, and in the hope of orienting the reader, we begin this section with an
overview of the arguments we will make. The main theorem of this section (and
the only theorem that we will need later in the paper) is Theorem 4.6.1, which
proves the existence of integral Hida complexes, and gives a control theorem for
them in sufficiently high weight. Say that a classical weight κ = (kv, lv)v|p with
kv ≥ lv ≥ 2 is “singular” at v if lv = 2, and “regular” at v if lv > 2. Fix any set I
of places above p; these will be the places at which we interpolate automorphic
forms of singular weight, while at the places in Ic, we interpolate forms of regular
weight. (Thus traditional Hida theory considers the case I = ∅, while the higher
Hida theory of [Pil20] is the case F = Q and I = {p}.)

There is a Hecke operator U I (an analogue of the Up operator for elliptic modular
forms), which acts locally finitely on a complex of p-adic automorphic forms. The
U I -ordinary part MI of this complex is a perfect complex over a weight space ΛI ,
concentrated in degrees [0,#I]. Furthermore, there is a constant C such that
if kv− lv ≥ C and lv = 2 for v ∈ I, and lv ≥ C for v /∈ I, then the H0 of the special-
ization of MI in weight κ agrees with the ordinary part of the degree 0 cohomology
of XG1

K . (We expect that in fact this specialization should be quasi-isomorphic to
the ordinary part of the classical cohomology, but we do not prove this. We do
prove that there is also an injection of H1s from the classical cohomology into that
of MI , which we will make use of in §6.)

The definition of MI is motivated by the traditional case I = ∅ considered
in [Hid04]. In that case one considers the cohomology at infinite Iwahori level
over the ordinary locus, with coefficients in a certain interpolation sheaf which
can be thought of as an interpolation of the highest weight vectors in the finite
dimensional representations of the group GL2/F . Since the ordinary locus is affine
in the minimal compactification, one can prove that there is only cohomology in
degree 0. Then one cuts out the ordinary part using a projector attached to U I
and proves that this defines a finite projective module over the Iwasawa algebra.

For general I, we instead consider the cohomology at infinite Klingen level of
the locus which has p-rank at least 1 at places w ∈ I, and infinite Iwahori level
over the ordinary (that is, p-rank 2) locus at places w ∈ Ic. This locus is no longer
affine and it has cohomology in higher degrees. In fact by relating the cohomology
of the toroidal and minimal compactifications, one can show that the cohomology
is supported in degrees [0,#I].

One of the major difficulties in the proof of Theorem 4.6.1 is to show that the
operator U I acts locally finitely (in order to be able to associate an ordinary pro-
jector) and that the ordinary projection defines a perfect complex. By Nakayama’s
lemma for complexes, one reduces to showing that U I has these properties for the
cohomology modulo p, in some fixed weight. In particular, it suffices to consider
the case of sufficiently large weight, i.e. the case that kv − lv ≥ C and lv = 2
for v ∈ I, and lv ≥ C for v /∈ I, for some constant C. The first part of the argu-
ment is to relate this cohomology with the cohomology of the automorphic vector
bundle of the corresponding weight over the locus XG1,I

K,1 of the special fibre of the
Shimura variety which has p-rank at least 1 at the places w ∈ I, and is ordinary at
places w ∈ Ic. This boils down to a computation at the level of the sheaf ωκ itself,
and to a computation in the Hecke algebra to show that the U I -operator decreases
the Klingen and Iwahori level.
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In the case of Hida theory for 0-dimensional “Shimura varieties” (e.g. p-adic
families of automorphic forms on definite unitary groups, as considered in [Che04,
Ger19]) these arguments at the level of the sheaf and the Hecke algebra are all
that is needed. In the geometric setting, more work is needed to establish the
required finiteness of the ordinary part of the cohomology in characteristic p; recall
that we are considering the cohomology on the locus XG1,I

K,1 , so the cohomology
groups are infinite dimensional before taking the ordinary parts. One has to show
that (in sufficiently large weight, in characteristic p) ordinary cohomology classes
on this locus extend to the whole Shimura variety (which is proper and has finite
cohomology).

In order to do this, one shows that (again, in sufficiently regular weight, in
characteristic p) the Hecke operator U I acts by zero on the complement of XG1,I

K,1 ,
so that after passing to ordinary parts, the cohomology agrees with that of the full
Shimura variety, and is in particular finite-dimensional.

The vanishing of the Hecke operators on the part of the Shimura variety which is
either of p-rank 0 (if w ∈ I) or is non-ordinary is accomplished by local calculations,
using the definitions of the Hecke operators as cohomological correspondences. The
case of w ∈ Ic is relatively straightforward, as we are able to use the Hecke opera-
tor Tw,1 to prove this vanishing. (Note though that in this case we need to use the
operator Uw,2, which is the operator at Klingen level corresponding to Tw, in the
part of the argument explained above which takes place at the level of the sheaf.)
The case w ∈ I is much more delicate, as we need to use the operator Tw, which
is significantly harder to control. (In this case, though, we use the same Hecke
operators in the argument at the level of the sheaf as we do for the geometric part
of the argument.)

The arguments below are in fact written in roughly the reverse order of the
explanation above. We begin in §4.1 by recalling some standard results on Hasse
invariants and the p-rank stratification, before proving the vanishing of the Hecke
operators in small p-rank at spherical level in §4.2. In §4.3 and 4.4 we introduce
the Igusa tower over the Shimura variety at Klingen and Iwahori level, and define
the interpolation sheaves whose cohomology we use to define MI . We then define
the Hecke operator U I in §4.5, and in §4.6 we prove Theorem 4.6.1, by relating the
ordinary parts of the cohomology at spherical and Klingen level, and then carrying
out the argument sketched above.

4.1. Mod p-geometry: Hasse invariants and stratifications. In this section,
we introduce the p-rank stratification on our Siegel variety and the definition of sev-
eral Hasse invariants attached to this stratification. The discussion follows [Pil20,
§6.3, 6.4].

4.1.1. Over X. We assume that K = KpKp, Kp =
∏
v|pKv with

Kv ∈ {GSp4(OFv ),Par(v)}.

We fix a polyhedral cone decomposition Σ, and write X = XK,Σ if the context is
clear. We let G = A[p∞] be the p-divisible group corresponding to the semi-abelian
scheme A defined over X (well defined up to prime-to-p quasi-isogeny). This p-
divisible group decomposes as G =

∏
v|p Gv. If Kv = GSp4(OFv ), the p-divisible

group Gv defined over X carries a principal quasi-polarization. If Kv = Par(v) then
the p-divisible group Gv carries a quasi-polarization of degree p2: Gv → GDv . Let
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X1 be the reduction of X modulo p. Then we let

Ha(Gv) ∈ H0(X1,detωp−1
G,v )

be the Hasse invariant corresponding to Gv; it is compatible with étale isogenies
(by construction) and also with duality.

For any place v|p, we let X≥v2
1 = X=v2

1 be the open subscheme defined by
Ha(Gv) 6= 0. This is the ordinary locus at v. We let X≤v1

1 be its complement
defined by Ha(Gv) = 0. This is the non-ordinary locus at v. It carries the reduced
schematic structure by the proof of [Pil20, Lem. 6.4.1]. (Whenever we use notation
of the form X≥v2

1 , X≤v1
1 etc., the superscript is referring to the multiplicative rank

of the group scheme Gv.)
As a very special case of the general constructions of [Box15, GK19], there is a

secondary Hasse invariant

Ha′(Gv) ∈ H0(X≤v1
1 ,detωp

2−1
G,v )

(see also [Pil20, §6.3.2] whenK = Par(v)). Its non-vanishing locus isX=v1
1 , the rank

1 locus at v. We define its schematic complement X=v0
1 , the supersingular locus

at v, by the equation Ha′(Gv) = 0. It carries a non-reduced schematic structure,
see [Pil20, Rem. 6.4.1].

We can intersect the locally closed subschemes we have defined. Consider disjoint
subsets I1, . . . , Ir ⊂ {v|p}, symbols ∗(i) ∈ {≤,≥,=} for 1 ≤ i ≤ r and numbers
ai ∈ {0, 1, 2} for 1 ≤ i ≤ r. Then we define X∗(i)Iiai, i=1,··· ,r

1 as the intersection of
the spaces X∗(i)vai1 for all 1 ≤ i ≤ r and v ∈ Ii. It will be convenient to denote by
X≥2

1 = X
≥{v|p}2
1 the ordinary locus and by X≥1

1 = X
≥{v|p}1
1 the rank 1 locus.

Note that for any disjoint sets I, J,K, the scheme X≤I1,≥J1,≥K2
1 is Cohen–

Macaulay, and indeed is a local complete intersection over SpecFp. To see this,
note that X≤I1,≥J1,≥K2

1 is open in X≤I1
1 , and X≤I1

1 is a complete intersection in X1,
because it is given by the vanishing of the Hasse invariants Ha(Gv) for v ∈ I. Since
X1 itself is local complete intersection by Proposition 3.5.4, the result follows. We
will in particular repeatedly use this fact in order to apply Lemma 3.8.10.

We will also frequently use some well-known results on the density of the ordinary
locus, and on the density of the p-rank 1 locus in the p-rank less than or equal
to 1 locus. We will need these results in slightly greater generality than has been
considered above. To this end, consider disjoint subsets I1, · · · , Ir as above, and
let v|p be a place not contained in I1 ∪ · · · ∪ Ir.

We assume that K = KpKp, Kp =
∏
w|p,w 6=vKw ×Kv, and that

Kv ∈ {GSp4(OFv ),Par(v),Kli(v),Si(v), Iw(v)},

while Kw ∈ {GSp4(OFw),Par(w)} for w 6= v. We can define topological spaces

|X∗(i)IiaiK,1 |, |X∗(i)Iiai,=v2

K,1 |, |X∗(i)Iiai,≤v1

K,1 |, and |X∗(i)Iiai,=v1

K,1 |

using the p-rank stratification as before. The point is that the p-rank is invariant
under isogeny so we can consider the p-rank of any of the Barsotti–Tate groups of
the chain. Note that one could give these spaces a schematic structure by using the
Hasse invariants, but this structure will in general depend on which Barsotti–Tate
group of the chain we use to define the Hasse invariants.
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Our claims about density are then the following: |X∗(i)Iiai,=v2

K,1 | is dense in |X∗(i)IiaiK,1 |,
while if we further assume that Kv ∈ {GSp4(OFv ),Par(v),Kli(v)}, |X∗(i)Iiai,=v1

K,1 |
is dense in |X∗(i)Iiai,≤v1

K,1 |. To see this, it suffices to prove the first statement in
the case Kv = Iw(v), and the second statement in the case Kv = Kli(v). It then
suffices to prove the corresponding statements for the corresponding local mod-
els, which follows easily from an explicit calculation. Indeed, the first statement is
already proved in [dJ93], while the second follows from an analysis of the Kottwitz–
Rapoport stratification at Iwahori level, and its image at Klingen level; see [Yu11,
Thm. 4.2] for a precise statement.

4.1.2. Over XG1 . The p-rank stratification is independent of the polarization and
therefore all of the spaces we have defined in this section carry an induced action of
(OF )×,+(p) . It follows that the stratification descends to a stratification on XG1

1 . We
moreover observe that the sheaf detωp−1

G,v can be canonically descended to a sheaf
detωp−1

G,v on XG1
1 (see Remark 3.7.3). It follows that the Hasse invariants Ha(Gv)

and Ha′(Gv) (whose definition is independent of the polarization) also descend to
sections of this sheaf over XG1

1 and XG1,≤v1
1 respectively.

Therefore, if we consider disjoint subsets I1, · · · , Ir ⊂ {v|p}, symbols ∗(i) ∈ {≤
,≥,=} for 1 ≤ i ≤ r and numbers ai ∈ {0, 1, 2} for 1 ≤ i ≤ r, there is a unique
locally closed subscheme (XG1

K,1)∗(i)Iiai, i=1,··· ,r ofXG1

K,1 whose inverse image inXK,1

is (XK,1)∗(i)Iiai, i=1,··· ,r.

Remark 4.1.3. In §4.3.4 below we will define some other locally closed subschemes
of the special fibres of the spaces XK,1 at Klingen and Iwahori level, which will be
important in the rest of the paper. We caution the reader that these will not be
defined in terms of the p-ranks of the Gv[p], but will rather depend on subschemes
of Gv[p] given by the Klingen and Iwahori level structures.

4.2. Vanishing theorem for ordinary cohomology. We assume that Kp =
G1(Zp). Let κ = (kv, lv)v|p be a weight (recall from §3.7.2 that we are assuming
that it satisfies the parity condition kv − lv = 0 mod 2). Let Sp := {v|p} = I

∐
Ic

be a partition. We write XI
1 := X≥I1,≥Ic2

1 ↪→ X1, an open subscheme, and similarly
XG1,I

1 ↪→ XG1
1 . The main theorem of this subsection is:

Theorem 4.2.1. Let T I =
∏
w∈I Tw

∏
w∈Ic Tw,1. There is a universal constant C

depending only on p and F but not on the tame level Kp such that if lw ≥ 2 for all w,
kw−lw ≥ C for all w ∈ I, and lw ≥ C for all w ∈ Ic, then RΓ(XG1,I

1 , ωκ(−D))carries
a locally finite action of T I . Furthermore, under this assumption on κ,

(1) e(T I)RΓ(XG1,I
1 , ωκ(−D)) is a perfect complex of amplitude [0,#I].

(2) The map e(T I)H0(XG1
1 , ωκ(−D)) → e(T I)H0(XG1,I

1 , ωκ(−D)) is an iso-
morphism.

(3) The map e(T I)H1(XG1
1 , ωκ(−D))→ e(T I)H1(XG1,I

1 , ωκ(−D)) is injective.
(4) If furthermore lw ≥ 3 for all w ∈ I, then

e(T I)RΓ(XG1
1 , ωκ(−D))→ e(T I)RΓ(XG1,I

1 , ωκ(−D))

is a quasi-isomorphism.
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Here e(T I) is the ordinary projector associated to the operator T I (see §2.11).
We remark that (2), (3), (4) of the theorem hold true for non-cuspidal cohomology
as well.

Remark 4.2.2. Various improvements on Theorem 4.2.1 should be possible. For
example, the reader will see from the proof below that it is possible to prove that
the Hecke operators at each place act locally finitely (rather than just proving
it for their product), provided they satisfy explicit mild bounds on the weights
(rather than depending on the indeterminate constant C); see Remark 4.2.34 for
one approach to this. It may also be possible to give explicit values of C. For the
purposes of this paper the statement of Theorem 4.2.1 suffices, and is well-adapted
to a (somewhat involved) inductive proof working one place at a time.

We now briefly explain the main idea of the proof. We will often work at the
level of X1 rather than XG1

1 . It is easier to work on X1 because of the moduli
interpretation. One can always deduce results for the cohomology on XG1

1 from
results on the cohomology for X1 by Proposition 3.8.3. We nevertheless warn
the reader that X1 has infinitely many connected components and therefore one
cannot expect any finiteness results for the cohomology over X1; accordingly, we
work over XG1

1 when we want to show that a Hecke operator acts locally finitely.
The basic principle underlying these arguments is that the ordinary projectors

e(Tw,1), e(Tw) can be used to kill many cohomology classes. This idea is already
used in [Pil20, §7, §8] (this is what we call Klingen vanishing below, because the
Hecke operator Tw is associated with the Klingen parabolic) and of course also in
[Hid04] (this is what we call Siegel vanishing, because the Hecke operator Tw,1 is
associated with the Siegel parabolic).

We will typically not comment on the commutativity of the actions of Hecke
operators at one place with multiplication by Hasse invariants at other places,
which is easily checked.

4.2.3. Vanishing theorems: Siegel vanishing. Let K = KpKp be a reasonable level
at p. We assume that Kp = G1(Zp). We let X = XK,Σ and XG1 = XG1

K,Σ. Let
κ = (kv, lv)v|p be a weight. We begin with the following theorem.

Theorem 4.2.4. There is a universal constant C depending only on p and F but
not on the tame level Kp such that if J ⊆ Sp, and for each w ∈ J , we have lw ≥ C,
then RΓ(XG1,≥J2

1 , ωκ) has a locally finite action of T J :=
∏
w∈J Tw,1, and

e(T J)RΓ(XG1
1 , ωκ)→ e(T J)RΓ(XG1,≥J2

1 , ωκ)

is a quasi-isomorphism. In particular e(T J)RΓ(XG1,≥J2
1 , ωκ) is a perfect complex.

The analogous statements also hold for cuspidal cohomology.

Remark 4.2.5. In fact Theorem 4.2.4 is not quite strong enough for our purposes;
we will later replace it with Theorem 4.2.13, which is proved in exactly the same
way. Our justification for presenting the material in this way is that the proof of
Theorem 4.2.4 is a good warmup for the arguments that we will later make to prove
“Klingen vanishing”, and it seems simplest to make these arguments before consid-
ering the Klingen level Hecke operators and the much more complicated statements
and arguments that we make in that context.

We only give the proof in the non-cuspidal case. The arguments go through un-
changed in the cuspidal setting. The proof of Theorem 4.2.4 is by induction on #J
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(the case J = ∅ being vacuous), and depends on several lemmas. In our inductive
argument we will feel free to increase the constant C in a manner depending only
on J without comment. Write J = J ′ ∪{w}, and assume that Theorem 4.2.4 holds
for J ′.

Recall from §3.9.17 that the correspondence underlying the operator Tw,1 is
XK′ with K ′ = KpK ′p and K ′p =

∏
v 6=wKv × Si(w). We let (XK′)1 denote the

special fibre of this correspondence. Let κ = (kv, lv)v|p be a weight such that
lw ≥ 2, so that we have a cohomological correspondence Tw,1 : p∗2ω

κ → p!
1ω

κ.
By reduction modulo p, it follows from Lemma 3.8.10 (and the flatness of XK′

and XK over Zp) that we get a cohomological correspondence still denoted Tw,1 :
p∗2(ωκ|X1) → p!

1(ωκ|X1). This cohomological correspondence is a map of locally
free sheaves over (XK′)1. As in §3.8.13, this correspondence pulls back to the open
subscheme XG1,≥J′2

1 .
Adopting the notation of §4.1 we consider the dense open subscheme X≥J2

K′,1 =

(X
≥J′2
K′,1 )=w2 of X≥J′2K′,1 , which is by definition the ordinary locus at w (that is, the lo-

cus for which Gw is ordinary). This scheme is the union of several types of connected
components. Let p∗1Gw → p∗2Gw be the universal map on the p-divisible group. We
let (X

≥J′2
K′,1 )=w2,et be the étale components (that is, those for which the kernel of this

isogeny doesn’t contain a multiplicative group), and we let (X
≥J′2
K′,1 )=w2,net be the

other components. We can therefore decompose the cohomological correspondence
Tw,1 over (X

≥J′2
K′,1 )=w2 into Tw,1 = T etw,1 + Tnetw,1 where T etw,1 is the projection of Tw,1

on the étale components and Tnetw,1 is the projection on the other components.

Lemma 4.2.6. The map Tnetw,1 is zero as soon as lw ≥ 3. For all lw ≥ 3 we have a
commutative diagram of maps of sheaves over (X

≥J′2
K′,1 )=w2:

p∗2ω
κ

T etw,1
//

p∗2Ha(Gw)

��

p!
1ω

κ

p∗1Ha(Gw)

��

p∗2(ωκ ⊗ detωp−1
Gw )

T etw,1
// p!

1(ωκ ⊗ detωp−1
Gw )

Proof. The first point follows from an inspection of the proof of Lemma 3.9.18
(since lw + 1, kw + lw > 3). The second point follows from the fact that the Hasse
invariant commutes with étale isogenies. �

Lemma 4.2.7. The following diagram of locally free sheaves on X≥J′2K′,1 is commu-
tative for lw ≥ 3:

p∗2ω
κ

Tw,1
//

p∗2Ha(Gw)

��

p!
1ω

κ

p∗1Ha(Gw)

��

p∗2(ωκ ⊗ detωp−1
Gw )

Tw,1
// p!

1(ωκ ⊗ detωp−1
Gw )

Proof. Since X≥J′2K′,1 is Cohen–Macaulay and all of the sheaves are locally free, it
suffices to prove the commutativity over a dense open subscheme. We may therefore
prove it over (X

≥J′2
K′,1 )=w2, so we are done by Lemma 4.2.6. �
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Lemma 4.2.8. Ha(Gw) is not a zero divisor on X≥J′21 , and p∗2Ha(Gw) is not a zero
divisor on X≥J′2K′,1 .

Proof. Since X≥J′21 and X≥J′2K′,1 are Cohen–Macaulay, this follows from the fact that
the non-ordinary loci have codimension 1. �

In what follows, we warn the reader that while the schemes p−1
i (X

≥J′2,≤w1
1 ) =

X
≥J′2
K′,1 ×pi,X≥J′21

X
≥J′2,≤w1
1 for i = 1, 2 have the same underlying topological spaces,

they have different (non reduced) scheme structures. In particular sheaves like
p∗iω

κ|X≥J′2,≤w1 for i = 1, 2 have different (scheme theoretic) support.

Lemma 4.2.9. For all lw ≥ p+ 2 the cohomological correspondence Tw,1 restricts
to give a cohomological correspondence

Tw,1 : p∗2(ωκ|
X
≥
J′2,≤w1

1

)→ p!
1(ωκ|

X
≥
J′2,≤w1

1

).

Proof. Since the cokernel of

p∗2ω
κ p∗2Ha(Gw)−→ p∗2(ωκ ⊗ detωp−1

Gw )

is p∗2(ωκ ⊗ detωp−1
Gw |X≥J′2,≤w1

1

), and (by Lemmas 3.8.10 and 4.2.8) the cokernel of

p!
1ω

κ p∗1Ha(Gw)−→ p!
1(ωκ ⊗ detωp−1

Gw )

is p!
1(ωκ⊗detωp−1

Gw |X≥J′2,≤w1

1

), it follows from Lemma 4.2.7 that provided that lw ≥
3, Tw,1 restricts to give a cohomological correspondence

p∗2(ωκ ⊗ detωp−1
Gw |X≥J′2,≤w1

1

)→ p!
1(ωκ ⊗ detωp−1

Gw |X≥J′2,≤w1

1

),

as required. �

Lemma 4.2.10. There is a universal constant C which depends only on F and p
(but not on the tame level Kp) such that the map of Lemma 4.2.9

Tw,1 : p∗2(ωκ|
X
≥
J′2,≤w1

1

)→ p!
1(ωκ|

X
≥
J′2,≤w1

1

)

is zero for all lw ≥ C.

Proof. We may and do assume that J ′ = ∅, as the general case follows immediately
from this by restriction to an open. We moreover note that it suffices to find such a
constant C for a single tame level Kp. Indeed, if Kp

1 ⊆ K
p
2 are two choices of tame

level, the natural forgetful map XK′pK
p
1
→ XK′pK

p
2
commutes with p1 and p2, and

is faithfully flat, from which it follows that C works for Kp
1 if and only if it works

for Kp
2 .

Let J be the ideal defining X≤w1
1 in X and let I = p∗1J . We need to prove that

for lw sufficiently large, the cohomological correspondence over XK′ , Tw,1 : p∗2ω
κ →

p!
1ω

κ factors through Tw,1 : p∗2ω
κ → Ip!

1ω
κ.

By definition, we have Tw,1 = p−3Θ(κ), where Θ(κ) is the composite of a map
Θ1(κ) : p∗2ω

κ → p∗1ω
κ and a fundamental class Θ2(κ) : p∗1ωκ → p!

1ω
κ, so in turn we

need to show that Θ(κ) factors through p3Ip!
1ω

κ (of course, we have already shown
that it factors through p3p!

1ω
κ).

Let x be a generic point of V (I) ⊂ XK′ . It corresponds to a Barsotti–Tate
group in characteristic p whose p-rank at w is exactly one. The map p∗2 detωGw →
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p∗1 detωGw is zero over k(x) because the isogeny p∗1Gw → p∗2Gw is not étale at x. Let
I(x) be the ideal defining the Zariski closure x in XK′ . We deduce that the map
Θ1(κ) : p∗2ω

κ → p∗1ω
κ factors through I(x)lwp∗1ω

κ.
It follows that the map Θ(κ) factors through p3p∗1ω

κ
⋂
∩xI(x)lwp∗1ω

κ. By the
Artin–Rees lemma, it factors through p3Ip∗1ωκ for lw larger than a constant C,
as required. (We note that strictly speaking V (I) has infinitely many connected
components, however there are only finitely many orbits for the action of (OF )×,+(p) ,
so there is some constant C which works for all of them.) �

Proof of Theorem 4.2.4. Take C as in Lemma 4.2.10. Recall that we write J = J ′∪
{w}, and we are assuming that the theorem holds for J ′. We begin by showing that
the action of T J on RΓ(X

G1,≥J′2
1 , ωκ) is locally finite. By the inductive hypothesis,

the action of T J
′
on this complex is locally finite, and e(T J

′
)RΓ(X

G1,≥J′2
1 , ωκ)

is perfect, so that in particular the action of T J on e(T J
′
)RΓ(X

G1,≥J′2
1 , ωκ) is

locally finite. It is therefore enough to show that T J acts locally finitely on (1 −
e(T J

′
))RΓ(X

G1,≥J′2
1 , ωκ). Since T J

′
acts locally nilpotently on the complex (1 −

e(T J
′
))RΓ(X

G1,≥J′2
1 , ωκ) by definition, so does T J , so in particular it acts locally

finitely, as required.
Now we consider the exact triangle

RΓ(X
G1,≥J′2
1 , ωκ)→ RΓ(X

G1,≥J′2
1 , ωκ⊗detωp−1

Gw )→ RΓ(X
G1,≥J′2,≤w1
1 , ωκ⊗detωp−1

Gw )
+1→

The operator T J acts everywhere and is zero on RΓ(X
G1,≥J′2,≤w1
1 , ωκ ⊗ detωp−1

Gw )
by Lemma 4.2.10. We therefore deduce that

e(T J)RΓ(X
G1,≥J′2
1 , ωκ) = e(T J)RΓ(X

G1,≥J′2
1 , ωκ ⊗ detωp−1

Gw ).

Since RΓ(XG1,≥J2
1 , ωκ) = lim−→n

RΓ(X
G1,≥J′2
1 , ωκ⊗detω

n(p−1)
Gw ), the theorem follows.

�

4.2.11. Vanishing theorem: Siegel and Klingen vanishing. We now turn to the more
general situation, which involves the study of the Hecke operator Tw. Our analysis
is similar to that of §4.2.3, but it is rather more involved because Tw is defined as the
composite of two correspondences and because we need to study the supersingular
locus at w rather than the non-ordinary locus at w. This subsection is devoted to
the proof of the following theorem, which implies most of Theorem 4.2.1.

Let Ia, Ib, J be pairwise disjoint subsets of Sp. Then we will write

X
Ia,b,J
1 := X

≤Ia1,≥Ib1,≥J2

1 and XG1,Ia,b,J
1 := X

G1,≤Ia1,≥Ib1,≥J2

1 .

Theorem 4.2.12. Let Ia, Ib, J be pairwise disjoint subsets of Sp. Set T Ib,J =∏
w∈Ib Tw

∏
w∈J Tw,1. Then there is a universal constant C depending only on p

and F but not on the tame level Kp such that if kw − lw ≥ C and lw ≥ 2 for all
w ∈ Ib, and lw ≥ C for all w ∈ J , then RΓ(X

G1,Ia,b,J
1 , ωκ) carries a locally finite

action of T Ib,J . Furthermore:

(1) e(T Ib,J)RΓ(X
G1,Ia,b,J
1 , ωκ) is a perfect complex.

(2) The map

e(T Ib,J)H0(X
G1,≤Ia1
1 , ωκ)→ e(T Ib,J)H0(X

G1,Ia,b,J
1 , ωκ)

is an isomorphism.
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(3) The map

e(T Ib,J)H1(X
G1,≤Ia1
1 , ωκ)→ e(T Ib,J)H1(X

G1,Ia,b,J
1 , ωκ)

is injective.
(4) If furthermore lw ≥ 3 for all w ∈ Ib, then

e(T Ib,J)RΓ(X
G1,≤Ia1
1 , ωκ)→ e(T Ib,J)RΓ(X

G1,Ia,b,J
1 , ωκ)

is a quasi-isomorphism.
Moreover, the same results hold for cuspidal cohomology.

We only give the proof in the non-cuspidal setting. The same arguments work
in the cuspidal case. The proof of this result again depends on several lemmas. We
will firstly prove the result in the case Ib = ∅, by induction on #J . We will then
prove the general case by induction on #Ib.

Recall from §3.9.17, that if we set K ′ = KpK ′p with K ′p =
∏
v 6=wKv × Si(w),

there is a cohomological correspondence of Siegel type:

Tw,1 : p∗2(ωκ|XK )→ p!
1(ωκ|XK ).

By reduction modulo p and Lemma 3.8.10, we again get a cohomological corre-
spondence: Tw,1 : p∗2(ωκ|XK,1) → p!

1(ωκ|XK,1). We let XIa,b,J
K′,1 be the pre-image

of XIa,b,J
1 in XK′,1 (via any of the projections, it doesn’t matter). These corre-

spondences may be restricted to XIa,b,J
K′,1 whenever w /∈ Ia by another application

of Lemma 3.8.10, because this correspondence obviously commutes with the Hasse
invariants at places in Ia.

Theorem 4.2.13. There is a universal constant C depending only on p and F but
not on the tame level Kp such that if Ia, J are disjoint, and if lw ≥ C for all w ∈ J ,
then RΓ(X

G1,≤Ia1,≥J2
1 , ωκ) has a locally finite action of T ∅,J :=

∏
w∈J Tw,1, and

e(T ∅,J)RΓ(X
G1,≤Ia1
1 , ωκ)→ e(T ∅,J)RΓ(X

G1,≤Ia1,≥J2
1 , ωκ)

is a quasi-isomorphism. In particular e(T ∅,J)RΓ(X
G1,≤Ia1,≥J2
1 , ωκ) is a perfect

complex.

Proof. The case Ia = ∅ is Theorem 4.2.4, and the theorem at hand may be proved
by an identical inductive argument on #J , once we have proved the base case J = ∅.
But in this case XG1,≤Ia1

1 is proper, so RΓ(X
G1,≤Ia1
1 , ωκ) is a perfect complex, and

we are done. �

We now reintroduce Klingen type correspondences. Let w|p. By §3.9.20 if
we set K ′ = KpK ′p with K ′p =

∏
v 6=wKv × Kli(w), and K ′′ = KpK ′′p with

K ′′p =
∏
v 6=wKv × Par(w), there are cohomological correspondences of Klingen

type: T ′w : p∗2(ωκ|XK′′ ) → p!
1(ωκ|XK ) and T ′′w : p∗1(ωκ|XK ) → p!

2(ωκ|XK′ ) for all
weights κ = (kv, lv) with kw ≥ lw ≥ 2. By reduction modulo p and Lemma 3.8.10,
we again get cohomological correspondences: T ′w : p∗2(ωκ|XK′′,1)→ p!

1(ωκ|XK,1) and
T ′′w : p∗1(ωκ|XK,1) → p!

2(ωκ|XK′′,1). We let XIa,b,J
K′,1 be the pre-image of XIa,b,J

1 in
XK′,1. These correspondences may be restricted to XIa,b,J

K′,1 whenever w /∈ Ia by
another application of Lemma 3.8.10, because they obviously commute with the
Hasse invariants at places in Ia.
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In the rest of this section we prove Theorem 4.2.12 by induction on #Ib. To this
end, choose w ∈ Ib, write I = I ′

∐
{w}, and write I ′a = I ′∩Ia = Ia, and I ′b = I ′∩Ib.

We assume that Theorem 4.2.12 holds (for some value of C, which we fix) for all
smaller values of #Ib (as we may, having proved the case Ib = ∅ in Theorem 4.2.4).

We now consider the scheme (X
I′a,b,J

K′,1 )=w2 (which is again by definition the sub-
scheme where Gw is ordinary), which decomposes into several components. Let
p∗1G → p∗2G be the universal isogeny of degree p3. We denote by (X

I′a,b,J

K′,1 )=w2,et

the “étale” components, namely those where the kernel of the universal isogeny has
multiplicative rank 1 (so it is as étale as possible), and by (X

I′a,b,J

K′,1 )=w2,net the other
components where the kernel has multiplicative rank 2.

This provides a decomposition of the correspondence T ′w = T ′w,et + T ′w,net where
T ′w,et stands for the projection on the “étale” components and T ′w,net for the pro-
jection on the “non-étale” components.

We also have an isogeny p∗2G → p∗1G of degree p and over (X
I′a,b,J

K′,1 )=w2,et this

isogeny has multiplicative kernel, while it is étale over (X
I′a,b,J

K′,1 )=w2,net (observe that
the étale and non-étale components are interchanged when we pass from the isogeny
p∗1G → p∗2G to the isogeny p∗2G → p∗1G). This provides a second decomposition
T ′′w = T ′′w,et + T ′′w,net where T ′′w,et stands for the projection on (X

I′a,b,J

K′,1 )=w2,net and

T ′′w,net for the projection on (X
I′a,b,J

K′,1 )=w2,et.

Lemma 4.2.14. If lw ≥ 2, and kw ≥ 3 then over (X
I′a,b,J

K′,1 )=w2 we have T ′w,net =

T ′′w,net = 0. Moreover, the following diagrams are commutative:

p∗2ω
κ

T ′w,et
//

p∗2Ha(Gw)

��

p!
1ω

κ

p∗1Ha(Gw)

��

p∗2(ωκ ⊗ detωp−1
Gw )

T ′w,et
// p!

1(ωκ ⊗ detωp−1
Gw )

p∗1ω
κ

T ′′w,et
//

p∗1Ha(Gw)

��

p!
2ω

κ

p∗2Ha(Gw)

��

p∗1(ωκ ⊗ detωp−1
Gw )

T ′′w,et
// p!

2(ωκ ⊗ detωp−1
Gw )

Proof. That T ′w,net = T ′′w,net = 0 follows from an inspection of the proof of Lemma
3.9.22; more precisely, by the proofs of [Pil20, Lem. 7.1.1, 7.1.2], T ′w,net is divisible
by pkw−2, and T ′′w,net is divisible by plw−1. The commutativity of the second diagram
follows immediately from the fact that the Hasse invariant commutes with étale
isogenies. The commutativity of the first diagram is slightly more delicate; see
the proof of [Pil20, Prop. 7.4.1.1], which explains how it reduces to [Pil20, Lem.
6.3.4.1]. �

Lemma 4.2.15. The following diagrams of locally free sheaves on X
I′a,b,J

K′,1 are com-
mutative for lw ≥ 2 and kw ≥ 3:
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p∗2ω
κ

T ′w //

p∗2Ha(Gw)

��

p!
1ω

κ

p∗1Ha(Gw)

��

p∗2(ωκ ⊗ detωp−1
Gw )

T ′w // p!
1(ωκ ⊗ detωp−1

Gw )

p∗1ω
κ

T ′′w //

p∗1Ha(Gw)

��

p!
2ω

κ

p∗2Ha(Gw)

��

p∗1(ωκ ⊗ detωp−1
Gw )

T ′′w // p!
2(ωκ ⊗ detωp−1

Gw )

Proof. Since all sheaves are locally free and X
I′a,b,J

K′,1 is Cohen–Macaulay, it is enough

to check the commutativity over the dense open subscheme (X
I′a,b,J

K′,1 )=w2, which is
Lemma 4.2.14. �

Corollary 4.2.16. Assume that for all v ∈ I ′ we have lv ≥ 2 and kv− lv ≥ C, and
that for all v ∈ J we have lv ≥ C. Then the action of T Ib,J on RΓ(X

G1,I
′
a,b,J,=w2

K,1 , ωκ)
is locally finite if lw ≥ 2 and kw ≥ 3.

Proof. We haveH∗(X
G1,I

′
a,b,J,=w2

K,1 , ωκ) = lim−→n
H∗(X

G1,I
′
a,b,J

K,1 , ωκ⊗detω
(p−1)n
Gw ) where

the transition maps (given by multiplication by Ha(Gw)) are T Ib,J -equivariant by
Lemma 4.2.15. By the inductive hypothesis, each e(T I

′
b,J)H∗(X

G1,I
′
a,b,J

K,1 , ωκ ⊗
detω

(p−1)n
Gw ) is finite-dimensional and T Ib,J -stable, while T Ib,J acts locally nilpo-

tently on (1− e(T I′b,J))H∗(X
G1,I

′
a,b,J

K,1 , ωκ ⊗ detω
(p−1)n
Gw ) (because T I

′
b,J does). The

result follows. �

Exactly as in Lemma 4.2.9, for all lw ≥ p+1 = p−1+2 and kw ≥ p+2 = 3+p−1
we obtain cohomological correspondences:

T ′w : p∗2(ωκ|
X
I′
a,b

,J,≤w1

K′′,1

)→ p!
1(ωκ|

X
I′
a,b

,J,≤w1

K,1

)

and
T ′′w : p∗1(ωκ|

X
I′
a,b

,J,≤w1

K,1

)→ p!
2(ωκ|

X
I′
a,b

,J,≤w1

K′′,1

).

We now consider the space (X
I′a,b,J

K′′,1 )=w1 where Gw[p] has p-rank 1. We have a
universal quasi-polarization Gw → GDw over XK′′ . Over the interior of the mod-
uli space, the kernel of the quasi-polarization is a self dual rank p2 group scheme
which is either connected or an extension of a multiplicative by an étale group
scheme. The space (X

I′a,b,J

K′′,1 )=w1 decomposes as the union of connected components

(X
I′a,b,J

K′′,1 )=w1,00 and (X
I′a,b,J

K′′,1 )=w1,m-et for which the kernel of the quasi-polarization
doesn’t contain (respectively contains) a multiplicative group (see [Pil20, Lem.
7.4.2.3]).

We now consider the space (X
I′a,b,J

K′,1 )=w1, which we view here only as a topolog-
ical space (it has multiple natural non-reduced scheme structures defined by the
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vanishing of either p∗1Ha(Gw) or p∗2Ha(Gw)). We have the chain of isogenies p∗1G →
p∗2G → p∗1G where the composite is multiplication by p. We have a decomposition of
(X

I′a,b,J

K′,1 )=w1 as a union of connected components: (X
I′a,b,J

K′,1 )=w1,m, (X
I′a,b,J

K′,1 )=w1,et

and (X
I′a,b,J

K′,1 )=w1,00. Here the open and closed subspace (X
I′a,b,J

K′,1 )=w1,m is the locus
where the kernel of p∗2G → p∗1G is an étale group scheme; the open and closed sub-
space (X

I′a,b,J

K′,1 )=w1,et is the locus where the kernel of p∗2G → p∗1G is a multiplicative

group scheme; and the open and closed subspace (X
I′a,b,J

K′,1 )=w1,00 is the locus where
the kernel of p∗2G → p∗1G is a bi-connected group scheme.

It follows from the definitions (see [Pil20, Lem. 7.4.2.4]) that

(4.2.17) p2((X
I′a,b,J

K′,1 )=w1,00) ⊆ (X
I′a,b,J

K′′,1 )=w1,00

and that at the level of topological spaces,

(4.2.18) p2((X
I′a,b,J

K′,1 )=w1,m ∪ (X
I′a,b,J

K′,1 )=w1,et) ⊆ (X
I′a,b,J

K′′,1 )=w1,m-et.

Over (X
I′a,b,J

K,1 )=w1 and (X
I′a,b,J

K′,1 )=w1 we can decompose the cohomological corre-
spondences T ′w and T ′′w by projecting on the various components (in other words,
composing with the various idempotents associated to each of these connected com-
ponents). This gives us decompositions T ′w = T ′w,m + T ′w,et + T ′w,00 and T ′′w =
T ′′w,m + T ′′w,et + T ′′w,00 obtained by projecting on the multiplicative, étale and bi-
connected components respectively.

Lemma 4.2.19. The following diagrams of sheaves on X
I′a,b,J

K′,1 are commutative
for lw ≥ p+ 1 and kw ≥ 2p+ 3:

p∗2ω
κ|

(X
I′
a,b

,J

K′′,1 )=w1

T ′w,et
//

p∗2Ha′(Gw)

��

p!
1ω

κ|
(X

I′
a,b

,J

K,1 )=w1

p∗1Ha′(Gw)

��

p∗2(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K′′,1 )=w1

T ′w,et
// p!

1(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K,1 )=w1

p∗1ω
κ|

(X
I′
a,b

,J

K,1 )=w1

T ′′w,et
//

p∗1Ha′(Gw)

��

p!
2ω

κ|
(X

I′
a,b

,J

K′′,1 )=w1

p∗2Ha′(Gw)

��

p∗1(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K,1 )=w1

T ′′w,et
// p!

2(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K′′,1 )=w1

Moreover, T ′w,m = T ′w,00 = 0 and T ′′w,m = 0. If lw ≥ p+ 2, then T ′′w,00 = 0.

Proof. See [Pil20, Prop. 7.4.2.1]. �

We recall that by definition we have Tw = T ′w◦T ′′w as operators on the cohomology
overX

I′a,b,J

K . It will also be useful to consider the composition T̃w := T ′′w◦T ′w defining

an operator on the cohomology over X
I′a,b,J

K′′ .
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Lemma 4.2.20. If lw ≥ p+ 1 and kw ≥ 2p+ 3, then we have Tw = T ′w,et ◦ T ′′w,et ∈
End(RΓ(X

I′a,b,J,=w1

K,1 , ωκ)), and

TwHa′(Gw) = Ha′(Gw)Tw ∈ Hom(RΓ(X
I′a,b,J,=w1

K,1 , ωκ),RΓ(X
I′a,b,J,=w1

K,1 , ωκ⊗detω
(p2−1)
Gw )).

Similarly, if kw ≥ 2p+3, then we have T̃w = T ′′w,et◦T ′w,et ∈ End(RΓ(X
I′a,b,J,=w1

K′′,1 , ωκ)),
and

T̃wHa′(Gw) = Ha′(Gw)T̃w ∈ Hom(RΓ(X
I′a,b,J,=w1

K′′,1 , ωκ),RΓ(X
I′a,b,J,=w1

K′′,1 , ωκ⊗detω
(p2−1)
Gw )).

Proof. We give the argument for Tw; the argument for T̃w is essentially the same,
and is left to the reader. From (4.2.17) and (4.2.18) we see that we can write Tw
as the sum of the two operators T ′w,00 ◦ T ′′w,00 and (T ′w,et + T ′w,m) ◦ (T ′′w,et + T ′′w,m).

By Lemma 4.2.19, we have T ′w,m = T ′w,00 = 0 and T ′′w,m = 0, so that Tw =

T ′w,et ◦ T ′′w,et. The commutativity with Ha′(Gw) then follows from the commutative
diagrams in Lemma 4.2.19. �

Corollary 4.2.21. Assume that for all places v ∈ I ′b, we have lv ≥ 2 and kv ≥ C,
and that for all places v ∈ J , we have lv ≥ C. If lw ≥ p + 1 and kw ≥ 2p + 3,
then the action of T Ib,J on RΓ(X

G1,I
′
a,b,J,=w1

K,1 , ωκ) is locally finite. Similarly, if

kw ≥ 2p + 3, then the action of T I
′
b,J T̃w on RΓ(X

G1,I
′
a,b,J,=w1

K′′,1 , ωκ) is also locally
finite.

Proof. Again, we give the proof for T Ib,J , the argument for T̃wT I
′,J being essen-

tially identical. We have H∗(X
G1,I

′
a,b,J,=w1

K,1 , ωκ) = lim−→n
H∗(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ ⊗

detω
n(p2−1)
Gw ). More precisely, for all n ≥ 0, the map H∗(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ ⊗

detω
n(p2−1)
Gw )→ H∗(X

G1,I
′
a,b,J,=w1

K,1 , ωκ) is defined by the composition:

H∗(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗ detω
n(p2−1)
Gw )→ H∗(X

G1,I
′
a,b,J,=w1

K,1 , ωκ ⊗ detω
n(p2−1)
Gw )

Ha′(Gw)−n→ H∗(X
G1,I

′
a,b,J,=w1

K,1 , ωκ).

The vector space H∗(X
G1,I

′
a,b,J,=w1

K,1 , ωκ) is therefore an inductive limit of the
images of the spaces

H∗(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗ detω
n(p2−1)
Gw )

under these maps. The first map is obviously T Ib,J -equivariant, and by Lemma 4.2.20,
the second map is also T Ib,J -equivariant. The result follows from our inductive
hypothesis that Theorem 4.2.12 holds for all smaller values of #Ib, because by

definition we have X
G1,I

′
a,b,J,≤w1

K,1 = X
G1,≤Ia∪{w}1,≥I′b

1,≥J2

K,1 . �

Lemma 4.2.22. The following diagram of sheaves on X
I′a,b,J

K′,1 is commutative for
lw ≥ p+ 1 and kw ≥ 2p+ 3:
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p∗2ω
κ|

(X
I′
a,b

,J

K′′,1 )≤w1

T ′w //

p∗2Ha′(Gw)

��

p!
1ω

κ|
(X

I′
a,b

,J

K,1 )≤w1

p∗1Ha′(Gw)

��

p∗2(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K′′,1 )≤w1

T ′w // p!
1(ωκ ⊗ detωp

2−1
Gw )|

(X
I′
a,b

,J

K,1 )≤w1

If lw ≥ p+ 2 and kw ≥ 2p+ 3, the following diagram is commutative:

p∗1ω
κ|

(X
I′
a,b

,J

K′,1 )≤w1

T ′′w //

p∗1Ha′(Gw)

��

p!
2ω

κ|
(X

I′
a,b

,J

K′′,1 )≤w1

p∗2Ha′(Gw)

��

p∗1(ωκ ⊗ detωp
2−1
Gw )|

(X
I′
a,b

,J

K′,1 )≤w1

T ′′w // p!
2(ωκ ⊗ detωp

2−1
Gw )|

(X
I′
a,b

,J

K′′,1 )≤w1

Proof. It is enough to check the commutativity over a dense open subscheme of the
support of these Cohen–Macaulay sheaves, and this follows from Lemma 4.2.19. �

Since p∗1Ha′(Gw) is not a zero divisor on XK′,1|
(X

I′
a,b

,J

K,1 )≤w1
, it follows exactly as

in the proof of Lemma 4.2.9 that there is for all lw ≥ p2 + p and kw ≥ p2 + 2p+ 2
a cohomological correspondence:

T ′w : p∗2(ωκ|
(X

I′
a,b

,J

K′′,1 )=w0
)→ p!

1(ωκ|
(X

I′
a,b

,J

K,1 )=w0
)

and similarly for all lw ≥ p2 + p + 1 and kw ≥ p2 + 2p + 2 a cohomological corre-
spondence:

T ′′w : p∗1(ωκ|
(X

I′
a,b

,J

K,1 )=w0
)→ p!

2(ωκ|
(X

I′
a,b

,J

K′′,1 )=w0
).

Lemma 4.2.23. There is a universal constant C ′ which depends only on F and p
but not on the tame level such that

T ′w : p∗2(ωκ|
(X

I′
a,b

,J

K′′,1 )=w0
)→ p!

1(ωκ|
(X

I′
a,b

,J

K,1 )=w0
)

is zero for all kw − lw ≥ C ′ and all lw ≥ p2 + p.

Proof. See [Pil20, Prop. 7.4.2.2]. �

We now increase our constant C if necessary, so that C ≥ C ′, where C ′ is as in
Lemma 4.2.23.

Lemma 4.2.24. Assume that for all places v ∈ I ′b, we have lv ≥ 2 and kv− lv ≥ C,
that lv ≥ C for all v ∈ J , and that lw ≥ p + 2 and kw − lw ≥ C. Then the
map e(T Ib,J)RΓ(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ) → e(T Ib,J)RΓ(X
G1,I

′
a,b,J,=w1

K,1 , ωκ) is a quasi-

isomorphism. In particular, e(T Ib,J)RΓ(X
G1,I

′
a,b,J,=w1

K,1 , ωκ) is a perfect complex.
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Proof. Consider the following diagram of exact triangles:

RΓ(X
G1,I

′
a,b,J,≤w1

K′′,1 , ωκ)
T ′w //

Ha′(Gw)
��

RΓ(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)

Ha′(Gw)
��

RΓ(X
G1,I

′
a,b,J,≤w1

K′′,1 , ωκ ⊗ detωp
2−1
Gw )

T ′w //

��

RΓ(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗ detωp
2−1
Gw )

��

RΓ(X
G1,I

′
a,b,J,=w0

K′′,1 , ωκ ⊗ detωp
2−1
Gw )

T ′w // RΓ(X
G1,I

′
a,b,J,=w0

K,1 , ωκ ⊗ detωp
2−1
Gw )

By Lemma 4.2.23, the rightmost operator T ′w acts by zero. We have the or-
dinary projectors e(T Ib,J) on RΓ(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ) and RΓ(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗

detωp
2−1
Gw ), and the ordinary projectors e(T̃wT I

′
b,J) on RΓ(X

G1,I
′
a,b,J,≤w1

K′′,1 , ωκ) and

RΓ(X
G1,I

′
a,b,J,≤w1

K′′,1 , ωκ ⊗ detωp
2−1
Gw ). It follows from the defining properties of the

ordinary projectors that after applying them, the left two vertical arrows T ′w are
quasi-isomorphisms.

By Lemma 4.2.22 the projectors commute with multiplication by Ha′(Gw). It
follows from a short diagram chase that the map

e(T Ib,J)RΓ(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)
Ha′(Gw)→ e(T Ib,J)RΓ(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ ⊗ detωp
2−1
Gw )

is a quasi-isomorphism. The claimed quasi-isomorphism now follows by taking an
inductive limit as in the proof of Corollary 4.2.21. By our inductive hypothesis,
e(T Ib,J)RΓ(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ) is a perfect complex, so we are done. �

Lemma 4.2.25. Assume that for all places v ∈ I, we have lv ≥ 2 and kv− lv ≥ C,
that lv ≥ C for all v ∈ J , and that lw = p + 1. Then the ordinary cohomology
e(T Ib,J)RΓ(X

G1,I
′
a,b,J,=w1

K,1 , ωκ) is a perfect complex, and the map

e(T Ib,J)H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)→ e(T Ib,J)H0(X
G1,I

′
a,b,J,=w1

K,1 , ωκ)

is an isomorphism.

Proof. The map

RΓ(X
G1,I

′
a,b,J,=w1

K,1 , ωκ)
Ha′(Gw)→ RΓ(X

G1,I
′
a,b,J,=w1

K,1 , ωκ ⊗ detωp
2−1
Gw )

is a quasi-isomorphism, which commutes with the projector e(T Ib,J) by Lemma 4.2.20.
It follows from Lemma 4.2.24 that e(T Ib,J)RΓ(X

G1,I
′
a,b,J,=w1

K,1 , ωκ) is perfect.

We now prove the claimed isomorphism on degree 0 cohomology. SinceX
G1,I

′
a,b,J,≤w1

K,1

is Cohen–Macaulay, and X
G1,I

′
a,b,J,=w1

K,1 is an open dense subscheme, we have injec-
tions

H0(X
G1,I

′
a,b,J,≤w1

K,1 ,F) ↪→ H0(X
G1,I

′
a,b,J,=w1

K,1 ,F)

for any locally free sheaf F , so it is enough to prove surjectivity. In order to do
this, it is enough to prove that for all n ≥ 0, the map

H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)
(Ha′(Gw))n→ H0(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ ⊗ detω
n(p2−1)
Gw )



POTENTIAL MODULARITY OF ABELIAN SURFACES 89

(which commutes with e(Tw) by Lemma 4.2.20 and the injectivity of the restric-
tions H0(X

G1,I
′
a,b,J,≤w1

K,1 ,F) ↪→ H0(X
G1,I

′
a,b,J,=w1

K,1 ,F) discussed above) induces a
surjection:

e(T Ib,J)H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)
(Ha′(Gw))n→ e(T Ib,J)H0(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ⊗detω
n(p2−1)
Gw ).

In fact, by Lemma 4.2.24, it suffices to prove the surjectivity for n = 1. We
consider the following diagram:

H0(X
G1,I

′
a,b,J,≤w1

K′′,1 , ωκ)
T ′w //

Ha′(Gw)
��

H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ)

Ha′(Gw)
��

H0(X
G1,I

′
a,b,J,≤w1

K′′,1 , ωκ ⊗ detωp
2−1
Gw )

T ′w //

��

H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗ detωp
2−1
Gw )

��

H0(X
G1,I

′
a,b,J,=w0

K′′,1 , ωκ ⊗ detωp
2−1
Gw )

T ′w // H0(X
G1,I

′
a,b,J,=w0

K,1 , ωκ ⊗ detωp
2−1
Gw )

Let f ∈ e(T Ib,J)H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ⊗detωp
2−1
Gw ). As in the proof of Lemma 4.2.24,

T ′w induces a bijection

e(T̃wT
I′b,J)H0(X

G1,I
′
a,b,J,≤w1

K′′,1 , ωκ⊗detωp
2−1
Gw )→ e(T Ib,J)H0(X

G1,I
′
a,b,J,≤w1

K,1 , ωκ⊗detωp
2−1
Gw ).

In particular, f = T ′wg for some g ∈ H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ ⊗ detωp
2−1
Gw ) and

therefore, since the rightmost operator T ′w acts by zero by Lemma 4.2.23, f has
trivial image in H0(X

G1,I
′
a,b,J,=w0

K,1 , ωκ ⊗ detωp
2−1
Gw ). It follows that f comes from a

class f̃ ∈ H0(X
G1,I

′
a,b,J,≤w1

K,1 , ωκ). Replacing f̃ by e(T Ib,J)f̃ we deduce the required
surjectivity. �

Corollary 4.2.26. Assume that for all places v ∈ Ib, we have lv ≥ 2 and kv− lv ≥
C, and that for all places v ∈ J , we have lv ≥ C. Then T Ib,J acts locally finitely
on RΓ(X

G1,Ia,b,J
1 , ωκ) and e(T Ib,J)RΓ(X

G1,Ia,b,J
1 , ωκ) is a perfect complex.

We have an isomorphism:

e(T Ib,J)H0(X
G1,≤Ia1
1 , ωκ)

∼−→ e(T Ib,J)H0(X
G1,Ia,b,J
1 , ωκ)

and an injection:

e(T Ib,J)H1(X
G1,≤Ia1
1 , ωκ) ↪→ e(T Ib,J)H1(X

G1,Ia,b,J
1 , ωκ).

If furthermore lw ≥ 3, then the map

e(T Ib,J)RΓ(X
G1,I

′
a,b,J

1 , ωκ)→ e(T Ib,J)RΓ(X
G1,Ia,b,J
1 , ωκ)

is a quasi-isomorphism.

Proof. We begin by showing that T Ib,J acts locally finitely on both RΓ(X
G1,I

′
a,b,J,≥w2

1 , ωκ)

and RΓ(X
G1,Ia,b,J
1 , ωκ) = RΓ(X

G1,I
′
a,b,J,≥w1

1 , ωκ). For RΓ(X
G1,I

′
a,b,J,≥w2

1 , ωκ), this
is Corollary 4.2.16.
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Our argument for RΓ(X
G1,I

′
a,b,J,≥w1

1 , ωκ) is slightly more involved. We have an
exact triangle

RΓ(X
G1,I

′
a,b,J,≥w1

1 , ωκ) - RΓ(X
G1,I

′
a,b,J,≥w2

1 , ωκ)

RΓ
X
G1,I

′
a,b

,J,=w1(X
G1,I

′
a,b,J,≥w1

1 , ωκ)[+1],

?

so it is enough to prove that the action of T Ib,J on RΓ
X
G1,I

′
a,b

,J,=w1

1

(X
G1,I

′
a,b,J,≥w1

1 , ωκ)[+1]

is locally finite. We have

(4.2.27)

RΓ
X
G1,I

′
a,b

,J,=w1

1

(X
G1,I

′
a,b,J,≥w1

1 , ωκ)[+1]

RΓ(X
G1,I

′
a,b,J,≥w1

1 , lim−→n
ωκ ⊗ detω

n(p−1)
Gw |V (Ha(Gw)n))

wwwwwww
so it is enough to prove that the action of T Ib,J on each RΓ(X

G1,I
′
a,b,J,≥w1

1 , ωκ ⊗
detω

n(p−1)
Gw |V (Ha(Gw)n)) is locally finite. In the case n = 1, this is Corollary 4.2.21,

and the general case follows by induction by taking the cohomology of the short
exact sequence of sheaves

(4.2.28) 0→ ωκ⊗detω
(n−1)(p−1)
Gw |V (Ha(Gw)n−1)

×Ha(Gw)→ ωκ⊗detω
n(p−1)
Gw |V (Ha(Gw)n)

→ ωκ ⊗ detω
n(p−1)
Gw |V (Ha(Gw)) → 0

Consider now the following diagram of exact triangles:

RΓ(X
G1,I

′
a,b,J

1 , ωκ) //

��

RΓ(X
G1,I

′
a,b,J,≥w1

1 , ωκ)

��

RΓ(X
G1,I

′
a,b,J,≥w2

1 , ωκ) //

��

RΓ(X
G1,I

′
a,b,J,≥w2

1 , ωκ)

��

RΓ
X
G1,I

′
a,b

,J,≤w1

1

(X
G1,I

′
a,b,J

1 , ωκ)[+1] // RΓ
X
G1,I

′
a,b

,J,=w1

1

(X
G1,I

′
a,b,J,≥w1

1 , ωκ)[+1]

We have already seen that T Ib,J acts locally finitely on all but the last term of
the first row, so it acts locally finitely on every term in the diagram. The middle
vertical arrow is the identity map. In order to show that the left vertical arrow is
a quasi-isomorphism after applying e(T Ib,J), it is therefore enough to prove it for
the right vertical arrow. By (4.2.27) and the similar expression

RΓ
X
G1,I

′
a,b

,J,≤w1

1

(X
G1,I

′
a,b,J

1 , ωκ)[+1] = RΓ(X
G1,I

′
a,b,J

1 , lim−→
n

ωκ⊗detω
n(p−1)
Gw |V (Ha(Gw)n)),

it suffices to show that for each n ≥ 1, the map



POTENTIAL MODULARITY OF ABELIAN SURFACES 91

e(T Ib,J)RΓ(XG1
1 , ωκ ⊗ detω

n(p−1)
Gw |V (Ha(Gw)n))

e(T Ib,J)RΓ(X
G1,I

′
a,b,J,≥w1

1 , ωκ ⊗ detω
n(p−1)
Gw |V (Ha(Gw)n))

?

is a quasi-isomorphism. To see this, note that the case n = 1 is Lemma 4.2.24,
and the general case follows by induction on n, by taking the cohomology of the
exact sequence of sheaves (4.2.28). The remaining claims follow from the quasi-
isomorphism just proved and the inductive hypothesis. �

Corollary 4.2.29. Assume that for all places v ∈ I, we have kv − lv ≥ C and
lv ≥ 2, that for all places v ∈ J , we have lv ≥ C. Then the ordinary cohomology

e(T Ib,J)RΓ(X
G1,Ia,b,J
1 , ωκ)

is represented by a perfect complex. Moreover we have an isomorphism:

e(T Ib,J)H0(X
G1,≤Ia1
1 , ωκ)

∼−→ e(T Ib,J)H0(X
G1,Ia,b,J
1 , ωκ)

and an injection:

e(T Ib,J)H1(X
G1,≤Ia1
1 , ωκ) ↪→ e(T Ib,J)H1(X

G1,Ia,b,J
1 , ωκ).

Proof. To see that

e(T Ib,J)RΓ(X
G1,Ia,b,J
1 , ωκ)

is represented by a perfect complex, we consider the exact triangle:

RΓ(X
G1,I

′
a,b,J,≥w1

1 , ωκ)
Ha(Gw)→ RΓ(X

G1,I
′
a,b,J,≥w1

1 , ωκ ⊗ detωp−1
Gw )

→ RΓ(X
G1,I

′
a,b,J,=w1

1 , ωκ ⊗ detωp−1
Gw )

+1→

Applying the projector e(T Ib,J) everywhere (which commutes with the various maps
by Lemma 4.2.15) we deduce this from Corollary 4.2.26 and Lemma 4.2.25. By our
inductive hypothesis, in order to prove the claims about the morphisms

e(T Ib,J)Hi(X
G1,≤Ia1
1 , ωκ)

∼−→ e(T Ib,J)Hi(X
G1,Ia,b,J
1 , ωκ),

it is enough to prove the corresponding statements for the morphisms

e(T Ib,J)Hi(X
G1,I

′
a,b,J

1 , ωκ)→ e(T Ib,J)Hi(X
G1,Ia,b,J
1 , ωκ).

Firstly, the natural restriction map

H0(X
G1,I

′
a,b,J

1 , ωκ)→ H0(X
G1,Ia,b,J
1 , ωκ)

is an isomorphism, because X
G1,I

′
a,b,J

1 is Cohen–Macaulay, and the complement of
X
G1,Ia,b,J
1 is of codimension at least 2. It remains to prove the injectivity of the

map of H1s.
We have a commutative diagram of exact triangles:
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RΓ(X
G1,I

′
a,b,J

1 , ωκ) //

��

RΓ(X
G1,Ia,b,J
1 , ωκ)

��

RΓ(X
G1,I

′
a,b,J

1 , ωκ ⊗ detω
(p−1)
Gw ) //

��

RΓ(X
G1,Ia,b,J
1 , ωκ ⊗ detω

(p−1)
Gw )

��

RΓ(X
G1,I

′
a,b,J,≤w1

1 , ωκ ⊗ detω
(p−1)
Gw ) // RΓ(X

G1,I
′
a,b,J,=w1

1 , ωκ ⊗ detω
(p−1)
Gw )

The injectivity of e(T Ib,J)H1(X
G1,I

′
a,b,J

1 , ωκ)→ e(T Ib,J)H1(X
G1,Ia,b,J
1 , ωκ) there-

fore follows from a short diagram chase, using the quasi-isomorphisms provided by
Corollary 4.2.26 and the isomorphism on H0s of Lemma 4.2.25. �

Proof of Theorem 4.2.12. This is immediate from Corollaries 4.2.26 and 4.2.29. �

4.2.30. A Cousin complex computing RΓ(XG1,I
1 , ωκ(−D)). Our goal in this section

is to provide an explicit Hecke stable complex computing RΓ(XG1,I
1 , ωκ(−D)). This

complex will be used to complete the proof of Theorem 4.2.1, and will also be used
in §4.6 to compare the cohomology at spherical and Klingen levels (by considering
the corresponding complex at Klingen level, and the natural map between these
complexes). This complex is the Cousin complex associated to XG1,I

1 and the
stratification given by the p-rank (see §3.9.5). This section is very similar to §3.9.10
where we introduced the Cousin complex over the full Shimura variety associated
with the Ekedahl–Oort stratification. The case we consider here is, however, much
simpler because we have canonical global equations provided by the partial Hasse
invariants for our stratification. We has thus decided, despite redundancy, to give
a complete and explicit construction of the Cousin complex in this case.

Let S be a smooth scheme over a field k and let L be an invertible sheaf on S. We
assume that L = ⊗di=1Li and that we have non-vanishing sections si ∈ H0(S,Li).
We let Di = V (si), an effective Cartier divisor on S. Set s =

∏d
i=1 si. Set D =

V (s) = ∪iDi. We assume that D = ∪iDi is a strict normal crossing divisor on S.
For all n, consider the following exact complex of coherent sheaves on S:

0→ OS
sn→ Ln →

d⊕
i=1

Ln/sni →
⊕

1≤i<j≤d

Ln/(sni , snj )→ · · · → Ln/(sn1 , · · · , snd )→ 0

This is a complex of length d + 2. For all 0 ≤ k ≤ d, the object placed in degree
k+1 is

⊕
1≤i1<···<ik≤d L

n/(sni1 , · · · , s
n
ik

) (when we write Ln/(sni1 , · · · , s
n
ik

), we mean
Ln/Ln(sni1L

−n
i1
, · · · , snikL

−n
ik

)). The differential⊕
1≤i1<···<ik≤d

Ln/(sni1 , · · · , s
n
ik

)→
⊕

1≤i1<···<ik+1≤d

Ln/(sni1 , · · · , s
n
ik

)

takes a section (fi1,··· ,ik)1≤i1<···<ik≤d to the section

(
∑

(−1)ijfi1,··· ,̂ij ,··· ,ik+1
)1≤i1<···<ik+1≤d

where fi1,··· ,̂ij ,··· ,ik+1
is the class modulo snj of fi1,··· ,̂ij ,··· ,ik+1

.
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The following diagram is commutative:

0 // OS
sn+1
// Ln+1 //

⊕d
i=1 Ln+1/sn+1

i
// · · ·

0 // OS

id

OO

sn // Ln //

s

OO

⊕d
i=1 Ln/sni //

s

OO

· · ·

Passing to the limit over n, we get the following exact complex:

0→ OS → lim−→
n

Ln → lim−→
n

d⊕
i=1

Ln/sni →

lim−→
n

⊕
1≤i<j≤d

Ln/(sni , snj )→ · · · → lim−→
n

Ln/(sn1 , · · · , snd )→ 0

where in all the direct limits, the transition maps are given by multiplication by
powers of s.

Lemma 4.2.31. Let 1 ≤ i1 < · · · < ik ≤ d. Set L′ = ⊗kj=1Lij , s′ =
∏k
j=1 sij ,

D′ = V (s(s′)−1). There is a canonical isomorphism

lim−→
×sn
Ln/(sni1 , · · · , s

n
ik

) ' lim−→
×(s′)n

((L′)n/(sni1 , · · · , s
n
ik

))|S\D′

Proof. Easy and left to the reader. �

Remark 4.2.32. The complex

0→ lim−→
n

Ln → lim−→
n

d⊕
i=1

Ln/sni →

lim−→
n

⊕
1≤i<j≤d

Ln/(sni , snj )→ · · · → lim−→
n

Ln/(sn1 , · · · , snd )→ 0

is just the Cousin complex of OS associated with the stratification given by the
divisors Di.

We now work over S = XG1,I
1 . We take L = ⊗w∈I(detGw)p−1, Lw = (detGw)p−1

and sw = Ha(Gw), and we consider the complex K0 → K1 · · · → Kd obtained by
applying H0 to the complex

lim−→
n

Ln → lim−→
n

d⊕
i=1

Ln/sni → lim−→
n

⊕
1≤i<j≤d

Ln/(sni , snj )→ · · · → lim−→
n

Ln/(sn1 , · · · , snd )

tensored with ωκ(−D). (So in the above notation, the indices i will correspond
to the different places v ∈ I, the si will correspond to Hasse invariants, and the
assumption that the divisor V (s) has strict normal crossings is an easy consequence
of the Serre–Tate theorem and the product structure on the p-divisible group G.)

It follows from Lemma 4.2.31 that Kk equals⊕
J⊂I,#J=k lim−→

×
∏
w∈J Ha(Gw)

H0
(
XG1,I,≥Jc2

1 , ωκ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
.

Proposition 4.2.33. The complex K• computes RΓ(XG1,I
1 , ωκ(−D)).
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Proof. The argument is the same as in the proof of Proposition 3.9.11. It suffices
to show that each of the sheaves

ωκ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))

when restricted to XG1,I,≥Jc2
1 and then pushed forward to XG1,I

1 is acyclic on
XG1,I

1 . Since the inclusion XG1,I,≥Jc2
1 ↪→ XG1,I

1 is affine, it suffices to show that
the restriction of this sheaf toXG1,I,≥Jc2

1 is acyclic. By [Lan17, Thm. 8.6], this sheaf
is acyclic relative to the minimal compactification and its support in the minimal
compactification is the locally closed subscheme given by the set of equations:

• Ha(Gw)n = 0 for w ∈ J ,
• Ha′(Gw) 6= 0 for w ∈ J ,
• Ha(Gw) 6= 0 for w ∈ Jc,

which is affine. �

Remark 4.2.34. Using Proposition 4.2.33, one can show that if we have lw ≥ 2 and
kw ≥ 2p+3 for w ∈ I, and lw ≥ 3 for w ∈ Ic, then the individual Hecke operators Tw
for w ∈ I and Tw,1 for w ∈ Ic act locally finitely on RΓ(XG1,I

1 , ωκ(−D)) (by showing
that they act locally finitely on each term of the complex K•). We leave the details
to the interested reader.

We can finally complete the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Everything is immediate from Theorem 4.2.12 (taking Ia =

∅ and J = Ic), except for the claim that e(T I)RΓ(XG1,I
1 , ωκ(−D)) has amplitude

[0,#I], which follows from Proposition 4.2.33. �

4.2.35. Commutativity over the ordinary locus. While we do not prove the com-
mutativity of the correspondences Tw,1 and Tw, we do prove it over the ordinary
locus at w, where all of the correspondences are finite flat over the interior. We
will need this result at the places w ∈ Ic, because we need to make use of both
of these Hecke operators in this case (because the Hecke operator Uw,2 at Klingen
level which corresponds to Tw is needed for those parts of the control theorem which
take place at the level of the sheaf, but we need to use Tw,1 to prove the finiteness
of cohomology).

Lemma 4.2.36. Suppose that w ∈ Ic, and that lw ≥ 2. Then on RΓ(XG1,I
1 , ωκ(−D))

we have Tw,1 ◦ Tw = Tw ◦ Tw,1.

Proof. We can easily compose cohomological correspondences when the projections
are finite flat. In particular we may form the compositions Tw ◦ Tw,1 and Tw,1 ◦
Tw over the interior, and it is easy to see that the compositions give the same
cohomological correspondence.

In order to check that they commute on RΓ(XG1,I
1 , ωκ(−D)) we use a similar

trick to the one that we used to prove Proposition 3.9.15: recall the complex K•

of Proposition 4.2.33 which computes RΓ(XG1,I
1 , ωκ(−D)). We may form another

complex K ′• by applying the same construction to the interior Y G1,I
1 ⊂ XG1,I

1 . As
we have explained above, the Hecke operators Tw and Tw,1 commute on each term

H0
(
Y G1,I,≥Jc2

1 , ωκ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
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in the definition of K ′•, and hence on the subcomplex K• of K ′• and thus on
RΓ(XG1,I

1 , ωκ(−D)). �

We end this section by proving the following technical result, whose formulation
relies on Lemma 4.2.36. We will make use of it in §4.6, in order to compare the
complex of Proposition 4.2.33 to the analogous complex at Klingen level. Fix a
subset J ⊂ I; we now consider the space XI,=J1,=Jc2

K,1 = X=J1,=Jc2
K,1 .

Lemma 4.2.37. There is a universal constant C depending only on p and F but
not on the tame level Kp such that if lv ≥ 2, kv − lv ≥ C for all v ∈ I, lv ≥ C

for all v ∈ Ic and lv ≥ p+ 1 for all v ∈ J , then RΓ(XI,=J1,=Jc2
K,1 , ωκ(−D))carries a

locally finite action of T̃ I =
∏
w|p Tw

∏
w∈Ic Tw,1.

Proof. Note that by Lemma 4.2.36, all of the Hecke operators in the definition
of T̃ I commute. We begin by showing that the action of T̃ I on RΓ(XI

K,1, ω
κ(−D))

is locally finite. To this end, note that by Theorem 4.2.12, the action of T I
on RΓ(XI

K,1, ω
κ(−D)) is locally finite, and e(T I)RΓ(XI

K,1, ω
κ(−D)) is a perfect

complex if lv ≥ 2, kv − lv ≥ C for all v ∈ I, and lv ≥ C for all v ∈ Ic.
Since T̃ I = T I

∏
w∈Ic Tw, it follows that the action of T̃ I is also locally finite

(as it acts locally nilpotently on (1− e(T I))RΓ(XI
K,1, ω

κ(−D))).
Taking the exact triangles induced by

ωκ
Ha(Gw)→ ωκ ⊗ detωp−1

Gw → ωκ ⊗ detωp−1
Gw /Ha(Gw)

for all w ∈ J , and using Lemma 4.2.14, we deduce that T̃ I is locally finite on
RΓ(XI,=J1

K,1 , ωκ(−D)) for all weights κ = (kv, lv) with lv ≥ 2, kv − lv ≥ C for all
v ∈ I, lv ≥ C for all v ∈ Ic and lv ≥ p + 1 if v ∈ J . Passing to the limit over
multiplication by Ha(Gw) for w ∈ I \ J , we deduce that T̃ I is locally finite on
RΓ(XI,=J1,=Jc2

K,1 , ωκ(−D)), as required. �

4.3. Formal geometry. In this section we continue to assume that K = KpKp,
Kp =

∏
v|pKv with Kv ∈ {GSp4(OFv ),Par(v)}. Our goal in this section is to define

the Igusa tower at Klingen level, and the p-adic sheaves whose cohomology defines
our spaces of p-adic automorphic forms.

4.3.1. Completion of X. We adopt the convention that if Z is a scheme over SpecZ(p),
then we write Zn for Z ⊗Z(p)

Z/pnZ, and Z := lim−→n
Zn for the formal p-adic com-

pletion of Z, which is by definition a p-adic formal scheme. In particular, we let
XK be the formal p-adic completion of XK , and we write X≥2

K ↪→ X≥1
K ↪→ XK for

the open formal subschemes corresponding to X≥1
K,1 and X≥2

K,1. We write YK for
the complement of the boundary of XK , with special fibre YK,1. We write Y≥2

K for
the ordinary locus on the interior, and so on.

4.3.2. Deep Klingen level structure. For all m ≥ 1 we consider the formal scheme
X≥1
K,Kli(p

m)→ X≥1
K which parametrizes a subgroup Hm ⊂ G[pm] which is locally for

the étale topology isomorphic to µpm ⊗OF ; equivalently, Hm =
∏
w|pHm,w where

for each w|p, Hm,w ⊂ Gw[pm] is isomorphic to µpm .

Proposition 4.3.3. The morphism X≥1
K,Kli(p

m)→ X≥1
K is affine and étale. Its fibre

X≥2
K,Kli(p

m) over X≥2
K is finite étale.
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Proof. This can be proved in exactly the same way as [Pil20, Lem. 9.1.1.1]. �

We denote by X≥1
K,Kli(p

∞) = lim←−m X≥1
K,Kli(p

m) the p-adic formal scheme obtained
by taking the inverse limit (in the category of p-adic formal schemes). It exists
because the transition morphisms are affine (see for example [Far08, Prop. D.4.1],
or [Sta13, Tag 01YT] for the corresponding statement for schemes, from which this
follows easily). Over X≥1

K,Kli(p
∞) we have for all places v|p a Barsotti–Tate group

of height one and dimension one H∞,v ↪→ Gv.

4.3.4. Igusa towers. We fix a partition {v|p} = I
∐
Ic, and we letX≥I1,Par-m-et,≥Ic2

K,1

be the open subscheme of X≥I1,≥Ic2
K,1 where for each place v ∈ I with Kv =

Par(OFv ), the kernel of the quasi-polarization λ : Gv → GDv contains a multiplica-
tive group (so away from the boundary, this kernel is an extension of an étale group
of rank p by a multiplicative group of rank p). We then let X≥I1,Par-m-et,≥Ic2

K be
the corresponding open of XK , and in order to save some notation, we will for the
moment set XIK := X≥I1,Par-m-et,≥Ic2

K . The fibre of X≥1
K,Kli(p

m) over XIK is denoted
by XIK,Kli(p

m). Over XIK,Kli(p
∞) we have for all places v ∈ I a Barsotti–Tate group

of height one and dimension one H∞,v ↪→ Gv. Observe that for all v ∈ Ic, we have
a rank 2 multiplicative Barsotti–Tate group Gmv ↪→ Gv and that H∞,v ↪→ Gmv is a
rank one sub-Barsotti–Tate group.

If Kv = GSp4(OFv ) for all v|p, this gives us a convenient alternative description
of XIK,Kli(p). Set

Kp(I) =
∏
v∈I

Kli(v)
∏
v∈Ic

Iw(v).

Then we have XIK,Kli(p) = XIKp(I)Kp , where the superscript I refers to the fact that
for each v ∈ I, the Klingen level structure Hv is multiplicative, and at each v ∈ Ic,
we have extended the given multiplicative Klingen level structure to the canonical
(ordinary) Iwahori level structure.

We denote by IGI → XIK,Kli(p
∞) the profinite-étale torsor of trivializations:

ψv : Zp ' Tp(HD
∞,v), v|p; φv : Zp ' Tp((Gmv /H∞,v)D), v ∈ Ic.

The upper script D stands for the dual of these Barsotti–Tate group schemes and
Tp stands for the Tate module which here is a pro-étale sheaf. For all v ∈ I, there
is an action of λ ∈ Z×p on ψv, mapping ψv to ψv ◦ λ. For all v ∈ Ic, there is an
action of (λ, µ) ∈ (Z×p )2 on (ψv, φv), mapping (ψv, φv) to (ψv ◦ λ, φv ◦ µ).

The Galois group of the torsor IGI → XIK,Kli(p
∞) is

TI :=
∏
v∈I
O×Fv

∏
v∈Ic

(O×Fv )2 '
∏
v∈I

Z×p
∏
v∈Ic

(Z×p )2.

4.3.5. Sheaves of p-adic modular forms. Let Λ̃1,v = Zp[[O×Fv ]] ' Zp[[Z
×
p ]] and

Λ̃2,v = Zp[[(O×Fv )2]] ' Zp[[(Z
×
p )2]] be the one and two variable Iwasawa algebras.

Let
Λ̃I = ⊗̂v∈I Λ̃1,v⊗̂v∈IcΛ̃2,v = Zp[[TI ]]

and let κ̃I : TI → Λ̃×I be the universal character.
We define a sheaf Ωκ̃I0 over XIK,Kli(p

∞) by the formula:

Ωκ̃I0 = ((π∗OIGI )⊗̂ZpΛ̃I)
TI

http://stacks.math.columbia.edu/tag/01YT
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where π : IGI → XIK,Kli(p
∞) is the affine projection, and the group TI acts diago-

nally (via its natural action on π∗OIGI , and via κ̃I on Λ̃I).
We set Ωκ̃I = Ωκ̃I0

⊗
v|p det2 ωGv . The explanation for the twist by this invertible

sheaf is given below in §4.3.6 (see in particular Lemma 4.3.8). This is an invertible
sheaf of OXIK,Kli(p

∞)⊗̂ZpΛ̃I -modules.

4.3.6. Comparison with classical sheaves. Over XIK,Kli(p
∞) we have for all v|p a

surjective map ωGv → ωH∞,v arising from the differential of the inclusion H∞,v ↪→
Gv.

Let κ = ((kv, 2)v∈I , (kv, lv)v∈Ic) ∈ (Z2)Sp , kv ≥ 2 if v ∈ I, kv ≥ lv if v ∈ Ic, be
an algebraic weight. By construction there is a surjective map
(4.3.7)
ωκ|XIKp,Kli(p

∞) → (⊗v∈Iωkv−2
H∞,v

)
⊗

(⊗v∈Icωlv−2
Gv/H∞,v ⊗ ω

kv−2
H∞,v

)
⊗

(⊗v|p detω2
Gv )

This map should be interpreted as the projection to the highest weight vector.
Moreover over IGI the Hodge–Tate map (see [Mes72, p. 117], as well as Section
6.1.4 below) provides maps:

Zp
ψv→ Tp(H

D
∞,v)

HT→ ωH∞,v

for all v ∈ Sp, and
Zp

φv→ Tp((Gmv /H∞,v)D)
HT→ ωGv/H∞,v

for all v ∈ Ic.
These maps induce isomorphisms after tensoring with OIGI on the left. There-

fore the Hodge–Tate map provides a Z×p -reduction of the GL1-torsors ωH∞,v and
ωGv/H∞,v .

Let κ = ((kv, 2)v∈I , (kv, lv)v∈Ic) be a classical algebraic weight. Then we can
naturally identify κ with a p-adic weight (that is, an element of Hom(Λ̃I ,Zp)) via
the character:

((xv)v∈I , (xv, yv)v∈Ic) ∈ TI 7→
∏
v∈I

xkv−2
v

∏
v∈Ic

xkv−2
v ylv−2

v

Let us define Ωκ = Ωκ̃I ⊗Λ̃I ,κ
Zp.

Lemma 4.3.8. For all κ = ((kv, 2)v∈I , (kv, lv)v∈Ic) ∈ (Z2)Sp with kv ≥ 2 if v ∈ I,
kv ≥ lv if v ∈ Ic, there is a canonical isomorphism

HT∗ : (⊗v∈Iωkv−2
H∞,v

)
⊗

(⊗v∈Icωlv−2
Gv/H∞,v ⊗ ω

kv−2
H∞,v

)
⊗

(⊗v|p detω2
Gv ) ' Ωκ.

Proof. By definition, it suffices to construct an isomorphism

HT∗ : (⊗v∈Iωkv−2
H∞,v

)
⊗

(⊗v∈Icωlv−2
Gv/H∞,v ⊗ ω

kv−2
H∞,v

) ' Ωκ0

where Ωκ0 = Ωκ̃I0 ⊗Λ̃I ,κ
Zp. Sections of the sheaf Ωκ0 are rules f associating to

(x, (φv)v∈Ic , (ψv)v∈Sp) ∈ IGI(R), an element

f(x, (φv), (ψv)) ∈ R
such that

f(x, (φv ◦ λ−1
v ), (ψv ◦ β−1

v )) = κ((λv, βv))f(x, (φv), (ψv))

=
∏
v∈Sp

λkv−2
v

∏
v∈Ic

βlv−2
v f(x, (φv), (ψv))
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for ((λv)v∈Sp , (βv)v∈Ic) ∈ TI .
Sections of the sheaf

(⊗v∈Iωkv−2
H∞,v

)
⊗

(⊗v∈Icωlv−2
Gv/H∞,v ⊗ ω

kv−2
H∞,v

)

are rules g associating to triples

(x, (av)v|p, (bv)v∈Ic)

for R a p-adically complete Zp-algebra, x ∈ XIK,Kli(p
∞)(R), av : R ' x∗ωHv,∞ ,

bv : R ' x∗ ωGv/Hv,∞ an element

f(x, av, bv) ∈ R

such that

f(x, av ◦ λ−1
v , bv ◦ δ−1

v ) =
∏
v|p

λkv−2
v

∏
v∈Ic

δlw−2
v f(x, av, bv)

for all (λv) ∈ (R×)Sp , (δv) ∈ (R×)I
c

.
To a rule g as above, we associate a rule

HT∗(g)(x, (φv)v∈Ic , (ψv)v∈Sp) = g(x, (HT(φv(1)))v∈Ic , (HT(ψv(1)))v∈Sp).

It is easy to check that the map HT∗ is an isomorphism. �

We can now summarize the interpolation property of the sheaf Ωκ̃I .

Corollary 4.3.9. For all κ = ((kv, 2)v∈I , (kv, lv)v∈Ic) ∈ (Z2)Sp with kv ≥ 2 if
v ∈ I, kv ≥ lv if v ∈ Ic, there is a canonical surjective map:

ωκ|XIK,Kli(p
∞) → Ωκ = Ωκ̃I ⊗Λ̃I ,κ

Zp.

Proof. In view of Lemma 4.3.8, this is just the map (4.3.7). �

4.4. Sheaves of p-adic modular forms for G1. In this section we explain how
we can descend our construction to the Shimura variety for G1. This section is the
analogue for p-adic sheaves of §3.7.2.

4.4.1. Weight space for G1. We now assume that p 6= 2. We let T 0
I be the pro-p

sub-group of TI , so that TI = T fI × T 0
I is the product of a finite group T fI and T 0

I .
We let ΛI = Zp[[T

0
I ]]. There is a canonical projection TI → T 0

I and a canonical
character κ1 : TI → Λ×I which identifies ΛI with the deformation space of the
trivial character of TI . This canonical projection makes ΛI a quotient of Λ̃I . We
let κI = κ1⊗ ((2, 2)v|p). The pair (κI ,ΛI) is the universal deformation space of the
character ((2, 2)v|p) mod p. We let ΩκI = Ωκ̃I ⊗Λ̃I

ΛI .
If κ = ((kv, 2)v∈I , (kv, lv)v∈Ic) is a classical algebraic weight such that kv ≡ lv ≡

2 (mod p − 1), then κ defines a Zp-point of Spf ΛI in the following way: we
associate to κ the character

((xv)v∈I , (xv, yv)v∈Ic) ∈ TI 7→
∏
v∈I

xkv−2
v

∏
v∈Ic

xkv−2
v ylv−2

v

which factors through a character of T 0
I and therefore defines a morphism fκ : ΛI →

Zp. The specialization of κI along the map fκ recovers the character κ.
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4.4.2. Descent. The group (OF )×,+(p) can be embedded “diagonally” in TI by sending
x ∈ (OF )×,+(p) to ((xv)v ∈ I, (xv, xv)v∈Ic) where for all places v|p we denote by
xv ∈ O×Fv = Z×p the image of x in Fv. For an element x ∈ TI , we denote by x0 the
projection of x to T 0

I . For an element x ∈ T 0
I , we denote by x̃ the corresponding

group element in ΛI .
Since T 0

I is a pro-p group, and p > 2, the map x 7→ x2 is bijective on T 0
I .

Accordingly if x ∈ T 0
I , then we define

√
x ∈ T 0

I by the equation (
√
x)2 = x. We

then define a character d : (OF )×,+(p) → (ΛI)
× (where “d” stands for “descent”) by

the formula:
d(x) =

√
x0.

The group (OF )×,+(p) acts on XIK ; in the notation of §3.3, the element x ∈ (OF )×,+(p)

sends (A, ι, λ, η = (η1, η2), ηp) to (A, ι, xλ, (η1, xη2), ηp). We can lift this action to
ΩκI by setting

x : x∗ΩκI → ΩκI

to be the composition of the tautological isomorphism (the construction of ΩκI

doesn’t depend on the polarization) and multiplication by d(x). The reader can
easily check that this defines an action and is compatible with the construction
of §3.7.2; as always, we are making the choice w = 2.

For all n ∈ Z≥0 ∪ {∞}, we can form the quotient of XIK,Kli(p
n) by the action

of (OF )×,+(p) (which factors through a finite group acting freely) and we denote by

XG1,I
K,Kli(p

n) the corresponding quotient. The maps XIK,Kli(p
n) → XG1,I

K,Kli(p
n) are

étale. We can also descend the sheaf ΩκI to a sheaf ΩκI over XG1,I
K,Kli(p

∞) using the
descent datum provided by d.

We let Mp-ad,κI
I = RΓ(XG1,I

K,Kli(p
∞),ΩκI (−D)) be the cohomology of the p-adic

cuspidal modular forms of weight κI .

Proposition 4.4.3. The canonical map Mp-ad,κI
I → RΓ(XIK,Kli(p

∞),ΩκI (−D)) is
split in the derived category of Zp-modules.

Proof. See the proof of Proposition 3.8.3. �

4.5. Hecke operators at p on the cohomology of p-adic modular forms.
In this section we define Hecke operators at p acting on the cohomology of p-adic
modular forms. Recall that we have fixed a partition Sp = {v|p} = I

∐
Ic.

4.5.1. Hecke operators of Siegel type. Let w ∈ Ic be a place above p. LetK = KpKp

be a reasonable compact open subgroup with Kp = G1(Zp). In §3.9.17 we defined
a Hecke operator attached to the correspondence (for suitable choices of polyhedral
cone decompositions omitted from the notation):

XK′

p1

""

p2

||

XK XK

where K ′ = KpK ′p and K ′p =
∏
v|p,v 6=w GSp4(OFv ) × Si(w). The map p2 depends

on the choice of an element xw ∈ F×,+. We are now going to pull back this
correspondence to a deep Klingen level structure and isolate the “essential part”.
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As in Remark 3.9.23, the resulting Hecke operators are easily seen to be independent
of the choice of polyhedral cone decomposition.

Taking formal p-adic completions, we obtain a correspondence:

(4.5.2) XK′

p1

""

p2

||

XK XK

We consider the fibre product XK′×p1,XKX
I
K,Kli(p

m). Recall that by our assump-
tion that w ∈ Ic, Gw is an ordinary Barsotti–Tate group. We denote by Cw,1(pm)
the open and closed formal subscheme of this fibre product where the kernel of the
canonical isogeny p∗1G → p∗2G has trivial multiplicative part (it is open and closed
by the rigidity of multiplicative groups).

There is an obvious map u1 : Cw,1(pm) → XIK,Kli(p
m), given by projection onto

the second factor of the fibre product. We claim that the projection Cw,1(pm)→ XK
induced by p2 can be lifted to a map u2 : Cw,1(pm)→ XIK,Kli(p

m). Indeed, since Hm

is multiplicative, the isogeny p∗1G → p∗2G induces an isomorphism from p∗1Hm to its
image in p∗2G. We call this image p∗2Hm. We therefore have a correspondence

Cw,1(pm)

u1

&&

u2

xx

XIK,Kli(p
m) XIK,Kli(p

m)

We now associate to this correspondence a Hecke operator Uw,1.

Remark 4.5.3. The Hecke operator Uw,1 is the standard “Up” operator (at the
place w) that is considered in the usual theory of p-adic modular forms.

Lemma 4.5.4. There is a normalized trace map “ 1
p3 Tru1

” : R(u1)∗OCw,1(pm) →
OXIK,Kli(p

m).

Proof. The formal schemes Cw,1(pm) and XIK,Kli(p
m) are smooth over Zp. Consider

the map induced by u1 on top-differentials:

du1 : det Ω1
XIK,Kli(p

m)/Zp
→ det Ω1

Cw,1(pm)/Zp
.

This map is divisible by p3 by the same arguments as in the proof of Lemma 3.9.18.
Namely, the map u1 is totally inseparable and hence a homeomorphism. For
any closed point x ∈ XIK,Kli(p

m) in the interior, one sees by Serre–Tate theory
that the map of completed local rings ̂OXIK,Kli(p

m),x → ̂OCw,1(pm),x is given by
⊗v|pW (k(x))[[T1,v, T2,v, T3,v]]→ ⊗v|pW (k(x))[[T1,v, T2,v, T3,v]] where Ti,v 7→ Ti,v if
v 6= w, and Ti,w 7→ (1 + Ti,w)p − 1.

By reduction modulo pn of u1, we get a proper map u1 : Cw,1(pm)n → XI
K,Kli(p

m)n
of smooth schemes over SpecZ/pnZ. The above map 1

p3 du1 induces a mapOCw,1(pm)n →
u!

1OXIK,Kli(p
m)n or by adjunction a map “ 1

p3 Tru1
” : R(u1)∗(OCw,1(pm)/p

n)→ (OXIK,Kli(p
m))/p

n

(see §3.8.11). Passing to the limit over n yields the map of the lemma. �

Remark 4.5.5. We sketch another argument for the proof of the lemma. Write
Cw,1(pm)Y for the restriction of Cw,1(pm) to YI

K,Kli(p
m). It is easy to show that
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the map u1 : Cw,1(pm)Y → YI
K,Kli(p

m) is finite flat of degree p3. Therefore, the
restriction of the map of the lemma to YI

K,Kli(p
m) is the usual trace map, nor-

malized by a factor p−3. Let Σ be the K-admissible polyhedral cone decompo-
sition such that XK = XK,Σ and XIK,Kli(p

m) = XIK,Kli(p
m)Σ . We can use the

same Σ to get the (non smooth) toroidal compactification of XK′,Σ and then of
Cw,1(pm)Σ. Now we observe that the map Cw,1(pm)Σ → XIK,Kli(p

m)Σ is finite
flat and therefore has a trace map. It remains to recall that for any refinement
Σ′ of Σ, the map π : Cw,1(pm)Σ′ → Cw,1(pm)Σ induces a quasi-isomorphism:
Rπ∗OCw,1(pm)Σ′

= OCw,1(pm)Σ
.

To define the Hecke operator Uw,1 on RΓ(XIK,Kli(p
∞),ΩκI ), RΓ(XIK,Kli(p

m), ωκ),
and so on, we argue as follows. By the usual formalism, if F is one of ΩκI or ωκ,
it is enough to define morphisms u∗2F → u∗1F ; we can then compose with the trace
map of Lemma 4.5.4.

To this end, note that over Cw,1(pm) we have the canonical étale isogeny u∗1G →
u∗2G, which determines an isomorphism on differentials. We thus have a canonically
determined isomorphism u∗2ω

κ → u∗1ω
κ (with no need to normalize). Similarly,

since the canonical isogeny induces an isomorphism u∗1Hm → u∗2Hm, we have a
canonical isomorphism u∗2ΩκI → u∗1ΩκI (again with no need to normalize).

4.5.6. The operator UKli(w),1. We now introduce another Hecke operator of Siegel
type for w ∈ I, which we denote UKli(w),1. This operator will not be used until §5
and §7. We decided to introduce it here because its definition is similar to the other
operators of Siegel type introduced in §4.5.1, and because it is convenient to discuss
the commutativity of all of our Hecke operators at p in one go (see Lemma 4.5.15
below). We defer the details of the normalization of this Hecke operator to §5.3,
where we will consider the operator UKli(w),1 in a more general context.

We again consider the correspondence (4.5.2), and the product XK′ ×p1,XK

XIK,Kli(p
m). We denote by CKli(w),1(pm) the open and closed formal subscheme of

this fibre product where the kernel of the canonical isogeny p∗1G → p∗2G has trivial
intersection with the group p∗1Hm. Exactly as above, we obtain a correspondence

CKli(w),1(pm)

v1

''

v2

ww

XIK,Kli(p
m) XIK,Kli(p

m)

We show in Lemma 5.3.2 below that there is a Hecke operator

(4.5.7) UKli(w),1 : R(v1)∗v
∗
2ω

2 → ω2,

defined using a trace map normalized by a factor of 1/p3. On the other hand, we
have natural isomorphisms v∗2Ωκ̃I0 → v∗1Ωκ̃I0 , and tensoring this map with (4.5.7)
produces the desired cohomological correspondence (and associated Hecke opera-
tor):

UKli(w),1 : R(v1)∗v
∗
2ΩκI → ΩκI .

4.5.8. Hecke operators of Klingen type. Let w|p be a place. Let K = KpKp be a
reasonable compact open subgroup with Kp = G1(Zp). In §3.9.20 we have defined
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a Hecke operator attached to the correspondence (again, for suitable choices of
polyhedral cone decompositions omitted from the notation):

XK′

p1

""

p2

{{

XK′′ XK

where K ′ = KpK ′p with K ′p =
∏
v|p,v 6=w GSp4(OFv ) × Kli(w), and K ′′ = KpK ′′p

with K ′′p =
∏
v|p,v 6=w GSp4(OFv ) × Par(w). The map p2 depends on the choice of

an element xw ∈ F×,+, and over XK′ we have natural isogenies

p∗1G → p∗2G → p∗1G

whose composite is multiplication by xw. As in §4.5.1, we are going to pull back
this correspondence to a deep Klingen level structure and isolate the “essential part”
of the correspondence.

Taking formal p-adic completions, we obtain:

XK′

p1

""

p2

||

XK′′ XK

We consider the fibre product XK′ ×p1,XK XIK,Kli(p
m). We denote by Cw,2,1(pm)

the formal subscheme where the kernel of the isogeny p∗1G → p∗2G has trivial inter-
section with the group p∗1Hm.

Lemma 4.5.9. The formal subscheme Cw,2,1(pm) is open and closed in XK′×p1,XK

XIK,Kli(p
m).

Proof. Let L = p∗1Hm ∩Ker(p∗1G → p∗2G). Since L is a closed subscheme of p∗1Hm,
it is finite over XK′ ×p1,XK XIK,Kli(p

m) and the condition that L = {0} is there-
fore open. It is also closed because if at some point x there is a non-trivial map
p∗1Hm|x → Ker(p∗1G → p∗2G)|x, this map will extend on the completed local ring at
x by the rigidity of multiplicative groups. �

There is an obvious map r1 : Cw,2,1(pm) → XIK,Kli(p
m) induced by the projec-

tion p1. We claim that the second projection p2, which induces a map Cw,2,1(pm)→
XK′′ , can be lifted to a map r2 : Cw,2,1(pm)→ XIK′′,Kli(p

m). Indeed, over Cw,2,1(pm)
the isogeny p∗1G → p∗2G induces an isomorphism from p∗1Hm to its image in p∗2G
(which we call p∗2Hm). We therefore have a correspondence

Cw,2,1(pm)

r1

&&

r2

ww

XIK′′,Kli(p
m) XIK,Kli(p

m)

We now associate to this correspondence a Hecke operator

U ′w ∈ Hom(RΓ(XIK′′,Kli(p
∞),ΩκI ),RΓ(XIK,Kli(p

∞),ΩκI )).

To do so, we have the following lemma.
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Lemma 4.5.10. There is a normalized trace map “ 1
p2 Trr1”: (r1)∗OCw,2,1(pm) →

OXIK,Kli(p
m)

Proof. The formal schemes Cw,2,1(pm) and XIK,Kli(p
m) are smooth over Zp. Con-

sider the induced map on top differentials:

dr1 : det Ω1
XIK,Kli(p

m)/Zp
→ det Ω1

Cw,2,1(pm)/Zp

This map is divisible by p2 for the same reason as in the proof of Lemma 3.9.22.
Namely, let us fix a closed point x ∈ XIK,Kli(p

m) which is in the interior and ordinary
at w. The fibre of r1 at x parametrizes the subgroup L = Ker(p∗1G → p∗2G) of
Gw[p] of étale rank 2, multiplicative rank 1 and trivial intersection with Hm. The
total degree of r1 is p3. The fibre of r1 over x has p points (corresponding to
the choice of the multiplicative part Lm of L). The inseparability degree is p2

(corresponding to finding sections of Gw[p]/Lm → Gw[p]et). For any x′ ∈ Cw,2,1(pm)
lying above x, Serre–Tate theory shows that the map on completed local rings

̂OXIK,Kli(p
m),x → ̂OCw,2,1(pm),x′ is isomorphic to ⊗v|pW (k(x))[[T1,v, T2,v, T3,v]] →

⊗v|pW (k(x′))[[T1,v, T2,v, T3,v]] where Ti,v 7→ Ti,v if v 6= w or i = 1, and Ti,w 7→
(1 + Ti,w)p − 1 for i = 2, 3.

By reduction modulo pn of r1, we get a proper map r1 : Cw,2,1(pm)n → XI
K,Kli(p

m)n
of smooth schemes over SpecZ/pnZ. The above map 1

p2 dr1 induces a mapOCw,2,1(pm)n →
r!
1OXIK,Kli(p

m)n or by adjunction a map “ 1
p2 Trr1” : R(r1)∗(OCw,2,1(pm)/p

n)→ (OXIK,Kli(p
m))/p

n

(see §3.8.11). Passing to the limit over n yields the map of the lemma. �

Remark 4.5.11. We could give an alternative proof of Lemma 4.5.10 as in Re-
mark 4.5.5.

As usual over Cw,2,1(pm) we have the canonical isogeny r∗1G → r∗2G, whose dif-
ferential determines a morphism r∗2ω

κ → r∗1ω
κ. We have a commutative diagram

r∗2ωGw //

��

r∗2ωHm,w

��

// 0

r∗1ωGw // r∗1ωHm,w // 0

which Zariski locally on affine opens Spf R is isomorphic to

(4.5.12) R2
(0 1)

//p 0
0 1


��

R //

1R

��

0

R2
(0 1)

// R // 0

It follows that we can and do normalize the morphism r∗2ω
κ → r∗1ω

κ by dividing
by plw . When m = ∞, the isogeny induces an isomorphism r∗1H∞,w → r∗2H∞,w,
and we therefore obtain an isomorphism r∗2ΩκI → r∗1ΩκI . Combining this with
Lemma 4.5.10 gives the desired operator U ′w.

We now exchange the roles of p1 and p2, and consider the fibre product XK′×p2,X′′K

XIK′′,Kli(p
m). We denote by Cw,2,2(pm) the open and closed formal subscheme where

the kernel of the isogeny p∗2G → p∗1G has trivial connected component (so that away
from the boundary, the kernel of this isogeny is étale). Note that by definition
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this kernel is contained in the kernel of the quasi-polarization p∗2G → p∗2GD, so the
kernel of p∗2G → p∗1G has multiplicative rank at least 1.

The projection p2 induces a map s2 : Cw,2,2(pm)→ XIK′′,Kli(p
m). We claim that

the first projection p1 : Cw,2,2(pm)→ XK can be lifted to a map s1 : Cw,1,2(pm)→
XIK,Kli(p

m). Indeed, since Hm is connected, we see that over Cw,2,2(pm) the isogeny
p∗2G → p∗1G induces an isomorphism from p∗2Hm to its image in p∗1G (which we call
p∗1Hm); and the map Cw,2,2(pm)→ XK factors through XIK . Accordingly, we have
a correspondence

Cw,2,2(pm)

s2

''

s1

xx

XIK,Kli(p
m) XIK′′,Kli(p

m)

We can associate to this correspondence a Hecke operator

U ′′w ∈ Hom(RΓ(XIK,Kli(p
∞),ΩκI ),RΓ(XIK′′,Kli(p

∞),ΩκI )),

which again depends on the construction of a trace map:

Lemma 4.5.13. There is a normalized trace map p−1 Trs2 : R(s2)∗OCw,2,2(pm) →
OXI

K′′,Kli
(pm).

Proof. This is a calculation in Serre–Tate theory which is similar to the proof
of Lemma 4.5.10. Namely, let us fix a closed point x ∈ XIK′′,Kli(p

m) which is
in the interior. The fibre of s2 at x parametrizes rank p étale subgroups in the
kernel of the quasi-polarization Gw → GDw (which is a rank p2 finite flat group
scheme, extension of an étale by a multiplicative subgroup). We deduce that
the map s2 is totally inseparable at x of degree p. Serre–Tate theory shows that
the map on completed local rings ̂OXI

K′′,Kli
(pm),x → ̂OCw,2,2(pm),x is isomorphic to

⊗v|pW (k(x))[[T1,v, T2,v, T3,v]]→ ⊗v|pW (k(x))[[T1,v, T2,v, T3,v]] where Ti,v 7→ Ti,v if
v 6= w or i = 1, 2, and T3,w 7→ (1 + T3,w)p − 1. �

Over Cw,2,2(pm) we have the canonical isogeny s∗2G → s∗1G, which is étale, and
therefore determines isomorphisms s∗1ωκ → s∗2ω

κ and s∗1ΩκI → s∗2ΩκI . Combining
with Lemma 4.5.13, we get the desired Hecke operator U ′′w.

We set Uw,2 := U ′w ◦ U ′′w.

4.5.14. Commutativity of the Hecke operators. We remind the reader that whenever
we write Uv,1 below, we mean UIw(v),1.

Lemma 4.5.15. The operators {UKli(v),1, Uv,2}v∈I and {Uv,1, Uv,2}v∈Ic commute
with each other on RΓ(XG1,I

K,Kli(p∞),Ω
κI (−D)).

Proof. We prove this in the same way as Lemma 4.2.36. We first introduce a similar
complex as in §4.2.30 to compute the cohomology. Namely, there is a complex L•

computing RΓ(XG1,I
K,Kli(p∞),Ω

κI (−D)), such that Lk = lim←−t L
k
t where Lkt is⊕

J⊂I,#J=k lim−→
×

∏
w∈J Ha(Gw)

H0
(
XG1,I,≥Jc2
K,Kli(p∞),Z/p

tZ⊗ΩκI (−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n)
)

Note that in that formula we use the fact that Ha(Gw)n has a canonical lift to
Z/ptZ for all n’s which are multiples of pt−1 and these are cofinal among all natural
numbers.
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Each term
(4.5.16)

lim−→
×

∏
w∈J Ha(Gw)

H0
(
XG1,I,≥Jc2
K,Kli(p∞),Z/p

tZ⊗ΩκI (−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n)
)

appearing in this complex is stable under the Hecke action and it is therefore enough
to prove the commutativity for each of these terms. Each of the terms (4.5.16)
can be embedded into the corresponding direct limit of cohomology groups taken
over the interior of the moduli space. Over the interior of the moduli space all
our correspondences are finite flat and the commutativity follows from standard
properties of the Iwahori and Klingen Hecke algebras. �

Lemma 4.5.17. If w ∈ I then we have an equality of Hecke operators

UIw(w),1(UKli(w),1 − UIw(w),1) = Uw,2

on RΓ(XG1,I,=w2
K,Kli(p∞),Ω

κI (−D)).

Proof. Using a Cousin complex computing the cohomology as in the proof of
Lemma 4.5.15, we reduce to proving that the underlying (cohomological) corre-
spondences agree away from the boundary. By definition, the correspondence asso-
ciated to UIw(w),1 parameterizes triples (G, Hm, L) where L ⊂ Gw[p] is étale, totally
isotropic of degree p2, and has L ∩Hm = {0}. Similarly, the correspondence asso-
ciated to Zw parameterizes triples (G, Hm,M) where M ⊂ Gw[p] has multiplicative
rank 1, is totally isotropic of degree p2, and has M ∩ Hm = {0}. Finally, as
in [Pil20, Prop. 10.2.1], the correspondence associated to Uw,2 parameterizes triples
(G, Hm, N) where N ⊂ Gw[p2] is totally isotropic of degree p4, N [p] has degree p3,
and N ∩Hm = {0}.

Comparing these definitions, we see that on the level of underlying correspon-
dences, we have pUw,2 = UIw(w),1Zw. Since the normalization factors involved
in the Hecke operators Uw,2, UIw(w),1, Zw are respectively p−5, p−3, p−3, and since
5 + 1 = 3 + 3, the result follows. �

4.6. Perfect complexes of p-adic modular forms. Let K = KpKp be a rea-
sonable compact open subgroup with Kp = G1(Zp). Set

U I =
∏
v∈I

Uv,2
∏
v∈Ic

Uv,1Uv,2.

This is an endomorphism of Mp-ad,κI
I = RΓ(XG1,I

K,Kli(p∞),Ω
κI (−D)), an object of the

bounded derived category of ΛI -modules. In this section we prove the following
theorem.

Theorem 4.6.1.
(1) The operator U I is locally finite on Mp-ad,κI

I .
(2) Let e(U I) be the ordinary projector attached to U I and letMI := e(U I)Mp-ad,κI

I

be the associated direct summand. Then the complex MI is a perfect com-
plex of ΛI-modules concentrated in the interval [0,#I].

(3) For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2 when v ∈
I and kv ≡ lv ≡ 2 (mod p − 1) for all v|p, there is a canonical quasi-
isomorphism:

e(U I)RΓ(XG1,I
Kp(I)Kp , ω

κ(−D))→MI ⊗L
ΛI ,κ Zp.
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(4) There is a universal constant C depending only on p but not on the tame
level Kp such that for all classical algebraic weights κ = ((kv, lv)v|p) with
lv = 2 when v ∈ I, kv ≡ lv ≡ 2 (mod p− 1) for all v|p, kv − lv ≥ C when
v|p, and lv ≥ C when v ∈ Ic, the map:

e(
∏
v|p

Tv
∏
v∈Ic

Tv,1)Hi(XG1

K , ωκ(−D))→ Hi(MI ⊗L
ΛI ,κ Zp)

is an isomorphism for i = 0 and injective for i = 1.

We will deduce the theorem from a number of intermediate results. In particular,
we need to analyze the Hecke operators Uw,1 and Uw,2 and relate them to Tw,1
and Tw in order to be able to use the results of §4.2.

4.6.2. Reduction of the correspondence modulo p. Let w ∈ Ic. We begin by consid-
ering the special fibre of the correspondence over XIK,Kli(p) underlying the operator
Uw,1; we write Cw,1(p)1 for this special fibre. By reduction modulo p, it follows
from Lemma 3.8.10 that for each classical algebraic weight κ we obtain a cohomo-
logical correspondence which we continue to denote by Uw,1 : u∗2(ωκ|XIK,Kli(p)1

) →
u!

1(ωκ|XIK,Kli(p)1
).

Lemma 4.6.3. For any place w ∈ Ic, we have a commutative diagram

u∗2ω
κ

Uw,1
//

u∗2Ha(Gw)

��

u!
1ω

κ

u∗1Ha(Gw)

��

u∗2(ωκ ⊗ detωp−1
Gw )

Uw,1
// u!

1(ωκ ⊗ detωp−1
Gw )

Proof. Since the kernel of u∗1G → u∗2G is étale, and the formation of Ha(Gw) com-
mutes with étale isogenies, this is immediate. �

We now consider the operator Uw,2 on XI
K,Kli(p)1, where w is any place lying

over p. Taking the special fibres of the correspondences of §4.5.8 with m = 1, we
have a correspondence

Cw,2,1(p)1

r1

&&

r2

xx

XI
K′′,Kli(p)1 XI

K,Kli(p)1

and by Lemma 3.8.10, a cohomological correspondence r∗2ωκ|XI
K′′,Kli

(p)1
→ r!

1ω
κ|XIK,Kli(p)1

;
and a correspondence

Cw,2,2(p)1

s2

&&

s1

xx

XI
K,Kli(p)1 XI

K′′,Kli(p)1

and again by Lemma 3.8.10, a cohomological correspondence s∗2ωκ|XIK,Kli(p)1
→

s!
1ω

κ|XI
K′′,Kli

(p)1
.
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We can associate to these cohomological correspondences Hecke operators which
we denote as before as

U ′w ∈ Hom(RΓ(XI
K′′,Kli(p)1, ω

κ),RΓ(XI
K,Kli(p)1, ω

κ)),

U ′′w ∈ Hom(RΓ(XI
K,Kli(p)1, ω

κ),RΓ(XI
K′′,Kli(p)1, ω

κ)).

We continue to write Uw,2 = U ′w ◦ U ′′w.

Lemma 4.6.4. For any w|p, we have commutative diagrams

r∗2ω
κ

U ′w //

r∗2Ha(Gw)

��

r!
1ω

κ

r∗1Ha(Gw)

��

r∗2(ωκ ⊗ detωp−1
Gw )

U ′w // r!
1(ωκ ⊗ detωp−1

Gw )

s∗1ω
κ

U ′′w //

s∗1Ha(Gw)

��

s!
2ω

κ

s∗2Ha(Gw)

��

s∗1(ωκ ⊗ detωp−1
Gw )

U ′′w // s!
2(ωκ ⊗ detωp−1

Gw )

Proof. See [Pil20, Lem. 10.5.2.1]. �

4.6.5. Reduction of the correspondences to the non-ordinary locus.

Lemma 4.6.6. For any w|p, the Hasse invariant Ha(Gw) is not a zero divisor on
each of Cw,2,1(p)1 and Cw,2,2(p)1.

Proof. See [Pil20, Lem. 10.5.2.2]. �

We now assume w ∈ I (otherwise the schemes we consider would be empty) and
consider the rank one locus at w, XI,=w1

K,Kli (p)1, which by definition is the vanishing
locus of Ha(Gw) in XI

K,Kli(p)1. Taking the zero locus of Ha(Gw) at all entries of
the correspondences Cw,1(p)1, Cw,2,2(p)1 and Cw,2,1(p)1 (and taking into account
Lemmas 4.6.3 and 4.6.4), we obtain correspondences

C=w1
w,1 (p)1

u1

&&

u2

xx

XI,=w1
K,Kli (p)1 XI,=w1

K,Kli (p)1

C=w1
w,2,1(p)1

r1

&&

r2

xx

XI,=w1
K′′,Kli(p)1 XI,=w1

K,Kli (p)1
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C=w1
w,2,2(p)1

s2

&&

s1

xx

XI,=w1
K,Kli (p)1 XI,=w1

K′′,Kli(p)1

By Lemmas 3.8.10 and 4.6.6, we also obtain cohomological correspondences

u∗2ω
κ|XI,=w1

K,Kli,1(p) → u!
1ω

κ|XI,=w1
K,Kli (p)1

, r∗2ω
κ|XI,=w1

K′′,Kli
(p)1
→ r!

1ω
κ|XI,=w1

K,Kli (p)1
,

and
s∗2ω

κ|XI,=w1
K,Kli (p)1

→ s!
1ω

κ|XI,=w1

K′′,Kli
(p)1

.

We can associate to these cohomological correspondences Hecke operators which
we again write as

Uw,1 ∈ Hom(RΓ(XI,=w1
K,Kli (p)1, ω

κ),RΓ(XI,=w1
K,Kli (p)1, ω

κ)),

U ′w ∈ Hom(RΓ(XI,=w1
K′′,Kli(p)1, ω

κ),RΓ(XI,=w1
K,Kli (p)1, ω

κ)),

U ′′w ∈ Hom(RΓ(XI,=w1
K,Kli (p)1, ω

κ),RΓ(XI,=w1
K′′,Kli(p)1, ω

κ)).

We of course continue to write Uw,2 = U ′w ◦ U ′′w.
By Lemmas 4.6.3 and 4.6.4, the long exact sequence

H∗(XI
K,Kli(p)1, ω

κ)
×Ha(Gw)→ H∗(XI

K,Kli(p)1, ω
κ⊗detωp−1

Gw )→ H∗(XI,=w1
K′′,Kli(p)1, ω

κ⊗detωp−1
Gw )

is Uw,2- and Uw,1-equivariant.

Lemma 4.6.7. We have commutative diagrams

u∗2ω
κ|XI,=w1

K,Kli (p)1

Uw,1
//

u∗2Ha′(Gw)

��

u!
1ω

κ|XI,=w1
K,Kli (p)1

u∗1Ha′(Gw)

��

u∗2(ωκ ⊗ detωp
2−1
Gw |XI,=w1

K,Kli (p)1
)
Uw,1

// r!
1(ωκ ⊗ detωp

2−1
Gw |XI,=w1

K,Kli (p)1
)

r∗2ω
κ|XI,=w1

K′′,Kli
(p)1

U ′w //

r∗2Ha′(Gw)

��

r!
1ω

κ|XI,=w1
K,Kli (p)1

r∗1Ha′(Gw)

��

r∗2(ωκ ⊗ detωp
2−1
Gw |XI,=w1

K′′,Kli
(p)1

)
U ′w // r!

1(ωκ ⊗ detωp
2−1
Gw |XI,=w1

K,Kli (p)1
)

s∗1ω
κ|XI,=w1

K,Kli (p)1

U ′′w //

s∗1Ha′(Gw)

��

s!
2ω

κ|XI,=w1

K′′,Kli
(p)1

s∗2Ha′(Gw)

��

s∗1(ωκ ⊗ detωp
2−1
Gw |XI,=w1

K,Kli (p)1
)

U ′′w // s!
2(ωκ ⊗ detωp

2−1
Gw |XI,=w1

K′′,Kli
(p)1

)

Proof. See [Pil20, Lem. 10.5.3.1] . �



POTENTIAL MODULARITY OF ABELIAN SURFACES 109

4.6.8. Comparison of Uw,2, Uw,1 and Tw, Tw,1 in a special case. We fix J ⊂ I. The
space XI,=J1,=Jc2

Kp,Kli (p)1 carries a finite étale map to the space XI,=J1,=Jc2
K,1 studied

in §4.2.35. This map is given by forgetting the multiplicative groups Hv of order
p at the places v ∈ Jc. Therefore, it has degree (p + 1)#Jc . Let κ = (kv, lv) be a
classical algebraic weight. We have an injective map

H0(XI,=J1,=Jc2
K,1 , ωκ(−D))→ H0(XI,=J1,=Jc2

K,Kli (p)1, ω
κ(−D)).

We assume that lv ≥ 3 if v ∈ Ic, that kv ≥ 3, lv ≥ 2 if v ∈ I, and moreover that
lv ≥ p+ 1 and kv ≥ 2p+ 3 if v ∈ J . On the left hand side, we have an action of Tw
for w|p and Tw,1 for w ∈ Ic. On the right hand side, we have an action of Uw,2 for
w|p and Uw,1 for w ∈ Ic. This follows from the fact that all these Hecke operators
have been proved to commute with the Hasse invariants (by Lemmas 4.2.7, 4.2.15,
4.2.19, 4.6.3, 4.6.4, 4.6.7).

The main result of this subsection is:

Proposition 4.6.9. There is a universal constant C depending only on p and F
but not on the tame level Kp such that if lw ≥ 2 for all w, kw − lw ≥ C for all w|p,
and lw ≥ C for all w ∈ Ic, then:

(1) The operator U I =
∏
w|p Uw,2

∏
w∈Ic Uw,1 is locally finite on

H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D)).

(2) Let T̃ I =
∏
w|p Tw

∏
w∈Ic Tw,1. The map

e(T̃ I)H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D))→ e(U I)H0(XG1,I,=J1,=Jc2

K,Kli (p)1, ω
κ(−D))

is an isomorphism.
(3) This isomorphism is equivariant for the action of Tw,1 on the left and Uw,1

on the right for all w ∈ Ic and of Tw and Uw,2 for all w ∈ J .

This result establishes a first relation between the cohomology at Klingen level
and spherical level and will allow us to reduce a big proportion of the proof of
Theorem 4.6.1 to Theorem 4.2.1.

Remark 4.6.10. One can interpret this result as saying that the ordinarity condition
prevents the existence of “newforms” of Klingen level.

We have a finite étale map:

XI,=J1,=Jc2
K,Kli (p)1 → (XI,=J1,=Jc2

K )1

which parametrizes multiplicative subgroups of order p, Hw ⊂ Gw[p] for all w ∈ Jc.
We introduce various Hecke operators that decrease the level at places w ∈ Jc and
compare them with our existing Hecke operators.

We first define a correspondence for each w ∈ Jc (with Xw defined below),

Xw

x1

&&

x2

xx

(XI,=J1,=Jc2
K )1 (XI,=J1,=Jc2

K )1

as follows. We let x1 : Xw → (XI,=J1,=Jc2
K )1 be the natural forgetful map,

where Xw parametrizes subgroups Lw ⊂ Gw[p2], where Lw is totally isotropic of
étale rank p3 and multiplicative rank p. A standard computation shows that x1
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is finite flat. For a suitable choice of polyhedral decomposition, there is a map
x2 : Xw → (XI,=J1,=Jc2

K )1, which on the p-divisible group is given by G 7→ G/Lw
(since we are only dealing with H0 cohomology groups, we will for the most part
suppress the discussion of the boundary in this section).

We can define an operator, using the usual procedure, associated to Xw, T̃w ∈
End(H0((XI,=J1,=Jc2

K )1, ω
κ(−D))).

If we denote by XI,=J1,=Jc2
K,Kliw

(p)1 → (XI,=J1,=Jc2
K )1 the finite étale cover that

parametrizes subgroups Hw ⊂ Gw[p] of order p, then we observe that the projection
x2 lifts to a map Xw → XI,=J1,=Jc2

K,Kli (p)1 by sending (G, Lw) to (G/Lw,Gw[p]/Lw)

and therefore one can promote T̃w to maps T̃ ′w and T̃ ′′w fitting in a commutative
diagram (where vertical maps are the injections given by the obvious pull back
maps):

(4.6.11) H0(XI,=J1,=Jc2
K,Kliw

(p)1, ω
κ(−D))

T̃ ′′w //

T̃ ′w

++

H0(XI,=J1,=Jc2
K,Kliw

(p)1, ω
κ(−D))

H0((XI,=J1,=Jc2
K )1, ω

κ(−D))

OO

T̃w // H0((XI,=J1,=Jc2
K )1, ω

κ(−D))

OO

On the other hand we have already defined a Hecke operator Tw onH0((XI,=J1,=Jc2
K )1, ω

κ(−D)).
We also have a chain of finite étale maps:

XI,=J1,=Jc2
K,Kli (p)1 → XI,=J1,=Jc2

K,Kliw
(p)1 → (XI,=J1,=Jc2

K )1

where the first map forgets the multiplicative subgroup of order p, Hw′ ⊂ Gw′ [p] for
w ∈ Jc \ {w}. We have defined an operator Uw,2 on H0(XI,=J1,=Jc2

K,Kli (p)1, ω
κ(−D)),

but clearly it descends to an operator on H0(XI,=J1,=Jc2
K,Kliw

(p)1, ω
κ(−D)) because

only the Klingen level structure at w matters in the definition of Uw,2.

Lemma 4.6.12. Assume that kw − lw ≥ 1.
(1) We have T̃w = Tw.
(2) We have Uw,2 ◦ T̃ ′′w = Uw,2 ◦ Uw,2.

Proof. See [Pil20, Lem. 11.1.1.1, Lem. 11.1.1.3]. �

Lemma 4.6.13. Let w ∈ J . The canonical map H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D)) →

H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D)) intertwines the actions of Tw and Uw,2.

Proof. By Lemma 4.2.19 we have Tw = T ′w,et ◦ T ′′w,et, which corresponds to Uw,2 by
definition of the right hand side. �

Lemma 4.6.14. Let w ∈ Ic. The canonical map H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D)) →

H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D)) intertwines the actions of Tw,1 and Uw,1.

Proof. By Lemma 4.2.6, we have Tw,1 = T etw,1, which corresponds to Uw,1 by defi-
nition on the right hand side. �

Corollary 4.6.15. Suppose that we have lw ≥ 2 and kw − lw ≥ 1 for all w ∈ Jc.
Then the action of

∏
w∈Jc Uw,2 on H0(XG1,I,=J1,=Jc2

K,Kli (p)1, ω
κ(−D)) is locally finite,
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the action of
∏
w∈Jc T̃w is locally finite on H0(XG1,I,=J1,=Jc2

K,1 , ωκ(−D)), and the
map

e(
∏
w∈Jc

T̃w)H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D))→ e(

∏
w∈Jc

Uw,2)H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D))

is surjective.

Proof. Combining the diagrams (4.6.11) for all w ∈ Jc, we see that there is a
commutative diagram:

H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D))

∏
w∈Jc T̃

′′
w
//∏

w∈Jc T̃
′
w

,,

H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D))

H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D))

ι

OO

∏
w∈Jc T̃w

// H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D))

ι

OO

where the vertical maps ι are the natural injections. We deduce from Lemma 4.6.12
that

∏
w∈Jc Uw,2 ◦ (

∏
w∈Jc T̃w)′′ =

∏
w∈Jc Uw,2 ◦

∏
w∈Jc Uw,2. The argument now

follows the proofs of [Pil20, Cor. 11.1.1.1, Cor. 11.1.1.2]. We deduce that
∏
w∈Jc T̃w

acts locally finitely on H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D)) by Lemma 4.2.15. It follows

that for any f ∈ H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D)), there is a
∏
w∈Jc T̃w-stable

finite-dimensional vector space V containing (
∏
w∈Jc T̃w)′f , and then the sub-

space of H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D)) spanned by ι(V ),
∏
w∈Jc Uw,2ι(V ), f ,

and
∏
w∈Jc Uw,2f is finite-dimensional and

∏
w∈Jc Uw,2-stable, so

∏
w∈Jc Uw,2 acts

locally finitely, as claimed.
To prove the claimed surjectivity, if f ∈ e(

∏
w∈Jc Uw,2)H0(XG1,I,=J1,=Jc2

K,Kli (p)1, ω
κ(−D)),

then one checks from the definitions that we have

f = e(
∏
w∈Jc

Uw,2)ι(e(
∏
w∈Jc

T̃w)(
∏
w∈Jc

T̃ ′w)(
∏
w∈Jc

Uw,2)−1f). �

It remains to prove the injectivity of the map considered in Proposition 4.6.9 (2).
This will be done by exhibiting an inverse up to a certain power of p. For this
reason, it is necessary to lift the situation to a Zp-flat base. This is done by
considering certain formal schemes. Let us denote by XG1,I,=J1,=Jc2

K the formal
completion of XG1,I,=Jc2

K alongXG1,I,=J1,=Jc2
K,1 . We also denote by XG1,I,=J1,=Jc2

K,Kli (p)

the formal completion of XG1,I,=Jc2
K,Kli (p) along XG1,I,=J1,=Jc2

K,Kli (p)1. We denote by
I the ideal of definition of these formal schemes. Observe that p ∈ I and that
I/p = (Ha(Gw) detω

(1−p)
Gw , w ∈ J).

We consider the modules

H0(XG1,I,=J1,=Jc2
K , ωκ(−D)) and H0(XG1,I,=J1,=Jc2

K,Kli (p), ωκ(−D)),

which are I-adically complete and separated, and also Zp-flat. Moreover, the nat-
ural map H0(XG1,I,=J1,=Jc2

K , ωκ(−D)) → H0(XG1,I,=J1,=Jc2
K,Kli (p), ωκ(−D)) reduces

modulo I to the mapH0((XG1,I,=J1,=Jc2
K )1, ω

κ(−D))→ H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D))

(we are using here that (XG1,I,=J1,=Jc2
K )1 and XG1,I,=J1,=Jc2

K,Kli (p)1 have affine image
in the minimal compactification and thus that higher cuspidal cohomology over
these spaces vanishes).
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We can lift the map

T̃w : H0((XG1,I,=J1,=Jc2
K )1, ω

κ(−D))→ H0((XG1,I,=J1,=Jc2
K )1, ω

κ(−D))

to a map T̃w : H0(XG1,I,=J1,=Jc2
K , ωκ(−D)) → H0(XG1,I,=J1,=Jc2

K , ωκ(−D)) (the
correspondences Xw lift to correspondences on the formal schemes).

There is a trace map

Tr : H0(XG1,I,=J1,=Jc2
K,Kli (p), ωκ(−D))→ H0(XG1,I,=J1,=Jc2

K , ωκ(−D))

associated to the finite étale map XG1,I,=J1,=Jc2
K,Kli (p)→ XG1,I,=J1,=Jc2

K .

Lemma 4.6.16. For any n ∈ Z≥1, we have the congruence

Tr ◦ (
∏
w∈Jc

Uw,2)n ◦ ι(f) ≡ p#Jc(
∏
w∈Jc

T̃w)n(f) (mod pinfw∈Jc kw−lw)

for any f ∈ H0(XG1,I,=J1,=Jc2
K , ωκ(−D)).

Proof. We have

Tr ◦ (
∏
w∈Jc

Uw,2)n ◦ ι(f(G, ω)) =
1

pn
∑
w∈Jc lw+3

∑
w∈Jc

∑
Lw,n

(
∑
Hw

f(G/(⊕wLw,n), ω′)

where Hw runs over all multiplicative subgroups of rank p of Gw[p] and Lw,n runs
over all totally isotropic subgroups of order p3n of Gw[p2n], with trivial intersection
with Hw (this implies that Lw,n is locally in the étale topology an extension of
Z/pnZ⊕Z/pn

2

Z by µpn), and where ω is a trivialization of ωG and ω′ is a rational
trivialization of ωG/(⊕wLw,n), defined by the condition that π∗ω′ = ω for the isogeny
G → G/(⊕Lw,n). Given a group Lw,n, we can find p subgroups Hw of order p and
of multiplicative type such that Lw,n∩Hw = {0}. This means that the groups Lw,n
in the formula defining Tr ◦ (

∏
w∈Jc Uw,2) ◦ ι(f) occur with multiplicity p#Jc . On

the other hand,∏
w∈Jc

T̃wf(G, ω) =
1

p
∑
w∈Jc lw+3

∑
w∈Jc

∑
Lw

f(G/(⊕wLw), ω′)

where Lw runs over all totally isotropic subgroups of order p3 of Gw[p2] with mul-
tiplicative rank 1. Now we observe that

(
∏
w∈Jc

T̃w)nf(G, ω) ≡ 1

pn
∑
w∈Jc lw+3

∑
w∈Jc

∑
Lw,n

f(G/(⊕wLw,n), ω′) (mod pinfw∈Jc kw−lw)

where Lw,n runs over all totally isotropic subgroups of order p3n of Gw[p2n], which
are locally in the étale topology an extension of Z/pnZ⊕ Z/pn

2

Z by µpn . Indeed,
if we write

(
∏
w∈Jc

T̃w)nf(G, ω) =
1

pn
∑
w∈Jc lw+3

∑
w∈Jc

∑
L′w,n

f(G/(⊕wL′w,n), ω′)

using the definition of
∏
w∈Jc T̃w, we find that all the groups Lw,n appear exactly

one time among the groups L′w,n, and that all the remaining groups precisely contain
the multiplicative subgroup of Gw[p] (and these give a contribution divisible by
p(kw−lw)). �
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Lemma 4.6.17. Assume that for all w ∈ Jc, we have kw − lw > p#Jc . Then the
natural map

e(
∏
w∈Jc

T̃w)H0(XG1,I,=J1,=Jc2
K,1 , ωκ(−D))→ e(

∏
w∈Jc

Uw,2)H0(XG1,I,=J1,=Jc2
K,Kli (p)1, ω

κ(−D))

is bijective.

Proof. We will show that the map:

ι : e(
∏
w∈Jc

T̃w)H0(XG1,I,=J1,=Jc2
K , ωκ(−D))→ e(

∏
w∈Jc

Uw,2)H0(XG1,I,=J1,=Jc2
K,Kli (p), ωκ(−D))

is bijective (note that it is legitimate to apply the ordinary projectors on these
spaces, because they can be written as projective limits (modding out by In) of
spaces carrying a locally finite action). The result will then follow by taking re-
duction modulo I. The map is surjective by Corollary 4.6.15 (and using I-adic
approximation). It remains to prove injectivity. Let us take

f ∈ e(
∏
w∈Jc

T̃w)H0(XG1,I,=J1,=Jc2
K , ωκ(−D)),

with f 6= 0 and ι(f) = 0. Without loss of generality, we can suppose that

f /∈ pe(
∏
w∈Jc

T̃w)H0(XG1,I,=J1,=Jc2
K , ωκ(−D)).

It follows from Lemma 4.6.16 that Tr(ιf) ≡ p#Jcf (mod pinfw kw−lw). Therefore,
f ∈ p(infw kw−lw)−#Jce(

∏
w∈Jc T̃w)H0(XG1,I,=J1,=Jc2

K , ωκ(−D)). This is a contra-
diction. �

Proof of Proposition 4.6.9. This is immediate from Corollary 4.6.15, Lemma 4.6.17,
and Lemmas 4.6.12, 4.6.13 and 4.6.14. �

4.6.18. Comparison of the cohomology on XI,G1

K,Kli(p)1 and XI,G1

K,1 . We now deduce
the following proposition.

Proposition 4.6.19. There is a universal constant C depending only on p and F
but not on the tame level Kp such that if lw ≥ 2 for all w, kw − lw ≥ C for
all w|p, and lw ≥ C for all w ∈ Ic, then the operator U I is locally finite on
RΓ(XI,G1

K,Kli(p)1, ω
κ(−D)) and there is a canonical quasi-isomorphism:

e(T̃ I)RΓ(XI,G1

K,1 , ωκ(−D))→ e(U I)RΓ(XI,G1

K,Kli(p)1, ω
κ(−D)).

Proof. In §4.2.30, we constructed a complex K• computing explicitly the cohomol-
ogy RΓ(XI,G1

K,1 , ωκ(−D)). We recall that Kk =

⊕J⊂I,#J=k lim−→
×

∏
w∈J Ha(Gw)

H0
(
XG1,I,≥Jc2
K,1 , ωκ(−D)⊗

⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
.

In exactly the same way, there is a complex L• computing RΓ(XI,G1

K,Kli(p)1, ω
κ(−D)),

such that Lk =

⊕J⊂I,#J=k lim−→
×

∏
w∈J Ha(Gw)

H0
(
XG1,I,≥Jc2
K,Kli (p)1, ω

κ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
.
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It therefore suffices to prove that for each J ⊂ I and each n ≥ 1, U I is locally
finite on

H0
(
XG1,I,≥Jc2
K,Kli (p)1, ω

κ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
,

and the map

e(T̃ I)H0
(
XG1,I,≥Jc2
K,Kli (p)1, ω

κ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)
→

e(U I)H0
(
XG1,I,≥Jc2
K,Kli (p)1, ω

κ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))
)

is an isomorphism. In the case n = 1, this is Proposition 4.6.9, and the general case
follows by induction on n, using the short exact sequence

0→ ωκ(−D)⊗
⊗
w∈J

(detGw)(n−1)(p−1)/(
∑
w∈J

(Ha(Gw)n−1))→

ωκ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)n))→

ωκ(−D)⊗
⊗
w∈J

(detGw)n(p−1)/(
∑
w∈J

(Ha(Gw)))→ 0

and the acyclicity of these sheaves (for which see the proof of Proposition 4.2.33).
�

4.6.20. The proof of Theorem 4.6.1.

Lemma 4.6.21. If κ = ((kv, lv)v|p) is a classical algebraic weight with lv = 2 when
v ∈ I and kv ≡ lv ≡ 2 (mod p − 1) for all v|p, then for each n ≥ 2 there is a
diagonal map making a commutative diagram:

RΓ(XG1,I
Kli (pn), ωκ(−D))

UI //

UI

**

RΓ(XG1,I
Kli (pn), ωκ(−D))

RΓ(XG1,I
Kli (pn−1), ωκ(−D))

UI //

OO

RΓ(XG1,I
Kli (pn−1), ωκ(−D))

OO

Proof. This is an easy computation in the Hecke algebra, see the proof of [Pil20,
Thm. 11.3.1]. �

We now make repeated use of Nakayama’s lemma for complexes, in the form
of [Pil20, Prop. 2.2.1, Prop. 2.2.2]. In fact, we need the following slight strength-
ening of [Pil20, Prop. 2.2.1], which is proved in the same way; for ease of reference
we explain how it follows from results in the literature.

Lemma 4.6.22. Let R be a complete local Noetherian ring with maximal ideal m,
and let M• be a bounded complex of m-adically complete and separated, flat R-
modules, with the property that the cohomology groups of M• ⊗R R/m are finite-
dimensional and concentrated in degrees [a, b]. Then M• is a perfect complex, con-
centrated in degrees [a, b].

Proof. It follows from [Pil20, Prop. 2.2.1] thatM• is a perfect complex, and it then
follows from [KT17, Lem. 2.3, Cor. 2.7] that it is concentrated in degrees [a, b]. �
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All the complexes we consider below can be represented by bounded complexes
of flat, complete and separated Zp-modules (resp. ΛI -modules), as can be seen
by considering a Čech complex for any finite affine cover, so the hypotheses of
Lemma 4.6.22 apply in our situation.

Lemma 4.6.23. For all classical algebraic weights κ = ((kv, lv)v|p) with lw ≥ 2 for
all w, kw− lw ≥ C for all w|p, and lw ≥ C for all w ∈ Ic, the operator U I is locally
finite on RΓ(XG1,I

K,Kli(p
∞), ωκ(−D)) and there is a canonical quasi-isomorphism:

e(T̃ I)RΓ(XI,G1

K , ωκ(−D))→ e(U I)RΓ(XI,G1

K,Kli(p
∞), ωκ(−D)).

Proof. By Proposition 4.6.19, together with [Pil20, Prop. 2.2.2, Prop. 2.3.1], the
action of U I is locally finite on RΓ(XI,G1

K,Kli(p), ω
κ(−D)), and the map

e(T̃ I)RΓ(XI,G1

K , ωκ(−D))→ e(U I)RΓ(XI,G1

K,Kli(p), ω
κ(−D))

is a quasi-isomorphism. It follows easily from Lemma 4.6.21 that U I is locally finite
on RΓ(XI,G1

K,Kli(p
∞), ωκ(−D)) and that the map e(U I)RΓ(XI,G1

K,Kli(p), ω
κ(−D)) →

e(U I)RΓ(XI,G1

K,Kli(p
∞), ωκ(−D)) is a quasi-isomorphism, as required. �

Let κ = (kv, lv) be a classical algebraic weight. Let Kωκ denote the kernel of
the surjection of Corollary 4.3.9, so that over XIK,Kli(p

∞), so we have a short exact
sequence of sheaves

0→ Kωκ → ωκ → Ωκ → 0.

A key step in the comparison between the ordinary forms of these weights is the
following basic lemma.

Lemma 4.6.24. For any w|p, we have Uw,2 ∈ pEnd(RΓ(XIK,Kli(p
∞),Kωκ)).

Proof. This follows immediately from an examination of (4.5.12). �

Lemma 4.6.25. For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2

when v ∈ I and kv ≡ lv ≡ 2 (mod p−1) for all v|p, the operator U I is locally finite
on RΓ(XG1,I

K,Kli(p
∞), ωκ(−D)) and RΓ(XG1,I

K,Kli(p
∞),Ωκ(−D)), and the map

e(U I)RΓ(XG1,I
K,Kli(p), ω

κ(−D))→ e(U I)RΓ(XG1,I
K,Kli(p

∞),Ωκ(−D))

is a quasi-isomorphism.

Proof. We consider the exact triangle

RΓ(XG1,I
K,Kli(p

∞),Kωκ(−D))→ RΓ(XG1,I
K,Kli(p

∞), ωκ(−D))

→ RΓ(XG1,I
K,Kli(p

∞),Ωκ(−D)).

By Lemma 4.6.24, the operator U I is topologically nilpotent on

RΓ(XG1,I
K,Kli(p

∞),Kωκ(−D)),

so in particular it acts locally finitely with e(U I) = 0.
If we further assume that lw ≥ 2 for all w, kw − lw ≥ C for all w|p, and lw ≥ C

for all w ∈ Ic, then it follows from Lemma 4.6.23 that U I is locally finite on
RΓ(XG1,I

K,Kli(p
∞), ωκ(−D)). Therefore in this case, it follows from the above exact

triangle that U I is locally finite on RΓ(XG1,I
K,Kli(p

∞),Ωκ(−D)).
Again using [Pil20, Prop. 2.3.1], we deduce that U I is locally finite on the com-

plex RΓ(XG1,I
K,Kli(p

∞),Ωκ(−D)) for any weight κ, and therefore (again using the
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above exact triangle) it is also locally finite on RΓ(XG1,I
K,Kli(p

∞), ωκ(−D)) for any
weight κ, as required. �

Lemma 4.6.26. For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2
when v ∈ I, kv ≡ lv ≡ 2 (mod p− 1), for all v|p, lw ≥ 2 for all w, kw − lw ≥ C for
all w ∈ I, and lw ≥ C for all w ∈ Ic, the complex e(U I)RΓ(XI,G1

K,Kli(p
∞),Ωκ(−D))

is a perfect complex of Zp-modules concentrated in degrees [0,#I].

Proof. This follows from Lemma 4.6.25, Lemma 4.6.23 and Theorem 4.2.1 (not-
ing that T I divides T̃ I , so that e(T̃ I)RΓ(XG1,I

1 , ωκ(−D)) is a direct summand of
e(T I)RΓ(XG1,I

1 , ωκ(−D))). �

Lemma 4.6.27. The operator U I is locally finite on RΓ(XI,G1

K,Kli(p
∞),ΩκI (−D)),

and e(U I)RΓ(XI,G1

K,Kli(p
∞),ΩκI (−D)) is a perfect complex of ΛI-modules concen-

trated in degree [0,#I].

Proof. This follows from Lemma 4.6.26 by Nakayama’s lemma, in the form of
Lemma 4.6.22 and [Pil20, Prop. 2.3.1]. �

Proof of Theorem 4.6.1. Parts (1) and (2) are Lemma 4.6.27. Part (3) is Lemma 4.6.25,
together with Lemma 4.6.21, which shows that the natural map

e(U I)RΓ(XI,G1

K,Kli(p), ω
κ(−D))→ e(U I)RΓ(XI,G1

K,Kli(p
∞), ωκ(−D))

is a quasi-isomorphism. Part (4) follows from Theorem 4.2.1, together with Propo-
sition 4.6.19 and Lemma 4.6.25. �

5. Doubling

In this section, we prove a doubling result (see Theorems 5.8.6 and 5.8.4) which
is the key ingredient for proving local–global compatibility in §7.9. The general
ideal of doubling is that certain spaces of ordinary low weight modular forms admit
(at least) two degeneracy maps to spaces of ordinary modular forms of either higher
weight or higher level. For example, the space of weight one elliptic modular forms
modulo p of level Γ1(N), p - N , admits degeneracy maps f 7→ Ha · f and f 7→ fp

(where Ha is the Hasse invariant) to spaces of forms of weight p and level Γ1(N).
(Alternatively, after dividing by Ha, these degeneracy maps can also be thought
of as maps from classical forms of level Γ1(N) and weight one to ordinary p-adic
modular forms of level Γ1(N) and weight one.) If one can show that the direct sum
of two copies of the original space embeds under the direct sum of these degeneracy
maps, then, following ideas going back to Gross [Gro90] and isolated and expanded
by [Wie14] (see also [CG18] for further exploitation of these ideas), one can make
deductions about the local properties of the Galois representations of interest.

Let us explicate this in the example of weight one forms mentioned above (the
following is implicit in the first few lines of [Gro90, p.499] and explicit in [Edi92,
Prop. 2.7]). If f is a weight one elliptic modular cuspidal eigenform with Nebenty-
pus character χ and Tp-eigenvalue ap satisfying a2

p 6= 4χ(p), one can show that the
associated Galois representation is unramified at p in the following way. Since the
polynomial X2−apX +χ(p) has distinct roots, one can show using the degeneracy
maps above (and having established doubling) that there are two weight p ordinary
forms congruent to f with level Γ1(N) and Tp-eigenvalues given by the roots α
and β of X2−apX+χ(p). Using the known properties of the corresponding Galois
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representations, one shows that the restriction to p is an extension of distinct un-
ramified characters, and thus that the extension is split (because the representations
corresponding to the two weight p forms are extensions in the opposite orders).

The above argument for local–global compatibility at p works equally well in
the ordinary symplectic case once we have established a doubling theorem, and we
will use this in §7.9 below. Before proceeding, we begin by recalling the doubling
argument in more detail in the case of GL2 /Q.

5.1. The case of GL2 /Q. For the moment, let X denote the special fibre of a
classical modular curve of level Γ1(N) with N ≥ 5 with p - N , and let ω denote
the usual invertible line bundle on X (as in [Gro90, §2]). The doubling strat-
egy of [CG18, Cal18] may be reduced to ruling out the existence of simultaneous
eigenforms f ∈ H0(X,ω) for the operators Tp and Up. This is easily seen: in-
deed if f is a simultaneous eigenform for Tp and Up, then it is also an eigenform
for Vp = Tp−Up, which is immediately seen to be impossible by examining the ac-
tion on q-expansions. This argument does not directly generalize to the symplectic
case (even over Q), and instead, the paper [CG20] employs a rather labyrinthian
argument involving q-expansions to prove an analogous result for GSp4 /Q. In this
paper, we give a different argument which is based on analyzing the behavior of
the Up operator at the non ordinary locus. This argument in this form appears to
be new even for modular forms of weight one (although there are certainly some
echos of this argument in papers such as [Joc82, Ser73, Cai14]), and so we present
it first as a warm up for the general symplectic case.

If f ∈ H0(X,ω), we may think of Upf as a section of H0(X \ SS, ω) for the
finite set SS of supersingular points of X. We claim that there is a commutative
diagram

(5.1.1) H0(X,ω)
Ha·Up

//

��

H0(X,ωp)

��

H0(SS, ω) // H0(SS, ωp)

where the vertical maps are the natural restriction maps, and the lower horizontal
map is an isomorphism. The existence of such a diagram can be proved in several
ways; for example it can be checked in the same way as the corresponding statements
for GSp4 /F later in this section, by using the Kodaira–Spencer isomorphism to
describe the Up operator as a trace map on differentials.

Suppose that f is a Up-eigenform in H0(X,ω) with non-zero eigenvalue. Con-
sidering the commutative diagram (5.1.1), we see that since Ha · Upf maps to
zero in H0(SS, ωp), the restriction of f to SS must vanish. Thus f = Ha · g for
some g ∈ H0(X,ω2−p), and this cohomology group vanishes if p > 2, so f = 0 in
this case. If p = 2, the only non-zero sections of H0(X,OX) are constants, and we
deduce that f is a multiple of the Hasse invariant.

In the rest of this section we prove a generalization of this to the Hilbert–Siegel
case. The analogue of the commutative diagram (5.1.1) in the Siegel case (with
F = Q) is the following commutative diagram (where we write Y ≥1 for the locus in
the interior of the special fibre of the Shimura variety with Klingen level H which
is multiplicative, and we write Y =1 for the divisor where the abelian variety is non
ordinary.)
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H0(Y ≥1, ω2)
Ha·UIw(p),1

//

��

H0(Y ≥1, ωp+1)

��

H0(Y =1, ω2) // H0(Y =1, ωp+1)

However, in contrast to the modular curve case, the map on the bottom line of this
diagram is probably not injective, so we cannot conclude as before. Instead, we
construct a larger commutative diagram

H0(Y ≥1, ω2)
Ha·UIw(p),1

//

Up,2

**

��

H0(Y ≥1, ωp+1)

��

H0(Y ≥1, ω2)

��

H0(Y =1, ω2) // H0(Y =1, ωp+1) // H0(Y =1, ω2).

If we assume that f ∈ H0(Y ≥1, ω2) is also a Up,2-eigenform with nonzero eigenvalue
(which suffices for our purposes), we can use this diagram to make a similar argu-
ment to the above, considering the composite morphisms from the top left to the
lower right hand corner. It may help the reader to note that there is an analogous
diagram for GL2:

H0(X,ω)
Ha·Up

//

〈p〉

''

��

H0(X,ωp)

��

H0(X,ω)

��

H0(SS, ω) // H0(SS, ωp) // H0(SS, ω)

(again, the existence of this diagram can be checked in the same way as our calcu-
lations below). We see that if Upf has no poles, then the image of f in the bottom
right hand copy of H0(SS, ω) vanishes; since the diamond operator 〈p〉 is an iso-
morphism, it follows that the restriction of f to SS vanishes, and we conclude as
before.

There is an additional complication in the Hilbert–Siegel case, which is that
rather than considering the entire Shimura variety, we are only working on an open
subspace X≥v∈I1,≥v∈Ic2

Kp(I)Kp,1 . This means that the vanishing of the space of (partial)
negative weight modular forms is not obvious. We sketch a proof for this vanishing
in §5.9 below, using Fourier–Jacobi expansions (which ultimately reduces to the
vanishing of spaces of Hilbert modular forms of partial negative weight), but we do
not rely on this result. Instead, we give a complete proof of a slightly weaker result
which is nonetheless sufficient for our purposes; this argument does not use the
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boundary, but rather considers the behavior of another Hecke operator UKli(w),1 −
UIw(w),1 (called Zw below) along the w-non-ordinary locus.

5.2. Conventions. Throughout this section, we fix a set I ⊂ Sp and a prime w ∈ I.
Recall that, as in §4.3.4, for each subset I ⊂ Sp we set

Kp(I) =
∏
v∈I

Kli(v)
∏
v∈Ic

Iw(v),

and we write XI
1 := X

≥v∈I1,≥v∈Ic2
Kp(I)Kp,1 . We will use the following simplified notation:

• We write XI
1 for the space X≥v∈I1,≥v∈Ic2

Kp(I)Kp,1 .

• We write XI,=w2
1 for the open subspace where A[w∞] is ordinary.

• We writeXI,=w1
1 for the (reduced) complement of this open subspace, which

is a divisor in XI
1 .

We also write Y I1 , Y
I,=w2
1 and Y I,=w1

1 for their interiors. We use the analogous
notation XI , YI etc. for the corresponding formal schemes. We denote detωG by
ω and detωGw by ωw. We will finally denote the partial Hasse invariant Ha(Gw) ∈
H0(XI

1 , ω
p−1
w ) by Haw.

5.3. The operator UKli(w),1. We now define a Hecke operator UKli(w),1 (see also § 4.5.6).
We again consider the p-adic completion of the correspondence considered in §3.9.17

XK′

p1

""

p2

||

XK XK

where we recall that K = KpKp with Kp =
∏
v GSp4(OFv ) and K ′ = KpK ′p with

K ′p = Si(w)×
∏
v 6=w GSp4(OFv ).

We can form the fibre product XK′ ×p1,XK XI . As XI → XK is étale by Propo-
sition 4.3.3, this inherits the properties of XK′ deduced from the theories of local
models and toroidal compactifications. In particular it is flat over Zp, normal,
Cohen–Macaulay, and the ordinary locus is dense in the special fibre, see §3.4, The-
orem 3.5.1, and §4.1. We denote by CKli(w),1 the open and closed formal subscheme
of this fibre product where the kernel of the canonical isogeny p∗1G → p∗2G has trivial
intersection with the multiplicative group p∗1Hw.

We obtain a correspondence

CKli(w),1

v1

##

v2

{{

XI XI

where v1 : CKli(w),1 → XI is induced by the projection XK′ ×p1,XK XI → XI and
v2 is defined as follows: the projection XK′ ×p1,XK XI → XK′ composed with
p2 : XK′ → XK induces a map CKli(w),1 → XK which we would like to lift to a
map v2 : CKli(w),1 → XI . In other words, given a point of CKli(w),1, we need to
give multiplicative subgroups of order p, H ′w′ ⊆ p∗2Gw′ for all w′ ∈ Sp. But for
all w′ ∈ Sp, the kernel of the isogeny p∗1Gw′ → p∗2Gw′ has trivial intersection with
p∗1Hw′ , (for w′ 6= w it is an isomorphism, and for w′ = w this was assumed in the
definition of CKli(w),1) and we take H ′w′ to be the image of p∗1Hw′ under this isogeny.
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Lemma 5.3.1. We have R(v1)∗OCKli(w),1
= (v1)∗OCKli(w),1

and there is a trace map
R(v1)∗OCKli(w),1

→ OXI .

Proof. We have XK = XK,Σ for a smooth polyhedral cone decomposition Σ and
we have XK′ = XK′,Σ′ . We can now assume that Σ′ = Σ because we have
Rπ∗OXK′,Σ′ = OXK′,Σ for π : XK′,Σ′ → XK′,Σ the projection (we note that the
cone decomposition at level K ′ may not be smooth but we will not need this).
Since Σ = Σ′, the map v1 is quasi-finite, and (since it is proper) is therefore finite.
Hence we have R(v1)∗OCKli(w),1

= (v1)∗OCKli(w),1
. Moreover, as CKli(w),1 is Cohen–

Macaulay and XI is regular, we deduce that the map v1 is also flat, and so it has
an associated trace map. �

We let C=w2
Kli(w),1 be the open formal subscheme where v∗1Gw (or equivalently v∗2Gw)

is ordinary. It restricts to a correspondence over XI,=w2. Over C=w2
Kli(w),1, the mul-

tiplicative rank of ker(v∗1Gw → v∗2Gw) is either 0 or 1 (it cannot be 2 because Hw

has trivial intersection with ker(v∗1G → v∗2G)), and hence we have a decomposition

C=w2
Kli(w),1 = C=w2,et

Kli(w),1

∐
C=w2,m-et

Kli(w),1

where C=w2,et
Kli(w),1 is the locus where the isogeny v∗1G → v∗2G is étale, while C=w2,m-et

Kli(w),1

is the locus where ker(v∗1G → v∗2G) has multiplicative rank 1.
For any weight κ = (kv, lv), we have a map

v∗2ω
κ → v∗1ω

κ[1/p]

induced from the universal isogeny (we note that we are not assuming lw ≥ 0.)
Tensoring this map with the trace map of Lemma 5.3.1, we obtain a map of sheaves
over XI :

Θκ : (Rv1)∗v
∗
2ω

κ → ωκ[1/p].

We now define UKli(w),1 = p−lw−1Θκ if lw ≤ 2 and UKli(w),1 = p−3Θκ if lw ≥ 2.

Lemma 5.3.2. We have UKli(w),1 : (Rv1)∗v
∗
2ω

κ → ωκ.

Proof. We follow the same strategy as the proof of Lemma 3.9.18. Both the source
and target of this map are locally free sheaves over the smooth formal scheme XI .
To prove that the map is indeed p-integral, it is enough to prove it over the ordinary
locus, and we check it separately on each type of component.

On the component of the map corresponding to C=w2,et
Kli(w),1, the isogeny is étale

over the ordinary locus and therefore the map v∗2ω
κ → v∗1ω

κ[1/p] is actually an
isomorphism v∗2ω

κ → v∗1ω
κ, while the trace map is divisible by p3 (see the proof of

Lemma 3.9.18).
On the component of the map corresponding to C=w2,m-et

Kli(w),1 , the isogeny has mul-
tiplicative rank one over the ordinary locus and therefore the map

v∗2ω
κ → v∗1ω

κ[1/p]

is actually a map
v∗2ω

κ → plwv∗1ω
κ,

while the trace map is divisible by p (again see the proof of Lemma 3.9.18).
Therefore, on the étale component, the map is divisible by p3 and on the

multiplicative-étale component it is divisible by plw+1. �
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5.4. The operators UIw(w),1 and Zw. Now we consider some Hecke operators on
XI,=w2. The restriction of Θκ to XI,=w2 decomposes as a sum Θκ = Θet

κ + Θm-et
κ ,

according to the decomposition of C=w2
Kli(w),1. We define normalized cohomological

correspondences UIw(w),1 = p−3Θet
κ and Zw = p−lw−1Θm-et

κ .

Lemma 5.4.1. The cohomological correspondences UIw(w),1 and Zw are p-integral.

Proof. This follows from the proof of Lemma 5.3.2. �

We have the following identities of Hecke operators over the ordinary locus at w:
(1) UKli(w),1 = UIw(w),1 + plw−2Zw if lw ≥ 2,
(2) UKli(w),1 = p2−lwUIw(w),1 + Zw if lw ≤ 2.
It follows in particular that:
(1) UKli(w),1 = UIw(w),1 mod p if lw > 2,
(2) UKli(w),1 = Zw mod p if lw < 2.
Another important property is the following:

Proposition 5.4.2. For any weight κ, we have the following identities of cohomo-
logical correspondences over XI,=w2

1 :
(1) ZwHaw = HawZw,
(2) UIw(w),1Haw = HawUIw(w),1.

Proof. The correspondence Zw is the tensor product of the fundamental class (de-
duced from the trace map normalized by p−1) and a map v∗2ωκ → v∗1ω

κ which is
obtained by normalizing the natural map by a factor p−lw . It suffices to check that
for ωκ = ωp−1

w this normalized map matches the Hasse invariants v∗2Ha(Gw) and
v∗1Ha(Gw). This is the content of [Pil20, Lem. 6.2.4.1]. The case of UIw(w),1 is clear
because the universal isogeny is étale. �

Finally, we will need the following property:

Proposition 5.4.3. If lw ≤ 0, the cohomological correspondence over XI
1 :

UKli(w),1 : (v1)∗v
∗
2ω

κ → ωκ

factors through
UKli(w),1 : (v1)∗v

∗
2ω

κ → ωκ(−XI,=w1
1 ).

Before giving the proof we need some preparations. Let BT/Fp be the smooth
algebraic stack of quasi-polarized 1-truncated Barsotti–Tate groups of height 2 and
dimension 1 over SpecFp. Let Y/Fp be a modular curve of level prime to p. The
map Y → BT is a presentation of BT (that is, it is a smooth surjection). We denote

by E the universal object on BT . We have a Cartier divisor ω1−p
E

Ha(E)→ OBT
whose support is the non-ordinary locus of BT . Let π : BTIw → BT be the
representable finite flat map which parametrizes a subgroup H ⊂ E of order p.
Let Y0(p) be a modular curve of Iwahori level at p. The map Y0(p) → BTIw is a
presentation of BTIw. Over BTIw we have a universal morphism g : E/H → E
with kernel HD (using the polarization to identify E and ED, E/H and (E/H)D).
By differentiating, we get a map of line bundles dg : ωE ⊗ ω−1

E/H → OBTIw .

Lemma 5.4.4. We have a canonical factorization (dg)⊗2 : (ωE ⊗ ω−1
E/H)⊗2 →

π∗ω1−p
E → OBTIw

.
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Proof. It suffices to prove the claim over any presentation of BTIw. We therefore
reduce to proving the statement over the modular curve Y0(p). The vanishing
locus of π∗(Ha(E)) is a product of Artinian local rings of length p+ 1 (the degree
of π) indexed by the supersingular points. The vanishing locus of dg is the entire
irreducible component of Y0(p) which is degree p over Y via π (this is the component
where H is generically étale). Therefore, for any supersingular point x ∈ Y , the
image of dg in OY0(p) ⊗OY k(x) defines a closed subscheme of length p, and hence
the ideal generated by the image of dg in OY0(p) ⊗OY k(x) is both nilpotent and
length 1. It follows that (dg)2 maps to zero in OY0(p) ⊗OY k(x). �

Proof of Proposition 5.4.3. Let κ be a weight with lw ≤ 2. Let κ′ be another
weight with (kv, lv) = (k′v, l

′
v) for v 6= w, kw − lw = k′w − l′w and l′w = 2. Let

us denote by UKli(w),1(2) : (v1)∗v
∗
1ω

κ′ → ωκ
′
the cohomological correspondence

in weight κ′. Let UKli(w),1 : (v1)∗v
∗
1ω

κ → ωκ be the cohomological correspon-
dence in weight κ. The proof of Lemma 5.3.2 shows that the map v∗2 detωlw−2

w →
v∗1 detωlw−2

w [1/p] induces a regular map plw−2v∗2 detωlw−2
w → v∗1 detωlw−2

w , and that
moreover UKli(w),1 is obtained from UKli(w),1(2) by twisting by this map. It thus
suffices to show that on the special fibre, plw−2v∗2 detωlw−2

w → v∗1 detωlw−2
w factors

through v∗1 detωlw−2
w (−XI,=1

1 ) when lw ≤ 0.
This statement is local in a neighbourhood of XI,=1

1 and we can therefore replace
XI by its completion along this closed subscheme. We may also work on the interior
of the moduli space, as the interior of the divisor XI,=1

1 is dense. Therefore, we
may suppose that Gw comes equipped with a multiplicative sub-Barsotti–Tate sub-
group Gmw of rank 1, and we denote by Goow = (Gmw )⊥/Gmw , which is a Barsotti–Tate
group scheme of height 2 and dimension 1. The isogeny v∗1Gw → v∗2Gw induces an
isomorphism v∗1Gmw → v∗2Gmw and a degree p map v∗1Goow → v∗2Goow .

The normalized map p−1v∗2ω
−1
w → v∗1ω

−1
w is the tensor product of the isomor-

phism v∗2ω
−1
Gmw
→ v∗1ω

−1
Gmw

and the map: p−1v∗2ω
−1
Goow
→ v∗1ω

−1
Goow

which is the trans-
pose of the map v∗1ωGoow → v∗2ωGoow obtained by differentiating the dual isogeny:
v∗2(Goow )→ v∗1Goow . The result follows from Lemma 5.4.4. �

Corollary 5.4.5. Let κ be a weight with lw ≤ 0. Let f ∈ H0(XI
1 , ω

κ) be such that
Zwf = βwf for some βw 6= 0. Then f = 0.

Proof. Since lw ≤ 0, we have Zw = UKli(w),1 on H0(XI
1 , ω

κ). Assume that f 6= 0,
and let n be the order of vanishing of f along X=1

1 . By considering Ha(Gw)−nf and
using Proposition 5.4.2 we can suppose that n = 0. This contradicts Proposition
5.4.3. �

5.5. Preliminaries on Kodaira–Spencer. In this section, we recall the Kodaira–
Spencer map and its compatibility with certain functorialities. A convenient refer-
ence for what we need is [Lan13].

Let S be a Z(p)-scheme and let X be a smooth S-scheme of relative dimension
3[F : Q]. Suppose that we have a tuple (A, ι, λ) with

• A/X an abelian scheme of dimension 2[F : Q].
• ι : OF → End(A)⊗Z(p) making Lie (A) into a locally freeOF⊗ZOX -module

of rank 2.
• λ : A → At a prime to p, OF -linear quasi-polarization such that λ[p∞] :
A[p∞]→ At[p∞] is an isomorphism.
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Then we have the first de Rham cohomology of A/X together with its Hodge
filtration

0→ ωA → H1
dR(A/X)→ ω∨At → 0

as well as the Gauss–Manin connection

H1
dR(A/X)→ H1

dR(A/X)⊗ Ω1
X/S .

Passing to subquotients for the Hodge filtration we obtain the Kodaira–Spencer
map for A

ωA → ω∨At ⊗ Ω1
X/S .

The polarization λ induces an isomorphism λ∗ : ωAt → ωA. Using this we may
obtain a Kodaira–Spencer map for (A, λ)

ωA ⊗ ωA → Ω1
X/S .

Then one checks (see [Lan13, Prop. 6.2.5.18]) that this map factors through the
quotient Sym2

OX⊗OF ωA of ωA ⊗ ωA, so that we obtain a map

Sym2
OX⊗OF ωA → Ω1

X/S .

As usual, if Y/S is a smooth scheme of relative dimension d, we write KY/S for the
relative canonical bundle ∧dΩ1

Y/S . We will be especially interested in the induced
map on top exterior powers

∧3[F :Q](Sym2
OX⊗OF ωA) = det(ωA)3 → KX/S .

Proposition 5.5.1. Suppose that (A, ι, λ) and (A′, ι′, λ′) are tuples as above and
that we have a prime to p quasi-isogeny φ : A → A′ satisfying φι = ι′φ and
φtλ′φ = xλ for some x ∈ OF ⊗ Z(p). Then we have a commutative diagram

det(ωA′)
3 //

φ∗

��

KX/S

·NF/Q(x)3

��

det(ωA)3 // KX/S

Proof. It follows from the definitions that under the Kodaira–Spencer maps, φ∗ :
Sym2

OX⊗OF ωA′ → Sym2
OX⊗OF ωA induces the endomorphism of Ω1

X/S given by
multiplication by x. The result follows on passing to top exterior powers. �

Proposition 5.5.2. Let f : X → Y be a finite flat map of smooth S-schemes
of relative dimension 3[F : Q] and let (A, ι, λ)/Y be a tuple as above. Then the
Kodaira–Spencer map is compatible with base change in the sense that there is a
commutative diagram

f∗ det(ωA)3 //

o
��

f∗KY/S

��

det(ωAX )3 // KX/S

where the horizontal maps are the Kodaira–Spencer maps for A and AX , the right
vertical map is pullback on differentials, and the left vertical map is the natural
isomorphism.
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Moreover it is compatible with traces in the sense that there is a commutative
diagram

f∗ det(ωAX )3 //

��

f∗KX/S

��

det(ωA)3 // KY/S

where again the horizontal arrows are the Kodaira–Spencer maps for AX and A
while the vertical map on the left comes from the (unnormalized) trace map on
functions f∗OX → OY and the isomorphism ωAX ' f∗ωA, and the right vertical
map is the trace map on dualizing sheaves.

Proof. The commutativity of the first diagram follows from the compatibility of the
formation of de Rham cohomology with flat base change, and the compatibility of
the Gauss–Manin connection with flat base change (which in turn follows from the
compatibility of the Hodge to de Rham spectral sequence with flat base change).

To see that the second diagram commutes, it is by adjunction equivalent to show
that the lower square in the following diagram commutes.

f∗ det(ωA)3 //

o
��

f∗KY/S

��

det(ωAX )3 //

��

KX/S

o
��

f ! det(ωA)3 // f !KY/S

Since we have already seen that the upper square commutes, and since the indi-
cated vertical arrows are isomorphisms, the commutativity of the lower square is
equivalent to the commutativity of the outer square. This commutativity follows
from unwinding the definitions; indeed, this outer square is the natural one obtained
from the Kodaira–Spencer morphisms and the natural transformation from f∗ to f !

(which is given by the trace of the morphism f). �

Finally, we recall the Kodaira–Spencer isomorphism for our Shimura varieties.

Proposition 5.5.3. The Kodaira–Spencer map

ω3 → KYI/Zp

is an isomorphism.

Proof. This follows from the usual Kodaira–Spencer isomorphism [Lan13, Thm.
6.4.1.1] and the compatibility with étale base change proved in Proposition 5.5.2
(noting that the formation of the canonical sheaf is compatible with étale base
change). �

5.6. The Hecke operator UIw(w),1 and traces for partial Frobenius. We
recall the construction of the Hecke operator UIw(w),1. We have a correspondence
(see §5.4, where this correspondence was denoted C=w2,et

Kli(w),1 but we adopt here a
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simplified notation CIw)

CIw
p2

||

p1

""

YI,=w2 YI,=w2

where CIw parameterizes a point (A, ι, λ, {Hv}v∈Sp , η) of YI,=w2 along with an étale
maximal isotropic subgroup Lw ⊂ A[w]. The map p1 simply forgets Lw. To describe
p2, consider the étale isogeny π : A → A/Lw. Then p2 sends (A, ι, λ, {Hv}v∈Sp)
to A/Lw with the induced action of OF ⊗ Z(p), the prime to p quasi-polarization
obtained by descending xwλ, and the level structures π(Hv) and π(η). Since the
subgroup A[xw]/Lw of A/Lw is the canonical multiplicative subgroup of A[xw], we
see that p2 is an isomorphism.

For any weight κ forG, pullback by the universal étale isogeny over CIw induces an
isomorphism of sheaves p∗2ωκ → p∗1ω

κ, and the Hecke operator UIw(w),1 is obtained
from the composition of maps of sheaves over YI,=w2

p1,∗p
∗
2ω

κ → p1,∗p
∗
1ω

κ
“ 1
p3 Trp1”→ ωκ.

Now we turn to the Kodaira–Spencer isomorphism ω3 ' KYI,=w2 .

Proposition 5.6.1. There is a commutative diagram of sheaves on YI,=w2

p1,∗p
∗
2ω

3 //

��

ω3

��

p1,∗p
∗
2KYI,=w2/Zp

NF/Q(xw)3

p3 tr
// KYI,=w2/Zp

where the vertical arrows are the Kodaira–Spencer isomorphism, and the top hori-
zontal arrow is UIw(w),1. The bottom horizontal arrow is defined as follows: since p2

is an isomorphism, we may identify p∗2KYI,=w2/Zp with KCIw/Zp
, and the morphism

then comes from the trace map for p1 on dualizing sheaves, multiplied by a factor
of NF/Q(xw)3

p3 ∈ Z×(p).

Proof. This follows from Propositions 5.5.1 and 5.5.2. �

We note that although we are primarily interested in using Proposition 5.6.1 on
the special fibre, we cannot apply Propositions 5.5.1 and 5.5.2 directly on the special
fibre because some of the maps in the commutative square reduce to 0 modulo p.

We may also describe UIw(w),1 in weights other than parallel weight 3 using traces
on differentials. For any weight κ = (kv, lv)v∈Sp we let κ−3 = (kv−3, lv−3). Then
tensoring the Kodaira–Spencer isomorphism with ωκ−3 we have an isomorphism
ωκ ' KYI,=w2/Zp ⊗ ωκ−3. Then we have a commutative diagram of sheaves on
YI,=w2

p1,∗p
∗
2ω

κ //

��

ωκ

��

p1,∗p
∗
2(KYI,=w2/Zp ⊗ ωκ−3) // (p1,∗p

∗
2KYI,=w2/Zp)⊗ ωκ−3 // KYI,=w2/Zp ⊗ ωκ−3
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where on the bottom row, the first map is an isomorphism coming from the pro-
jection formula and the isomorphism p∗2ω

κ−3 ' p∗1ωκ−3 and the second map is the
tensor product of the map of Proposition 5.6.1 and the identity.

We would now like to understand the behavior of UIw(w),1 beyond the w-ordinary
locus on the special fibre. In order to do this we make the following definition.

Definition 5.6.2. We define a “partial Frobenius” map

Fw : Y I1 → Y I1

as follows: given a point (A, ι, λ, {Hv}v∈Sp , η) of Y I1 , we may consider the maximal
isotropic subgroup Lw ⊂ A[w] defined by

Lw = ker(F : A[w∞]→ A[w∞](p))

and form the subgroup of degree p4[F :Q]−2

L̃w = Lw ×
∏
v 6=w

A[v] ⊂ A

and the isogeny π : A→ Ã = A/L̃w. L̃w is isotropic for the polarization p2

xw
λ which

thus descends to a principal polarization λ̃ on A/L̃w. Then the map Fw is defined
by

Fw(A, ι, λ, {Hv}v∈Sp , η) = (Ã, ĩ, λ̃, {H̃v}v∈Sp , η̃)

where Ã, and λ̃ are as described above, ĩ is the induced action of OF ⊗ Z(p),
H̃v = πHv for v 6= w, H̃w = H

(p)
w ⊂ A[w∞](p) ' (A/Lw)[w∞], and η̃ = 1

pπη.
Note that this definition depends on the choice of xw.

To explain why we call the map Fw a partial Frobenius, observe that according
to the product decomposition

A[p∞] =
∏
v|p

A[v∞]

we have Ã[w∞] = Ã[w∞]/Lw ' A[w∞](p) while Ã[v∞] ' A[v∞] for all v 6= w. In
particular, according to the local product structure of Y I1 coming from the Serre–
Tate theorem and the product decomposition of the p-divisible group A[p∞], Fw
looks like Frobenius on the factor corresponding to w.

As a consequence of this we may record

Proposition 5.6.3. Fw is finite flat of degree p3. It restricts to a map Fw :

Y I,=w1
1 → Y I,=w1

1 which is finite flat of degree p2.

Proof. Using the Serre–Tate theorem and the description of Fw on the p-divisible
group above, this follows from the fact that Frobenius on a smooth variety of
dimension n is finite flat of degree pn. �

The identification Ã[w∞] ' A[w∞](p) induces a canonical isomorphism F ∗wωw '
ωpw while the isomorphisms Ã[v∞] ' A[v∞] for v 6= w induce canonical isomor-
phisms F ∗wωv ' ωv.

The point of this definition is that if we identify CIw with YI,=w2 via p2, the
map p1 on the special fibre is simply the partial Frobenius Fw restricted to Y I,=w2

1 .
Moreover making these identifications, the isogeny p∗1Gw → p∗2Gw becomes V :
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G(p)
w → Gw (as its dual is Frobenius) and so the pullback map p∗2ωw → p∗1ωw

becomes Haw : ωw → ωpw.
As in §3.8.16, we may consider trace maps for Fw on differentials Fw,∗KY I1

→
KY I1

. Tensoring with any line bundle L on Y I1 and using the projection formula
Fw,∗KY I1

⊗ L ' Fw,∗(KY I1
⊗ F ∗wL), we obtain a twisted trace map

Fw,∗(KY I1
⊗ F ∗wL)→ KY I1

⊗ L.

Wemay similarly consider twisted trace maps for line bundles on the divisor Y I,=w1
1 .

Now we restrict to parallel weight 2 and work on the special fibre. With the iden-
tifications we have made, our discussion above shows that we have a commutative
diagram of sheaves on Y I,=2w

1

Fw,∗ω
2

UIw(w),1
//

��

ω2

��

Fw,∗(KY I,=w2
1

⊗ ω−1)

NF/Q(xw)3

p3 Ha−1
w

// Fw,∗(KY I,=w2
1

⊗ ω−1 ⊗ ω1−p
w ) // KY I,=w2

1
⊗ ω−1

Now we want to extend this description to all of Y I1 . Here is the first main result
of this section.

Proposition 5.6.4. The map Haw · UIw(w),1 : Fw,∗ω
2 → ω2 ⊗ ωp−1

w of sheaves on
Y I,=w2

1 extends to Y I1 and fits in to a commutative diagram of sheaves on Y I1

Fw,∗ω
2

Haw·UIw(w),1
//

��

ω2 ⊗ ωp−1
w

��

Fw,∗(KY I,=w2
1

⊗ ω−1)

NF/Q(xw)3

p3 Hap−1
w

// Fw,∗(KY I,=w2
1

⊗ ω−1 ⊗ ω(p−1)2

w ) // KY I,=w2
1

⊗ ωp−1
w ⊗ ω−1

Proof. To prove the proposition, it suffices to establish the commutativity of the
diagram over Y I,=w2

1 , as the vertical maps are isomorphisms, and the maps on the
bottom are already defined over Y I1 . This commutativity follows from the discussion
above and the fact that F ∗wHaw = Hapw. �

Now we are going to restrict to the divisor Y I,=w1
1 . The Kodaira–Spencer iso-

morphism KY I1
' ω3 of Proposition 5.5.3 induces by the adjunction formula an

isomorphism
KY I,=w1

1
' ω3 ⊗ ωp−1

w |Y I,=w1
1

.

Proposition 5.6.5. There is a commutative diagram of sheaves on Y I1

Fw,∗(KY I1
⊗ ω−1)

Hap−1
w //

��

Fw,∗(KY I1
⊗ ω−1 ⊗ ω(p−1)2

w ) // KY I1
⊗ ω−1 ⊗ ωp−1

w

��

Fw,∗(KY I,=w1
1

⊗ ω−1 ⊗ ω1−p
w ) // KY I,=w1

1
⊗ ω−1

where the vertical maps are obtained from restriction and the adjunction formula
as recalled above, and the bottom horizontal map is a twisted trace for Fw on the
divisor Y I,=w1

1 and the line bundle ω−1.
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Proof. The commutativity of this diagram follows from Proposition 3.8.17, where in
the notation of that proposition we take X = Y = Y I1 , D′ = D = Y I,=w1

1 , f = Fw
and n = p, and identify OY I1 (Y I,=w1

1 ) with ωp−1
w via Haw (tensor the commutative

diagram of Proposition 3.8.17 with ω−1 ⊗ ωp−1
w ). �

We may then define a map γ1 : Fw,∗(ω
2|Y I,=w1

1
) → ω2 ⊗ ωp−1

w |Y I,=w1
1

by the
diagram

(5.6.6) Fw,∗(ω
2|Y I,=w1

1
)

γ1 //

o
��

ω2 ⊗ ωp−1
w |Y I,=w1

1

o
��

Fw,∗(KY I,=w1
1

⊗ ω−1 ⊗ ω1−p
w ) // KY I,=w1

1
⊗ ω−1

where the vertical maps are Kodaira–Spencer and the bottom horizontal map is
NF/Q(xw)3

p3 times the twisted trace for ω−1.
Now combining Proposition 5.6.4 with Proposition 5.6.5 with the definition of

γ1 by (5.6.6) we have proved the following.

Proposition 5.6.7. There is a commutative diagram

H0(Y I1 , ω
2)

Haw·UIw(w),1
//

��

H0(Y I1 , ω
2 ⊗ ωp−1

w )

��

H0(Y I,=w1
1 , ω2|Y I,=w1

1
)

γ1 // H0(Y I,=w1
1 , ω2 ⊗ ωp−1

w |Y I,=w1
1

)

where the vertical maps are restrictions and the horizontal maps are as explained
above.

5.7. The Hecke operator Uw,2 on the w-non ordinary locus. In this section
we consider the Hecke operator Uw,2 that was first introduced in §4.5.8. We consider
the correspondence

CIw,2
p2

}}

p1

!!

YI YI

which is the composition of the correspondences Cw,2,1(p) and Cw,2,2(p) considered
in §4.5.8 (or more precisely their restrictions to the interior of the moduli space).
The correspondence Cw,2 admits the following direct description: it parametrizes
isogenies p∗1G → p∗2G whose kernel Kw is a totally isotropic subgroup of Gw[p2]
which has trivial intersection with the group p∗1Hw. To see this, note that Kw fits
into an exact sequence 0→ Kw[p]→ Kw → Kw/Kw[p]→ 0 where Kw[p] is a finite
flat group scheme of rank p3 and étale rank p, and Kw/Kw[p] is a finite étale group
scheme of rank p.

There is yet another description of CIw,2 that will be important for us. To any
point (G, ι, λ, {Hv}v∈Sp , η) ∈ YI we can associate a subgroup L̃w ⊂ G[p2] as follows:
the finite flat group scheme x−1

w Hw/H
⊥
w ⊂ Gw/H⊥w of degree p2 contains a canonical

multiplicative subgroup L′w of degree p (as x−1Hw/Gw[p] ' Hw is multiplicative
and Gw[p]/H⊥w ' HD

w is étale, we see that x−1
w Hw/H

⊥
w is isomorphic at geometric
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points to µp×Z/pZ, and hence over the entire (reduced) special fibre, the kernel of
Frobenius on x−1

w Hw/H
⊥
w is a multiplicative group of order p which lifts uniquely

over YI). Then we may define the group Lw to be the preimage of L′w under the
isogeny A → A/H⊥w . Observe that Lw ⊂ A[w2] is a totally isotropic subgroup of
degree p4. Then we take

L̃w = Lw ×
∏
v 6=w

A[v2].

We temporarily write YI
w−sph for the formal completion of YKpKp with Kp =

GSp4(OFw)
∏
v∈I,v 6=w Kli(v)

∏
v∈Ic Iw(v), along the open subvariety of the special

fibre where A[w∞] has p-rank ≥ 1, Hv is multiplicative for v ∈ I, v 6= w, and
Lv is multiplicative for v ∈ Ic. Then there is a natural map f : YI → YI

w−sph

which forgets the Klingen level structure Hw at w. It is étale and affine (see
Proposition 4.3.3).

We define a map ψw : YI → YI
w−sph by sending a point (G, ι, λ, {Hv}v∈Sp , η) to

G/L̃w with the polarization descended from p4

x2
w
λ, the induced action of OF and the

level structures p−2πη and πHv for v 6= w where π : G → G/L̃w is the isogeny.

Lemma 5.7.1. The correspondence CIw,2 fits in the following Cartesian diagram

CIw,2

p2

��

p1 // YI

f

��

YI ψw // YI
w−sph

Proof. Let p∗1G → p∗2G be the universal isogeny over CIw,2. Then the composite of
this isogeny with the isogeny p∗2G → p∗2G/L̃w identifies with multiplication by p2

on p∗1G. �

Lemma 5.7.2. The map p1 : CIw,2 → YI is finite flat of degree p4.

Proof. The correspondence CIw,2 is smooth, and the map p1 is generically étale of
degree p4 and finite. It follows from miracle flatness that it is finite flat. �

We can now deduce the following important relation between CIw,2 and F 2
w over

Y I,=w1
1 .

Proposition 5.7.3. The restriction of p2 to the scheme theoretic preimage p−1
2 (Y I,=w1

1 )

is an isomorphism to Y I,=w1
1 . Making this identification, p1 becomes F 2

w : Y I,=w1
1 →

Y I,=w1
1 .

Proof. We observe that the restriction of f to Y I,=w1
1 is an isomorphism. This im-

plies that the restriction of p2 is an isomorphism. Now we examine the definition of
L̃w. The key observation is that Lw coincides with the kernel of Frob2 : Gw → G(p2)

w .
It suffices to check this on geometric points. Over a geometric point of Y I,=w1

1 , the
p-divisible group Gw has a decomposition into a product of multiplicative, slope 1

2

and étale group p-divisible groups: Gw = Getw ×Goow ×Gmw . Then the kernel of Frob2

is simply Goow [p]× Gmw [p2], and this group equals Lw. �
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Pullback by the universal isogeny over CIw,2 induces a morphism δ0 : p∗2ωw →
p∗1ωw, as well as isomorphisms p∗2ωv → p∗1ωv for v 6= w. The following proposition
is implicitly contained in Lemma 4.6.4, but we briefly recall the argument.

Proposition 5.7.4.

(1) The map δ0 is divisible by p and the resulting map δ = 1
pδ0 : p∗2ωw → p∗1ωw

is an isomorphism.
(2) Under the isomorphism δp−1 : p∗2ω

p−1
w ' p∗1ωp−1

w we have p∗1Haw = p∗2Haw.

Proof. Because CIw,2 is smooth we are free to check the first claim on the ordinary
locus where it simply follows from the fact that the isogeny p∗1G → p∗2G has kernel of
multiplicative rank one. The second claim follows from [Pil20, Lem. 10.5.2.1]. �

Making the identifications of the Proposition 5.7.3, we may view the restriction
of δ to Y I,=w1

1 as an isomorphism

δ|−1

Y I,=w1
1

: ωw → (F 2
w)∗ωw ' ωp

2

w

or equivalently as a non vanishing section δ|−1

Y I,=w1
1

∈ H0(Y I,=w1
1 , ωp

2−1
w ). We also

denote by δ′ :
∏
v 6=w p

∗
2ωw '

∏
v 6=w p

∗
1ωw the isomorphism coming from the pullback

of differentials.
In weights κ = (kv, lv) with lw ≥ 0, the Hecke operator

Uw,2 : p1,∗p
∗
2ω

κ → ωκ

is defined by tensoring the unnormalized trace map p1,∗p
∗
2OY I1 → OY I1 with the

unnormalized pullback map p∗2ω
κ → p∗1ω

κ, and normalizing by a factor of 1
p3+lw

(see §4.5.8; equivalently, the normalized map p∗2ωκ → p∗1ω
κ is constructed with the

help of the operator δ).
First we may use the Kodaira–Spencer isomorphism to describe Uw,2 in weight

3 in terms of traces on differentials.

Proposition 5.7.5. There is a commutative diagram of sheaves on YI

p1,∗p
∗
2ω

3
Uw,2

//

��

ω3

��

p1,∗p
∗
2KYI/Zp

NF/Q(xw)6

p6 tr
// KYI/Zp

where the vertical arrows are the Kodaira–Spencer isomorphism, and the bottom
horizontal arrow is defined as follows: since p2 is étale, we may identify p∗2KYI/Zp

with KCIw,2/Zp
, and the morphism then comes from the trace map for p1 on dualizing

sheaves, multiplied by a factor of NF/Q(xw)6

p6 ∈ Z×(p).

Proof. This follows from Propositions 5.5.1 and 5.5.2. �
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In parallel weight 2 we can still express the cohomological correspondence Uw,2
by using a similar commutative diagram of sheaves on YI :

p1,∗p
∗
2ω

2
Uw,2

//

��

ω2

��

p1,∗p
∗
2(KYI/Zp ⊗ ω−1)

NF/Q(xw)6

p6 tr⊗(δ′δ)−1

// KYI/Zp ⊗ ω−1

We can restrict to Y I,=w1 and obtain the following:

Proposition 5.7.6. There is a commutative diagram

p1,∗p
∗
2(KY I1

⊗ ω−1) //

��

KY I1
⊗ ω−1

��

p1,∗p
∗
2(KY I,=w1

1
⊗OY I1 (−Y I,=w1

1 )|Y I,=w1
1

⊗ ω−1) //

��

KY I,=w1
1

⊗OY I1 (−Y I,=w1
1 )|Y I,=w1

1
⊗ ω−1

��

(F 2
w)∗(KY I,=w1

1
⊗ ω−1 ⊗ ω1−p

w ) // KY I,=w1
1

⊗ ω−1 ⊗ ω1−p
w

where:

• The upper vertical maps are obtained by restriction to Y I,=w1
1 and the ad-

junction isomorphism KY I1
|Y I,=w1 ' KY I,=w1

1
⊗OY I1 .

• The lower vertical maps are obtained from making the identification of p2

with id and p1 with F 2
w of Proposition 5.7.3 as well as using the isomorphism

Haw : O(Y I,=w1
1 )→ ωp−1

w .
• The top horizontal arrow is the composition of (δδ′)−1 and the twisted trace
for ω−1 on KI

Y1
, as on the bottom row of the diagram immediately preceding

this proposition.
• The middle horizontal arrow is multiplication by (δδ′)|−1

Y I,=w1
1

followed by

the twisted trace for p1 on the sheaf OY I1 (−Y I,=w1
1 )⊗ ω−1.

• The bottom horizontal arrow is multiplication by δ|−p
Y I,=w1

1

δ′|−1

Y I,=w1
1

followed

by the twisted trace for F 2
w on the line bundle ω−1 ⊗ ω1−p

w (normalized by
the p-adic unit NF/Q(xw)6

p6 ).

Proof. The commutativity of the top square follows from Proposition 3.8.17 while
the commutativity of the bottom square follows from Proposition 5.7.4. The reason
we get multiplication by δ|−p

Y I,=w1
1

δ′|−1

Y I,=w1
1

in the bottom horizontal arrow is because

we multiply the original (δδ′)|−1

Y I,=w1
1

with δ|−1−p
Y I,=w1

1

which arises when relating the

isomorphisms p∗i (Haw : O(Y I,=w1
1 )→ ωp−1

w ) for i = 1, 2. �

Our goal from now on is to interpret the bottom horizontal line of this diagram in
terms of the map γ1 of (5.6.6). We introduce a map γ2 : Fw,∗(ω

2⊗ωp−1
w |Y I,=w1

1
)→
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ω2|Y I,=w1
1

defined by the diagram
(5.7.7)

Fw,∗(ω
2 ⊗ ωp−1

w |Y I,=w1
1

)
γ2 //

o
��

ω2|Y I,=w1
1

o
��

Fw,∗(KY I,=w1
1

⊗ ω−1)

δ|−1

Y
I,=w1
1

44

Fw,∗(KY I,=w1
1

⊗ ω−1 ⊗ ω1−p2

w ) // KY I,=w1
1

⊗ ω−1 ⊗ ω1−p
w

where the vertical maps are induced by Kodaira–Spencer, and on the bottom the
first horizontal map is multiplication by δ|−1

Y I,=w1
1

, while the second is the twisted

trace for L = ω−1 ⊗ ω1−p
w (normalized by the p-adic unit NF/Q(xw)3

p3 ).
We now consider the composition γ2 ◦ γ1 : (F 2

w)∗(ω
2|Y I,=w1

1
)→ ω2|Y I,=w1

1
.

Proposition 5.7.8. There is a commutative diagram

(F 2
w)∗(ω

2|Y I,=w1
1

)
γ1 //

o
��

Fw,∗(ω
2 ⊗ ωp−1

w |Y I,=w1
1

)
γ2 // ω2|Y I,=w1

1

o
��

(F 2
w)∗(KY I,=w1

1
⊗ ω−1 ⊗ ω1−p

w )

δ−pδ′−1|
Y
I,=w1
1

44

(F 2
w)∗(KY I,=w1

1
⊗ ω−1 ⊗ ω1−p3

w ) // KY I,=w1
1

⊗ ω−1 ⊗ ω1−p
w

where the vertical arrows are given by the Kodaira–Spencer isomorphism and on the
bottom row we first multiply by δ|−p

Y I,=w1
1

and then take a twisted trace for F 2
w (nor-

malized by the p-adic unit NF/Q(xw)6

p6 ) and the line bundle L = ω−1 ⊗ ω1−p
w |Y I,=w1

1
.

Proof. This follows from the fact that F ∗wδ|Y I,=w1
1

= δ|p
Y I,=w1

1

. �

Combining Proposition 5.7.6 with Proposition 5.7.8 we have proved the following:

Proposition 5.7.9. There is a commutative diagram

H0(Y I1 , ω
2)

Uw,2
//

��

H0(Y I1 , ω
2)

��

H0(Y I,=w1
1 , ω2|Y I,=w1

1
)
γ2◦γ1 // H0(Y I,=w1

1 , ω2|Y I,=w1
1

)

where the vertical maps are restrictions and the horizontal maps are as explained
above.

5.8. Main doubling results. There is an obvious injective restriction map:

H0(XI
1 , ω

2(−D))→ H0(XI,=w2
1 , ω2(−D))

which is equivariant for the action of the Hecke algebra away from w, and for the
actions of Uw,2 and Uw,0. We now compare the action of UKli(w),1, which acts on
both the left hand and right hand modules, and UIw(w),1, which acts on the right
hand module.
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We have defined a Hecke operator Zw on H0(XI,=w2
1 , ω2(−D)) with UKli(w),1 =

UIw(w),1 + Zw (see §5.4).

Lemma 5.8.1. On H0(XI,=w2
1 , ω2(−D)) we have the identity of operators UIw(w),1Zw =

Uw,2.

Proof. This is immediate from Lemma 4.5.17.
�

We introduce the doubling map:

H0(XI
1 , ω

2(−D))⊕H0(XI
1 , ω

2(−D)) → H0(XI,=w2
1 , ω2(−D))

(f, g) 7→ f + Zwg

In this formula f and g on the right hand side are viewed as sections ofH0(XI,=w2
1 , ω2(−D))

via the above restriction map.
We can define an operator that we formally denote by UIw(w),1 on the left hand

side by the following matrix:

UIw(w),1 =

(
UKli(w),1 Uw,2
−1 0

)
Lemma 5.8.2. The doubling map is equivariant for the action of UIw(w),1. The
operator UIw(w),1 on H0(XI

1 , ω
2(−D))⊕H0(XI

1 , ω
2(−D)) commutes with the action

of Uw,2.

Proof. The equivariance follows from Lemma 5.8.1, and the commutativity follows
from Lemma 4.5.15. �

We now consider the Uw,2-ordinary part:

e(Uw,2)H0(XG1,I
1 , ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 , ω2(−D)).

We have restricted to the direct factor H0(XG1,I
1 , ω2(−D)) of H0(XI

1 , ω
2(−D)) in

order to be able to use local finiteness and apply ordinary projectors.

Lemma 5.8.3.
(1) The image of

e(Uw,2)H0(XG1,I
1 , ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 , ω2(−D))

via the doubling map lands in e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 , ω2(−D)).

(2) The operator UIw(w),1 is (left and right) invertible on

e(Uw,2)H0(XG1,I
1 , ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 , ω2(−D)).

(3) On e(Uw,2)H0(XG1,I
1 , ω2(−D)) ⊕ e(Uw,2)H0(XG1,I

1 , ω2(−D)) we have the
identity UKli(w),1 = UIw(v),1 + Uw,2U

−1
Iw(v),1. In particular UKli(w),1 and

UIw(w),1 commute with each other.

Proof. The doubling map

H0(XG1,I
1 , ω2(−D))⊕H0(XG1,I

1 , ω2(−D))→ H0(XG1,I,=w2
1 , ω2(−D))

can be written as an inductive limit of maps between finite dimensional vector
spaces stable under the UIw(w),1 and Uw,2 operators, so we will freely use the usual
properties of linear endomorphisms on finite dimensional vector spaces. We first
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observe that the operator Uw,2 is invertible on e(Uw,2)H0(XG1,I
1 , ω2(−D)). Con-

cretely, for any f ∈ e(Uw,2)H0(XG1,I
1 , ω2(−D)) we have e(Uw,2)f = f = Up

N!

w,2 f for

N large enough, and U−1
w,2f = Up

N!−1
w,2 f . Therefore we may consider the operator

U−1
w,2

(
0 −Uw,2
1 UKli(w),1

)
on e(Uw,2)H0(XG1,I

1 , ω2(−D))⊕ e(Uw,2)H0(XG1,I
1 , ω2(−D)), and it is straightfor-

ward to check (using that UKli(w),1 and Uw,2 commute, as we noted in the proof
of Lemma 5.8.2) that this is a 2-sided inverse of UIw(w),1. This proves the first
and second points. The third point is obvious from the formulae defining UIw(w),1

and U−1
Iw(w),1. �

We now prove our doubling theorems, combining ingredients from the previous
sections.

Theorem 5.8.4. Suppose that w ∈ I and that f ∈ H0(XG1,I
1 , ω2(−D)) satis-

fies UKli(w),1f = (αw + βw)f , UIw(w),1f = αwf , and Uw,2f = αwβwf , where
αw, βw 6= 0. Then f = 0.

Proof. First suppose that the restriction of f to XG1,I,=w1
1 is zero. Then we may

write f = Hawg for some g ∈ H0(XG1,I
1 , ω2 ⊗ ω1−p

w (−D)). Moreover because we
have Zwf = βwf by hypothesis, we would then have Zwg = βwg by Proposition
5.4.2. But then by Corollary 5.4.5, g = 0 and hence f = 0.

Now we may suppose that the restriction of f to XG1,I,=w1
1 is nonzero. Combin-

ing Proposition 5.6.7 with Proposition 5.7.9 there is a commutative diagram

H0(Y G1,I
1 , ω2)

HawUIw(w),1

��

//

Uw,2

''

H0(Y G1,I,=w1
1 , ω2|

Y
G1,I,=w1
1

)

γ1

��

H0(Y G1,I
1 , ω2 ⊗ ωp−1

w ) // H0(Y G1,I,=w1
1 , ω2 ⊗ ωp−1

w |
Y
G1,I,=w1
1

)

γ2

��

H0(Y G1,I
1 , ω2) // H0(Y G1,I,=w1

1 , ω2|
Y
G1,I,=w1
1

)

where the horizontal maps are the natural restriction maps, and the vertical maps
on the right column are as in diagrams (5.6.6) and (5.7.7).

If we start with f in the top left of the diagram, we obtain something nonzero on
the bottom right because Uw,2f = αwβwf and the restriction of f to Y G1,I,=w1

1

is nonzero. The commutativity of the diagram implies that HawUIw(w),1f has
nonzero restriction to Y G1,I,=w1

1 . On the other hand, because UIw(w),1f = αwf ,
HawUIw(w),1f = αwHawf which vanishes along Y G1,I,=w1

1 . This is a contradic-
tion. �

Remark 5.8.5. In fact, something stronger than Theorem 5.8.4 is true: if w ∈ I, and
f ∈ H0(XG1,I

1 , ω2(−D)) satisfies Uw,2f 6= 0, then UIw(w),1f 6∈ H0(XG1,I
1 , ω2(−D)).

This can be proved in exactly the same way as Theorem 5.8.4, given the following
strengthening of Corollary 5.4.5: if w ∈ I, then

H0(XG1,I
Kp(I)Kp,1, ω

2 ⊗ ω1−p
w (−D)) = 0.
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In the case p > 3, we will sketch a proof of this result in §5.9 using Fourier–
Jacobi expansions, but since a complete argument in the case p = 3 would involve
developing considerably more of the details of toroidal compactifications than we
need in the rest of the paper, we have decided not to give the details.

When p > 3, this vanishing result holds even for non cusp forms, so the same is
true of Theorem 5.8.4.

We can now prove the injectivity of the doubling map.

Theorem 5.8.6 (Doubling). The doubling map

e(Uw,2)H0(XG1,I
1 , ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 , ω2(−D))

→ e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 , ω2(−D))

is injective.

Proof. Assume the map is not injective. By Lemma 5.8.2, the kernel is an inductive
limit of finite dimensional vector spaces stable under the commuting operators Uw,2
and UIw(w),1. We may therefore take a nonzero simultaneous eigenvector (f, g) for
Uw,2 and UIw(w),1 in this kernel, with respective eigenvalues αwβw and βw for
some αw, βw 6= 0 (the eigenvalues are nonzero because we are by assumption in the
ordinary space for both UIw(w),1 and Uw,2). It follows from the definition of the
action of UIw(w),1 that f = −βwg and UKli(w),1f = (αw + βw)f . Since we are also
assuming that f +Zwg = 0, we see that the image of f in H0(XG1,I,=w2

1 , ω2(−D))
satisfies UIw(w),1f = αwf . The result follows from Theorem 5.8.4 (note that the
eigenvalues for UIw(w),1 and Uw,2 are nonzero because we are in the ordinary space
for these operators by hypothesis). �

Remark 5.8.7. We now put the Theorem 5.8.6 in a form that is used in §7.9.
Assume that M ⊂ e(Uw,2)H0(XG1,I

1 , ω2(−D)) ⊗ F̄p is a finite dimensional vector
space, stable under UKli(w),1 and Uw,2. Assume that there are distinct elements
αw, βw ∈ F̄×p such that UKli(w),1− (αw +βw) and Uw,2−αwβw are nilpotent on M .
The sub-algebra E of End(M) generated by UKli(w),1 and Uw,2 is therefore a local
Artinian algebra and there are elements α̃w, β̃w ∈ E satisfying α̃w = αw mod mE
and β̃w = βw mod mE and such that onM⊕M we have (UIw(w),1−α̃w)(UIw(w),1−
β̃w) = 0.

We can define maps ιξw : M → M ⊕M by f 7→ (f,−ξ̃−1
w f) for ξw ∈ {αw, βw}.

Then one checks easily that the map ιαw⊕ιβw : M⊕M →M⊕M is an isomorphism
and that the composite with the doubling map takes the form (f1, f2) 7→ ((1 −
β̃wU

−1
Iw(w),1)f1 + (1− α̃wU−1

Iw(w),1)f2). The first and second components of this map
therefore define injective maps

M ↪→ e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 , ω2(−D))UIw,1−ξw .

for ξw respectively equal to αw and βw.

5.9. Vanishing in partial negative weight: Fourier–Jacobi expansions. We
end this section by giving a proof of the following vanishing result in “partial neg-
ative weight”, which partially strengthens Corollary 5.4.5 but is not needed in this
paper (see also Remark 5.8.5).

Proposition 5.9.1. Assume w ∈ I. If p > 3 and [F : Q] > 1, then

H0(XI
Kp(I)Kp,1, ω

2 ⊗ ω1−p
w ) = 0.
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Remark 5.9.2. We have a sketch of an argument to show that if p = 3, then
H0(XI

Kp(I)Kp,1, ω
2 ⊗ ω1−p

w (−D)) = 0. We also have a sketch of an argument for
F = Q. But to give complete proofs would require us to justify certain properties
of Fourier–Jacobi expansion for which we could not find references (for example we
would need to have good geometric theory of cuspidal Fourier–Jacobi forms).

We will prove Proposition 5.9.1 by restriction to a boundary stratum, and ul-
timately reducing to the vanishing of spaces of Hilbert modular forms of partial
negative weight.

We let Kp =
∏
v|p GSp4(OFv ), and by possibly shrinking Kp we may assume

that it is a principal level structure in the sense of [Lan13, §1.3.6]. We let c ∈
Z×,+(p) \(A

∞,p⊗F )×/ν(Kp), and we may work with the connected component XK,1,c

of XK,1. We now choose a boundary stratum Z ↪→ XK,1,c corresponding to a one
dimensional totally isotropic factor W ∈ C (see §3.5). It means that the restriction
of the semi-abelian scheme along Z is an extension of an abelian scheme A of
dimension [F : Q] with OF -action by a torus T of dimension [F : Q] with OF -
action.

Let H := ker(ResF/Q GL2 → (ResF/Q Gm)/Gm). The abelian scheme of di-
mension [F : Q] is parametrized by a (connected) Shimura variety for the group
H (this is a Hilbert–Blumenthal modular variety) that we denote by YH,1 and is a
moduli space of isomorphism classes of triples (A, ι, λ, η):

(1) A→ SpecR is an abelian scheme,
(2) ι : OF → End(G)⊗ Z(p) is an action,
(3) Lie(A) is a locally free OF ⊗Z R-module of rank 1,
(4) λ : A → At is a prime to p, OF -linear quasi-polarization such that for all

v|p, Ker(λ : A[v∞]→ At[v∞]) is trivial,
(5) η is a prime to p level structure.

We denote by XH,1 a toroidal compactification of YH,1. We have partial Hasse
invariants Av for all v|p. Let Y IH,1 ⊂ XI

H,1 be the Zariski opens where Av is invertible
for all v ∈ Ic. We have a map Z → YH,1 and we let ZI = Z ×YH,1 Y IH,1.

The étale map XKp(I)Kp,1 → XK,1 has a section along ZI ↪→ XK,1 which is
provided by the rank one multiplicative groups T [v] for all v ∈ I. Therefore the map
XKp(I)Kp,1 → XK,1 has a section restricted to the completion of XK,1 along ZI .

Proposition 5.9.3 (Fourier–Jacobi expansion principle). There is a natural injec-
tive Fourier–Jacobi expansion map

H0(XI
Kp(I)Kp,1,c, ω

2 ⊗ ω1−p
v )→

∏
ξ∈a+

H0(AI1, ω
2 ⊗ ω1−p

v ⊗ Lξ)

where a is a fractional ideal of OF and a+ are the positive elements, AI1 → Y IH,1
is an abelian scheme isogenous to the universal abelian scheme A and Lξ is an
invertible sheaf over AI1, rigidified along the identity section.

Proof. The existence of such a map follows from the description of the toroidal
boundary charts, as in [FC90, §V] or [Lan13, §6.2.3,§7.1]. It is obtained by restrict-
ing sections to the completion along ZI . The sheaves Lξ are obtained by pullback
from a Poincaré bundle which is rigidified along the identity section.
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The injectivity result is clear as long as we can show that XI
Kp(I)Kp,1,c is con-

nected. This follows directly from the connectedness of XK,1,c and the irreducibility
of the Igusa tower, for which see [Hid04, Cor. 8.17] or [Hid09, Thm. 0.1]. �

We will now prove the vanishing of the groups H0(AI1, ω
2⊗ω1−p

w ⊗Lξ). We first
need the following preliminary lemma.

Lemma 5.9.4. Let S be a scheme and let A→ S be an abelian scheme. Let L be
an invertible sheaf on A, rigidified along the unit section. Then for all n ∈ Z≥1,
Ln3 |A[n] is trivial.

Proof. It is well-known ([Mum08, Chap. II, §6 and §8]) that n∗L ' Ln2 ⊗L0 where
L0 is a sheaf algebraically equivalent to zero. Moreover n∗L0 ' Ln0 . Therefore
Ln3 ' (n∗L)n ⊗ n∗L−1

0 is trivial on A[n]. �

Now we may prove the following sequence of vanishing results for negative weight
forms. (Note that the first part is a very special case of the main theorem of [DK17],
although the argument there is different.)

Proposition 5.9.5. Assume that [F : Q] > 1. Let κ = (kv)v∈Sp be a weight for H
and suppose that there is a w ∈ I such that kw < 0. Then:

(1) H0(YH,1, ω
κ) = 0.

(2) H0(Y IH,1, ω
κ) = 0.

(3) For any ξ ∈ a+, H0(AI1, ω
κ ⊗ Lξ) = 0.

Proof. We derive each claim in turn from the previous one:
(1) Let Cw ⊂ YH,1 be the simultaneous vanishing locus of the Hasse invariants

Av for v 6= w; it is a (union of) smooth curves (since p is split completely,
this is an easy local calculation). Furthermore, because [F : Q] > 1, it is
also proper (note that if [F : Q] = 1, then Cw = YH,1 is not proper).

By the existence of the secondary Hasse invariants, ωv|Cw is a torsion
line bundle for v 6= w, while ωw|Cw has positive degree on each component.
Let I be the ideal sheaf of Cw in YH,1. It follows from the Kodaira–Spencer
isomorphism that we have an isomorphism

I/I2 =
⊕
v 6=w

ω2
v .

Thus for all m ≥ 0, Im/Im+1 = Symm I/I2 is a direct sum of torsion line
bundles. Because kw < 0, it follows that Im/Im+1 ⊗ ωκ is a direct sum
of line bundles of negative degree, and hence has no sections. The result
follows from this and the fact that every irreducible component of XH,1

contains a component of Cw (by considering the formal expansion of any
form along Cw).

(2) If f ∈ H0(Y IH,1, ω
κ), then, for cv � 0 for all v ∈ Ic,

f
∏
v∈Ic

Acvv ∈ H0(YH,1, ω
κ ⊗

⊗
v∈Ic

ωcv(p−1)
v )

and hence vanishes by part (1). Thus the same conclusion holds for f .
(3) For all n ∈ Z≥1 with (n, p) = 1 we will show that any section of f ∈

H0(AI1, ω
κ⊗Lξ) vanishes on the n-torsion subgroup AI1[n], and hence van-

ishes identically. After replacing f by fn
3

, we can assume that Lξ is the
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trivial sheaf (see Lemma 5.9.4). We then consider the norm of f for each
irreducible component of the finite étale map AI1[n] → Y IH,1 to reduce to
part (2). �

Proof of Prop. 5.9.1. This is an immediate consequence of Proposition 5.9.3 and
Proposition 5.9.5 (3), because all the terms in the Fourier–Jacobi expansion will be
zero. �

6. Higher Coleman theory

In this section, we construct (higher) Coleman theories for GSp4(AF ). As in §4,
we assume that p splits completely in F and we construct all possible Coleman
theories, allowing the weight space at each place above p to be either one or two-
dimensional. In the case that F = Q this was carried out in [AIP15] and [Pil20].
Many of our arguments are simply the “product over the places v|p” of the arguments
of [AIP15] and [Pil20]. To keep this paper at a reasonable length, we will often refer
to these papers for the details of arguments which go over directly to our case.

The main results of this section are Theorem 6.5.8 (a classicality result for over-
convergent cohomology classes of small slope), and Theorem 6.6.4 (which shows
that in the case that I has size at most one, the cohomology of the Hida com-
plex MI constructed in §4 is overconvergent, once p is inverted). These results
together improve (at the expense of inverting p) on the classicality results of §4,
in that they do not require the weight to be sufficiently large; this is crucial for
our applications to abelian surfaces, which correspond to modular forms of parallel
weight 2.

We begin in §6.1 with the construction at the level of formal schemes of a version
of the analytic sheaves of overconvergent forms that we will use later in this section.
The purpose of these sheaves is to allow us in §6.2 to show that the cohomology
of our analytic complexes is concentrated in degrees [0,#I]; as usual, this involves
a comparison of the toroidal and minimal compactifications, and we do not know
how to carry out this argument purely in the analytic setting. In §6.3 we construct
the corresponding structures in the analytic world, and we show that an appro-
priate Hecke operator (a product of “Up” operators at the places dividing p) acts
compactly.

We then recall in §6.4 the analytic BGG resolution comparing the cohomology
with locally analytic coefficients to that with algebraic coefficients, which is one of
the ingredients in our small slope classicality theorem, which is proved in §6.5, the
other ingredient being a version of the analytic continuation argument of [Kas06].
Finally, in §6.6 we apply our results to the complexes constructed in §4.6. We
are only able to show that the ordinary cohomology is overconvergent if #I ≤ 1;
fortunately, this suffices for the arguments that we make in §7.

6.1. Sheaves of overconvergent and locally analytic modular forms: the
formal construction. In this section the base is Cp, the p-adic completion of an
algebraic closure of Qp. We will construct overconvergent versions of our interpo-
lation sheaves ΩκI and develop a finite slope theory. It is necessary to connect the
ordinary theory and the slope 0 overconvergent theory, because we are only able to
prove a strong classicality theorem in the overconvergent setting. In the first part
of this section, we begin by working at a formal level. The reason is that we need
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to prove a vanishing theorem (Theorem 6.2.6) for the overconvergent cohomology
and we don’t know how to prove it without using formal models.

6.1.1. Slope decompositions. We very briefly recall the basics of the theory of slope
decompositions for compact operators, which was introduced in [AS08] and further
developed in [Urb11]. Given a vector space M over Cp with a linear endomor-
phism U , and a rational number h, an h-slope decomposition of M with respect
to U is a decomposition M = M≤h ⊕M>h into U -stable subspaces, where

• M≤h is finite-dimensional,
• all of the eigenvalues a of U on M≤h have v(a) ≤ h, and
• if Q is a monic polynomial whose roots all have valuation less than h,

then Q(U) acts invertibly on M>h.
If slope decompositions exist, they are unique. If they exist for all h, then we say
that the finite slope part is the union of the M≤h for all h ∈ Q.

The notion of a slope decomposition can be generalized to the case of modules
over a Cp-Banach algebra A. In particular, it is known that compact operators
on projective A-Banach modules admit slope decompositions locally on MaxA.
It is explained in [Urb11, §2] and [Pil20, §13] how to generalize this notion to
perfect complexes of modules over Banach algebras. In brief, an endomorphism U

of a perfect complex is said to be compact if it admits a representative Ũ as an
endomorphism of a bounded complex M• of projective Banach modules, which is
compact in each degree. Then one may consider the product of characteristic power
series of Ũ on the individual M i, and the corresponding spectral variety for Ũ as
in [Col97]. The complex M• determines a complex of coherent sheaves M• over
this spectral variety, and one defines the spectral variety of U to be the support
of the cohomology sheaves H•(M•). One checks that this is independent of the
choice of M• and Ũ . The sheaves H•(M•) over the spectral variety for U admit
slope decompositions.

6.1.2. Recollections about formal Banach sheaves. An admissible OCp -algebra is a
flatOCp -algebra which is a quotient of a converging power series ringOCp〈X1, · · · , Xn〉
by a finitely generated ideal. In this section we work with quasi-compact and sepa-
rated p-adic formal schemes over Spf OCp which admit an open covering by formal
spectra of admissible algebras. We call these formal schemes admissible. (In some
parts of the literature, an admissible affine formal scheme Spf A is one for which A is
admissible, in the sense that it is a complete and separated topological ring, which
is linearly topologized and has an ideal of definition, i.e. an open ideal I such that
every neighbourhood of 0 contains some power of I. Our admissible algebras are a
special case of this definition, and we hope that our terminology will not cause any
confusion.)

We recall some definitions taken from [AIP15, Defn. A.1.1.1]. We let S be an
admissible formal scheme. A formal Banach sheaf over S is a family (Fn)n≥0 of
quasi-coherent sheaves such that:

(1) Fn is a sheaf of OS/p
n-modules,

(2) Fn is flat over OCp/p
n,

(3) For all 0 ≤ m ≤ n, we have isomorphisms Fn ⊗OCp
OCp/p

m ' Fm.

We can associate to (Fn)n a sheaf F over S equal to the inverse limit lim←−n Fn
(the maps in the inverse limit are those provided by (3) above). Since Fn = F⊗OCp
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OCp/p
n, the sheaf F clearly determines the (Fn) and we identify F and the family

(Fn) in the sequel. We say that a Banach sheaf F is flat if Fn is a flat OS/p
n-module

for all n.
We say that a Banach sheaf F is small if there exists a coherent OS/p-module F

such that F1 is an inductive limit of coherent sheaves lim−→j∈N F1,j and the quotients
F1,j+1/F1,j are direct summands of F .

We now recall a vanishing result from [AIP15].

Theorem 6.1.3. Let S be an admissible formal scheme. Assume that S admits
a projective map S → S′ to an affine admissible formal scheme which induces an
isomorphism of the associated analytic adic spaces over Spa(Cp,OCp). Let F be a
small Banach sheaf over S. Let U be an affine cover of S. Then the Čech complex

Cech(U,F)⊗OCp
Cp

is acyclic in positive degree.

Proof. This is a special case of [AIP15, Thm. A.1.2.2]. Indeed, the proof of [AIP15,
Thm. A.1.2.2] is by reducing to this case, which is case (1) of that proof. �

6.1.4. Recollections about the Hodge–Tate period map. If H → SpecS is a finite
flat group scheme, we denote by HD its Cartier dual and by ωHD the conormal
sheaf of HD along its unit section. This is a coherent OS-module. We can view
ωHD as an fppf -sheaf of abelian groups. If q : T → S is an S-scheme, we let
ωHD (T ) = H0(T, q∗ωHD ). There is a well-known Hodge–Tate map HTH : H →
ωHD of fppf -sheaves of abelian groups which associates to any S-scheme T and
point x ∈ H(T ) the differential x∗ dt

t , where we are (thanks to Cartier duality)
viewing x as a morphism x : HD

T → Gm|T of T -group schemes.
Let K = KpK

p be a neat compact open subgroup with Kp =
∏
v|p GSp4(OFv ).

Consider the non-compactified Shimura variety YK → SpecOCp . We denote by
YK → Spf OCp the associated p-adic formal scheme. We fix a toroidal compacti-
fication YK ↪→ XK and denote by XK the p-adic formal scheme associated to XK .
Let YK ↪→ XK be the associated analytic adic spaces over Spa (Cp,OCp).

Let n = (nv)v∈Sp ∈ Z
Sp
≥0. We let K(pn) be the compact open subgroup defined

by K(pn) = Kp(p
n)Kp where Kp(p

n) =
∏
v Ker

(
GSp4(OFv )→ GSp4(OFv/pnv )

)
is

the principal congruence subgroup of level n.
We let YK(pn),Cp → YK ×SpecOCp

SpecCp be the Shimura variety with level
K(pn) structure over SpecCp. This map is finite étale with Galois group equal to∏
v|p GSp4(OFv/pnv ). Associated to our choice of polyhedral cone decomposition we

have a toroidal compactification YK(pn),Cp → XK(pn),Cp . We denote by YK(pn) ↪→
XK(pn) the associated analytic spaces over Spa(Cp,OCp). The map XK(pn) → XK
is finite flat. We denote by XK(pn) → XK the normalization of XK in XK(pn) and by
YK(pn) the normalization of YK in YK(pn). These are admissible formal schemes
(see [PS16a, §1.1]). There is a universal, OF -linear map

∏
v|p(OFv/pnvOF )4 →∏

v|p Gv[pnv ] over YK(pn), which is symplectic up to a similitude factor and is an
isomorphism on the associated analytic adic spaces.

There is a Hodge–Tate period map HT :
∏
v|p Gv[pnv ] →

∏
v|p ωGv/p

nvωGv (we
are using the quasi-polarization of Gv to identify Gv and GDv ) which we can compose
with

∏
v|p(OFv/pnvOFv )4 →

∏
v|p Gv[pnv ] to obtain an OF -linear map of sheaves
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over YK(pn)

HT :
∏
v|p

(OFv/pnvOFv )4 →
∏
v|p

ωGv/p
nvωGv .

We claim that this map admits an extension

HT :
∏
v|p

(OFv/pnvOFv )4 →
∏
v|p

ωGv/p
nvωGv

over XK(pn). When F = Q, this is the content of [PS16a, Prop. 1.2]. For a general
F we can use the Koecher principle of [Lan17, Thm. 8.7].

According to a result of Fargues ([Far10, Thm. 7], see also [PS16a, Thm. 1.5]),
the cokernel of the linearization of HT is annihilated by p

1
p−1 . By [PS16a, §1.4]

when F = Q (and an immediate generalization for general F ), there exists an
admissible formal scheme XmodK(pn) → XK(pn), which is the normalization of a blow-
up (the ideal of the blow-up is finitely generated and contains a power of p), and a
modification ωmodG ⊂ ωG such that:

(1) ωmodG is a locally free OF ⊗OXmod
K(pn)

-module of rank 2,

(2) p
1
p−1ωG ⊂ ωmodG ⊂ ωG ,

(3) The Hodge–Tate map HT factorizes into a map

HT :
∏
v|p

(OFv/pnvOFv )4 →
∏
v|p

ωmodGv /pnv−
1
p−1ωmodGv

and the linearized map

HT⊗ 1 :
∏
v|p

(OFv/pnvOFv )4 ⊗OXmod
K(pn)

→
∏
v|p

ωmodGv /pnv−
1
p−1ωmodGv

is surjective.
We say a few words about the construction of this formal model. We first intro-
duce the subsheaf ωmodG of ωG generated over XK(pn) by p

1
p−1ωG and local lifts of

HT(
∏
v|p(OFv/pnvOFv )4) in ωG . The sheaf ωmodG constructed in this way is not

locally free, but becomes locally free after pulling back to XmodK(pn) (and we continue
to denote this pulled back sheaf by ωmodG ). We now describe the procedure used to
construct XmodK(pn). Zariski locally over XK(pn) we can find a map∏

v|p

(OFv ⊗Zp OXK(pn)
)4 → ωG

by considering local lifts of the Hodge-Tate classes in ωG , and the image of this
map is ωmodG . Zariski locally, we can trivialize ωG and we can represent the above
map by a 2× 4 matrix at each place v|p. The formal scheme is obtained by taking
the normalization of the blow-up of the ideal which is the product at all places v
dividing p of the ideal locally generated by the 2× 2-minors of the matrix at v.

We denote by ev,1, . . . , ev,4 the canonical basis of O4
Fv
. We let ε = (εv)v|p ∈∏

v|p([0, nv−
1
p−1 ]∩Q). We define an admissible formal scheme XK(pn)(ε)→ XmodK(pn)

(an open subscheme of an admissible blowup of XmodK(pn)) by the conditions that:

• HT(ev,1) ∈ pεvωmodGv /pnv−
1
p−1ωmodGv for all v|p,

• HT(ev,2) ∈ pεvωmodGv /pnv−
1
p−1ωmodGv for all v ∈ Ic.
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For all v ∈ Ic, the Hodge–Tate map factorizes into an isomorphism HT ⊗ 1 :
OXK(pn)

(ε)/pεvev,3 ⊕OXK(pn)
(ε)/pεvev,4 → ωmodGv /pεvωmodGv .

For all v|p, we let Filcan
v ⊂ ωmodGv /pεv be the sub-module generated by HT(ev,2)

and HT(ev,3).

Lemma 6.1.5. Filcan
v is a locally free OXK(pn)

(ε)/pεv - module of rank one, and is
locally a direct factor in ωmodGv /pεvωmodGv .

Proof. See [Pil20, Lem. 12.2.2.1]. �

We let Grcan
v = ωmodGv /(pεvωmodGv + Filcan

v ). Then for all v|p, the Hodge–Tate map
induces an isomorphism:

HT⊗ 1 : (OXK(pn)
(ε)/pεv )ev,4 → Grcan

v .

If v ∈ Ic, the Hodge–Tate map also induces an isomorphism

HT⊗ 1 : (OXK(pn)
(ε)/pεv )ev,3 → Filcan

v .

6.1.6. Flag varieties. We denote by FLn → XmodK(pn) the flag formal scheme which
parametrizes locally free direct summands of rank one (as OF ⊗OXmod

K(pn)
-modules)

FilωmodG in ωmodG . This space decomposes into a product FLn =
∏
v|p FLv,n over all

places v above p.
Let w = (wv) ∈

∏
v|p[0, εv]∩Q. We let FLn,ε,w → XK(pn)(ε) be the moduli space

of locally free direct summands of rank one FilωmodGv ⊂ ωmodGv such that FilωmodGv =
Filcan

v mod pwv .
We let w′ = (w′v) ∈

∏
v|p[0, wv] ∩Q. We let FL+

n,ε,w,w′ → FLn,ε,w be the moduli
space parametrizing:

(1) For all v|p a basis ρv : OFL+

n,ε,w,w′
→ ωGmodv

/FilωGmodv
such that ρv(1) =

HT(ev,4) mod pw
′
v ,

(2) For all v ∈ Ic, a basis νv : OFL+

n,ε,w,w′
→ FilωGmodv

such that νv(1) =

HT(ev,3) mod pw
′
v .

6.1.7. Some groups. The group
∏
v|p GSp4(OFv/pnv ) acts on XK(pn) and XmodK(pn).

The parabolic subgroup
∏
v∈Ic B(OFv/pnv )

∏
v∈I Kli(OFv/pnv ) acts on XK(pn)(ε).

Let us denote by XK(I,pn)(ε) the quotient of XK(pn)(ε) by the action of this finite
group. This is an admissible formal scheme.

We have maps B(OFv/pnv )→ ((OFv/pnv )×)2 provided by the last two diagonal
entries and Kli(OFv/pnv )→ (OFv/pnv )× provided by the last diagonal entry.

We denote by T0
w′ the formal group defined by

T0
w′(R) =

∏
v∈I

(1 + pw
′
vR)

∏
v∈Ic

(1 + pw
′
vR)2

for any admissible OCp -algebra R.
We denote by Tw′ the group

Tw′(R) =
∏
v∈I
O×Fv (1 + pw

′
vR)

∏
v∈Ic

(O×Fv (1 + pw
′
vR))2

for any admissible OCp -algebra R.



POTENTIAL MODULARITY OF ABELIAN SURFACES 143

Finally, we denote by Tn,w′ the fibre product

Tw′ ×Tw′/T
0
w′

∏
v∈Ic

B(OFv/pnv )
∏
v∈I

Kli(OFv/pnv ).

6.1.8. Torsors. The map FL+
n,ε,w,w′ → FLn,ε,w is a T0

w′ -torsor. The group T0
w′ acts

on ρv and νv. This action extends to an action of Tn,w′ on FL+
n,ε,w,w′ → XK(pn)(ε),

compatible with the action of
∏
v∈Ic B(OFv/pnv )

∏
v∈I Kli(OFv/pnv ) on XK(pn)(ε).

6.1.9. Formal Banach sheaves. Let A be a normal admissible OCp -algebra. Let
κA :

∏
v∈I O

×
Fv

∏
v∈Ic(O

×
Fv

)2 → A× be a character, which we assume is w′-analytic,
in the sense that it extends to a pairing Tw′ × Spf A→ Gm.

We denote by π1 : FL+
n,ε,w,w′ → FLn,ε,w the projection. We can define an

invertible sheaf of OFLn,ε,w⊗̂A-modules,

LκA = ((π1)∗OFL+

n,ε,w,w′
⊗̂A)T

0
w′

where the invariants are taken for the diagonal action.
We let π2 : FLn,ε,w → XK(pn)(ε). This is an affine map. We define a formal

Banach sheaf GκA,w = (π2)∗L
κA over XK(pn)(ε); this is independent of the choice

of w′, as is easily seen from the construction.
Finally, we let π3 : XK(pn)(ε)→ XK(I,pn)(ε), and we define FκA,w = ((π3)∗G

κA,w)Tn,w .
This is a formal Banach sheaf over XK(I,pn)(ε).

6.1.10. Some properties. For each v ∈ I we choose an element iv ∈ {2, 3}. Let
XK(pn)(ε, (iv)) be the open subset of XK(pn)(ε) where Filcan

v is generated by HT(eiv )
for all v ∈ I.

Lemma 6.1.11. The quasi-coherent sheaf GκA,w/pinfv wv restricted to XK(pn)(ε, (iv))

is an inductive limit of coherent sheaves which are extensions of the sheaf OXK(pn)(ε,(iv))/p
infv wv .

Proof. This can be proved in the same way as [AIP15, Lem. 8.1.6.2]. �

Lemma 6.1.12. The quasi-coherent sheaf GκA,w/p is a flat sheaf of OXK(pn)(ε)/p-
modules.

Proof. See [Pil20, Lem. 12.6.2.1]. �

6.2. Vanishing theorem.

6.2.1. The minimal compactification. The main result of this subsection is Theo-
rem 6.2.6. As in the proof of Theorem 4.2.1, we will use the minimal compact-
ification, and in particular the facts that the pushforward of our sheaves to the
minimal compactification are supported on open subsets that admit an explicit
affine cover, and that the higher derived pushforwards from the toroidal to minimal
compactifications of the cuspidal cohomology vanish.

We denote by X∗K the minimal compactification of YK . There is a natural map
XK → X∗K . The invertible sheaf detωG over XK descends to an invertible sheaf still
denoted by detωG over X∗K . Let n = (nv) ∈ Z

Sp
≥0. In this subsection we consider

only the case that nv is independent of v, and accordingly we will write n for nv.
We let X∗K(pn) be the Stein factorization of the morphism: XK(pn) → X∗K . This
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is a normal admissible formal scheme. In [PS16a, Cor. 1.4] it is proved that the
determinant of the Hodge–Tate map on XK(pn):

Λ2HT :
⊗
v|p

Λ2(OFv/pnOFv )4 →
⊗
v|p

detωGv/p
n

is the pull back of a map denoted the same way:

Λ2HT :
⊗
v|p

Λ2(OFv/pnOFv )4 →
⊗
v|p

detωGv/p
n

which is defined over X∗K(pn).

Remark 6.2.2. Literally, the determinant of the Hodge–Tate map is a map:

Λ2[F :Q](OF /pnOF )4 → detωG/p
n.

But using the action of OF , it is easy to see that it factors through the direct factor⊗
v|p Λ2(OFv/pnOFv )4.

By [PS16a, §1.4] (for F = Q, and the same construction for general F ), there is
a normal admissible formal scheme X∗−modK(pn) → X∗K(pn) which is the normalization
of a blow up and carries a locally free modification detωmodG ⊂ detωG such that:

(1) p
2[F :Q]
p−1 detωG ⊂ detωmodG ⊂ detωG .

(2) The Hodge–Tate map factorizes into a surjective map:⊗
v|p

Λ2(OFv/pnOFv )4 ⊗OX∗−mod
K(pn)

→ detωmodG /pn−
2[F :Q]
p−1 .

The construction X∗−modK(pn) follows a similar procedure as the construction of
XmodK(pn) explained in section 6.1.4: one can lift locally the map Λ2HT to a map⊗

v|p Λ2(O4
Fv

) ⊗ OX∗
K(pn)

→
⊗

v|p detωGv and consider the normalization of the
blow up of the ideal which is locally the product at all places v of the ideals
generated by the coefficients of the above map at the place v. By the universal
properties of blow-ups and normalizations, there is a map XmodK(pn) → X∗−modK(pn) . Let

ε = (εv) ∈
∏
v|p([0, n−

2[F :Q]
p−1 ]∩Q). We denote by X∗K(pn)(ε)→ X∗−modK(pn) the formal

scheme defined by the condition:

• HT(ev,1)∧HT(ev,i)⊗v′|p,v′ 6=vHT(ev′,jv′ )∧HT(ev′,kv′ ) ∈ p
εv detωmodG /pn−

2[F :Q]
p−1

for all v|p and 1 ≤ i, jv′ , kv′ ≤ 4,
• HT(ev,2)∧HT(ev,i)⊗v′|p,v′ 6=vHT(ev′,jv′ )∧HT(ev′,kv′ ) ∈ p

εv detωmodG /pn−
2[F :Q]
p−1

for all v ∈ Ic and 1 ≤ i, jv′ , kv′ ≤ 4.
There is a Cartesian diagram (see the proof of [Pil20, Lem. 12.9.1.1]):

XK(pn)(ε) //

��

XmodK(pn)

��

X∗K(pn)(ε)
// X∗−modK(pn)

By the proof of [Sch15, Thm. 4.3.1, pp 1029-30] (see also [PS16a, Thm. 1.16]), there
is an integer N such that for all n ≥ N , there is a normal admissible formal scheme
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X∗−HT
K(pn) and a projective map X∗−modK(pn) → X∗−HT

K(pn) which is an isomorphism on the
associated analytic spaces and satisfies:

(1) The invertible sheaf detωmodG descends to an ample invertible sheaf on
X∗−HT
K(pn).

(2) For all rational numbers ε > 0, there is n(ε) ≥ N such that if n ≥ n(ε), then
there are sections s(iv,jv)v|p ∈ H0(X∗−HT

K(pn),detωmodG ) satisfying s(iv,jv) =

⊗v|pHT(ev,iv ) ∧HT(ev,jv ) in detωmodG /pε for all 1 ≤ iv, jv ≤ 4.
Let ε = (εv) ∈ (Q>0)Sp . Let n ≥ supv n(εv). We define a formal scheme

X∗−HT
K(pn)(ε)→ X∗−HT

K(pn) by the condition:

• for all v|p, for all (iv′ , jv′)v′|p ∈ ({1, 2, 3, 4}×{1, 2, 3, 4})Sp , such that iv = 1,
we have s(iv′ ,jv′ )

∈ pεv detωmodG ,
• for all v ∈ Ic, for all (iv′ , jv′)v′|p ∈ ({1, 2, 3, 4} × {1, 2, 3, 4})Sp , such that
iv = 2, we have s(iv′ ,jv′ )

∈ pεv detωmodG .
We have a Cartesian diagram

X∗K(pn)(ε)
//

��

X∗−modK(pn)

��

X∗−HT
K(pn)(ε)

// X∗−HT
K(pn)

where both vertical maps are projective maps and induce isomorphisms on the
associated analytic generic fibres.

For all v ∈ I, let iv ∈ {2, 3}. We define an open subspace X∗−HT
K(pn)(ε, (iv)) of

X∗−HT
K(pn)(ε) by the condition that s(iv,4)v∈I ,(3,4)v∈Ic 6= 0.
We similarly define an open subspace X∗K(pn)(ε, (iv)) of X∗K(pn)(ε) by the condi-

tion that ⊗v∈IHT(ev,iv ) ∧HT(ev,4)⊗v∈Ic HT(ev,3) ∧HT(ev,4) 6= 0 for all v ∈ I.

Lemma 6.2.3. We have a projective map X∗K(pn)(ε, (iv)) → X∗−HT
K(pn)(ε, (iv)) which

is an isomorphism on the associated analytic adic spaces. Moreover, X∗−HT
K(pn)(ε, (iv))

is an affine formal scheme.

Proof. The first point is clear. The second point follows from the ampleness of
detωmodG on X∗−HT

K(pn)(ε) and the fact that X∗−HT
K(pn)(ε, (iv)) is the open subscheme de-

fined by the non-vanishing of a section of an ample sheaf. �

6.2.4. Vanishing. We have a map π : XK(pn)(ε) → X∗K(pn)(ε). We denote as usual
by D the boundary divisor.

Proposition 6.2.5. We have Riπ∗OXK(pn)(ε)(−D) = 0 for all i > 0.

Proof. This can be proved in exactly the same way as [Pil20, Prop. 12.9.2.1] (which
is the case F = Q). �

Theorem 6.2.6. Let ε = (εv) ∈ Q
Sp
>0. Let n = (nv) with infv nv ≥ supv n(εv). The

complex
RΓ(XK(pn)(ε),G

κA,w ⊗ (detωmodG )2(−D))[1/p]

has cohomology concentrated in degrees [0,#I].
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Proof. Consider the hypercube [2, 3]I . We can associate to it a category denoted
by C. Its objects are the faces σ of the hypercube. By definition, a face is a product∏
v∈I λv where for each v ∈ I, λv ∈ {2, 3, [2, 3]} (our convention is that faces are

closed). There is a map σ′ → σ between faces if σ′ is included in σ.
We now define a functor Cop → Op(X∗−modK(pn) (ε)), where the target is the category

of open subsets of X∗−modK(pn) (ε) (whose morphisms are open immersions). It sends a
face σ to Uσ, the intersection of all the formal schemes X∗−modK(pn) (ε, (iv)) for (iv)v∈I ∈
σ (we recall that iv ∈ {2, 3}).

Write f : XK(pn)(ε) → X∗−modK(pn) (ε) for the map defined above. For all σ ∈ C,
consider the following Cartesian diagram:

XK(pn)(ε)σ

fσ

��

i // XK(pn)(ε)

f

��

Uσ
j
// X∗−modK(pn) (ε)

where j is the natural open immersion.
Let Sh(XK(pn)(ε)) be the category of sheaves on XK(pn)(ε). We define a functor

C → Sh(XK(pn)(ε)) which sends σ to the sheaf

Gσ = i∗i
∗(GκA,w ⊗ (detωmodG )2(−D)[1/p]).

We deduce from Lemmas 6.1.11 and 6.1.12, together with Proposition 6.2.5, that
the sheaf f∗Gσ is a small formal Banach sheaf and that Rif∗Gσ = 0 for all i > 0.
It follows from Theorem 6.1.3 (which applies because of Lemma 6.2.3) that f∗Gσ
is acyclic.

We deduce that the cohomology RΓ(XK(pn)(ε),G
κA,w ⊗ (detωmodG )2(−D)[1/p])

is represented by the complex C• concentrated in degree 0 to #I, whose ith term
is ⊕σ,dimσ=iH

0(XK(pn)(ε),Gσ) and whose differentials are alternating sums of the
restriction maps H0(XK(pn)(ε),Gσ′) → H0(XK(pn)(ε),Gσ) for σ′ ⊂ σ, dimσ′ =
dimσ − 1. �

6.3. Sheaves of overconvergent and locally analytic modular forms: the
analytic construction. We now translate our previous formal constructions to
the analytic setting, which is well adapted for the spectral theory.

6.3.1. Analytic Hilbert–Siegel varieties. This section is parallel to [Pil20, §12.7]. We
let XK(pn) be the generic fibre of XK(pn). We write XK for the generic fibre of XK .
We let XK(pn)(ε) ⊂ XK(pn) be the generic fibre of XK(pn)(ε). We let XK(I,pn)(ε) be
the generic fibre of XK(I,pn)(ε). We now give a modular interpretation of this last
space. Let A be the universal semi-abelian scheme and G be its p-divisible group.
Let ωG be the conormal sheaf of A at the origin and let ω+

G ⊂ ωG be the subsheaf
of integral differentials (we use the slight abuse of notation to write ωG instead of
ωA). These are sheaves over XK on the analytic site.

We let ωmod,+G be the subsheaf of ω+
G generated by the image of the Hodge–Tate

map. This is an étale sheaf over XK .
The fibres of the map XK(I,pn)(ε)→ XK parametrize:
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• For all v ∈ I, a subgroup Hv,nv ⊂ Gv[pnv ] which is locally for the étale
topology isomorphic to Z/pnvZ and is locally for the étale topology gener-
ated by an element ev,1 which satisfies HT(ev,1) = 0 in ωmod,+Gv /pεv .

• For all v ∈ Ic, totally isotropic subgroups Hv,nv ⊂ Lv,nv ⊂ Gv[pnv ] such
that Hv,nv is locally for the étale topology isomorphic to Z/pnvZ, Lv,nv
is locally for the étale topology isomorphic to (Z/pnvZ)2, and is locally
for the étale topology generated by elements ev,1 and ev,2 which satisfy
HT(ev,1) = HT(ev,2) = 0 in ωmod,+Gv /pεv .

We can define for all v|p an étale sheaf Filcan
v = Im(HT : H⊥v,nv ⊗O

+
XK(I,pn)(ε)

→
ωmod,+Gv /pεv ). This is a étale locally free sheaf of O+

XK(I,pn)(ε)
/pεv -modules of rank

1. We let Grcan
v = ωmod,+Gv /(pεv + Filcan

v ).
We have isomorphisms deduced from the Hodge–Tate map:
• HT : HD

v,nv ⊗O
+
XK(I,pn)(ε)

/pεv → Grcan
v for all v|p,

• HT : (Lv,nv/Hv,nv )D ⊗O+
XK(I,pn)(ε)

/pεv → Filcan
v for all v ∈ Ic.

We let FLK(I,pn),ε,w → XK(I,pn)(ε) be the moduli space of flags FilωG ⊂ ωG

satisfying FilωGv ∩ ω
mod,+
Gv /pwv = Filcan

v /pwv .
We let XK(I,pn)+(ε) → XK(I,pn)(ε) be the étale cover parametrizing trivializa-

tions:
• Z/pnvZev,4

∼→ HD
v,nv for all v|p,

• Z/pnvZev,3
∼→ (Lv,nv/Hv,nv )D for all v ∈ Ic.

We let FL+
K(I,pn),ε,w,w′ → FLK(I,pn),ε,w ×XK(I,pn)(ε) XK(I,pn)+(ε) be the moduli

space of trivializations of:
• for all v|p, ρv : OFL+

K(I,pn),ε,w,w′
→ GrωGv = ωGv/FilωGv such that ρv(1) =

HT(ev,4) modulo pw
′
v .

• for all v ∈ Ic, νv : OFL+

K(I,pn),ε,w,w′
→ FilωGv such that νv(1) = HT(ev,3)

modulo pw
′
v .

We can connect these definitions with the constructions of the previous sec-
tions. Let FLn,ε,w → XK(pn)(ε) be the analytic space associated to FLn,ε,w. Let
FL+

n,ε,w,w′ be the analytic space associated to FL+
n,ε,w,w′ .

Lemma 6.3.2. We have

FLn,ε,w = FLK(I,pn),ε,w ×XK(I,pn)(ε) XK(pn)(ε)

and
FL+

n,ε,w,w′ = FL+
K(I,pn),ε,w,w′ ×XK(I,pn)+ (ε) XK(pn)(ε).

Proof. This follows from the definitions. �

6.3.3. Banach sheaves. We let LκA be the invertible sheaf over FLn,ε,w×Spa(A[1/p], A)
associated to LκA . We let GκA,w be the Banach sheaf over XK(pn)(ε) associated to
GκA,w. We let FκA,w be the Banach sheaf over XK(I,pn)(ε) attached to FκA,w. A di-
rect definition of FκA,w is the following. Let π : FL+

K(I,pn),ε,w,w′ → XK(I,pn)(ε) be
the affine projection. Let Tw′ be the generic fibre of Tw′ . This group acts naturally
on FL+

K(I,pn),ε,w,w′ , trivially on XK(I,pn)(ε), and the morphism π is equivariant for
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the action. It follows from the definitions that

FκA,w = (π∗OFL+

K(I,pn),ε,w,w′
⊗̂A)Tw′

where the invariants are for the diagonal action (with the action on the second
factor being via κA).

6.3.4. Locally analytic overconvergent cohomology. We define the n, ε-convergent,
cuspidal w-analytic cohomology of weight parametrized by A to be:

Ccusp(n, ε, w, κA ⊗ (2, 2)v|p) := RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D)).

For ε′ ≥ ε, n′ ≥ n, w′ ≥ w, we have maps: Ccusp(n, ε, w, κA ⊗ (2, 2)v|p) →
Ccusp(n

′, ε′, w′, κA ⊗ (2, 2)v|p).
Passing to the limit over n, ε, w, we define the ith cohomology groups of cuspidal,

overconvergent, locally analytic cohomology of weight parametrized by A:

Hi
cusp(†, κA ⊗ (2, 2)v|p) = lim−→Hi(Ccusp(n, ε, w, κA ⊗ (2, 2)v|p)).

6.3.5. Properties of locally analytic overconvergent cohomology.

Proposition 6.3.6. The complex Ccusp(n, ε, w, κA ⊗ (2, 2)v|p) is represented by a
bounded complex of projective Banach A[1/p]-modules.

Proof. This follows easily by considering a Čech complex; see [Pil20, Prop. 12.8.2.1].
�

Proposition 6.3.7. The cohomology Hi
cusp(†, κA⊗(2, 2)v|p) vanishes for i /∈ [0,#I].

Proof. This follows from Theorem 6.2.6. �

6.3.8. Descent. We now assume that the character

κA :
∏
v∈I
O×Fv

∏
v∈Ic

(O×Fv )2 → A×

is trivial on the torsion subgroup of
∏
v∈I O

×
Fv

∏
v∈Ic(O

×
Fv

)2 (of order prime to p
since p > 2).

The group (OF )×,+(p) acts on XK(I,pn), and the action factors through a finite
group. We let XG1

K(I,pn) be the quotient. The action of (OF )×,+(p) can be lifted to the
sheaf FκA,w by setting

x : x∗FκA,w → FκA,w

for all x ∈ (OF )×,+(p) , to be the composition of the tautological isomorphism (the
polarization is not used in the construction of the sheaf) and multiplication by the
character d : (OF )×,+(p) → Λ×I → A× of §4.4.2.

We denote by Fκ
G1
A ,w the descended sheaf on XG1

K(I,pn). We let

Ccusp(G1, n, ε, w, κA ⊗ (2, 2)v|p)

be the cohomology of the sheaf

Fκ
G1
A ,w ⊗ (detωG)2(−D)

over XG1

K(I,pn)(ε). This is a direct factor of Ccusp(n, ε, w, κA ⊗ (2, 2)v|p). We also let
Hi
cusp(G1, †, κA ⊗ (2, 2)v|p) = lim−→Hi(Ccusp(G1, n, ε, w, κA ⊗ (2, 2)v|p)).
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6.3.9. Spectral theory: construction of the operator Uv,2. Firstly let v ∈ I. We
define an analytic adic space s1 : Cv,2 → XK(I,pn)(ε) which parametrizes isogenies
A → A′ with associated Barsotti–Tate group G → G′ whose kernel is a group
Mv ⊂ Gv[p2] which:

• is totally isotropic and locally isomorphic to (OFv/pOFv )2 ⊕OFv/p2OFv ,
• has trivial intersection with Hv,nv .

There is a second projection s2 : Cv,2 → XK(I,pn′ )(ε
′) where:

• n′ = (n′v′)v′|p where n′v = nv + 1, and n′v′ = nv′ if v′ 6= v.
• ε′ = (εv′)v′|p where ε′v = εv + 1, and ε′v′ = εv′ if v′ 6= v.

This map is provided by sending (A,A′) to A′, equipped with the subgroups:
• H ′v′,nv′ = Im(Hv′,nv′ ) for all v′ 6= v,
• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic,
• H ′v,nv+1 = Im(p−1Hv,nv ) where p−1Hv,nv is the pre-image in Gv[pnv+1] of
Hv,nv .

One checks as in [Pil20, Lem. 13.2.1.1] (see also Lemma 6.3.13 below) that the
image of s2 lands in XK(I,pn′ )(ε

′). The natural map ωG′ → ωG induces a nat-
ural map s∗2FκA,w

′ → s∗1FκA,w, where w′ = (wv′) with w′v′ = wv′ if v′ 6= v,
and w′v = wv + 1. (See [Pil20, Lem. 13.2.2.1].) We deduce that there is a nor-
malized map s∗2FκA,w

′ ⊗ (detωG)2(−D) → s∗1FκA,w ⊗ (detωG)2(−D) obtained by
taking the tensor product of the above map and the normalized map (by p−2)
s∗2(detωG)2(−D)→ s∗1(detωG)2(−D).

We can therefore construct a Hecke operator Uv,2 : RΓ(XK(I,pn)(ε),FκA,w ⊗
(detωG)2(−D)) → RΓ(XK(I,pn),FκA,w ⊗ (detωG)2(−D)) by the following compo-
sition:

RΓ(XK(I,pn)(ε),FκA,w⊗(detωG)2(−D))→ RΓ(XK(I,pn′ )(ε
′),FκA,w

′
⊗(detωG)2(−D))

→ RΓ(Cv,2, s∗2FκA,w
′
⊗ (detωG)2(−D))→

RΓ(Cv, s∗1FκA,w⊗(detωG)2(−D))→ RΓ(XK(I,pn)(ε), (s1)∗s
∗
1FκA,w⊗(detωG)2(−D))

p−3Tr→ RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D)).

Now let v ∈ Ic. We define an analytic adic space s1 : Cv,2 → XK(I,pn)(ε) which
parametrizes isogenies G → G′ whose kernel is a group Mv ⊂ Gv[p2] which:

• is totally isotropic and locally isomorphic to (OFv/pOFv )2 ⊕ OFv/p2OFv ,
and

• locally in the étale topology there is a symplectic isomorphism (Gv)[p∞] '
(Fv/OFv )4 such that
– Mv is generated by p−1ev,2, p

−1ev,3, p
−2ev,4,

– Hv,nv is generated by p−nvev,1, and
– Lv,nv is generated by p−nvev,1 and p−nvev,2.

There is a second projection s2 : Cv,2 → XK(I,pn)(ε), sending (G,G′) to G′,
equipped with the subgroups:

• H ′v′,nv′ = Im(Hv′,nv′ ) for all v′ 6= v.
• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic, v′ 6= v.
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• In the notation above, H ′v,nv is the group generated by the image in G′ of
p−nvev,1 and L′v,nv is the group generated by the image of p−nvev,1 and
p−nv−1ev,2. One checks easily that these groups only depend on Mv, Hv,nv

and Lv,nv (and not on the choice of symplectic basis).

Again, there is a natural map s∗2FκA,w → s∗1FκA,w. (See [Pil20, Lem. 13.2.2.1]
and [AIP15, §6.2].) We deduce that there is a normalized map s∗2FκA,w⊗(detωG)2(−D)→
s∗1FκA,w ⊗ (detωG)2(−D) obtained by taking the tensor product of the above map
and the normalized map (by p−2) s∗2(detωG)2(−D)→ s∗1(detωG)2(−D).

We can therefore construct a Hecke operator Uv,2 : RΓ(XK(I,pn)(ε),FκA,w ⊗
(detωG)2(−D)) → RΓ(XK(I,pn),FκA,w ⊗ (detωG)2(−D)) by the following compo-
sition:

RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D))→ RΓ(Cv,2, s∗2FκA,w ⊗ (detωG)2(−D))→

RΓ(Cv,2, s∗1FκA,w⊗(detωG)2(−D))→ RΓ(XK(I,pn)(ε), (s1)∗s
∗
1FκA,w⊗(detωG)2(−D))

p−3Tr→ RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D)).

Remark 6.3.10. When v ∈ Ic we observe that Uv,2 itself is not improving analyticity
and convergence in the v direction (while it visibly does so in the case v ∈ I). We
next define an operator Uv,1 when v ∈ Ic. We will then show that the composite
operator Uv,1Uv,2 improves analyticity and convergence. (This is related to our
needing to use both the operators Tv and Tv,1 at places v ∈ Ic in §4.)

6.3.11. Spectral theory: construction of the operator Uv,1. We let v ∈ Ic. We define
an analytic adic space t1 : Cv,1 → XK(I,pn)(ε) which parametrizes isogenies A→ A′

with associated Barsotti–Tate groups G → G′ whose kernel is a group Mv ⊂ Gv[p]
which:

• is totally isotropic and locally isomorphic to (OFv/pOFv )2,
• has trivial intersection with Lv,nv .

There is a second projection t2 : Cv,1 → XK(I,pn)(ε), given by sending (A,A′) to
A′, equipped with the subgroups:

• H ′v′,nv′ = Im(Hv′,nv′ ) for all v′,
• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic.

There is a natural map t∗2FκA,w → t∗1FκA,w (again see [Pil20, Lem. 13.2.2.1]
and [AIP15, §6.2]). We deduce that there is a map t∗2FκA,w

′ ⊗ (detωG)2(−D) →
t∗1FκA,w ⊗ (detωG)2(−D) obtained by taking the tensor product of the above map
and the map t∗2(detωG)2(−D)→ t∗1(detωG)2(−D).

We can therefore construct a Hecke operator Uv,1 : RΓ(XK(I,pn)(ε),FκA,w ⊗
(detωG)2(−D)) → RΓ(XK(I,pn),FκA,w ⊗ (detωG)2(−D)) by the following compo-
sition:

RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D))→ RΓ(Cv,1, t∗2FκA,w ⊗ (detωG)2(−D))→

RΓ(Cv,1, t∗1FκA,w⊗(detωG)2(−D))→ RΓ(XK(I,pn)(ε), (t1)∗t
∗
1FκA,w⊗(detωG)2(−D))

p−3Tr→ RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D)).
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6.3.12. Spectral theory: construction of the operator Uv,1Uv,2. Let v ∈ Ic. We
now consider the composite operator Uv,1Uv,2. Our main task it to show that this
operator improves convergence and analyticity in the v-direction. We begin by
giving the correspondence corresponding to this composite.

We define an analytic adic space u1 : Cv → XK(I,pn)(ε) which parametrizes
isogenies A → A′ with associated Barsotti–Tate groups G → G′ whose kernel is a
group Mv ⊂ Gv[p3] which:

• is totally isotropic and locally isomorphic to OFv/pOFv ⊕ OFv/p2OFv ⊕
OFv/p3OFv ,

• locally in the étale topology there is a symplectic isomorphism (Gv)[p∞] '
(Fv/OFv )4 such that
– Mv is generated by p−1ev,2, p

−2ev,3, p
−3ev,4,

– Hv,nv is generated by p−nvev,1, and
– Lv,nv is generated by p−nvev,1 and p−nvev,2.

There is a second projection u2 : Cv → XK(I,pn′ )(ε
′), given by sending (A,A′) to

A′, equipped with the subgroups:

• H ′v′,nv′ = Im(Hv′,nv′ ) for all v′ 6= v,
• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic, v′ 6= v,
• In the notation above, H ′v,nv+1 is the group generated by the image in G′ of
p−nv−1ev,1 and L′v,nv+1 is the group generated by the image of p−nv−1ev,1
and p−nv−2ev,2. One checks easily that these groups only depend on Mv,
Hv,nv and Lv,nv .

Lemma 6.3.13. The image of u2 lands in XK(I,pn′ )(ε
′).

Proof. We argue in the same way as in the proof of [Pil20, Lem. 13.2.1.1]. We fix
symplectic bases (ev,i)1≤i≤4 of Tp(G), (e′v,i)1≤i≤4 of Tp(G′), (fi)1≤i≤2 of ωmodGv , and
(f ′i)1≤i≤2 of ωmodG′v (compatible with the canonical filtration) such that there is a
commutative diagram:

Tp(Gv)
diag(1,p,p2,p3)

//

HT

��

Tp(G′v)

HT

��

ωmodGv
diag(p2,p3)

// ωmodG′

By definition we have that HT(ev,1),HT(ev,2) ∈ pεvωmodGv . On the other hand,
HT(ev,3),HT(ev,4) generate ωmodGv and HT(e′v,3),HT(e′v,4) generate ωmodG′v . The group
Lv,nv+1 is generated by diag(1, p, p2, p3) ·ev,1 = e′v,1 and diag(1, p, p2, p3) ·p−1ev,2 =

e′v,2. Therefore we deduce that HT(e′v,1),HT(e′v,2) ∈ pεv+1ωmodG . �

There is again a natural map u∗2FκA,w
′ → u∗1FκA,w where w′ = (wv′) with

w′v′ = wv′ is v′ 6= v and w′v = wv + 1; see [Pil20, Lem. 13.2.2.1] and [AIP15,
§6.2]. We deduce that there is a normalized map u∗2FκA,w

′ ⊗ (detωG)2(−D) →
u∗1FκA,w ⊗ (detωG)2(−D) obtained by taking the tensor product of the above map
and the normalized map (by p−2) u∗2(detωG)2(−D)→ u∗1(detωG)2(−D).
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We can therefore construct a Hecke operator Uv,2Uv,1 : RΓ(XK(I,pn)(ε),FκA,w⊗
(detωG)2(−D)) → RΓ(XK(I,pn),FκA,w ⊗ (detωG)2(−D)) by the following compo-
sition:

RΓ(XK(I,pn)(ε),FκA,w⊗(detωG)2(−D))
res→ RΓ(XK(I,pn′ )(ε

′),FκA,w
′
⊗(detωG)2(−D))

→ RΓ(Cv, u∗2FκA,w
′
⊗ (detωG)2(−D))→

RΓ(Cv, u∗1FκA,w⊗(detωG)2(−D))→ RΓ(XK(I,pn)(ε), (u1)∗u
∗
1FκA,w⊗(detωG)2(−D))

p−6Tr→ RΓ(XK(I,pn)(ε),FκA,w ⊗ (detωG)2(−D))

We now set U I =
∏
v∈I Uv,2

∏
v∈Ic Uv,1Uv,2.

Lemma 6.3.14. The operator U I acting on Ccusp(G1, n, ε, w, κA ⊗ (2, 2)v|p) is
compact. Moreover, for n+ 1 = (nv + 1)v|p, ε+ 1 = (εv + 1)v and w+ 1 = (wv + 1)v
we have a factorization (where the vertical maps are the natural restriction maps):

Ccusp(G1, n, ε, w, κA ⊗ (2, 2)v|p)
UI //

��

Ccusp(G1, n, ε, w, κA ⊗ (2, 2)v|p)

��

Ccusp(G1, n+ 1, ε+ 1, w + 1, κA ⊗ (2, 2)v|p)
UI //

22

Ccusp(G1, n+ 1, ε+ 1, w + 1, κA ⊗ (2, 2)v|p)

Proof. By construction, the action of U I can be factored into

RΓ(XG1

K(I,pn)(ε),F
κ
G1
A ,w⊗(detωG)2(−D))→ RΓ(XG1

K(I,pn+1)(ε+1),Fκ
G1
A ,w+1⊗(detωG)2(−D))

ŨI→ RΓ(XG1

K(I,pn)(ε),F
κ
G1
A ,w ⊗ (detωG)2(−D))

where n+ 1 = (nv + 1)v|p and ε+ 1 = (εv + 1)v, w+ 1 = (wv + 1)v. It is enough to
show that the map RΓ(XG1

K(I,pn)(ε),F
κ
G1
A ,w⊗ (detωG)2(−D))→ RΓ(XG1

K(I,pn+1)(ε+

1),Fκ
G1
A ,w+1 ⊗ (detωG)2(−D)) is compact. This follows by consideration of an

appropriate Čech complex, as in [Pil20, Lem. 13.2.4.1]. �

6.3.15. Spectral theory: local constancy of the Euler Characteristics. LetWcl be the
set of weights κ = ((kv, lv))v|p ∈ ZSp , with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod(p− 1)
for all v|p. It is equipped with the p-adic topology.

For all κ ∈ Wcl, we let Ccusp(G1, n, ε, w, κ) be n, ε-convergent, w-analytic co-
homology of weight κ and we set Hi

cusp(G1, †, κ) = lim−→Hi(Ccusp(G1, n, ε, w, κ)).
In other words, following the notation of §6.3.8, we have A = Cp and κA = κ ⊗
(−2,−2)v|p. It follows from Lemma 6.3.14 that the cohomology groups e(U I)Hi

cusp(G1, †, κ)
are finite-dimensional. The following standard consequence of our constructions
will be crucial in our comparison in §6.6 of the complexes constructed in §4 and the
overconvergent cohomology we are considering in this section.

Theorem 6.3.16. The map

Wcl → Z

κ 7→
∑
i

(−1)i dim e(U I)Hi
cusp(G1, †, κ)

is locally constant.
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Proof. This follows from Coleman’s theory [Col97, §A5], as in [Pil20, §13.4]. Indeed,
there is a perfect complex C• interpolating Ccusp(G1, n, ε, w, κ) over the spectral
variety, and the dimensions of the slope zero parts of the Ci are locally constant. �

Remark 6.3.17. In particular if #I = 1, we deduce that

κ 7→ dim e(U I)H0
cusp(G1, †, κ)− dim e(U I)H1

cusp(G1, †, κ)

is locally constant. We will use this in §6.6 to reduce the comparison of ordinary and
overconvergent cohomology to the case of high weight, where the control theorems
proved in §4 apply.

6.4. Locally analytic overconvergent classes and algebraic overconvergent
classes. Let κ = ((kv, lv))v|p with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod (p − 1) be a
dominant algebraic weight.

Proposition 6.4.1. On Hi
cusp(G1, †, κ), the slopes of (Uv,1)v∈Ic and (Uv,2)v|p are

≥ −3. On H0
cusp(G1, †, κ) they are ≥ 0.

Proof. The proof of [Pil20, Prop. 13.3.1.1] goes through essentially without change.
�

Below, we denote by Fκ,w− = lim−→w′<w
Fκ,w′ .

Proposition 6.4.2. Let κ = ((kv, lv))v|p with lv = 2 if v ∈ I, kv = lv = 2 mod (p−
1) be a dominant algebraic weight. There is a relative analytic BGG resolution:

0→ ωκ(−D)→ Fκ,w
−
⊗ (detωG)2(−D)→⊕

s∈W (1)

Fs•κ,w
−
⊗ (detωG)2(−D)→ . . .→

⊕
s∈W (d)

Fs•κ,w
−
⊗ (detωG)2(−D)→ 0

where W is the Weyl group of GL2(F ⊗Q Qp), W (i) stands for the elements of
length i in W , and • is the twisted Weyl action.

Proof. This is a relative version of the main result of [Jon11], and is proved in [AIP15,
§7.2]. (Note though that there is a minor error there; one needs to replace Fκ,w

with Fκ,w− as defined above, but having made this change, the arguments go
through unchanged.) �

The actions of Uv,1 and Uv,2 by cohomological correspondences on the sheaf
Fκ,w− ⊗ (detωG)2(−D) restrict to actions on the subsheaf ωκ(−D) (and the action
of U I is compact on the cohomology).

Corollary 6.4.3. Let κ = ((kv, lv))v|p with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod (p−1)
be a dominant algebraic weight. Then the map

e(U I)Hi(XK(I,pn)(ε), ω
κ(−D))→ e(U I)Hi(XK(I,pn)(ε),Fκ,w ⊗ (detωG)2(−D))

is an isomorphism for i = 0 and injective if i = 1. It is an isomorphism for i = 1
if we further assume that kv − lv ≥ 3 for all v|p.

Proof. Proposition 6.4.2 gives a spectral sequence Ep,q1 = ⊕s∈W (p)Hq(XK(I,pn)(ε),Fs•κ,w⊗
(detωG)2(−D)) converging to Hp+q(XK(I,pn)(ε), ω

κ(−D)). We shall see that the
ordinary projector kills the terms Ep,q1 of the spectral sequence for p > 1 un-
der a suitable normalization of the action of the Hecke operators and suitable
assumptions on the weight κ. We analyze the differentials of proposition 6.4.2:
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s∈W (i) Fs•κ,w

− ⊗ (detωG)2(−D) →
⊕

s∈W (i+1) Fs•κ,w
− ⊗ (detωG)2(−D). We

let W =
∏
v|p{1v, wv} with `(wv) = 1. For any subset J of places diving p,

we let wJ =
∏
v∈J wv. The above map is given by the product of the maps

θs,s′ : Fs•κ,w−⊗ (detωG)2(−D)→ Fs′•κ,w−⊗ (detωG)2(−D) for s = wJ (for a sub-
set J of cardinality i) and s′ = wJ∪{v} for v /∈ J . By [AIP15, §7.3], this map induces
on cohomology an equivariant map for the operators Uw,i for w 6= v and Uv,1; and on
the other hand, we have Uv,2 ◦ θs,s′ = p(kv−lv)+1θs,s′ ◦Uv,2. A way to interpret this
relation is to say that the spectral sequence is equivariant for the action of Hecke op-
erators, if the standard action of Uv,2 on Hi(XK(I,pn)(ε),FwJ•κ,w⊗(detωG)2(−D))

is twisted by multiplication by pkv−lv+1 if v ∈ J . The corollary therefore follows
from the slope bounds of Propositions 6.4.1. �

6.5. Small slope forms are classical.

6.5.1. Fargues’ degree function. We now recall some results on the degree of quasi-
finite flat group schemes, following the papers [Far10, Far11]. Let K be a complete
valued extension of Qp with corresponding valuation v : K → R ∪ {∞}, which we
assume to be normalized so that v(p) = 1. We also write v : OK/pOK → [0, 1]
for the induced map. If M is a finitely presented torsion OK-module, then we can
writeM ∼= ⊕ri=1OK/xi for some xi ∈ OK , and we set degM :=

∑r
i=1 v(xi mod p).

If H is a group scheme over OK , we let ωH denote the conormal sheaf to the
identity section. IfH is finite flat, then ωH is finitely presented and torsion overOK ,
and following Fargues we define the degree of H to be

degH := degωH .

More generally, let A→ A′ be an isogeny of semi-abelian schemes with associated
p-divisible groups G → G′ over some analytic adic space S. We denote by ωG and
ωG′ the conormal sheaves of A and A′ along their unit sections and by ω+

G and
ω+
G′ the subsheaf of integral differentials (which means that locally on S they arise

from differentials on a formal model of A or A′). Let H be the kernel of G → G′.
This is a quasi-finite group scheme. To this isogeny we may attach a section δH of
the locally free sheaf of rank one detωG′ ⊗ detω−1

G . Moreover, this section lies in
the subsheaf (detωG′)

+ ⊗ (detω−1
G )+ of integral differential forms. For each point

x ∈ S, we may compute the associated norm |δH |x, by choosing a trivialization of
(detωG′)

+⊗ (detω−1
G )+ in a neighbourhood of x and viewing δH as a function (the

norm |δH |x is independent of the trivialization). If x ∈ S is a rank one point with
associated valuation normalized by vx(p) = 1, and if Hx ⊂ Gx extends to a finite flat
group scheme on a formal model Gx of Gx over Spec k(x)+, then vx(δH) = degHx.

6.5.2. Neighbourhoods of the ordinary locus. Recall from §4.3 that we define

Kp(I) =
∏
v∈I

Kli(v)
∏
v∈Ic

Iw(v).

We can consider XKp(I)Kp . Let XKpKp(I) be the associated analytic space. For
each v|p, we have an isogeny G → G′ whose kernel is a quasi-finite group scheme Hv

which is of order p away from the boundary. For each v ∈ Ic, we have an isogeny
G → G′ whose kernel is a quasi-finite group scheme Lv which is of order p2 away
from the boundary.

Let X rk1
KpKp(I) be the subset of rank one points. To each rank one point x is

associated a rank one valuation vx : OXKp(I)Kp,x
→ R ∪ {∞} which we normalize
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by vx(p) = 1. If v ∈ I, we define degv : X rk1
KpKp(I) → [0, 1] by degv(x) = vx(δHv ).

Similarly, for all v ∈ Ic, we define degv : X rk1
KpKp(I) → [0, 2] by degv(x) = vx(δLv ).

We can put all these degree functions together into a function

deg : X rk1
KpKp(I) → [0, 1]I × [0, 2]I

c

.

For each rational interval J ⊂ [0, 1]I × [0, 2]I
c

, there is a unique quasi-compact
open subset XKpKp(I)(J) ⊂ XKpKp(I) such that XKpKp(I)(J)rk1 = deg−1(J).

Of particular interest is the multiplicative locus:

Xmult
KpKp(I) = XKpKp(I)({1}I × {2}I

c

).

Let (εv) ∈ ([0, 1]I × [0, 2]I
c

) ∩QSp and set

XKpKp(I)((εv)v∈Sp) = XKpKp(I)(
∏
v∈I

[1− εv, 1]I ×
∏
v∈Ic

[2− εv, 2]I
c

).

Observe that Xmult
KpKp(I) = XKpKp(I)((0)v∈Sp) while {XKpKp(I)((εv)v∈Sp)}εv→0+,∀v∈Sp

is a fundamental system of strict neighbourhoods of Xmult
KpKp(I).

All these spaces are stable under the action of OF×,+(p) on the polarization, and
descend to open subspaces of XG1

KpKp(I). We can therefore add a superscript G1 to
any of these spaces with the obvious meaning.

6.5.3. Comparison between spaces of overconvergent cohomology. In this section we
make the connection between the spaces XKpKp(I)((εv)v∈Sp) (with εv ∈ ([0, 1]I ×
[0, 2]I

c

) ∩QSp) that we just introduced and the spaces XK(I,pn)((εv)v∈Sp) (say for
parallel n ∈ Z≥1 and with εv ∈ ([0, n − 1

p−1 ] ∩ Q)Sp) introduced in §6.1.4. Both
types of spaces are neighbourhoods of the multiplicative locus in an appropriate
sense. The previous spaces are well adapted to the construction of interpolation
sheaves and eigenvarieties while these new spaces appear naturally when one wants
to prove classicity theorems.

There is a natural forgetful map XK(I,pn)((εv)v∈Sp) → XKpKp(I). By [Pil20,
Lem. 14.1.1] (for the places v ∈ I, and a trivial extension for the places v ∈
Ic), this map factors into a map XK(I,pn)((εv)v∈Sp) → XKp(I)Kp((1 − 2

n (n − εv +
1
p−1 ))v∈I×(2− 2

n (n−εv+ 1
p−1 ))v∈Ic). Observe that when εv = n− 1

p−1 and n→∞,
1− 2

n (n− εv + 1
p−1 )→ 1 and 2− 2

n (n− εv + 1
p−1 )→ 2. Conversely, by [Pil20, Lem.

14.1.2], there is a natural inclusion: XKp(I)Kp((εv)v∈Sp) ↪→ XK(I,p)((1− 1
p−1 )v∈Sp)

for all εv ≥ 1− 1
p if v ∈ I and εv ≥ 2− 1

p if v ∈ Ic.

Lemma 6.5.4. Let (εv) ∈ ([1 − 1
p , 1)I × [2 − 1

p , 2)I
c

) ∩QSp . Let κ be a classical
algebraic weight.

(1) The cohomology RΓ(XKpKp(I)((εv)v∈Sp), ωκ) carries an action of the oper-
ators Uv,1 and Uv,2.

(2) The operator
∏
v∈I Uv,2

∏
v∈Ic Uv,1 is compact RΓ(XG1

KpKp(I)((εv)v∈Sp), ωκ).
(3) The canonical map RΓ(XG1

KpKp(I)((εv)v∈Sp), ωκ)→ RΓ(XG1

K(I,p)((1−
1
p−1 )v∈Sp), ωκ)

induces a quasi-isomorphism on the finite slope part for
∏
v∈I Uv,2

∏
v∈Ic Uv,1.

(4) The same holds for cuspidal cohomology.

Proof. The definition of the operators is a routine computation. To prove com-
pactness, we need to show that the operators improve convergence. This is entirely
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parallel to Lemma 6.3.14. For the degree functions considered here this follows
from of [Pil11, Prop. 2.3.6]. The quasi-isomorphism follows from an easy analytic
continuation argument (see Lemma 6.5.18 below, for example). �

It is sometimes convenient to consider the dagger space

(6.5.5) Xmult,†
KpKp(I) := lim

εv→0+
XKpKp(I)((εv)v∈Sp).

and its G1-variant. In view of the previous lemma we can define the complex
e(U I)RΓ(XG1,mult,†

Kp(I)Kp , ω
κ(−D)) as being equal to e(U I)RΓ(XG1

KpKp(I)((εv)v∈Sp), ωκ).

Lemma 6.5.6. The complex e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D)) is a perfect complex
supported in degrees [0,#I].

Proof. That the cohomology vanishes outside of degrees [0,#I] follows as usual by
pushing forward to the minimal compactification. The finiteness of the cohomology
follows from the compactness of U I . �

6.5.7. Main classicity theorem. We now state our main classicity result for over-
convergent cohomology, which we will prove using a generalization of the analytic
continuation method of [Kas06] to higher degree cohomology, which was proved
in [Pil20, §3]. Let κ = (kv, lv)v|p be a dominant algebraic weight. There is a
canonical restriction map

RΓ(XKp(I)Kp , ωκ(−D))→ RΓ(Xmult,†
Kp(I)Kp , ω

κ(−D))

which is equivariant for the Hecke operators Uv,1 and Uv,2.

Theorem 6.5.8. The canonical map

RΓ(XG1

Kp(I)Kp , ω
κ(−D))[Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic]

→ RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D))[Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic]

is a quasi-isomorphism.

Remark 6.5.9. The meaning of [Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic] in
Theorem 6.5.8 is the obvious one: it means the part of slope less than kv+ lv−3 for
Uv,2 at v ∈ I and less than lv−3 for Uv,1 at v ∈ Ic. (Note that while the individual
operators Uv,1, Uv,2 do not act compactly on the complex on the right hand side,
their product U does by Lemma 6.5.4 It follows the individual operators Uv,1, Uv,2
act compactly on the part of the complex with bounded slope for U , and so this
small slope part is well-defined by the procedure explained at the start of this
section.)

Remark 6.5.10. When I = ∅, Theorem 6.5.8 (for H0) is proved in [BPS16]. It may
be possible to improve on the bound lv − 3 at the places v ∈ Ic, but this does not
matter for our purposes.

6.5.11. Hecke correspondences again. Let w ∈ I. We consider the following corre-
spondence, whose corresponding Hecke operator is Unw,2 (the nth iterate of Uw,2):
tw,n,1, tw,n,2 : C

(n)
w → XKp(I)Kp , which parametrizes (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G →

Gn) where the isogeny G → Gn has kernel Mn,w ⊂ Gw[p2n] which is totally isotropic
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and locally isomorphic to (OFw/pn)2 ⊕ OFw/p2n, and satisfies Mn,w ∩Hw = {0}.
The first projection is

tw,n,1
(
(G, {Hv}v∈I , {Hw ⊂ Lv}v∈Ic ,G → Gn)

)
= (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic)

and the second projection is

tw,n,2
(
(G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G → Gn)

)
= (Gn, {H ′v}v∈I , {H ′v ⊂ L′v}v∈Ic)

where {H ′v}v∈I and {H ′v ⊂ L′v}v∈Ic are the images of {Hv}v∈I and {Hv ⊂ Lv}v∈Ic
in Gn.

There are cohomological correspondences

(tw,n,1)∗t
∗
w,n,2ω

κ → ωκ, (tw,n,1)∗t
∗
w,n,2ω

κ(−D)→ ωκ(−D),

which give Unw,2. Moreover, these cohomological correspondences restrict to

(tw,n,1)∗t
∗
w,n,2(ωκ)++ → p−3n(ωκ)++, (tw,n,1)∗t

∗
w,n,2(ωκ(−D))++ → p−3n(ωκ(−D))++,

and they induce maps on cohomology in the usual way.
Let w ∈ Ic. We consider the correspondence: tw,n,1, tw,n,2 : C

(n)
w → XKp(I)Kp

which parametrizes (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G → Gn) where the isogeny G →
Gn has kernel Mn,w ⊂ Gw[pn] which is totally isotropic, locally isomorphic to
(OFw/pn)2, and satisfies Mn,w ∩ Lw = {0}. The first projection is

tw,n,1
(
(G, {Hv}v∈I , {Hw ⊂ Lv}v∈Ic ,G → Gn)

)
= (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic)

and the second projection is

tw,n,2
(
(G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G → Gn)

)
= (Gn, {H ′v}v∈I , {H ′v ⊂ L′v}v∈Ic)

where H ′v and H ′v ⊂ L′v are the images of Hv and Hv ⊂ Lv in Gn.
The Hecke operator attached to this correspondence is Unw,1 (the nth iterate of

Uw,1). More precisely, there are cohomological correspondences

(tw,n,1)∗t
∗
w,n,2ω

κ → ωκ, (tw,n,1)∗t
∗
w,n,2ω

κ(−D)→ ωκ(−D).

Moreover, these cohomological correspondences restrict to

(tw,n,1)∗t
∗
w,n,2(ωκ)++ → p−3n(ωκ)++, (tw,n,1)∗t

∗
w,n,2(ωκ(−D))++ → p−3n(ωκ(−D))++,

and they induce maps on cohomology.

Lemma 6.5.12. Let w ∈ I. Let x = (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G → G1) ∈
C

(1)
w (Spa(K,OK)).
(1) If v ∈ I and v 6= w, we have degHv = degH ′v.
(2) If v ∈ Ic, we have degLv = degL′v.
(3) We have degH ′w ≥ degHw, and in case of equality, degHw ∈ {0, 1}.
(4) degH ′w = 1− degM1,w/M1,w[p].
(5) degM1,w[p]/pM1,w = 1, and deg pM1,w ≥ degM1,w/M1,w[p].
(6) Let ε ≥ 0. If degMw ≤ 3− 2ε, then degH ′w ≥ ε.

Proof. Parts (1) and (2) follow because the maps Hv → H ′v, Lv → L′v are isomor-
phisms. The remaining parts are [Pil20, Lem. 14.3.1, Cor. 14.3.1]. �

Lemma 6.5.13. Let w ∈ Ic. Let x = (G, {Hv}v∈I , {Hv ⊂ Lv}v∈Ic ,G → G1) ∈
C

(1)
w (Spa(K,OK)).
(1) If v ∈ I, we have degHv = degH ′v.
(2) If v ∈ Ic and v 6= w, we have degLv = degL′v,
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(3) We have degL′w ≥ degLw, and in case of equality, degLw ∈ {0, 1, 2}.
(4) degL′w = 2− degM1,w.

Proof. Parts (1) and (2) follow as in Lemma 6.5.12. Parts (3) and (4) follow
from [Pil11, Prop. 2.3.1, 2.3.2, Lem. 2.3.4] (and their proofs). �

Corollary 6.5.14. Let w ∈ Ic. Let 1 > ε′ ≥ ε > 0. There exists n ∈ Z≥0 such
that for all intervals

∏
v 6=w Jv ⊂ [0, 1]I × [0, 2]I

c\{w},

Unw,1(XKp(I)Kp(
∏
v 6=w

Jv × [1 + ε, 2])) ⊂ XKp(I)Kp(
∏
v 6=w

Jv × [1 + ε′, 2])

Proof. This follows from Lemma 6.5.13 (3) and the maximum principle; see [Pil11,
Prop. 2.3.6]. �

Corollary 6.5.15. Let w ∈ I. Let 1 > ε′ ≥ ε > 0. There exists n ∈ Z≥0 such that
for all intervals

∏
v 6=w Jv ⊂ [0, 1]I\{w} × [0, 2]I

c

,

Unw,1(XKp(I)Kp(
∏
v 6=w

Jv × [ε, 1])) ⊂ XKp(I)Kp(
∏
v 6=w

Jv × [ε′, 1])

Proof. This follows in the same way as Corollary 6.5.14, using Lemma 6.5.12 (3).
�

6.5.16. First analytic continuation result. Let J =
∏
v|p Jv ⊂ [0, 1]I × [0, 2]I

c

be a
product of intervals.

Lemma 6.5.17. Let w ∈ Ic. Assume that Jw = [2− ε, 2]. The operator Uw,1 acts
on Hi(XKpKp(I)(J), ωκ).

Proof. In view of Lemma 6.5.13 (3), the correspondence C(1)
w restricts to

tw,1,2 : C(1)
w ×tw,1,1,XKpKp(I)

XKpKp(I)(J)→ XKpKp(I)(J). �

We denote by Hi(XKp(I)Kp(J), ωκ)fs−Uw,1 the finite slope subspace for Uw,1.
This is the subspace generated by classes which are annihilated by a polynomial in
Uw,1 with non-zero constant term.

Lemma 6.5.18. For all 1 > ε′ ≥ ε > 0, the restriction map

Hi(XKpKp(I)(
∏
v 6=w

Jv×[2−ε′, 2]), ωκ)fs−Uw,1 → Hi(XKpKp(I)(
∏
v 6=w

Jv×[2−ε, 2]), ωκ)fs−Uw,1

is an isomorphism.

Proof. Take n as in Corollary 6.5.14. Let f ∈ Hi(XKpKp(I)(
∏
v 6=w Jv × [2 −

ε, 2]), ωκ)fs−Uw,1 be a cohomology class. Let P (X) = Xm + am−1X
m−1 + · · ·+ a0

be a polynomial with a0 6= 0 such that P (Uw,1)f = 0. Therefore, if we set
Q(X) = −a−1

0 (P (X) − a0), we obtain that Q(Uw,1)f = f . By iteration we get
that Q(Uw,1)nf = f . The operator

Q(Uw,1)n : Hi(XKpKp(I)(
∏
v 6=w

Jv×[2−ε, 2]), ωκ)→ Hi(XKpKp(I)(
∏
v 6=w

Jv×[2−ε, 2]), ωκ)
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can be factored into:

Hi(XKpKp(I)(
∏
v 6=w

Jv× [2− ε, 2]), ωκ)
˜Q(Uw,1)n→ Hi(XKpKp(I)(

∏
v 6=w

Jv× [2− ε′, 2]), ωκ)

res→ Hi(XKpKp(I)(
∏
v 6=w

Jv × [2− ε, 2]), ωκ),

where the map ˜Q(Uw,1)n is the one coming from Corollary 6.5.14. We therefore get
an extension f̃ of f to

Hi(XKpKp(I)(
∏
v 6=w

Jv × [2− ε′, 2]), ωκ)

by setting f̃ = ˜Q(Uw,1)nf . This proves the surjectivity of the map of the corollary.
We now prove injectivity. Let f, g ∈ Hi(XKpKp(I)(

∏
v 6=w Jv×[2−ε′, 2]), ωκ)fs−Uw,1

be two classes having the same restriction toHi(XKpKp(I)(
∏
v 6=w Jv×[2−ε, 2]), ωκ)fs−Uw,1 .

We can find a polynomial P as before such that P (Uw,1)f = P (Uw,1)g = 0.
Therefore, using the same notation as before, we get that Q(Uw,1)f = f and
Q(Uw,1)g = g. We can factor the operator Q(Uw,1)n into:

Hi(XKpKp(I)(
∏
v 6=w

Jv × [2− ε′, 2]), ωκ)
res→ Hi(XKpKp(I)(

∏
v 6=w

Jv × [2− ε, 2]), ωκ)

˜Q(Uw,1)n→ Hi(XKpKp(I)(
∏
v 6=w

Jv × [2− ε′, 2]), ωκ)

Since res(f) = res(g), we deduce that f = g. �

The following two lemmas are the analogue of Lemma 6.5.18 for a place w ∈ I.
The proofs are identical and left to the reader.

Lemma 6.5.19. Let w ∈ I. Assume that Jw = [1 − ε, 1]. The operator Uw,2 acts
on Hi(XKpKp(I)(J), ωκ).

We denote by Hi(XKp(I)Kp(J), ωκ)fs−Uw,2 the finite slope subspace. This is the
subspace generated by classes which are annihilated by a polynomial in Uw,2 with
non-zero constant term.

Lemma 6.5.20. For all 1 > ε ≥ ε′ > 0, the restriction map

Hi(XKpKp(I)(
∏
v 6=w

Jv×[1−ε, 1]), ωκ)fs−Uw,2 → Hi(XKpKp(I)(
∏
v 6=w

Jv×[1−ε′, 1]), ωκ)fs−Uw,2

is an isomorphism.

6.5.21. More analytic continuation results. Let w ∈ Ic. Let 0 < ε ≤ 1. The
cohomological correspondences:

(tw,n,1)∗(tw,n,2)∗((ωκ)|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2]))→ ωκ|XKp(I)Kp (

∏
v 6=w Jv×[1+ε,2])

and

(tw,n,1)∗(tw,n,2)∗((ωκ)|XKp(I)Kp (
∏
v 6=w Jv×[0,2]))→ ωκ|XKp(I)Kp (

∏
v 6=w Jv×[0,2])

can be related if we work with torsion coefficients.
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Proposition 6.5.22. Let 0 < ε < ε′. There is a factorization of the Hecke corre-
spondence Unw,1:

(ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2])

(tw,n,1)∗(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2]))

(tw,n,1)∗(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[0,2]))

(ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏
v 6=w Jv×[0,2])

Proof. Let x ∈ XKp(I)Kp(
∏
v 6=w Jv × [0, 2])). We have to find a neighbourhood U

of x and to construct a canonical map

(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2]))(t

−1
w,n,1(U))

→ (ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏
v 6=w Jv×[0,2])(U).

Pick ε′′ ∈ (ε, ε′) such that for all y ∈ t−1
w,n,1(x) corresponding to a subgroup

Mw,n ⊂ G, we have |δMw,n |y 6= |pn(1−ε′′)|y. It follows that there exists an open
neighbourhood U of x and a disjoint decomposition t−1

w,n,1(U) = V
∐
W , such

that for all y ∈ W , we have |δMw,n
|y > |pn(1−ε′′)|y, and for all y ∈ V , we have

|δMw,n
|y < |pn(1−ε′′)|y.

The cohomological correspondence is a map:

t∗w,n,2(ωκ)++(V )⊕ t∗w,n,2(ωκ)++(W )→ ωκ(U).

The image of t∗w,n,2(ωκ)++(V ) lands in pn(lv(1−ε′′)−3)(ωκ)++(U) (see [Pil20, Lem.
14.6.1]). Therefore, we have a factorization:

t∗w,n,2(ωκ)++(t−1
w,n,1(U))→ t∗w,n,2(ωκ)++(W )→ ωκ/pn(lv(1−ε′′)−3)(ωκ)++(U).

On the other hand, we claim that tw,n,2(W ) ⊂ XKp(I)Kp(
∏
v 6=w Jv × [1 + ε, 2])).

Indeed, let x′ ∈ U and let y′ ∈ t−1
w,n,1({x}). Without loss of generality, we may

assume that x′ and y′ are rank one points. Let us define Mw,i = Mw,n|y′ [pi] for all
1 ≤ i ≤ n. Then we have a sequence of isogenies:

Gw|x′ → Gw|x′/Mw,1 → · · · → Gw|x′/Mw,n

We let Lw,i be the image of Lw|x′ in Gw/Mw,i (so that Lw,n = Lw|tw,n,2(y′)). Then,
by Lemma 6.5.13 (4), we have that degLw,n = 2 − degMw,n/Mw,n−1. On the
other hand, for all 1 ≤ i ≤ n − 1, the map p : Mw,i+1/Mw,i → Mw,i/Mw,i−1 is a
generic isomorphism. It follows that degMw,i+1/Mw,i ≤ degMw,i/Mw,i−1. Since
degMw,n =

∑n
i=1 degMw,i/Mw,i−1 and degMw,n ≤ n(1 − ε′′), we deduce that

degMw,n/Mw,n−1 ≤ 1− ε′′ and therefore degLw,n ≥ 1 + ε′′ > 1 + ε, as required.
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We can therefore produce the expected map as the composition:

(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2]))(t

−1
w,n,1(U))

→ (tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[1+ε,2]))(W ) = t∗w,n,2(ωκ)++(W )

→ ωκ/pn(lv(1−ε′)−3)(ωκ)++(U). �

Corollary 6.5.23. Let P = Xm + am−1X
m−1 + · · ·+ a0 be a polynomial, with the

property that all the roots a of P satisfy v(a) < lw − 3. Then there is a map

ext : Hi(XKp(I)Kp(
∏
v 6=w

Jv × [1 + ε, 2]), ωκ)[P (Uw,1) = 0]→

lim
n
Hi(XKp(I)Kp(

∏
v 6=w

Jv × [0, 2]), ωκ/pn(ωκ)++)

 [P (Uw,1) = 0]

such that the composite of ext followed by restriction to XKp(I)Kp(
∏
v 6=w Jv × [1 +

ε, 2]) is the natural map induced by ωκ → ωκ/pn(ωκ)++.
Furthermore, the composite of the restriction map

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [0, 2]), ωκ)[P (Uw,1) = 0]→

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [1 + ε, 2]), ωκ)[P (Uw,1) = 0]

followed by ext is the natural map induced by ωκ → ωκ/pn(ωκ)++.

Proof. Let ε′ > 0 be such that for all roots a of P , we have lw(1−ε′)−3 > v(a). Let
α = infa{lw(1−ε′)−3−v(a)} (so that in particular α > 0). By Lemma 6.5.18, we can
assume that 0 < ε < ε′. Suppose that f ∈ Hi(XKp(I)Kp(

∏
v 6=w Jv × [1 + ε, 2]), ωκ)

satisfies P (Uw,1)f = 0. By rescaling f , we can and do also assume that f ∈
Hi(XKp(I)Kp(

∏
v 6=w Jv× [1+ ε, 2]), (ωκ)++). Let Q(X) = −a−1

0 (P (X)−a0) so that
Q(Uw,1)f = f .

Since Q(Uw,1) can be written as a sum of products of the 1
aUw,1, where a runs

over the roots of P , it follows from Proposition 6.5.22 that the map

Q(Uw,1)n : Hi(XKp(I)Kp(
∏
v 6=w

Jv×[1+ε, 2]), (ωκ)++)→ Hi(XKp(I)Kp(
∏
v 6=w

Jv×[1+ε, 2]), ωκ)

→ Hi(XKp(I)Kp(
∏
v 6=w

Jv × [1 + ε, 2]), (ωκ)/pnα(ωκ)++)
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can actually be factored into:

Hi(XKp(I)Kp(
∏
v 6=w Jv × [1 + ε, 2]), (ωκ)++)

Hi(XKp(I)Kp(
∏
v 6=w Jv × [0, 2]), (ωκ)/pnα(ωκ)++)

Hi(XKp(I)Kp(
∏
v 6=w Jv × [1 + ε, 2]), (ωκ)/pnα(ωκ)++)

˜Q(Uw,1)n

We define sections fn ∈ Hi(XKp(I)Kp(
∏
v 6=w Jv × [0, 2]), ωκ/pnα(ωκ)++) by fn =

˜Q(Uw,1)n(f). It follows from the definitions that fn = fn−1 in

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [0, 2]), ωκ/p(n−1)α−m(lw(1−ε′)−α)(ωκ)++)

and that Q(Uw,1)fn = fn in

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [0, 2]), ωκ/p(nα−m(lw(1−ε′)−α)(ωκ)++)

(see the proof of [Pil20, Cor. 14.6.1] for a similar verification). We let ext(f) be the
projective system given by the fn.

It remains to check that if f is the restriction of a class in

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [0, 2]), ωκ),

then the fn are obtained from the natural map ωκ → ωκ/pn(ωκ)++. This follows
easily from the factorization

Hi(XKp(I)Kp(
∏
v 6=w Jv × [0, 2]), (ωκ)++)

Hi(XKp(I)Kp(
∏
v 6=w Jv × [0, 2]), (ωκ)/pnα(ωκ)++)

Hi(XKp(I)Kp(
∏
v 6=w Jv × [1 + ε, 2]), (ωκ)/pnα(ωκ)++)

Q(Uw,1)n

˜Q(Uw,1)n

�
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The next proposition and corollary are the analogue of the above results for a
place w ∈ I. The proofs are virtually identical to the above, and are left to the
reader (or look at [Pil20, Prop. 14.6.1, Cor. 14.6.1]).

Proposition 6.5.24. Let w ∈ I, and let 0 < ε < ε′. There is a factorization of the
Hecke correspondence Unw,2:

(ωκ/pn(lw+kw−3−2ε′kv)(ωκ)++)|XKp(I)Kp (
∏
v 6=w Jv×[ε,1])

(tw,n,1)∗(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[ε,1]))

(tw,n,1)∗(tw,n,2)∗((ωκ)++|XKp(I)Kp (
∏
v 6=w Jv×[1,0]))

(ωκ/pn(lw+kw−3−2ε′kw)(ωκ)++)|XKp(I)Kp (
∏
v 6=w Jv×[0,1])

Corollary 6.5.25. Let w ∈ I, and let 1 > ε ≥ 0. Let P = Xm + am−1X
m−1 +

· · · + a0 be a polynomial, with the property that all the roots a of P satisfy v(a) <
kw + lw − 3. Then there is a map

ext : Hi(XKp(I)Kp(
∏
v 6=w

Jv × [ε, 1]), ωκ)[P (Uw,2) = 0]→

lim
n
Hi(XKp(I)Kp(

∏
v 6=w

Jv × [0, 1]), ωκ/pn(ωκ)++)

 [P (Uw,2) = 0]

such that the composite of ext followed by restriction to XKp(I)Kp(
∏
v 6=w Jv × [ε, 1])

is the natural map induced by ωκ → ωκ/pn(ωκ)++.
Furthermore, the composite of the restriction map

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [0, 1]), ωκ)[P (Uw,2) = 0]→

Hi(XKp(I)Kp(
∏
v 6=w

Jv × [ε, 1]), ωκ)[P (Uw,2) = 0]

followed by ext is the natural map induced by ωκ → ωκ/pn(ωκ)++.

6.5.26. Proof of the main classicality theorem. Let S ⊂ Sp be a subset. Let
J(S, ε) =

∏
v∈S∩I [0, 1] ×

∏
v∈S∩Ic [0, 2] ×

∏
Sc∩I [ε, 1] ×

∏
Sc∩Ic [1 + ε, 2]. We say

that a cohomology class f ∈ Hi(XKp(I)Kp(J(S, ε), ωκ) is of finite slope if for all v|p,
there is a polynomial Pv all of whose roots are nonzero, such that:

• if v ∈ Ic, Pv(Uv,1)f = 0,
• if v ∈ I, Pv(Uv,2)f = 0.
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Lemma 6.5.27. The canonical map

Hi(XG1

Kp(I)Kp(J(S, ε)), ωκ)→ limHi(XG1

Kp(I)Kp(J(S, ε)), ωκ/pn(ωκ)++)

is surjective and induces an isomorphism on the finite slope part.

Proof. The surjectivity follows from [Pil20, Prop. 3.2.1]. The injectivity can be
proved in exactly the same way as [Pil20, Lem. 14.7.1]. We have put the superscript
G1 because we need some finiteness property to deduce the injectivity. �

Lemma 6.5.28. Choose polynomials Pv such that
• if v ∈ Ic, all the roots a of Pv satisfy v(a) < lv − 3, and
• if v ∈ I, all the roots a of Pv satisfy v(a) < kv + lv − 3.

Write Uv = Uv,1 if v ∈ Ic, and Uv = Uv,2 if v ∈ I. If S ⊂ T , then the natural
restriction map

Hi(XG1

Kp(I)Kp(J(T, ε)), ωκ)[Pv(Uv) = 0]v∈Sp

Hi(XG1

Kp(I)Kp(J(S, ε)), ωκ)[Pv(Uv) = 0]v∈Sp

?

is an isomorphism.

Proof. By induction, it is enough to treat the case T = S ∪ {w} for some w. The
result then follows from Lemma 6.5.27 (applied to both S and T ), together with
Corollary 6.5.23 and Corollary 6.5.25. �

Proof of Theorem 6.5.8. This follows immediately from Lemma 6.5.28, applied with
the choices S = ∅ and T = Sp. �

6.6. Application to ordinary cohomology. In this section we study the case
#I = 1, where we are able to relate the Hida complexes constructed in §4 to
the overconvergent cohomology considered in this section. Our first result is the
following, which shows in particular that in this case the ordinary classes in H1

are overconvergent. The proof can be viewed as a generalization of the familiar
argument for GL2 which shows that ordinary p-adic modular forms are overconver-
gent (see [BT99, Lem. 1]), by using the continuity of the ordinary projector to the
finite-dimensional space of ordinary forms.

Recall that we defined the complexMI in Theorem 4.6.1. By Theorem 4.6.1 (3),
for all classical algebraic weights κ with lv = 2 for v ∈ I and kv ≡ lv ≡ 2 (mod p−1)
for all v|p we have

MI ⊗L
ΛI ,κ Cp = e(U I)RΓ(XG1,mult

Kp(I)Kp , ω
κ(−D)).

Proposition 6.6.1. Suppose that #I = 1. For all classical algebraic weights κ
with lv = 2 for v ∈ I and kv ≡ lv ≡ 2 (mod p− 1) for all v|p, the restriction map

e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D))→MI ⊗L
ΛI ,κ Cp

induces an injective map on H0 and a surjective map on H1.
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Proof. The injectivity of the map on H0s is clear. In the case F = Q, the surjectiv-
ity of the map on H1s is proved in [Pil20, Lem. 14.8.2]; we now recall this argument
in our setting. Let π : XKp(I)Kp → X ∗Kp(I)Kp be the projection to the minimal com-

pactification; as usual, we have Riπ∗ω
κ(−D) = 0 for i > 0. Let X ∗,mult

Kp(I)Kp be the
image of Xmult

Kp(I)Kp (the rigid analytic generic fibre of XIKp(I)Kp) in the minimal

compactification; it admits an affinoid cover X ∗,mult
Kp(I)Kp = U1 ∪ U2.

Then the complex RΓ(Xmult
Kp(I)Kp , ωκ(−D)) is represented by the complex

H0(U1, ω
κ(−D))⊕H0(U2, ω

κ(−D))→ H0(U1 ∩ U2, ω
κ(−D)).

The terms of this complex are Banach spaces; a norm giving their topology is pro-
vided by taking an appropriate formal model. The topology onH1(Xmult

Kp(I)Kp , ωκ(−D))

is the induced quotient topology, which coincides with the topology obtained by
declaring that H1(XIKp(I)Kp , ωκ(−D)) is open and bounded.

The complex RΓ(Xmult,†
Kp(I)Kp , ω

κ(−D)) is represented by the subcomplex of over-
convergent sections

H0(U1, ω
κ,†(−D))⊕H0(U2, ω

κ,†(−D))→ H0(U1 ∩ U2, ω
κ,†(−D)),

where by definition for an open U ,

ωκ,†(U) := lim−→
V⊃U

ωκ(V )

where V runs over the strict neighbourhoods of U .
It follows in particular that the map

H1(Xmult,†
Kp(I)Kp , ω

κ(−D))→ H1(Xmult
Kp(I)Kp , ωκ(−D))

has dense image. The operator U I is continuous on H1(Xmult
Kp(I)Kp , ωκ(−D)) (con-

sider the action of U I on H1(XIKp(I)Kp , ωκ(−D))), so the projection

H1(XG1,mult
Kp(I)Kp , ω

κ(−D))→ e(U I)H1(XG1,mult
Kp(I)Kp , ω

κ(−D))

is also continuous (we have introduced the superscript G1 to make sure that the
projector e(U I) is well defined, the passage from the cohomology of Xmult

Kp(I)Kp to

the cohomology of XG1,mult
Kp(I)Kp is given by a projector so all density statements are

preserved). It follows that the induced map

e(U I)H1(XG1,mult,†
Kp(I)Kp , ω

κ(−D))→ e(U I)H1(XG1,mult
Kp(I)Kp , ω

κ(−D))

has dense image. But the target is a finite-dimensional Banach space over Cp, so
its topology is the unique one extending that on Cp, and in particular it contains
no proper dense subspaces, so we are done. �

Proposition 6.6.2. Suppose that #I ≤ 1. For all classical algebraic weights κ
with lv = 2 for v ∈ I, we have the equality of Euler characteristics:

EC(e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D))) = EC(MI ⊗L
ΛI ,κ Cp).

Proof. By Theorem 4.6.1 and Lemma 6.5.6, both complexes are perfect complexes
in degrees [0, 1]. By Corollary 6.4.3 and Proposition 6.3.7, we have that

EC(e(U I)Hi
cusp(G1, †, κ)) ≤ EC(e(U I)RΓ(XG1,mult,†

Kp(I)Kp , ω
κ(−D)))
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and the inequality is an equality if kv − lv ≥ 3 for all v|p. By Proposition 6.6.1, we
have that

EC(e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D))) ≤ EC(MI ⊗L
ΛI ,κ Cp).

Consequently, it suffices to prove that

EC(e(U I)Hi
cusp(G1, †, κ)) ≥ EC(MI ⊗L

ΛI ,κ Cp).

By Theorem 6.3.16, and Theorem 4.6.1, both Euler characteristics under considera-
tion are locally constant functions of κ. It therefore suffices to prove the statement
when lv ≥ C for all v ∈ Ic, and kv − lv ≥ C for all v|p. In this range of weights we
can compare these cohomology to classical cohomology.

It follows from Theorem 6.5.8 that

e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D))) = e(U I)RΓ(XG1

Kp(I)Kp , ω
κ(−D))).

We claim that the natural map

RΓ(XG1

KpKp
, ωκ(−D)))→ RΓ(XG1

Kp(I)Kp , ω
κ(−D)))

induces a quasi-isomorphism

e(T I)RΓ(XG1

KpKp
, ωκ(−D)))→ e(U I)RΓ(XG1

Kp(I)Kp , ω
κ(−D))).

Indeed, by Theorem 3.10.1 (2), the cohomology groups on each side can be com-
puted in terms of automorphic representations, and the claim follows from Propo-
sition 2.4.26 as explained in Remark 6.6.3 below.

Now, it follows from Theorem 4.6.1 that the map e(T I)RΓ(XG1

KpKp
, ωκ(−D))→

MI ⊗L
ΛI ,κ

Cp is an isomorphism on H0 and is injective on H1. Putting this all
together, the proposition follows. �

Remark 6.6.3. Let us point out a subtle point in the proof of Proposition 6.6.2.
In order to use Proposition 2.4.26 one needs to check that for any v|p, any rep-
resentation πv of GSp4(OFv ) contributing to either e(T I)RΓ(XG1

KpKp
, ωκ(−D))) or

e(U I)RΓ(XG1

Kp(I)Kp , ω
κ(−D))) is ordinary. For all places v ∈ Ic, this is true essen-

tially by definition since the two Hecke operators at v|p occur in the projector. For
places v ∈ I, this is a bit more subtle since only one operator Tv or Uv,2 is involved
in the definition of the projector. The Uv,2-ordinarity of a local representation πv
with Hecke parameters

[αvp
1−kv/2, βvp

1−kv/2, β−1
v pkv/2, α−1

v pkv/2]

implies that αvβv is a p-adic unit. Ordinarity means that αv and βv are both p-adic
units. This is implied by Uv,2-ordinarity if we assume the Katz–Mazur inequality
which says the the Newton polygon is above the Hodge polygon with the same initial
and terminal point. Indeed, in our case, the Katz–Mazur inequality translates into
the condition that αv and βv are p-adic integers.

However, this inequality is subtle at non-cohomological weights. For F = Q the
Katz–Mazur inequality for H0 and H1 classes is proved in [Pil20, Prop. 14.9.1],
and the argument generalizes without difficulty to our case. We also remark that
for classes in the H0, we can use eigenvarieties to deduce that the Katz–Mazur
inequality holds in non-cohomological weights because it holds at cohomological
weights. A similar argument will apply for classes in the H1 once eigenvarieties are
constructed for H1 cohomology classes. Note that alternatively we could force the



POTENTIAL MODULARITY OF ABELIAN SURFACES 167

Katz–Mazur inequality by localizing further at certain p-adically integral eigenval-
ues of the operators Tv,1 and UKli(v),1, and in fact such a localization will be in force
in the rest of the paper. We could also directly deduce the Katz–Mazur inequality
for classes in the H1 from the corresponding inequality for classes in the H0 after
making a non-Eisenstein localization (because after making such a localization, the
Euler characteristic vanishes). Such a localization will also be in force in the rest
of the paper. In view of this, we do not spell out the details of the generalization
of [Pil20, Prop. 14.9.1] to our setting.

Theorem 6.6.4. Suppose that #I ≤ 1. For all classical algebraic weights κ
with lv = 2 for v ∈ I, we have a canonical isomorphism:

e(U I)RΓ(XG1,mult,†
Kp(I)Kp , ω

κ(−D)) = MI ⊗L
ΛI ,κ Cp

Proof. For all classical algebraic weights, let us denote by di(κ) the dimension of
Hi(MI ⊗L

ΛI ,κ
Cp) and by d†i (κ) the dimension of e(U I)Hi

cusp(G1, †, κ). We deduce
from Proposition 6.6.2 that d1(κ) − d0(κ) = d†1(κ) − d†0(κ) for all κ. Therefore
d1(κ)− d†1(κ) = d0(κ)− d†0(κ) for all κ. By Proposition 6.6.1, the first difference is
non-positive and the second difference is non-negative, so both are equal to zero.
We deduce in particular that the map e(U I)Hi

cusp(G1, †, κ)→ Hi(MI ⊗L
ΛI ,κ

Cp) is
an isomorphism.

We now consider the composite

e(U I)Hi(XG1,mult,†
Kp(I)Kp , ω

κ(−D))→ e(U I)Hi
cusp(G1, †, κ)→ Hi(MI ⊗L

ΛI ,κ Cp).

By Proposition 6.6.1 this composite map is an isomorphism for i = 0, and is sur-
jective for i = 1. On the other hand, the first map is injective for i = 1 by
Corollary 6.4.3, and we have just seen that the second map is an isomorphism. It
follows that the composite is injective for i = 1, and is thus an isomorphism, as
required. �

Finally, we deduce the following classicity theorem.

Theorem 6.6.5. Suppose that #I ≤ 1, and that κ is a classical algebraic weight
with lv = 2 if v ∈ I, and lv ≥ 4 if v /∈ I. Then the canonical map

e(U I)RΓ(XG1

Kp(I)Kp , ω
κ(−D))[1/p]→MI ⊗L

ΛI ,κ Qp

is a quasi-isomorphism.

Proof. This follows from Theorem 6.6.4 and Theorem 6.5.8. �

7. The Taylor–Wiles/Calegari–Geraghty method

In this section, we implement the Taylor–Wiles patching method to patch the
complexes MI constructed in §4. More precisely, we carry out the analogue of the
patching argument using “balanced modules” which was introduced in [CG18], and
used there to study weight one modular forms for GL2 /Q. This argument works
in situations where the cohomology appears in at most two degrees, which for us
means that #I ≤ 1; we are restricted to working in this case due to the limitations
of our understanding of the cohomology of our complexes in higher degree, as was
the case in §4 and §6. For our modularity result, it is crucial to be able to work
with I = Sp; we will do this in §8 by considering the spaces of modular forms
coming from the various complexes with #I ≤ 1.
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The papers [GT05, Pil12, CG20] apply the Taylor–Wiles method to GSp4 overQ,
but a number of changes are needed in order to apply it over general totally real
fields. We do not attempt to prove results in maximal generality, but instead
develop the minimal amount of material that we need. The reader familiar with
the literature on modularity lifting theorems will not find many surprises, but we
highlight a few things that may be less standard:

• In §7.3, we study the ordinary deformation rings at places dividing p.
We show that their generic fibres are irreducible under a rather mild p-
distinguishedness assumption; in particular, this assumption is not suffi-
cient to guarantee that the deformation rings are formally smooth, and it
takes us some effort to prove the irreducibility. Working in this generality is
important for our applications to modularity of abelian surfaces in §10. For
the potential modularity results of §9, however, it would be enough to work
with a stronger p-distinguishedness assumption which would guarantee the
formal smoothness.

• In §7.4, we prove the statements about local deformation rings needed
for Taylor’s “Ihara avoidance argument”; the proofs are similar to those
for GLn, although there are some complications which arise because the re-
lationship between conjugacy classes and characteristic polynomials is more
complicated. We also need to do some additional work to handle the case
p = 3; again, this is crucial for §10, although it is not needed for §9.

• In §7.5, we study the “big image” conditions needed in the Taylor–Wiles
method. Here our approach is slightly different from that of [CHT08] and
the papers that followed it; again, this is with the applications of §10 in
mind, where it is important to be able to consider representations with
image GSp4(F3). For the same reason, when we impose a condition at an
auxiliary prime which will allow us to assume that our Shimura varieties are
at neat level, we make the weakest hypothesis that we can, at the expense
of slightly complicating the corresponding local representation theory.

• We make repeated use of the doubling results of §5; they are needed in
order to prove local-global compatibility for the Galois representations we
consider, and also to compare the spaces of p-adic modular forms for dif-
ferent I.

• Our implementation of the “Ihara avoidance” argument of [Tay08] uses the
framework of [EG14, Sho18], and compares the underlying cycles of various
patched modules. In particular, we use the patched modules with I = ∅
to prove a local result, which we then apply to the patched modules with
#I = 1. In order to apply Ihara avoidance, we repeatedly use the fact
that the Galois representation associated to our abelian surface is pure,
to deduce that the corresponding points on the generic fibres of the local
deformation rings are smooth; we use this smoothness to be able to com-
pute the dimensions of various spaces of p-adic automorphic forms, using
a characteristic 0 version of the freeness arguments of Diamond and Fuji-
wara [Dia97]. While we do not use the full strength of purity, since we make
arguments with base change we would otherwise need to impose a hypoth-
esis of being “stably generic” on our local Galois representations, and we
do not know of any natural examples where this condition is known, but
purity is not.
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Having carried out the patching argument, we know from the results of §6 that
for each I with #I ≤ 1 there is a nonzero space of ordinary p-adic modular forms
corresponding to our given Galois representation, which are “overconvergent in the
direction of I”. We will combine these spaces in §8, using as an input that by a
version of Diamond’s multiplicity one argument [Dia97], we know the dimensions of
these spaces when #I ≤ 1 (they are given by the expected product of local terms).
(Here we are again using our assumption that the local Galois representations are
pure, in order to know that the corresponding points of the generic fibres of the local
deformation rings are smooth. A similar characteristic zero version of Diamond’s
argument first appeared in [All16].)

7.1. Galois deformation rings. We let E be a finite extension of Qp with ring
of integers O, uniformizer λ and residue field k. We will always assume that E is
chosen to be large enough such that all irreducible components of all deformation
rings that we consider, and all irreducible components of their special fibres, are
geometrically irreducible. (We are always free to enlarge E in all of the arguments
that we make, so this is not a serious assumption.) Given a complete Noetherian
local O-algebra Λ with residue field k, we let CNLΛ denote the category of complete
Noetherian local Λ-algebras with residue field k. We refer to an object in CNLΛ as
a CNLΛ-algebra.

We fix a totally real field F , and let Sp be the set of places of F above p. We
assume that E contains all embeddings of F into an algebraic closure of E. We
also fix a continuous absolutely irreducible homomorphism ρ : GF → GSp4(k). We
assume throughout that p > 2.

Let S be a finite set of finite places of F containing Sp and all places at which ρ
is ramified. We write FS for the maximal subextension of F/F which is unramified
outside S, and write GF,S for Gal(FS/F ). For each v ∈ S, we fix Λv ∈ CNLO, and
set Λ = ⊗̂v∈SΛv, where the completed tensor product is taken over O. Then CNLΛ

is a subcategory of CNLΛv for each v ∈ S, via the canonical map Λv → Λ.

Remark 7.1.1. In our applications, we will take Λv = O if v - p. If v|p, then we will
take Λv to be an Iwasawa algebra.

Fix a character ψ : GF,S → Λ× lifting ν ◦ ρ.

Definition 7.1.2. A lift, also called a lifting, of ρ|GFv is a continuous homomor-
phism ρ : GFv → GSp4(A) to a CNLΛv -algebra A, such that ρ mod mA = ρ|GFv
and ν ◦ ρ = ψ|GFv .

We let D�
v denote the set-valued functor on CNLΛv that sends A to the set of

lifts of ρ|GFv to A. This functor is representable (see for example [Bal12, Thm.
1.2.2]), and we denote the representing object by R�

v .
Let x ∈ SpecR�

v [1/p] be a closed point. By [Tay08, Lem. 1.6] the residue field
of x is a finite extension E′/E. Let ρx : GFv → GLn(E′) be the corresponding
specialization of the universal lifting. By an argument of Kisin, (R�

v [1/p])∧x is the
universal lifting ring for ρx, i.e. if A is an Artinian local E′-algebra with residue
field E′ and if ρ : Γ→ GSp4(A) is a continuous representation lifting ρx, then there
is a unique continuous map of E′-algebras (R�

v [1/p])∧x → A so that the universal
lift pushes forward to ρ. (See [All16, Thm. 1.2.1] for the analogous result for GLn;
the result for GSp4 can be proved by an identical argument.) We say that x is
smooth if (R�

v [1/p])∧x is regular. Let ad0 ρx denote the Lie algebra g0(E′) with the
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adjoint action of GF via ρx; then we have the following convenient criterion for x
to be smooth.

Lemma 7.1.3. Suppose that v - p. Then the point x is smooth if and only if
(ad0 ρx)(1)GFv = 0. In particular, if ρx is pure, then x is smooth.

Proof. The first claim is a special case of [BG19, Cor. 3.3.4, Rem. 3.3.6]. If ρx is
pure, then HomE′[GFv ](ρx, ρx(1)) = 0 (because the definition of purity is easily seen
to preclude the existence of a morphism between the corresponding Weil–Deligne
representations), as required. �

Definition 7.1.4. A local deformation problem for ρ|GFv is a subfunctor Dv of D�
v

satisfying the following:
• Dv is represented by a quotient Rv of R�

v .
• For all A ∈ CNLΛv , ρ ∈ Dv(A), and a ∈ ker(GSp4(A) → GSp4(k)), we

have aρa−1 ∈ Dv(A).

Definition 7.1.5. A global deformation problem is a tuple

S = (ρ, S, {Λv}v∈S , ψ, {Dv}v∈S),

where:
• ρ, S, {Λv}v∈S and ψ are as above.
• For each v ∈ S, Dv is a local deformation problem for ρ|GFv .

As in the local case, a lift (or lifting) of ρ is a continuous homomorphism ρ :
GF,S → GSp4(A) to a CNLΛ-algebra A, such that ρ mod mA = ρ and ρ ◦ ν = ψ.
We say that two lifts ρ1, ρ2 : GF,S → GSp4(A) are strictly equivalent if there is
an a ∈ ker(GSp4(A) → GSp4(k)) such that ρ2 = aρ1a

−1. A deformation of ρ is a
strict equivalence class of lifts of ρ.

For a global deformation problem

S = (ρ, S, {Λv}v∈S , ψ, {Dv}v∈S),

we say that a lift ρ : GF → GSp4(A) is of type S if ρ|GFv ∈ Dv(A) for each v ∈ S.
Note that if ρ1 and ρ2 are strictly equivalent lifts of ρ, and ρ1 is of type S, then so
is ρ2. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by DS the set-valued functor that takes a CNLΛ-algebra A to the set of
lifts ρ : GF → GSp4(A) of type S.

Given a subset T ⊆ S, a T -framed lift of type S is a tuple (ρ, {γv}v∈T ), where ρ
is a lift of type S, and γv ∈ ker(GSp4(A)→ GSp4(k)) for each v ∈ T . We say that
two T -framed lifts (ρ1, {γv}v∈T ) and (ρ2, {γ′v}v∈T ) to a CNLΛ-algebra A are strictly
equivalent if there is an a ∈ ker(GSp4(A)→ GSp4(k)) such that ρ2 = aρ1a

−1, and
γ′v = aγv for each v ∈ T . A strict equivalence class of T -framed lifts of type S is
called a T -framed deformation of type S. We denote by DTS the set valued functor
that sends a CNLΛ-algebra A to the set of T -framed deformations to A of type S.

The functors DS and DTS are representable (as we are assuming that ρ is abso-
lutely irreducible), and we denote their representing objects by RS and RTS respec-
tively. If T is empty, then RS = RTS , and otherwise the natural map RS → RTS
is formally smooth of relative dimension 11#T − 1. Indeed DTS → DS is a torsor
under (

∏
v∈T ĜSp4)/Ĝm. Define T to be the coordinate ring of (

∏
v∈T ĜSp4)/Ĝm

over Λ. This is a power series algebra over Λ in 11#T − 1 variables.
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Lemma 7.1.6. The choice of a representative ρS : GF → GSp4(RS) for the uni-
versal type S deformation determines a splitting of the torsor DTS → DS and a
canonical isomorphism RTS

∼= RS⊗̂ΛT .

Proof. This is obvious. �

7.2. Galois cohomology and presentations. Fix a global deformation problem

S = (ρ, S, {Λv}v∈S , ψ, {Dv}v∈S),

and for each v ∈ S, let Rv denote the object representing Dv. Let T be a subset
of S containing Sp, with the property that Λv = O and Dv = D�

v for all v ∈ SrT .
Define RT,loc

S = ⊗̂v∈TRv, with the completed tensor product being taken over O. It
is canonically a Λ-algebra, via the canonical isomorphism ⊗̂v∈TΛv ∼= ⊗̂v∈SΛv. For
each v ∈ T , the morphism DTS → Dv given by (ρ, {γv}v∈T ) 7→ γ−1

v ρ|GFv γv induces
a local Λv-algebra morphism Rv → RTS . We thus have a local Λ-algebra morphism
RT,loc
S → RTS .
The relative tangent space of this map is computed by a standard calculation

in Galois cohomology, which we now recall. We let ad ρ (resp. ad0 ρ) denote g(k)
(resp. g0(k)), with the adjoint GF -action via ρ.

The trace pairing (X,Y ) 7→ tr(XY ) on ad0 ρ is perfect and GF -equivariant, so
ad0 ρ(1) is isomorphic to the Tate dual of ad0 ρ. We define

H1
S,T (ad0 ρ) := ker

(
H1(FS/F, ad0 ρ)→

∏
v∈T

H1(Fv, ad0 ρ)

)
,

H1
S⊥,T (ad0 ρ(1)) := ker

(
H1(FS/F, ad0 ρ(1))→

∏
v∈SrT

H1(Fv, ad0 ρ(1))

)
.

Proposition 7.2.1. Continue to assume that T contains Sp, and that for all v ∈
S r T we have Λv = O and Dv = D�

v . Then there is a local Λ-algebra surjection
RT,loc
S [[X1, . . . , Xg]]→ RTS , with

g = h1
S⊥,T (ad0 ρ(1))− h0(FS/F, ad0 ρ(1))−

∑
v|∞

h0(Fv, ad0 ρ)

+
∑
v∈S\T

h0(Fv, ad0 ρ(1)) + #T − 1.

Proof. We follow [Kis09, §3.2]. By [Kis09, Lem. 3.2.2] (or rather the same statement
for GSp4, which has an identical proof), the claim of the proposition holds with

g = h1
S,T (ad0 ρ)− h0(FS/F, ad ρ) +

∑
v∈T

h0(Fv, ad ρ).

By [DDT97, Thm. 2.19] (and the assumption that ρ is absolutely irreducible, which
implies that h0(FS/F, ad ρ0) = 0), we have

h1
S,T (ad0 ρ) = h1

S⊥,T (ad0 ρ(1))− h0(FS/F, ad0 ρ(1))−
∑
v|∞

h0(Fv, ad0 ρ)

+
∑
v∈S\T

h1(Fv, ad0 ρ)−
∑
v∈S

h0(Fv, ad0 ρ).
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The result follows from the local Euler characteristic formula and Tate local duality.
�

7.3. Local deformation problems, l = p. Assume from now on that p splits
completely in F . Let v be a place of F lying over p. If x ∈ k×, then we write λx :
GFv → k× for the unramified character with λx(Frobv) = x.

Definition 7.3.1. We say that ρ|GFv is p-distinguished weight 2 ordinary if it is
conjugate to a representation of the form

λαv 0 ∗ ∗
0 λβv ∗ ∗
0 0 ε−1λ−1

βv
0

0 0 0 ε−1λ−1
αv

 ,

where αv 6= βv.
If ρ|GFv is p-distinguished weight 2 ordinary, then we say that a lift ρ : GFv →

GSp4(O) of ρ|GFv is p-distinguished weight 2 ordinary if ρ itself is conjugate to a
representation of the form

λαv 0 ∗ ∗
0 λβv ∗ ∗
0 0 ε−1λ−1

βv
0

0 0 0 ε−1λ−1
αv


where αv, βv lift αv, βv respectively. Note that ρ is then automatically semistable,
although not necessarily crystalline.

Remark 7.3.2. The terminology “weight 2 ordinary” is not ideal, but we were unable
to find a better alternative. Possibilities include “P -ordinary” (referring to the
Siegel parabolic subgroup), which clashes with “p-distinguished”, or “semistable
ordinary”. We could of course restrict to the crystalline case and use “flat ordinary”
representations, but as it costs us little to allow semistable representations, and it
may prove to be useful in future applications, we have not done this.

Remark 7.3.3. For the purposes of proving the potential modularity of abelian
surfaces, it would suffice to work with a stronger p-distinguishedness hypothesis,
as in [CG20]. In particular, by assuming that none of α2

v, β
2

v, αvβv are equal to 1,
we could arrange that the various deformation rings considered in this section are
formally smooth. However, such a hypothesis is very restrictive in the case p =
3, and in particular would seriously restrict the applicability of our modularity
lifting theorems to proving the modularity (as opposed to potential modularity) of
particular abelian surfaces.

We assume from now on that ρ|GFv is p-distinguished weight 2 ordinary for
all v|p; the roles of αv, βv in the definition of p-distinguished weight 2 ordinary are
symmetric, and we fix a labelling of αv, βv for each v|p.

Set Λv,1 = O[[O×Fv (p)]], Λv,2 = O[[(O×Fv (p))2]], where O×Fv (p) = 1+pOFv denotes
the pro-p completion of O×Fv . Both Λv,1 and Λv,2 are formally smooth over O
(because we are assuming that Fv = Qp). Let Λv be either Λv,1 or Λv,2. There
is a canonical character IFv → O×Fv (p) given by Art−1

Fv
, and we define a pair of

characters θv,i : IFv → Λv, i = 1, 2 as follows: if Λv = Λv,1, then we let θv,1 =
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θv,2 = θv be the natural character and if Λv = Λv,2, then we let θv,i correspond to
the embedding O×Fv (p) to (O×Fv (p))2 given by the ith copy.

Let cv denote a choice of either αv or βv, and write c′v := αvβv/cv for the other
choice. Recall that we have the Borel subgroup B of GSp4 consisting of matrices
of the form 

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 .

We let P denote the subgroup of B consisting of matrices of the form
∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗

 .

If A ∈ CNLΛv , then we say that a lift ρA : GFv → GSp4(A) of ρ|GFv is (B, cv)-
ordinary if there is an increasing filtration of free A-submodules

0 = Fil0 ⊂ Fil1 ⊂ · · · ⊂ Fil4 = A4

of A4 by A[GFv ]-submodules such that the action of GFv on Fili /Fili−1 is via a
character χi with χ1 = λ

cv
, χ2 = λc′v , χ1|IFv = θv,1, χ2|IFv = θv,2, and χ3 =

ε−1χ−1
2 , χ4 = ε−1χ−1

1 .
By [CHT08, Lem. 2.4.6] such a filtration is unique; since {(Fil4−i)⊥} gives an-

other filtration satisfying the same conditions, we see that ρA is ker(GSp4(A) →
GSp(k))-conjugate to a representation of the form

χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 ∗
0 0 0 ε−1χ−1

1


where χ1, χ2 are as above.

If Λv = Λv,1 (so that θv,1 = θ2,v), then we say that ρA is P -ordinary if it is
both (B,αv)-ordinary and (B, βv)-ordinary; equivalently, if ρA is ker(GSp4(A) →
GSp(k))-conjugate to a representation of the form

χ1 0 ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 0
0 0 0 ε−1χ−1

1

 .

If Λv = Λv,2 (resp. Λv = Λv,1) then we let DB,cvv (resp. DPv ) be the subfunctor of
(B, cv)-ordinary lifts (resp. of P -ordinary lifts). By [CHT08, Lem. 2.4.6], we see
that DB,cvv and DPv are local deformation problems in the sense of Definition 7.1.4,
so they are represented by CNLΛv -algebras RB,cvv , RPv respectively.

Most of the rest of this section is devoted to the proof of the following result.

Proposition 7.3.4. The generic fibres RB,cvv [1/p], RPv [1/p] are irreducible, and are
of relative dimensions 16 and 14 respectively over Qp.

Our arguments are rather ad hoc, and will require a number of preliminary
lemmas.
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7.3.5. Ordinary deformation rings for GL2. We begin by studying some ordinary
deformation rings for GL2. As well as being a warmup for our main arguments, we
will often be able to show that our deformation rings for GSp4 are formally smooth
over a completed tensor product of deformation rings for GL2, thus reducing to this
case.

Let r : GQp
→ GL2(k) be of the form(

λα ∗
0 ε−1λ−1

α

)
.

Set Λ = O[[1 + pZp]], and write θ : IQp
→ Λ for the canonical character defined

above. If A ∈ CNLΛ, then we say that a lift of r to r : GQp → GL2(A) is ordinary
if it is ker(GL2(A)→ GL2(k))-conjugate to a representation of the form(

χ ∗
0 ε−1χ−1

)
where χ = λα and χ|IQp = θ. As above, this is a local deformation problem, and
is represented by a CNLΛ-algebra RB2,�, where B2 denotes the Borel subgroup
of GL2 of upper triangular matrices.

We write

r =

(
λα ε−1λ−1

α ηα2

0 ε−1λ−1
α

)
,

where ηα2 is a cocycle in Z1(Qp, ελα2). Rescaling our basis vectors has the ef-
fect of changing ηα2 by a coboundary, so we can and do think of ηα2 as a class
in H1(Qp, ελα2).

Let b2 be the Lie algebra of B2, given by the matrices

b2 =

(
ν + xα xα2

0 ν − xα

)
,

where ad0
B2

corresponds to ν = 0. With respect to the basis given by the matrices

corresponding to the variables {xα2 , xα}— that is, the basis
{(

0 1
0 0

)
,

(
1 0
0 −1

)}
— the Galois representation ad0

B2
r is given explicitly as follows:(
ελα2 −2ηα2

0 1

)
.

Note that if M is annihilated by p, then H2(Qp,M) is given by H0(Qp,M
∗)∨ '

HomGQp
(M, ε)∨. It follows that h2(Qp, ad0

B2
r) = 0 unless α2 = 1 and ηα2 = 0,

in which case we have h2(Qp, ad0
B2
r) = 1. We write RB2 for RB2,� unless we

particularly want to emphasize the GL2-framing variables.

Lemma 7.3.6. The generic fibre RB2 [1/p] is irreducible, and has relative dimen-
sion 5 over Qp.

Proof. By a standard argument (see [Maz89, Prop. 2]), RB2 has a presentation of
the form O[[x1, . . . , xr]]/(y1, . . . , ys), where

r = 4− h0(Qp, adB2
r) + h1(Qp, ad0

B2
r) = 3− h0(Qp, ad0

B2
r) + h1(Qp, ad0

B2
r),

s = h2(Qp, ad0
B2
r).

Note that, a priori, even when s > 0, some of the yi may vanish, although one
does not expect this to happen. By the local Euler characteristic formula, r − s =
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3 + dim ad0
B2
r = 5. In particular, if H2(Qp, ad0

B2
r) = 0, then RB2 is formally

smooth over O of relative dimension 5, and we are done.
If H2(Qp, ad0

B2
r) 6= 0, then the above discussion shows that α = ±1, r is split,

and s = h2(Qp, ad0
B2
r) = 1. Since any quotient of a formal power series ring by a

single relation is a local complete intersection, it follows from the presentation of the
previous paragraph that RB2 is a local complete intersection, and in particular S2.
Note that, at this point, we don’t know if the relation y1 is non-zero or not, so we
do not as yet know the dimension of RB2 .

Twisting by a quadratic character, we can and do suppose that α = 1, so that r =
1 ⊕ ε−1. We begin by showing that SpecRB2 [1/p] is connected, following [Ger19,
Lem. 3.13]. Note that the map SpecRB2 [1/p] → Spec Λ[1/p] admits a section,
because we can always find a lift of the form χ ⊕ χ−1ε−1. Since Spec Λ[1/p] is
connected, it therefore suffices to show that the fibres of this map over closed
points x of Spec Λ[1/p] are connected.

By (for example) the proof of [BLGGT14b, Lem. 1.2.2] (see also [BG19, Lem.
3.4.1]), the irreducible components of SpecRB2 [1/p] are fixed by conjugation by
elements of GL2(RB2) whose image in GL2(k) is diagonal. It is therefore obviously
the case that all the closed points which are conjugate to representations of the
form χ ⊕ χ−1ε−1 lie in the same connected component of the fibre over x, so it
suffices to show that each closed point of the form

r =

(
χ ∗
0 ε−1χ−1

)
lies in the same connected component as the corresponding point with ∗ = 0. To
this end, we consider the representation

rt : diag(t, t−1)r diag(t, t−1)−1 → GL2(O〈t〉).

Note that the specializations of this representation at t = 0 and t = 1 correspond
to the two closed points that we are considering.

Letting A ⊂ O〈t〉 be the closed subalgebra generated by the matrix entries of
the elements of the image rt, one checks exactly as in the proof of [BLGGT14b,
Lem. 1.2.2] that A is a complete local Noetherian O-algebra with residue field k.
Since r is split, it follows that the representation rt arises from a map RB2 → A.
Since A is a domain (being a subring of O〈t〉), we see that the points corresponding
to t = 0 and t = 1 lie on the same irreducible component, as required.

To see that RB2 [1/p] is moreover irreducible, it is enough to check that it is
normal, or equivalently that it is R1 and S2. We have already seen that it is S2, and
to show that it is R1, it suffices to show that there is an open regular subscheme U
of RB2 [1/p] whose complement has codimension at least 2. We will in fact show
that there is such a subscheme with the property that the tangent space at any
closed point u ∈ U has dimension 5, thus also proving the statement about the
dimension of RB2 [1/p] (if the one relation in our presentation of RB2 was trivial,
then RB2 would be formally smooth of relative dimension 6, and there would be no
such points).

OverRB2 , we have a universal lifting runiv : GQp → GL2(RB2), and we letH2
ord :=

H2(GQp , ad0
B2
runiv), a finite RB2-module. Since the cohomology of GQp van-

ishes in degree greater than 2, the formation of H2 is compatible with special-
ization, so that in particular if x is a closed point of RB2 [1/p] with corresponding
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representation rx : GQp
→ GL2(Ex) (with Ex a finite extension of Qp), then

H2(GQp , ad0
B2
rx) = H2

ord ⊗RB2 Ex.
We let U be the complement of the support of H2

ord in SpecRB2 [1/p]. (It is
not obvious a priori that U is not empty, but we will prove this below.) Then at
any closed point x ∈ U , we have H2(GQp

, ad0
B2
rx) = 0, so by a standard Galois

cohomology calculation (essentially identical to the one used in the first paragraph
of this proof), U is formally smooth over Qp at x, with relative tangent space of
dimension 5. It follows that U is regular.

The complement of U is the support of H2, so just as above, its closed points are
those x for which ρx is a direct sum of two characters whose ratio is the cyclotomic
character. But in any Zariski open neighbourhood of such a point there are points
of U (for example, points which are a direct sum of two characters whose ratio
is not the cyclotomic character, given by twisting the characters occurring in ρx
by unramified characters), so U is dense in SpecRB2 [1/p], and SpecRB2 [1/p] is
equidimensional of relative dimension 5 over Qp.

It remains to show that the complement of U (that is, the support of H2) has
codimension at least 2, or equivalently that it has relative dimension at most 3
over Qp. In fact, it has relative dimension at most 2 over Qp: the only freedom we
have is to make twists of the two characters in ρx (and the determinant is fixed), so
the corresponding dimension is the dimension of GL2 minus the dimension of the

centralizer of
(

1 0
0 ε−1

)
, which equals 4− 2 = 2, so we are done. �

Let RB2, denote the B2-valued framed deformation ring of r with fixed deter-
minant. It follows from the assumption that r is p-distinguished that RB2,� is
formally smooth over RB2, of relative dimension

dim ad0
GL2
−dim ad0

B2
= 3− 2 = 1

(see Lemma 7.3.12 for the details of an analogous argument in the symplectic case).
It will prove useful to give (somewhat) explicit descriptions ofRB2, (and thusRB2)

in a number of explicit cases. Lemma 7.3.7 below will also give another proof of
Lemma 7.3.6, although not one we shall generalize to the symplectic context.

Let γ ∈ k, and let

r =

(
λγ ε−1λ−1

γ η
0 ε−1λ−1

γ

)
.

Via restriction to the character in the upper left hand corner, the ring RB2, is
naturally an algebra over the universal deformation ring RGL1 for GL1. This gives
a map

RGL1 → RB2, .

The ring RGL1 is formally smooth of relative dimension 2 over O, and also formally
smooth over the Iwasawa algebra Λ corresponding to restricting the character to
inertia. Let us choose isomorphisms Λ = O[[y2]] and RGL1 = O[[y1, y2]]. In the
lemma below, we shall use yi for the variables of RB2, corresponding to the algebra
structure over RGL1 , we use xi for framing variables, and zi for variables related
to extensions (informally corresponding to the upper right corner). More precisely,
by “framing variables” we mean the following: the map c 7→ (1 + εc)r gives an
isomorphism

Z1(Qp, ad0
B2

)
∼−→ HomO(RB2, , k[ε]/(ε2)) = Homk(m/m2, k),
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wherem is the maximal ideal ofRB2, and on the level of reduced tangent spaces, the
framing variables are by definition the coboundaries B1(Qp, ad0

B2
) ⊂ Z1(Qp, ad0

B2
).

Lemma 7.3.7. Let m denote the maximal ideal of RB2, . The ring RB2, is a
complete intersection, is flat over Λ, and is irreducible of relative dimension 4
over O. The rings RB2, as RGL1-algebras have the following explicit presentations.

(1) If γ2 6= 1 and η 6= 0, then RB2, ' O[[x1, x2, y1, y2]].
(2) If γ2 6= 1 and η = 0, then RB2, ' O[[x1, z1, y1, y2]].
(3) If γ2 = 1 but η 6= 0, then:

(a) RB2, is formally smooth over O,
(b) RB2, is formally smooth over Λ unless η is peu ramifiée,
(c) RB2, ' O[[x1, x2, z1, y1, y2]]/gη, where gη = cηy1 +dηy2 mod (λ,m2)

for [cη : dη] ∈ P1(k), and where [cη : dη] depends only on η ∈ H1(ε).
(4) If γ2 = 1 and η = 0, then:

(a) RB2, ' O[[x1, z1, z2, y1, y2]]/g, where

g = z1y1 + z2y2 mod (λ,m3).

(b) The special fibre RB2, /λ is not formally smooth.

Remark 7.3.8. Explicit descriptions of ordinary deformation rings (even over general
extensions K/Qp) for GL2 have been given by Böckle in [B0̈0, §7]. However, we
require some precise information about these rings as algebras over RGL1 and Λ
which is not explicitly given in the required form in [B0̈0], and thus we have found it
easier to give the argument below. However, all the methods below already appear
(in a more complicated setting) in previous work of Böckle and others.

Proof. We first note that ad0
B2

is simply the 2-dimensional representation given by

0→ k(λ2
γε)→ ad0

B2
→ k → 0,

and where the extension class is given by η (so this is just a twist of r). The framed
tangent space has dimension

dimZ1(Qp, ad0
B2

) = dimH1(Qp, ad0
B2

) + dimB1(Qp, ad0
B2

),

with precisely
dim ad0

B2
− dimH0(Qp, ad0

B2
)

framing variables. The maps from RGL1 and from Λ correspond on tangent spaces
to the maps Z1(Qp, ad0

B2
)→ H1(Qp, k) and Z1(Qp, ad0

B2
)→ H1(IQp

, k) given by
the composites of the maps

Z1(Qp, ad0
B2

)→ H1(Qp, ad0
B2

)→ H1(Qp, k)→ H1(IQp , k).

We now consider the four possible cases in turn.
If γ2 6= 1 and η 6= 0, then H0(Qp, ad0

B2
) is trivial, and there are two framing

variables x1 and x2. The map from H1(Qp, ad0
B2

) to H1(Qp, k) is an isomorphism.
Note that H2(Qp, ad0

B2
) = 0, and so RB2, is formally smooth over O and all

statements are clear in this case.
If γ2 6= 1 and η = 0, then H0(Qp, ad0

B2
) = k and there is only one framing

variable x1. However, the map from H1(Qp, ad0
B2

) to H1(Qp, k) is now surjective
with kernel H1(Qp, k(ελγ2)), which is of dimension one. Note that H2(Qp, ad0

B2
) =

0, and so RB2, is formally smooth formally smooth over O and once again all
statements are clear.
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If γ2 = 1 but η 6= 0, then H2(Qp, ad0
B2

) = 0 and the tangent space has dimen-
sion four, exactly two dimensions coming from framing, one dimension from the
image of H1(Qp, ε) in H1(Qp, ad0

B2
), and one dimension coming from the image

of H1(Qp, ad0
B2

) in H1(Qp, k). To compute the image, it suffices to consider the
(surjective) map from H1(Qp, k) to H2(Qp, ε) and determine the kernel, or, taking
duals, considering the map H0(Qp, k) → H1(Qp, ε) and taking the image. The
image of the latter map is precisely given by η.

The corresponding ring will fail to be flat over the space of weights Λ precisely
when the image of

H1(Qp, ad0
B2

)→ H1(Qp, k)

maps to zero in H1(IQp
, k), or equivalently when the image is unramified. Under

Tate local duality for H1(Qp, k)×H1(Qp, ε)→ k, the unramified classes are exactly
annihilated by the peu ramifiée classes. Hence the failure of formal smoothness
over Λ occurs precisely when η is peu ramifiée. All the claims follow except possibly
the claim that RB2, is flat over Λ, which is also transparent except in the peu
ramifée case, where RB2, is formally smooth over O and is the quotient of a
formally smooth Λ-algebra by the relation gη = y2 mod (m2, λ). This will be flat
over Λ as long as y2 /∈ λRB2, , which can be easily ruled out by looking at points
in characteristic zero. For example, we see from [GHLS17, Theorem 2.1.8] that the
fibre over every point in Λ[1/p] is non-trivial. In particular, there are points where
the restriction to inertia of the character lifting λγ is finite of arbitrarily large
order, so that v(y2) becomes arbitrarily close to 0, which would not be possible
if y2 ∈ λRB2, .

It remains to consider the case when r = 1⊕ε−1. The representation underlying r
decomposes as a direct sum which induces corresponding decompositions of ad0

B2

and ad0
GL2

respectively. In particular, the adjoint ad0
B2

= k ⊕ ε of r thought
of as inside the Borel is naturally a direct summand of ad0

GL2
= k ⊕ ε ⊕ ε−1.

Let Z1(Qp, ad0
B2

) denote the 1-cocycles with values in ad0
B2

. There is a natural
surjection

Z1(Qp, ad0
B2

)→ H1(Qp, ad0
B2

) = H1(Qp, k)⊕H1(Qp, ε).

We now chose a basis for Z1(Qp, ad0
B2

) as follows:
(1) r1 generates the kernel B1(Qp, ad0

B2
) of Z1(Qp, ad0

B2
)→ H1(Qp, ad0

B2
).

(2) s1 and s2 generate H1(Qp, k), where s1 is unramified and s2 is ramified.
(3) t1 and t2 generateH1(Qp, ε), where t1 is très ramifiée and t2 is peu ramifiée.
(4) Under the alternating cup product pairing

H1(Qp, k)×H1(Qp, ε)→ H2(Qp, ε) ' k,
we have si ∪ tj = δij .

We now define the dual basis of

m/(m2, λ) = Homk(Homk(m/m2, k), k)

to be given by xi, yi, and zi for i = 1 for xi and i = 1, 2 for yi and zi, where

xi(rj) = yi(sj) = zi(tj) = δij ,

and all other combinations vanish. The representation ad0
B2

(ρ) has a Lie algebra
structure via the map

ad0
B2

(ρ)× ad0
B2

(ρ)→ ad0
B2

(ρ), (A,B) 7→ AB −BA.
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The corresponding cup product on cohomology groups composed with this Lie
algebra structure induces a symmetric bilinear pairing (the bracket cup product)

M : Z1(Qp, ad0
B2

)2 → H1(Qp, ad0
B2

)2 → H2(Qp, ad0
B2

),

Writing H1(Qp, ad0
B2

) = H1(Qp, k) ⊕H1(Qp, ε), this map can be given explicitly
in our case as follows:

M(a, b) = M((a1, a2), (b1, b2)) = 2(a1 ∪ b2 − a2 ∪ b1).

(Note that ∪ is alternating so this map is indeed symmetric.) As noted by in [Maz89,
§1.6], the image of the corresponding map gives the quadratic relations in the
deformation ring, which produces the desired quadratic relation g.

More precisely, note that H2(Qp, ad0
B2

) = H2(Qp, ε) is 1-dimensional. By [BJ15,
Lem. 5.2], the relation g can be determined (up to the required order) by the relation
given by the image of the natural map

H2(Qp, ad0
B2

)∨ → (Z1(Qp, ad0
B2

)∨)2

induced by the bracket cup product. But now the non-zero terms can be read off
from the explicit form ofM(a, b) above and the description of our basis of m/(m2, λ)
as a dual basis to the explicit basis of Z1(Qp, ad0

B2
). It follows that, after rescaling,

the leading term of g is given by y1z1 + y2z2, as required.
Part (4b) is a straightforward consequences of the presentation just determined

above. Note that the structure over RGL1 and Λ is one again determined by the cor-
responding map from H1(Qp, ad0

B2
) to H1(Qp, k), and from our explicit description

above this corresponds to our choice of the parameters y1 and y2. �

We also have:

Lemma 7.3.9. The points of RB2 [1/p] which are non-smooth over Λ are — up to
unramified twist — crystalline extensions of ε−1 by 1.

Proof. This is the characteristic zero version of the computation done in the proof
of Lemma 7.3.7(3b), and amounts to noting that in the Tate duality pairing

H1(Qp,Qp)×H1(Qp,Qp(1))→ Qp,

the unramified classes in the first group are annihilated exactly by the crystalline
extensions in the second. �

We next introduce a class of partially framed deformation rings, which will allow
us to relate framed deformation rings for different groups.

7.3.10. Partially framed deformation rings. Since we are assuming that Fv = Qp,
for the rest of this section we write Qp instead of Fv and ρ instead of ρ|GFv . We
shall also henceforth (in this section) write RB for RB,cvv and RP for RPv . These
are framed deformation rings with respect to GSp4, and as such, could also be
denoted by RP,� and RP,� to emphasize the framing. However, the images of the
corresponding Galois representations may always be conjugated to land in B or P
respectively. In particular, we may consider deformation rings in which the image
is required to actually land inside these subgroups rather than land there up to
conjugation.
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Definition 7.3.11. Let DB, and DP, denote the subfunctors consisting of de-
formations which land inside B or P respectively. Let RB, and RP, denote the
corresponding deformation rings.

(Here the adornment represents that the framing is all taking place inside the
“upper right corner” corresponding to B or P respectively.) The ring RB, may be
identified with the universal framed deformation of ρ with fixed similitude character
thought of as a representation to B. The ring RP, is not quite the universal
deformation ring of ρ to P (framed in P ) with fixed similitude character, because we
are imposing an extra condition on the restriction of the first two diagonal entries
to inertia. On the other hand, if RP,univ = RP,univ,� denotes the deformations
to GSp4 of fixed similitude character which may be conjugated to P (without
imposing this condition on inertia), then there is also a corresponding ring RP,univ,

which is the universal P -framed deformation of ρ with fixed similitude character.
Note that there are tautological maps RB → RB, and RP → RP, respectively.
Let us write adGSp4

, adB , and adP for the groups adGSp4
(ρ), adB(ρ), and adP (ρ)

respectively. Since p is odd, there exist corresponding direct factors ad0
GSp4

, ad0
B ,

and ad0
P corresponding to deformations with fixed similitude character.

Lemma 7.3.12. Suppose that ρ is p-distinguished weight 2 ordinary.
(1) There exists a splitting

RB, → RB,� → RB,

which realizes RB = RB,� as formally smooth over RB, of relative dimen-
sion

dim ad0
GSp4

−dim ad0
B = 10− 6 = 4.

(2) There exists splittings

RP,univ, → RP,univ,� → RP,univ, ,

RP, → RP,� → RP,

which realize RP and RP,univ as formally smooth over RP, and RP,univ,

respectively, of relative dimension

dim ad0
GSp4

−dim ad0
P = 10− 5 = 5.

Proof. As previously noted, the p-distinguished hypothesis implies the existence
(by [CHT08, Lem. 2.4.6]) of a unique Galois stable filtration Fili on (RB,�)4. In
particular, we may choose a splitting of this filtration by a symplectic matrix M ∈
GSp4(RB,�) with the property that M ≡ I mod m. Conjugation by M induces
the desired map from GSp4-framed deformations to B-framed deformations, and
thus induces a splitting from RB, to RB . In the P case, one can additionally
choose the splitting such that the choice of new vector in Fil2 is Galois stable, and
then the corresponding conjugate is valued in P .

The p-distinguished hypothesis implies that the maps

H0(Qp, ad0
P )→ H0(Qp, ad0

B)→ H0(Qp, ad0
GSp4

)

are all isomorphisms (see for example the explicit descriptions of ad0
P and ad0

B

following the proof of this lemma). By construction, the reduced tangent spaces
ofRB,� andRB, are given by extensions ofH1(Qp, ad0

B) (in both cases) byB1(Qp, ad0
GSp4

)
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and B1(Qp, ad0
B) respectively (and analogously with P ). On the other hand, the

map on B1 groups is precisely dual to the map

ad0
B /H

0(Qp, ad0
B)→ ad0

GSp4
/H0(Qp, ad0

GSp4
)

(and once more similarly with P ). Hence, from the identification of H0 groups
above, it follows that the map on reduced tangent spaces corresponding to RB,� →
RB, is an injection whose cokernel has dimension

(dim ad0
GSp4

−dimH0(Qp, ad0
GSp4

))− (dim ad0
B −dimH0(Qp, ad0

B))

= dim ad0
GSp4

−dim ad0
B

(And similarly in the P case with B replaced by P .)
We now prove the maps are formally smooth, which will be a direct consequence

of the fact that the obstruction group is given (for RB,� and RB, or for RP,univ,�

and RP,univ, and RP,� and RP, ) by the groups H2(Qp, ad0
B) and H2(Qp, ad0

P )
respectively. We consider first the case of B; for simplicity of notation, we drop B
from the superscripts from now on. Consider a surjection R̃ := R [[x1, x2, x3, x4]]→
R� which induces an isomorphism on reduced tangent spaces, and let J denote the
kernel (so it suffices to show that J = 0). Let m̃ be the radical of R̃. Recall that we
have a unique symplectic filtration Fili on (R�)4 = (R̃/J)4 and a choice of splitting

corresponding to the matrixM . Lift this to a filtration F̃il
i
for R̃/m̃J , and consider

a corresponding set theoretic deformation ρ̃ : GQp
→ GSp4(R̃/m̃J) which preserves

this filtration. (There are no issues lifting filtrations because the symplectic group is
formally smooth.) The corresponding 2-cocycle [c] ∈ H2(Qp, ad0

GSp4
)⊗ J/m̃J then

lands in H2(Qp, ad0
B)⊗ J/m̃J . Now choose a symplectic splitting of this filtration

lifting the one for Fili. Conjugating ρ̃ by the corresponding matrix M̃ (lifting M
above) gives a set theoretic map M̃ρ̃M̃−1 from GQp to B(R̃/m̃J). But this map
lifts ρ ,univ : GQp → B(R ). By universality of ρ ,univ, since R̃/m̃J is an R -
algebra, there is no obstruction to lifting this to a B-representation of GQp , and
hence the class [c] becomes trivial in the corresponding obstruction group for the B-
deformation problem. Since the obstruction group in this case is H2(Qp, ad0

B) for
both the B-deformation problem and the ordinary GSp4-deformation problem, it
follows that [c] is trivial and hence that J = 0.

The same argument applies to P , except now the splitting of F̃il
i
has to be chosen

so that it is preserved by GQp — equivalently, an identification of the first two
eigenspaces to R̃/J to ensure that the deformation is of P -type. In the case of RP ,
one additionally requires the set theoretic lift to act diagonally after restriction to
inertia on F̃il

2
. �

7.3.13. The GSp4-deformation rings. We are assuming that ρ|GFv has image of the
form 

λα 0 ε−1λ−1

β
ηαβ ε−1λ−1

α ηα2

0 λβ ε−1λ−1

β
ηβ2 ε−1λ−1

α ηαβ

0 0 ε−1λ−1

β
0

0 0 0 ε−1λ−1
α





182 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

where α 6= β, and where we write ηδ to denote a (possibly zero) class inH1(Qp, ελδ).
Our analysis of the deformation rings (particularly in the B case) will depend on
which of these classes are equal to zero or not.

The dimensions of B and P are 7 and 6 respectively. Recall that we are con-
sidering deformations of ρ to B or P with fixed similitude character. For p > 2,
the adjoint representations p and b admit a splitting with a canonical one dimen-
sional summand corresponding to varying the similitude character. Let ad0

B(ρ) ⊂ b

and ad0
P (ρ) ⊂ p denote the complementary 6 and 5 dimensional subspaces. Explic-

itly, b is given as follows:

b =


ν + xα −xα/β xαβ xα2

0 ν + xβ xβ2 xαβ
0 0 ν − xβ xα/β
0 0 0 ν − xα

 ,

where the subspace with xα/β = 0 corresponds to p, and the subspace ν = 0

corresponds to ad0
B . With respect to the basis given by the matrices corresponding

to {xα2 , xβ2 , xαβ , xα/β , xα, xβ}, the Galois representation ad0
B(ρ) is given explicitly

as follows: 

ελα2 0 0 2λαλ
−1

β
· ηαβ −2ηα2 0

0 ελ
β

2 0 0 0 −2ηβ2

0 0 ελαβ λαλ
−1

β
· ηβ2 −ηαβ −ηαβ

0 0 0 λαλ
−1

β
0 0

0 0 0 0 1 0
0 0 0 0 0 1


.

and, on the space ad0
P (ρ) ⊂ ad0

B(ρ) with respect to the basis {xα2 , xβ2 , xαβ , xα, xβ}
(not a direct summand!), we have

ελα2 0 0 −2ηα2 0
0 ελ

β
2 0 0 −2ηβ2

0 0 ελαβ −ηαβ −ηαβ
0 0 0 1 0
0 0 0 0 1

 .

As in the case of GL2 above, we may compute H2(Qp, ad0(ρ)) for P and B by
counting whether the subspaces generated by {xα2 , xβ2 , xαβ} generate ε subspaces
and whether these subspaces split. The following lemma is immediate from the
explicit description above.
Lemma 7.3.14. The dimension of H2(Qp, ad0

B(ρ)) is zero unless one of the fol-
lowing holds:

(1) The classes ηαβ and ηα2 are both zero, and α2 = 1.
(2) The class ηβ2 is zero, and β

2
= 1. In this case, either:

(a) The conditions of part (1) also hold, or:
(b) The dimension of H2(Qp, ad0

B(ρ)) is 1, and there is a Qp-equivariant
map from the representation V underlying ρ to the Borel of GL(2)
corresponding to the representation

W =

(
λβ 0

0 ε−1λ−1

β

)
= λβ ⊗

(
1 0
0 ε−1

)
,
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and the corresponding map relating H2(Qp, ad0
B(ρ)) = H2(Qp, ad0

B(V ))

to H2(Qp, ad0
B2

(W )) is an isomorphism.
(3) The classes ηαβ and ηβ2 are both zero, and αβ = 1.

Moreover, the dimension of H2(Qp, ad0
B(ρ)) is ≥ 2 only in case (2a), in which it

has dimension 2.

We could give a similar (but easier) computation of H2(Qp, ad0
P (ρ)), but it is

not needed in the sequel so it is omitted.
Recall that RP,univ denotes the universal deformation ring for P . The quo-

tient RP is given by imposing the condition that the action of inertia on Fil2 (given
by the upper left 2× 2 matrix after changing basis) is through a scalar. Recall that
we also have corresponding rings RP,univ, and RP, where the image lands in P
directly (rather than up to conjugation). Any deformation of type RP,univ, deter-
mines deformations of the three 2-dimensional subquotients of ρ, given respectively
by the extension rA of ε−1λ−1

α by λα, by the extension rB of ε−1λ−1

β
by λβ , and

the extension rAB of ε−1λ−1

β
by λα. Similarly, any triple of such deformations with

the appropriate coincidences of the corresponding characters defines a representa-
tion of type P . (These identifications require that we work with framings rather
than � framings, since otherwise there would be superfluous framing variables in
this identification.)

Let RA = RB2, for rA and RB = RB2, for rB . Let RAB = RB2, , det for rAB ,
where RB2, , det is the framed B2 deformation ring in which one does not fix the
determinant, so (since p > 2) one has that RB2, , det = RB2, ⊗̂ORGL1 is formally
smooth over RB2, of relative dimension 2. There are natural maps from RA, RB ,
and RAB to RP,univ, and RP, respectively. Write RGL1×GL1 = RGL1⊗̂ORGL1 for
the deformation ring corresponding to the pair of characters (λαv , λβv ). We have
the following:

Lemma 7.3.15. The ring RP,univ is formally smooth over

RP,univ, ' (RA⊗̂ORB)⊗̂RGL1 ×GL1RAB

of relative dimension 5. The ring RP is formally smooth over

RP, ' (RA⊗̂ΛRB)⊗̂RGL1 ×GL1RAB

of relative dimension 5.

Proof. The isomorphisms follow directly from the discussion above, and the state-
ment about formal smoothness is Lemma 7.3.12. �

We now prove the P -part of Proposition 7.3.4.

Proposition 7.3.16. Suppose that ρ is p-distinguished. Then RP,univ and RP are
both complete intersections. Moreover, they are connected in characteristic zero,
and the non-smooth locus in characteristic zero has codimension at least two. In
particular, the generic fibres RP,univ[1/p] and RP [1/p] are irreducible of dimen-
sions 15 and 14 over Qp respectively.

Proof. The strategy is as follows. By Lemma 7.3.15, we can immediately reduce
to the rings RP,univ, and RP, respectively and prove that they satisfy the same
properties above (with 15 and 14 replaced by 10 and 9 respectively). Given the
explicit form of the presentations for the 2-dimensional B2-deformation rings, in
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order to show that RP,univ, and RP, are complete intersections, one can simply
write down enough about the equations for the tensor products in Lemma 7.3.15
and observe (for the appropriate value d = 10 or 9 in either case) that they are
either:

(1) Formally smooth of the relative dimension d over O,
(2) Given as a quotient of a power series ring in d+ 1 variables by one relation,
(3) Given as a quotient of a power series ring in d+2 variables by a 2-generator

prime ideal which is not contained in (λ).

(The last example occurs only in a single case.) We say more about this computation
below.

For the remaining claims, it suffices to prove that the generic fibre is connected
and that our tensor products are R1 and S2 (and thus normal); since they are
complete intersections, it is enough to show that the non-smooth points have codi-
mension at least 2. It is convenient to consider two separate cases.

Suppose that αβ = 1. In this case, it follows from the p-distinguishedness
hypothesis that α2 6= 1 and β2 6= 1. In this case, the rings above have a particularly
simple form even over O. Namely, RA and RB are formally smooth over O and
over Λ, and the resulting tensor product is formally smooth over RAB , and thus
the result follows from Lemma 7.3.7, since the rings RB2, satisfy all the required
geometric properties above.

Now suppose that αβ 6= 1. In this case, RAB is formally smooth over RGL1×GL1 ,
and by Lemma 7.3.15, RP,univ andRP, are formally smooth overRA⊗̂ORB orRA⊗̂ΛRB
respectively. Let us now consider the case of RP, , which corresponds to RA⊗̂ΛRB ,
the case of RA⊗̂ORB being easier and also following immediately from Lemma 7.3.7.
Since RA and RB are either smooth or have a non-smooth locus of codimension 4
(corresponding to twists of 1⊕ε−1 by a (possibly trivial) unramified quadratic char-
acter), it is certainly the case that the points on the generic fibre of RA⊗̂ΛRB which
are non-smooth on RA⊗̂ORB have codimension at least 2. Hence it suffices to con-
sider the non-smooth points of RA⊗̂ΛRB which are smooth on RA⊗̂ORB . In par-
ticular, such a point must have a tangent space of dimension 8, and will be smooth
if and only if it has an infinitesimal deformation which does not lie on RA⊗̂ΛRB .
Equivalently, given a point x = (xA, xB) on the generic fibre of RA⊗̂ΛRB [1/p], it
will be smooth if it has a deformation in which the weight over Λ varies for one xA
or xB but remains fixed for the other point. Equivalently, we can look for a de-
formation of x = (xA, xB) such that one point is fixed but the other point varies
over Λ[1/p]. For xA or xB , such a deformation exists as long as xA (or xB) is a
smooth point over Λ. But the non-smooth points in characteristic zero over the
space of weights Λ are (up to unramified twist) exactly the crystalline extensions
of ε−1 by 1 (see Lemma 7.3.9), and hence these non-smooth points certainly have
codimension at least 2. To show it is connected, it suffices to note that, for each
fibre of RA above Λ, any xA is connected over this fibre to a point which is smooth
over Λ. This reduces to showing that any extension of ε−1 by 1 which is crystalline
has a deformation to a non-crystalline extension. But this is trivially achieved by
a perturbation of the extension class, noting that H1(Qp, ε) is free of rank 2 and
the crystalline subspace is a line of rank 1.

It remains to prove the claim that these rings are complete intersections in all
the possible cases. Almost all the time, the tensor product is either immediately
seen to be formally smooth of the right dimension, or given by a single non-zero
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equation and of the right dimension. In fact, the only way in which there can be two
equations is when two of the rings RA, RB , and RAB are not formally smooth. This
implies that at least two of α2, β

2
, and αβ are equal to one, and this trivially only

happens when α2 = 1 and β
2

= 1, and hence αβ 6= 1. Thus the only possible case
when there exist at least two equations is when α2 = β

2
= 1 and ηα2 = η

β
2 = 0.

The corresponding tensor product is then

O[[xA,1, zA,1, zA,2, yA,1, yA,2, xB,1, zB,1, zB,2, yB,1]]

modulo the ideal (noting tensoring over Λ forces yA,2 = yB,2):

(zA,1yA,1 + zA,2yA,2 + . . . , zB,1yB,1 + zB,2yA,2 + . . .).

This pair of elements is easily seen to generate a height 2 prime ideal.
The cases when there are no equations and the rings are formally smooth are

trivial. In the cases when there is an extra generator one has to show that the
resulting equation is non-zero. Essentially the most subtle case of this form occurs
when α2 = β

2
= 1 and ηα2 and η

β
2 are both non-zero and peu ramifiée. In that

case, there are naïvely two equations which have the following form:

yA,2 = h(xA,1, zA,1, zA,2, yA,1),

yA,2 = h(xB,1, zB,1, zB,2, yB,1),

which immediately reduces to one equation. (Here h is the same h because both
extensions generate the same line — the other cases are trivial). We then need to
show that the resulting equation obtained by taking the difference of the RHS is
non-zero. But this is obviously the case unless the RHS is zero. If this is true,
then yA,2 is zero in RB2, /λ, which is impossible since RB2, is flat over Λ. �

Proof of Proposition 7.3.4. By Proposition 7.3.16, we only need to prove the results
for RB . As in the proof of Lemma 7.3.6, we have a presentation of RB of the
form O[[x1, . . . , xr]]/(y1, . . . , ys), where

r = 11− h0(Qp, adB ρ) + h1(Qp, ad0
B ρ), s = h2(Qp, ad0

B ρ),

so that by the local Euler characteristic formula, r − s = 10 + dim ad0
B r = 16. In

particular, if H2(Qp, ad0
B(ρ)) = 0, then RB is formally smooth over O of relative

dimension 16, and there is nothing to prove.
It is therefore enough to consider each of the cases of Lemma 7.3.14. In case (2b),

we see that RB is formally smooth of relative dimension 11 over the deformation
ring RB2, for r = λβ ⊕ λ

−1

β
ε−1, so the result follows from Lemma 7.3.6. From the

presentation in the previous paragraph, we see that in cases (1) and (3), RB is a
complete intersection, while in case (2a), we see that every irreducible component
of RB has relative dimension at least 16 over O. By Lemma 7.3.12, we may (and
we do) pass freely between RB and RB, when convenient.

Suppose that we are in case (3), and suppose that ηα2 6= 0. Let % be the
representation with the same α, β as ρ, but with ηα2 = ηβ2 = ηαβ = 0. Let RB,%
be the corresponding deformation ring. We claim that in fact RB,% and RB, are
isomorphic. To see this, note firstly that since αβ = 1, and α 6= β, we have α2 6= 1.
Let

r =

(
λα ηα2

0 λ−1
α ε−1

)
.
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We have already shown that, in this case, RB2, is formally smooth over Λ. In
fact, we can be more explicit. Write Λ̃ for what we called RGL1 above, so that Λ̃ is
the formally smooth Λ-algebra of relative dimension 1 which carries the additional
information of the actual lift of λα (rather than just its restriction to inertia), so
that RB, and RB2, are naturally Λ̃-algebras. Let λ̃α : GQp → Λ̃× be the universal

lift of λα. Then since α2 6= 1, H1(GQp
, λ̃α

2
ε) is a free Λ̃-module of rank 1, and the

universal lift of r is represented by(
λ̃α λ̃α

−1
ε−1η̃α2

0 λ̃α
−1
ε−1

)
where η̃α2 lifts ηα2 . It is then easy to verify that if %univ is the universal upper-
triangular lift of % to RB,% , then

%univ +


0 0 0 λ̃α

−1
ε−1η̃α2

0 0 0 0
0 0 0 0
0 0 0 0


is a lift of ρ. This gives a map RB,% → RB, , and we can obtain a map RB, → RB,%
in the same way. It is clear that the composites of these maps are the identities, so
that RB,% and RB, are isomorphic, as claimed.

Accordingly, whenever we are in case (3), we will assume from now on that ηα2 =
0. It is now easy to see that in each of the cases (1), (2a), and (3), SpecRB, [1/p]
is connected. Indeed, in each case we have ηα2 = ηαβ = 0, so by arguing as
in the proof of Lemma 7.3.6 (using conjugation by diag(t, 1, 1, t−1)), we see that
every closed point of SpecRB, [1/p] may be path connected to one which lands
in P (Qp). Now we may immediately conclude by knowing the corresponding result
for SpecRP,univ, [1/p] proved in Proposition 7.3.16.

To obtain irreducibility we now argue as in the proof of Lemma 7.3.6, by studying
the singular locus of SpecRB [1/p]. More precisely, we let ρuniv : GQp

→ GSp4(RB)

be the universal lifting, and let H2 := H2(GQp
, ad0

B ρ
univ), a finite RB-module,

which is compatible with specialization. Let U be the complement of the support
of H2 in SpecRB [1/p]. At any closed point x ∈ U with corresponding representa-
tion ρx : GQp

→ GSp4(Ex), we have H2(GQp
, ad0

B ρx) = 0, so it follows that U is
formally smooth over Ex at x of relative dimension 16. In particular, U is regular.

The points in the complement of U are those for which H2(GQp , ad0
B ρx) 6= 0.

We claim that this has codimension at least 2. We may explicitly describe this
locus as follows (this description follows easily from the explicit description of ad0

B

preceding Lemma 7.3.14). In case (1), we may suppose without loss of generality
(by twisting with a quadratic character if necessary) that α = 1, and then the
points in the complement of U are those conjugate to representations of the form

1 0 0 0
0 χ ∗ 0
0 0 ε−1χ−1 0
0 0 0 ε−1


where χ lifts λβ . The locus of such points has dimension at most 13; indeed, the
action of PGSp4 by conjugation contributes at most 10 to the dimension, and the
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choice of χ and ∗ at most 3 (there is a two-dimensional family of choices of χ, and
if χ2 is non-trivial then the choice of ∗ gives one more dimension, while if χ2 is
trivial then it gives 2 dimensions).

In case (2a), we have in addition the points of the form
χ′ ∗ 0 0
0 λ−1 0 0
0 0 ε−1λ−1 ∗
0 0 0 ε−1(χ′)−1


where χ′ lifts λα = 1. The locus of such points again has dimension at most 13.

In case (3), we have the points of the form
χ ∗ 0 ∗
0 χ−1 0 0
0 0 ε−1χ ∗
0 0 0 ε−1χ−1

 ,

where χ lifts λα. The locus of such points has dimension at most 14 (with 2
dimensions for the choice of χ, and then generically one dimension each for the
choices of the extension class of χ−1 by χ and of ε−1χ−1 by χ, or two dimensions
each if χ2 = 1).

Thus in cases (1) and (3), since we know that RB is a complete intersection, we
see that it is normal (beingR1 and S2), so we are done. The case (2b) having already
been dealt with, we are left with case (2a), where we have seen that every irreducible
component of SpecRB [1/p] has dimension at least 16, while the complement of U
has dimension at most 12. It now suffices to show that RB is a complete intersection,
and thus also normal as above, and to check that SpecRB [1/p] has dimension
exactly 16.

We have a presentation of R = RB of the form O[[x1, . . . , x18]]/(y1, y2). This
is a complete intersection as long as dim(R) ≤ 19 − 2 = 17, which also implies
that the relative dimension of R over O is 16, and so the dimension of the generic
fibre is 16. Assume otherwise, so that dim(R) ≥ 18. Then the support of R
in SpecO[[x1, . . . , x18]] contains a height one prime p of O[[x1, . . . , x18]]. Suppose
firstly that p has residue characteristic zero, and let T denote the corresponding
closed subscheme of SpecR[1/p], which will have dimension 17. For any closed point
x ∈ T with corresponding representation ρx : GQp → GSp4(Ex), the tangent space
at x certainly has dimension at least dim(T ) = 17. Hence there is an inequality

11− h0(Qp, adB ρx) + h1(Qp, ad0
B ρx) ≥ 17,

and so, by the Euler characteristic formula, h2(GQp , ad0
B ρx) ≥ 17 − 16 ≥ 1. In

particular, it follows that x lies in the support of H2, and hence that T ⊂ U . But
we have already seen that U has dimension at most 12, and this is a contradiction.

Hence R can only fail to be a complete intersection if the support of R con-
tains (λ). It follows that dim(R/λ) = dim(k[[x1, . . . , x18]]), and hence that R/λ =
k[[x1, . . . , x18]]. Twisting, we may without loss of generality assume that β = 1.
Let r = 1 ⊕ ε−1, and let RB2, denote the corresponding fixed determinant de-
formation ring to the Borel of GL(2). By realizing r as the subquotient of the
representation ρ given by the span of the second and third standard basis vectors,
there is an induced map

ψ : RB2, → R → R→ R/λ = k[[x1, . . . , x18]].
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Let W denote the representation underlying r, and (as previously) V the repre-
sentation underlying ρ. Let us now consider the induced map on reduced tangent
spaces. To compute this, we may look at the corresponding deformation rings, and
consider the induced map on tangent spaces. For RB2, , the tangent space is given
by Z1(Qp, ad0

B2
(W )). For R , it is given by Z1(Qp, ad0

B(V )). Note that we are
assuming that ηαβ = ηα2 = ηβ2 = 0, and so ρ is completely split, and so ad0

B2
is

a direct summand of ad0
B . Thus Z1(Qp, ad0

B2
(W ))→ Z1(Qp, ad0

B(V )) is injective.
On the other hand, Lemma 7.3.7 (4b) shows that (for this r) the ring RB2, /λ is
not formally smooth. But this is a contradiction; a minimal set of generators of the
maximal ideal of RB2, /λ satisfy at least one polynomial relation, but their images
under ψ do not satisfy any such relation under our assumptions because the map
on tangent spaces is injective and (as we are currently assuming) R /λ and R/λ
is formally smooth. Hence λ also cannot be in the support of R, and thus R is a
complete intersection. �

Remark 7.3.17. The last argument shows that, in case (2a), the ring R = RB is a
complete intersection. But we certainly expect (in this and in all other cases) the
stronger properties that R is flat over O and R/λ is also a complete intersection,
whereas the argument only shows that dim(R/λ) ≤ 17, rather than dim(R)−1 = 16,
which would be necessary in order for λ to be a regular element. In general, we have
often only attempted to prove exactly enough about the deformation rings that we
require for the argument, rather than giving a fuller account of their geometric
properties. We apologize to readers who examine this argument in closer detail
who were hoping for something more comprehensive.

As in §7.1, we say that a closed point x of RB,cvv [1/p] (resp. RPv [1/p]) is smooth
if (RB,cvv [1/p])x is regular (resp. (RB,cvv [1/p])x is regular). We say that the corre-
sponding Galois representation ρx is pure if it is de Rham, and if WD(ρx) is pure
(that is, it arises as the base extension of a pure Weil–Deligne representation over
a number field).

Lemma 7.3.18. If x is a closed point of the generic fibre of RB,cvv [1/p] or RPv [1/p],
and x is pure, then it is smooth.

Proof. We first consider the case of B. From the proof of Proposition 7.3.4, we
see that it is enough to check that H2(GQp

, ad0
B ρx) = 0. By Tate local duality,

this means that it is enough to check that HomGQp
(ρx, ρx(1)) = 0, and therefore it

is enough to check that HomWDQp
(WD(ρx),WD(ρx(1))) = 0. This follows easily

from the definition of purity. The same argument also applies to RP,univ
v [1/p]. We

now consider RPv [1/p]. The non-smooth points x of RPv [1/p] are either non-smooth
in RP,univ

v [1/p] (for which the previous argument applies) or, via the isomorphism
of Lemma 7.3.15 and the proof of Proposition 7.3.16, arise in the following way:
the representation ρx admits a 2-dimensional reducible subquotient rx such that
the corresponding point on the deformation ring RB2 [1/p] is not smooth over Λv.
By Lemma 7.3.9, such representations are (up to unramified twist) a crystalline
extension of ε−1 by 1. Since these are not pure (and purity is preserved by taking
subquotients), the representation ρx is also not pure, and we are also done in this
case. �

7.4. Local deformation problems, l 6= p.
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7.4.1. Unobstructed deformations. Assume that v - p.

Proposition 7.4.2. If H0(Fv, ad0 ρ(1)) = 0, then R�
v is isomorphic to a power

series ring over O in 10 variables. If furthermore ρ|GFv is unramified, then so are
all of its lifts.

Proof. By Tate duality, the condition is equivalent to H2(Fv, ad0 ρ) = 0, and the
result follows from a standard calculation in obstruction theory (see e.g. [Til96,
§5.2]). �

7.4.3. Taylor–Wiles deformations. Assume that qv ≡ 1 mod p, and that both ψ|GFv
and ρ|GFv are unramified. We take Λv = O. We assume that ρ(Frobv) has 4 distinct
eigenvalues in k, and we fix an ordering of them as α1, α2, α3 = ψ(Frobv)/α2,
α4 = ψ(Frobv)/α1. For each i = 1, 2, let γi : GFv → k× be the unramified
character that sends Frobv to αi.

Lemma 7.4.4. Let ρ : GFv → GSp4(A) be any lift of ρ. There are unique contin-
uous characters γi : GFv → A× for i = 1, 2, such that ρ is GSp4(A)-conjugate to a
lift of the form γ1 ⊕ γ2 ⊕ ψγ−1

2 ⊕ ψγ−1
1 , where γi mod mA = γi for each i = 1, 2.

Proof. This can be proved in exactly the same way as [GT05, Lem. 5.1.1]. �

Let ∆v = k(v)×(p)2, where k(v)×(p) is the maximal p-power quotient of k(v)×,
and let ρ : GFv → GSp4(R�

v ) denote the universal lift. Then ρ is GSp4(R�
v )-

conjugate to a lift of the form γ1⊕γ2⊕ψγ−1
2 ⊕ψγ

−1
1 as in Lemma 7.4.4. For i = 1,

2, the character γi ◦ ArtFv |O×Fv factors through k(v)×(p), so we obtain a canonical

local O-algebra morphism O[∆v] → R�
v . Note that this depends on the choice of

ordering α1, . . . , α4. It is straightforward to check that this morphism is formally
smooth of relative dimension 10.

7.4.5. Ihara avoidance deformations. Let v be a finite place of F with qv ≡ 1 mod p.
Assume further that ρ|GFv is trivial, and that ψ|GFv is unramified and has trivial
reduction modulo λ. We take Λv = O.

Let χ = (χ1, χ2) be a pair of continuous characters χi : O×Fv → O
× that are

trivial modulo λ. We let Dχv be the functor of lifts ρ : GFv → GSp4(A) such that
for all σ ∈ IFv , the characteristic polynomial of ρ(σ) is

(X−χ1(Art−1
Fv

(σ)))(X−χ2(Art−1
Fv

(σ)))(X−χ2(Art−1
Fv

(σ))−1)(X−χ1(Art−1
Fv

(σ))−1).

Then Dχv is a local deformation problem, and we denote its representing object
by Rχv .

Lemma 7.4.6. If χ1, χ2 6= 1 and χ1 6= χ±1
2 , then every closed point of SpecRχv [1/p]

is smooth.

Proof. We can choose σ ∈ IFv with χ1(Art−1
Fv

(σ)), χ2(Art−1
Fv

(σ)), χ1(Art−1
Fv

(σ))−1,
χ2(Art−1

Fv
(σ))−1 pairwise distinct. As in Lemma 7.1.3, we need to check that for

every point x, we have HomE′[GFv ](ρx, ρx(1)) = 0. Any such homomorphism would
have to respect the eigenspaces for ρx(σ), and must therefore be zero. �

The proof of the following two results occupies the rest of this subsection.

Proposition 7.4.7. Assume that χ1 = χ2 = 1. Then R1
v satisfies the following

properties:
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(1) SpecR1
v is equidimensional of dimension 11 and every generic point has

characteristic zero.
(2) Every generic point of SpecR1

v/(λ) is the specialization of a unique generic
point of SpecR1

v.

Proposition 7.4.8. Assume that χ1, χ2 6= 1 and χ1 6= χ±1
2 . Then SpecRχv is

irreducible of dimension 11, and its generic point has characteristic zero.

We follow the strategy of [Tay08] (which proves the corresponding results for GLn)
closely. A source of minor complications in the case of GSp4 is that nilpotent cen-
tralizers need not be connected. Even though we are interested only in deformation
rings with fixed multiplier, we have found it more convenient to carry out the anal-
ysis without fixing multipliers until the end. We also take advantage of the fact
that we only care about GSp4 (rather than, say, GSp2g) to be a bit more ad hoc in
our arguments.

Throughout the rest of this section, q will denote an integer which is not a
multiple of p.

7.4.9. Preliminaries on nilpotent matrices. Let U ⊂ GSp4 /O be the closed sub-
scheme of matrices with characteristic polynomial (X−1)4, and let N ⊂ Lie (GSp4)
be the closed subscheme of matrices with characteristic polynomial X4.

In [Tay08], under the assumption that p ≥ n, Taylor uses truncations to de-
gree Xn−1 of the usual exponential and logarithm maps in order to relate unipo-
tent and nilpotent matrices (see in particular [Tay08, Lem. 2.4]). For p > 3, we
could in the same way use the truncations to order X3 of the usual exponential
and logarithmic maps. However, both exp and log to third order involve terms of
the form X3/3! and (X − 1)3/3, which we need to avoid when working in residue
characteristic three. In the proof of [Tho12, Lem. 3.15] an alternative approach is
given (again in the case of GLn), using the maps exp1 = 1 +N and log1 = (U − 1)
in order to avoid assumptions on the characteristic. However, neither the matri-
ces I +N for nilpotent N nor U − 1 for unipotent U will in general be symplectic,
and thus our truncated exponential and logarithm maps must be at least quadratic.
This motivates the following definitions.

For p ≥ 3, we have the following modified versions of the exponential and loga-
rithm map, which are the same as the usual definitions up to and including orderX2:

exp2 : N → U

N 7→ I +N +
N2

2
+
N3

2

and

log2 : U → N

U 7→ (U − I)− (U − I)2

2
.

It is easily verified that these maps do indeed have image U , respectivelyN , and that
they are in fact inverses to each other, and in particular are bijective. Additionally,
they commute with the conjugation action of GSp4, and for m ∈ Z satisfy

exp2

(
mN +m∗N3

)
= exp2(N)m, log2(Um) = m log2(U) +m∗ log2(U)3,

where m∗ = (m−m3)/3 ∈ Z.
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We define the following elements of N (O):

N0 = 0, N1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

, N3 =


0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 0

.
We also let Ni ⊂ N be the reduced, locally closed subscheme consisting of

nilpotent matrices of rank i, so that Ni ∈ Ni.
The following is an analogue of [Tay08, Lem. 2.5].

Proposition 7.4.10.
(1) ZGSp4

(Ni) is a smooth group scheme over SpecO with fibres of dimensions
11, 7, 5, 3 for i = 0, 1, 2, 3. Each connected component of ZGSp4

(Ni) is ir-
reducible with irreducible special fibre. Moreover, ZGSp4

(Ni) is irreducible
except when i = 2, in which case it has two components.

(2) Locally in the étale topology, the universal nilpotent matrix over Ni is con-
jugate to Ni by a section of GSp4.

(3) Ni is smooth over SpecO with irreducible fibres of dimensions 0, 4, 6, 8 for
i = 0, 1, 2, 3. In particular, Ni is irreducible.

Proof. Part (1) can be checked by brute force calculation. For instance in the most
interesting case when i = 2 a direct computation (using that p > 2) shows that

ZGSp4
(N2) ' O[x, y, z, w, α, β, γ, δ, (wx− yz)−1]/(xy,wz, yγ − wα− xδ − zβ)

where the matrix is given by 
x y α β
z w γ δ
0 0 x y
0 0 z w


and from this all the properties are clear (for instance, the two components are
given by x = w = 0 and y = z = 0).

For part (2), we explain the case when i = 2. The others are similar but easier.
We may view the universal nilpotent N over N2 as an endomorphism of O4

N2
with

the “standard” symplectic form ψ. Then, by the definition of N2, ker(N) is a local
direct summand of rank 2. Then one checks that

ψ′ : O4
N2
/ kerN ×O4

N2
/ kerN → ON2

(v, w) 7→ ψ(Nv,w)

is a well defined non-degenerate symmetric pairing.
Étale locally, one may trivialize ψ′: For any point x ∈ N2 we may pick a Zariski

open neighbourhood x ∈ U = SpecA ⊂ N2 over which O4
N2
/ kerN has a basis

f1, f2 with ψ′(f1, f2) = 0 and ψ′(f1, f1), ψ′(f2, f2) ∈ A×. Let A′ be the étale A-
algebra A[

√
ψ′(f1, f1),

√
ψ′(f2, f2)], so that over U ′ = SpecA′, (O4

N2
/ kerN)U ′ has

a basis f ′1 = f1/
√
ψ′(f1, f1), f ′2 = f2/

√
ψ′(f2, f2) with ψ′(f ′1, f ′1) = ψ′(f ′2, f

′
2) = 1

and ψ′(f ′1, f
′
2) = 0. Now lift f ′1 and f ′2 to sections e1 and e2 of O4

U ′ . We may
further arrange that ψ(e1, e2) = 0 by replacing e2 by e2 − ψ(e1, e2)Ne1. Then
Ne2, Ne1, e1, e2 forms a symplectic basis for O4

U ′ , and if we let g ∈ GSp4 have
these elements as columns, then NU ′ = gN2g

−1.
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Finally we turn to part (3). For each i, there is a map

GSp4 → Ni
g 7→ gNig

−1.

By the first two parts of the proposition, this map is smooth and surjective. Indeed,
it suffices to check this after base change to a suitable étale cover U → Ni, over
which it becomes isomorphic to ZGSp4

(Ni)U → U . It follows that Ni is smooth over
O. The fibres of Ni are irreducible because those of GSp4 are, and the statement
about dimensions follows from the computation of the dimensions of the fibres of
GSp4 → Ni in part (1). �

Remark 7.4.11. By contrast to the situation for GLn considered in [Tay08], it is no
longer the case that ZGSp4

(Ni) is connected, nor is it true that the universal matrix
over Ni is Zariski locally conjugate to Ni (both fail when i = 2).

7.4.12. Some spaces of polynomials. Let P̃ = G3
m be the diagonal torus in GSp4;

we somewhat abusively write

P̃ = {(X − α)(X − β)(X − γβ−1)(X − γα−1)}

where the order of the linear factors matters, and we let

P = P̃/W = {X4 + a3X
3 + a2X

2 + a1X + a0 | a0 ∈ Gm, a
2
3a0 = a2

1},

so that there is a finite map π : P̃ → P, given by multiplying out the linear factors.
We consider some reduced closed subspaces of P:

P0 = P
P1 = π({(X − α)(X − β)(X − γβ−1)(X − γα−1) | γα−1 = qα})
P2 = π({(X − α)(X − qα)(X − γq−1α−1)(X − γα−1)})
P3 = π({(X − α)(X − qα)(X − q2α)(X − q3α)})

We will find it useful to consider some explicit elements of GSp4(R), for an
O-algebra R. For α, β, γ ∈ R× we let

Φ0(α, β, γ) = diag(α, β, γβ−1, γα−1)

Φ1(α, β) = diag(qα, β, qα2/β, α)

Φ2,a(α, γ) = diag(qα, γα−1, α, γq−1α−1)

Φ2,b(α, β) =


0 qα 0 0
qβ 0 0 0
0 0 0 α
0 0 β 0



Φ3(α) =


q3α 0 q(1−q2)

6 α 0

0 q2α 0 (1−q2)
6 α

0 0 qα 0
0 0 0 α
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7.4.13. Spaces of matrices. We define N (q) to be the closed subscheme of GSp4×N
consisting of pairs (Φ, N) satisfying

ΦNΦ−1 = log2(exp2(N)q) = qN + q∗N3,

where as above we write q∗ = (q − q3)/3. This definition is motivated by the
following. The actual equation we wish to study has the form

ΦUΦ−1 = Uq

for a unipotent matrix U . If we let N = log2(U), we have U = exp2(N), and so,
applying log2 to the equation above, one finds precisely that

ΦNΦ−1 = log2(Uq) = log2(exp2(N)q).

Noting that

N =
1

q
(qN + q∗N3)− q∗

q4
(qN + q∗N3)3,

we see that the centralizers of N and qN + q∗N3 coincide. It follows that if (Φ, N)
is a point of N (q), then (Ψ, N) is another point if and only if ΨΦ−1 centralizes N
if and only if Ψ−1Φ centralizes N . Note also that if N3 = 0, then the condition
on Φ is simply that ΦNΦ−1 = qN , while, if q = 1, then the equation is simply
that ΦNΦ−1 = N .

Consider the projection

N (q)→ N
(Φ, N) 7→ N

and let N (q)i denote the locally closed preimage of Ni. We let Zi/Ni be the
centralizer of the universal element over Ni. Then there is an action of Zi on N (q)i
by z · (Φ, N) = (zΦ, N).

Proposition 7.4.14. The above action makes N (q)i into a Zi-torsor over Ni.

Proof. By Proposition 7.4.10, we may check the proposition after base change to
a suitable étale cover U → Ni, over which the universal nilpotent over U is of the
form gNig

−1 for some g ∈ GSp4(U). Let Φi be any of the explicit choices of Φ
given above for Ni (for i = 2, take any specialization of either Φ2,a or Φ2,b). Then
one readily checks that (Φi, Ni) is a point on N (q)i, and that

(Zi)U → (N (q)i)U

z 7→ (zgΦig
−1, gNig

−1)

is an isomorphism compatible with the Zi-action. �

Corollary 7.4.15. For i = 0, 1, 2, 3, N (q)i is smooth over O with fibres equidimen-
sional of dimension 11. For i 6= 2, N (q)i is irreducible with nonempty irreducible
special fibre, while N (q)2 has two connected components, each of which is irreducible
with nonempty irreducible special fibre.

Proof. The smoothness and dimension are an immediate consequence of Proposi-
tions 7.4.10 and 7.4.14. Moreover, for i 6= 2, N (q)i → Ni is flat with irreducible
fibres, and Ni is irreducible, and hence N (q)i is irreducible. The same argument
applies to the special fibre.

Now we explain why N (q)2 has two connected components. As we explained
in the proof of Proposition 7.4.10, over N2 we have the rank 2 non-degenerate
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quadratic space O4
N2
/ ker(N) with quadratic form given by v 7→ ψ(v,Nv). Over N2

we have N3 = 0, so the relation ΦN = qNΦ holds on N (q)2, which implies that Φ
preserves ker(N) and the computation

ψ(Φv,NΦv) = q−1ψ(Φv,ΦNv) = q−1ν(Φ)ψ(v,Nv)

shows that Φ is an element of the general orthogonal group of this quadratic space.
This general orthogonal group has two components (corresponding to whether

the determinant and multiplier agree or differ by a sign). As a result we may write
N (q)2 = N (q)2,a

∐
N (q)2,b where N (q)2,a is the locus where Φ lies in the identity

component and N (q)2,b is the locus where Φ lies in the nonidentity component.
Each of these loci is in fact nonempty; for example, we can consider points of
the form (Φ2,a(α, γ), N2) and (Φ2,b(α, β), N2). As N (q)2,a and N (q)2,b are unions
of connected components, the action of Z2 restricts to an action of the identity
component Z◦2 on each of them, and one easily checks that they must each be
torsors for Z◦2 , and so the same argument as above shows that N (q)2,a and N (q)2,b

are irreducible with nonempty irreducible special fibre. �

For the rest of this section, we will continue to use the notation N (q)2,a and
N (q)2,b for the two connected components of N (q)2 as introduced in the proof of
Corollary 7.4.15. We also write N (q)i for the Zariski closure of N (q)i, (N (q)i,F)
for the Zariski closure of its special fibre, and so on.

Proposition 7.4.16. The irreducible components of N (q) are N (q)2,a, N (q)2,b,
and N (q)i for i = 0, 1, 3. The irreducible components of the special fibre N (q)F are
(N (q)2,a,F), (N (q)2,b,F), and (N (q)i,F) for i = 0, 1, 3. Each irreducible component
of N (q) has irreducible and generically reduced special fibre.

Proof. N (q) is set theoretically the disjoint union of the five locally closed sub-
schemes N (q)2,a, N (q)2,b, and N (q)i for i = 0, 1, 3, which are each irreducible and
of the same dimension by Corollary 7.4.15. Hence their closures are the irreducible
components of N (q). The same argument applies to the special fibre.

To prove the last statement it will suffice to prove that for i = 0, 1, 2, 3, N (q)i
does not contain the generic points of N (q)j,F for j 6= i. Indeed it already fol-
lows from Corollary 7.4.15 that (N (q)2,a)F does not contain the generic point of
N (q)2,b,F and vice versa; and we also see that the special fibre of each irreducible
component of N (q) is reduced at the generic point of the corresponding component
of N (q)F.

In order to do this for i = 0, 1, 2, 3, let Ñ (q)i ⊂ N (q) be the reduced closed
subscheme consisting of pairs (Φ, N) such that rank(N) ≤ i and the characteristic
polynomial charΦ(X) is in Pi. An easy calculation shows that N (q)i ⊂ Ñ (q)i,
and hence N (q)i ⊂ Ñ (q)i. (One can either follow the proof of [Tho12, Lem. 3.15],
or observe that we have seen above that it is enough to check that this holds for
the points of the form (ziΦi, Ni) for our explicit choices of Φi and for zi ∈ Zi.)
Thus to conclude the proof, all we have to do is exhibit a point on each irreducible
component of N (q)F which is only contained in one of the Ñ (q)i’s. For instance,
we may take the following five points:

• (Φ0(α, β, γ), 0) for general values of α, β, γ ∈ F
×
.

• (Φ1(α, β), N1) for general values of α, β ∈ F
×
.
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• (Φ2,a(α, γ), N2) for general values of α, γ ∈ F
×
.

• (Φ2,b(α, β), N2) for general values of α, β ∈ F
×
.

• (Φ3(1), N3). �

For x, y ∈ O× and q a positive integer which is not a multiple of p, we let
M(x, y; q) be the closed subscheme of GSp2

4 /O consisting of pairs (Φ,Σ) satisfying:

• The characteristic polynomial of Σ is (X − x)(X − y)(X − y−1)(X − x−1).
• ΦΣΦ−1 = Σq.

We note that the order of x and y doesn’t matter.
There is evidently an isomorphism

M(1, 1; q)→ N (q)

(Φ,Σ) 7→ (Φ, log2(Σ)).

We now have the following analogue of [Tay08, Lem. 3.2].

Proposition 7.4.17. Let q be a positive integer with q ≡ 1 (mod p).

(1) Let Mi be the irreducible components of M(1, 1; q) with their reduced sub-
scheme structure. Then the special fibres Mi,F are distinct, generically
reduced and irreducible, and their reductions are precisely the irreducible
components ofM(1, 1; q)F.

(2) Suppose that either q 6= 1 and x, y are non trivial (q − 1)st roots of 1 in
1 + λO with x 6= y±1; or that q = 1 and x, y are arbitrary elements of
1 + λO. ThenM(x, y; q)red is flat over O.

Proof.

(1) This is an immediate consequence of Proposition 7.4.16 and the isomor-
phismM(1, 1; q) ' N (q) above.

(2) When q 6= 1, we observe that, as x, y, y−1, x−1 are distinct (q − 1)st roots
of unity,

charΣ(X) = (X − x)(X − y)(X − x−1)(X − y−1)|(Xq−1 − 1).

Hence, by the Cayley–Hamilton theorem, Σq = Σ. This implies that there
is an isomorphism M(x, y; q) = M(x, y; 1). We are therefore reduced to
the case that q = 1.

To show that M(x, y; 1)red is flat over O, it suffices to show that each
generic point of its special fibre is the specialization of a point of the generic
fibre. It suffices in turn to show that a Zariski dense set of points of the
special fibre lift to the generic fibre. Then as x and y reduce to 1, we have
M(x, y; 1)F = M(1, 1; 1)F ' N (1)F. This isomorphism, combined with
the proof of Proposition 7.4.16, shows that the following five kinds of F-
points are Zariski dense in M(x, y; 1)F (because the corresponding points
are dense in each Ñ (q)i):
• (gΦ0(α, β, γ)g−1, 1)
• (gΦ1(α, β)g−1, g exp2(N1)g−1)
• (gΦ2,a(α, γ)g−1, g exp2(N2)g−1)
• (gΦ2,b(α, β)g−1, g exp2(N2)g−1)
• (gΦ3(α)g−1, g exp2(N3)g−1)
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where α, β, γ ∈ F
×

and g ∈ GSp4(F). Then letting α̃, β̃, γ̃ ∈ W (F) and
g̃ ∈ GSp4(W (F)) be lifts, we can lift these to W (F) points ofM(x, y; 1) of
the following form (recall that we are in the case q = 1):
• (g̃Φ0(α̃, β̃, γ̃)g̃−1, g̃diag(x, y, y−1, x−1)g̃−1)

• (g̃Φ1(α̃, β̃)g̃−1, g̃diag(x, y, y−1, x−1) exp2(N1)g̃−1)
• (g̃Φ2,a(α̃, γ̃)g̃−1, g̃diag(x, y, y−1, x−1) exp2(N2)g̃−1)

• (g̃Φ2,b(α̃, β̃)g̃−1, g̃diag(A,X(Aτ )−1X) exp2(N2)g̃−1), whereX =

(
0 1
1 0

)
,

and A is a 2 by 2 matrix with coefficients in W (F) which has trivial

reduction, commutes with
(

0 α̃

β̃ 0

)
and has eigenvalues x, y (for the

existence of such a matrix, use that
(

0 α̃

β̃ 0

)
has distinct eigenvalues

mod p, and is therefore diagonalizable).
• (g̃Φ3(α̃)g̃−1, g̃diag(x, y, y−1, x−1) exp2(N3)g̃−1). �

Next we have an analogue of [Tay08, Lem. 3.4].

Proposition 7.4.18. Let q > 1 with q ≡ 1 (mod p) and let x, y be non trivial
(q− 1)st roots of 1 in 1 +λO with x 6= y±1. Let R = ÔM(x,y;q),(1,1) be the complete
local ring of M(x, y; q) at the point (1, 1) of the special fibre. Then SpecR[1/p] is
connected.

Proof. The proof of [Tay08, Lem. 3.4] carries over with minor modifications. Let ℘0

denote the maximal ideal of R[1/p] corresponding to (Φ0,Σ0) with Φ0 trivial and Σ0

the diagonal matrix diag(x, y, x−1, y−1), and let ℘ be another maximal ideal, cor-
responding to a pair (Φ,Σ). We need to show that ℘ is in the same connected
component as ℘0. One deduces as in [Tay08] that ℘ is in the same connected com-
ponent of Spec(R[1/p]) as the maximal ideal corresponding to (E−1ΦE,E−1ΣE)
where E ∈ GSp4(O) is arbitrary. In order to pass to an upper triangular form, we
require the existence of a filtration Fili of k(℘)4 such that:

(1) Each Fili is preserved by Φ and Σ.
(2) The graded pieces gri are one dimensional and their eigenvalues (in order)

are α, β, γβ−1, γα−1, which are the generalized eigenvalues of Φ.
(3) The orthogonal complement of Fili is Fil4−i.

As in the proof of Proposition 7.4.17, Φ and Σ commute, so we may choose Fil1

to be a common eigenvector of Φ and Σ. We define Fil3 to be the orthogonal
complement of Fil1, and then choose Fil2 to be any lift of a common eigenvector
of Φ and Σ in Fil3 /Fil1.

The constructions of paths in [Tay08] from upper triangular to diagonal and
between diagonal matrices (eventually to (Φ0,Σ0) and thus connecting ℘ to ℘0)
have obvious symplectic modifications. �

7.4.19. Application to deformation rings. Now let χ = (χ1, χ2) be a pair of contin-
uous characters χi : O×Fv → O

× that are trivial mod λ, let D̃χv be the functor on
CNLO of continuous homomorphisms ρ : GFv → GSp4(A) which are trivial mod
mA and such that for σ ∈ IFv , the characteristic polynomial of ρ(σ)is

(X−χ1(Art−1
Fv

(σ)))(X−χ2(Art−1
Fv

(σ)))(X−χ2(Art−1
Fv

(σ))−1)(X−χ1(Art−1
Fv

(σ))−1).
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As in §7.4, we let Dχv ⊂ D̃χv be the subfunctor of ρ with ν◦ρ = ε−1. The functors D̃χv
and Dχv are representable by rings R̃χv and Rχv . We also let D1 be the functor with
D1(A) parameterizing continuous unramified characters ψ : GFv → A× which are
trivial mod mA. It is representable by O[[T ]] with universal object χuniv : GFv →
O[[T ]]× given by χuniv(Frobv) = 1 + T .

For any A ∈ CNLO, then as A is complete and p > 2,

1 + mA → 1 + mA

t 7→ t2

is a bijection and we denote its inverse by x 7→
√
x. Then we have

Proposition 7.4.20. There is an isomorphism of functors

Dχv ×D1 → D̃χv
(ρ, ψ) 7→ ρ⊗ ψ

Consequently there is an isomorphism Rχv [[T ]] ' R̃χv .

Proof. For the inverse we may take the natural transformation

D̃χv → Dχv ×D1

ρ 7→ (ρ⊗
√
ε · (ν ◦ ρ)

−1
,
√
ε · (ν ◦ ρ))

The only thing that we need to check is that if ρ ∈ D̃χv (A) then ν◦ρ is trivial on IFv .
For σ ∈ IFv , (ν ◦ρ(σ))2 is the constant term of the characteristic polynomial of ρ(σ)
which is 1 by definition. But also ν ◦ ρ(σ) ≡ 1 (mod mA), and hence ν ◦ ρ(σ) = 1
as p > 2. �

We may now relate these deformation rings to the spaces of matrices considered
in this section.

Proposition 7.4.21. Let σ be a chosen topological generator of the tame inertia
subgroup of GFv . Let x = χ1(Art−1

Fv
(σ)) and y = χ2(Art−1

Fv
(σ)). Then

R̃χv ' ÔM(x,y;qv),(1,1).

Proof. Since ρ|GFv is trivial, any lifting of it factors through the quotient Tv =
GFv/PFv , where PFv denotes the maximal pro-prime-to-p subgroup of IFv (that
is, the kernel of any non-trivial homomorphism IFv → Zp). If ϕ is an arithmetic
Frobenius element in GFv , then the group Tv is topologically generated by ϕ and
the image of σ, subject to the constraints that σ generates a pro-p group, and that
ϕσϕ−1 = σqv . The result then follows from the definitions. �

We can now conclude the proofs of Propositions 7.4.7 and 7.4.8 exactly as
in [Tay08].

Proof of Proposition 7.4.7. Combining Propositions 7.4.17 (1) and 7.4.21 with [Tay08,
Lem. 2.7] proves the corresponding result for R̃1

v. The result for R1
v follows from

this and Proposition 7.4.20. �

Proof of Proposition 7.4.8. Proposition 7.4.17 implies that (R̃χv )red is flat over O.
Proposition 7.4.18 implies that Spec(R̃χv [1/p]) is connected. On the other hand, by
Lemma 7.4.6, for any closed point x ∈ Spec(R̃χv [1/p]), the localization (R̃χv [1/p])x
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is regular and hence a domain. Then the result follows from Propositions 7.4.17 (2)
and 7.4.21, as in the proof of [Tay08, Prop. 3.1]. �

7.5. Big image conditions and vast representations.

7.5.1. Enormous subgroups. Following [CG18, KT17] (which give the analogous
definition for GLn) we now define the notion of “enormous image,” with some minor
modifications.

Definition 7.5.2. We say that a subgroup H ⊂ GSp4(k) is enormous if it satisfies
the following conditions:

(E1) H1(H, ad0) = 0 for the 10-dimensional representation ad0.
(E2) H acts absolutely irreducibly in its natural representation, in particu-

lar, H0(H, ad0) = 0.
(E3) For all simple k[H]-submodules W ⊂ k ⊗ ad0, there is an element h ∈ H

such that
• h ∈ GSp4(k) has 4 distinct eigenvalues, and
• 1 is an eigenvalue for the action of h on W .

If H only satisfies (E2) and (E3), then we say that H is weakly enormous.

Lemma 7.5.3. If H and H ′ are subgroups of GSp4(k) with the same image in PGSp4(k),
then H is enormous (resp. weakly enormous) if and only if H ′ is enormous (resp.
weakly enormous).

Proof. Suppose that P is the projective image of H in PGSp4(k) and Z is the
kernel. Then the action of H on ad0 factors through P . In particular, H0(P, ad0) =
H0(H, ad0), and there is an inflation–restriction sequence

0→ H1(P, ad0)→ H1(H, ad0)→ H1(Z, ad0)P = 0.

Hence all the conditions in the definitions of enormousness and weakly enormous-
ness depend only on the projective representation. �

Note that if H ′ ⊂ H is weakly enormous, then so is H, but if H ′ is enormous,
then H is not necessarily enormous.

Remark 7.5.4. Some “big image” conditions in the literature have the additional
assumption thatH has no p-power quotient. In practice, however, that hypothesis is
often only used in a very weak way, namely, to ensure that the image of ρ restricted
to GF (ζp) coincides with the restriction to GF (ζpN ) for all N ≥ 1. The stronger
hypothesis has the unfortunate side effect of ruling out some perfectly fine Galois
representations to which the Taylor–Wiles method applies, most notably, surjective
representations ρ : GQ → GL2(F3) with cyclotomic determinant (exactly the case
which arises in the original work of Wiles!). In order not to rule out some interesting
subgroups which occur for p = 3, we therefore do not assume this hypothesis.

Let p ≥ 3. The cyclotomic character induces a homomorphism:

GF → Z×p ' (Z/pZ)× ⊕ (1 + pZp)→ (1 + pZp).

If p is unramified in F , then this composite map is surjective. In general, the image
contains 1 + pδ for some integer δ. In order to address the passage from F (ζp)
to F (ζpN ) in the Taylor–Wiles argument, we have the following lemma:
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Lemma 7.5.5. Suppose that p ≥ 3. Let

ρ : GF → GSp4(k)

be a continuous homomorphism. Then there exists an integer δ depending only on F
such that the image of ρ restricted to GF (ζpN ) is independent of N for N ≥ 1 + δ

if p ≥ 5 or N ≥ 2 + δ for p = 3. If p is unramified in F , then one may take δ = 1.

Proof. There is a canonical injective homomorphism

Gal(F (ζpN )/F )→ (Z/pNZ)×

for all N , and we will identify Gal(F (ζpN )/F ) with its image in (Z/pNZ)× in the
below. We choose δ such that for all N , the image contains 1 + pδ. In particular,
if p is unramified in F , we can take δ = 1.

Let M denote the fixed field of ρ. There are natural maps as follows:

Gal(M(ζpN+1)/F ) ⊂- Gal(M/F )×Gal(F (ζpN+1)/F )

Gal(M(ζpN )/F )
?

⊂ - Gal(M/F )×Gal(F (ζpN )/F )
?

where the composites of the horizontal maps with the projections to each factor are
surjective. The images of ρ restricted to F (ζpN ) and F (ζpN+1) coincide precisely
when the left hand vertical map has non-trivial kernel (necessarily of order p). We
prove this is so under our assumptions on N .

It suffices to show that the horizontal image of the upper map contains an element
of the form (idM , 1 + mpN ) for some m with (m, p) = 1. By the surjectivity onto
the second factor, it contains an element of the form (g, 1 + pδ). Let m be the
prime to p order of g, so that h := gm has p-power order. Since p > 2, we
have (g, 1 + pδ)mp

N−δ
= (hp

N−δ
, 1 + mpN ), and hence we are done providing the

order of h divides pN−δ. Yet all p-power elements of GSp4(k) have order dividing p
if p ≥ 5 or order dividing p2 if p = 3. (The p-Sylow subgroup of GSp4(k) consists
of unipotent matrices which satisfy (σ − 1)4 = 0, so σp

k

= 1 when pk ≥ 4.) �

In anticipation of Lemma 7.5.9 below, we make the following definition:

Definition 7.5.6. A representation ρ : GF → GSp4(k) is vast if one of the following
two conditions holds:

(1) The image of ρ restricted to GF (ζpN ) is enormous for all sufficiently large N .
(2) The image of ρ restricted to GF (ζpN ) is weakly enormous for all sufficiently

large N , and the fixed field L of ad0 ρ does not contain ζp.

Remark 7.5.7. If p is unramified in F , then, in Definition 7.5.6, one may replace
sufficiently large N by N = 3, since, by Lemma 7.5.5, the image in this case does
not depend on N for N ≥ 3.

Remark 7.5.8. By Lemma 7.5.3, ρ is vast if and only if any twist of ρ by a character
is vast.

The following lemma will prove useful for constructing Taylor–Wiles primes:
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Lemma 7.5.9. Suppose that p ≥ 3. Let ρ : GF → GSp4(k) be a continuous
representation. Fix an integer N ≥ 1. Suppose either that:

(1) The fixed field L of ad0 ρ does not contain ζp, or
(2) The restriction of ρ to GF (ζpN ) has enormous image.

Then
H1(L(ζpN )/F, ad0 ρ(1)) = 0.

In particular, if ρ is vast, then the conclusion above holds for all sufficiently large N .

Proof. We first consider the case when ζp /∈ L. By inflation–restriction, it suffices
to prove that the groups

H1(L(ζp)/F, ad0 ρ(1)), H1(L(ζpN )/L(ζp), ad0 ρ(1))Gal(L(ζp)/F )

both vanish. The group Gal(L(ζp)/L) ⊂ Gal(L(ζp)/F ) acts trivially (by conjuga-
tion) on both the group Gal(L(ζpN )/L(ζp)) and the module ad0. However, it acts
by non-trivial scalars on the twist ad0(1) since we are assuming ζp /∈ L. Hence the
second group vanishes after taking invariants. Applying inflation–restriction now
to the first group, it suffices to prove that the groups

H1(L/F, (ad0 ρ(1))Gal(L(ζp)/L)), H1(L(ζp)/L, ad0 ρ(1))Gal(L/F )

both vanish. The second group vanishes because p - [L(ζp) : L]. The first group
vanishes because ad0 ρ is fixed by Gal(L(ζp)/L) and thus has no invariants after
being twisted by the mod-p cyclotomic character (which by assumption is a non-
trivial character of Gal(L(ζp)/L)).

Now we consider the second case. Let M denote the splitting field of ρ, so
that M/L is a (possibly trivial) cyclic extension of degree prime to p. Inflation–
restriction shows that we have an injection

H1(L(ζpN )/F, ad0 ρ(1)) ↪→ H1(M(ζpN )/F, ad0 ρ(1)),

so it suffices to show that the latter group vanishes. By inflation–restriction, it is
enough to show that the cohomology groups

H1(F (ζpN )/F,H0(M(ζpN /F (ζpN ), ad0 ρ(1))),

H1(M(ζpN )/F (ζpN ), ad0 ρ(1))

both vanish. We are assuming that

H = Gal(M(ζpN )/F (ζpN ))

is enormous. Thus to show that both groups above vanish, it suffices to note that

H0(H, ad0) = H1(H, ad0) = 0

because H is enormous. �

Remark 7.5.10. The two parts of this proof are essentially standard — in particular
the first part is exactly the same as the proof of Lemma 5.3 of [Pil11].

We will require a weakly enormous (or in practice vast) image assumption in
order to use the Cebotarev density theorem to guarantee the existence of Taylor–
Wiles primes. Similarly, the following condition will allow us to use Cebotarev to
arrange for our level structures to be neat by increasing the level at an auxiliary
prime.
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Definition 7.5.11. We say that a subgroup H ⊂ GSp4(k) is tidy if there is an h ∈
H with ν(h) 6= 1, and such that no two eigenvalues of h have ratio ν(h) (but the
eigenvalues need not be distinct). We say that a representation ρ : GF → GSp4(k)
is tidy if it has tidy image.

Note that the property of tidiness is inherited from subgroups.

Lemma 7.5.12. Suppose that H ⊂ GSp4(k) is absolutely irreducible, and the cen-
tre Z of H has order at least 3. Then H is tidy.

Proof. By Schur’s lemma, the centre is cyclic and any element in the centre is
scalar with eigenvalues (ζ, ζ, ζ, ζ) for some ζ. If |Z| ≥ 3, there thus exists such an
element h in the centre with ζ2 6= 1. Since ν(h) = ζ2 6= 1, and since the ratio of
every pair of eigenvalues is 1 6= ν(h), it follows that H is tidy. �

Lemma 7.5.13. Let ∆ ⊂ GL2(Fp) × GL2(Fp) be the subgroup of pairs (A,B)
with det(A) = det(B), and consider ∆ as a subgroup of GSp4(Fp) via the map
of §2.2. If p ≥ 5 and ∆ ⊂ H, then H is tidy.

Proof. The argument is very similar to the proof Lemma 7.5.12. The group ∆
contains a cyclic subgroup of scalar matrices of order p− 1 > 2. �

Lemma 7.5.14. If p ≥ 11 and H ⊂ GSp4(k) is absolutely irreducible, then condi-
tions (E1) and (E2) are satisfied.

Proof. This is immediate from [Tho12, Thm. A.9]. �

Lemma 7.5.15. If p ≥ 3, then H = Sp4(Fp) is enormous and G = GSp4(Fp) is
tidy. If ρ : GF → GSp4(Fp) is a surjective representation with similitude charac-
ter ε−1, then ρ is vast and tidy.

Proof. For all such p, the representation ad0 is absolutely irreducible. Hence for
weak enormity it suffices to note that H contains elements with distinct eigenval-
ues, and every such element has at least one eigenvalue 1 on ad0. Thus for enor-
mity it suffices to check that H1(Sp4(Fp), ad0) = 0. For p ≥ 11, this follows from
Lemma 7.5.14. For p = 3, 5, and 7, it can be checked directly using magma [BCP97].
(All of the magma code and output for this paper can be found at the github re-
spository here [BCGP21].)

For tidiness, the centre ofG has order p−1 so the result follows from Lemma 7.5.12
when p > 3. (It also follows from Lemma 7.5.13.) When p = 3, the group GSp4(F3)
contains an element g of order 20 with ν(g) = −1; more precisely, its eigenvalues
are of the form ζ, ζ3, ζ9, ζ27 for a 20th root of unity ζ, and ν(g) = ζ10 = ζ30 = −1.
The ratios of the pairs of eigenvalues are of the form ζ3−1, ζ9−1, and ζ27−1, and
since none of these quantities is equal to ζ10 = −1, we are done.

For vastness, note that the image of ρ restricted to GF (ζp) will be H = Sp4(Fp).
Since this group has no quotients of p-power order (indeed PSp4(Fp) is simple), the
image of the restriction of ρ to GF (ζpN ) will also be H for all N . Hence the image
of ρ restricted to GF (ζpN ) is always H and hence enormous; thus ρ is vast. �

7.5.16. Representations Induced From Index Two Subgroups. Suppose that G ⊂
Sp4(k) is an absolutely irreducible subgroup such that the underlying representa-
tion W becomes reducible on an index two subgroup H. Write χ for the quadratic
character χ : G → G/H → k× (we assume the characteristic of k is different
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from 2). Write G/H = {1, σ}. Then one may write W |H = V ⊕ V σ, and one has
the following G-equivariant decompositions (not necessarily into irreducibles):

W ⊗W = W ⊗W∨ = k ⊕ k(χ)⊕ IndGH(ad0(V ))⊕As(V )⊕As(V )⊗ χ,

ad0(W ) = Sym2(W ) = IndGH(ad0(V ))⊕As(V ),

∧2(W ) = k ⊕ k(χ)⊕As(V )⊗ χ.
Here As(V ) is the Asai representation, which satisfies As(V )|H = V ⊗ V σ. These
identifications follow from computing what happens over H and noting that W '
W ⊗ χ.

Lemma 7.5.17. Suppose that As(V ) and IndGH(ad0(V )) are absolutely irreducible
representations of G. Suppose that G\H has an element g of order neither dividing 4
nor divisible by p. Then G satisfies condition (E3) of enormousness.

Proof. Let g be an element of G\H. SinceW is induced, the eigenvalues of g are in-
variant under multiplication by −1. Since G ⊂ Sp4(k), the eigenvalues are invariant
under inversion. It follows that the eigenvalues are of the form (α, α−1,−α,−α−1)
for some α. If g has order neither dividing 4 nor divisible by p, then α4 6= 1 and
these eigenvalues are all distinct. To show (E3), it is enough to show that any such
element g has an eigenvalue 1 on both As(V ) and IndGH(ad0(V )). Let Γ = 〈g〉, and
work in the Grothendieck group of representations of Γ. The representation Sym2

differs from ∧2 by containing the squares of all the eigenvalues. Hence

[Sym2] = [∧2] + [α2, α−2, α2, α−2].

Moreover, since χ(g) = −1,

[∧2] = [1] + [−1] + [−As(V )].

It follows by counting eigenvalues in W ⊗W that

[∧2] = [1] + [−1] + [1,−1,−α2,−α−2],

[Sym2] = [−1, 1, α2, α−2] + [1,−1, α2,−α2, α−2,−α−2].

from which it follows that

[As(V )] = [−1, 1, α2, α−2],

IndGH(ad0(V )) = [1,−1, α2,−α2, α−2,−α−2],

both of which have 1 as an eigenvalue. �

Lemma 7.5.18. Assume k has characteristic p ≥ 3. Let G be the group SL2(k) o
Z/2Z = (SL2(k) × SL2(k)) o Z/2Z, where the semi-direct product swaps the two
copies of SL2(k), considered as a subgroup of Sp4(k) as in §2.2. Then G is weakly
enormous, and is furthermore enormous if #k 6= 5.

Proof. We begin by checking that property (E1) holds. Let H = SL2(k)×SL2(k) =
A×B, say, and let VA and VB denote the tautological 2-dimensional representations
of A and B, so that W |H = VA ⊕ VB , and Sym2(W )|H = ad0(W )|H = ad0(VA) ⊕
ad0(VB) ⊕ VA ⊗ VB . Since H1(G, ad0(W )) = H1(H, ad0(W ))G/H , it suffices to
prove that

H1(H, ad0(W )) = H1(A×B, ad0(W )) = 0.

By inflation–restriction, we see that there are exact sequences:

H1(A, ad0(VA))→ H1(A×B, ad0(VA))→ (H1(B, k)⊗ ad0(VA))A = 0,
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0 = H1(A, (VA ⊗ VB)B)→ H1(A×B, VA ⊗ VB)→ (H1(B, VB)⊗ VA)A = 0.

Thus it remains to show that H1(A, ad0(VA)) = 0. But this is the same as showing
that

H1(SL2(k),Sym2(k2)) = 0.

This holds for #k 6= 5 (which we are assuming) by [DDT97, Lem. 2.48].
Property (E2) is obvious. For property (E3), it suffices by Lemma 7.5.17 to

show that G \ H contains an element g of order not dividing 4 and not divisible
by p. Since p2 − 1 is always divisible by 8, there exists a matrix a ∈ A of order
exactly 8. The automorphism σ : A × B → B × A of order 2 identifies A with B,
and with respect to this identification let g = σ(a, a) = (a, a)σ. Then g2 = (a2, a2)
has order 4, so g has order 8 which does not divide 4 and is not divisible by p, as
required. �

For p = 5 one has the following substitute:

Lemma 7.5.19. Let H/F be a quadratic extension, and let r : GH → GL2(F5) be
a surjective representation with determinant ε−1. Let ρ : GF → GSp4(F5) be the
induction of r to F , and assume that the image of ρ|GF (ζ5)

is equal to G = SL2(F5) o
Z/2Z. Assume furthermore that 5 is unramified in F . Then G := ρ(GF (ζ5N )) is
weakly enormous for all N ≥ 1 and ζ5 does not lie in the fixed field of ad0 ρ; in
particular, ρ is vast.

Proof. Since the abelianization of G has order prime to 5, the image of ρ over F (ζ5)
is the same as the image over F (ζ5N ) for any N , and is weakly enormous by
Lemma 7.5.18. Let Γ denote the image of ρ. Since 5 is unramified in F and the
similitude character of Γ is inverse cyclotomic, it follows that the similitude charac-
ter is surjective and [Γ : G] = 4. In particular, the group Γ is the full pre-image of G
in GSp4(Fp), and is generated by pairs (A,B) in GL2(Fp) with det(A) = det(B)

together with an involution sending (A,B) to (B,A). The fixed field L of ad0 ρ is
the fixed field of the projective representation. But one can now observe directly
that the image of Γ in PGSp4(F5) has abelianization (Z/2Z ⊕ Z/2Z), which does
not surject onto Gal(F (ζ5)/F ) = Z/4Z. So ζp /∈ L, and ρ is vast, as required. �

7.5.20. The enormous subgroups of Sp4(F3). By an exhaustive search, one can de-
termine precisely which of the subgroups of Sp4(F3) are enormous. There are 162
conjugacy classes of subgroups, and it turns out that precisely 11 of them are
enormous, of orders 40, 128, 160, 192, 240, 320, 384, 384, 1152, 1920, and 51840
respectively. Our main interest will be in representations ρ to GSp4(F3) which are
vast and tidy. In particular, it is of interest to consider subgroups G of GSp4(F3)
which are tidy and such that H = Sp4(F3) ∩ G is enormous. Sometimes the
tautological 4-dimensional representation V of one of these groups G fails to be
absolutely irreducible on an index two subgroup — necessarily this subgroup is
not H = G∩ Sp4(F3) because we are assuming that H is enormous and hence acts
absolutely irreducibly on V . The representation V underlying G restricted to this
index two subgroup either becomes reducible over F3 or over a non-trivial extension
of F3. In the former case, we say that G is split induced. In this case, the index
two subgroup is necessarily a subgroup of

∆ = {(A,B) ⊂ GL2(Fp)×GL2(Fp) where det(A) = det(B)}



204 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

and G is a subgroup of Γ := ∆ o Z/2Z where Z/2Z swaps the factors. Hence we
may write the index two subgroup in this case as G ∩∆.

We collect a number of interesting examples in the following lemma.

Lemma 7.5.21. The following groups G ⊂ GSp4(F3) are tidy, and such that the
index two subgroup H = G ∩ Sp4(F3) is enormous.

(1) The group G = GSp4(F3).
(2) A group G of order 3840. The projective image has index 27 in PGSp4(F3).

It may be identified as the stabilizer of the natural action of PGSp4(F3) on
the 27 lines of a cubic surface.

(3) Split Inductions. The following subgroups of Γ = ∆ o Z/2Z:
(a) The group G = Γ of order 2304.
(b) The two groups G of index 3 in Γ. They are the two groups of order

768 inside GSp4(F3) up to conjugacy, and they are distinguished by
their intersections H = G ∩ Sp4(F3) ⊂ SL2(F3) o Z/2Z and H ∩∆ ⊂
SL2(F3)2. Note there is a homomorphism χ : SL2(F3)→ A4 → Z/3Z.
One intersection H ∩ ∆ is given by pairs (A,B) with χ(A) = χ(B),
and the other by pairs with χ(A) = −χ(B). Note that these groups
are abstractly isomorphic (the outer automorphism of SL2(F3) sends χ
to −χ) but not conjugate inside GSp4(F3).

(4) Other Inductions. A group G of order 480 with projective image S5 ×
Z/2Z. There is an isomorphism PSL2(F9) = A6, and hence a projective F9

representation of the subgroup A5 ⊂ A6. This is not unique — there are
two natural conjugacy classes of A5 permuted by the exotic automorphism
of A6. But that automorphism is induced by Frob3 acting on the field of
coefficients F9, so the choice does not matter. There is a corresponding lift:

Ã5 → GL2(F9)

by a group Ã5 which is a central extension of A5 by Z/4Z. The outer
automorphism group of Ã5 is (Z/2Z)2, and there is a unique such outer
automorphism which acts by −1 on the centre and by an outer automor-
phism on A5. Moreover, this lifts to a genuine automorphism σ of Ã5 of
order 2. Then G := Ã5 o 〈σ〉 ⊂ GSp4(F3) has order 480. This is the
only enormous subgroup which both has induced image and is not solvable.
Warning: The group G is not determined up to conjugacy by its order.
Indeed, there exists a second conjugacy class of subgroups G′ of order 480

with H ′ = G′ ∩ Sp4(F3) of order 240 such that G′ contains Ã5 with in-
dex two and such that the corresponding outer automorphism is given by
the class of σ. The group G′, however, is not a semi-direct product. The
groups G and G′ can be distinguished as follows: the group PGSp4(F3) has
a natural action on 40 points corresponding to the action on P3(F3). The
orbits of G are of size 20 and 20 respectively whereas G′ acts transitively.

Proof. This can be proved using the computer algebra package magma [BCGP21].
We omit the details. Note, however, that case (3a) was proved in Lemma 7.5.18. �

Lemma 7.5.22. Suppose that p ≥ 3, that K/F is a quadratic extension such
that K is unramified at p, and that r : GK → GL2(k) restricted to GK(ζp) has
image SL2(k). Choose σ ∈ GF \ GK , and assume that Proj rσ 6∼= Proj r, but that
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det rσ = det r is equal to ε−1. Let ρ := IndGFGK r : GF → GSp4(k). If p = 3, assume
that the fixed fields corresponding to the kernels of Proj r and Proj rσ are disjoint.
Then ρ is vast and tidy.

Proof. Note that F is necessarily unramified at p (since K is). By Lemmas 7.5.18
and 7.5.19, in order to show that ρ is vast, it suffices to show that for all N ≥ 1, the
image of ρ restricted to F (ζpN ) is G = SL2(k) o Z/2Z. First assume that #k > 3.
Then PSL2(k) is simple. If the image of rσ is disjoint from the image of r, it
would follow by Goursat’s Lemma that the image of ρ|GK(ζp)

is the group SL2(k)2,
and hence the image of ρ|GK(ζ

pN
)
is also SL2(k)2, and thus the image of ρ|GF (ζ

pN
)

is SL2(k) oZ/2Z. Since the automorphism group of PSL2(k) is PGL2(k), it follows
that the projective representations associated to r and rσ have the same image
if and only if they are the same. Since we are assuming otherwise, we are done
unless k = F3.

Now assume that k = F3, and so the images of r and rσ restricted to K(ζ3)
are both isomorphic to SL2(F3), which is a degree two central extension of A4.
The non-trivial quotients of SL2(F3) are given by PSL2(F3) = A4 and Z/3Z. By
assumption, the fixed fields corresponding to the kernels of Proj r and Proj rσ are
disjoint and both have Galois group A4. Thus by Goursat’s lemma, the image
of ρ restricted to F (ζ3) is SL2(F3) o Z/2Z. This is enormous, by Lemma 7.5.21.
The abelianization of this group has order prime to 3, so the image of ρ restricted
to F (ζ3N ) is also of this form.

Tidiness follows for p ≥ 5 by Lemma 7.5.13. For p = 3, the image contains
an element g of order 8 with ν(g) = −1 and eigenvalues (ζ,−ζ−1, ζ,−ζ−1) for a
primitive 8th root of unity ζ. The ratio of any two eigenvalues is either trivial or
is a primitive fourth root of unity. �

Remark 7.5.23. When p = 3, we may weaken the hypotheses of this lemma slightly.
By Lemma 7.5.21 and Lemma 7.5.5, it suffices that the image of ρ restricted
to F (ζ27) is either SL2(F3) oZ/2Z or one of the subgroups of SL2(F3) oZ/2Z of in-
dex three and order 384 considered in Lemma 7.5.21. Unfortunately, the hypothesis
that Proj r is distinct from Proj rσ is not quite enough to force this. For example, it
is possible that the image of ρ restricted to F (ζ3) might be the (unique) subgroup of
order 384 in SL2(F3) oZ/2Z with abelianization Z/6Z, and this means it is possible
that the image of ρ restricted to F (ζ9) is the 2-Sylow subgroup of SL2(F3) o Z/2Z
of order 128. However, this latter subgroup is not enormous.

7.5.24. Crossing with dihedral extensions. The goal of this section is to construct
certain representations induced from quadratic fields K/F which will allow us to
prove modularity results for elliptic curves over K even when K is neither totally
real nor CM (see Theorem 10.1.4). Suppose that F is a totally real field in which p
splits completely, and let K/F be an arbitrary quadratic extension of F in which p
is unramified.

Lemma 7.5.25. There exists a Galois extension H/F containing K such that:
(1) D = Gal(H/F ) is the dihedral group of order 8, and Gal(H/K) = (Z/2Z)2.
(2) H/F is the Galois closure over F of a quadratic extension M/K.
(3) H/F is unramified at each v|p, and 〈Frobv〉 ∈ D is not central.

Furthermore, H/F may be chosen to be linearly disjoint from any given fixed finite
extension of F linearly disjoint from K/F .
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Proof. Let L/F be a second quadratic extension to be chosen later. The obstruction
to constructing a dihedral extensionH/F containingK and L as quadratic subfields
with Gal(H/K) ' Gal(H/L) ' (Z/2Z)2 is the vanishing of the cup product χK ∪
χL, where χK , χL ∈ H1(F,F2) are the quadratic characters corresponding to the
fields K and L. Equivalently, if L = F (

√
β) and K = F (

√
α), it is the condition of

requiring that β ∈ NK/F (K×); if β = N(x+ y
√
α), then one may take

H = F (
√
α,
√
β,

√
x+ y

√
α).

The extension M = K(
√
x+ y

√
α) will have Galois closure H over F . Suppose β

can be chosen so that every v|p is inert in L, and moreover such that β is prime
to p. Then H/M will be unramified at each v|p, and Frobv will be non-central,
since the fixed field of the non-trivial central element is the compositum K.L.

We now construct many such β. Note that Fv ' Qp by assumption, and we
may assume that α is a v-adic unit for all v|p. Let us consider NK/F (K×), which
consists of the non-zero elements of F of the form x2 − αy2 where x, y ∈ F . The
quadratic form

x2 − αy2 − γz2 = 0 mod v

for any γ 6= 0 always has a non-trivial solution with z 6= 0. Hence, by taking γ to be
any quadratic non-residue in F×p , we may choose x and y modulo v so that x2−αy2

is a non-zero quadratic non-residue. Making such a choice for all v|p, we find
that β = x2−αy2 is a v-adic unit and a quadratic non-residue modulo v for all v|p.
Since p > 2, the resulting extension L = F (

√
β) is thus inert at all primes v|p,

giving rise to the desired extension H/F .
Finally, by taking x and y sufficiently close to 1 and 0 respectively in OF,w for

any finite set of auxiliary primes w, can ensure that H/K splits completely at any
such collection of primes, and hence we may ensure H/F is linearly disjoint from
any fixed finite extension of F which is linearly disjoint from K, as required. �

We may write D as D = 〈a, b|a2 = b2 = (ab)4 = 1〉, where [a, b] is the order two
element of the centre of D.

Lemma 7.5.26. Let r : GF → GL2(Fp) be an absolutely irreducible Galois repre-
sentation with determinant ε−1. Suppose that, for each v|p, the restriction r|GFv
takes the shape (

χv ∗
0 ε−1χ−1

v

)
for some unramified character χv. Let K/F be an arbitrary quadratic extension
linearly disjoint from the fixed field F (r) of the kernel of r, let H/F be any corre-
sponding D-extension as guaranteed by Lemma 7.5.25, chosen to be linearly disjoint
from F (r), and let M/K be a quadratic extension with Galois closure H/F . Let ρ
be the following symplectic induction

ρ := IndGFGK (r|GK ⊗ δM/K),

where δM/K is the quadratic character corresponding to the extension M/K, and
the induction is constructed as in §2.2. Let Γ denote the image of r, and let G
denote the image of ρ. Then:

(1) ρ is weight 2 ordinary and p-distinguished with similitude character ε−1.
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(2) If V denotes the underlying representation of G given by r, and U the 2-
dimensional faithful representation of Gal(H/F ) = D, then ρ is given
by V ⊗ U . In particular, ρ is absolutely irreducible.

(3) If Γ has a central element of order 2, then the image of ρ is

G = (Γ×D)/(−1 = [a, b]).

Otherwise, the image is G = Γ×D.

Proof. The restriction of r to GK has determinant ε−1, which is preserved by the
quadratic twist, and hence the induction also has ε−1 as the similitude character.
The induction of δM/K from GK to GF is precisely the representation U of D =
Gal(H/F ).

By the construction of Lemma 7.5.25, for each place v|p, Frobv ∈ D is not cen-
tral. It follows that the restriction of Gal(H/F ) acting on U to the decomposition
group at v is of the form ψ ⊕ χ for distinct unramified characters ψ and χ. Then
the representation ρ|GFv naturally takes the form r|GFv ⊗ ψ ⊕ r|GFv ⊗ χ. This is
automatically weight 2 ordinary and p-distinguished.

Finally, the image of ρ is the image of the map Γ ×D → GL(V ⊗ U), and the
kernel of this map is given by the elements of the form (z, z−1) with z central. �

We now show that many of the groups G occurring as the image of representa-
tions ρ as constructed in Lemma 7.5.26 have big image.

Lemma 7.5.27. Let p ≥ 5, and suppose that we are in the setting of Lemma 7.5.26.
Suppose either that Γ = GL2(Fp) or that p = 5 and Γ is the pre-image in GL2(F5)
of S4 ⊂ S5

∼= PGL2(F5). Then G ∩ Sp4(Fp) is enormous unless Γ = GL2(Fp)
and p = 5, in which case G ∩ Sp4(Fp) is weakly enormous. In any case, ρ is vast
and tidy.

Proof. By Lemma 7.5.26, G acts faithfully on W = V ⊗ U , where V is the tauto-
logical representation of Γ, and U is the faithful 2-dimensional representation of D,
with image G = (Γ × D)/(−1 = [a, b]). We begin by checking condition (E3).
Clearly

W ⊗W ∗ = (V ⊗ V ∗)⊗ (U ⊗ U∗).
The latter factor is the regular representation of the abelianization of D, and is
a direct sum of characters of order dividing 2. The first factor is the direct sum
of ad0(V ) with the trivial character. Both the trivial representation and the adjoint
representation of GL2(Fp) have the property that 1 is always an eigenvalue of any
element. Hence, for any irreducible summand of W ⊗ W ∗, 1 will always be an
eigenvalue on an index two subgroup Σ ⊂ G which is the kernel of one of the
degree 2 characters of D. Yet given g ∈ Γ, there is an element in Σ with eigenvalues
the roots of g together with the negatives of the roots of g. Hence it suffices to note
that Γ ∩ SL2(Fp) has an element with eigenvalues {α, α−1} with α 6= ±α−1. (In
particular, in the case that p = 5 and Γ is the central cover of S4, one could take g
to have order 3.)

For Γ = GL2(Fp), p > 5, since D has order prime to p, (E1) reduces to the
fact that H1(SL2(Fp),Sym2(F2

p)) = 0, which is [DDT97, Lem. 2.48]. If p = 5, the
group G is of order 384 = 42|S4|, and therefore satisfies (E1) automatically because
the order is prime to p.

For the final claim, note firstly that for each N ≥ 1, we have ρ(GF (ζpN )) =

G ∩ Sp4(Fp). Indeed this is clear for N = 1 (as the similitude factor of ρ is ε−1),
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and since G has no quotients of order p, the same is true for all N > 1. That ρ
is vast is then an immediate consequence of the previous claims except in the case
when Γ = GL2(F5), where G ∩ Sp4(F5) is not enormous. But in this case, exactly
as in the proof of Lemma 7.5.19, the image of the projective representation factors
through PGL2(F5) × (Z/2Z)2 which does not surject onto Z/4Z, and hence the
fixed field of the adjoint representation cannot contain ζ5 when E is unramified
at p = 5. Finally, for tidiness, we note that Γ and hence G contains a centre of
order at least p− 1, and we are done by Lemma 7.5.12. �

7.6. Taylor–Wiles primes. We again fix a global deformation problem

S = (ρ, S, {Λv}v∈S , ψ, {Dv}v∈S).

Then we define a Taylor–Wiles datum to be a tuple (Q, (αv,1, . . . , αv,4)v∈Q) con-
sisting of:

• A finite set of finite places Q of F , disjoint from S, such that qv ≡ 1 mod p
for each v ∈ Q.

• For each v ∈ Q, an ordering αv,1, αv,2, αv,3 = ψ(Frobv)α
−1
v,2, αv,4 = ψ(Frobv)α

−1
v,1

of the eigenvalues of ρ(Frobv), which are assumed to be k-rational and pair-
wise distinct.

Given a Taylor–Wiles datum (Q, (αv,1, . . . , αv,4)v∈Q), we define the augmented
global deformation problem

SQ = (ρ, S ∪Q, {Λv}v∈S ∪ {O}v∈Q, ψ, {Dv}v∈S ∪ {D�
v }v∈Q).

Set ∆Q =
∏
v∈Q ∆v. For each v ∈ Q, the fixed ordering αv,1, . . . , αv,4, determines

a Λ[∆Q]-algebra structure on RTSQ for any subset T of S (via the homomorphisms
O[∆v]→ R�

v defined in §7.4.3). Letting aQ = ker(Λ[∆Q]→ Λ) be the augmentation
ideal, the natural surjection RTSQ → RTS has kernel aQRTSQ .

Lemma 7.6.1. Assume that ρ is vast, that p ≥ 3 is unramified in F , that ψ =
ε−1, and that k contains all of the eigenvalues of all elements of ρ(GF (ζp)). Let
q ≥ h1(FS/F, ad0 ρ(1)). Then for every N ≥ 1, there is a choice of Taylor–Wiles
datum (QN , (αv,1, . . . , αv,4)v∈QN ) satisfying the following:

(1) #QN = q.
(2) For each v ∈ QN , qv ≡ 1 mod pN .
(3) h1

S⊥QN
,S

(ad0 ρ(1)) = 0.

Proof. Without loss of generality, we may assume that N ≥ 3, and hence (by the
definition of vastness and Remark 7.5.7) that ρ(GF (ζpN )) is weakly enormous. By
definition, we have

H1
S⊥QN

,S(ad0 ρ(1)) = ker

H1(FS/F, ad0 ρ(1))→
∏
v∈QN

H1(Fv, ad0 ρ(1))

 .

By induction, it suffices to show that given any cocycle κ representing a nonzero
element of H1

S⊥QN ,S
(ad0 ρ(1)), there are infinitely many finite places v of F such that

• v splits in F (ζpN );
• ρ(Frobv) has 4-distinct eigenvalues αv,1, . . . , αv,4 in k;
• the image of κ in H1(Fv, ad0 ρ(1)) is nonzero.
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By Cebotarev, we are reduced to showing that given any cocycle κ representing a
nonzero element of H1(FS/F, ad0 ρ(1)), there is some σ ∈ GF (ζpN ) such that

• ρ(σ) has distinct (k-rational) eigenvalues;
• pσκ(σ) 6= 0, where pσ : ad0 ρ→ (ad0 ρ)σ is the σ-equivariant projection.

(The latter condition guarantees that the image of κ in H1(Fv, ad0 ρ(1)) is not a
coboundary.) Let L/F be the fixed field of ad0 ρ. The kernel of the restriction map

H1(FS/F, ad0 ρ(1))→ H1(FS/L(ζpN ), ad0 ρ(1))GF

is, by inflation–restriction, isomorphic to

H1(Gal(L(ζpN )/F ), ad0 ρ(1)).

The assumption that ρ is vast implies by Lemma 7.5.9 that this group vanishes.
In particular, the restriction of κ defines a nonzero GF (ζpN )-equivariant homomor-
phism Gal(FS/L(ζpN )) → ad0 ρ. Let W be a nonzero irreducible sub-GF (ζpN )-
representation of the k-span of κ(Gal(FS/L(ζpN )). Since ρ(GF (ζpN )) is weakly
enormous and k is sufficiently large, there exists σ0 ∈ GF (ζpN ) such that ρ(σ0)

has distinct k-rational eigenvalues and such that Wσ0 6= 0 (this follows from the
vastness assumption, in particular, by condition (E3) of 7.5.2). This implies that
κ(Gal(FS/L(ζpN )) is not contained in the kernel of the σ0-equivariant projection
pσ0

: ad0 ρ→ (ad0 ρ)σ0 . If pσ0
κ(σ0) 6= 0, then we take σ = σ0. Otherwise, we choose

τ ∈ GL(ζpN ) such that pσ0
κ(τ) 6= 0, and we take σ = τσ0; since ρ(σ) = ρ(σ0) and

κ(σ) = κ(σ0) + κ(τ), we are done. �

Definition 7.6.2. We say that ρ : GF → GSp4(Fp) is odd if the similitude char-
acter ψ is odd, i.e. if for each place v|∞ of F with corresponding complex conjuga-
tion cv, we have ψ(cv) = −1.

Corollary 7.6.3. Assume that ρ is odd, that ρ is vast, and that k contains all of
the eigenvalues of all elements of ρ(GF (ζp)). Let q ≥ h1(FS/F, ad0 ρ(1)). Then for
every N ≥ 1, there is a choice of Taylor–Wiles datum (QN , (αv,1, . . . , αv,4)v∈QN )
satisfying the following:

(1) #QN = q.
(2) For each v ∈ QN , qv ≡ 1 mod pN .
(3) There is a local Λ-algebra surjection RS,loc

S [[X1, . . . , Xg]]→ RSSQN
with g =

2q − 4[F : Q] + #S − 1.

Proof. By Proposition 7.2.1 and Theorem 7.6.1, the claim holds with g instead
equal to

#S − 1−
∑
v|∞

h0(Fv, ad0 ρ) +
∑
v∈QN

h0(Fv, ad0 ρ(1)).

(Note that the assumption that ρ is vast implies that h0(FS/F, ad0 ρ(1)) = 0.)
For v ∈ QN , by the assumptions that qv ≡ 1 mod p and that ρ|GFv has distinct
eigenvalues we have

h0(Fv, ad0 ρ(1)) = h0(Fv, ad0 ρ) = 2.

For v|∞ we have h0(Fv, ad0 ρ) = 4 by the assumption that ρ is odd. It follows
that g = 2q − 4[F : Q] + #S − 1, as claimed. �
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7.7. Global Galois deformation problems. We now begin to introduce the
framework that we need to carry out our Taylor–Wiles patching argument. As
always, F is a totally real field in which the prime p ≥ 3 splits completely, and
we write Sp for the set of primes of F dividing p. Let ρ := GF → GSp4(k) be an
absolutely irreducible representation. We assume the following hypotheses.

Hypothesis 7.7.1.
(1) The representation ρ is vast and tidy.
(2) If v ∈ Sp, then ρ|GFv is p-distinguished weight 2 ordinary.
(3) There is a set of finite places R of F which is disjoint from Sp, such that

(a) If v ∈ R, then ρ|GFv is trivial, and qv ≡ 1 (mod p). If p = 3 then we
further insist that qv ≡ 1 (mod 9).

(b) If v /∈ Sp ∪R, then ρ|GFv is unramified.

Set ψ = ε−1, and drop ψ from our notation for global deformation problems from
now on. Let I ⊂ Sp be a set of places of cardinality #I. We will eventually need to
assume that #I ≤ 1, although the more formal parts of the patching construction
can be carried out without this assumption, so we do not impose it yet. We write
Ic for Sp \ I.

By the Cebotarev density theorem and our assumption that ρ(GF ) is tidy, we
can find an unramified place v0 /∈ R ∪ Sp of F with the properties that

• qv0
6≡ 1 (mod p),

• no two eigenvalues of ρ(Frobv0
) have ratio qv0

, and
• v0 has residue characteristic greater than 5.

Then H2(Fv0 , ad ρ) = H0(Fv0 , ad ρ(1))∨ = 0. We set S = R ∪ Sp ∪ {v0}.
The reason for choosing v0 is that all liftings of ρ|GFv0 are automatically unram-

ified by Proposition 7.4.2, and our choice of level structure at v0 will guarantee that
our level structures will be neat, by Lemma 7.8.3.

For each v ∈ R we choose a pair of characters χv = (χv,1, χv,2), where χv,i :
O×Fv → O

× are trivial modulo λ. (Note that at this stage the characters χv,i are
allowed to be trivial.) We write χ for the tuple (χv)v∈R as well as for the induced
character χ =

∏
v∈R χv :

∏
v∈R Iw(v)→ O×.

For each place v|p, we fix Λv, (and thus θv) as in §7.3, in the following way: if v ∈
I, then we take Λv = O[[O×Fv (p)]], while if v /∈ I, then we take Λv = O[[(O×Fv (p))2]].
We write c = {cv}v∈Sp for a choice of αv or βv at each v ∈ Sp.

We have the corresponding global deformation problem

SI,cχ = (ρ, S, {Λv,1}v∈I ∪ {Λv,2}v∈Ic ∪ {O}v∈S\Sp ,

{DPv }v∈I ∪ {DB,cvv }v∈Ic ∪ {Dχv }v∈R ∪ {D�
v0
}).

Let (Q, (αv,1, . . . , αv,n)v∈Q) be a choice of Taylor–Wiles datum. We set SQ = S∪Q
and define the associated global deformation problem

SI,cχ,Q = (ρ, SQ, {Λv,1}v∈I ∪ {Λv,2}v∈Ic ∪ {O}v∈S\Sp ,

{DPv }v∈I ∪ {DB,cvv }v∈Ic ∪ {Dχv }v∈R ∪ {D�
v }v∈SQ\(R∪Sp)).

Note that by definition SI,cχ,Q does not depend on the choice of cv for v ∈ I.
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7.8. Taylor–Wiles systems: initial construction. In the next two sections,
we will construct the Taylor–Wiles systems that we will patch in §7.11, using an
abstract patching criterion explained in §7.10.1. (§7.8 is mainly concerned with the
construction of the Taylor–Wiles systems, whereas §7.9 is mainly concerned with
proving the required local–global compatibility statements for the corresponding
Galois representations.)

Since we are only dealing with the cases that #I ≤ 1, we do not need to make
use of the full machinery of patching complexes developed in [CG18, KT17, GN20];
rather, we can and do use the notion of “balanced” modules introduced in [CG18,
§2], which we recalled in §2.10. This has the advantage that we do not need to
consider local global compatibility at places dividing p for Galois representations
associated to classes in higher degrees of cohomology, but rather just have to prove
the vanishing of the Euler characteristic of a certain perfect complex, which follows
from a calculation of the cohomology in terms of automorphic forms.

We now make the following hypotheses on a representation ρ : GF → GSp4(k),
which include those made in Hypothesis 7.7.1.

Hypothesis 7.8.1.
(1) F is a totally real field in which the prime p ≥ 3 splits completely; we

write Sp for the set of primes of F dividing p.
(2) The representation ρ is vast and tidy.
(3) For each v ∈ Sp, ρ|GFv is p-distinguished weight 2 ordinary.
(4) There is a set of finite places R of F which is disjoint from Sp, such that

(a) If v ∈ R, then ρ|GFv is trivial, and qv ≡ 1 (mod p). If p = 3, then qv ≡
1 (mod 9).

(b) If v /∈ Sp ∪R, then moreover ρ|GFv is unramified.
(5) There is an ordinary cuspidal automorphic representation π of GSp4(AF )

of parallel weight 2 with central character | · |2 such that:
(a) ρπ,p ∼= ρ.
(b) If v ∈ R ∪ Sp, then πIw(v)

v 6= 0.
(c) If v /∈ R ∪ Sp, then π

GSp4(OFv )
v 6= 0.

As in §7.7, by the assumption that ρ(GF ) is tidy we can and do choose an
unramified place v0 /∈ R ∪ Sp with the properties that

• qv0
6≡ 1 (mod p),

• no two eigenvalues of ρ(Frobv0) have ratio qv0 , and
• the residue characteristic of v0 is greater than 5.

Definition 7.8.2. We define an open compact subgroupKp =
∏
vKv of GSp4(A∞,pF )

as follows:
• If v 6∈ Sp ∪R ∪ {v0}, then Kv = GSp4(OFv ).
• If v ∈ R ∪ {v0}, then Kv = Iw1(v).

For any Taylor–Wiles datum (Q, (αv,1, . . . , αv,4)v∈Q), we have open compact sub-
groups Kp

0 (Q), Kp
1 (Q) of Kp given by

• If v 6∈ Q, then Kp
0 (Q)v = Kp

1 (Q)v = Kp
v .

• If v ∈ Q, then Kp
0 (Q)v = Iw(v), Kp

1 (Q)v = Iw1(v).
We define the open compact subgroup group Kp

0 (Q,R) as follows:
• If v 6∈ Q ∪R, then Kp

0 (Q,R)v = Kp
v .
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• If v ∈ Q ∪R, then Kp
0 (Q,R)v = Iw(v).

Finally, we let Kp
1 (Q,R) = Kp

1 (Q). (Note that we already have Kp
1 (Q)v = Iw1(v)

for v ∈ R.)

The following lemma (applied with v = v0) guarantees that for any compact
open subgroup Kp ⊂ GSp4(Fp), KpK

p
0 (Q) and KpK

p
1 (Q) are neat.

Lemma 7.8.3. Suppose that K =
∏
vKv ⊂ GSp4(A∞F ) is an open compact sub-

group and that there exists a place v of F such that v is absolutely unramified of
residue characteristic greater than 5, and Kv = Iw1(v). Then K is neat.

Proof. Suppose that there is an element gv ∈ Kv which has an eigenvalue ζ ∈ F v
which is a root of unity; by the definition of “neat” (see Definition 3.2.1), it is
enough to check that we must have ζ = 1. Since the reduction modulo v of the
characteristic polynomial of g is (X − 1)4, the v-adic valuation of (1 − ζ) is at
least 1/4. On the other hand, if v has residue characteristic l and ζ 6= 1 is a root
of unity, then the v-adic valuation of (1− ζ) is either 0, or is at most 1/(l − 1), so
we are done, as l > 5 by assumption. �

We let
T̃ =

⊗
v 6∈Sp∪R∪{v0}

O[GSp4(Fv)//GSp4(OFv )]

be the ring of spherical Hecke operators away from the bad places, and similarly
we set

T̃Q =
⊗

v 6∈Sp∪R∪{v0}∪Q

O[GSp4(Fv)//GSp4(OFv )].

We let m̃an ⊂ T̃ be the maximal ideal corresponding to ρ (the “an” stands for
“anaemic”); so by definition m containins λ, and the polynomials det(X−ρ(Frobv))
and Qv(X) are congruent modulo m for each v 6∈ Sp ∪ R ∪ {v0}, where in a slight
abuse of notation, if v /∈ Sp ∪R ∪ {v0} we write Qv(X) ∈ T̃[X] for the polynomial

X4 − Tv,1X3 + (qvTv,2 + (q3
v + qv)Tv,0)X2 − q3

vTv,0Tv,1X + q6
vT

2
v,0

(cf. (2.4.8)). Similarly we write m̃an,Q ⊂ T̃Q for the maximal ideal corresponding
to ρ. For any choice of I we let

T̃I = T̃[{Uv,0, UKli(v),1, Uv,2}v∈I , {Uv,0, Uv,1, Uv,2}v∈Ic ]
and

T̃I,Q = T̃Q[{Uv,0, UKli(v),1, Uv,2}v∈I , {Uv,0, Uv,1, Uv,2}v∈Ic ]
and additionally for any choice of c we let m̃I,c ⊂ T̃I be the maximal ideal
(7.8.4)
m̃I,c = (m̃an, {Uv,0 − 1, Uv,2 − αvβv}v∈Sp , {UKli(v),1 − αv − βv}v∈I , {Uv,1 − cv}v∈Ic)

and we let m̃I,c,Q ⊂ T̃I,Q be the maximal ideal

m̃I,c,Q = (m̃an,Q, {Uv,0−1, Uv,2−αvβv}v∈Sp , {UKli(v),1−αv−βv}v∈I , {Uv,1−cv}v∈Ic).
Let χ = (χv,1, χv,2)v∈R be any choice of p-power order characters of IFv for

v ∈ R, and also write χv for the corresponding characters of T (k(v)) given by
χv,1 ◦ArtFv , χv,2 ◦ArtFv .

Then we consider the ΛI -module

Mχ,I,c = RHom0
ΛI (M

•,I
Kp ,ΛI)m̃I,c,χ,|·|2 ,
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and the ΛI [∆Q]-module

Mχ,I,c,Q = RHom0
ΛI (M

•,I
Kp

1 (Q)
,ΛI)m̃I,c,Q,m̃Q,χ,|·|2 ,

where:
• M•,IKp denotes the complex M•I defined in Theorem 4.6.1, at tame level Kp.
• The localizations m̃I,c, m̃I,c,Q are defined above.
• The localization m̃Q is with respect to the maximal ideals m̃v of the subalge-

brasO[T (Fv)/T (OFv )1] of the pro-v Iwahori Hecke algebrasH1(v) for v ∈ Q
as considered in §2.4.29, so that λ ∈ m̃v, Uv,0 − 1 ∈ m̃v, and Uv,1 and Uv,2
are respectively congruent to αv,1, αv,1αv,2 modulo m̃v.

• The subscript χ denotes that we take the χ-coinvariants for the action
of
∏
v∈R T (k(v)).

• The subscript |·|2 denotes that we are fixing the central character, by taking
coinvariants under Tv,0 − q−2

v for all v /∈ Sp ∪R ∪ {v0}.
The following lemma motivates our definition using RHom0

Λ(M•,Λ), and will be
useful for proving various properties of Mχ,I,c,W below (see also Remark 7.8.7).

Lemma 7.8.5. Let Λ ∈ CNLO, and let M• be a perfect complex of Λ-modules
bounded below by 0. Set M := RHom0

Λ(M•,Λ). Then, writing ∗ for the usual
duality of finite-dimensional vector spaces and ∨ for Pontryagin duals, we have

(1) M ⊗Λ k = (H0(M• ⊗L
Λ k))∗.

(2) For any homomorphism of O-algebras Λ→ E, M⊗ΛE = (H0(M•⊗L
ΛE))∗.

(3) For any homomorphism of O-algebras Λ→ O,

M ⊗Λ O = Hom(H0(M• ⊗L
Λ E/O), E/O) = H0(M• ⊗L

Λ E/O)∨.

Proof. Let P • = P 0 → P 1 → . . .→ P l0 be a bounded complex of finite projective
Λ-modules which is bounded below by 0 and is quasi-isomorphic to M•. Then, by
definition, we have an exact sequence

HomΛ(P 1,Λ)→ HomΛ(P 0,Λ)→M → 0.

In particular it follows that for any Λ-algebra R, we have an exact sequence of
R-modules

HomR(P 1 ⊗Λ R,R)→ HomR(P 0 ⊗Λ R,R)→M ⊗Λ R→ 0.

On the other hand, by definition, we have an exact sequence of R-modules

0→ H0(M• ⊗L
Λ R)→ P 0 ⊗Λ R→ P 1 ⊗Λ R,

and therefore, for a field R = F , an exact sequence

HomF (P 1 ⊗Λ F, F )→ HomF (P 0 ⊗Λ F, F )→ HomF (H0(M• ⊗L
Λ F ), F )→ 0.

Parts (1) and (2) follow immediately with F = E or F = k. Part (3) follows from
Lemma 7.8.6 below, applied to the morphism P 0 ⊗Λ O → P 1 ⊗Λ O. �

Lemma 7.8.6. If φ : M → N is a morphism of finite free O-modules, and φE/O =
φ⊗E/O is the map M⊗E/O → N⊗E/O, then the Pontryagin dual φ∨E/O of φE/O
is the map

φ∨E/O : Hom(N,O)→ Hom(M,O).

In particular, the Pontryagin dual of ker(φE/O) is coker(φ∨E/O).
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Proof. BecauseM and N are free, the Pontryagin duals ofM⊗E/O and N⊗E/O
are Hom(M,O) and Hom(N,O) respectively, and the result follows immediately.

�

Remark 7.8.7. In [CG18] and [CG20], the patched modules are constructed by
first taking cohomology with coefficients in E/O and then taking Pontryagin duals.
Lemma 7.8.5 (3) explains how our construction coincides with this in the special
case when Λ = O.

Definition 7.8.8. For any I ⊂ Sp, a weight is a homomorphism κ : ΛI → O;
by definition, κ corresponds to a tuple (θv,1, θv,2)v∈Sp where θv,i : IFv → O× is a
character with trivial reduction, and moreover θv,1 = θv,2 for v ∈ I. We let pκ ⊂ ΛI
denote the kernel of this homomorphism.

We say that κ is classical if there are integers kv ≥ lv ≥ 2 such that θv,1 =

ε(kv+lv)/2−2, θv,2 = ε(kv−lv)/2 (so that kv ≡ lv ≡ 2 or p+ 1 (mod 2(p− 1)), and if
v ∈ I, we must have lv = 2). If κ is classical, then we write ωκ for the automorphic
vector bundle corresponding to (kv, lv)v∈Sp , as in §3.7.

For any I we denote by κ2 the classical algebraic weight where kv = lv = 2 for
all v. For I = ∅ we pick some sufficiently regular classical algebraic weight, κreg;
for example, we could choose the one given by the characters θv,1 = ε2N(p−1) and
θv,2 = εN(p−1) for all v ∈ Sp, where N is sufficiently large.

Remark 7.8.9. In practice we choose κreg so that we can apply Theorems 3.10.1
and 6.6.5 in weight κreg. We will do this without comment from now on.

We will now prove some very important properties of the action of ∆Q on the
modules that we patch. It will also be important for us to understand the action
of the diamond operators at the places in R (that is, at the places involved in
the “Ihara avoidance” argument). We can and do treat the places in Q and in R
simultaneously; recall, by Definition 7.8.2, we have the groupsKp

1 (Q) andKp
0 (Q,R)

such that
• If v 6∈ Q ∪R, then Kp

0 (Q,R)v = Kp
v which equals Kp

1 (Q)v.
• If v ∈ Q ∪R, then Kp

0 (Q,R)v = Iw(v) which contains Kp
1 (Q)v = Iw1(v).

In particular, there is an inclusion Kp
1 (Q) ⊂ Kp

0 (Q,R). In contexts in which
we particularly want to emphasize the fact that Kp

1 (Q) has level structure Iw1(v)
at v ∈ R, we write Kp

1 (Q,R) = Kp
1 (Q).

LetKp be any reasonable level structure at p (for exampleKp(I)). LetXKpK
p
0 (Q,R),Σ

be the Shimura variety of the corresponding level KpK
p
0 (Q,R) for a choice Σ of

good polyhedral cone decomposition. Over the interior YKpKp
0 (Q,R) we have for

all v ∈ Q ∪ R a flag of subgroups 0 ⊂ Hv ⊂ Lv ⊂ H⊥v ⊂ A[v] and all the graded
pieces are étale k(v)-group schemes of rank 1. We now consider the Shimura variety
XKpK

p
1 (Q,R),Σ for the same choice of cone decomposition.

Proposition 7.8.10.
(1) For all v ∈ Q ∪ R, the groups Hv, Lv/Hv, H⊥v /Lv and A[v]/(H⊥v ) extend

to finite étale k(v)-group schemes of rank 1 over XKpK
p
0 (Q,R),Σ.

(2) The map XKpK
p
1 (Q,R),Σ → XKpK

p
0 (Q,R),Σ is finite étale with group

∏
v∈Q∪R T (k(v)),

and XKpK
p
1 (Q,R),Σ identifies with the torsor of trivializations of the groups

Hv, Lv/Hv, H⊥v /Lv and A[v]/(H⊥v ), compatible with duality.
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Proof. We observe that when F = Q, this is the content of [Str15, §2.4.5]. The
argument can be adapted to our setting. The extension problem is local so let us
pick σ ∈ Σ and consider the completion (XKpK

p
0 (Q,R),Σ)∧σ ' Spf R of XKpK

p
0 (Q,R),Σ

along the σ-stratum. The semi-abelian scheme A over Spf R is obtained by Mum-
ford’s construction as the quotient of a semi-abelian scheme B of constant toric
rank by a finite free OF -module Xσ. Let Uσ ↪→ SpecR be the Zariski open comple-
ment of the boundary and let us consider any of the groups Hv, Lv/Hv, H⊥v /Lv or
A[v]/(H⊥v ). If this group is a subquotient of B[v], then since B exists over all SpecR
and B[v] is a finite étale group scheme, the group extends as a subquotient of B[v].
Otherwise, the group maps isomorphically to its image in A[v]/B[v] = Xσ⊗OF k(v)
and is constant over Uσ. Therefore it extends to the constant group scheme. This
proves (1).

We may now define a schemeX ′
KpK

p
1 (Q,R),Σ

→ XKpK
p
0 (Q,R),Σ as the torsor of triv-

ializations of the (extended) groupsHv, Lv/Hv, H⊥v /Lv and A[v]/(H⊥v ), compatible
with duality for all v|p. This scheme is canonically isomorphic to XKpK

p
1 (Q,R),Σ be-

cause the two schemes are generically equal, and both are normal, and finite flat
over XKpK

p
0 (Q,R),Σ. �

Proposition 7.8.11.
(1) Mχ,∅,c,Q is a finite free Λ∅[∆Q]-module.
(2) If #I = 1, then Mχ,I,c,Q is a balanced ΛI [∆Q]-module.

Proof. The complex M•,I
Kp

1 (Q)
(which is the complex M•I defined in Theorem 4.6.1

for the tame level Kp
1 (Q)) is a perfect complex of ΛI -modules of amplitude [0,#I].

We claim that it is actually a perfect complex of ΛI [
∏
v∈Q∪R T (k(v))]-modules of

amplitude [0,#I].
The complexM•,I

Kp
1 (Q)

is obtained by considering the cohomology over XKpKp
1 (Q),Kli(p∞)

of the sheaf of ΛI -modules ΩκI (−D) and applying the ordinary idempotent. Equiv-
alently, it is obtained by considering the cohomology over XKpKp

0 (Q),Kli(p∞) of the
sheaf of ΛI -modules

ΩκI (−D)⊗OX
KpK

p
0 (Q,R),Kli(p∞)

OXKpK
p
1 (Q,R),Kli(p∞)

and applying the ordinary idempotent. Using the independence of the cohomology
with respect to choices of toroidal compactifications, we may assume that we are
in the setting of Proposition 7.8.10, so that the morphism XKpKp

1 (Q,R),Kli(p∞) →
XKpKp

0 (Q,R),Kli(p∞) is finite étale with group
∏
v∈Q∪R T (k(v)). Therefore, it follows

(by considering a suitable étale covering to compute the cohomology) that M•,I
Kp

1 (Q)

is represented by a bounded complex of flat complete ΛI [
∏
v∈Q∪R T (k(v))]-modules.

We can apply Lemma 4.6.22 (or rather its straightforward extension to the semi-
local situation; see also [Nak84, Prop. 2]) to conclude that M•,I

Kp
1 (Q)

is a perfect
complex of ΛI [

∏
v∈Q∪R T (k(v))]-modules of amplitude [0,#I]. It follows that the

corresponding complex M•,I,χ
Kp

1 (Q)
is a perfect complex of ΛI [∆Q]-modules, also of

amplitude [0,#I].
Given an ideal m̃I,c, we can f localize the complex with respect to the action

of a lift of a suitable idempotent for this ideal in the Hecke algebra, and this
localization also preserves the property of being perfect of the correct amplitude.
(The endomorphism ring at the level of derived categories of a perfect complex
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of ΛI modules is a finite ΛI module. So, if one has a commutative subalgebra, it
is a semi-local ring. See the discussion following [KT17, Lem. 2.12] for a lengthier
treatment of such localizations.)

It remains to consider the passage to coinvariants under the centre. To this end,
consider the spaces

M̃χ,I,c = RHom0
ΛI (M

•,I
Kp ,ΛI)m̃I,c,χ,

M̃χ,I,c,Q = RHom0
ΛI (M

•,I
Kp

1 (Q)
,ΛI)m̃I,c,Q,m̃Q,χ,

obtained before taking coinvariants under the centre. The component groups of our
Shimura varieties are indexed by a finite abelian (ray) class group C = F×\A×F /U
for some U . The action of γ ∈ A×F on components is via the class [γ]2, and the
action of the central character on our cohomology groups is via |·|2 times a character
of C. Let C = Cp ⊕Cp, where Cp is the p-Sylow subgroup of C. There are always
natural isomorphisms of O[∆Q] modules

M̃χ,I,c 'Mχ,I,c ⊗O O[Cp],

M̃χ,I,c,Q 'Mχ,I,c,Q ⊗O O[Cp],

with ∆Q acting trivially on the second factor. The reason for such an isomorphism
is that, after localization at a maximal ideal m of the Hecke algebra, the elements of
the centre which act through an element of order prime to p are already determined,
because they are fixed modulo m and the polynomial Tm− 1 is separable modulo p
if (m, p) = 1. On the other hand, if we consider only the connected components
corresponding to the subgroup Cp, the entire space is canonically isomorphic to |Cp|
copies of this space, and moreover, the action of C/Cp = Cp on these components
is transitive and fixed point free (this crucially uses that p 6= 2). Hence working
with the | · |2 part of the cohomology is simply equivalent to working with the
components indexed by Cp instead of C, and the passage between the cohomology
(or complexes) for either of these two spaces (even before localization) is simply to
tensor with O[Cp].

Part (1) follows immediately from these considerations, because M•,I,χ
Kp

1 (Q)
is per-

fect of amplitude [0, 0]. By Lemma 2.10.2, to prove part (2), it is enough to prove
that the corresponding perfect complex (of amplitude [0, 1]) has Euler characteris-
tic 0 after localization at m̃I,c. We can check this modulo any prime ideal of ΛI , so
the result follows from Theorem 6.6.5 and Corollary 3.10.5. �

7.9. Taylor–Wiles systems: local-global compatibility. We write Tχ,I,c for
the ΛI -subalgebra of EndΛI (M

χ,I,c) generated by the image of T̃I . Similarly, we
write Tχ,I,c,Q for the ΛI -subalgebra of EndΛI (M

χ,I,c,Q) generated by the image of
T̃I,Q. We remind the reader that none of these objects depend on the choice of cv
for v ∈ I (but they do depend on the choice of cv for v /∈ I). If v ∈ I, then by
Hensel’s lemma and our assumption that αv 6= βv, we can write

X2 − UKli(v),1X + Uv,2 = (X − α̃v)(X − β̃v)

where α̃v, β̃v ∈ Tχ,I,c,Q are respectively lifts of αv, βv.
If I ⊂ I ′, then there is a natural surjective map ΛI → ΛI′ , corresponding to the

closed immersion Spec ΛI′ → Spec ΛI given by θv,1 = θv,2 for all v ∈ I ′. Then we
have the following key doubling statement:
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Proposition 7.9.1 (Doubling). For each choice of c, and each I ⊂ I ′, there are
natural surjections

Mχ,I,c ⊗ΛI ΛI′ →Mχ,I′,c

and

Mχ,I,c,Q ⊗ΛI ΛI′ →Mχ,I′,c,Q

which commute with all the Hecke operators away from I ′ \ I. Furthermore, if
v ∈ I ′ \ I, then these surjections are equivariant with respect to Uv,0 and Uv,2, and
intertwine the actions of Uv,1 on the source and c̃v on the target.

Proof of Proposition 7.9.1. We give the proof forMχ,I,c, as the argument forMχ,I,c,Q

is identical. By induction, it suffices to consider the case that I ′ = I ∪{v} for some
v /∈ I. We have a map of complexes

M•,I
′

Kp
→M•,IKp ,

induced by the restriction map coming from the inclusion

XG1,I
K,Kli(p∞) ↪→ XG1,I

′

K,Kli(p∞),

together with the natural map ΛI → ΛI′ . This induces a map

Mχ,I,c ⊗ΛI ΛI′
τ→Mχ,I′,c,

and the map that we are seeking is the map τ ◦ Uv,1 − c̃
′
v ◦ τ . It is clear that this

satisfies all of the claimed properties except possibly for the surjectivity and the
claimed intertwining of Uv,1 and c̃v.

To see the intertwining, it is convenient to introduce the module Mχ,I′,c,=v2,
whose definition is

Mχ,I′,c,=v2 = RHom0
ΛI′

(M•,IKp ⊗ΛI ΛI′ ,ΛI′)m̃I′,c,χ,|·|2 ;

that is, it is defined in the same way as Mχ,I,c, but we are now over the weight
space ΛI′ , rather than ΛI , and we localize with respect to the Hecke operator (UKli(v),1−
(αv + βv)), rather than (UIw(v),1 − cv). By Lemma 4.5.17, on Mχ,I′,c,=v2 we have
the identity

Uv,1(UKli(v),1 − Uv,1) = Uv,2,

or equivalently (writing {αv, βv} = {cv, c′v}) the identity

(7.9.2) (Uv,1 − c̃
′
v)(Uv,1 − c̃v) = 0.

We need to show that Uv,1 = c̃
′
v onMχ,I,c⊗ΛI ΛI′ . Now, noting thatMχ,I,c⊗ΛI ΛI′

is a subspace ofMχ,I′,c,=v2 (because it is obtained from it by localizing with respect
to (UIw(v),1− cv), and because (7.9.2) holds on Mχ,I′,c,=v2), we see that (7.9.2) also
holds onMχ,I,c⊗ΛIΛI′ ; since UIw(v),1 acts via cv modulo the maximal ideal ofTχ,I,c,
it follows from Hensel’s lemma that Uv,1 = cv on Mχ,I,c ⊗ΛI ΛI′ , as required.

It only remains to check the surjectivity. By Nakamaya’s lemma, it is enough to
check surjectivity modulo mΛI′ , or equivalently (by Lemma 7.8.5) the injectivity of
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the map

(7.9.3)

e(U I
′
)H0(XI′,G1

KpKp(I′),1, ω
2(−D))m̃I′,c,χ,|·|2

e(U I)H0(XI,G1

Kp(I)Kp,1, ω
2(−D))m̃I,c,χ,|·|2

(Uv,1−c′v)

?

on the special fibre. This follows from Theorem 5.8.6, as in Remark 5.8.7. �

Recall from §7.3 that if v ∈ I, we defined a character θv : IFv → Λ×v , and if
v /∈ I we defined a pair of characters θv,1, θv,2 : IFv → Λ×v . We extend all of these
characters to GFv by sending ArtFv (p) 7→ 1. In the following theorem, we allow the
Taylor–Wiles datum (Q, (αv,1, . . . , αv,4)v∈Q) to be empty.

Theorem 7.9.4. There is a unique continuous representation

ρχ,I,c,Q : GF → GSp4(Tχ,I,c,Q)

which is a deformation of ρ of type SI,cχ,Q such that the induced homomorphism
RSI,cχ,Q

→ Tχ,I,c,Q is a homomorphism of ΛI [∆Q]-algebras, and moreover such that

(1) If v /∈ Sp ∪R ∪ {v0} ∪Q, then det(X − ρχ,I,c,Q(Frobv)) = Qv(X).
(2) If v ∈ I, then

ρχ,I,c,Q|GFv '


λα̃vθv 0 ∗ ∗

0 λβ̃vθv ∗ ∗
0 0 λ−1

β̃v
θ−1
v ε−1 0

0 0 0 λ−1
α̃v
θ−1
v ε−1

 .

(3) If v ∈ Ic, then

ρχ,I,c,Q|GFv '


λUv,1θv,1 ∗ ∗ ∗

0 λUv,2/Uv,1θv,2 ∗ ∗
0 0 λ−1

Uv,2/Uv,1
θ−1
v,2ε
−1 ∗

0 0 0 λ−1
Uv,1

θ−1
v,1ε
−1

 .

Proof. First we treat the case I = ∅. By Proposition 7.8.11, Mχ,∅,c,Q is a finite free
Λ∅-module, so there is an injection of T̃∅,Q-modules

Mχ,∅,c,Q →
∏
κ

Mχ,∅,c,Q ⊗Λ∅,κ E

where the product is over all weights κ = (kv, lv)v|∞ with kv ≥ lv ≥ 4, kv ≡ lv ≡ 2
or p+ 1 (mod 2(p− 1)). (Note that these points are scheme-theoretically dense in
Spec Λ∅.)

From the definition of Mχ,∅,c,Q, Lemma 7.8.5, and Theorem 6.6.5, we have

(Mχ,∅,c,Q ⊗Λ,κ E)∨ = e(∅)H0(XG1

Kp
1 (Q)Kp(∅), ω

κ)
{T (k(v))=χv}v∈R,|·|2
m̃I,c,Q

,

and by Theorem 3.10.1, we have

H0(XG1

Kp
1 (Q)Kp(∅), ω

κ)⊗ E '
⊕
π

(π
K1
p(Q)Kp(∅)

f )⊗ E,
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where in the sum, π runs over all the cuspidal automorphic representations of weight
(kv, lv), with πv holomorphic for each v|∞, and πf is the finite part of π.

Next we observe that for such a π, if the T̃∅,Q-module

e(∅)(πK
p
1 (Q)Kp(∅)

f ⊗ E)
{T (k(v))=χv}v∈R,|·|2
m̃I,c,Q

is nonzero, then π has central character |·|2 and by Proposition 2.4.26, π is ordinary,
and moreover T̃∅,Q acts on it through a character Θπ : T̃∅,Q → E, and the ordinary
Hecke parameters are (Θπ(Uv,1),Θπ(Uv,2/Uv,1)).

We now argue as in the proof of [CHT08, Prop. 3.4.4]. By Theorem 2.7.2,
Proposition 2.4.13, Proposition 2.4.28, Proposition 2.4.30, and Remark 2.4.31, there
is a Galois representation ρπ,p : GF → GSp4(E) such that

• If v 6∈ Sp∪R∪{v0}∪Q, then ρπ,p|GFv is unramified and det(X−ρπ,I(Frobv)) =
Θπ(Qv(X)).

• If v ∈ Sp, then

ρπ,p|GFv '


λΘπ(Uv,1)θv,1 ∗ ∗ ∗

0 λΘπ(Uv,2/Uv,1)θv,2 ∗ ∗
0 0 λ−1

Θπ(Uv,2/Uv,1)θ
−1
v,2ε
−1 ∗

0 0 0 λ−1
Θπ(Uv,1)θ

−1
v,1ε
−1


• If v ∈ R, then for all σ ∈ IFv , det(X − ρ(σ)) is equal to

(X −χv,1(Art−1
Fv

(σ)))(X −χv,1(Art−1
Fv

(σ))−1(X −χv,2(σ))(X −χv,2(Art−1
Fv

(σ))−1).

• If v ∈ Q, then

ρ|GFv ' γv,1 ⊕ γv,2 ⊕ ε
−1γ−1

v,2 ⊕ ε−1γ−1
v,1

for characters γv,i : GFv → E
×

satisfying γi = λαv,i . Furthermore T (Fv)

acts on (πIw1(v))mα1,α2
via the characters γv,i ◦ArtFv .

After conjugation, we may assume that ρπ,p is valued in OEπ for some finite
extension Eπ/E, and since ρπ,p ∼= ρ, we may assume after further conjugation
that ρπ,p = ρ. Let A be the subring of k ⊕

⊕
π OEπ consisting of those ele-

ments (a, (aπ)π) ∈ k ⊕
⊕

π OEπ such that for all π the reduction of aπ modulo
the maximal ideal of OEπ is equal to a (where the direct sum is over the infinitely
many π corresponding to the infinitely many κ). Then A is a local Λ-algebra with
residue field k (with the Λ-algebra structure coming from that on OEπ given by κ).
Set

ρA := ρ⊕
⊕
π

ρπ,p : GF → GSp4(A).

There is a natural injection Tχ,∅,c,Q → A (this map is injective because Tχ,∅,c,Q

is reduced, by a standard argument using Proposition 2.4.26). We can choose (for
example, by ordering the κ) a decreasing sequence of ideals In of A with ∩nIn = (0)
such that each A/In is an object of CNLΛ, and it follows from [GG12, Lem. 7.1.1]
that for each n the representation ρA ⊗A A/In is ker(GSp4(A/In) → GSp4(k))-
conjugate to a representation

ρχ,∅,c,Qn : GF → GSp4(Tχ,∅,c,Q/(In ∩Tχ,∅,c,Q)).

After possibly conjugating again, we can assume that ρχ,∅,c,Qn+1 (mod In) = ρχ,∅,c,Qn ,
and we set ρχ,∅,c,Q := lim←−n ρ

χ,∅,c,Q
n . By construction this satisfies the required
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properties at places v 6∈ Sp ∪Q (in particular, at the places v ∈ R, the deformation
is of the required type by the definition of Rχv ).

It remains to verify the claimed properties of ρχ,∅,c,Q|GFv for v ∈ Sp∪Q. Suppose
that v ∈ Sp. We claim firstly that it is enough to show that there are elements
νv,1, νv,2 ∈ (Tχ,∅,c,Q)× such that

(7.9.5) ρχ,∅,c,Q|GFv ∼=


λνv,1θv,1 ∗ ∗ ∗

0 λνv,2θv,2 ∗ ∗
0 0 λ−1

νv,2θ
−1
v,2ε
−1 ∗

0 0 0 λ−1
νv,1θ

−1
v,1ε
−1


Indeed, if this holds, then the equalities νv,1 = Uv,1 and νv,2 = Uv,2/Uv,1 can
be checked after composing with the injection Tχ,∅,c,Q ↪→ A, where they follow
from local-global compatibility for the ρπ,p|GFv . Now, (7.9.5) is equivalent to ask-
ing that the homomorphism R�

v → Tχ,∅,c,Q corresponding to ρχ,∅,c,Q|GFv factors
through the quotient RB,cvv , and this can again be checked after composing with
the injection Tχ,∅,c,Q ↪→ A, as required.

Suppose now that v ∈ Q, so that we need to check that the morphism RSI,cχ,Q
→

Tχ,I,c,Q is ∆v-equivariant. By Lemma 7.4.4, there are unique characters γv,1, γv,2 :

GFv → (Tχ,∅,c,Q)× lifting λαv,1 , λαv,2 respectively such that ρχ,∅,c,Q|GFv ∼= γv,1 ⊕
γv,2 ⊕ γv,2ε−1 ⊕ γv,1ε−1. We claim that the action of T (Fv) on Mχ,I,c,Q is given
by γv,1 ◦ ArtFv , γv,2 ◦ ArtFv ; this can be checked after composing with the injec-
tion Tχ,∅,c,Q ↪→ A, so it follows from the analogous result for ρπ,p|GFv recalled
above. Restricting this claim to T (OFv ) gives the result.

We are done in the case that I = ∅. We now prove the result for general I
by induction on #I. Accordingly, assume that the result holds for some I 6= Sp,
choose w ∈ Ic, and set I ′ = I ∪ {w}. By Proposition 7.9.1 we have a natural
surjection of ΛI′ -algebras

T̃χ,I,c,Q ⊗ΛI ΛI′ � T̃χ,I′,c,Q,

and we let ρχ,I
′,c,Q be the pushforward of ρχ,I,c,Q. It follows from the result for I

that we need only check that property (2) holds for v = w. However, we could
equally well have performed the same construction with cw replaced with c′w (the
two candidates for ρχ,I

′,c,Q are conjugate by property (1), the Cebotarev density
theorem, and [GG12, Lem. 7.1.1]), so from (3) and the equivariance properties
for Hecke operators at w in Proposition 7.9.1, we see that ρχ,I

′,c,Q|GFw admits
both λα̃wθw and λβ̃wθw as subcharacters. Since αw 6= βw, the result follows. �

As a corollary, we have the following result about Galois representations asso-
ciated to automorphic representations of parallel weight 2. As ever, some of the
hypotheses in this result could be relaxed (in particular, the assumption that ρπ,p
is vast and tidy can presumably easily be relaxed to irreducibility), but in the in-
terests of brevity we have contented ourselves with this result, as it is sufficient for
our purposes.

Corollary 7.9.6. Let π be a cuspidal automorphic representation of GSp4(AF ) of
parallel weight 2 with central character | · |2. Fix a prime p > 2, and assume that π
is ordinary. Then there is a continuous semisimple representation ρπ,p : GF →
GL4(Qp) such that
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(1) For each finite place v - p, at which πv is unramified, ρπ,p|GFv is unramified
and

det(X − ρπ,p(Frobv)) = Qv(X).

Suppose further that ρπ,p is vast and tidy, and that for each v|p, the ordinary Hecke
parameters αv, βv of πv satisfy αv 6= βv. Then ρπ,p can be conjugated to be valued
in GSp4(Qp), and

(2) ν ◦ ρπ,p = ε−1.
(3) For each finite place v - p, we have

WD(ρπ,p|GFv )ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

(4) For each place v|p, then

ρπ,p|GFv ∼=


λαv 0 ∗ ∗
0 λβv ∗ ∗
0 0 λ−1

βv
ε−1 0

0 0 0 λ−1
αv ε
−1

 .

Proof. This could be proved by repeating the arguments of [Mok14, §4], using
Theorem 7.9.4 instead of the results of [MT15]. For brevity, we instead explain
how to deduce the result from [Mok14, Thm. 4.14] and Theorem 7.9.4.

Firstly, if π is not of general type in the sense of [Art04], then the existence of
a (unique) semisimple reducible representation ρπ,p satisfying (1) is an easy con-
sequence of standard results on Galois representations for GL1 and GL2 (see the
proof of Lemma 2.9.1), and parts (2)-(4) are then vacuous.

Accordingly, for the remainder of the proof we assume that π is of general type,
in which case the existence of a representation ρπ,p satisfying (1) and (3) follows
from [Mok14, Thm. 4.14], except that this representation is only given to be valued
in GL4(Qp) rather than GSp4(Qp).

Choose a solvable extension of totally real fields F ′/F , linearly disjoint from
F

ker ρπ,p over F , with the properties that p splits completely in F ′, and that there
is an automorphic representation Π of GSp4(AF ′) of parallel weight 2 and central
character |·|2, which is a base change of π (that is, for each finite place w of F ′, lying
over a place v of F , we have recGT,p(Π) = recGT,p(π)|WF ′w

), which is holomorphic

at all infinite places, and which satisfies Π
Iw(w)
w 6= 0 for all finite places w of F ′ (the

existence of such an F ′ and Π follows from [Mok14, Prop. 4.13]).
We claim that if ρΠ,p admits a symplectic pairing with multiplier ε−1, then

so does ρπ,p. Indeed, since ρΠ,p = ρπ,p|GF ′ is irreducible, it admits at most one
perfect pairing with multiplier ε−1; while by (1), ρπ,p admits a perfect pairing
with multiplier ε−1, which must therefore also be symplectic. In addition (4) holds
for ρΠ,p if and only if it holds for ρπ,p. Replacing F by F ′ and π by Π, we can and
do assume that πIw(v)

v 6= 0 for all finite places v of F .
Taking ρ := ρπ,p, we see that Hypothesis 7.8.1 holds, so the required properties

of ρπ,p follow immediately from Theorem 7.9.4, taking I = Sp, χ = 1 and Q = ∅.
(Note that as in the proof of Theorem 7.9.4, it follows from Theorem 3.10.1 that π
contributes to M1,Sp,c,∅.) �

We now turn to the final lemmas that we need to prove in order to construct our
Taylor–Wiles systems.
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Lemma 7.9.7. Let Λ ∈ CNLO, and let f• : C• → D• be a morphism of bounded
complexes of mΛ-adically complete and separated flat Λ-modules. Supposed that the
induced morphism C• ⊗L

Λ Λ/mλ → D• ⊗L
Λ Λ/mλ is a quasi-isomorphism. Then f•

is a quasi-isomorphism.

Proof. See [Pil20, Prop. 2.2]. �

Proposition 7.9.8. The natural map Mχ,I,c,Q →Mχ,I,c induces an isomorphism
(Mχ,I,c,Q)∆Q

→Mχ,I,c.

Proof. We follow the proof of [KT17, Lem. 6.25]. We claim that we have natural
isomorphisms

(7.9.9) (Mχ,I,c,Q)∆Q

∼−→Mχ,I,c,Q
Kp

0 (Q)

and

(7.9.10) Mχ,I,c,Q
Kp

0 (Q)

∼−→Mχ,I,c

whose composite is the claimed isomorphism. We begin with (7.9.9). It suffices to
show that we have a natural isomorphism in the derived category

(M•,I
Kp

1 (Q)
)
∏
v∈Q T (k(v)) ∼−→M•,I

Kp
0 (Q)

.

As in the proof of Proposition 7.8.11, the complex on the left (before taking in-
variants) is a perfect complex of ΛI [

∏
v∈Q T (k(v))]-modules. But now the result is

immediate from Proposition 7.8.10, as the map XKpK
p
1 (Q),Σ → XKpK

p
0 (Q),Σ is finite

étale with group
∏
v∈Q T (k(v)).

We now turn to proving (7.9.10). Again, we mostly work on the level of com-
plexes. We begin by considering the composite

(M•,I
Kp

0 (Q)
)m̃an,Q,m̃Q → (M•,I

Kp
0 (Q)

)m̃an,Q → (M•,IKp )m̃an,Q .

By Lemma 7.9.7, these maps induce quasi-isomorphism of complexes if the following
maps are isomorphisms

H∗(M•,I
Kp

0 (Q)
⊗ k)m̃an,Q,m̃Q → H∗(M•,I

Kp
0 (Q)
⊗ k)m̃an,Q → H∗(M•,IKp ⊗ k)m̃an,Q .

This follows formally from Lemmas 2.4.36 and 2.4.37, applied at each place in Q,
because, for K = GSp4(OFv ) and K ′ = Iw(v), we have the identities of Hecke
operators

[K1K ′][K ′1K] = [K : K ′]

[K ′1K][K1K ′] = eK = eGSp4(OFv ),

and we note that [K1K ′] is the trace from level K ′ to GSp4(OFv ) and [K ′1K] is the
inclusion from level K to level K ′ (recall that since p > 2, [K : K ′] = [GSp4(OFv ) :
Iw(v)] is not divisible by p).

Finally, consider the natural map

(M•,IKp )m̃an,Q → (M•,IKp )m̃an .

For our purposes, it suffices to prove that this map becomes an isomorphism after
applying RHom0(−,Λ). Since this map is a localisation, it suffices to check that it
is an isomorphism modulo the maximal ideal of Λ; so by Lemma 7.8.5 (1), it is in
turn enough to prove that

H0(M•,IKp ⊗ k)m̃an,Q → H0(M•,IKp ⊗ k)m̃an
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is an isomorphism, or in other words, that m̃an is the unique maximal ideal n of T̃
lying over m̃an,Q and in the support of H0(M•,IKp ⊗ k). Equivalently, we need to
show that the Hecke eigenvalues away from the primes in Q (which are prime to
the level) determine the Hecke eigenvalues at Q. This follows from the fact that the
Hecke eigenvalues at primes of good reduction and residue characteristic different
from p are determined by the Galois representation (exactly as in the proof of The-
orem 7.9.4, this local-global compatibility statement for H0 is a consequence of the
corresponding local-global compatibility statement for the Galois representations
in Theorem 2.7.2). But the Galois representation itself is determined from m̃an,Q

by the Cebotarev density theorem. Hence n = m̃an, as required. �

7.10. An abstract patching criterion. We have the following slight variant
on [CG18, Prop. 2.3, Prop. 6.6] (although our formulation is also informed by [KT17,
Prop. 3.1]); we leave the details of the proof as an exercise for the interested reader.

Proposition 7.10.1. Let l0 be equal to either 0 or 1, let Λ ∈ CNLO, let S∞ :=
Λ[[x1, . . . , xq]] for some q ≥ 1, and set a := ker(S∞ → Λ). Let S∞ ⊃ I1 ⊃ I2 ⊃ . . .
be a decreasing sequence of open ideals of S∞ with ∩NIN = 0. For each N ≥ 1 we
set SN = S∞/IN .

Suppose that we are given the following data.
• Objects R1

∞, Rχ∞ of CNLΛ.
• Objects R1, Rχ of CNLΛ, an R1-module M1, and an Rχ-module Mχ, each
of which is finite as a Λ-module. Furthermore if l0 = 0, then they are both
free as Λ-modules, and if l0 = 1, then they are balanced Λ-modules.

• For each integer N ≥ 1, finite SN -modules M1
N , M

χ
N , which are free

if l0 = 0 and balanced if l0 = 1, together with isomorphisms of SN -modules
M1
N/a

∼−→ M1 ⊗S∞ SN , M
χ
N/a

∼−→ Mχ ⊗S∞ SN (where the action of S∞
on M1, Mχ is via the augmentation S∞ → Λ).

• For each N ≥ 1, objects R1
N , R

χ
N of CNLSN , and maps of SN -algebras

R1
N → R1/IN , R

χ
N → Rχ/IN and R1

N → EndSN (M1
N ), RχN → EndSN (Mχ

N ),
such that the two following diagrams commute.

R1
N

//

��

EndSN (M1
N )

��

R1/IN // EndΛ/IN (M1 ⊗S∞ SN )

RχN
//

��

EndSN (Mχ
N )

��

Rχ/IN // EndΛ/IN (Mχ ⊗S∞ SN )

• For each N ≥ 1, surjections of Λ-algebras R1
∞ � R1

N , R
χ
∞ � RχN .

We suppose also that we are given the following compatibilities between the data
indexed by 1 and the data indexed by χ.

• isomorphisms of Λ/λ-algebras R1
∞/λ

∼= Rχ∞/λ, R1/λ ∼= Rχ/λ, and R1
N/λ

∼=
RχN/λ, compatible with the surjections R1

∞ � R1
N and Rχ∞ � RχN .

• An isomorphism of R1/λ ∼= Rχ/λ-modules M1/λ ∼= Mχ/λ.
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• For each N ≥ 1, isomorphisms of SN/λ-modules M1
N/λ

∼= Mχ
N/λ, compat-

ible with all actions, and such that the following diagram commutes, where
we write JN for the kernel of the composite Λ→ S∞ → S∞/IN .

M1
N/(λ,a) //

��

Mχ
N/(λ,a)

��

M1/(λ, JN ) // Mχ/(λ, JN )

Then we can find the following data.
• Homomorphisms of Λ-algebras S∞ → R1

∞, S∞ → Rχ∞.
• Finite S∞-modulesM1

∞,Mχ
∞, which are free if l0 = 0 and balanced if l0 = 1,

together with isomorphisms M1
∞ ⊗S∞ Λ

∼−→M1, and Mχ
∞ ⊗S∞ Λ

∼−→Mχ.
• Commutative diagrams of S∞-algebras

R1
∞

��

// EndS∞(M1
∞)

−⊗S∞Λ

��

R1 // EndΛ(M1)

Rχ∞

��

// EndS∞(Mχ
∞)

−⊗S∞Λ

��

Rχ // EndΛ(Mχ)

• An isomorphismM1
∞/λ

∼−→Mχ
∞/λ, compatible with the actions of R1

∞/λ
∼−→

Rχ∞/λ, such that the following diagram commutes.

M1
∞/(λ,a) //

��

Mχ
∞/(λ,a)

��

M1/λ // Mχ/λ

7.11. The patching construction. We now apply Proposition 7.10.1 to our spaces
of p-adic automorphic forms. We continue to assume that Hypothesis 7.8.1 holds.

Enlarging E if necessary, we can and do assume that E contains a primitive pth
root of unity, and a primitive 9th root of unity if p = 3. By Hypothesis 7.8.1 (4a), for
each v ∈ R we can and do choose a pair of non-trivial characters χv = (χv,1, χv,2),
with χv,i : O×Fv → O

× which are trivial modulo λ, and such that χv,1 6= χ±1
v,2.

We will now apply the constructions of the previous sections, simultaneously using
both this choice of χ, and also the choice χ = 1. In the former case we will label
our objects as we did before, and in the latter we will replace χ by 1.

Let
q = h1(FS/F, ad0 ρ(1)), g = 2q − 4[F : Q] + #S − 1,

and set ∆∞ = Z2q
p . Let S∞ = T [[∆∞]], where T is as in §7.1. Viewing S∞ as an

augmented Λ-algebra, we let a denote the augmentation ideal.
For eachN ≥ 1, we fix a choice of Taylor–Wiles datum (QN , (αv,1, . . . , αv,4)v∈QN )

as in Corollary 7.6.3. For N = 0, we set Q0 = ∅. For each N ≥ 1, we let
∆N = ∆QN =

∏
v∈QN k(v)×(p)2 and fix a surjection ∆∞ � ∆N . The kernel of
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this surjection is contained in (pNZp)
2q, since each v ∈ QN satisfies qv ≡ 1 mod pN .

We let ∆0 be the trivial group, viewed as a quotient of ∆∞. We write SN = T [∆N ].
For each N ≥ 0, we set R1,I,c

N = RSI,c1,QN

and Rχ,I,cN = RSI,cχ,QN
. Note that

R1,I,c
0 = RI,cS1

and Rχ,I,c0 = RI,cSχ . Let R
1,I,c,loc = RS,loc

SI,c1

and Rχ,I,c,loc = RS,loc

SI,cχ
denote

the corresponding completed tensor product of local deformation rings, as in §7.2.
By definition we have

R1,I,c,loc = (⊗̂v∈IRPv )⊗̂(⊗̂v∈IcRB,cvv )⊗̂(⊗̂v∈RR1
v)⊗̂R�

v0
,

Rχ,I,c,loc = (⊗̂v∈IRPv )⊗̂(⊗̂v∈IcRB,cvv )⊗̂(⊗̂v∈RRχvv )⊗̂R�
v0
,

with all completed tensor products being taken over O.
For any N ≥ 1, we have RS,loc

SI,c1,QN

= R1,I,c,loc and RS,loc

SI,cχ,QN
= Rχ,I,c,loc. There are

canonical isomorphisms R1,I,c,loc/(λ) ∼= Rχ,I,c,loc/(λ) and R1,I,c
N /(λ) ∼= Rχ,I,cN /(λ)

for all N ≥ 0. For each N ≥ 1, R1,I,c
N and Rχ,I,cN are canonically Λ[∆N ]-algebras and

there are canonical isomorphisms R1,I,c
N ⊗Λ[∆N ] Λ ∼= R1,I,c

0 and Rχ,I,cN ⊗Λ[∆N ] Λ ∼=
Rχ,I,c0 , which are compatible with the isomorphisms modulo λ.

Fix representatives ρSI,cχ , ρSI,c1
of the universal deformations which are identified

modulo λ (via the identifications RSI,cχ /(λ) ∼= RSI,c1
/(λ)). By Lemma 7.1.6, these

give rise to an R1,I,c,loc-algebra structure on R1,I,c
N ⊗̂ΛT and an Rχ,I,c,loc-algebra

structure on Rχ,I,cN ⊗̂ΛT ; the canonical isomorphism R1,I,c,loc/(λ) ∼= Rχ,I,c,loc/(λ)
is compatible with these algebra structures and with the canonical isomorphisms
R1,I,c
N /(λ) ∼= Rχ,I,cN /(λ). We let R1,I,c

∞ and Rχ,I,c∞ be formal power series rings
in g variables over R1,I,c,loc and Rχ,I,c,loc, respectively. By Proposition 7.2.1 and
Corollary 7.6.3, we can choose local Λ-algebra surjections R1,I,c

∞ → R1,I,c
N ⊗̂ΛT and

Rχ,I,c∞ → Rχ,I,cN ⊗̂ΛT for every N ≥ 0. We can and do assume that these are com-
patible with our fixed identifications modulo λ, and with the natural isomorphisms
R1,I,c
N ⊗Λ[∆N ] Λ ∼= R1,I,c

0 and Rχ,I,cN ⊗Λ[∆N ] Λ ∼= Rχ,I,c0 .
Fix a subset I ⊂ Sp of cardinality #I ≤ 1, and a choice of c. We now apply

Proposition 7.10.1, taking (in the notation established in §7.7):
• Λ to be ΛI .
• S∞, SN to be as above.
• R1

∞ := R1,I,c
∞ , Rχ∞ := Rχ,I,c∞ , R1 := R1,I,c

0 , Rχ := Rχ,I,c0 , R1
N := R1,∞,c

N ⊗̂ΛT ,
RχN := Rχ,∞,cN ⊗̂ΛT .

• M1 := M1,I,c,Mχ := Mχ,I,c,M1
N := M1,I,c,QN ⊗̂ΛT ,Mχ

N := Mχ,I,c,QN ⊗̂ΛT .
By Theorem 7.9.4, Proposition 7.9.8 and Proposition 7.8.11, this data satisfies the
assumptions of Proposition 7.10.1. Consequently, we have:

• ΛI -algebra homomorphisms S∞ → R1,I,c
∞ and S∞ → Rχ,I,c∞ .

• Finite S∞-modules M1,I,c
∞ , Mχ,I,c

∞ which are free if #I = 0 and balanced if
#I = 1, together with isomorphismsM1,I,c

∞ /a ∼= M1,I,c,Mχ,I,c/a ∼= Mχ,I,c.
• Morphisms of S∞-algebrasR1,I,c

∞ → EndS∞(M1,I,c), Rχ,I,c∞ → EndS∞(Mχ,I,c),
which are compatible with the actions of R1, Rχ on M1,I,c, Mχ,I,c respec-
tively.

• Isomorphisms

M1,I,c
∞ /λM1,I,c

∞ 'Mχ,I,c
∞ /λMχ,I,c

∞ , M1,I,c/λM1,I,c 'Mχ,I,c/λMχ,I,c
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compatible with the actions of R1,I,c
∞ /(λ) ' Rχ,I,c∞ /(λ) and R1,I,c/(λ) '

Rχ,I,c/(λ) and the above isomorphisms.
We now briefly pause to introduce some notation that will be in force throughout

the rest of §7. We will need to work with O-flat modules M over complete local
Noetherian O-algebras R which are not necessarily O-flat, but for which we have
good control of R[1/p]. There are various ways that we could do this, but we
have found it convenient to reduce to the O-flat case in the following way. For
a Noetherian complete local O-algebra R we denote by R′ the maximal O-flat
quotient of R (i.e. the image of R in R[1/p], or equivalently the quotient of R by
its ideal of p-power torsion). Note that if M is an R-module that is O-flat then it
is naturally an R′-module.

Returning to the situation at hand, by definition, S∞ is formally smooth over ΛI
of relative dimension 2q+11#S−1, and ΛI is formally smooth over O. By Proposi-
tions 7.3.4, 7.4.7, 7.4.8, and 7.4.2, and [BLGHT11, Lem. 3.3], (R1,I,c

∞ )′ and (Rχ,I,c∞ )′

are equidimensional of relative dimension g + 10#S + 4[F : Q] −#I over ΛI . By
the definition of g, we conclude that

(7.11.1) dim(R1,I,c
∞ )′ = dim(Rχ,I,c∞ )′ = dimS∞ −#I.

Proposition 7.11.2. M1,I,c
∞ is a maximal Cohen–Macaulay (R1,I,c

∞ )′-module, and
Mχ,I,c
∞ is a maximal Cohen–Macaulay (Rχ,I,c∞ )′-module.

Proof. These statements have identical proofs, so we give the argument for the
first of them. From (7.11.1), we see that the support of M1,I,c

∞ in SpecS∞ has
codimension at least #I. By [CG18, Lem. 6.2] (applied to a resolution Sr∞ → Sr∞
of M1,I,c

∞ if #I = 1 — such a resolution exists, by Lemma 2.10.2 — and to M1,I,c
∞

itself if #I = 0), we see that the codimension is precisely #I, and that M1
∞ has

depth dimS∞ − #I = dim(R1,I,c
∞ )′ over S∞. It follows that the depth of M1,I,c

∞
over (R1,I,c

∞ )′ is at least dim(R1,I,c
∞ )′, so that M1,I,c

∞ is maximal Cohen–Macaulay
over (R1,I,c

∞ )′, as required. �

7.12. Cycles and modules over products of local deformation rings. In
preparation for our study of the dimensions of certain spaces of p-adic modular
forms in the next section, we formalize some arguments which are at the heart of
our version of the “Ihara avoidance” argument of [Tay08]. Following [EG14], we use
the language of cycles on the special fibres of (completed tensor products of) local
deformation rings; our perspective is also informed by [Sho18].

We recall some notation for cycles and multiplicities from [EG14, §2]. In par-
ticular, if R is an equidimensional Noetherian local ring of dimension d then by a
cycle (or a d-cycle) on SpecR we mean simply a formal Z-linear combination of the
generic points of SpecR. We denote the group of cycles on R by Zd(R) (or just
Z(R), with the understanding that we will only consider top-dimensional cycles).
If M is a finite R-module then the cycle of M is defined by

Z(M,R) =
∑
η

lenRη (Mη) · η

where the sum is over the generic points η of SpecR and lenRη (Mη) denotes the
length of Mη as a Rη-module.

If R is an equidimensional, flat, Noetherian O-algebra of dimension d+ 1 and η
is a generic point of SpecR then we write Rη for the quotient of R by the minimal
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prime corresponding to η, and we let η = Z(Rη/(λ), R/(λ)). Then [EG14, Prop.
2.2.13] states that if M is a finite R-module which is O-flat, then

Z(M/λM,R/(λ)) =
∑
η

lenRη (Mη) · η

where the sum is over the generic points η of R.
Next we recall several facts about completed tensor products. As in §7.11,

if R ∈ CNLO, we let R′ denote the maximal p-torsion free quotient of R. Let
R1, R2 ∈ CNLO. First we note that the natural map R1⊗̂R2 → R′1⊗̂R′2 induces
an isomorphism (R1⊗̂R2)′ ' R′1⊗̂R′2. (Indeed this follows from the fact that the
kernel is p-power torsion and that R′1⊗̂R′2 is O-flat, see [Tho15, Lem. 1.3].)

Now suppose that R1 and R2 are O-flat and equidimensional of dimensions d1+1
and d2 + 1 respectively, and further assume that all the irreducible components of
SpecRi and SpecRi/(λ) for i = 1, 2 are geometrically irreducible (for instance by
enlarging O if necessary). Write R = R1⊗̂R2; then R is O-flat and equidimensional
of dimension d1 + d2 + 1. (This, and the other facts recalled in this paragraph, can
be read off from [Tho15, Lem 1.4].) Moreover if ηi is a generic point of SpecRi for
i = 1, 2 then the kernel of the natural map

R→ Rη1

1 ⊗̂R
η2

2

is a minimal prime of R which corresponds to a generic point of SpecR which we
denote by η = (η1, η2), and the generic points of SpecR are precisely the (η1, η2)
as ηi ranges over the generic points of SpecRi for i = 1, 2. Similarly if pi ⊂ Ri/(λ)
is a minimal prime for i = 1, 2 then

(p1, p2) = ker
(
R/(λ)→ R1/(λ, p1)⊗̂R2/(λ, p2)

)
is a minimal prime of R/(λ), and every minimal prime of R/(λ) has this form. It
follows that there is an isomorphism

Zd1(R1/(λ))⊗Zd2(R2/(λ))→ Zd1+d2(R/(λ)),

η1 ⊗ η2 7→ (η1, η2).

According to [EG14, Lem. 2.2.14], ifMi is a finite Ri-module for i = 1, 2, so that
we may form the R-module M = M1⊗̂OM2, then under the above isomorphism we
have

(7.12.1) Z(M1/λM1, R1/(λ))⊗ Z(M2/λM2, R2/(λ)) = Z(M/λM,R/(λ)).

In particular for a generic point η = (η1, η2) of R we have an isomorphism Rη '
Rη1⊗̂Rη2 of R-modules and hence, in the notation introduced above, under this
isomorphism we have η = η1 ⊗ η2.

We wish to apply this discussion to the rings

R1 = ⊗̂v∈RR1
v, Rχ = ⊗̂v∈RRχv

as well as to R̃1 = R1⊗̂R̃ and R̃χ = Rχ⊗̂R̃, for some auxiliary R̃ ∈ CNLO with
the property that R̃′ is irreducible. (In applications R̃1 and R̃χ will be R1,I,c

∞ and
Rχ,I,c∞ for some choice of I and c; so R̃ is formally smooth over a completed tensor
product of the deformation rings considered in Proposition 7.3.4, and R̃′ is indeed
irreducible.)

We recall that for each v ∈ R we have R1
v/(λ) = Rχv /(λ). Passing to p-torsion

free quotients, it is not the case that (R1
v)
′/(λ) is identified with (Rχv )′/(λ), but
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Propositions 7.4.7 and 7.4.8 imply that at least the underlying topological spaces of
Spec(R1

v)
′/(λ) and Spec(Rχv )′/(λ) coincide with that of SpecR1

v/(λ) = SpecRχv /(λ),
and so in particular Z((R1

v)
′/(λ)) = Z((Rχv )′/(λ)). Passing to products we obtain

identifications Z((R1)′/(λ)) = Z((Rχ)′/(λ)) and Z((R̃1)′/(λ)) = Z((R̃χ)′/(λ)).

Lemma 7.12.2. Let M1 be a finite O-flat R̃1-module, and let Mχ be a finite O-flat
R̃χ-module, such that M1/λM1 'Mχ/λMχ as R̃1/(λ) = R̃χ/(λ)-modules. Then

Z(M1/λM1, (R̃1)′/(λ)) = Z(Mχ/λMχ, (R̃χ)′/(λ))

under the identification of Z((R̃1)′/(λ)) with Z((R̃χ)′/(λ)) from above.

Proof. As we explained above we have two quotients (R̃1)′/(λ) and (R̃χ)′/(λ) of
R̃1/(λ) = R̃χ/(λ) whose spectra have the same underlying topological space. Each
generic point of this space corresponds to minimal primes p1 and pχ of (R̃1)′/(λ)

and (R̃χ)′/(λ) as well as to a (not necessarily minimal) prime p of R̃1/(λ) = R̃χ/(λ)
which is the preimage of both p1 and pχ. Then we claim that we have equalities

len((R̃1)′/(λ))p1
((M1/λM1)p1) = len(R̃1/(λ))p

((M1/λM1)p) = len((R̃χ)′/(λ))pχ
((Mχ/λMχ)pχ)

which exactly gives the statement of the lemma. Both equalities follow from the
fact that if A→ B is a surjective map of rings and M is a finite length B-module
then lenA(M) = lenB(M). �

For the next lemma we need to introduce some more notation. From a tuple
η = (ηv)v∈R of generic points ηv of Spec(R1

v)
′ for v ∈ R we obtain a generic point

η of Spec(R1)′ (resp. a generic point also denoted η of Spec(R̃1)′) and moreover
these are all of the generic points of Spec(R1)′ (resp. of Spec(R̃1)′). By Proposition
7.4.7, if ηv,1 and ηv,2 are two distinct generic points of Spec(R1

v)
′ for some v ∈ R,

then the cycles ηv,1 and ηv,2 have disjoint support.
It follows from this and (7.12.1) that if η1 and η2 are two distinct generic points of

Spec(R1)′ (resp. of Spec(R̃1)′) then the supports of η1 and η2 are disjoint. Finally
recall that by Proposition 7.4.8, for each v ∈ R, Spec(Rχv )′ is irreducible. Passing to
products, Spec(Rχ)′ and Spec(R̃χ)′ are irreducible as well. We denote the unique
generic point of either by ηχ.

As already indicated, in the statement and proof of the following lemma, we
freely identify the generic points of Spec(R1)′ and Spec(R̃1)′ (and we also identify
the generic points of Spec(R1)′/(λ) and Spec(R̃1)′/(λ)).

Lemma 7.12.3. Suppose there exists a finite, O-flat R̃1-module M1, and a fi-
nite, O-flat R̃χ-module Mχ, along with an isomorphism M1/λM1 ' Mχ/λMχ

of R̃1/(λ) = R̃χ/(λ)-modules. Suppose furthermore that M1 is supported on at
least one generic point η of Spec(R̃1)′. Then there exist unique positive integers d′η
labelled by generic points η = (ηv)v∈R of Spec(R1)′ such that

(1) As elements of Z((R1)′/(λ)) = Z((Rχ)′/(λ)) we have

(7.12.4) ηχ =
∑
η

d′ηη

where the sum is over the generic points η of Spec(R1)′.
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(2) For each generic point η of Spec(R̃1)′ we have

(7.12.5) len(R̃1)′η
(M1

η ) = d′η len(R̃χ)′
ηχ

(Mχ
η ).

In particular M1 is supported on every generic point of Spec(R̃1)′.

Proof. As explained above, the cycles η as η ranges over the generic points of
Spec(R1)′ have disjoint support. Thus the formula (7.12.4) uniquely determines
the integers d′η. Moreover, as the cycle ηχ is supported on every generic point of
Spec(Rχ)′/(λ), (7.12.4) also implies that the integers dη must be positive, if they
exist.

Now using [EG14, Prop. 2.2.13] as recalled above, we have

Z(M1/λM1, (R̃1)′/(λ)) =
∑
η

len(R̃1)′η
M1
η · η

and
Z(Mχ/λMχ, (R̃χ)′/(λ)) = len(R̃χ)′

ηχ
Mχ
ηχ · ηχ

and moreover these two cycles coincide by Lemma 7.12.2.
Our hypothesis that M1 is supported on some generic point η of (R̃1)′ implies

that len(R̃1)′η
M1
η > 0. Hence by the above equality of cycles, len(R̃χ)′

ηχ
Mχ
ηχ > 0.

Because the cycles η have disjoint support, we must have that

d′η =
len(R̃1)′η

(M1
η )

len(R̃χ)′
ηχ

(Mχ
ηχ)

is an integer for each generic point η of Spec(R1)′, and for this choice of d′η, the
formulas (7.12.4) and (7.12.5) hold. �

Remark 7.12.6. We note that the “multiplicities” d′η in Lemma 7.12.3 are inde-
pendent of the modules M1 and Mχ and even of the auxiliary ring R̃. In the
next section they will be given a local representation-theoretic interpretation (see
Proposition 7.13.5 and Remark 7.13.12).

Remark 7.12.7. In §7.13 we will use Lemma 7.12.3 to compute the dimensions of
spaces of p-adic modular forms at Iwahori level. The idea of comparing patched
modules over R1,I,c

∞ and Rχ,I,c∞ goes back to [Tay08]; the key point is that Rχ,I,c∞ [1/p]
is a domain, which guarantees that the support of an appropriate patched module
is all of SpecRχ,I,c∞ , and the isomorphism R1,I,c

∞ /(λ) = Rχ,I,c∞ /(λ) which allows us
to transfer this information to R1,I,c

∞ .

7.13. Multiplicities of patched spaces of p-adic automorphic forms. We
now make use of our patching constructions to determine the multiplicities of
systems of eigenvalues corresponding to ρ in spaces of p-adic automorphic forms
with #I ≤ 1.

We begin by introducing some notation and assumptions. We suppose that
we have fixed a representation ρ : GF → GSp4(O), which satisfies the following
properties. (While this list of properties may appear to be too restrictive to be
useful, we will later use base change to reduce to this situation.)

Hypothesis 7.13.1.
(1) F is a totally real field in which the prime p ≥ 3 splits completely; we

write Sp for the set of primes of F dividing p.
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(2) ν ◦ ρ = ε−1.
(3) For each finite place v of F , ρ|GFv is pure.
(4) For each v ∈ Sp, ρ|GFv is p-distinguished weight 2 ordinary, with unit

eigenvalues αv, βv ∈ E.
(5) There is a finite set R of primes of F not dividing p such that if v 6∈ R∪Sp,

then ρ|GFv is unramified, while if v ∈ R, then:
• qv ≡ 1 (mod p), and if p = 3 then further qv ≡ 1 (mod 9).
• ρ|GFv is trivial.
• ρ|GFv has only unipotent ramification.

(6) There exists π = ⊗vπv an ordinary cuspidal automorphic representation for
GSp4 /F of parallel weight 2 and central character | · |2, such that ρπ,p = ρ,
and such that:
• For all v 6∈ R ∪ Sp, πv is unramified.
• For all v ∈ R ∪ Sp, πIw(v)

v 6= 0.
• For each finite place v of F , ρπ,p|GFv is pure.

(7) The representation ρ is vast and tidy.

Remark 7.13.2. Note in particular that Hypothesis 7.13.1 implies that Hypothe-
sis 7.8.1 holds for ρ.

As in §7.7, it follows from Hypothesis 7.13.1, and in particular from the hypoth-
esis that ρ(GF ) is tidy, that:

(8) There exists an absolutely unramified prime v0 6∈ Sp ∪ R with qv0 6≡ 1
(mod p) and residue characteristic greater than 5, such that ρ|GFv0 is un-
ramified, and ρ(Frobv0

) has (not necessarily distinct) eigenvalues with the
property that no ratio of these eigenvalues is congruent to qv0

modulo λ.
Given a closed point x ∈ SpecR1,I,c[1/p] or x ∈ SpecRχ,I,c[1/p], we will always

assume that E is large enough to contain the residue field of x, so that in particular
x parameterizes a Galois representation ρx : GF → GSp4(O). We denote by px
the height one prime ideal which is the kernel of the corresponding homomorphism
R1,I,c → E or Rχ,I,c → E, and we also use the same symbol px for the ideals
obtained by pulling back under the homomorphisms R1,I,c,loc → R1,I,c

∞ → R1,I,c or
under the homomorphisms Rχ,I,c,loc → Rχ,I,c∞ → Rχ,I,c. As in §7.4, we say that x
(or ρx or px) is smooth if R1,I,c,loc

px (resp. Rχ,I,c,loc
px ) is a regular local ring (note that

this is equivalent to their completions being regular).
For a Galois representation ρ′ : GF → GSp4(O) giving rise to a point x′ on

one of the deformation rings R1,I,c or Rχ,I,c, we let p̃an
x′ ⊂ T̃ be the corresponding

prime ideal. Explicitly, this is the prime ideal generated by the coefficients of the
polynomials Qv(X) − det(X − ρ′(Frobv)) for v /∈ R ∪ Sp ∪ {v0}. (As before, the
“an” stands for “anaemic”.)

For any choice of I and c, we let p̃I,cx′ ⊂ T̃I denote the prime ideal
(7.13.3)
p̃I,cx′ = (p̃an

x′ , {Uv,0 − 1, Uv,2 − α′vβ′v}v∈Sp , {UKli(v),1 − α′v − β′v}v∈I , {Uv,1 − c′v}v∈Ic),

where, for v ∈ Sp, α′v ≡ αv (mod λ), β′v ≡ βv (mod λ) and c′v ∈ {α′v, β′v} are
determined by the local representations ρ′|GFv as in §7.3.

Definition 7.13.4. Let Kp,Iw =
∏
v-p,∞Kv and Kp,Iw1 =

∏
v-p,∞K ′v, where

• Kv = Iw(v) and K ′v = Iw1(v) for v ∈ R.
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• Kv0
= K ′v0

= Iw1(v0).
• Kv = K ′v = GSp4(OFv ) for v 6∈ R ∪ {v0}.

We now define some spaces of p-adic modular forms. For any I ⊂ Sp, c, classical
algebraic weight κ, and choice of Kp,Iw as in Definition 7.13.4, we let

SI,c
κ,Kp,IwKp(I)

= (e(U I)H0(XI,G1

Kp(I)Kp , ω
κ(−D))m̃I,c)⊗O E[{Uv,0 − 1}v∈Sp ,

{Uv,0 − q−2
v }v∈R, {Tv,0 − q−2

v }v 6∈Sp∪R∪{v0}]

We also let

SI,c
κ,Kp,Iw1Kp(I),χ

:= (SI,c
κ,Kp,Iw1Kp(I)

)
∏
v∈R Iw(v)/Iw1(v)=χ

be the subspace with “nebentypus” corresponding to χ. By Lemma 7.8.5 (2), we
have isomorphisms

(M1,I,c/pκM
1,I,c)[1/p] ' (SI,c

κ,Kp,IwKp(I)
)∨,

(Mχ,I,c/pκM
χ,I,c)[1/p] ' (SI,c

κ,Kp,Iw1Kp(I),χ
)∨.

In particular, with this notation in place, for a Galois representation ρ′ : GF →
GSp4(O) giving rise to a point on one of the deformation rings R1,I,c or Rχ,I,c and
of weight κ (i.e. such that the composition ΛI → R1,I,c → E or ΛI → Rχ,I,c → E
is κ) we have

(M1,I,c
∞ /px′M

1,I,c
∞ )[1/p] ' (M1,I,c/px′M

1,I,c)[1/p] ' (SI,c
κ,Kp,IwKp(I)

[p̃I,cx′ ])
∨,

(Mχ,I,c
∞ /px′M

χ,I,c
∞ )[1/p] ' (M1,I,c/px′M

1,I,c)[1/p] ' (SI,c
κ,Kp,Iw1Kp(I),χ

[p̃I,cx′ ])
∨.

In order to state our results on the dimensions of eigenspaces of p-adic auto-
morphic forms, we need to make a further study of the local deformation rings at
places v ∈ R.

Proposition 7.13.5. Let ηv be a generic point of SpecR1
v for some v ∈ R. The

set of y ∈ (SpecR1,ηv
v )(E) such that the L-packet L(ρy) contains a generic repre-

sentation is nonempty, and the number

dηv =
∑

π∈L(ρy)

dimπIw(v)

is independent of such a y. More explicitly, the rank n(ηv) of the monodromy
operator N is generically constant on SpecR1,ηv

v , and
• if n(ηv) = 0, then dη = 8;
• if n(ηv) = 1, then dη = 4;
• if n(ηv) = 2, then dη = 4;
• if n(ηv) = 3, then dη = 1.

Proof. This can be read off from [RS07b, Tables A.7, A.15] (note that the rank of
the monodromy operator is given in the column of [RS07b, Table A.15] headed “a”;
note also that the unipotent L-packets which contain supercuspidal representations
also contain generic non-supercuspidal representations, namely those of type Va
and XIa, see [RS07c, §1], and [RS07b, Table A.1]). We see that:

• On the unramified components (those with n(ηv) = 0), the L-packets con-
taining a generic representation are singletons {π} of type I (unramified
principal series), so dηv = 8.
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• If n(ηv) = 1, the L-packets containing a generic representation are single-
tons {π} of type IIa, so dηv = 4.

• If n(ηv) = 2, the L-packets containing a generic representation are either
singletons {π} of type IIIa, or pairs {πa, πb} of respective types VIa and
VIb, and in either case dηv = 4. (Note that the representations of type
Va do not contribute, as they never correspond to residually trivial Galois
representations.)

• Finally, if n(ηv) = 3, then the L-packets containing a generic representation
are singletons of type IVa (unramified twists of Steinberg) and dηv = 1. �

We write η = (ηv)v∈R for a tuple of generic points ηv of SpecR1
v for v ∈ R, which

as explained in §7.12 gives rise to a generic point, also denoted η, of R1,I,c,loc or of
R1,I,c
∞ . We let

dη =
∏
v∈R

dηv

where dηv is as in Proposition 7.13.5. We also let dρ = dη for the generic point η
of R1,I,c,loc that the local representations of ρ lie on (this point is unique, as the
representations ρ|GFv are pure by assumption). Concretely, by Proposition 7.13.5,
we have

dρ = 8|R0|4|R1|+|R2|

where for i = 0, 1, 2, 3, Ri ⊂ R is the set of primes v ∈ R for which n(ρ|GFv ) = i.
We can now state our main result about p-adic modularity at Iwahori level.

Theorem 7.13.6. Assume Hypothesis 7.13.1 for ρ = ρx. For any I with #I ≤ 1,
and any choice of c, we have

dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cx ] = 8dρ.

Remark 7.13.7. The reason for the factor of 8 = |W | on the right hand side is that
we are working at Iwahori level at the auxiliary place v0, and not imposing any
conditions on the Hecke operators at this place. It would be possible to impose
such conditions and remove this factor, but we have found it more convenient not
to do so (and it makes no difference for our main automorphy lifting theorems).

Before proving the theorem we recall a standard lemma, essentially due inde-
pendently to Diamond and Fujiwara (see e.g. [Dia97]) which is the key to proving
“multiplicity one” (or “multiplicity 8dρ”) results in characteristic 0 using the Taylor–
Wiles method.

Lemma 7.13.8. Let R be either (R1,I,c
∞ )′ or (Rχ,I,c∞ )′ for some choice of I and c

and let M be a maximal Cohen–Macaulay R-module. Let x ∈ SpecR[1/p] be a
smooth closed point with residue field E, and let px ⊂ R be the corresponding prime
ideal. Then Mpx is a free Rpx-module, and hence if η is the unique generic point
of R specializing to x, then

dimRη Mη = dimE(M/pxM)[1/p].

Proof. The first statement follows from the fact that a maximal Cohen–Macaulay
module over a regular local ring is free, and the second statement is an immediate
consequence of this freeness. �

We also record the following proposition on “doubling”:
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Proposition 7.13.9. Let ρ = ρx. For any choice of I ⊂ Sp, w ∈ Ic, Kp as in
Definition 7.13.4, and c, there is an injection

(Uw,1 − c′w) : S
I∪{w},c
κ2,KpKp(I∪{w})[p̃

I∪{w},c
x ]→ SI,cκ2,KpKp(I)[p̃

I,c
x ].

Proof. This immediately reduces to the corresponding statement withO-coefficients,
and hence to the injectivity of the map (7.9.3) (with w = v), which we proved in
the course of the proof of Proposition 7.9.1. �

We are now ready to prove Theorem 7.13.6.

Proof of Theorem 7.13.6. We first consider the case that I = ∅. As M1,∅,c is a
maximal Cohen–Macaulay (R1,∅,c)′-module, it is supported on some irreducible
component of Spec(R1,∅,c)′ and hence we may apply Lemma 7.12.3 to the R1,∅,c

∞ -
module M1,∅,c

∞ and the Rχ,∅,c∞ -module Mχ,∅,c
∞ . In particular we conclude that M1,∅,c

∞
is supported on every irreducible component of Spec(R1,∅,c)′.

AsM1,∅,c
∞ is a finite free S∞-module, and (R1,∅,c

∞ )red acts faithfully onM1,∅,c
∞ (and

is therefore finite and torsion free over S∞), the map Spec(R1,∅,c
∞ )→ SpecS∞ is sur-

jective and generalizing by [Sta13, Tag 080T]. It follows that we may pick some ρreg :

GF → GSp4(O) whose corresponding point is in the support of M1,∅,c/pκregM
1,∅,c

and such that ρ and ρreg (or their corresponding points x and xreg) lie on the same
component of R1,∅,c

∞ ; we write η for the generic point corresponding to this com-
ponent. Similarly, we may pick some ρχreg : GF → GSp4(O) whose corresponding
point xχreg is in the support of Mχ,∅,c/pκreg

Mχ,∅,c.
By Proposition 7.13.11 below, we have

dimE(M1,∅,c
∞ /pxreg

M1,∅,c
∞ )[1/p] = dimE S

∅,c
κreg,Kp,IwKp(∅)[p̃

∅,c
xreg

] = 8dρ,

and

dimE(Mχ,∅,c
∞ /pxχreg

Mχ,∅,c
∞ )[1/p] = dimE S

∅,c
κreg,Kp,Iw1Kp(∅),χ[p̃∅,c

xχreg
] = 8.

In addition, there are automorphic representations πreg, πχreg of GSp4(AF ) of weight κreg

and central character | · |2 such that ρπreg,p
∼= ρreg and ρπχreg,p

∼= ρχreg.
Applying Lemma 7.13.8 to px and pxreg

(which we may, by our assumptions on ρ,
and by Theorem 2.7.2 for ρπreg,p, together with Lemmas 7.1.3 and 7.3.18),we obtain

dimE(M1,∅,c
∞ /pxM

1,∅,c
∞ )[1/p] = dim

(R1,∅,c
∞,η )′

M1,∅,c
∞,η = dimE(M1,∅,c

∞ /pxregM
1,∅,c
∞ )[1/p] = 8dρ.

As
S∅,c
κ2,Kp,Iw,Kp(∅)[p̃

∅,c
x ] = (M1,∅,c

∞ /pxM
1,∅,c
∞ )[1/p]∨,

the theorem is proved for I = ∅.
Before we go on to the case that #I = 1, we note that we may also apply

Proposition 7.13.11 and Lemma 7.13.8 to pxχreg
and conclude that

dim
(Rχ,∅,c∞,ηχ )′

Mχ,∅,c
∞,ηχ = dimE(Mχ,∅,c

∞ /pxχreg
Mχ,∅,c
∞ )[1/p] = 8.

By another application of Lemma 7.12.3 this implies that d′η = dρ (where d′η
is as in Lemma 7.12.3). Following Remark 7.12.6, we will apply this in the case
#I = 1 below.

Now consider the case that #I = 1. We consider the automorphic representa-
tion π of Hypothesis 7.13.1. By assumption, for all finite places v of F the repre-
sentation ρπ,p|GFv is pure, and therefore determines a unique component of R1,∅,c

∞ ,

http://stacks.math.columbia.edu/tag/080T
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which we denote by ηπ. Arguing as above, we find that d′ηπ = dρπ,p (where d′η is
as in Lemma 7.12.3). Write p̃I,cπ for the height one prime ideal determined by ρπ,p.
Then by Proposition 7.13.11 we find that

(7.13.10) dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cπ ] ≥ 8dρπ,p .

Again M1,I,c
∞ is a maximal Cohen–Macaulay (R1,I,c

∞ )′-module and so we may apply
Lemmas 7.12.3 and 7.13.8 to the R1,I,c

∞ -moduleM1,I,c
∞ and the Rχ,I,c∞ -moduleMχ,I,c

∞ .
We find that

1

dρ
dimE S

I,c
κ2,Kp,IwKp(I)

[p̃I,cx ] =
1

dρ
dimE(M1,I,c

∞ /p̃I,cx M1,I,c
∞ )[1/p]

=
1

dρ
dim(R1,I,c

∞,η )′M
1,I,c
∞,η

= dim(Rχ,I,c∞,ηχ )′M
χ,I,c
∞,ηχ

=
1

dρπ,p
dim(R1,I,c

∞,ηπ )′M
1,I,c
∞,ηπ

=
1

dρπ,p
dimE(M1,I,c

∞ /p̃I,cπ M1,I,c
∞ )[1/p]

=
1

dρπ,p
dimE S

I,c
κ2,Kp,IwKp(I)

[p̃I,cπ ].

It follows from (7.13.10) that

dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cx ] ≥ 8dρ.

On the other hand by Proposition 7.13.9, we have that

dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cx ] ≤ dimE S
∅,c
κ2,Kp,IwKp(∅)[p̃

∅,c
x ] = 8dρ,

and so the theorem is proved. �

Proposition 7.13.11. In the notation of the proof of Theorem 7.13.6, we have

dimE S
∅,c
κreg,Kp,IwKp(∅)[p̃

∅,c
xreg

] = 8dρ,

dimE S
∅,c
κreg,Kp,Iw1Kp(∅),χ[p̃∅,c

xχreg
] = 8,

dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cπ ] ≥ 8dρπ,p .

In addition, there are automorphic representations πreg, πχreg of GSp4(AF ) of
weight κreg and central character | · |2 such that ρπreg,p

∼= ρreg and ρπχreg,p
∼= ρχreg.

Proof. By Theorem 6.6.5 and Theorem 3.10.1, dimE S
∅,c
κreg,Kp,IwKp(∅)[p̃

∅,c
xreg

] is equal
to ∑

π

dimE(π∞)K
p,IwKp(∅),{Uv,1=creg

v ,Uv,2=αreg
v βreg

v }v∈Sp

where the sum is over all the cuspidal automorphic representations π of weight κreg

such that π has central character | · |2, πv is holomorphic for all places v|∞, and
ρπ,p ∼= ρreg; and we write αreg

v , βreg
v for the lifts of αv, βv determined by ρreg|GFv . In

particular, note that we can take πreg to be any of the automorphic representations π
contributing to the sum.

Since ρreg is irreducible, such a π is of general type in the sense of [Art04] by
Lemma 2.9.1, and therefore corresponds to an essentially self-dual regular algebraic
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cuspidal automorphic representation Π of GL4(AF ). By strong multiplicity one
for GL4 [JS81], Π is uniquely determined by the condition that ρΠ,p

∼= ρreg, so by
Theorem 2.9.3 we see that we can rewrite the above sum as ∑

πv0∈L(ρreg|GFv0
)

dimπIw1(v0)
v0

∏
v∈R

 ∑
πv∈L(ρreg|GFv )

dimπIw(v)
v


(note that at all places v /∈ R ∪ Sp ∪ {v0}, we are taking the space of hyperspecial
invariants in an unramified representation, which is 1-dimensional; and at the places
v ∈ Sp, the contribution is 1-dimensional by Propositions 2.4.24 and 2.4.26).

By Proposition 2.4.6, πv0 is an irreducible unramified principal series represen-
tation; indeed, by the choice of v0, ρπ,p|GFv0 is unramified, and no two eigen-
values of ρπ,p|GFv0 (Frobv0

) can have ratio qv0
. It follows from Propositions 2.4.3

and 2.4.4 that we have dimπ
Iw1(v0)
v0 = 8. The claim then follows from Proposi-

tion 7.13.5 (which we can apply, because for each place v ∈ R, ρreg|GFv is pure
by Theorem 2.7.2 (4), and therefore the corresponding Weil–Deligne representation
is generic by Lemma 7.1.3, so that the corresponding L-packet contains a generic
representation by Proposition 2.4.22).

The statement for ρχreg reduces in the same way to the claim that for each
place v ∈ R, we have ∑

πv∈L(ρχreg|GFv )

dimπIw1(v),χ
v = 1,

which follows from Proposition 2.4.28. Finally, in the case of SI,c
κ2,Kp,IwKp(I)

[p̃I,cπ ],
the result follows as above, by computing the contribution of the automorphic
representation π of Hypothesis 7.13.1 (note that it contributes by Theorem 3.10.1).

�

Remark 7.13.12. In the course of the proof of Theorem 7.13.6, we showed that for
the generic point η corresponding to ρ, the quantity d′ρ of Lemma 7.12.3 is equal
to dρ. It is presumably possible to go further following [Sho18], and to use our
patched modules to show that for each v ∈ R and each generic point ηv of SpecR1

v,
if we write

Z(SpecR1,ηv
v /(λ)) = ηv

then
Z(Spec(Rχv )red/(λ)) =

∑
ηv

dηvηv,

where dηv is as in Proposition 7.13.5.

8. Étale descent and the main modularity lifting theorem

8.1. Introduction. Our main goal is to remove the assumption #I ≤ 1 of The-
orem 7.13.6 in order to eventually apply Theorem 6.5.8 with I = Sp, and from
this conclude that we have constructed classical automorphic representations. The
starting point is to consider the spaces of p-adic automorphic forms considered in
Theorem 7.13.6 for both #I = 1 and #I = 0. By studying the way in which
these spaces are related, we will be able to (inductively) determine precise linear
combinations of such forms which belong to spaces of p-adic automorphic forms for
larger #I. Our argument uses the doubling results of §5, the analytic continuation
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results of §6, and étale descent. Finally, we apply solvable base change to prove our
main modularity lifting theorem.

We briefly indicate some of the main features of our argument. As we mentioned
in the introduction, the analytic continuation arguments that we are using here are
analogous to those used for Hilbert modular forms of weight at least two, rather than
those of weight one – in particular, there is no “gluing” of the kind used in [BT99],
and we are simply analytically continuing a single form at a time (using the method
of Kassaei series [Kas06]). This part of the argument is quite standard, although we
have to take some care to show that the regions that we have analytically continued
to are large enough. For this reason, we ignore the issues of analytic continuation
in this introduction.

We show that the conclusion of Theorem 7.13.6 holds for all I by induction
on #I. The key step is to go from #I ≤ 1 to #I ≤ 2; indeed, the general
inductive step considers two places v1, v2 dividing p, and essentially ignores the
other places above p, so for the purpose of exposition we assume that Sp = {v1, v2}.
Write αi, βi for αvi , βvi , i = 1, 2. We denote the various spaces of forms considered
in Theorem 7.13.6 with I = ∅ by Vα1,α2

, Vβ1,α2
, Vα1,β2

, Vβ1,β2
(so that for example

on Vα1,α2
the eigenvalue of Uv1,1 is α1 and the eigenvalue of Uv2,1 is α2). Each of

these spaces has dimension d := 8dρ, and considering the action of Uv1,1 and Uv2,1,
we see that these spaces together span a 4d-dimensional space of p-adic modular
forms of Iwahori level.

We expect that this space contains a d-dimensional subspace of p-adic modular
forms which descend to Klingen level (and are suitably overconvergent in both the v1

and v2 directions). The difficulty (even if d = 1) is in identifying this subspace; recall
that there is no obvious relationship between the Hecke eigenvalues and Fourier
coefficients. However, we also have the spaces of forms for I = {v1} and I = {v2},
which we denote by Vα1,α2+β2

, Vβ1,α2+β2
, Vα1+β1,α2

, Vα1+β1,β2
, where for example

the forms in Vα1,α2+β2
have Klingen level at v2 (and are highly overconvergent in

the v2 direction), and are UKli(v2),1-eigenforms with eigenvalue α2 + β2. Again, all
of these spaces has dimension d by Theorem 7.13.6.

Now, the relations between the Hecke operators at Klingen and Iwahori levels
(more precisely, Lemma 4.5.17) imply that we have a map

(Uv1,1 − β1) : Vα1+β1,α2
→ Vα1,α2

.

Furthermore, this map is injective by Proposition 7.13.9 (that is, by our main
doubling results), and since the source and target both have dimension d, this map
is in fact an isomorphism. Similarly, we have an isomorphism

(Uv1,1 − β1) : Vα1+β1,β2

∼−→ Vα1,β2

and thus an isomorphism of 2d-dimensional spaces

(8.1.1) (Uv1,1 − β1) : Vα1+β1,α2
⊕ Vα1+β1,β2

∼−→ Vα1,α2
⊕ Vα1,β2

.

By pulling back from Iwahori to Klingen level, we can think of Vα1,α2+β2 as a d-
dimensional subspace of the target of (8.1.1). The inverse image of this space in the
source of (8.1.1) is the d-dimensional space of forms that we are seeking; considered
as living on the right hand side of (8.1.1), it comes from Klingen level at v2, and
on the left hand side of (8.1.1), it comes from Klingen level at v1. We make this
precise using an argument with étale descent.
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8.2. Étale descent. In this section we carry out the argument explained above,
showing that the conclusion of Theorem 7.13.6 holds for all I by induction on #I
(in fact, we show slightly more, keeping track of the overconvergence of our p-adic
modular forms). Recall that by definition for each choice of I, c we have

SI,c
κ2,Kp,IwKp(I)

= (H0(XI,G1

Kp,IwKp(I)
, ω2(−D))m̃I,c)⊗O E[{Uv,0 − 1}v∈Sp ,

{Uv,0 − q−2
v }v∈R, {Tv,0 − q−2

v }v 6∈Sp∪R∪{v0}]

The maximal ideal m̃I,c of the Hecke algebra is defined in equation (7.8.4). It
contains an ordinary projector. We have given ourselves (see the beginning of §7.13)
a Galois representation ρ satisfying Hypothesis 7.13.1. We want to prove that it is
modular. Associated to this representation is a point x on the deformation space
of ρ̄ and an ideal p̃I,cx (see equation (7.13.3)) of the Hecke algebra contained in
m̃I,c whose definition we recall here for convenience. It is the ideal of the Hecke
algebra T̃I given by ⊗
v 6∈Sp∪R∪{v0}

O[GSp4(Fv)//GSp4(OFv )]

 [{Uv,0, UKli(v),1, Uv,2}v∈I , {Uv,0, Uv,1, Uv,2}v∈Ic ]

which is generated by:
• the coefficients of det(X − ρ(Frobv))−Qv(X) for each v 6∈ Sp ∪ R ∪ {v0},

and
• {Uv,0−1, Uv,2−αvβv}v∈Sp , {UKli(v),1−αv−βv}v∈I , {Uv,1− cv}v∈Ic , where,

for v ∈ Sp, αv, βv are determined by ρ|GFv as in Definition 7.3.1.

Recall that X I,G1

Kp,IwKp(I)
is the analytic adic space overCp associated to XI,G1

Kp,IwKp(I)
.

By definition, we have:

SI,c
κ2,Kp,IwKp(I)

[p̃I,cx ]⊗E Cp = e(U I)H0(X I,G1

Kp,IwKp(I)
, ω2(−D))[p̃I,cx ].

We may also introduce overconvergent versions of these spaces. Recall that we
defined the dagger space XG1,mult,†

Kp,IwKp(I)
in (6.5.5) (whose associated rigid analytic

space is XG1,I
Kp,IwKp(I)

).
There is a natural injective restriction map:

e(U I)H0(XG1,mult,†
Kp,IwKp(I)

, ω2(−D))→ e(U I)H0(XG1,I
Kp,IwKp(I)

, ω2(−D)).

Let

SI,c,†
κ2,Kp,IwKp(I)

= e(U I)H0(XG1,mult,†
Kp,IwKp(I)

, ω2(−D)) ∩ SI,c
κ2,Kp,IwKp(I)

⊗Cp

where the intersection is taken inside e(U I)H0(XG1,I
Kp,IwKp(I)

, ω2(−D)).

Theorem 8.2.1. Assume that ρ satisfies Hypothesis 7.13.1. Then for any I ⊂ Sp
and choice of c, we have

dimE S
I,c
κ2,Kp,IwKp(I)

[p̃I,cx ] = dimCp S
I,c,†
κ2,Kp,IwKp(I)

[p̃I,cx ] = 8dρ.

Before proving this theorem, we record the following important corollary.

Corollary 8.2.2. Suppose that ρ satisfies Hypothesis 7.13.1. Then ρ is modular.
More precisely, there is an ordinary automorphic representation π′ of GSp4(AF )
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of parallel weight 2 and central character | · |2, with ρπ′,p ∼= ρ, and for every finite
place v of F we have

WD(ρ|GFv )F−ss ∼= recGT,p(π
′
v ⊗ |ν|−3/2).

Proof. The existence of π′ with ρπ′,p ∼= ρ is immediate from Theorem 8.2.1, tak-
ing I = Sp, together with Theorem 6.5.8 and Theorem 3.10.1. By Corollary 7.9.6
we have

WD(ρ|GFv )ss ∼= recGT,p(π
′
v ⊗ |ν|−3/2)ss

at all finite places v of F , so we need only prove that the monodromy operators agree
at the places v ∈ R. Since ρ|GFv is pure by assumption, it follows from Lemma 2.5.1
that it suffices to prove, in the notation of Section 2.3, that n(ρ|GFv ) ≤ n(π′v).

Now, if πv is any irreducible admissible representation of GSp4(Fv), then an ex-
amination of [RS07b, Table A.15] (noting that the column there headed “a” records
n(πv)) shows that:

• n(πv) ≥ 1 if and only if (πv)
GSp4(OFv ) = 0.

• n(πv) ≥ 2 if and only if (πv)
GSp4(OFv ) = (πv)

Par(v) = 0.
• n(πv) = 3 if and only if (πv)

Kli(v) = (πv)
Si(v) = 0.

Suppose that n(ρ|GFv ) = 1, so that we need to show that (π′v)
GSp4(OFv ) = 0.

Suppose for the sake of contradiction that (π′v)
GSp4(OFv ) 6= 0; then by Hida theory

(more precisely, by Theorem 7.9.4 and its proof), the Galois representation ρπ′,p is a
p-adic limit of Galois representations ρπ′′,p, where π′′ has regular weight and satisfies
(π′′v )GSp4(OFv ) 6= 0. In particular, by Theorem 2.7.2, n(ρπ′′,p|GFv ) = n(π′′v ) = 0. By
the semicontinuity of the rank of the nilpotent operator N in such a family, it
follows that n(ρ|GFv ) = 0, a contradiction. We leave the (very similar) arguments
in the cases n(ρ|GFv ) = 2, 3 to the reader. �

Proof of Theorem 8.2.1. We prove this by induction on #I. The result is true
for I = ∅ and #I = 1 by Theorem 7.13.6 and Theorem 6.6.4 (ordinary implies
overconvergent if #I ≤ 1). For any I, the restriction map

SI,c,†
κ2,Kp,IwKp(I)

[p̃I,cx ]→ SI,c
κ2,Kp,IwKp(I)

[p̃I,cx ]⊗E Cp

is injective, while by Proposition 7.13.9 (and a simple induction) we see that for
any I, the dimension of SI,c

κ2,Kp,IwKp(I)
[p̃I,cx ] is at most 8dρ. It therefore suffices to

show that SI,c,†
κ2,Kp,IwKp(I)

[p̃I,cx ] has dimension at least 8dρ. We may assume that #I ≥
2, and hence we may write I as a disjoint union J ∪ {v1, v2} for two primes vi|p.
We fix the choice of c at all primes in J ∪ Ic.

By the inductive hypothesis applied to J , for each choice of c at v1 and v2

the corresponding eigenspace SJ,c,†
κ2,Kp,IwKp(J)

[p̃J,cx ] is 8dρ-dimensional, and we denote
these eigenspaces by Vα1,α2 , Vβ1,α2 , Vα1,β2 , Vβ1,β2 (so that for example on Vα1,α2 the
eigenvalue of Uv1,1 is α1 and the eigenvalue of Uv2,1 is α2). Considering the action
of Uv1,1 and Uv2,1, we see that these spaces span a 4 × 8dρ = 32dρ-dimensional
subspace V of H0(X J,G1

Kp,IwKp(J)
, ω2(−D)).

By the inductive hypothesis applied to J ∪{v1} and the two possible choices of c
at v2 (the choice at v1 is irrelevant), we see that the eigenspaces S

J∪{v1},c,†
κ2,Kp,IwKp(J∪{v1})[p̃

J∪{v1},c
x ]

are both 8dρ-dimensional, and we denote the corresponding spaces by Vα1+β1,α2

and Vα1+β1,β2 . Similarly, the inductive hypothesis applied to J ∪ {v2} yields 8dρ-
dimensional spaces Vα1,α2+β2

and Vβ1,α2+β2
.
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Recall that our goal is to construct an 8dρ-dimensional space of eigenforms Vα1+β1,α2+β2

which are eigenforms for the operators UKli(v1),1 and UKli(v2),1 (and for the Hecke
operators at all the other places), and which lie in

H0(XG1,mult,†
Kp,IwKp(I)

, ω2(−D)).

We will combine the analytic continuation results of §6 with a descent argument to
prove the existence of the sought-after eigenforms.

We need to introduce some notation in order to be able to describe the adic spaces
we are working with. Recall that XKp,IwKp(I) is the analytic space associated to
XKp,IwKp(I). For each v ∈ I, Hv refers to the quasi-finite subgroup (of order p over
the interior of the moduli space) related to the Klingen level structure, and for each
v ∈ Ic, Lv ⊃ Hv refers to the quasi-finite (maximally isotropic rank p2 over the
interior of the moduli space) subgroup corresponding to the Iwahori level structure.

For any tuple (εv) ∈ [0, 1]I×[0, 2]I
c

we defined an analytic adic space XKp,IwKp(I)((εv)v∈Sp)
which is the open subspace of XKp,IwKp(I) where:

(1) If v ∈ I, the degree of the subgroup Hv, which takes values in [0, 1], is
greater or equal than 1− εv.

(2) If v ∈ Ic, the degree of the subgroup Lv of rank p2, which takes values
in [0, 2], is greater or equal than 2 − εv. Note that we have deg(Lv) =
deg(Hv) + deg(Lv/Hv).

It will be convenient to adopt the following notation in this proof (note that I
is fixed). We write (cf. (6.5.5))

Xmult = XKp,IwKp(I)((0)v∈Sp),

Xmult,† = Xmult,†
Kp,IwKp(I)

= lim
εv→0+

XKp,IwKp(I)((εv)v∈Sp),

and Xmult,‡ for the dagger space

Xmult,‡ := lim
εv→0+

XKp,IwKp(I)((εv)v∈Sp\{v1,v2}),

where we take the limit over all primes except v1 and v2. It follows that:

Xmult,† = lim
εv1 ,εv2→0+

Xmult,‡(εv1 , εv2),

and there are maps of locally ringed spaces Xmult → Xmult,† → Xmult,‡. By
adding the subscript Iw(v1) (or Iw(v2), or Iw(v1, v2)) to Xmult, Xmult,‡, Xmult,† we
mean the space where one has now added an Iwahori level structure at v1 (or v2,
or v1 and v2) to the relevant space. For i = 1, 2 we write dHi = degHvi , dLi =
degLvi , whenever these quantities are defined. We will adorn Xmult and Xmult,‡

with superscripts indicating the regions (which will typically strictly contain Xmult

and Xmult,‡) where various inequalities hold.
Returning to the spaces we defined above, we have

Vc1,c2 ⊂ H0(Xmult,†
Kp,IwKp(J)

, ω2(−D)),

Vc1+c′1,c2
⊂ H0(Xmult,†

Kp,IwKp(J∪{v1}), ω
2(−D)),

Vc1,c2+c′2
⊂ H0(Xmult,†

Kp,IwKp(J∪{v2}), ω
2(−D)).

Lemma 8.2.3. The elements of Vc1,c2 extend to Xmult,‡,dH1 ≥1−ε,dH2 ≥1−ε,dL1 >1,dL2 >1

Iw(v1,v2)

for some ε > 0. Similarly, the elements of Vc1+c′1,c2
and Vc1,c2+c′2

extend to the
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spaces Xmult,‡,dH1 ≥1−ε,dH2 >1−ε,dL2 >1

Iw(v2) and Xmult,‡,dH1 >1−ε,dL1 >1,dH2 ≥1−ε
Iw(v1) respectively for

some ε > 0.

Proof. This follows from Lemma 6.5.18 (taking I there to be J , J∪{v2} and J∪{v1}
respectively). Note that our forms are ordinary for Uw,1 for the appropriate w, and
therefore of finite slope for these operators. �

By Koecher’s principle, all of our cohomology groups may be replaced by the
cohomology of the corresponding open spaces of “good reduction” Ymult ⊂ Xmult,
Ymult,‡ ⊂ Xmult,‡, and Ymult,† ⊂ Xmult,† respectively. (Since the sheaf ω2 is pulled
back from the minimal compactification, the form of Koecher’s principle we are
using is just the following statement: if X is a normal formal scheme, Y ⊆ X
is an open formal subscheme whose complement is codimension ≥ 2, and L/X is
a line bundle, then H0(X,L) = H0(Y,L). That the boundary in the minimal
compactification does indeed have codimension ≥ 2 follows from an analysis of the
blowup in the boundary charts.) We now restrict to these spaces to avoid minor
technical issues related to the boundary. In particular we will want to use that
forgetting the level structure induces finite étale maps between our spaces. The
reader will check easily that the forms we construct are indeed cuspidal because
they are obtained by “descent” of cuspidal forms.

For any ε > 0 and for i = 1, 2 there is a finite étale map:

qvi : Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(vi)

→ Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε.

There is a corresponding fibre product map (still finite étale):

qv1
: Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

Iw(v1,v2) → Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v2)

(and similarly for qv2
).

We now somewhat abusively also write Vα1+β1,α2
instead of q∗v1

Vα1+β1,α2
. We

claim that the action of (Uv1,1 − β1) induces an isomorphism

(8.2.4) (Uv1,1 − β1) : Vα1+β1,α2

∼−→ Vα1,α2 .

To see this, note that (Uv1,1−β1) is injective by Proposition 7.13.9, and both spaces
have the same dimension.

In the same way, we have an isomorphism (Uv1,1 − α1) : Vα1+β1,α2

∼−→ Vβ1,α2
,

so we see that in fact the span of Vα1+β1,α2 and Uv1,1Vα1+β1,α2 is exactly Vα1,α2 ⊕
Vβ1,α2 . It follows from Lemma 8.2.3 that the forms in Vα1,α2 ⊕ Vβ1,α2 extend

to Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) for some ε > 0.
Set

Uε := Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) .

The map qv2 restricts to an étale map:

qv2
: Uε → Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1) .

We claim that for ε sufficiently small, the restriction of qv2 to Uε is surjective. Note
that a pre-image of a point in Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

Iw(v1,v2) (without any condition on dL2 )
corresponds to a choice of L = Lv2 , which is determined by a line in H⊥/H ⊂
A[v2]/H for H = Hv2

. We need to show that deg(L) > 1 for at least one such L.
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Let us first assume that deg(H) = 1. Then we can choose any line C ⊂ H⊥/H
with deg(C) > 0 (such a C exists as H⊥/H is not étale) and the corresponding L
has deg(L) = deg(H) + deg(C) > 1.

We pass from deg(H) = 1 to deg(H) > 1 − ε by a continuity argument. The
function which sends a rank one point x ∈ Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

Iw(v1) to the maximum
of deg(L) is continuous. It follows that for ε sufficiently small, we can ensure the
existence of a subgroup L such that deg(L) > 1.

Consider the corresponding descent diagram:

Uε ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Uε
qv2,1-

qv2,2
- Uε

qv2 - Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1) .

Lemma 8.2.5. After possibly further shrinking ε > 0, any element of Vα1,α2+β2

descends to Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1) .

Proof. Any element of Vα1,α2+β2 tautologically satisfies descent over the (smaller)

space Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) ⊂ Uε to

qv2(Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) ) = Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε
Iw(v1)

since it is (by Lemma 8.2.3) obtained simply by pulling back a form on this space
under qv2

. Therefore, we deduce that for any element G ∈ Vα1,α2+β2
, we have that

q∗v2,1G = q∗v2,2G on

Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) .

The point is now to show that each connected component of

Uε ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Uε

intersects

Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2) ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Ymult,‡,dH1 ≥1−ε,dL1 >1,dH2 ≥1−ε,dL2 >1

Iw(v1,v2)

so that we have that q∗v2,1G = q∗v2,2G on Uε×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Uε and can perform

the descent of G.
It follows from [Poi08, Thm. 2] that after possibly further shrinking ε, there is a

surjective map

(8.2.6) π0(U0 ×
Y

mult,‡dH1 =dH2 =1

Iw(v1)

U0)→ π0(Uε ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Uε).

We need to see that q∗v2,1G = q∗v2,2G on

Uε ×
Y

mult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

Uε.

By (8.2.6), it is enough to show q∗v2,1G = q∗v2,2G on the subspace

U0 ×
Y

mult,‡,dH1 =dH2 =1

Iw(v1)

U0.

As discussed above, this identity holds over the region

Ymult,‡,dH1 =dH2 =1,dL1 >1,dL2 >1

Iw(v1,v2) ×
Y

mult,‡,dH1 =dH2 =1

Iw(v1)

Ymult,‡,dH1 =dH2 =1,dL1 >1,dL2 >1

Iw(v1,v2)
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by definition. It therefore suffices to show that this region intersects all connected
components of U0 ×

Y
mult,‡,dH1 =dH2 =1

Iw(v1)

U0.

Accordingly, it is enough to show that every connected component of U0×
Y

mult,‡,dH1 =dH2 =1

Iw(v1)

U0 contains a point which is non-ordinary at v1. Indeed, if such a point had dL1 = 1,
then we would have deg(Hv1) = deg(Lv1) = 1, which implies that deg(Lv1/Hv1) =
0, so Lv1/Hv1 is étale, and the point is ordinary at v1, a contradiction.

We will prove in Corollary 8.2.9 below that any connected component of either
of the spaces

Ymult,‡,dH1 =dH2 =1,=v21

Iw(v1) , Ymult,‡,dH1 =dH2 =1,=v22

Iw(v1)

contains a point which is non-ordinary at v1. Recall that the superscripts =v2 1
and =v2 2 respectively mean the rank 1 and the ordinary locus at v2.

Now we observe that the maps U=v21
0 → Ymult,‡,dH1 =dH2 =1,=v21

Iw(v1) and U
=v22
0 →

Ymult,‡,dH1 =dH2 =1,=v22

Iw(v1) are both finite étale. It follows from Lemma 8.2.7 below that

any connected component of any of the spaces U=v21
0 , U=v22

0 , U=v21
0 ×

Y
mult,‡,dH1 =dH2 =1

Iw(v1)

U
=v21
0 or U=v22

0 ×
Y

mult,‡,dH1 =dH2 =1

Iw(v1)

U
=v22
0 contains a point which is non-ordinary at

v1. It finally follows that any component of U0×
Y

mult,‡,dH1 =dH2 =1

Iw(v1)

U0 contains a point

which is non-ordinary at v1, as required. �

We can now complete the proof of Theorem 8.2.1. Consider the diagram:

Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1,v2)

qv1 - Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v2)

Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1)

qv2

?
qv1 - Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

qv2

?

By Lemma 8.2.5, we have proved that all elements of our spaces Vα1+β1,α2
and

Vα1+β1,β2
are sections on the whole Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

Iw(v2) and that all elements of

our spaces Vα1,α2+β2
and Vβ1,α2+β2

are sections on the whole Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1) .

We can pull back these sections to Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1,v2) .

The isomorphism (8.2.4) and the similar isomorphism (Uv1,1−β1) : Vα1+β1,β2

∼−→
Vα1,β2

induce an isomorphism

(Uv1,1 − β1) : Vα1+β1,α2
⊕ Vα1+β1,β2

∼−→ Vα1,α2
⊕ Vα1,β2

,

and we define Vα1+β1,α2+β2 to be the preimage of Vα1,α2+β2 ⊂ Vα1,α2⊕Vα1,β2 under
this isomorphism. This is an 8dρ-dimensional space of eigenforms with the appro-
priate eigenvalues, so we only need to check that all of the elements of Vα1+β1,α2+β2

descend to Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε.
Consider an element F of this space. By definition, F has the property that (Uv1,1−

β1)F on Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε
Iw(v1,v2) is pulled back from Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε

Iw(v1) via q∗v2
.

Let G = deg(qv2
)−1qv2,∗F be the trace of F to Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε. The form F
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comes via pullback from Ymult,‡,dH1 ≥1−ε,dH2 ≥1−ε if and only if F = q∗v2
G. Since the

trace map at v2 commutes with Uv1,1 (for the usual reasons, ultimately coming
down to Serre–Tate theory and the product structure on the p-divisible group), we
deduce (since qv1

is surjective) that (Uv1,1 − β1)(q∗v2
G− F ) = 0, so that F = q∗v2

G
(because (Uv1,1 − β1) is injective) as required. �

We conclude this section with some lemmas that were used above. We first
record the following easy lemma:

Lemma 8.2.7. If S → T is a finite étale map of adic spaces of finite type over a
field, then the image of any connected component of S is a connected component
of T .

Proof. Since S and T are of finite type, they have only finitely many connected
components. In particular the connected components of S and T are precisely the
connected subsets of S and T which are both open and closed. Since finite étale
morphisms are both open and closed [Hub96, Lem. 1.4.5, Prop. 1.7.8], the result is
immediate. �

Next we have the following lemma and its corollary:

Lemma 8.2.8. Any connected component of Y I,=v21

Kp,IwKp(I),1
contains a point in

Y
I,={v1,v2}1

Kp,IwKp(I),1
, and any connected component of Y I,=v22

Kp,IwKp(I),1
contains a point in

Y
I,=v11,=v22

Kp(I)Kp,1 .

Corollary 8.2.9. Any connected component of either of the spaces

Ymult,‡,dH1 =dH2 =1,=v21

Iw(v1) , Ymult,‡,dH1 =dH2 =1,=v22

Iw(v1)

contains a point which is non-ordinary at v1.

Proof. The map Ymult,‡,dH1 =dH2 =1,=v21

Iw(v1) → Ymult,‡,dH1 =dH2 =1,=v21 is finite étale, so

it suffices to prove the claims for Ymult,‡,dH1 =dH2 =1,=v21 and Ymult,‡,dH1 =dH2 =1,=v22.
Also, the map Ymult,‡,dH1 =dH2 =1 → Ymult induces an isomorphism of π0’s, because
both spaces have the same rank one points and any higher rank point admits a
generalization to a rank one point. Thus Ymult,=v21 is the tube of Y I,=v21

Kp,IwKp(I),1
and

Ymult,=v22 is the tube of Y I,=v22

Kp,IwKp(I),1
. Since all these spaces are smooth, the tube

of a connected component in Y
I,=v2 i

Kp,IwKp(I),1
is connected for i = 1, 2. But now by

Lemma 8.2.8 these components contain points which have rank one at v1 and hence
are not ordinary at v1. �

The rest of this section is devoted to proving Lemma 8.2.8. This statement
is a very special case of a general expectation that “all possible specializations
between EKOR strata are realized.” Unfortunately, as far as we are aware, this
exact statement does not yet appear in the literature, but we will explain how
it can be deduced from what is available using standard techniques. This will
necessitate a small digression into the theory of stratifications of special fibres of
Shimura varieties.

To aid the reader’s understanding, we first recall a general strategy for producing
specializations between strata: first one produces a specialization to a point of a
very special stratum, and then one uses deformation theory at that special point
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to “go back up” to the desired stratum. For achieving the first step, there is also
a standard strategy: if one can show that open strata are (quasi)-affine, while the
closures of strata are proper, then it follows that any component of any stratum
must specialize to a point of a zero dimensional stratum. This argument becomes
a bit more complicated for non compact Shimura varieties, where one must study
the extension of the stratification to the boundary of the minimal compactification.
In order to use results readily available in the literature, we will carry out the first
step at spherical level, then carry out the second step at Iwahori level, and finally
explain how this implies the result that we want at level Kp(I).

First we consider the Ekedahl–Oort stratification at spherical level, see for in-
stance [VW13]. Let Kp =

∏
v|p GSp4(OFv ). Then YKp,IwKp,1 has an Ekedahl–Oort

stratification into 4[F :Q] strata, according to the four possibilities for each of the
finite flat group schemes Gw[p] at geometric points. Let G1,1 = E[p] for E a super-
singular elliptic curve. Then these four possibilities are:

• Ordinary: Gw[p] ' µ2
p × (Zp/pZp)

2

• p-rank 1: Gw[p] ' µp × Zp/pZp ×G1,1

• Supergeneral: Gw[p] is connected-connected, but not isomorphic to G2
1,1.

• Superspecial: Gw[p] ' G2
1,1.

This stratification refines the p-rank stratification, with the last two cases corre-
sponding to Gw having p-rank 0. We call a point of YKp,IwKp,1 superspecial if Gw[p]
is superspecial for all w|p. This is the unique zero dimensional stratum.

Lemma 8.2.10. Let J ⊆ Sp. Each irreducible component of Y =Jc2,=J1
Kp,IwKp,1

contains a

point of Y
=Sp0

Kp,IwKp,1
in its closure.

Proof. It is shown in [Box15, GK19] that the Ekedahl–Oort stratification extends
to a stratification of the minimal compactification of YKp,IwKp,1, and that each
(open) stratum is affine. Moreover the superspecial locus does not intersect the
boundary. It follows that any component of any Ekedahl–Oort stratum contains a
superspecial point in its closure. By the explicit description of the Ekedahl–Oort
stratification recalled above, the p-rank strata in the statement of the lemma are
also Ekedahl–Oort strata. �

Now we will switch to Iwahori level and consider the Kottwitz–Rapoport strati-
fication, see for instance [NG02]. Let KIw

p =
∏
v|p Iw(v). Then YKp,IwKIw

p ,1 and its
local model M loc

KIw
p ,1 =

∏
v|pM

loc
Iw(v),1 carry a Kottwitz–Rapoport stratification. In

fact, there is a Kottwitz–Rapoport stratification of M loc
Iw(v),1 and the stratification

of M loc
KIw
p ,1 is simply the product stratification. The strata of M loc

Iw(v) are indexed by
a set Adm(µ) of cardinality 13. This set, as well as the partial ordering given by
closure, is pictured in [Yu08, p. 1273].

We will use below the following argument, which is a consequence of the theory
of local models. If C is an irreducible component of the Kottwitz–Rapoport stratum
labeled by w ∈ Adm(µ)Sp , then the closure C has a decomposition into strata:

C =
∐
w′≤w

Cw′ .
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A priori the strata Cw′ might be empty, although it is expected that they are always
nonempty. However, the theory of local models implies that if Cw′ is nonempty,
then so is Cw′′ for any w′′ satisfying w′ ≤ w′′ ≤ w.

We will not need to recall in detail the definition of the Kottwitz–Rapoport
stratification. We do recall that, as explained in [Yu08], the Kottwitz–Rapoport
invariant determines whether the groups of order p, Hw and Lw/Hw, are étale,
multiplicative, or connected-connected (and so in particular the Kottwitz–Rapoport
invariant determines the p-rank of Gw, a theorem of Genestier–Ngô). Conversely
these invariants determine the Kottwitz–Rapoport invariant when the p-rank of Gw
is not 0. All of this is recorded in the table in [Yu08, p. 1276].

We will use the following points:
• There is a Kottwitz–Rapoport condition, s2s1s2τ in [Yu08], which corre-

sponds to the condition that Gw is ordinary and Lw = G[F ] (equivalently
Lw is multiplicative).

• There is a Kottwitz–Rapoport condition, s1s2τ in [Yu08], which corre-
sponds to the condition that Gw has p-rank 1, Hw is multiplicative, and
Lw = G[F ] (equivalently Hw is multiplicative and Lw/Hw is connected-
connected).

• There are three Kottwitz–Rapoport conditions, τ, s1τ , and s2τ in [Yu08],
which have p-rank 0 and are in the closure of the first stratum recalled
above. We observe crucially that they are also all in the closure of the second
stratum recalled above. We refer to these three strata as the canonical p-
rank 0 Kottwitz–Rapoport strata (here “canonical” refers to the fact that
Lw = Gw[F ] is the canonical subgroup of Gw).

For J ⊆ Sp we write Y =Jc2,=J1,m−can
Kp,IwKIw

p ,1
for the locus in YKp,IwKIw

p ,1 where for
w ∈ Jc, Gw is ordinary and Lw = Gw[F ], while for w ∈ J , Gw has p-rank 1,
Hw is multiplicative, and Lw = Gw[F ]. By what we have just recalled, this is a
Kottwitz–Rapoport stratum.

Lemma 8.2.11. For J ⊆ J ′ ⊆ Sp, any irreducible component of Y =Jc2,=J1,m−can
Kp,IwKIw

p ,1

contains a point of Y
=(J′)c2,=J′1,m−can
Kp,IwKIw

p ,1
in its closure.

Proof. Let π : YKp,IwKIw
p ,1 → YKp,IwKp,1 be the projection from Iwahori to spherical

level. It is proper, and the Kottwitz–Rapoport stratum Y =Jc2,=J1,m−can
Kp,IwKIw

p ,1
maps

finitely onto the p-rank stratum Y =Jc2,=J1
Kp,IwKp,1

(the fibres correspond to the p + 1

choices of Hw for w ∈ Jc). If C is an irreducible component of Y =Jc2,=J1,m−can
Kp,IwKIw

p ,1
,

then π(C) is an irreducible component of Y =Jc2,=J1
Kp,IwKp,1

. By Lemma 8.2.10, the closure

π(C) contains a point which is p-rank 0 for all w ∈ Sp. By the properness of π it
follows that the closure C contains a point which is p-rank 0 for all w ∈ Sp.

By what we have shown, in the closure C, at least one of the canonical p-
rank 0 Kottwitz–Rapoport strata is nonempty. Now we apply the argument with
local models and the explicit description of the closure relations between the strata
recalled above to conclude. �

Remark 8.2.12. One could give a more direct proof of Lemma 8.2.11, avoiding
the consideration of the Ekedahl–Oort stratification and the superspecial locus at
spherical level, if one knew that the Kottwitz–Rapoport stratification of YKp,IwKIw

p
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extended to a stratification of the minimal compactification, for which the (open)
strata are quasi-affine. However we lack a reference for these facts.

Proof of Lemma 8.2.8. Let π : YKp,IwKIw
p ,1 → YKp,IwKp(I),1 be the projection from

Iwahori toKp(I) level. On YKp,IwKp(I),1, π has a “canonical section” s : YKp,IwKp(I),1 →
YKp,IwKIw

p ,1, defined by taking Lw = Gw[F ] for w ∈ I (recall that on YKp,IwKp(I),1,
Hw is multiplicative by definition, and hence Hw ⊆ Gw[F ]). It follows that for
J ⊆ I, s and π define mutually inverse isomorphisms between Y =Jc2,=J1,m−can

Kp,IwKIw
p ,1

and Y I,=J
c2,=J1

Kp,IwKp(I),1
. We deduce the following statement from Lemma 8.2.11: for

J ⊆ J ′ ⊆ I, every irreducible component of Y I,=Jc2,=J1
Kp,IwKp(I),1

contains a point of

Y
I,=(J′)c2,=J′1

Kp,IwKp(I),1
in its closure.

Applying this with J = {v2}, J ′ = {v1, v2} and J = ∅, J ′ = {v1} we conclude
that any irreducible component of Y

=Sp\{v2}2,=v21

Kp,IwKp(I),1
contains a point of Y I,=v1,v21

Kp,IwKp(I),1

in its closure, and any irreducible component of Y
=Sp2

Kp,IwKp(I),1
contains a point

of Y I,=v11,=v22

Kp,IwKp(I),1
in its closure. Finally as recalled at the start of section 4.1,

Y
=Sp\{v2}2,=v21

Kp,IwKp(I),1
is dense in Y =v21

Kp,IwKp(I),1
and Y

=Sp2

Kp,IwKp(I),1
is dense in Y =v22

Kp,IwKp(I),1
,

and the lemma follows. �

8.3. Solvable base change. We will use solvable base change to deduce our
main modularity lifting theorem from Corollary 8.2.2. We firstly prove a couple
of preparatory lemmas, beginning with the following well-known result.

Lemma 8.3.1. Let K be a number field, and let ρ : GK → GL4(Qp) be an irre-
ducible representation which preserves a generalized symplectic form with similitude
character ν. Then either ν is uniquely determined by ρ, or, if ρ also admits a simil-
itude character νψ with ψ 6= 1, then ψ has finite order and ρ is reducible over a
quadratic subfield of the fixed field of ψ and hence also over the fixed field of ψ.

Proof. Let V denote the underlying representation of ρ, and let ν and νψ denote two
possible similitude characters. Then there is an inclusion ν⊕νψ ⊂ Hom(V ∗, V ), or
equivalently, 1⊕ψ ⊂ Hom(V ∗(ν), V ). It follows that V ' V ∗(ν) and V ' V ∗(νψ),
and thus V ' V (ψ), and also V ' V (ψ) ' V (ψ2). By comparing determinants,
it follows that ψ4 is trivial, and hence either ψ or ψ2 is a quadratic character η
such that V ' V (η) and hence 1⊕ η ⊂ Hom(V, V ). By Schur’s Lemma, V becomes
reducible over the fixed field of η, which by construction is a quadratic subfield of
the fixed field of ψ. �

We now prove a slightly technical lemma on solvable base change; it is an ana-
logue of [BLGHT11, Lem. 1.3] for GSp4, but the proof is slightly more involved.

Lemma 8.3.2. Suppose that p > 2 splits completely in the totally real field F/Q.
Let F ′/F be a solvable extension of totally real fields. Suppose that ρ : GF →
GSp4(Qp) satisfies:

(1) ν ◦ ρ = ε−1.
(2) For all v|p, ρ|GFv is p-distinguished weight 2 ordinary.
(3) The representation ρ is vast and tidy.
(4) ρ|GF ′ is irreducible. Furthermore, there is an ordinary automorphic repre-

sentation π′ of GSp4(AF ′) of parallel weight 2 and central character | · |2,
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such for every finite place w of F ′ we have

WD(ρ|GF ′w )F−ss ∼= recGT,p(π
′
w ⊗ |ν|−3/2).

(So in particular, ρπ′,p ∼= ρ|GF ′ .)
Then ρ is modular. More precisely, there is an ordinary automorphic representa-
tion π of GSp4(AF ) of parallel weight 2 and central character | · |2, with ρπ,p ∼= ρ.
Furthermore, for every finite place v of F we have

WD(ρ|GFv )F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

Proof. Since ρπ′,p is irreducible, π′ must be of general type in the sense of [Art04],
so that it corresponds to a cuspidal automorphic representation Π′ of GL4(AF ′).
By induction we may reduce to the case that F ′/F is cyclic of prime degree, in
which case it follows from [AC89, Thm. 4.2 of §3] that there is an automorphic
representation Π of GL4(AF ) with BCF ′/F (Π) = Π′.

We can write

LS(s,Π′,

2∧
⊗| · |−2) =

∏
ψ

LS(s,Π,

2∧
⊗| · |−2ψ−1)

where the product is over the characters ψ of A×F /F
×NF ′/FA

×
F ′ . The left hand

side has a simple pole at s = 1 (by the assumption that Π′ is the transfer of π′),
while by the main result of [Sha97], all but at most one factor on the right hand
side is holomorphic and non-vanishing at s = 1. Thus some factor on the right
hand side must also have a simple pole at s = 1, say LS(s,Π,

∧2⊗| · |−2ψ−1).
It follows from Theorem 2.9.3 that Π is the transfer of a cuspidal automorphic

representation π of GSp4(AF ) with central character |·|2ψ. Since BCF ′/F (Π) = Π′,
we see that π is of parallel weight 2. Letting ρπ,p : GF → GSp4(Qp) be the Galois
representation corresponding to π (whose existence follows from [Mok14, Thm. 3.5]
exactly as in the proof of Theorem 2.7.2), we have ρπ,p|GF ′ ∼= ρ|GF ′ , so that (since
F ′/F is cyclic of prime degree, and ρ|GF ′ is irreducible) ρπ,p differs from ρ by a
twist by a character of Gal(F ′/F ).

Replacing π by the corresponding twist, we may assume that ρπ,p and ρ are
isomorphic when considered as representations valued in GL4(Qp). We claim that
we necessarily have ν◦ρ = ν◦ρπ,p = ε−1, so that π has central character |·|2. Indeed,
this follows from Lemma 8.3.1, since it holds after restriction to GF ′ , and ρ|GF ′ is
irreducible by assumption. So ρπ,p ∼= ρ, as required.

Since we have assumed that ρ is vast and tidy, it follows from Corollary 7.9.6
that for every finite place v of F we have

WD(ρ|GFv )ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

It remains to check that the monodromy operators agree; but this may be checked
after base change, and since π′ is the base change of π, it follows from the assumption
that WD(ρ|GF ′w )F−ss ∼= recGT,p(π

′
w ⊗ |ν|−3/2). �

8.4. The main modularity lifting theorem. We now prove our main modular-
ity lifting theorem.

Theorem 8.4.1. Suppose that p ≥ 3 splits completely in the totally real field F/Q.
Suppose that ρ : GF → GSp4(Qp) satisfies:

(1) ν ◦ ρ = ε−1.
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(2) The representation ρ is vast and tidy in the sense of Definitions 7.5.6
and 7.5.11.

(3) For all v|p, ρ|GFv is p-distinguished weight 2 ordinary in the sense of Defi-
nition 7.3.1.

(4) There exists π of parallel weight 2 and central character | · |2, which is
ordinary at all v|p, such that ρπ,p ∼= ρ.

(5) For all finite places v of F , ρ|GFv and ρπ,p|GFv are pure.
Then ρ is modular. More precisely, there is an ordinary automorphic representa-
tion π′ of GSp4(AF ) of parallel weight 2 and central character | · |2 which satisfies
ρπ′,p ∼= ρ. Furthermore, for every finite place v of F we have

WD(ρ|GFv )F−ss ∼= recGT,p(π
′
v ⊗ |ν|−3/2).

Proof. Choose a solvable extension of totally real fields F ′/F , linearly disjoint
from F ker ρ over F , with the following properties:

• p splits completely in F ′.
• At every place w of F ′ lying over a place v - p of F for which πv or ρ|GFv

is ramified, ρ|GF ′w is trivial, ρ|GF ′w has only unipotent ramification, and
qw ≡ 1 (mod p2).

• There is an automorphic representation π′ of GSp4(AF ′) of parallel weight 2
which is a base change of π (in the sense that for each finite place w of F ′,
lying over a place v of F , we have recGT,p(π

′) = recGT,p(π)|WF ′w
). Further-

more, for all finite places w of F ′ we have (π′w)Iw(w) 6= 0.
(The last property can be arranged by [Mok14, Prop. 4.13].) Then ρ|GF ′ satisfies
Hypothesis 7.13.1, so the result follows from Corollary 8.2.2 (applied to ρ|GF ′ ) and
Lemma 8.3.2. �

8.5. Base change and automorphy lifting. Throughout the paper, we have
fixed the similitude factor of our Galois representations to be ε−1, in order to
streamline both the notation and some arguments. We now explain how to use
base change to relax this condition in our main automorphy lifting theorem. We
do not use this result elsewhere in the paper, so we have contented ourselves with
a slightly ugly statement, and with a sketch of the proof.

Definition 8.5.1. We say that a representation ρ : GQp → GSp4(Qp) is twisted p-
distinguished weight 2 ordinary if it is an unramified twist of a representation which
is p-distinguished weight 2 ordinary in the sense of Definition 7.3.1. Similarly, we
say that an admissible representation πp of GSp4(Qp) is twisted ordinary if it is an
unramified twist of an ordinary representation.

Theorem 8.5.2. Suppose that p ≥ 3 splits completely in the totally real field F/Q.
Suppose that ρ : GF → GSp4(Qp) satisfies:

(1) ν ◦ ρ = χε−1, where χ is a totally even finite order character, which is
unramified at all places dividing p.

(2) The representation ρ is vast and tidy in the sense of Definitions 7.5.6
and 7.5.11.

(3) For all v|p, ρ|GFv is twisted p-distinguished weight 2 ordinary.
(4) There exists π of parallel weight 2, which is twisted ordinary at all v|p, such

that ρπ,p ∼= ρ.
(5) For all finite places v of F , ρ|GFv and ρπ,p|GFv are pure.
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Then ρ is modular. More precisely, there is a twisted ordinary automorphic repre-
sentation π′ of GSp4(AF ) of parallel weight 2 which satisfies ρπ′,p ∼= ρ. Further-
more, for every finite place v of F we have

WD(ρ|GFv )F−ss ∼= recGT,p(π
′
v ⊗ |ν|−3/2).

Proof. Let χ′ be the finite order character GF → Q
×
p such that ν ◦ ρπ = χ′ε−1.

Note that χ′ is totally even (since we have χ′ = χ by assumption). We can choose a
quadratic extension of totally real fields F ′/F , linearly disjoint from F ker ρ over F ,
such that:

• p splits completely in F ′, and
• there are finite order characters ψ,ψ′ : GF ′ → Q

×
p such that χ|GF ′ = ψ2,

χ′|GF ′ = (ψ′)2.
Indeed, the obstruction to taking the square root of a character is in the 2-torsion of
the Brauer group, and there are no obstructions to taking a square root of either χ
or χ′ at the places dividing p (because both characters are unramified at such
places) or at the infinite places (because χ, χ′ are totally even).

Let πF ′ be the base change of π to F ′. Since ρ|GF ′ ⊗ ψ
−1, πF ′ ⊗ (ψ′)−1 ◦ArtF ′

satisfy the hypotheses of Theorem 8.4.1, it follows that ρ|GF ′⊗ψ is modular, so ρ|G′F
itself is modular. The result follows from Lemma 8.3.2 (or rather, from an obvious
generalization of this lemma to the case of more general central characters, which
may be proved in the same way). �

9. Potential modularity of abelian surfaces

We now use the potential automorphy methods introduced in [Tay02] to prove the
potential modularity of abelian surfaces. It is presumably possible to follow [Tay02,
§1] quite closely, but we instead make use of potential modularity results for GL2

and the local to global principle of [Cal12, §3] (see also [MB90, Thm. 1.2]).

9.1. Compatible systems and potential automorphy. Recall that the notion
of a C-algebraic automorphic representation is defined in [BG14], and in the case
of automorphic representations of GLn, this definition agrees with the notion of an
algebraic automorphic representation defined in [Clo90].

Definition 9.1.1. Let K be a number field and let R be a strictly compatible
system of representations of GK . We say that R is automorphic if there is an
automorphic representation Π of GLn(AK), with the properties that:

(1) Π is an isobaric direct sum of cuspidal automorphic representations �ri=1Πi

where each Πi is a C-algebraic cuspidal automorphic representation of
some GLni(AK).

(2) The fixed field MΠ of the subgroup of Aut(C) consisting of those σ ∈
Aut(C) with σΠ∞ ∼= Π∞ is a number field.

(3) For each finite place v of K, WDv(R) = ⊕irec(Πi,v|det |(1−ni)/2v ).

Remark 9.1.2. There are many (conjecturally equivalent) variants of Definition 9.1.1
that could be made. The definition is in some sense redundant, because con-
dition (2) is implied by condition (3); indeed, by the definition of a compatible
system, it follows that for all but finitely many v, Πv is an unramified principal
series representation, defined over a number field which may be chosen indepen-
dently of v. Condition (2) then follows from strong multiplicity one for isobaric
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representations [JS81]. The reason that we have chosen to include the condition
separately is that conjecturally (see [Clo90]) condition (1) implies condition (2),
and also implies the existence of a compatible system R satisfying condition (3).

In fact, the only cases of Definition 9.1.1 that we will need to consider are those
where either:

(1) Each Πi is regular algebraic, or
(2) K is totally real, Π is cuspidal, and Π is the transfer to GL4 of a cusp-

idal automorphic representation of GSp4 of parallel weight 2 and central
character | · |2.

In either case, condition (2) is satisfied by [Clo90, Thm. 3.13] and [BHR94, Thm.
3.2.2]) respectively.

Remark 9.1.3. The reader may wonder why we did not demand an analogue of
condition (3) of Definition 9.1.1 at the infinite places. One reason is that we do
not need to do so, as condition (3) already determined Π uniquely (indeed, as
in Remark 9.1.2, this is already true if one only considers condition (3) at all
but finitely many places). The main reason that we do not make a requirement
at the infinite places is that (in keeping with the literature) our definition of a
compatible system does not include a requirement that the l-adic representations
are compatible on complex conjugations, which makes it harder to formulate a
precise compatibility. One could certainly ask (as in [BG14]) that the Hodge–Tate
weights of R correspond to the infinitesimal character of Π, but to save introducing
additional notation and terminology we have not done so.

Remark 9.1.4. As explained in Remark 9.1.2, condition (3) of Definition 9.1.1 at all
but finitely many places v determines Π uniquely. One might ask whether if this
condition holds for all but finitely many v, it necessarily holds for all v. In general
this is a hard problem; indeed even if (3) is known up to semisimplification, it is
often difficult to show that the monodromy operators agree. If however R is pure
and Π is generic then the agreement of monodromy operators is automatic; we will
use this fact in our arguments below.

If R and Π are as in Definition 9.1.1, we as usual have Gamma factors Lv(Π, s)
for each place v|∞ of K, and we set

ΛΠ(R, s) = L(R, s)
∏
v|∞

Lv(Π, s).

This is of course just the usual completed L-function of Π, but we have included R
in the notation to emphasize that the L-functions of Π and R agree – note that here
it is important that we know Definition 9.1.1 (3) at all finite places, and not just
at almost all places, or up to semisimplification. As noted above, since we do not
a priori demand any local-global compatibility at ∞ for our compatible system R,
we use the automorphic representation Π in this definition mostly as a convenient
way to write down the correct Gamma factors at infinity. For those who find this
notation unpleasant, note that — in the restrictive context of abelian surfaces over
totally real fields — we defined a function Λ(R, s) in (2.8.4) by explicitly writing
down the Gamma factors in question, and then (for all the A and Π that arise in
this paper) we indeed have equalities Λ(Π, s) = ΛΠ(RA, s) = Λ(RA, s).

We also have an epsilon factor ε(Π), and a conductor N(Π), and by [GJ72, Cor.
13.8], ΛΠ(R, s) admits a meromorphic continuation to the entire complex plane,
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and satisfies the functional equation

(9.1.5) ΛΠ(R, s) = ε(Π)N(Π)−sΛΠ(R∨, 1− s).

Definition 9.1.6. Let A/K be an abelian variety. We say that A is automorphic
if RA is automorphic in the sense of Definition 9.1.1. We say that it is potentially
automorphic if there is a finite extension of number fields L/K such that RA|GL is
automorphic.

Remark 9.1.7. If A/K is an abelian variety, and A is automorphic with the cor-
responding Π being of the form considered in Remark 9.1.2, then the Gamma
factors Lv(Π, s) and the conductor N(Π) agree with those defined for the compati-
ble system RA in §2.8. Indeed, for the Gamma factors this is a direct consequence
of the definitions, and the conductor respects the local Langlands correspondence.
In particular, we have ΛΠ(RA, s) = Λ(RA, s), and the functional equations (2.8.5)
and (9.1.5) agree; so Λ(RA, s) satisfies the expected meromorphic continuation and
functional equation.

Definition 9.1.8. Let F be a totally real. We say that a representation ρ : GF →
GSp4(Qp) ismodular if there is a cuspidal automorphic representation of GSp4(AF )

of parallel weight 2 and central character | · |2 for each finite place v of F we have
WD(ρπ,p|GFv )F−ss ∼= recGT,p(πv ⊗ |ν|−3/2); in particular, ρ ∼= ρπ,p.

We say that r is potentially modular if there is a finite Galois extension F ′/F of
totally real fields such that r|GF ′ is modular.

If A/F is an abelian surface, we say that A is modular (resp. potentially modu-
lar) if ρA,p is modular (resp. potentially modular) for some (equivalently, for any)
prime p.

Remark 9.1.9. The relationship between the definitions of what it means for an
abelian surface A/F to be (potentially) automorphic or modular is somewhat com-
plicated, because of the various possibilities in Arthur’s classification of the discrete
spectrum of GSp4(AF ). In this paper we will only show that A is (potentially) mod-
ular if the corresponding automorphic representation of GSp4 is of general type,
in which case A is also (potentially) automorphic, essentially by the definition of
“general type”; note that this is the case considered in Remark 9.1.2 (2).

We now prove some technical lemmas that we will use in proving our main
potential automorphy/modularity results. A weakly compatible systemR is defined
to be irreducible if there is a set L of rational primes of Dirichlet density 1 such that
for λ|l ∈ L the representation rλ is irreducible. We say that it is strongly irreducible
if for all finite extensions F ′/F the compatible systemR|GF ′ is irreducible. If n = 2,
then we say that R has weight 0 if Hτ (R) = {0, 1} for each τ , and we say that R
is odd if detR(cv) = −1 for all v|∞. If π is a cuspidal automorphic representation
of GL2(AF ) of weight 0, then R(π) is odd and has weight 0.

We have the following standard lemma.

Lemma 9.1.10. Let R be a rank two weakly compatible system.
(1) The following are equivalent:

(a) R is irreducible.
(b) For all λ the representation rλ is irreducible.
(c) For some λ the representation rλ is irreducible.

(2) If R is irreducible and regular, then the following are equivalent:
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(a) R is strongly irreducible.
(b) Sym2R is irreducible.
(c) For all λ, Sym2 rλ is irreducible.
(d) For some λ, Sym2 rλ is irreducible.
If these equivalent conditions do not hold, then there is a quadratic exten-
sion F ′/F and a weakly (equivalently, strongly) compatible system X of
characters of GF ′ such that

R ∼= IndGFGF ′ X .

(3) If R is strongly irreducible and regular, then for a density one set of primes l
of Q, if λ|l is a place of M , then the image of rλ contains SL2(OM/λ).

Proof. This is well known. Part (1) is [ACC+18, Lem. 7.1.1], and part (3) is [ACC+18,
Lem. 7.1.3]. For part (2), note that by [ACC+18, Lem. 7.1.2], either R is strongly
irreducible, or we can write R ∼= IndGFGF ′ X . It follows that if R is not strongly
irreducible, then Sym2 rλ is reducible for every λ.

Conversely, if Sym2 rλ is reducible for some λ, then there is a nontrivial charac-
ter ψ such that rλ ∼= rλ⊗ψ. Considering determinants, ψ is a quadratic character.
Letting F ′/F be the quadratic extension corresponding to ψ, it follows from Schur’s
lemma that rλ|GF ′ is reducible, so by part (1), R is not strongly irreducible. �

We now use a standard trick with restriction of scalars to give some slight im-
provements to some applications of the theorem of Moret-Bailly.

Proposition 9.1.11. Let F1/F be a finite extension of totally real fields, and
let p, q > 2 be distinct primes which split completely in F1. Let r : GF1

→ GL2(Fq)
be a representation with determinant ε−1.

Suppose that for each place v|q of F1, r|GF1,v
is of the form

(
λαv 0
0 ε−1λ−1

αv

)
.

Suppose also that r is unramified at all places above p.
Let F (avoid)/F be a finite extension. Then there is a finite Galois extension

F ′/F of totally real fields in which p and q split completely and which is linearly
disjoint from F1F

(avoid)/F , and a q-ordinary cuspidal automorphic representation π
of GL2(AF1F ′) of weight 0 and trivial central character which is unramified at all
places dividing pq and which satisfies ρπ,q ∼= r|GF1F

′ .

Proof. In the case F1 = F , this is a straightforward consequence of [Sno09, Thm.
8.2.1]. Indeed, in Snowden’s notation, we take ρ = r∨, ψ = 1, we let S consist of
the places dividing pq and we let t assign the type A at places lying over q and
type AB at places lying over p. To prove the general case, one simply replaces
the scheme X to which Snowden applies the theorem of Moret-Bailly with the
restriction of scalars ResF1/F XF1

. �

Proposition 9.1.12. Let G be a finite group, let E/Q be a finite extension, and
let S be a finite set of places of E. Let E′/E be a finite extension, and let F (avoid)/E
be a finite extension, linearly disjoint from E′/E.

Let S′/S be the set of places of E′ lying over places of S. For each finite
place v ∈ S′, let H ′v/E′v be a finite Galois extension together with a fixed inclu-
sion φv : Gal(H ′v/E

′
v) ↪→ G with image Dv. For each real infinite place v ∈ S′,

let cv ∈ G be an element of order dividing 2.
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Then there exists a number field K/E and a finite Galois extension of number
fields L/K such that if we set K ′ = KE′, L′ = LE′, then

(1) There is an isomorphism Gal(L′/K ′) = G.
(2) L′/E is linearly disjoint from E′F (avoid)/E.
(3) All places in S′ split completely in K ′.
(4) For all finite places w of K ′ above v ∈ S′, the local extension L′w/K

′
w is

equal to H ′v/E′v. Moreover, there is a commutative diagram:

Gal(L′w/K
′
v) Dw ⊂ G

Gal(H ′v/E
′
v) Dv ⊂ G

φv

(5) For all real places w|∞ of K ′ above v ∈ S′, complex conjugation cw ∈ G is
conjugate to cv.

Proof. The case E′ = E is [Cal12, Prop. 3.2] (see also [MB90, Thm. 1.2]). The
general case may be proved in exactly the same way, by replacing the application
of [Cal12, Thm. 3.1] to (an open subscheme of) XG/E with an application of it
to ResE′/E XG. �

9.2. Abelian surfaces. We begin by recalling some results from [FKRS12] and [Joh17],
which allow us to deal with various cases where the abelian surfaces have ex-
tra endomorphisms, and can be handled with the potential automorphy theorems
of [BLGGT14b]. Let A/F be an abelian surface over a totally real field F , and let
L/F be the minimal extension over which all its endomorphisms are defined. This
is a Galois extension, and following [FKRS12] we say that the Galois type of A/F
is the Gal(L/F )-module EndL(A)⊗Z R. These possible Galois types are classified
in [FKRS12], and they are divided up into 6 families A-F.

The precise classification of monodromy groups in these references is not actually
strictly necessary for our purposes. Write {ρA,l} for the compatible system of
Galois representations {H1(AF ,Ql)}. In practice, it suffices to know that the l-adic
representations ρA,l fall into precisely one of the following categories independently
of l:

(1) strongly irreducible (type A),
(2) reducible (type B[C1], C, E[Cn], some D, some F),
(3) potentially abelian but not reducible (of type the remainingD and F cases),
(4) induced from a quadratic extension K/F but not potentially abelian, in

which case either:
(a) the two 2-dimensional representations over K are equivalent up to

twist (type E[Dn]), or
(b) the two 2-dimensional representations over K are not equivalent up to

twist (type B[C2]).

Proposition 9.2.1. Suppose that A/F is not of type A or B[C2]. Then A is
potentially automorphic.

Proof. We freely use the discussion of [Joh17, §4]. In cases D, F, AL is of CM type,
so the compatible system RA is potentially abelian, and in particular potentially
automorphic.
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In cases B[C1], C, and the cases of type E other than those of type E[Dn],
it follows from the discussions at the beginnings of [Joh17, §4.2, 4.4, 4.5] that
we can write RA = R1

A ⊕ R2
A where each RiA is an irreducible, odd, weight 0

weakly compatible system of rank 2 l-adic representations of GF . The potential
automorphy of RA therefore follows from [BLGGT14b, Thm. 5.4.1].

It remains to treat the case that A is of type E[Dn]. In this case, as explained
in [Joh17, §4.5-4.6], there is a quadratic extension F ′/F and a strongly irreducible
weakly compatible system S = {sl} of weight 0 representations of GF ′ which is
defined over Q such that RA ∼= IndGFGF ′ S. Furthermore, there is a finite order
character δ of GF ′ such that if we write Gal(F ′/F ) = {1, σ}, then sσl ∼= sl ⊗ δl.

It follows from Lemma 9.1.10 (2) and [BLGGT14b, Prop. 5.3.2] that for a density
one set of primes l, Sym2 sl|GF ′(ζl) is irreducible, l is unramified in F ′, and both sl
and εl are crystalline at all primes above l. Fix one such l > 7.

Since Proj sσl
∼= Proj sl, it follows from Schur’s lemma that Proj sl extends to a

representation GF → PGL2(Ql). By [Pat19, Lem. 2.3.17, 2.7.4], we may lift this
to a representation r̃ : GF → GL2(Ql) which is unramified at all but finitely many
places, and is Hodge–Tate at all places dividing l, with Hodge–Tate weights (0, 1).
By construction, there is a character ψ : GF ′ → Q

×
l such that r̃|GF ′ = sl ⊗ ψ.

Since ψ is Hodge–Tate of weight 0, it has finite order.
Since l is unramified in F ′ and sl is crystalline at all primes above l, after possibly

replacing r̃ by a twist by a finite order character, we may assume that it is crystalline
at all places dividing l. By [CG13, Prop. 2.5], r̃ is odd, so by [BLGGT14b, Thm.
4.5.1], r̃ is potentially automorphic. Since

ρA,l ∼= IndGFGF ′ sl
∼= IndGFGF ′

(
r̃|GF ′ ⊗ ψ

−1
)
,

it follows that RA is potentially automorphic, as required. �

We say that A/F is challenging if it has typeA (which is the case that EndCA =
Z) or B[C2]. In the latter case, as explained in [Joh17, §4.3], there is a quadratic
extension K/F , and a strongly irreducible weakly compatible system S = {sl} of
rank 2, weight 0 representations of GK with determinant ε−1

l such that RA ∼=
IndGFGK S. Furthermore, writing Gal(K/F ) = {1, σ}, sσl and sl do not become
isomorphic after restriction to any finite extension of K. (The case when K/F is
totally real can be handled using potential automorphy theorems for GL2, but our
argument (at this point at least) does not need to distinguish between the various
infinity types of K.)

Lemma 9.2.2. If A/F is a challenging abelian surface, then for a density one set
of primes l, ρA,l is vast and tidy.

Proof. If EndCA = Z, then, for all sufficiently large l, ρA,l(GF ) = GSp4(Fl)
by [Ser00], so the claim follows from Lemma 7.5.15.

If A is of type B[C2], then writing ρA,l ∼= IndGFGK sl, we see from Lemma 7.5.22
and Lemma 9.1.10 (3) that we need only check that for a density one set of primes l,
we have Proj sσl 6≡ Proj sl. (Note that the inverse of the mod l cyclotomic character
is surjective for all l which are unramified in F .) To see this, note that since
Proj sσl 6≡ Proj sl, we have Sym2 sσl 6≡ Sym2 sl by [DK00, Appendix, Thm. B]. There
is therefore some finite place v of F at which the compatible systems {Sym2 sσl },
{Sym2 sl} are unramified, for which the eigenvalues of Frobv differ for the two
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compatible systems. Then the same applies for Sym2 sσl , Sym2 sl for all sufficiently
large l, so that in particular Proj sσl 6≡ Proj sl, as required. �

Definition 9.2.3. Let A/F be an abelian surface over a totally real field. We say
that a rational prime p ≥ 3 is a good prime for A if:

• A admits a polarization of degree prime to p.
• p splits completely in F .
• The representation ρA,p is vast and tidy.
• For each place v|p, ρA,p|GFv is p-distinguished weight 2 ordinary.

Remark 9.2.4. The point of Definition 9.2.3 is that the good primes p are the ones
for which we can apply our modularity lifting theorem (Theorem 8.4.1) to ρA,p.

Lemma 9.2.5. Let A/F be a challenging abelian surface. Then the set of rational
primes which are good primes for A has relative density one in the set of primes
which split completely in F .

Proof. By Lemma 9.2.2, it suffices to show that ρA,p|GFv is p-distinguished weight 2
ordinary for a density one set of finite places v of F (with residue characteristic p).
To do this, we follow the approaches of [Saw16] and [CG20, Lem. A.7]. Consider the
places v of F that are split over a prime p of Q, for which A has good reduction;
the set of such primes has density one. Fix a prime l 6= p. The characteristic
polynomial of ρA,l(Frobv) is of the form

x4 − a1x
3 + a2x

2 − pa1x+ p2

where a1, a2 are integers.
Then A has good ordinary reduction at v if and only if p - a2. If this holds, then

we see that ρA,p|GFv will be p-distinguished weight 2 ordinary if and only if a2
1−4a2

is not divisible by p. By the Weil bounds, we have |a1| ≤ 4
√
p, |a2 − 2p| ≤ 4p, so

if a2
1− 4a2 is divisible by p, then it is equal to pc for c in some finite list of integers,

independent of p.
Let G be the Zariski closure of ρA,l(GF ) in GSp4, and write V for the standard

representation of GSp4, and χ for the similitude character. Arguing exactly as in
the proof of [Saw16, Thm. 1], it follows from the Cebotarev density theorem that
it is enough to show that the virtual representation (V ⊗2− 4∧2 V )⊗χ−1 does not
have constant trace on any connected component of G.

By the proof of [Saw16, Thm. 3], we can replace G by the Sato–Tate group of A,
which is either the connected group USp4 (if A has type A), or the normalizer
of SU2×SU2 in USp4 (if A has typeB[C2])) (which has two connected components).
The result now follows easily from an explicit check. �

Lemma 9.2.6. Let A/F be a challenging abelian surface. Then there are distinct
rational primes p, q such that p and q are both good primes for A, and for all
places v|p of F , ρA,q(Frobv) has distinct eigenvalues.

Proof. By Lemma 9.2.5, a density one subset of the set of rational primes which
split completely in F are good primes. Let p be any good prime for A; then, for
each place v|p of F , ρA,p|GFv has p-distinguished weight 2 ordinary reduction, and
in particular the eigenvalues of the crystalline Frobenius Frobv on TpA are distinct.
Consequently, for all but finitely many rational primes q of good reduction for A,
ρA,q(Frobv) has distinct eigenvalues for all places v|p. �
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If q is a good prime for an abelian surface A/F , then for each place w|q of F we
may write

ρA,q|GFw ∼=


λαw 0 ∗ ∗

0 λβw ∗ ∗
0 0 ε−1λ−1

βw
0

0 0 0 ε−1λ−1
αw


Then we write

(ρA,q|GFw )ss :=


λαw 0 0 0

0 λβw 0 0

0 0 ε−1λ−1

βw
0

0 0 0 ε−1λ−1
αw


When reading the proofs of the following two results, it may be helpful to recall
that our convention is that the representation ρA,p is the dual of A[p]; this accounts
for the various duals occurring in the proofs.

Lemma 9.2.7. Let A/F be an abelian surface over a totally real field, and let p,
q be primes as in Lemma 9.2.6. Fix a totally real quadratic extension F1/F in
which p and q split completely, and which is linearly disjoint from the kernels of the
actions of GF on A[p] and A[q].

Then there is a finite Galois extension of totally real fields F ′/F , and a repre-
sentation rq : GF ′F1

→ GL2(Fq), with the following properties:
(1) p and q both split completely in F ′.
(2) F ′/F is linearly disjoint from F1/F and from the kernels of the actions

of GF on A[p] and A[q].
(3) det rq = ε−1.
(4) rq(GF ′F1

) = GL2(Fq), and the projective image of rq is not equal to its
conjugate under Gal(F ′F1/F

′).
(5) Set ρq := Ind

GF ′
GF ′F1

rq : GF ′ → GSp4(Fq) with similitude factor ε−1. Then
• for any place w|q of F and any place w′|w of F ′, ρq|GF ′

w′
∼= (ρA,q|GFw )ss,

and
• for any place v|p of F and any place v′|v of F ′, ρq|GF ′

v′
∼= ρA,q|GFv .

(6) The representation ρq is vast and tidy.

Proof. Fix a finite place r of F not dividing pq and splitting in F1. We apply
Proposition 9.1.12, taking E = F , E′ = F1, G = GL2(Fq), S to be the set of
places dividing pqr∞, and F (avoid) to be the extension cut out by the intersection
of the kernels of ρA,p and ρA,q. For each infinite place v ∈ S′ we choose cv to have
eigenvalues {1,−1}. For each place w ∈ S dividing pqr we write w = w1w2 for
its decomposition in F1. If w|p, then the eigenvalues of (A[q]∨|GFw )(Frobw) can be
written as αw, βw, pβ−1

w , pα−1
w , while if w|q we use the notation above. In either

case, we choose φw1
to correspond to the representation

(
λαw 0

0 ε−1λ−1
αw

)
, and φw2

to correspond to
(
λβw 0

0 ε−1λ−1
βw

)
. Finally, if w = r, then we choose φw1

, φw2

to have determinant ε−1, in such a way that φw1
is unramified, while Projφw2

is
ramified.
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We obtain an extension F ′/F (the extension K/E from Proposition 9.1.12, with
the φv there being our φv) and a representation rq : GF1F ′ → GL2(Fq) which
satisfies (1), and (2). It need not satisfy (3), but by construction εdet rq is an
even character which is trivial at all places dividing pqr. The obstruction to the
existence of a square root of εdet rq is therefore a class in the 2-torsion of BrF1F ′

which is trivial at all places dividing pqr∞.
We can therefore replace F ′ by a quadratic totally real extension in which p, q,

r split completely, and assume that ε det rq has a square root. By [AT09, Ch. X,
Thm. 5] we can (by replacing this square root by a twist by a quadratic character)
arrange that the square root is trivial at all places dividing pqr. Replacing rq by
its twist by this square root, we ensure (3), at which point (5) follows (note that
for each place v|p of F , ρA,q|GFv is unramified with distinct eigenvalues of Frobv,
and is therefore semisimple). Considering the places lying over r, we see that (4) is
satisfied. Finally, (6) then follows from Lemma 7.5.22. �

Theorem 9.2.8. Let A/F be a challenging abelian surface over a totally real field.
Then A is potentially modular. More precisely, there is a finite Galois extension of
totally real fields F ′/F and a prime p splitting completely in F ′ such that ρA,p|GF ′
is modular and irreducible.

Proof. Let p, q, F1, F ′, rq and ρq be as in Lemma 9.2.7. Let Y/F ′ denote the
moduli space of triples (B, ıp, ıq) consisting of abelian surfaces B and symplectic
isomorphisms

ıp : B[p]
∼−→ A[p]|GF ′ ,

ıq : B[q]
∼−→ ρ∨q .

This is smooth and geometrically connected. (Over either C or Q, we may iden-
tify Y with the moduli space of principally polarized abelian surfaces with full
level pq structure.)

We claim that for each place v|pq∞ of F ′, the subspace Ωv := Y ord(F ′v) ⊂ Y (F ′v)
consisting of points corresponding to abelian surfaces with good ordinary reduction
(when v is finite) is nonempty. If v|∞, this follows from det r∨q = ε, while if v|p,
then A itself gives a point of Y (F ′v) (by point (5) of Lemma 9.2.7). Finally, if v|q,
the canonical lift of A modulo v gives a point of Y (F ′v). (Since A has good ordinary
reduction at v|p and v|q, the corresponding point on Y does indeed land in Ωv.)

By [BLGGT14b, Prop. 3.1.1] (a theorem of Moret-Bailly), we may find a finite
Galois totally real extension F ′′/F ′ in which p and q split completely, and which is
linearly disjoint from the compositum of F1F

′ and the kernels of the actions of GF ′
on A[p], A[q] and ρq, with the property that Y (F ′′) ∩

⋂
v|pq Ωv 6= 0. Let B/F ′′

be a corresponding abelian surface, which by construction will have good ordinary
reduction for all v|p and v|q.

By Proposition 9.1.11, after replacing F ′′/F ′ with a further totally real extension,
we can maintain all of the above assumptions, and we can further suppose that there
is a q-ordinary automorphic representation π of GL2(AF1F ′′) of weight 0 and trivial
central character, which is unramified at all places dividing pq and which satisfies
ρπ,q

∼= rq|GF1F
′′ .

It follows from [Rob01, Thm. 8.6] that there is an automorphic representation π
of GSp4(AF ′′) of parallel weight 2 and trivial central character whose transfer
to GL4(AF ′′) is the automorphic induction of π ⊗ | · |, so that in particular ρπ,q ∼=
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Ind
GF ′′
GF1F

′′ ρπ,q, so that ρπ,q ∼= ρq|GF ′′ . In addition, π is ordinary, by construction.
The representation ρπ,p is pure at all finite places because ρπ,q is (for the places
away from q, this is proved in [Bla06], and for the places dividing q it is for example
a very special case of the main theorem of [Car14]).

We can therefore apply Theorem 8.4.1 to ρB,q, and conclude that it is modu-
lar. Thus ρB,p is modular, and applying Theorem 8.4.1 a second time, we deduce
that ρA,p|GF ′′ is modular, as required. (The purity of ρB,q, ρB,p and ρA,p at all
finite places is part of Proposition 2.8.1.) �

9.3. Potential modularity and meromorphic continuation. We now deduce
the meromorphic continuation and functional equation of the L-functions associ-
ated to abelian surfaces over totally real fields from our potential modularity (and
automorphy) results.

Theorem 9.3.1. Let F be a totally real field, and let A/F be an abelian surface.
Then RA is potentially automorphic, and Conjecture 2.8.6 holds for A, for each 0 ≤
i ≤ 4.

Proof. Since Hi(A,Ql) = ∧iH1(A,Ql), it is enough to treat the cases i = 1, 2.
Note that since for any R we have ε(R)ε(R∨) = N(R) (see [Tat79, (3.4.7)]), and
we have Hi(A,Ql)

∨ = Hi(A,Ql)(i), the claimed functional equation will follow
from (2.8.5) in the case R = Hi(A,Ql).

To see that the meromorphic continuation and the functional equation (2.8.5)
hold, note firstly that if A has type D or F, then the compatible system RA is
potentially abelian, and the result follows from a standard argument with Brauer’s
theorem; more precisely, it is immediate from [Joh17, Prop. 11, Lem. 14]. In the
general case, the same argument (see e.g. the proof of [Tay02, Cor. 2.2]) shows that
it is enough to show that there is a Galois extension of totally real fields F ′/F such
that for each Galois extension F ′/F ′′ with Gal(F ′/F ′′) solvable, the compatible sys-
tems RA|GF ′′ and ∧

2RA|GF ′′ are both automorphic. (Note that the meromorphic
continuation and functional equations for the compatible systems follow from the
functional equations (9.1.5) for the corresponding automorphic representations.)

Suppose now that A has type B[C1], C, or is of type E but not of type E[Dn].
Then as we saw in the proof of 9.2.1, we can write RA = R1

A ⊕ R2
A where R1

A,
R2
A are irreducible, odd, weight 0 weakly compatible systems of rank 2 l-adic rep-

resentations of GF . It follows from [BLGGT14b, Thm. 5.4.1] that there is a Ga-
lois extension of totally real fields F ′/F such that R1

A|GF ′ , R
2
A|GF ′ are automor-

phic and irreducible. It follows from [BLGHT11, Lem. 1.3] that for each Galois
extension F ′/F ′′ with Gal(F ′/F ′′) solvable, R1

A|GF ′′ , R
2
A|GF ′′ are automorphic.

Thus RA|GF ′′ is automorphic, and since we have

∧2RA|GF ′′ = detR1
A|GF ′′ ⊕ detR2

A|GF ′′ ⊕
(
R1
A|GF ′′ ⊗R

2
A|GF ′′

)
,

it follows from [Ram00, Thm. M] that ∧2RA|GF ′′ is also automorphic, as required.
In the remaining cases, namely those of types A, B[C2], or E[Dn], it follows from

Theorem 9.2.8, (the proof of) Proposition 9.2.1, Lemma 2.9.1 and Theorem 2.9.3,
together with Lemma 8.3.2, that there is a Galois extension of totally real fields
F ′/F such that for some p, and all Galois extension F ′/F ′′ with Gal(F ′/F ′′) solv-
able, ρA,p|GF ′′ is irreducible and modular (and also automorphic). By the main
result of [Hen09] (which is a refinement of the main result of [Kim03]), together
with Theorem 2.9.3, we see that ∧2ρA,p|GF ′′ is automorphic, as required. �
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Remark 9.3.2. Our use of the results of [Kim03] and [Hen09] in the proof of The-
orem 9.3.1 is almost certainly overkill, and can be avoided by working with au-
tomorphic forms on GSp4 rather than GL4 as we now explain. Since the four 4-
dimensional Galois representations H1(A,Ql) are generalized symplectic with re-
spect to the Weil pairing, the exterior square ∧2H1(A,Ql) = H2(A,Ql) decomposes
as the direct sum of a 5-dimensional Galois representation and the one dimensional
summand Ql(−1). (The corresponding Galois invariant classes in H2(A,Ql(1)) are
generated by the image of a hyperplane section under the cycle map.) Once one
knows that the 4-dimensional representation H1(A,Ql) corresponds (potentially)
to an automorphic representation π for GSp4, then the L-function associated to
the 5-dimensional summand of H2(A,Ql) is none other than the degree 5 standard
L-function, whose analytic properties have been known for some time (see §6.3
of [GPSR87]). On the other hand, many of our arguments in this paper do crucially
require passing between GSp4 and GL4 using Theorem 2.9.3 and Lemma 2.9.1. In
particular, the proof of Theorem 9.3.1 uses base change in the form of Lemma 8.3.2,
and therefore depends directly on Theorem 2.9.3; and of course our main modu-
larity lifting theorems also depend on these results, in particular to prove that the
modules that we patch are balanced.

If C/F is a curve over a number field, then we can define the completed L-
functions Λi(C, s) and the completed Hasse–Weil L-function Λ(C, s) exactly as for
abelian varieties. By definition we have Λ1(C, s) = Λ1(Jac(C), s), where Jac(C) is
the Jacobian of C.

Corollary 9.3.3. Let C/F be a genus two curve over a totally real field. Then
the completed Hasse–Weil L-function Λ(C, s) has a meromorphic continuation to
the entire complex plane, and satisfies a functional equation of the form Λ(C, s) =
εN−sΛ(C, 3− s) where ε ∈ R and N ∈ Q>0.

Proof. This follows from Theorem 9.3.1 with A = Jac(C). �

Finally, we treat the case of genus one curves over quadratic extensions of totally
real fields.

Theorem 9.3.4. Let K/F be a quadratic extension of a totally real field F , and
let E/K be either a genus one curve or an elliptic curve. Then E is potentially
modular. More precisely, there is a Galois extension of totally real fields F ′/F and
a weight 0 cuspidal automorphic representation π of GL2(AKF ′) with trivial central
character such that for each prime l, we have ρE,l|GKF ′ ∼= ρπ,l, and in fact for each
finite place v of KF ′ we have WDv(ρE,l|GKF ′v )F−ss ∼= rec(πv|det |−1/2

v ).
Furthermore, Conjecture 2.8.6 holds for E.

Proof. We may immediately replace E by its Jacobian and hence assume that E
is an elliptic curve. If E is CM, then it is modular, while if E is isogenous to
a twist of its Galois conjugate over F , then the result follows as in the proof of
Proposition 9.2.1. We therefore assume that neither of these applies, and set A =
ResK/F E. Then A is an abelian surface of type B[C2], and RA = IndGFGK RE .
By Theorem 9.2.8, there is a Galois extension of totally real fields F ′/F , linearly
disjoint from K/F , and an automorphic representation π of GSp4(AF ′) such that
ρA,p|GF ′ ∼= ρπ,p.

Let Π be the transfer of π to GL4(AF ′). If κ is the quadratic character ofGF ′ cor-
responding to K ′ := KF ′/F ′, it follows that Π⊗(κ◦ArtF ′ ◦det) ∼= Π, so by [AC89,
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Thm. 4.2, 5.1 of §3] there is a cuspidal automorphic representation π of GL2(K ′)
such that Π is the automorphic induction of π⊗| det |. Write Gal(K ′/F ′) = {1, τ}.
We claim that π is of weight 0 and has trivial central character. Admitting this
claim, it follows from Theorem 2.7.3 that we can write

ρE,p|GK′ ⊕ (ρE,p|GK′ )
τ ∼= ρπ,p ⊕ ρτπ,p

where all four 2-dimensional representations are irreducible. After possibly replac-
ing π by πτ , we conclude that ρE,p|GKF ′ ∼= ρπ,p, so that by Theorem 2.7.3, for
each place v - p of K ′ we have WDv(ρE,l|GKF ′v )ss ∼= rec(πv|det |−1/2

v )ss. It follows
that in fact

WDv(ρE,l|GK′v )F−ss ∼= rec(πv|det |−1/2
v )

(because we know the corresponding statement for A). Repeating the argument for
a second prime p, we see that this holds for all finite places v.

It remains to prove the claim. By Lemma 2.6.1, for each place v|∞ of K ′,
either πv corresponds to φ0,1, or v is complex, and the L-parameter of πv is scalar,
given by (z/z)±1; in particular, in either case it is algebraic, and so the central
character χπ of π is algebraic. Moreover, if χπ is trivial, then the second case
cannot occur, so that π automatically has weight 0. We therefore assume from now
on that χπ 6= 1, and derive a contradiction.

Since Π∨ ∼= Π⊗ | · |−2, we have

π � πτ ∼= π∨ � (πτ )∨,

so that either π∨ ∼= π, or π∨ ∼= πτ . In the former case, we would have π ∼=
π∨ ∼= π � χ−1

π , from which it follows (if χπ 6= 1) that χπ is the character of a
quadratic extension L′/K ′ and π is induced from GL(1)/L′. This implies that ρA,p
is potentially abelian, and thus that E is CM, a contradiction.

We can therefore assume that π∨ ∼= πτ , so that χπτ = χ−1
π , and we shall

derive a contradiction from these assumptions. Write χ for the p-adic character
GK′ → Q

×
p corresponding to the algebraic character χπ. Let v - p be a place

of K ′ for which ρA,p|GK′ is unramified, and let the eigenvalues of ρE,p(Frobv) be
{αv, qv/αv} and those of (ρE,p)

τ (Frobv) be {βv, qv/βv}. Now, αvq
−1/2
v is either

a Satake parameter of π or πτ , so (using that χπτ = χ−1
π ) it follows that one

of βv, qv/αv, qv/βv is equal to either qvχ(Frobv)/αv or qvχ−1(Frobv)/αv.
Since χ is non-trivial, there is a set of places S of K ′ of positive density such

that χ(Frobv) 6= 1. Shrinking S if necessary, we deduce that there exists a set S of
positive density so that one of the following equalities holds for all v ∈ S:

qvχ(Frobv)/αv = βv,

qvχ(Frobv)/αv = qv/βv,

qvχ
−1(Frobv)/αv = βv,

qvχ
−1(Frobv)/αv = qv/βv.

By symmetry (replacing χ by χ−1 if necessary and βv by qv/βv if necessary), we
may assume that αvβv = qvχ(Frobv) for all v ∈ S.

Now, the representations ρE,p|GK′ and (ρE,p|GK′ )
τ have monodromy groups GL(2)

by [Ser68, Thm. IV.2.2] and are not twist equivalent (by our running assumptions).
It follows that the monodromy group of their tensor product is the identity com-
ponent of GO(4). Since this is connected, we deduce by considering the formal
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character of the corresponding Lie algebra sl2 × gl2 that for any fixed character ξ,
the generic element of the tensor product ξ−1 ⊗ ρ ⊗ ρτ does not have 1 has an
eigenvalue.

However, for each place v ∈ S, we have (since χ(Frobv) = αvβv/qv for v ∈ S):

ε−1(v)χ−1(v)⊗ {αv, qv/αv} ⊗ {βv, qv/βv} = {1, q2
v/α

2
vβ

2
v , qv/β

2
v , qvα

2
v}.

Since S has positive density, this is a contradiction, as required. �

9.4. K3 surfaces of large rank. If A is an abelian surface over a totally real
field F , then one may define the Kummer surface Km(A) to be the resolution
of the quotient of A under the map x 7→ −x. The variety Km(A) is a smooth
projective algebraic K3 surface with (geometric) Picard number ≥ 17. (All Picard
numbers in this section will be geometric Picard numbers.)

Proposition 9.4.1. Let A be an abelian surface over a totally real field F , and
let X = Km(A). Then Conjecture 1.1.1 holds for X.

Proof. The cohomology groups H∗(X,Qp) are trivial in odd degree. In even degree,
they are generated by H∗(A,Qp) plus the 16 dimensional space of Tate cycles
inH2(X,Qp) spanned by the 16 exceptional divisors in the resolutionX → A/(±1).
The latter classes are all defined over a finite extension of Q, and hence the Galois
representation (up to twist) they generate is an Artin representation. Hence the
result follows from Theorem 9.3.1 applied to A, together with the meromorphic
continuation of Artin L-functions. �

More generally, if a K3 surface X/F admits a Shioda–Inose structure [Mor84,
§6] over F , then H∗(X,Qp) ' H∗(Km(A),Qp) for some abelian surface A/F , and
Prop 9.4.1 implies Conjecture 1.1.1 for X. It might also happen that X/F admits
a Shioda–Inose structure over some finite extension E. Recall Ribet’s notion of
a Q-curve ([Rib04]) as an elliptic curve over Q all of whose conjugates by GQ are
isogenous:

Definition 9.4.2. An F -abelian variety is an abelian variety A over a Galois
extension E/F all of whose Gal(E/F )-conjugates are isogenous to A over E.

Suppose that the conjugates Aσ over A are isogenous to (at most) quadratic
twists ofA (as necessarily happens if {±1} are the only automorphisms in EndC(A)).
Then the Galois representations associated to ∧2H1(A) and thus to Km(A) extend
(even as compatible systems with Q-coefficients) to GF . Moreover, the (abso-
lutely irreducible) projective Galois representations associated to H1(A) also ex-
tend to GF , and thus, from the vanishing of H2(GF ,Q/Z) due to Tate, also give
rise to GF representations (now with coefficients). If F is totally real and A is
an F -abelian surface, one expects that the methods of this paper will have implica-
tions for the potential modularity of A. (Note that for primes p splitting completely
in E, the mod p representations over F locally arise from abelian surfaces overQp —
namely A itself.) We have not endeavored to undertake the task of proving results
along these lines, however, since verifying that the Galois representations extend in
the appropriate manner (especially when all the different possibilities for EndC(A)
are taken into account) would necessitate a somewhat involved analysis which we
avoid due to issues of time and space.
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9.4.3. General K3 surfaces of Picard rank ≥ 17. An algebraic K3 surface of Picard
number 17 or 18 need not admit a Shioda–Inose structure even over C ([Mor84]).
There need not even be a correspondence between X and an abelian surface A
inducing a Hodge isometry of transcendental lattices (TX ⊗Q) ' (TA ⊗Q). The
problem, as noted in [Mor84], is the following. Let U denote the hyperbolic plane
— the lattice of rank two generated by two isotropic vectors which pair to 1. Then
there are obstructions on the lattices TX of signature (2, 20−ρ(X)) = (2, 3) or (2, 2)
which arise from K3 surfaces to admit an injection of the form (TA⊗Q) ↪→ (U⊗Q)3.
One might still hope to construct abelian varieties from K3 surfaces of large Pi-
card rank by directly lifting the weight two polarized Hodge structure on TX to a
weight one Hodge structure of the smallest possible dimension. This amounts to
considering the GSpin cover of the corresponding orthogonal group and relating
that (in an ad hoc manner) to weight one Hodge structures via the identification
of the associated Shimura variety as one of Hodge type. This differs slightly from
the Kuga–Satake construction in which one has a functorial map from weight two
Hodge structures to weight one Hodge structures via the Clifford algebra construc-
tion — the latter gives rise to abelian varieties in a uniform way, but introduces
(in general) auxiliary dimensions, and, for a transcendental lattice TX of rank 5,
would produce an abelian variety of dimension 23 = 8. In the case of interest to us,
the corresponding GSpin Shimura variety will now (over C) be precisely the mod-
uli of abelian fourfolds with quaternionic multiplication (as considered in [KR99]),
where the degenerate case D = M2(Q) corresponds to the usual moduli space
of abelian surfaces. In particular, we arrive at the conclusion that a K3 surface
with ρ(X) = 17 or 18 should either admit a correspondence with an abelian sur-
face A inducing an isometry (TX ⊗Q) ' (TA ⊗Q), or there will exist an abelian
fourfold A with quaternionic multiplication (a fake abelian surface, see the dis-
cussion after the statement of Lemma 10.3.2) and a correspondence inducing an
injection (TX ⊗ Q)4 ↪→ (TA ⊗ Q). This can also be predicted more arithmeti-
cally by using the Yoga of motives. For convenience, suppose that ρ(X/F ) = 17.
Let R be the compatible system associated to the transcendental motive (that is,
the motive associated to the transcendental lattice), and assume that the Galois
representations rp are strongly irreducible for a density one set of primes p. One
can try to lift R (up to quadratic twist) to a 4-dimensional compatible system S
via the isogeny GSp4 → GO5, and then realize S as the motive associated to an
abelian surface. This happens, for example, when X = Km(A) for some A over F .
In general, however, one encounters two obstructions. The first is that one should
expect to have to extend coefficients of the motive by a compositum of quadratic
fields. This is because a characteristic polynomial of an element in GO5 with co-
efficients in Q lifts to a characteristic polynomial for GSp4 whose coefficients lie
either in Q or

√
D ·Q for some D. (This is an elementary computation with sym-

metric polynomials.) Let σS denote the compatible system obtained by applying
an automorphism σ ∈ GQ to the coefficients of S. Since ∧2S = R = ∧2(σS), the
irreducibility assumptions imply that S is a quadratic twist of σS for all σ ∈ GQ

acting on the coefficients. The restriction of S will thus have rational coefficients
over some field E/F with Gal(E/F ) = (Z/2Z)n where all the quadratic twists
become trivial. If this restriction corresponds to an abelian surface A, this would
predict (and even imply, see the remarks at end of [Mor84]) that there existed an
algebraic cycle on X × Km(A) which identified the corresponding transcendental
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lattices over Q. Moreover, the abelian surface A would be an F -abelian surface
in the sense of Definition 9.4.2. On the other hand, even supposing S has Q-
coefficients over E, it need not be the case that S comes from an abelian surface,
even though (for weight reasons) it must be an abelian motive. One also has to
allow the possibility that it comes from a fake abelian surface, that is, a fourfold A
with quaternionic multiplication (see the proof of Lemma 10.3.2). In summary,
given a K3 surface X of Picard rank at least 17 over a number field F , one should
be able to associate to X a canonical isogeny class of F -abelian surfaces or F -fake
abelian surfaces. Under sufficiently big image hypotheses, it should be possible to
rigorously justify the arguments of this paragraph using the methods and language
of [Pat19, §4].

9.4.4. Fake Kummer surfaces. This raises the natural question as to whether, given
an abelian fourfold with an inclusion D ↪→ End0(A) (a fake abelian surface), there
are any natural geometrical constructions which produce a K3 surface (or, con-
versely, a construction in the other direction). For that matter, one might ask for
an explicit geometric construction of either of these objects. Given six lines in gen-
eral position in P2, the desingularization X of the double cover branched over those
lines is, in general, a K3 surface of Picard rank 16. If the 6 lines are all tangent
to a smooth conic, however, then the K3 surface generically has Picard rank 17,
and moreover X is the Kummer surface associated to the Jacobian of the hyperel-
liptic curve obtained as the double cover of the conic branched at the six tangent
points [Mor85]. This suggests looking for other degenerations of the six lines which
could give rise to transcendental lattices with different integral structures.

The following construction, suggested to the authors by Madhav Nori, gives
a 3 = 20 − 17 dimensional rational family of such degenerations corresponding
to D = (−1, 3)Q. Given a generic point in this family of Picard number 17, the
corresponding K3 cannot be isogenous to a Kummer surface, and so indeed defines
a genuine false Kummer surface. It is an interesting question to determine whether
one can also see the corresponding abelian fourfold from this construction — possi-
bly associated to a generalized Prym variety of some natural cover of curves under
the map π : X → P2. Consider five lines Li for i = 1, . . . 5 in P2. These determine
a conic C which passes through the intersections L1∩L2, L2∩L3, L3∩L4, L4∩L5,
and L5 ∩ L1, which we denote by Pi for i = 1, . . . 5. Let L6 denote a sixth line
which is tangent to C at P6. Note that C ·

∑6
i=1 Li = 2

(∑6
i=1 Pi

)
is divisible

by 2. Let Y denote the degree 2 cover of P2 and X its desingularization. The
lifts of Pi in Y for i = 1, . . . , 5 are ordinary double points, and so the exceptional
divisors Ei in X satisfy Ei.Ei = −2. Let M =

∑5
i=1Ei. If π : X → P2 denotes

the projection, then π−1(C) = M +D, where D is now an everywhere unramified
double cover of C. But C ' P1, so D must decompose into two components A+B
meeting transversally at π−1(P6). Note that M.M = 5(−2) = −10, that A.B = 1
(meeting transversally at π−1(P6)), and π−1(C).π−1(C) = 2(C.C) = 8. More-
over, A.M = B.M = 5, intersecting in Ei for i = 1, . . . 5. It follows that, if we
let E = A−B, then E.E is equal to

(A+B+M).(A+B+M)− 2(A+B).M −M.M − 4.A.B = 8− 20 + 10− 4 = −6.

The class E is transverse to all exceptional classes as well as the pre-image of the
hyperplane class, so gives a new class in NS(X). Note that U⊗Q ' (〈2k〉⊕〈−2k〉)⊗
Q for any integer k. The transcendental lattice of the generic X is (U2⊕〈−2〉2)Q '
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(〈6〉 ⊕ 〈−6〉 ⊕ U ⊕ 〈−2〉2)Q, hence the corresponding transcendental lattice of this
restricted family is rationally contained in (U ⊕〈−6〉⊕〈−2〉2)Q. Since this rational
family has dimension 20−17 = 3, the generic member will have Picard rank 17. As
the form of the corresponding orthogonal group does not split, the lattice does not
admit an injection into (U⊗Q)3, and so X is not isogenous to any Kummer surface.
Indeed, from the rational structure of the resulting lattice, the corresponding fake
abelian surface A will have endomorphisms by D = (−1, 3)Q. (A related example
was also considered in [LPS13] — in particular the divisor denoted in [LPS13]
by X6.)

9.4.5. An Example. Take the conic to be y = x2, and the points Pi for i = 1, . . . 5
to be (n, n2) for n = −2, . . . , 2. Now choose the point of tangency P6 to be at (3, 9),
so Y can be given by:

w2 = (−x+ y)(x+ y)(y − 4z)(−3x+ y + 2z)(3x+ y + 2z)(−6x+ y + 9z).

The classes considered above are all defined over Q, and so Pic(X/Q) ≥ 17.
Let R = (Q, S, {rp}) denote the corresponding 5-dimensional compatible system
of GO5(Qp)-representations. One checks that the set S of places of bad reduction
is contained in the set of primes {p ≤ 11, 23, 37,∞}. Using both the determina-
tion of S and the fact that R(1) is self-dual, one computes that the determinant
ofR(1) is ψ, the quadratic character associated toK = Q(

√
−2 · 3 · 7 · 23 · 37). The

compatible system R(1) ⊗ ψ is valued in SO5(Qp). The corresponding symplectic
compatible system S of rank 4 need not have coefficients in Q, since it may come
from a Q-abelian variety in the sense of Definition 9.4.2. Indeed, it has coefficients
in Q(

√
3), and σS ' S ⊗ ψ, where σ is the non-trivial element of Gal(Q(

√
3)/Q),

and ψ is the character as above of conductor ∆K . In particular, although A is
a Q-fourfold, the field of definition will be K.

Over C, one expects that Nori’s construction gives a rational parameterization of
a component of the GSpin Shimura variety associated to the quaternion algebraD =
(−1, 3)Q with some small (possibly trivial) level structure. Over Q, the Q-structure
appears (by examining examples) to be associated to a twisted form associated toQ-
fourfolds A over a quadratic extension whose associated rank four motive over Q
has coefficients in Q(

√
3).

10. Applications to modularity

In this section, we apply our main modularity lifting theorem (Theorem 8.4.1)
to prove modularity theorems for abelian surfaces. The methods generalize those
of [Wil95, SBT97] for elliptic curves. In §10.3 and §10.4, we show that our results
confirm the paramodular conjecture of [BK14] in many cases, but that there are
counterexamples to the original formulation of the conjecture (arising from “fake
abelian surfaces”).

10.1. First modularity results. We begin this section with a proof of Theo-
rem 1.1.7 of the introduction.

Proposition 10.1.1. Let F be a totally real field in which p > 2 splits completely.
Let A/F be an abelian surface with good ordinary reduction at all places v|p, and
suppose that at each v|p, the unit root crystalline eigenvalues are distinct modulo p.
Assume that A admits a polarization of degree prime to p. Let

ρA,p : GF → GSp4(Fp)
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denote the dual of the mod p Galois representation associated to A[p], and assume
that ρA,p is vast and tidy. Assume that ρA,p is ordinarily modular, in the sense that
there exists π of parallel weight 2 and central character | · |2 which is unramified
and ordinary at all v|p, such that ρπ,p ∼= ρA,p, and ρπ,p|GFv is pure for all finite
places v of F . Then A is modular. More precisely, there is an ordinary automorphic
representation π′ of GSp4(AF ) of parallel weight 2 and central character | · |2 which
satisfies ρπ′,p ∼= ρA,p.

Proof. As before, we write ρA,p : GF → GSp4(Qp) for the Galois representation as-
sociated to the dual of the p-adic Tate module of A. The assumption that A admits
a polarization of degree prime to p implies that the image of ρA,p lands in GSp4(Zp)
and ρA,p lands in GSp4(Fp). By Proposition 2.8.1, the representation ρA,p is pure
for all places v of F . The assumption that A has good ordinary reduction for all v|p
and distinct unit root crystalline eigenvalues for all v|p implies that the represen-
tations ρA,p restricted to GFv are p-distinguished weight 2 ordinary. Prop 10.1.1 is
then an immediate consequence of Theorem 8.4.1. �

Remark 10.1.2. If A does not have a polarization of order prime to p, then, by
considering the kernel A[λ] of any polarization λ : A → At, we deduce that the
representation ρA,p : GQ → Aut(A[p]) = GL4(Fp) is reducible. Hence one could
replace the assumption of the existence of a polarization on A of order prime to p
in Prop. 10.1.1 by the assumption that the Galois representation associated to A[p]
is irreducible. On the other hand, we do not phrase our theorem in this way for the
following reason: if A does not have a polarization of order prime to p, then it need
not even be the case that the (necessarily reducible) representation ρA,p : GQ →
GL4(Fp) associated to A[p] lands in any conjugate of GSp4(Fp). Indeed, let E/Q
be any elliptic curve such that rE,3 : GQ → GL2(F3) has surjective image, let K/Q
be an auxiliary degree 3 cyclic extension, let B = ResK/Q(E), and let A denote
the kernel of the map B → E induced from the trace map Z[Gal(K/Q)] → Z.
Then A is an abelian surface, and ρA,3 ' rE,3 ⊗W , where W ∈ Ext1

GQ
(F3,F3) is

the unique non-trivial extension which splits over Gal(K/Q). The group theoretic
image of rA,3 is isomorphic to GL2(F3) × Z/3Z, but this is not isomorphic to
any subgroup of GSp4(F3). These examples are also related to the failure of the
Shafarevich–Tate group X to have square order — William Stein [Ste04] found
abelian surfaces A exactly of the form considered above with 3‖X(A)[3∞].

We now give some examples where one can directly establish the modularity of
certain residual representations.

Proposition 10.1.3. Let F be a totally real field in which p > 2 splits completely.
Let ρp : GF → GSp4(Fp) be an absolutely irreducible representation with similitude
factor ε−1 which is vast and tidy and p-distinguished weight 2 ordinary. Suppose
furthermore that either:

(1) p = 3, and ρ3 is induced from a 2-dimensional representation with in-
verse cyclotomic determinant over a totally real quadratic extension E/F
in which 3 is unramified.

(2) p = 5, and ρ5 is induced from a 2-dimensional representation valued in GL2(F5)
with inverse cyclotomic determinant over a totally real quadratic exten-
sion E/F in which 5 is unramified.
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(3) ρp is induced from a character of a quartic CM extension H/F in which p
splits completely.

Then ρp is ordinarily modular, that is, there exists π of parallel weight 2 and central
character | · |2 which is unramified and ordinary at all v|p, such that ρπ,p ∼= ρ,
and ρπ,p|GFv is pure for all finite places v of F .

Proof. Suppose that we are in one of the first two settings, so that p = 3 or 5,
and ρ = IndGFGE % for some representation % : GE → GL2(Fp) with determinant ε−1.
The assumptions on ρ imply that %|GE(ζp)

is absolutely irreducible, and the restric-
tion of % to the inertia group at any prime w|p is an extension of ε−1 by 1. If p = 5,
the condition on the determinant and the fact that E is unramified at p addition-
ally ensures that the projective image of % is not A5. The representation % locally
has the structure of a representation associated to an ordinary Hilbert modular
form of parallel weight two and trivial nebentypus. Suppose that % is modular. It
follows from [BLGG13, Thm. A] that % does indeed arise from a Hilbert modular
form of this kind, and we may take π to be the automorphic induction of this form
from E to F . Since E/F is unramified, this will preserve the property of being
ordinary. As in the proof of Theorem 9.2.8, purity follows from the main results
of [Bla06, Car14]. Hence it suffices to establish the modularity of %.

If % has solvable image, then, from a classification of the finite subgroups of GL2(k)
for a finite field k (see for example [SD73]), we deduce that the projective image of %
is either A4, S4, or dihedral, and is in particular a subgroup of PGL2(C). By a the-
orem of Tate (see [Ser77, Theorem 4]), this implies that there exists a characteristic
zero lift of % which is totally odd with finite solvable image, and the result follows
from an application of the theorems of Langlands and Tunnell ([Lan80, Tun81]) as
in §5 of [Wil95]. It remains to consider the representations with vast non-solvable
image. For p = 3, the only non-solvable induced representations which are vast
come from representations (Lemma 7.5.21 (4)) %3 : GF → GL2(F9) with projective
image A5. The modularity of such a representation follows as in the solvable case,
except now invoking the odd Artin conjecture for totally real fields ([PS16b, Thm.
0.3]) rather than Langlands–Tunnell. Alternatively, the arguments of [Ell05] over Q
may be adapted to this setting.

Thus we are left with the case of non-solvable representations % : GE → GL2(F5)
with determinant ε−1, which necessarily are surjective. The method of Khare–
Wintenberger implies the existence of characteristic zero lifts of the required form
(for example by [Sno09, Thm. 7.2.1] — the assumption that 5 is unramified in E
guarantees that [E(ζ5) : E] = 4). To show that such a lift is modular, it suffices (by,
for example, the main theorem of [Kis09]) to show that % is modular. However, this
follows from a standard argument going back to [SBT97, Tay03] by realizing % as
the 5-torsion of a modular elliptic curve over a solvable extension. In our situation,
we may explicitly invoke [PS16b, Prop. 2.1.3].

Suppose finally that ρp = IndGFGH χ, where H/F is a quartic CM extension in
which p splits completely. Let v|p be a prime in F . The assumption that ρp
is ordinary implies that for two of the primes w|v of H the restriction of χ to
inertia at w is ε−1, and it is trivial at the other two primes above v. Let ψ denote
an algebraic Grossencharacter of GH with conductor prime to p and CM type
corresponding to the mod-p weights of χ. If ψp is the p-adic avatar of ψ, then,
by construction, the character ψp/χ mod p is unramified at p, and hence, after
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twisting ψ by the Teichmuller lift of this character, we may assume that ψp ≡ χ
mod p. Let E/F denote the intermediate real quadratic field inside H. Then
the automorphic induction of ψ to GL2(AE) is a Hilbert modular form of parallel
weight two which is ordinary at all v|p and has trivial central character. Inducing
once more to F , we obtain the required form π. �

For explicit examples of abelian surfaces A/Q with EndC(A) = Z whose mod-3
or mod-5 representations ρA,p satisfy Prop. 10.1.3 — and hence, by Prop. 10.1.1,
are modular — see [CCG20]. In contrast to the examples found in [BPP+19]
and [BK20] of large prime conductor, the examples found in [CCG20] have good
reduction outside 2, 3, 5, and 7.

We also have the following application to modularity over number fields which
need not be totally real (or even CM).

Theorem 10.1.4. Let F be a totally real field in which 5 splits completely, and
let K/F be a quadratic extension in which 5 is unramified. Let E/K be an elliptic
curve which has good ordinary reduction or semistable ordinary reduction for all
places w|5 of K. Finally, assume that the representation %E,5 : GK → GL2(F5)
has the following properties:

(1) The projective image of %E,5 is either S5 = PGL2(F5) or S4.
(2) There exists a representation r5 : GF → GL2(F5) with determinant ε−1

such that r5|GK ∼= %E,5.
Then E is modular. In particular, there exist infinitely many modular elliptic curves
over K up to twist which are not CM and do not come from any subfield of K.

For example, one could take F to be Q(
√
d) for any d ≡ 1, 4 mod 5, and then

take K = Q( 4
√
d), which is a field of mixed signature.

Proof. It suffices to prove that the twist of E by some quadratic character is mod-
ular. We now apply Lemma 7.5.26 to the representation r5 of GF to obtain a
representation

ρ = IndGFGK (r5|GK ⊗ δM/K) = IndGFGK (%E,5 ⊗ δM/K),

where δM/K is the character of an auxiliary quadratic extension. By Lemma 7.5.27,
this representation is vast and tidy and p-distinguished weight 2 ordinary.

As in the proof of Proposition 10.1.3, it follows from our hypotheses that r5

comes from an ordinary Hilbert modular form π for F . By taking the base change
of this form to K/F , twisting by the quadratic character δM/K , and then inducing
back to F , we construct a π of parallel weight 2 and central character | · |2 which
is unramified and ordinary at all v|p such that ρπ,p ∼= ρ. Again, the purity of ρπ,p
follows from the main results of [Bla06, Car14]. It follows from Theorem 8.4.1 that

ρ = IndGFGK (%E,5 ⊗ δM/K)

is modular, and hence (exactly as in the proof of Theorem 9.3.4) that %E,5 ⊗ δM/K

and hence E is modular.
It is easy to produce examples of E satisfying the hypotheses of the theorem

(starting with an elliptic curve over Q, for example). Using the fact that the genus
zero curve X(%E,5) is isomorphic to P1 over K (there being at least one rational
point coming from E), we deduce that there will be infinitely many such points.
On the other hand, by choosing such points with appropriate local properties (for
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example, ramified at one prime w above v but not at the other) we may find
infinitely many examples which do not arise via base change. Since the mod 5-
representations associated to these curves are not projectively dihedral or cyclic,
they also cannot have CM. �

10.2. Abelian varieties with fixed 3-torsion. We have produced a number of
residual representations mod p for small p which are automorphic. It is natural to
ask whether any such representation (satisfying necessary local conditions) arises
from infinitely many abelian surfaces over F . The corresponding question for 2-
dimensional representations has a positive answer precisely when p = 2, 3, or 5,
where the corresponding moduli space is a smooth curve of genus zero. We show
that for abelian surfaces there is a positive answer for p = 2 and p = 3. When p ≥ 5,
the moduli space in question is of general type [HS02], and so one would not expect
(in general) that they admit infinitely many rational points not lying on a special
Shimura subvariety, although we do not attempt to address this question.

When p = 2, the problem is pretty much obvious. The fact that the corre-
sponding moduli space for the trivial representation ρ is rational goes back to Igusa
(see [HS02, Theorem IV.1.4] and [Igu64]). The fact that the corresponding moduli
space for non-trivial ρ is unirational is also surely well-known (we shall now give
a sketch of this result although we shall never use this fact). Fix a representa-
tion ρ : GF → GSp4(F2). Since GSp4(F2) ' S6, one may write any G-extension L
of F for G ⊆ S6 as the splitting field of a degree 6 separable polynomial f(x)
over F . If one then takes A to be the Jacobian of the curve y2 = g(x) for any g(x)
withQ[x]/g(x) ' Q[x]/f(x), then ρ is the representation associated to the 2-torsion
of A. An elementary computation shows that this gives a 3 = 6 − dim PGL2 di-
mensional family of abelian surfaces up to isomorphism with fixed ρ for any such ρ.
Explicitly, one may let ei for i = 1 to 6 be any basis over Q of the étale Q-
algebra Q[x]/f(x), and then let g(x) be the minimal polynomial of

∑
tiei. (The

Jacobian A depends only on g(x) up to the action of PGL2 on P1.)
This leaves the case p = 3. The answer in this case can be extracted from the very

extensive literature on the subject, essentially following the main idea of [SBT97].
Fix ρ : GF → GSp4(F3) with inverse cyclotomic similitude character, and let V
denote the underling symplectic space over F3. Let B(ρ)/F denote the moduli
space of pairs (A, ı3) consisting of abelian surfaces A and symplectic isomorphisms

ı3 : A[3]
∼−→ V ∨.

(The dual is here because our Galois representations have been normalized coho-
mologically, so it is the dual representations which actually occur inside the p-
adic Tate modules.) The variety B(ρ) is smooth and geometrically connected.
Over C, we may identify B with the moduli space of principally polarized abelian
surfaces with full level 3 structure. This space is well-known to be a (geometri-
cally) rational threefold, and is isomorphic to an open subvariety of the Burkhardt
quartic [Bur91, Cob06, Bak46, Hun96, BN18], specifically, the complement in the
Burkhardt quartic of the Hessian hypersurface.

The Burkhardt quartic is exceptional for a number of different reasons, not least
of which is that it admits an action of the group PSp4(F3) (tautologically from
the description above). If V = (µ3)2 ⊕ (Z/3Z)2, we write B for B(ρ). One knows
([BN18]) that B is rational over Q. Suppose we knew that ρ actually came from
an abelian surface A, so that B(ρ) admitted a smooth rational point over F . One
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might ask whether this is enough to force the twist B(ρ) to be rational over F ; this
question is resolved in the negative in [CC20]. The difficulty in a naïve attempt to
replicate the argument of Taylor and Shepherd-Barron ([SBT97]) in this case is that
the birational map B → P3 is not equivariant with respect to PSp4(F3) and any
embedding PSp4(F3) → PGL4(Q) = Aut(P3). This means that a PSp4(F3)-twist
of B does not naturally inherit the structure of a Severi–Brauer variety.

It turns out, however, that we are lucky. There exists a cover P (ρ) → B(ρ) of
degree 6 corresponding to an additional choice of level 2 structure of A, namely
an odd theta characteristic, (or, for A = Jac(C), a Weierstrass point on the corre-
sponding genus two curve C). The cover P (ρ) now does have the property that it is
not only rational, but PSp4(F3)-equivariantly rational, which allows us to deduce
the rationality of P (ρ) in favourable circumstances, and hence the unirationality
of B(ρ). In particular, this allows us to construct infinitely many rational points
on B(ρ) which correspond to abelian surfaces A with EndC(A) = Z, as in the
following theorem.

Theorem 10.2.1. Fix ρ : GF → GSp4(F3) with similitude character ε−1. Then B(ρ)
is unirational over F , and there exist infinitely many principally polarized abelian
surfaces A/F up to twist with EndC(A) = Z and such that ı3 : A[3] ' V (ρ)∨.
Moreover, we may additionally assume that these A are Jacobians of curves which
have a rational Weierstrass point, and may thus be written in the form y2 = f(x)
where f(x) is a quintic polynomial. Suppose, in addition, that for all v|3, the rep-
resentation ρ|GFv arises as the 3-torsion of an abelian surface over Fv with good
ordinary reduction. Then we may additionally assume that these A also all have
good ordinary reduction for all v|3.

Note that, as with of [SBT97, Thm. 1.2], we do not need to impose any fur-
ther local hypotheses at any primes after we impose the global condition on the
similitude character. (In particular, if K is a local field of characteristic zero, then
by using a globalization argument as in [Cal12, Thm. 3.1], this implies that the
only requirement on a mod 3-representation ρ : GK → GSp4(F3) to arise from a
principally polarized abelian surface over K is that the similitude character is ε−1.)

The remainder of this section is devoted to the proof of Theorem 10.2.1. We start
by defining the non-Galois degree 6 cover P of B and recalling its basic properties.

Definition 10.2.2. Let B(2) := A2(6) → A2(3) = B denote the cover of B
corresponding to a choice of full level-2 structure. It is a Galois cover with Ga-
lois group S6 ' PSp4(F2), where we fix this identification up to conjugacy by
identifying S6 generically with the Galois group of the Weierstrass points on C
with Jac(C) = A. (This identification can be made explicit using the map τ be-
low.) Then P denotes the intermediate cover over B corresponding to the conjugacy
class of subgroups S5 ⊂ S6 = PSp4(F2) which fix a point.

A more natural definition of P is given in terms of theta characteristics. Namely,
P may be identified with the moduli space A2(3)− of principally polarized abelian
surfaces with a symmetric odd theta structure of level 3 (see [DL08, §2.3]). Recall
that there is a natural Torelli map τ : M2(3) → A2(3) which is a bijection away
from the Humbert surface consisting of principally polarized abelian surfaces which
split as the product of two elliptic curves. A rational point on P in the image
of τ corresponds to A = Jac(C), together with a symplectic isomorphism from A[3]
to (µ3)2 ⊕ (Z/3Z)2 and the data of a rational Weierstrass point on C, which (after
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moving this point to infinity) means that C can be written in the form y2 = f(x)
for a quintic polynomial f(x).

The level 3-structure on B pulled back to P gives an action over Q(
√
−3) of

the group PSp4(F3). If one gives PSp4(F3) the structure of an étale group scheme
over Q by viewing it as the group G of symplectic automorphisms of µ2

3× (Z/3Z)2

modulo (−1,−1), then this action descends to Q. Equivalently, the twisting of any
automorphism in PSp4(F3) by the action of σ ∈ GQ is accounted for by the Galois
action on µ2

3 × (Z/3Z)2 (as in the formula for σθ below).

Proposition 10.2.3. The variety P is rational over Q. Moreover, there exists a
birational map P → P3 over Q which is equivariant with respect to the action of G
for some action of G on P3.

Proof. The G-equivariant map P → P3
Q is the odd theta map denoted Th− in §2.4

of [DL08]. The fact that Th− is a birational isomorphism is [Bol07, Theorem 0.0.1].
�

We now turn to the proof of Theorem 10.2.1. From Proposition 10.2.3, it follows
that the rationality of P (ρ) over F is equivalent to the rationality of P3(ρ) over F ,
where P3(ρ) is the twist of P3 arising from the projective representation associated
to ρ. The action of Sp4(F3) on µ2

3×(Z/3Z)2 over Q(ζ3) induces a homomorphism θ
from Sp4(F3) to Aut(P ) and hence to Aut(P3). This map satisfies

σθ(α) = θ



ε(σ) 0 0 0

0 ε(σ) 0 0
0 0 1 0
0 0 0 1

α


ε−1(σ) 0 0 0

0 ε−1(σ) 0 0
0 0 1 0
0 0 0 1


 .

Since ρ has similitude factor ε−1, we can associate to ρ a cocycle

σ 7→ θ

ρ∨(σ)


ε−1(σ) 0 0 0

0 ε−1(σ) 0 0
0 0 1 0
0 0 0 1


 ,

in H1(F,PGL4(Q)), and P3(ρ) is the twist of P3 by this cocycle.

Lemma 10.2.4. If ρ : GF → GSp4(F3) has similitude factor ε−1, then P (ρ) is
rational.

Proof. The proof is very similar to the proof of [SBT97, Lem. 1.1]. We need to
show that the cocycle in H1(F,PGL4(Q)) corresponding to ρ vanishes, so it is
enough to show that it comes from H1(F,GL4(Q)). It is therefore enough (follow-
ing the argument in [SBT97]) to show that we can lift the induced homomor-
phism θ : PSp4(F3) → PGL4(Q) to a unique homomorphism θ̃ : Sp4(F3) →
GL4(Q). Since PSp4(F3) is perfect (indeed simple) it has a unique Schur cover
(Darstellungsgruppe). Since the Schur multiplier of PSp4(F3) has order 2 ([CCN+85]),
the Darstellungsgruppe of PSp4(F3) may be identified with Sp4(F3), and in partic-
ular the projective representation θ lifts to a genuine homomorphism θ̃ : Sp4(F3)→
GL4(Q). It remains to show this lift is unique.

We claim this follows from the fact that Sp4(F3) is perfect. Indeed, because
the group is perfect, every element of Sp4(F3) can be written as a product of
commutators [g, h]. Hence it suffices to show that θ̃([g, h]) is uniquely defined.
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But θ̃([g, h]) = [θ̃(g), θ̃(h)], and the commutator of any two elements of GLn(Q)
depends only on their images in PGLn(Q), as required. We note (although we
do not use this fact) that PSp4(F3) has no faithful 4-dimensional representations
(again by [CCN+85]) and so the representation θ̃ of Sp4(F3) is faithful. �

Remark 10.2.5. Note that the corresponding facts (that PSL2(F5) is simple with
Darstellungsgruppe SL2(F5)) lead to a proof of [SBT97, Lem. 1.1]. This differs
slightly from the original proof in [SBT97] as follows: Instead of using the fact
that PSL2(F5) has Schur multiplier Z/2Z and deducing that any irreducible pro-
jective representation θ lifts to a representation θ̃ : SL2(F5)→ GL2(Q), the authors
use the fact that the kernel of SL2(Q)→ PSL2(Q) has order 2, and so θ automati-
cally lifts to a representation of a degree 2 central extension of PSL2(F5) to SL2(Q),
and then argue that the image (and hence source) is SL2(F5) (because the split cen-
tral extension would give a faithful 2-dimensional representation of PSL2(F5)).

We have now proved under the given hypothesis on ρ that P (ρ) is rational, and
hence B(ρ) is unirational. Moreover, twisting P by ρ leaves the level structure at the
odd theta characteristic unchanged, so that all the corresponding abelian varieties
in the image of the Torelli map are Jacobians of curves C of the form y2 = f(x)
where f(x) is a quintic (after moving the rational Weierstrass point to infinity).

Proof of Theorem 10.2.1. We need to show that infinitely many of the correspond-
ing points of P (ρ) do not admit any extra endomorphisms over C. We show that we
may find infinitely many A such that the Galois representation associated to A[5]
has image containing Sp4(F5). If A/F did admit extra endomorphisms over F ,
then, from the classification of the possible Galois types of endomorphism struc-
tures on A recalled at the beginning of §9.2, the Galois representation associated to
the 5-adic Tate module of A would become reducible after making an extension of
degree at most 2. But the action of Sp4(F5) on F4

5 remains absolutely irreducible
after restriction to any index two subgroup, which forces EndQ(A) = Z. (In this
argument, 5 could have been replaced by any prime p independent of the level
structure.)

We will now arrange this condition by an application of Hilbert irreducibility
as in the proof of [SBT97, Theorem 1.2]. Let R(ρ) → P (ρ) be the fibre product
of P (ρ) with A2(5) → A2. This is a Galois cover with Galois group PSp4(F5).
Recall that P (ρ) is rational. By Hilbert irreducibility ([Ser89, §9.2, 9.6]), we may
find infinitely many points x ∈ P (ρ)(F ) so that the Galois group of the splitting field
of any preimage y ∈ R(ρ) of x contains PSp4(F5), and moreover, we may restrict x
to any non-trivial open subset of P (ρ)(Fv) for all v in some finite set of primes S.
If A denotes the corresponding abelian surface, it follows that the projective Galois
representation associated to ρA,5 contains PSp4(F5), and thus the image of ρA,5
itself contains Sp4(F5). If we now use the assumption that P (ρ)(Fv) has points
corresponding to abelian surfaces with good ordinary reduction at all v|3, then
(since the ordinary condition is open) we can choose our x ∈ P (ρ)(F ) so that A/F
has good ordinary reduction for all v|3. �

We obtain the following corollary:

Theorem 10.2.6. Let F be a totally real field in which 3 splits completely. Then
there exist infinitely many abelian surfaces A/F up to twist with EndC(A) = Z
which are modular, and which do not come from any proper subfield of F (in the
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sense that, for each p, there is no twist of the corresponding Galois representa-
tion ρA,p which extends to the absolute Galois group of a proper subfield of F ).

Proof. LetH/F be a quadratic extension in which every prime v|3 is inert, and let σ
be the non-trivial element of Gal(H/F ). Let E/H be an elliptic curve with good
ordinary reduction for all v|3, such that ρE,3 : GH → GL2(F3) is surjective, and
such that the projective images of ρE,3 and ρσE,3 are totally disjoint. Since X(1) has
genus zero, this can be achieved by choosing a global point which lies over a suitable
choice of smooth point inX(1)(kw) (with kw = OH/w) for suitably chosen primes w
which split over F , for example ensuring that ρE,3(Frobw) and ρE,3(Frobwσ ) give
distinct elements of PGL2(F3). Similarly, by making choices above primes of Q
which split completely in H, we may ensure that ρ = IndGFGH ρE,3 does not descend
after twisting to any proper subfield of F .

By Lemma 7.5.22, ρ is vast and tidy. The fact that each prime v|3 in H/F
is inert implies that ρ is 3-distinguished and finite flat, and hence 3-distinguished
weight 2 ordinary. It follows from Proposition 10.1.3 that ρ is ordinarily modular.
The representation ρ at each v|3 arises locally from an abelian variety over Fv with
good ordinary reduction, because it does so globally — namely, the restriction of
scalars of E from Hv to Fv. It follows from Theorem 10.2.1 that there are infinitely
many abelian surfaces A with up to twist with good ordinary reduction at each
place v|3 and satisfying A[3] ∼= ρ. The choice of ρ ensures that any such A does not
descend (even after twist) to any subfield of F . Finally, every such A is modular
by Proposition 10.1.1. �

10.3. The Paramodular Conjecture. We end this section with a discussion of
the relationship between our results and the “paramodular conjecture” of [BK14]
(cf. also the remarks in [Yos80, §8, p.243]). Recall that this conjecture states that
there should be a bijection (determined by the compatibility of Frobenius eigenval-
ues and Hecke eigenvalues at unramified places) between isogeny classes of abelian
surfaces A/Q of conductor N with EndQA = Z, and holomorphic cuspidal Siegel
newforms of weight 2 and paramodular level N which are “non-lifts” and have ra-
tional Hecke eigenvalues, considered up to scalar multiplication. Here “non-lifts”
means that they are orthogonal to the space of Gritsenko lifts. We explain in
this section why the paramodular conjecture as originally formulated in [BK14] is
not true. The issue is that Siegel newforms of weight 2 and paramodular level N
with rational eigenvalues will not always correspond to abelian surfaces. In light
of the observations of this paper, Brumer and Kramer have modified their con-
jecture in [BK19] along the lines suggested by the analysis presented here — we
reproduce their updated conjecture in this paper as Conjecture 10.4.3 below. In
order to distinguish between the two versions of this conjecture, we refer to the
original formulation (given above) as the original paramodular conjecture, and the
modified version (Conjecture 10.4.3) as the paramodular conjecture. Both of these
conjectures posit an injective map from isogeny classes of abelian surfaces A/Q
of conductor N with EndQA = Z to Siegel newforms of weight 2 and paramodu-
lar level N , which are “non-lifts” and have rational Hecke eigenvalues, and hence,
when talking about the implication in this direction, we do not distinguish between
different versions of the conjecture.
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We firstly show that all of our examples of modular abelian varieties verify the
paramodular conjecture, before giving a more general explanation of the relation-
ship between the paramodular conjecture and the Langlands program, and then
explaining some counterexamples to the original paramodular conjecture.

Lemma 10.3.1. Any abelian variety A/Q satisfying the hypotheses of Proposi-
tion 10.1.1 satisfies the paramodular conjecture; that is, there is a corresponding
holomorphic cuspidal Siegel newform of weight (2, 2) and paramodular level equal
to the conductor of A, which is a non-lift, has rational Hecke eigenvalues, and is
unique up to scalars.

Proof. By Proposition 10.1.1 (or more precisely by Theorem 8.4.1, as applied in
the proof of Proposition 10.1.1) there is an L-packet of cuspidal automorphic repre-
sentations π of weight 2 and general type corresponding to A, whose L-parameters
coincide with those determined by A. The claim that there is a unique correspond-
ing newform of level equal to the conductor of A is now a consequence of the theory
of newforms due to Roberts and Schmidt [RS07b] (which assumes that we are work-
ing with representations of trivial central character, but this is harmless, as we can
reduce to this case by twisting π by | · |). This newform is certainly a non-lift,
as π is of general type (see the discussion following this lemma for a more precise
description of the non-lifts), and it has rational Hecke eigenvalues by local-global
compatibility.

More precisely, by [Sch18, Thm. 1.1], for each prime v of Q, there is a unique
paramodular representation in the L-packet at v, namely the unique generic rep-
resentation. Since representations of general type are stable, this gives rise to a
unique π of weight 2 which has a paramodular vector at each finite place. Further-
more, for each v the space of paramodular vectors at minimal paramodular level is
one-dimensional by [RS07b, Thm. 7.5.1], and this minimal paramodular level co-
incides with the conductor of the corresponding L-parameter (and thus with that
of A) by [RS07b, Thm. 7.5.4(iii)] and the main theorem of [GT11a]. �

We now discuss the paramodular conjecture more broadly. Firstly, we discuss
the automorphic side of the conjecture. As explained in [Sch18], the space of Siegel
modular forms of weight 2 and fixed level can be written as an orthogonal sum of
spaces spanned by eigenforms in automorphic representations of the various types
in Arthur’s classification. The Gritsenko lifts are precisely those of Saito–Kurokawa
type, while those of one-dimensional type do not contribute to the cuspidal spec-
trum. Since abelian surfaces with EndQA = Z should correspond to automorphic
representations of general type (as their corresponding Galois representations are ir-
reducible), we see that it is implicit in the statement of the conjecture that there are
no paramodular eigenforms (at least with rational Hecke eigenvalues) of Yoshida,
Soudry, or Howe–Piatetski-Shapiro type.

This is indeed the case, as is proved in [Sch18, Sch20]. The case of Yoshida type
is [Sch18, Lem. 2.5]; in this case, the parameters are unstable, and the corresponding
packet of representations does not satisfy the required sign condition. Indeed, at
each finite place, the condition that the representation admits a paramodular vector
forces the sign to be trivial, whereas the condition of being the holomorphic limit of
discrete series at infinity gives a non-trivial sign. Note that the analogous argument
would fail for totally real fields of even degree.
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The cases of Soudry and Howe–Piatetski-Shapiro type are [Sch20, Prop. 5.1]. In
these cases the obstructions to the existence of paramodular vectors are at finite
places; it turns out that at the places where these representations are ramified, there
are no paramodular vectors. In these cases the representations are parameterized
by certain Hecke characters, and the fact that the representations are ramified at
some finite place comes from the fact that any Hecke character must be ramified.
Accordingly, the analogous argument could fail for totally real fields of class number
greater than 1.

It follows from this discussion that the original paramodular conjecture is equiv-
alent to the claim that there is a bijection between isogeny classes of abelian
surfaces A/Q with EndQA = Z, and cuspidal automorphic representations Π
of GL4(AQ) of symplectic type with multiplier | · |2, whose infinity type is the
one corresponding to the L-parameter φ2;1,0, and whose Hecke eigenvalues are all
rational. In one direction, given A, the existence of Π is certainly predicted by
the Fontaine–Mazur–Langlands conjecture, the rationality of its Hecke eigenvalues
following from strong multiplicity one. We now explore the converse direction.

Lemma 10.3.2. Let F be a totally real field. Assume the Fontaine–Mazur Con-
jecture, the Standard Conjectures, the Hodge Conjecture, and that the Galois repre-
sentations associated to any cuspidal automorphic representation Π for GL4(AF )
whose infinity type for each v|∞ corresponds to the L-parameter φ2;1,0 form an
irreducible weakly compatible system. Let Π be such a representation with the prop-
erties that its Hecke eigenvalues are rational, and that Π is of symplectic type with
multiplier | · |2. Then, associated to Π, there exists a corresponding motive A/F
such that either:

(1) A/F is an abelian surface.
(2) A/F is an abelian fourfold with endomorphisms over F by an order in a

quaternion algebra D/Q.
Moreover, if A/F is an abelian fourfold with EndF (A) ⊗ Q = EndC(A) ⊗ Q an
indefinite quaternion algebra D/Q, and one assumes only standard automorphy
conjectures, then there exists a corresponding Π of symplectic type with rational
eigenvalues and multiplier | · |2.

One might reasonably (following Serre [DR73, §0.7, p. DeRa-13]) call an abelian
fourfold A with endomorphisms by an order in a quaternion algebra D/Q a fake
(or false) abelian surface (fausse surface abélienne).

Sketch of proof. (For a more detailed proof of a closely related result, see [PVZ16,
Thm. 3.1].) One first obtains from Π a rank 4 symplectic weakly compatible irre-
ducible family of p-adic Galois representations

R = (Q, S, {Qv(X)}, {rp}, {Hτ})

with Hτ = (0, 0, 1, 1) for all τ |∞, and such that

rp : GF → GSp4(Qp)

has inverse cyclotomic similitude character. The Fontaine–Mazur conjecture implies
that R arises from a pure irreducible motive M over F with coefficients in Q (we
also now assume the standard conjectures [Kle94]). Concretely, this means that
M is irreducible and that for each prime p, the p-adic étale realization of M ,
Hi
et(M,Qp)⊗Qp

Qp contains rp. By the Brauer–Nesbitt theorem, all the twists of
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rp by automorphisms of the coefficient field Qp are isomorphic to rp. Therefore,
if we assume the Tate conjecture, we deduce that Hi

et(M,Qp)⊗Qp
Qp is a sum of

copies of rp. The rank of M is therefore 4d for some d. Let EndQ(M) ⊗Q = D.
SinceM is simple, D is a division algebra. The centre of D is a number field E. We
claim that E = Q. It suffices to show that, for all p, the centre ofD⊗QQp isQp. By
the Tate conjecture, however, we can determine D ⊗Qp from the endomorphisms
of the p-adic étale realization of M , which is isomorphic to a direct sum of d copies
of rp. It follows that EndQp[GF ](r

d
p) is a matrix algebra over Qp, and thus has

centre Qp. Hence E = Q.
Let us fix an embedding F → C. The Hodge realization of M is a polarized

Hodge structure of weight one, which gives a polarized torus, and thus (by Riemann)
an abelian variety B over C. Since M is defined over F , we deduce that, for any
automorphism σ of C over F , Bσ is isogenous to B. Let 2d be the dimension of
B and r be the degree of its polarization. Let A2d,r be the coarse moduli space
of abelian varieties of dimension 2d with a degree r polarization. This is a scheme
of finite type over Q. We base change it to F . Let [B] be the point on A2d,r

associated to B. The set of points on A2d,r isogenous to [B] is countable. On the
other hand, if the residue field of [B] in A2d,r is transcendental over F , we deduce
that its orbit under Aut(C/F ) is uncountable because there are uncountably many
ways to embed a transcendental field of finite type over F into C. It follows that
[B] is defined over a finite algebraic extension L of F and that B is defined over
a finite algebraic extension L′ of L. Moreover, M |L′ = h1(B). We now consider
C = ResL′/FB, an abelian scheme over F . Looking at the p-adic étale realization
Cp of C for a prime p, we find that Cp = Mp ⊗ IndL′/F1 where Mp stands for
the p-adic realization of M . We now let A be the simple factor of C whose p-adic
étale realization contains rp. Then R arises from h1(A). It follows from the Tate
conjecture that h1(A) and the motive M we started with are in fact isomorphic.

Now taking into account that the centre of D is Q, we deduce from the Albert
classification (see [Mum08, Thm. 2, p. 201]) that A is one of the following three
types:

(1) Type I: A/F is an abelian surface with EndQ(A) = Z.
(2) Type II: A/F is an abelian fourfold with EndQ(A)⊗Q = D, an indefinite

quaternion algebra over Q.
(3) Type III: A/F is an abelian fourfold with EndQ(A) ⊗ Q = D, a definite

quaternion algebra over Q.

(Note that Type IV of the Albert classification cannot occur, because the centre F =
Q of D is not a totally imaginary CM field.)

Suppose that A/Q is an abelian fourfold with EndQ(A)⊗Q = EndC(A)⊗Q = D
for some indefinite quaternion algebra D/Q (and thus of Type II above). We
now construct a suitable compatible system R, which (by standard automorphy
conjectures) will give rise to a suitable Π. The Mumford–Tate conjecture is known
for the varieties of type II [Chi92, Chi90], and the semisimple part h of the Lie
algebra of the Mumford–Tate group of A is (for almost all p) sp4. Let p be any prime
which splits D. Then H1(A,Qp) has an action of D⊗Qp = M2(Qp). In particular,
it decomposes as Vp ⊕ Vp for an irreducible 4-dimensional representation Vp whose
monodromy group is contained in GSp4(Qp).
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If Qv(T ) denotes the degree 8 polynomial in Z[T ] coming from the characteristic
polynomial of Frobenius at v, then every root of Qv(T ) has even multiplicity, and
thus Qv(T ) = Pv(T )2 for a degree 4 polynomial Pv(T ) ∈ Z[T ], which will be the
characteristic polynomial of Frobenius at v on Vp. By the Weil conjectures, the
roots of Qv(T ) obey the usual symmetry associated to a weight one motive, and
so the same is true for Pv(T ). This implies that V ∨p ' Vp ⊗ ε−1. Since the Galois
representation has big image in Vp, any isomorphism Vp ' Vp ⊗ χ forces χ to be
trivial, and thus from the identification V ∨p ' Vp ⊗ ε−1 above we deduce that the
similitude character is inverse cyclotomic. In particular, by standard automorphy
conjectures, V will be associated with a Π as in the theorem. By strong multiplicity
one [JS81], the rationality of Hecke eigenvalues at almost all primes (in particular
primes of good reduction) forces rationality at all primes. �

10.4. Examples and counterexamples. In this section, we give some examples
of abelian fourfolds A/F with EndF (A) ⊗Q = D for a quaternion algebra D/Q.
In Lemma 10.4.4, we prove the existence of such A which also satisfy EndC(A) ⊗
Q = D for some indefinite D/Q. But first, we construct abelian fourfolds A/Q
with EndF (A) ⊗ Q = D, and such that (under standard conjectures, and even
unconditionally in some cases), they correspond to a Π as above which comes from
a paramodular eigenform with rational Hecke eigenvalues, and thus contradict the
original paramodular conjecture.

10.4.1. Abelian fourfolds of type III. We expect that case (3) considered in the
proof of Lemma 10.3.2 cannot occur. While we do not show that here, we instead
discuss a minor subtlety which occurs when trying to construct examples of this
kind.

Let E/Q be an elliptic curve (say without complex multiplication). Let F/Q be
(say) a totally real field with Gal(F/Q) = Q, the quaternion group of order 8. The
group Q has an irreducible representation W/Q of dimension 4, which contains a
stable integral lattice Λ ⊂ W . Note that, for any prime p, there is a decomposi-
tion W ⊗Qp = V ⊕ V for an irreducible 2-dimensional faithful representation V
of Q. Now let us define:

A = E4 = E ⊗Z Λ.

We find that A is simple over Q, and EndQ(A)⊗Q = EndQ(W ) = D, where D/Q
is the Hamilton quaternions. The corresponding compatible system R arises from
Galois representations

ρp := rE,p ⊗ V : GQ → GL4(Qp).

For p 6= 2, the image of this Galois representation lies in GL4(Qp). On the other
hand, the possible symplectic forms associated to ρp are the one dimensional sum-
mands of

∧2ρ = (Sym2 ρE,p ⊗ det(V ))⊕ (det(ρE,p)⊗ Sym2(V )).

Since det ρE,p = ε−1, we obtain symplectic representations with inverse cyclo-
tomic similitude character if and only if Sym2(V ) contains the trivial represen-
tation. But det(V ) = 1 for the faithful complex 2-dimensional representation of Q,
so Sym2(V ) is the direct sum of the three non-trivial quadratic characters of Q,
and these compatible families do not have the required form.

More generally, suppose that A/Q is an abelian fourfold with EndQ(A)⊗Q = D
for some definite quaternion algebra D. The corresponding Shimura curves XD
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parametrizing such objects lie in the exceptional class of Shimura varieties with the
property that there is a strict containment D ( EndC(A) for all complex points A
of XD (see [BL04, §9.9]). Since D/Q is definite, the semisimple part h of the Lie
algebra of the Mumford–Tate group should (for almost all p) be contained in so4 =
sl2 × sl2 rather than sp4 (by [MZ95, §6.1]). This forces the representations Vp to
decompose (asQp-representations) as the tensor product of a representation coming
from a modular form with an Artin representation. We expect it should be possible
to make a careful case by case analysis to rule out this case occurring, but we have
not attempted to do this.

10.4.2. Abelian fourfolds of type II. One can produce examples of abelian fourfolds
with endomorphisms by an order in an indefinite quaternion algebra D/Q by taking
the tensor product of a 2-dimensional representation with an Artin representation.
Let B/Q be an abelian surface of GL(2)-type with endomorphisms by an order in a
quaternion algebra D which are defined over a quadratic extension K/Q, and then
take L ⊂ V to be a lattice in a 2-dimensional dihedral representation V over Q
which is induced from a quadratic character χ of K which does not extend to Q
(so the action of GQ on V is through a dihedral group of order 8). Then one can
take A = B ⊗Z L, which may be identified with the restriction of scalars of the
quadratic twist B ⊗ χ of B from K to Q.

The action of an order of D on B and B⊗χ over K extends to an action of this
order of D on A. We obtain a compatible system R of Galois representations

ρp := rB,p ⊗ V : GQ → GL4(Qp).

Because V is induced from GK , it follows that the characteristic polynomials of
Frobenius of this representation all have coefficients in Q. It now suffices to show
that ρp preserves a symplectic form with inverse cyclotomic similitude character.
The argument proceeds exactly as in §10.4.1, except now we have the isomor-
phism ∧2V ' χK/Q. In particular, the trivial character is a summand of Sym2 V ,
and thus ρp preserves a symplectic form with similitude character ε−1. The repre-
sentations ρp do not arise from abelian surfaces over Q, since that would contradict
the Tate conjecture for abelian varieties [Fal83]. Moreover, they are easily seen
to be modular. Hence these give counterexamples to the original paramodular
conjecture.

For an explicit example, one could take B to be the modular abelian surface
which is a quotient of J0(243) with coefficient field Q(

√
6) (see [Cre92, Table 3]),

which is geometrically simple and obtains quaternionic multiplication overQ(
√
−3).

Then take any non-Galois invariant quadratic character χ of Q(
√
−3), and let A =

ResK/Q(B ⊗ χ).
In light of Lemma 10.3.2, Brumer and Kramer have formulated the following

natural modification of the original paramodular conjecture (see [BK19]):

Conjecture 10.4.3 (Paramodular Conjecture of Brumer–Kramer). Let AN denote
the set of isogeny classes of abelian surfaces A/Q with EndQA = Z and conduc-
tor N , and BN the set of isogeny classes of fake abelian surfaces (QM abelian
fourfolds) B/Q of conductor N2 with EndQB an order in a non-split quaternion
algebra D/Q. Let PN denote the set of holomorphic weight 2 paramodular forms f
of level N up to nonzero scaling which have rational Hecke eigenvalues and lie in
the orthogonal complement to the space of Gritsenko lifts. Then there is a bijection
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between the set AN ∪ BN and PN such that

L(C, s) = L(f, s, spin) if C ∈ AN and L(C, s) = L(f, s, spin)2 if C ∈ BN .

We conclude with some remarks on the possible existence of abelian fourfolds
which satisfy case (2) of Lemma 10.3.2 and additionally have no further endomor-
phisms over C (such varieties will necessarily be geometrically simple).

Expected Lemma 10.4.4. There exists a totally real field F , an indefinite quater-
nion algebra D, and an abelian fourfold A/F with EndF (A)⊗Q = EndC(A)⊗Q =
D.

Sketch. Let D =

(
−1, 3

Q

)
be the unique quaternion algebra over Q ramified at

(exactly) 2 and 3. Let OD denote the maximal order in D. In the standard way,
one may also write down an involution † obtained by conjugating the standard
involution so that trD/Q(xx†) is positive definite, and write down a non-degenerate
alternating form ψ on (O2

D) ⊗ Q which satisfies various compatibilities with †.
Associated to OD in the usual way is a Shimura stack (of level one)X parametrizing
tuples (A, λ, ι) where A is an S-abelian fourfold over S, λ is a principal polarization
over S, and ι : OD → End(A) is an injective homomorphism such that the Rosati
involution induced by λ restricts to † and such that ψ is compatible with the
polarization on homology as an OD-module. X is a smooth Deligne–Mumford stack
over Q with a single geometric component (cf. [KR99]). The complex points X(C)
are uniformized by the Siegel upper half space of dimension 3, and the generic point
of X over C has endomorphisms precisely by OD (see §9.9 of [BL04]).

By [Mil79], there exists an abelian surface B/C with EndC(B)⊗Q = D, that the
Rosati involution on EndB is x 7→ x†, and such that the restriction of scalars of B
from C to R gives a point in X(R). (Another way to view this is to consider X as
a GSpin Shimura variety associated to a 5 dimensional quadratic space as in [KR99],
and then signature (1, 2) subspaces will give Shimura curve subvarieties.)

This is not quite sufficient, however, to guarantee a point over X(F ) for a totally
real field F with the correct endomorphisms, nor even a point over X(Q), since
one has to remove from X(C) a countable union of proper Shimura subvarieties,
which might a priori exhaust the Q-points of X. Moreover, due to the stackiness
of X, there are issues comparing fields of definition versus fields of moduli. We
therefore employ a trick already used in the proof of Theorem 10.2.1. Namely,
impose level structure by choosing a large prime p > 3 and fixing a surjective
representation ρ : GQ → GSp4(Fp) with inverse cyclotomic similitude character.
(Such representations are abundant — one source are the duals of the p-torsion of
abelian surfaces over Q.) Then X admits a geometrically connected cover X(ρ)
defined over Q with level structure corresponding to A[p]∨ = ρ⊕ ρ, with a suitable
choice of polarization and compatible action of (OD ⊗ Zp)/p = (M2(Zp))/p =
M2(Fp).

The varietyX(ρ) is a fine moduli space which is now a smooth variety overQ with
real points, since the point ResC/R(B) considered above has the appropriate level
structure over R. Employing the theorem of Moret-Bailly [MB89], we may deduce
the existence of a totally real field F and a corresponding abelian variety A/F
such that F is disjoint from the splitting field of ρ. Because X(ρ) is a fine moduli
space, the variety A has endomorphisms by OD over F . It now suffices to show
that it has no further endomorphisms over C. The dual of the Tate module of A
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decomposes as a Galois representation as ρ ⊕ ρ where ρ : GF → GSp4(Zp) is a
lift of ρ. Since p ≥ 5, the assumption that ρ has surjective image implies that ρ
also has surjective image. However, if A admitted extra endomorphisms over any
extension of F , then the image of ρ restricted to some open subgroup would lie
inside a proper algebraic subgroup of GSp4(Qp), contradicting the fact that image
contains an open subgroup of GSp4(Zp). �

It would be interesting to know whether (for suitable choices) these varieties
have points over Q which correspond to A/Q with EndC(A)⊗Q = D, but this is
not so easy to determine by pure thought. However, the specific X chosen above
(ramified at only 2 and 3) is possibly the most likely choice to be rational, since
it corresponds to the indefinite quaternion algebra D/Q of smallest discriminant.
The construction of Nori in §9.4.4 suggests that, for this D, the moduli space is at
least geometrically rational. Note, however, that there will be field of moduli issues
when one works at level one, so even the rationality of this space over Q does not
imply the existence of such A.

10.4.5. Cremona’s Question. We finally consider two 2-dimensional irreducible com-
patible systems S of representations of GK for some quadratic extension K/Q, with
inverse cyclotomic determinant, Hodge–Tate weights (0, 1), and coefficients in Q.
Note that, for such a family S, there is a corresponding family R = Ind

GQ

GK
S of 4-

dimensional symplectic representations with inverse cyclotomic similitude charac-
ter. An argument very similar to (but easier than) Lemma 10.3.2 shows that (as-
suming all conjectures) either S comes from an elliptic curve, or it arises from a so-
called fake elliptic curve, namely, an abelian surface B/K with EndK(B)⊗Q = D
for some indefinite quaternion algebra D. The latter can exist only when K is
an imaginary quadratic field. Conjecturally, such compatible systems are in bijec-
tion with cuspidal cohomological π for GL(2)/K with trivial central character and
Hecke eigenvalues in Q.

One source of such B/K is to take abelian surfaces over Q of GL(2)-type which
acquire quaternionic multiplication over K/Q. Assuming the Hodge conjecture and
the standard conjectures, it follows that [Cre92, Question 1′] (cf. [Cre84, Conjec-
ture, p.278]) is equivalent to asking that all fake elliptic curves B over K descend
to Q after twisting by some quadratic character (equivalently, B is isogenous to
a twist of Bσ for the non-trivial element σ ∈ Gal(K/Q)). We call such B non-
autochthonous because it implies that the corresponding conjectural π arises via
functoriality from a smaller rank group (cf. footnote 2 of [AGM20]). In this sec-
tion, we show that the answer to this question is false, namely, we construct au-
tochthonous fake elliptic curves B/K. If one takes the restriction of scalars A =
ResK/Q(B) of such surfaces, then the fourfolds A give rise to further examples in
opposition to the original paramodular conjecture.

We continue to let D be the quaternion algebra ramified at precisely 2 and 3.
The Shimura curve giving rise to fake elliptic curves with endomorphisms by a
maximal order in OD has genus zero, and is well-known (see for example [BG08,
Thm. 11]) to be isomorphic over Q to:

X2 + Y 2 + 3Z2 = 0.

Moreover, more usefully for our purposes, Baba and Granath in [BG08] give explicit
models for genus two curves with endomorphisms by OD. For a certain parameter j,
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they write down a model ([BG08, Thm. 15]) of a genus two curve C over Q(
√
−6j)

such that its endomorphisms are all defined (by [BG08, Prop. 19]) over K :=

Q(
√
−6j,

√
j,
√
−27(j + 16)). With a view to choosing K = Q(

√
−6), we let

Z = 3
√
j, X =

√
−(27j + 16), Y = 4,

and look for solutions to the equation above with X,Z ∈ Q(
√
−6). One such solu-

tion is given by j = −32/27, but the corresponding surface is not autochthonous.
Thus, we parametrize the conic and choose a random such point. Without making
too much effort to optimize the height of j, one finds that

(10.4.5) j =
4(1 + 2

√
−6)

27

is a suitable point.

Lemma 10.4.6. Let C be the following genus two curve:

y2 = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6,

where ai are given by the following table, where η = 1−
√
−6:

i ai
0 210 · η6 · (

√
−6− 4)

1 210 · η6 · 3
2 27 · η4 · (9

√
−6 + 24)

3 −28 · η4

4 24 · η2 · (−9
√
−6 + 60)

5 24 · η · 3
6 −2 ·

√
−6

The sextic has discriminant 290·36·(1−
√
−6)30·(2−

√
−6)6. Let B = Jac(C)/Q(

√
−6),

and let A = ResQ(
√
−6)/Q(B). Then EndQ(A) ⊗ Q = D and EndC(A) ⊗ Q =

M2(D), where D/Q is the quaternion algebra ramified at precisely 2 and 3. Then B
is autochthonous, and B gives rise to an irreducible 2-dimensional compatible sys-
tem of Galois representations S of GQ with Hodge–Tate weights (0, 1) and inverse
cyclotomic determinant, and A gives rise to a 4-dimensional compatible system R
of 4-dimensional p-adic Galois representations of GQ with coefficients in Q unram-
ified outside of {2, 3, 5, 7, p}, each of which is absolutely irreducible and symplectic
with inverse cyclotomic multiplier.

Proof. Let K = Q(
√
−6). The curve C is the specialization of the curve in [BG08,

Thm. 15] to the parameter j as in equation 10.4.5, and

s =
√
−6j =

−2
√
−6 + 4

3
, t = −2(27j + 16) = −16

√
−6− 40.

By [BG08, Prop. 19], we deduce that the endomorphisms of C are defined over
the field K(

√
j,
√
−(27j + 16)) = K. We now show that B is autochthonous.

Let p = (11,
√
−6 − 4) and q = (11,

√
−6 + 4). Then the curves X1 = C(OK/p)

and X2 = C(OK/q) over F11 are given explicitly as follows:

X1 : y2 = 3x6 + 3x5 + 2x4 + 10x3 + 8x2 + 9x,

X2 : y2 = 8x6 + x5 + 10x4 + 6x3 + 3x2 + 4x+ 4.
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We compute the zeta functions using magma (see [BCGP21]) to be as follows:

Z(X1, s) =
(1− 2p−s + p1−2s)2

(1− p−s)(1− p1−s)
, Z(X2, s) =

(1− p−s + p1−2s)2

(1− p−s)(1− p1−s)
.

If B were autochthonous, then in particular the zeta functions of X1, X2 would
differ by a twist by a finite order character, but this is impossible since 2 6= ±1.

If p > 3, then p splits in D, so there are Galois representations

rp : GK → GL2(Qp)

with Vp(B)∨ ∼= rp⊕rp. For all p, there also exist corresponding representations r̃p :

GK → GL2(Qp) such that, for p > 3, the representation r̃p is the representation
obtained from rp by extending scalars. We now prove that EndC(B) ⊗ Q = D.
If this were not true, then B would geometrically have to be isogenous to E ×
E for some elliptic curve E with complex multiplication. This implies that B
itself has complex multiplication over C, which implies that the representations rp
are potentially reducible. But as the representations rp have distinct Hodge–Tate
weights, if they become reducible they do so over a quadratic extension. This
quadratic extension L/K must be ramified only at primes of bad reduction of B,
and for p which are inert in L/K, one must have ap = 0. But this can be ruled out
by computation (the only prime p of norm less than 1000 with ap = 0 has norm 97).

Hence EndC(B) ⊗Q = D and EndQ(A) ⊗Q = D, where A = ResK/Q(B). It
also follows that the representations rp and r̃p have inverse cyclotomic determinant
(as otherwise they would be isomorphic to their twists by a finite order character,
and thus potentially reducible). Moreover, with ρp := IndQ

K r̃p, one has

∧2ρp = As(r̃p)⊕ ε−1 ⊕ ε−1 · ηK/Q, Sym2 Ind
GQ

GK
ρp = Ind

GQ

GK
Sym2 r̃p,

and thus ρp is absolutely irreducible and can be chosen to have image in GSp4(Qp)
with inverse cyclotomic similitude character. Finally, the characteristic polynomials
of Frobenius will, by construction, be degree 4 polynomials with coefficients in Q.

�

Since one expects the compatible system S to be modular (it is certainly poten-
tially modular, by [ACC+18]), it follows that Cremona’s question [Cre92, Question
1′]) is incompatible with standard modularity conjectures. (Similarly, the modu-
larity of R = Ind

GQ

GK
S is incompatible with the original paramodular conjecture,

although we have already shown the latter to be false.) Of course, from the dis-
cussion above, there are natural modifications that one could make to Cremona’s
question (along the lines of Conjecture 10.4.3) — namely, to include all fake elliptic
curves over K, autochthonous or otherwise.

One can presumably show that the 2-dimensional GK-representations r̃p over
the field K = Q(

√
−6) arising from B = Jac(C) are modular for GL(2)/K. As in

the proof of Lemma 10.3.1, we would then obtain a cuspidal cohomological auto-
morphic representation π for GL(2)/K with trivial central character and rational
eigenvalues. Since π does not arise (up to twist) from base change, this would
answer in the negative [Cre92, Question 1′], because the existence of a correspond-
ing elliptic curve E/K would be incompatible with the existence of B by Faltings’
isogeny theorem [Fal83].

The modularity of the representations r̃p can in principle be established using the
Faltings–Serre method (cf. [BDPcS15]). Possibly some computational advantage
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would be gained by replacing C with a curve obtained from a more careful choice
of generic point on the Shimura curve (in order to work at a manageable level).
As it turns out, Ciaran Schembri [Sch19] has independently found examples of
autochthonous fake elliptic curves which he has verified are modular.
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