ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE
POTENTIALLY MODULAR
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ABsTRACT. We show that abelian surfaces (and consequently curves of genus 2)
over totally real fields are potentially modular. As a consequence, we obtain the
expected meromorphic continuation and functional equations of their Hasse—
Weil zeta functions. We furthermore show the modularity of infinitely many
abelian surfaces A over Q with Endg A = Z. We also deduce modularity and
potential modularity results for genus one curves over (not necessarily CM)
quadratic extensions of totally real fields.
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POTENTIAL MODULARITY OF ABELIAN SURFACES 3

1. INTRODUCTION

1.1. Our main theorems. Let X be a smooth, projective variety of dimension m
over a number field F' with good reduction outside a finite set of primes S. Asso-
ciated to X, one may write down a global Hasse-Weil zeta function:

1
Cx(s) = Hwa

where the product runs over all the closed points x of some (any) smooth proper
integral model X' /Op[1/S] for X. (We suppress S from the notation — different
choices of S only change (x(s) by a finite number of Euler factors.) The func-
tion (x(s) is absolutely convergent for Re(s) > 1 4+ m. We have the following:

Conjecture 1.1.1 (Hasse-Weil Conjecture, cf. [Ser70], in particular Conj. C9).
The function Cx (s) extends to a meromorphic function of C. There exists a positive
real number A € R>°, nmon-zero rational functions P,(T) for v|S, and infinite
Gamma factors T',(s) for v|oco such that:

E(s) = Cx(s) - A2 T Dols) - [T Po (N (0) ™)

v|oo v|S
satisfies the functional equation &(s) = w-&(m+ 1 — ) with w = 1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given ex-
plicitly in terms of the Archimedean Hodge structures of X.) This conjecture
appears to be first formulated in print (albeit in a less precise form and only for
curves) on the final page of [Weid2]. If FF = Q and X is a point, then (x(s)
is the Riemann zeta function, and Conjecture follows from Riemann’s func-
tional equation [Rieb9]. If F is a general number field but X is still a point,
then (x(s) is the Dedekind zeta function (r(s), and Conjecture is a theorem
of Hecke [Hec20]. If X is a curve of genus zero, then (up to bad Euler factors)
Cx(s) = ¢r(s)Cr(s—1), and Conjecture follows immediately. More generally,
if X is any smooth projective variety whose cohomology is generated by algebraic
cycles over F', then (x (s) is a finite product of Artin L-functions (up to translation),
and Conjecture in this case is a consequence of Brauer’s theorem [Bra47]. In
the case when the Galois representations associated to the [-adic cohomology of X
are potentially abelian (e.g. an abelian variety with CM), Conjecture is also
a consequence of the results of Hecke and Brauer.

The fundamental work of Wiles [Wil95 [TW95| and the subsequent work of
Breuil, Conrad, Diamond, and Taylor [CDT99, BCDT01| proved Conjecture m
for curves X/Q of genus one, since (again up to a finite number of Euler factors)
Cx(s) = Cq(s)¢q(s —1)/L(E,s) (where E = Jac(X)), and the modularity of E
implies the holomorphy and functional equation for L(E,s). More generally, the
potential modularity results of [Tay02] imply Conjecture for curves X/F of
genus one over any totally real field. The methods used in these papers have been
vastly generalized over the past 25 years due to the enormous efforts of many people.
On the other hand, these methods have until recently been extremely reliant on the
assumption that the Hodge numbers h?? = dim H Y/ (X) = dim H?(X,Q?) of X
are at most 1 for all p and ¢, or at least that such an inequality holds (suitably
interpreted) for the irreducible motives occurring in the cohomology of X. While
many such motives exist inside the cohomology of Shimura varieties, there is a
paucity of natural geometric examples satisfying this condition. For example, if X
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is a curve of genus g, then h:* = h%! = g, and so the original Taylor-Wiles method
only applies when g = 0 or 1. For genus two curves, we prove the following theorem.

Theorem 1.1.2. Let X be either a genus two curve or an abelian surface over a
totally real field F. Then Conjecture holds for X.

We prove Theorem [[.1.2] as a corollary of the following theorem.

Theorem 1.1.3. Let X be either a genus two curve or an abelian surface over a
totally real field F. Then X is potentially automorphic.

Here by potentially automorphic we mean that there exists a finite Galois ex-
tension L/F such that the compatible system of Galois representations R attached
to H'(Xq,Qp) (as p varies) over L is automorphic in a precisely circumscribed
sense which we make explicit in Definition (See also Remark for a
discussion of how we distinguish between automorphic and modular in this paper;
this distinction is made purely for technical convenience, and can safely be ignored
while reading this introduction.) In particular, an immediate consequence is that
the L-function of H 1(X6’ Q,) as a Gp-representation extends to a holomorphic
function on all of C. Theorem [L1.2] follows from Theorem [[LT.3 via a standard
argument with Brauer’s theorem and base change, together (in the case of abelian
surfaces) with known functorialities in small rank. (Some care must be taken in
this deduction if the p-adic Galois representations associated to X become reducible
after restriction to L; this issue does not arise in the most interesting cases of The-
orem in particular the case of an abelian surface X with Endc(X) = Z.)

Theorem (and thus also Theorem is a consequence of Theorem
and Corollary [0.3:33] which in turn are deduced from our main modularity lifting
theorem, Theorem [B:4.1] As a consequence of Theorem [[.1.3] we also deduce the
following potential modularity result for genus one curves (see Theorem :

Theorem 1.1.4. Let X be a genus one curve over a quadratic extension K/F of
a totally real field F. Then X is potentially modular.

When K/F is totally real, this result has been known for some time (|Tay02]).
When K/F is totally imaginary, however, the result was only recently proved
in [ACCT18|. For all other quadratic extensions (such as F = Q(v/2) and K =
Q(v/2)), the result is new. (See the remarks in for a comparison between the
methods of this paper with those of JACCT18|.)

Just as elliptic curves over Q can be associated (via the modularity theorem) to
modular forms of weight 2, the Langlands program predicts that abelian surfaces
over Q should be modular in the sense that they correspond to certain weight 2
Siegel modular forms. This is because (due to the existence of polarizations) the
Galois representations associated to the p-adic Tate modules of abelian surfaces
are naturally valued in GSp,(Qp), and GSp, is its own Langlands dual group.
A consideration of the Hodge—Tate weights then suggests that the corresponding
automorphic forms on GSp, should be of weight 2 (see for a more detailed
discussion of this).

Our methods also have implications for the modularity (as opposed to potential
modularity) of abelian surfaces over totally real fields. Here is an example of what
can be proven by our methods.

Theorem 1.1.5. There exist infinitely many modular abelian surfaces A/Q up to
twist with Endc A = Z.
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As a consequence, one deduces that the L-function associated to A in Theo-
rem (that is, the L-function associated to the Galois representation H* (Ag: Qp)
for any prime p) has a holomorphic continuation to the entire complex plane. Note
that Theorem [1.1.3| only implies that this L-function has a meromorphic contin-
uation, with no control over any possible poles. (This is for essentially the same
reason that Brauer’s theorem proves the meromorphic continuation of Artin L-
functions, but not the holomorphic continuation.) In fact, we can also prove an
analogous theorem for any totally real field F' in which 3 splits completely; see
Theorem [[0.2.6

To put Theorem into context, note firstly that if Endc(A) # Z, then the
Galois representations associated to A become reducible over some finite exten-
sion, and hence one may use (or prove) special cases of functoriality to reduce the
problem to the modularity of representations of dimensions 2 or 1. Results of this
kind appear in the papers [Yos80l [Yos84l [RS07al [JLR12, [DK16, BDPcS15|. (Sev-
eral of these arguments could now be redone more systematically in light of the
monumental work of Arthur [Art04, [Art13].)

In the “typical” case that Endc(A) = Z, Brumer and Kramer [BK14] formulated
the paramodular conjecture, which gives a precise prescription for the “optimal”
level structure for an automorphic form corresponding to a given abelian surface;
in particular, this in principle reduces the conjecture for a given A to an explicit
computation of a (finite-dimensional) space of Siegel modular forms. They further-
more showed that the smallest prime conductor of an abelian surface is 277; in
combination with the computations of [PY15], this demonstrates that the conjec-
ture is true in prime conductor less than 277 (because there are neither any abelian
surfaces nor suitable Siegel modular forms).

These considerations are taken further in the recent papers [BPP™19, [BK20]. In
particular, these papers succeed in establishing for the first time the modularity of
(finitely many, up to twist) abelian surfaces A with Endg(A4) = Z. (The explicit ex-
amples in [BPPT19| are conductors 277, 353, and 587, and the example in [BK20]
is of conductor 731. It should be noted that the abelian surfaces considered in
Theorem do not include any of these examples; as explained below, Theo-
rem [1.1.5]is proved by proving the existence of infinitely many abelian surfaces to
which our modularity lifting theorems apply, rather than by starting with explicit
examples of small conductor.) These papers ultimately rely on elaborate explicit
computations of low weight Siegel modular forms, developed in part by Poor and
Yuen [PY15] [PSY17, BPY16].

1.1.6. Our modularity lifting theorem. We now state our main modularity lifting
theorem as it applies to abelian surfaces. The following theorem is proved in
see Proposition (It is possible to slightly weaken the hypothesis at v|p to
deal with certain abelian surfaces which have semistable reduction at v|p.)

Theorem 1.1.7. Let F' be a totally real field in which p > 2 splits completely.
Let A/F be an abelian surface with good ordinary reduction at all places v|p, and
suppose that, at each v|p, the unit root crystalline eigenvalues are distinct modulo p.
Assume that A admits a polarization of degree prime to p. Let

Pap:Gr— GSp,(Fy)

denote the dual of the mod-p Galois representation associated to Alp|, and assume

that D4, is vast and tidy in the sense of Definitions 7,3,5] and [7.5.11. Assume
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that p, , is ordinarily modular, in the sense that there exists an automorphic rep-
resentation ™ of GSp, /F of parallel weight 2 and central character | - |? which is
ordinary at all v|p, such thatp, , = D4 ,, and pr play, is pure for all finite places v
of F. Then A is modular, corresponding to a Hilbert—Siegel eigenform of parallel
weight two.

Moreover, Proposition shows that the modularity hypotheses on 74, can
be omitted in the following situations:

(1) p=3,and p, 3 is induced from a 2-dimensional representation with inverse
cyclotomic determinant defined over a totally real quadratic extension E/F
in which 3 is unramified.

(2) p =5, and py 5 is induced from a 2-dimensional representation valued
in GL2(F5) with inverse cyclotomic character defined over a totally real
quadratic extension F/F in which 5 is unramified.

(3) P4, is induced from a character of a quartic CM field H/F in which p splits
completely.

Theorem may be viewed as the genus two analogue of [Wil95, Thm. 0.2],
which is the main modularity lifting result proved in that paper. Proposition
is then the analogue of [Wil95, Thm. 0.6], which is a modularity result for residually
projectively dihedral representations. The reason one cannot prove an analogue
of [Wil95, Thm. 0.3] (which proves that all ordinary semistable elliptic curves over Q
with pp 5 absolutely irreducible are modular) is that there is no argument to reduce
the residual modularity of a surjective mod-3 representation p; : Gp — GSpy(F3)
(as in §5 of ibid) to special cases of the Artin Conjecture (proved by Langlands—
Tunnell). Note that the difficulty is not simply that GSp,(F3) is not solvable (some
of the indicated representations above for p = 3 and 5 are non-solvable), but also
that Artin representations do not contribute to the coherent cohomology of Shimura
varieties in any setting other than holomorphic (Hilbert) modular forms of weight
one.

For E/F a totally real quadratic extension, the inductions of (modular) repre-
sentations g : Gg — GL2(F3) with determinant z~! to G provide a large source
of residually modular p. We then show that any such p : Gr — GSp,(F3) with
suitable determinant and local conditions at places v|3 is equal to p 4,3 for infinitely
many abelian surfaces A/F with Endc(A) = Z and with good ordinary reduc-
tion at v|3 (see Theorem . Theorem then implies that all such A are
modular, and hence implies Theorem |1.1.5

1.2. An overview of our argument. Let A be an abelian surface over a totally
real field F. We may assume that Endp(A) = Z as otherwise, A is of GLa-type, in
which case it is known that A is potentially modular. If Endz(A) = Z, a generaliza-
tion of the paramodular conjecture predicts the existence of a holomorphic weight 2
Hilbert—Siegel modular cuspidal eigenform f (for the group GSp,/F’) associated to
A in the sense that we have an equality of L-functions L(f,s) = L(H'(A),s). If
such an equality holds, we say that A is modular.

In this paper, we establish that (under some mild further restrictions on A), after
possibly replacing the field F' by a finite totally real extension F’, the conjecture is
true.
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Remark 1.2.1. There are situations where we don’t prove (even potentially) the
paramodular conjecture for A. This is due to the presence of non-trivial endomor-
phisms of A over Q. Nevertheless, we always express the L-function of A using
automorphic forms on groups GL;/K for i € {1,2,4} and K a number field, and
thus establish Conjecture|1.1.1

On the surface, the modularity conjecture for abelian surfaces appears to be
a generalization of the modularity conjecture for elliptic curves. However, this
analogy is somewhat misleading. Elliptic curves are regular motives with weights
(0,1), whereas abelian surfaces are irregular motives with weights (0,0,1,1). On
the automorphic side, weight 2 Hilbert modular cuspforms occur in a single degree
of the Betti and coherent cohomology of the Hilbert modular varieties. Under mild
assumptions, there is an elliptic curve associated to any Hilbert modular cuspidal
eigenform with rational Hecke field.

In contrast, weight 2 Hilbert—Siegel modular cuspforms only occur in the coherent
cohomology of the Hilbert—Siegel modular variety. More precisely, a holomorphic
weight 2 Hilbert—Siegel modular cuspidal eigenform can be viewed as a section of
a line bundle w? over the Hilbert-Siegel modular variety X; here X is a smooth
algebraic variety defined over Q of dimension 3[F : Q] which parametrizes abelian
schemes of dimension 2[F : Q] equipped with an action of Op, a level structure,
and a polarization. Moreover, in the “generic case”, such an eigenform contributes
to cohomology in degrees 0 to [F : Q]. Since the Hecke eigenvalues associated to
such modular forms are not realized in the étale cohomology of a Shimura variety,
we don’t know how to associate a “motive” to a weight 2 Hilbert—Siegel modular
cuspidal eigenform, but only a compatible system of Galois representations which
should correspond to the system of ¢-adic realizations of this motive. These Galois
representations are constructed by using congruences.

From a technical point of view, it turns out that the modularity conjecture for
abelian surfaces over a totally real field F' is closely related to the 2-dimensional
odd Artin conjecture for F' (now a theorem), which is the existence of a bijection
preserving L-functions between the following objects:

e Irreducible, totally odd, two dimensional complex representations of the
absolute Galois group of F', and
e Hilbert modular cuspidal eigenforms (newforms) of weight one.

2-dimensional odd Artin representations have irregular Hodge—Tate weights (0, 0),
and Hilbert modular forms of weight one only occur in the coherent cohomology of
the Hilbert modular variety, where they contribute in degrees 0 to [F : Q].

We now review some of the strategies employed in the proof of Artin’s conjecture,
as they have served as an inspiration for our current work. As with almost all
modularity theorems, one proceeds by combining a modularity lifting theorem with
residual modularity (that is, the modularity of the mod p representation). In the
case of Artin’s conjecture, residual modularity ultimately (if quite indirectly) comes
from the Langlands—Tunnell theorem, whereas in our setting, the residual potential
modularity comes from a straightforward application of Taylor’s method [Tay02]
using a theorem of Moret-Bailly. Accordingly, we ignore the question of residual
modularity for the rest of this introduction, and concentrate on explaining the
modularity lifting theorems.

The first modularity (lifting) theorems which applied to two dimensional odd
Artin representations p over Q were obtained by Buzzard—Taylor and Buzzard [BT99,
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Buz03|. There is an obstruction to generalizing the Taylor-Wiles method (which
was originally applied in the regular case of Hodge—Tate weights (0,1) and weight
two modular forms [Wil95, TW95]) to the irregular case of weights (0, 0) and weight
one modular forms. This obstruction lies in the fact that weight one forms occur in
degrees 0 and 1 of the coherent cohomology and that there exist non-liftable mod p
weight one eigenforms. (There is also a reflection of this obstruction on the Ga-
lois theoretic side — the corresponding local deformation ring at p has dimension
one less in the irregular weight case.) Instead, Buzzard and Taylor proceed quite
differently.

Choose a prime p and view p as a p-adic representation with finite image. We also
assume that p is unramified at p and let «, 8 denote the Frobenius eigenvalues. For
simplicity, we also assume that @ # 3 (where the bar denotes reduction modulo p).

We have that
| (ra O
PlGa, = | ¢ As

for the unramified characters A\, and Ag taking a Frobenius element to «, 3 respec-
tively.

The strategy of Buzzard and Taylor is to first replace the space of classical weight
one modular forms by a bigger space of ordinary p-adic modular forms of weight
one. On the Galois side, classical weight one eigenforms (of level prime to p) have
associated Galois representations which are unramified at p, while an ordinary p-
adic modular form f of weight one has an associated Galois representation which
may be ramified at p of the form:

1 =x
pf|1Qp2 0 1

Moreover, f should be classical if and only if * = 0. A key advantage of working
with ordinary p-adic modular forms is that they are defined as sections of a line
bundle over the ordinary locus, which is affine, and thus only occur in cohomo-
logical degree 0. It follows that ordinary p-adic modular forms of weight one are
unobstructed for congruences and one can (assuming residual modularity) apply the
Taylor—Wiles method in this setting to deduce the existence of two p-adic ordinary
weight one modular forms f, and fg such that py, = ps, = p and U, fo = afa,
Upfs = Bfs-

We observe that the existence of both f, and fz witnesses the fact that p is
unramified at p. In order to show that f, and fs are classical forms of weight one,
one forms the linear combinations h = (afo—Ff3)/(a—p5) and g = (fa—f3)/(a—p).
The property that py, = ps, = p and the explicit relation between g-expansions
and Hecke eigenvalues translates into the geometric property that Frob(h) = g.
Using rigid analytic techniques, one can show that this property implies that f,, f3
are classical forms of weight one. This strategy has been successfully generalized
to any totally real field [Sas13l, [KST14, [Kas16l [PS16b., [Pil17].

From a different direction, the paper [CG18| introduced an alternate method for
proving modularity lifting results in weight one, by modifying the method of Taylor—
Wiles and exploiting the Galois representations associated to coherent cohomology
classes in all degrees. This method eliminates the delicate classicality theorem
in weight one because one only works with classical (but possibly higher degree)
cohomology. This method allows in principle to deal with any obstructed situation,
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but requires some non-trivial input. For 2-dimensional odd Artin representations
over a totally real fields, one needs to prove that (after suitable localization at a
maximal ideal of the Hecke algebra) the cohomology in weight one is supported in
degrees 0 to [F : Q] (this is actually automatic here for cohomological dimension
reasons), and that the Galois representations in all cohomological degrees satisfy a
form of local-global compatibility (at places above p). This last property has been
proved when F' = Q where one can reduce to studying degree 0 torsion cohomology
classes and use the “doubling method” described below, but has not yet been proved
for all primes p over a general totally real field (though see [ERX17] for some partial
results).

After this discussion of Artin’s conjecture, we return to the paramodular con-
jecture. We first assume that F' = Q and fix a prime p. We assume that A has
ordinary good reduction at p so that

Ao O * *

O /\,3 * ES
pA,;D|GQp = 0 0 )\Elg—l 0 3

0 0 0 Ajte !

(63

where, additionally, we assume that @ # §. (The Weil bounds together with the
Cebotarev density theorem guarantee an ample source of such primes p.) Tilouine
and his collaborators [TU95, [Ti98], [TU99, MT02, [GT05], [Til06al, [Til09] developed
modularity lifting results for GSp, /Q in regular weight. In the case of Hodge-Tate
weights (0,0, 1,1), the paper |[Pill12] applied these techniques to ordinary p-adic
modular forms of weight 2 to produce (under technical assumptions) two p-adic
eigenforms f, and fz associated to A (see also [Til06al [Til12], where the case of
certain GSp,-type abelian varieties is treated).

Similarly to the case of GL2/Q, an ordinary p-adic modular form of weight 2
has a Galois representation whose restriction to inertia at p has the shape:

1 * *
0 1 * *
0 0 E_l *9

0 0 0 et

Such a form should be classical if and only if its Galois representation is de Rham
— equivalently: *; = %9 = 0 (because of the symplectic structure, the vanishing
of 7 is equivalent to the vanishing of x5).

As before, the existence of both f, and fg witnesses the property that A is
de Rham at p. One difficulty, however, is that the Fourier expansions of Siegel
modular forms are not explicitly determined by the Hecke eigenvalues (although
we often have an abstract multiplicity one theorem). In particular, one doesn’t
know how to deduce geometrically from py, = py, = pa,, that there exist suitable
linear combinations of f, and fg giving rise to the desired form f by mimicking
the Buzzard—Taylor argument.

In another direction, in [CG20] the modified Taylor-Wiles method was applied to
low weight Siegel modular forms over Q. There were a number of serious difficulties
which prevented the authors from deducing any unconditional modularity lifting
for abelian surfaces. The idea of the method is to consider (a suitable localization
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of) the full cohomology complex RI'(X,w?) where X is an integral model over Z,
of the Siegel threefold. The required inputs are:

(1) to prove that the cohomology is only supported in degrees 0 and 1, and
(2) to prove local-global compatibility for the cohomology classes.

The first point is subtle in the weight of interest, because the cohomology groups
will not generally vanish before localization at some non-Eisenstein maximal ideal m
(and indeed this point was not established in weight 2 in [CG20]). The paper [CG20]
proved the second point for torsion degree 0 cohomology classes, using a “doubling”
argument that we will return to below.

One crucial new ingredient which allows us to proceed in the symplectic case
and deal with (1) is the higher Hida theory developed for GSp, over Q in |Pil20].
The idea of [Pil20] is (loosely speaking) to work over the larger space which is
the complement of the supersingular locus (the rank > 1 strata), which is now no
longer affine. (Since we are working in mixed characteristic, one should imagine
this taking place in the category of formal schemes, as in classical Hida theory.)
Since the cohomological dimension of these spaces is one (more precisely, the image
of these spaces in the minimal compactification has cohomological dimension one,
which is sufficient for our purposes), there should exist complexes of amplitude [0, 1]
computing the coherent cohomology of all the relevant vector bundles. The main
result of [Pil20] is that suitably constructed Hida idempotents cut down such a
complex to a perfect complex, and moreover that the cohomology of this perfect
complex is computed in characteristic zero by the space of weight 2 automorphic
forms of interest. A crucial ingredient in order to study the coherent cohomology is
therefore the introduction of Hecke operators at p and their associated projectors.

A version over Q of our modularity lifting theorem could be proved by applying
the patching method of [CG18] to the higher Hida complexes of [Pil20]. It should
nevertheless be noted that, even if we were only interested in theorems over Q, we
are forced to prove a modularity lifting theorem for any totally real field F' (and
prime p which splits completely in it). This is because we need to employ Taylor’s
Thara avoidance technique [Tay08| to deal with issues of level raising and lowering
at places away from p, and this step crucially relies on using solvable base change.
We can then combine this modularity lifting result with base change techniques
and the Moret-Bailly argument to achieve residual potential modularity, in order
to prove our main potential modularity theorem.

In the light of the above discussion, in order to prove a modularity lifting theorem
for Hilbert—Siegel modular forms it is natural to consider (a suitable localization
of) either the cohomology complex RT'(X,w?) where X is an integral model over
Z,, of the Hilbert—Siegel space, or of the ordinary part of the cohomology complex
for a subspace of X obtained from the p-rank stratification. The required inputs
for the modified Taylor-Wiles method are now:

(1) to prove that the cohomology is only supported in degrees 0 to [F' : Q], and
(2) to prove local-global compatibility for the cohomology classes.

It is to some extent possible to solve (1) using higher Hida theory (although there
are some issues), but (2) seems to be a more serious problem because we only know
how to prove that the Galois representations associated to torsion classes in H*
satisfy the right local-global compatibility condition at v|p if i = 0. Accordingly,
we are unable to argue directly with such complexes.
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Let the number of non-zero degrees of cohomology of the spaces we are consid-
ering be Iy + 1; we refer to ly as the defect. (The original Taylor—Wiles method only
applies if [o = 0, while if [y > 0 we use the method of [CG18]. As mentioned above,
lp also has a Galois-theoretic interpretation: the sum of the dimensions of the local
deformation rings is Iy less than the corresponding dimension in the defect 0 case.)
One key trick we employ in this paper is to reduce to situations where we only have
to consider cohomology in at most two degrees (so the defect is at most one), i.e.
it suffices to work with complexes consisting of at most two terms. This is where
we take advantage of the product situation at p (because p splits in the totally
real field). (Implicitly, what happens in this case is that any cohomology occurring
in H'! can also be seen via the Bockstein homomorphism as coming from H?, pro-
vided that the characteristic zero classes in H' are also seen by the characteristic
zero classes in H?, and this can be established by automorphic considerations; so
we only have to prove local-global compatibility for H°.) We now explain how we
do this in slightly more detail.

We assume that A has ordinary good reduction at all places v|p, so that

Aoy, O * *
0 /\ﬂu * *
pA7P|GFU = 0 0 )\57)16_1 0 )
0 0 0 /\;v g1

where we furthermore assume that @, # f3,,.

Although we expect that there should be a weight 2 eigenform associated to
A of spherical level at p (because A has good reduction at p), it turns out that
because A is ordinary at p, it is more natural to look for an eigenform f associated
to A of Klingen level at p. The Klingen level structure is given by choosing a
subgroup of order p inside A[v] for all v|p. At Klingen level at v, there is a Hecke
operator Ukii(,),1 Whose eigenvalue on f should be o, + ,, and a second Hecke
operator Ukij(y),2 Whose eigenvalue should be «,3,. We observe that the second
operator has an invertible eigenvalue (we say that f is Klingen ordinary) and this
corresponds to the fact that the Galois representation pa ,|a , 1s ordinary.

There is another level structure that plays a role: the Iwahori level structure
given by choosing a complete self dual flag of subgroups inside Afv]. For each
v|p, there are two degeneracy maps from Iwahori level to Klingen level, and there
are Hecke operators Uty (v),1, Utw(v),2 = Uxkli(v),2 at Iwahori level. Pulling back the
expected form f by the degeneracy maps should yield eigenforms at Iwahori level
which have eigenvalues o, and 3, for Uty (.1 (we call them Iwahori ordinary).

We now return to the question of using modularity lifting theorems to find f.
First of all, modularity lifting theorems with p-adic ordinary modular forms (i.e.
with o = 0) allow us to construct 2[F*Ql Iwahori ordinary p-adic modular forms
whose eigenvalue for Uty (y),1 18 @, or 3,, and whose eigenvalue for Uki;(y),2 is oS-
We suspect that these forms are classical, but as explained before, we don’t know
how to establish any geometric relation between them.

As a second step we apply a modularity lifting theorem in the case that the defect
lo equals one. Let us isolate a place v|p. Using higher Hida theory, we construct a
perfect complex of amplitude [0, 1] which is obtained by taking the ordinary (more
precisely Iwahori ordinary at w # v, Klingen ordinary at v) cohomology of the
open subspace of the Hilbert—Siegel Shimura variety which is ordinary and carries
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an Iwahori level structure at all places w # v, and has p-rank at least one at v and
carries a Klingen level structure.

We manage to prove that this cohomology carries a Galois representation which
has the following type of local-global compatibility property:

(1) For all places w|p, w # v:

1 =x * *

L0 1T =« *

pA,p|IFw — 1o o 671 %

00 0 et

(2) For v:

1 0 =% *

0 1 =« *

pA,p|IFU = 0 0 671 0

00 0 et

Using the methods of [CGIS§|, we can prove a modularity lifting theorem, and
produce 2F°QI=1 p_adic modular forms (which converge a lot more in the v direc-
tion) whose eigenvalue for Upy(w),1 i au or By, if w # v, and whose eigenvalue for
Ukili(v),1 18 @y + By, and whose eigenvalue for Ukii(w),2 = Ulw(w),2 18 QB for all
w|p.

Our last step is to prove lots of linear relations between all these forms we have
constructed. This step ultimately relies upon an abstract multiplicity one result
which we prove using the Taylor—Wiles method. Exploiting these linear relations
and using étale descent techniques, we first manage to construct a Klingen ordinary
weight 2 modular form defined on the open subspace of the Hilbert—Siegel Shimura
variety which has p-rank at least one at all v|p and carries a Klingen level structure.
We then manage, using analytic continuation techniques, to prove that this form
extends to the full Shimura variety and is therefore classical.

1.3. An outline of the paper. We briefly explain the outline of the paper; we
refer the reader to the introductions to the individual sections for a further explana-
tion of their contents, and for some elaborations on the overview of our arguments
above.

In §2] we recall some more or less standard background material on Galois rep-
resentations, the local Langlands correspondence, local representation theory, and
related topics. discusses the Shimura varieties which we use, and some prop-
erties of their integral models and compactifications, and recalls the approach to
the normalization of Hecke operators on coherent cohomology via cohomological
correspondences which was introduced in [Pil20].

In §4] we construct the Hida complexes that we work with, and prove some of
their basic properties (in particular, we prove that they are perfect complexes).
In we establish the “doubling” results that we will later use to prove local—
global compatibility for Hilbert—Siegel modular forms over torsion rings. The basic
strategy (employed in a number of other places, see [Gro90, [Edi92] [Wieldl [CGIS|
CG20]) is to show that we can embed (via degeneracy maps) two copies of our space
of ordinary modular forms at Klingen level into a space of ordinary modular forms of
Iwahori level. This allows us to show that the corresponding Galois representations
are ordinary (in the Iwahori sense) in two different ways, namely, with «,, and £,
as unramified subspaces. Then the genericity assumption @,, # 3,, forces there to
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be a 2-dimensional unramified summand of our representation. The key technical
difficulty is proving that the direct sum of the degeneracy maps does indeed give an
embedding. All previous incarnations of the doubling phenomenon ultimately relied
on the g-expansion principle, but our argument is more geometric, and ultimately
rests on analyzing the effect of the Hecke operator Z,, = Ukii(w),1 — Utw(w),1 along
the w-non-ordinary locus.

In We prove that a characteristic zero classicality result for the H° of our Hida
complexes, using Coleman theory. We also show that the complexes we consider are
balanced, in the sense that they have Euler characteristic zero, using a somewhat
intricate interplay between three objects — the complex of classical forms, the
complex of overconvergent forms, and our complex of (Klingen) ordinary forms.

In §7 we carry out our main Taylor-Wiles patching arguments in the cases
that l[p = 0 and [y = 1. We then prove our main modularity lifting theorem in
using analytic continuation, étale descent, and linear algebra arguments based
on the doubling results of §5|to reduce to the classicality results of

In §9 we apply our main automorphy lifting theorem to prove the potential
automorphy of abelian surfaces. The basic idea is to use a version of the p-q trick
(first employed by Wiles as the 3-5 trick), together with an application of a theorem
of Moret-Bailly, to connect general abelian surfaces via a chain of congruences to
the restriction of scalars of an elliptic curve over a totally real quadratic extension
of F, which we know already by [Tay02] to be potentially modular. We are also
left to deal directly with some cases of abelian surfaces with small Mumford-Tate
groups, which can mostly be done immediately with an appeal to the theory of
Grossencharacters. We also include a number of applications as mentioned in the
introduction, including elliptic curves over quadratic extensions of F'.

In §10] we give applications to the automorphy of abelian surfaces. We show
that, given any mod 3 representation p : Gq — GSp,(F3) with (inverse) cyclotomic
similitude character, it can be realized (in infinitely many ways) as the 3-torsion of
an abelian surface over Q. Here we exploit some classical geometry related to the
Burkhardt quartic, which is isomorphic to a compactification of A5(3). The key
point is to show that the variety given by the twist of A5(3) by p has sufficiently
many rational points. We do this by proving it is unirational over Q via a map
of degree at most 6. The argument is similar to that of [SBT97], except that it is
applied not to the twist of A3(3) itself but to a twist of a degree 6 rational cover,
which has the pleasing property (unlike the Burkhardt quartic itself) that the bi-
rational map to P? over Q can be made equivariant with respect to the action of
the automorphism group PSp,(F3). Finally, we conclude with a discussion of the
paramodular conjecture and its relationship to the standard conjectures, and ex-
plain why the original formulation of this conjecture requires a minor modification.

1.4. Some further remarks. For length reasons, we did not try to optimize all
of our theorems — for example, our arguments would surely extend to prove the
potential automorphy of some GSp,-type abelian varieties, but sticking with abelian
surfaces makes the Moret-Bailly arguments somewhat simpler, and (by using a
trick) we manage to avoid any character building whatsoever. However, we have
gone to some lengths to treat the case p = 3, and to use a weaker notion of p-
distinguishedness than in [CG20]; while this is not necessary for our applications
to potential modularity, it significantly increases the applicability of our theorems
to actual modularity problems.
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1.4.1. The work of Arthur. It should be noted that we use Arthur’s multiplicity
formula for the discrete spectrum of GSp,, as announced in [Art04]. A proof of
this (relying on Arthur’s work for symplectic and orthogonal groups in [Art13]) was
given in [GT19], but this proof is only as unconditional as the results of [Art13]
and [MW16al, MW16b|. In particular, it depends on cases of the twisted weighted
fundamental lemma that were announced in [CL10], but whose proofs have not
yet appeared, as well as on the references [A24], [A25], [A26] and [A27] in [Art13],
which at the time of writing have not appeared publicly.

1.4.2. Curves of higher genus. One may well ask whether the methods of this paper
could be used to prove (potential) modularity of curves of genus g > 3 whose Ja-
cobians have trivial endomorphism rings. At the moment, this seems exceedingly
unlikely without some substantial new idea. All generalizations of the Taylor—
Wiles method to this point require that the automorphic representations in ques-
tion are associated to the Betti cohomology groups of locally symmetric spaces, or
the coherent cohomology groups of Shimura varieties, which have integral struc-
tures and hence allow one to talk about congruences between automorphic forms.
Symplectic motives of rank 2¢g over Q are conjecturally associated to automorphic
representations for the (split) orthogonal group SOg441 (When g = 1 or g = 2,
there are well-known exceptional isomorphisms which allow us to replace SOg441
by the groups GLs and GSp, respectively). Following [BK14], Gross has made
some precise conjectures concerning the level structures of newforms associated to
such conjectural automorphic representations in [Grol6].

The automorphic representations contributing to the Betti cohomology groups
of locally symmetric spaces have regular infinitesimal characters, so can only be
used for ¢ = 1. The automorphic representations contributing to the coher-
ent cohomology of orthogonal Shimura varieties are representations of the inner
form SO(2g — 1,2) of SO2441 (which is non-split if g > 1), whose infinity compo-
nents m., are furthermore either discrete series, or non-degenerate limits of discrete
series.

If g = 1, the representations considered by Gross in [Grol6] are discrete series,
and if g = 2, they are non-degenerate limits of discrete series, but if g > 3, then
neither possibility occurs, so the automorphic representations do not contribute to
the cohomology (of any kind) of the corresponding Shimura variety. (Another way
of seeing this is to compute the possible infinitesimal characters of the automor-
phic representations corresponding to automorphic vector bundles on the Shimura
variety, or equivalently the Hodge-Tate weights of the expected 2g-dimensional
symplectic Galois representations; one finds that no Hodge—Tate weight can occur
with multiplicity bigger than 2, while the symplectic Galois representations coming
from the étale H' of a curve of genus g have weights 0, 1 each occurring with mul-
tiplicity ¢g.) In particular, the general modularity problem for curves of genus g > 3
seems at least as hard as proving non-solvable cases of the Artin conjecture for to-
tally even representations, and even proving the modularity of a single such curve
with Mumford-Tate group GSp,, seems completely out of reach.

On the other hand, there are some special families in higher genus which may
well be amenable to our method. In particular, the Tate module of a cyclic
trigonal genus three curve (so-called Picard curves, with affine equations of the
form y3 = 2% + ax?® + bx + ¢) defined over Q splits (over Q(v/—3)) into two essen-
tially conjugate self-dual irregular 3-dimensional representations of Gg(,/=3). These
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Galois representations conjecturally correspond (see the appendix to [Til06a]) to
automorphic representations 7 for a form of U(2,1)/Q (splitting over Q(y/—3))
such that 7., is a non-degenerate limit of discrete series and contributes to the
coherent cohomology of the associated Shimura variety. The methods of this paper
should apply (in principle) to these curves.

1.4.3. K3 surfaces. Our results should also have applications to the Hasse—Weil
conjecture for K3 surfaces over totally real fields with geometric Picard number >
17. While we do not undertake a detailed study of this problem here, we discuss it
in 9

1.4.4. A comparison of this paper with |JACCT18|. Tt follows from Theorem m
that any elliptic curve E over a CM field K/F is potentially modular (simply
consider the abelian surface given by Weil restriction of scalars of E from K to F).
This result is also proved in [ACCT18|. Perhaps surprisingly, there is relatively little
overlap between the two proofs. For example, our argument does not require any of
the results of Scholze [Sch15] on the construction of Galois representations, nor the
derived version of Thara avoidance required in [ACCT18|. The only common theme
is the use of the modified Taylor-Wiles method of [CG18]. To further illustrate the
difference, it is also proved in [ACC™18] that the nth symmetric power of any such E
is potentially automorphic, which is not directly accessible from our approach. On
the other hand, we also deduce (Theorem the potential modularity of elliptic
curves over fields like F = Q(+v/2), which seems out of reach using the methods
of JACC™18|.
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numerous helpful comments and corrections. Both David Geraghty and Jacques
Tilouine have made important contributions to the problem of modularity for
abelian surfaces; we would especially like to thank them for many helpful dis-
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Brian Conrad, Matthew Emerton, Najmuddin Fakhruddin, Dick Gross, Robert Gu-
ralnick, Florian Herzig, Christian Johansson, Keerthi Madapusi Pera, Rutger Noot,
Madhav Nori, Ralf Schmidt, Olivier Taibi, Richard Taylor, Jack Thorne, Andrew
Wiles, and Liang Xiao for helpful conversations. We finally want to thank Bruno
Klingler and the University of Paris 7 for hosting us during part of this project.

2. BACKGROUND MATERIAL

In this section we recall a variety of more or less well-known results that we will
use in the body of the paper.

2.1. Notation and conventions.

2.1.1. GSp,. We define GSp, to be the reductive group over Z defined as a subgroup
of GL4 by

GSpy(R) = {g € GL4(R) : gJg" = v(g)J}
where v(g) is the similitude factor (which is uniquely determined by g, and which
we sometimes call the multiplier factor), and J is the antisymmetric matrix

(%)
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where s = (O 1

1 0
G-
We let Sp, be the subgroup with v =1, and we let B C G = GSp, be the Borel
subgroup of upper triangular matrices, and T' C B be the diagonal maximal torus.
Write W = Ng(T)/T for the Weyl group of (G,T). It acts on the character

group via w - A(t) = AMw™Hw). It is generated by s; = < (f 032 ) and so =
2

). Note that the map v : g — v(g) is a homomorphism GSp, —

1 0 0 0 1
0 s 0 | wheres' = (_1 0>7 and admits the presentation
0 1

Wa = <51,52|s% = s% = (3132)4 =1).

Write X*(T) (resp. X.(T)) for the group of characters (resp. cocharacters) of T
We identify X*(T) with the lattice in Z3 of triples (a,b;c) € Z3 such that c=a+b
(mod 2) via

At = diag(ty, to, vty b, vty ) e t§thplea=0/2,
In particular, the central character is given by A(diag(z, z, z,2)) = 2°. The simple
roots are a; = (1,—1;0) and as = (0,2;0); o is the short root. Note that the o
determine the reflections s;. The similitude factor is (0, 0;2).

The root datum (G, B,T) determines the dual root datum (@,E ,f), where G
is the dual group GSpins. We always identify GSping with GSp, via the spin
isomorphism (see for example [MT02, §3.2] for a detailed explanation of this).

In particular, the cocharacter in X, (T) corresponding to the character (a,b;c) €
X*(T) defined above is given by

RN diag(t(a+b+c)/2, t(a7b+c)/2, t(fa+b+c)/27 t(fafb+c)/2)'

We write g and b for the Lie algebras of GSp, and B, and g° and b° for the Lie
algebras of Sp, and BN Sp,. If v is a finite place of a number field F', with residue
field k(v), then we have the standard parahoric subgroups of GSp,(F3):

e The hyperspecial subgroup GSp,(OpF, ).

e The paramodular subgroup Par(v), the stabilizer in GSp,(F,) of Op, @
Op, @ O, ® w,OF,, where w, € OF, is a uniformizer.

e The Siegel parahoric Si(v), the preimage in GSp,(Op,) of those matrices
in GSp,(k(v)) of the form

ok ok k
* * * *
0 0 x= =
0 * %

e the Klingen parahoric Kli(v), the preimage in GSp,(OF,) of those matrices

in GSp,(k(v)) of the form

* ok % %
0 * * %
0 * * %
0 0 0 =«

e the Iwahori subgroup Iw(v

~

, the preimage of B(k(v)) in GSp,(OpF, ).
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2.1.2. Algebra. If R is a local ring we write mp for the maximal ideal of R.

If M is a perfect field, we let M denote an algebraic closure of M and G, the
absolute Galois group Gal(M /M). For each prime p not equal to the characteristic
of M, we let ¢, denote the p-adic cyclotomic character and g, its reduction modulo
p. We will usually drop p from the notation and simply write ¢, €.

If K is a finite extension of Q,, for some p, we write K™ for its maximal unrami-
fied extension; I for the inertia subgroup of Gk ; Frobi € G /I for the geomet-
ric Frobenius; and Wi for the Weil group. If L/ K is a Galois extension we will write
I,/ for the inertia subgroup of Gal(L/K). We will write Artg : K* — W2P for
the Artin map normalized to send uniformizers to geometric Frobenius elements.

If p is a continuous representation of Gk over Q, for some [ # p, valued ei-
ther in some GL,, or in GSp,, then we write WD(p) for the corresponding Weil-
Deligne representation. (By definition, a GSp,-valued Weil-Deligne representation
is just a GSp,-valued representation of the Weil-Deligne group, i.e. it is considered
up to GSp,-conjugacy). If p is a de Rham representation of Gk on a Qp—vector
space W, then we will write WD(p) for the corresponding Weil-Deligne represen-
tation of Wk, and if 7 : K — Qp is a continuous embedding of fields, then we
will write HT-(p) for the multiset of Hodge—Tate numbers of p with respect to 7,
which by definition contains ¢ with multiplicity dimap(W ®,.x K(i))9%. Thus, for
example, HT,(¢) = {—1}.

Let K/Q be a finite extension. If v is a finite place of K we write k(v) for its
residue field, g, for #k(v), and Frob, for Frobg, . If v is a real place of K, then we
will let [c,] denote the conjugacy class in Gi consisting of complex conjugations
associated to v.

We will frequently adopt the following notation: we let p > 2 be prime, and we
let £ be a finite extension of Q, with ring of integers O, uniformizer A and residue
field k.

We will sometimes use the following well-known lemma without comment.

Lemma 2.1.3. Let T" be a group and let L be an algebraically closed field. Then
a semisimple representation I' — GSp, (L) is determined up to conjugacy by the
composite I' — GSp, (L) — GL4(L) x GLy(L), where the second factor records the
similitude character.

Proof. This follows (for example) from the proof of Lemma 6.1 of [GT11a]. O

2.1.4. Galois cohomology. If L/K is an extension of fields, k is a field, and V
is a finite-dimensional k-vector space with an action of Gal(L/K), then we write
HY(L/K,V) for H(Gal(L/K),V), and hi(L/K,V) for dim), H*(L/K, V). We write
HY(K,V) and hi(K,V) for H(K/K,V) and hi(K /K, V) respectively.

2.1.5. Automorphic representations. We will use the letter 7w for automorphic repre-
sentations of GSp,, II for automorphic representations of GL,, (usually with n = 4),
and 7 for automorphic representations of GLy. We decorate these in various ways,
and aim to be consistent in such decorations. For example, IT will usually denote
the transfer to GL4 of 7 in the sense of so that for example IT, will denote
the transfer of 5.

2.2. Induction of two-dimensional representations. We will sometimes want
to induce representations from GLg to GSp,. Suppose that K/F is a quadratic
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extension of fields, and that r : Gxg — GLy(L) is a representation, for some field L.
Choose 0 € Gf \ Gk, and assume that detr extends to a character x of Gp
Let p := Indgi 7 : Gr — GLy(L). The representation A%p admits the characters y
and x ® np/k as constituents, where 1, denotes the quadratic character. In
particular, the representation p generally preserves two symplectic forms, and hence
gives rise to two representations pi, p2 : Gg — GSp, (L) with similitude factors x
and x ® np/ i respectively. To describe these more explicitly, let V' denote a model
for r so that W =V @ oV is a model for p. Then the Galois action of W preserves
(up to scalar) the symplectic form given by choosing an arbitrary non-degenerate
symplectic form on V, letting oV and V be orthogonal, and then defining ocv; Aows
consistently to be either x(o)vy Awvp or —x(0)vi Ava = x @ Np/k(0)v1 Ava. The
image of (A4, B) € GLa(E) x GLy(F) with det(A) = det(B) inside GSp, relative to
our choice of J can be given by

N GSp,(E).

0
*
*

* O O *
* * O
* O O %

0 0

In our applications, it will always be the case that det r is the inverse of the cyclo-
tomic character of G, and we will write simply write Indgi r for the corresponding
symplectic representation with similitude factor the inverse of the cyclotomic char-
acter of Gp. For example, if K/F is a quadratic extension of number fields, F is
an elliptic curve over K, and r is the dual of the p-adic Tate module of E, then
Indgf{ r is the dual of the p-adic Tate module of the abelian surface A = Resg/r E,
and the corresponding symplectic structure on this representation coincides with
the one coming from the Weil pairing on A. This is because the representation on
the Tate module of A is the induction of the corresponding representation on the
Tate module of F, and because the similitude character on the Tate module of an
abelian variety is always given by the cyclotomic character.

2.3. The non-archimedean local Langlands correspondence. Let K/Q; be
a finite extension for some [. We will let recx be the local Langlands correspon-
dence of [HT01], so that if 7 is an irreducible complex admissible representation of
GL,(K), then reck (m) is a Frobenius semi-simple Weil-Deligne representation of
the Weil group Wx. We will write rec for recx when the choice of K is clear.

If (r,N) is a Weil-Deligne representation of Wy we will write (r, N)¥'=ss for
its Frobenius semisimplification. If 7; is an irreducible smooth representation of
GL,, (K) for i = 1,2 we will write 7 By for the irreducible smooth representation
of GLy,, 4-n, (K) with rec(mHma) = rec(my)@rec(ms). If L/K is a finite extension and
if  is an irreducible smooth representation of GL, (K) we will write BCy, /() for
the base change of 7 to L which is characterized by rec (BCr k(7)) = rec (7)|w,, -

We denote the local Langlands correspondence of [GT11a] by recgr; this is
a surjective finite-to-one map from the set of equivalence classes of irreducible
smooth complex representations of GSp,(K) to the set of GSp,-conjugacy classes of
GSp,(C)-valued Weil-Deligne representations of Wy, which we normalize so that
recgT(m ® (x o v)) = recar(m) ® rec(x), and v o recgr(m) = rec(wy), where w; is
the central character of 7.

We fix once and for all for each prime p an isomorphism 2 =17, : C = Qp. We
will generally omit these isomorphisms from our notation, in order to avoid clutter.
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In particular, we will frequently use that » determines a square root of p in Qp
(corresponding to the positive square root of p in C). We write rec, and recgr,, for
the local Langlands correspondences for Qp—representations given by conjugating
by 2. These depend on 2, but in practice this does not cause us any difficulty; see

Remark 2.3.21

Definition 2.3.1. If p : Gxg — GSp,(Q,) is a continuous representation for
some p # I, then we write L(p) for the L-packet associated to p, which by def-
inition is the set of equivalence classes of irreducible smooth Q,-representations 7

of GSp,(K) with the property that recgr (7 ® [v|73/2) 2 WD(p)F .

|73/2

(In accordance with the convention explained above, note that |v makes

sense because we have a fixed square root of p.)

Remark 2.3.2. Tt is presumably possibly to show that the twist of recgr in Defini-
tion m (which will be present whenever we consider recgr ) gives a local Lang-
lands correspondence for Qp—representations which is independent of the choice of 1,
but we have not tried to establish this, as we do not need it. We make (implicit)
use of this for unramified representations, and of the statement that the rank of
the monodromy operator associated to a representation with Iwahori-fixed vectors
is independent of the choice of 2, both of which are easily verified explicitly.

Remark 2.3.3. We will from now on usually regard automorphic representations as
being defined over Qp, rather than C, by means of the fixed isomorphism 1 : C &
Qp. We will not in general draw attention to this, and no confusion should arise
on the few occasions (for example, when considering compatible systems) where we
think of them as being over C.

If L/K is a finite solvable Galois extension of number fields and if 7 is a cuspi-
dal automorphic representation of GL, (A ), we will write BCr k() for its base
change to L (which exists by the main results of [AC89]), an (isobaric) automorphic
representation of GL, (A ) satisfying

BCL/K(”)w =BCr,/k, (70)
for all places w of L where v = w|k is the restriction of w to K. If m; is an

automorphic representation of GL,,, (A k) for i = 1,2 we will write 71 B 7o for the
automorphic representation of GLy,, +n,(A k) satisfying

(7T1 H 7T2)v =Tl H 2,0

for all places v of K.

If (r,N) is a Weil-Deligne representation, then we write n((r, N)) for the rank
of N. If 7 is an irreducible admissible representation of GL,,(K) (resp. GSp4(K)),
then we write n(r) for n(rec(r)) (resp. n(recar(m))).

2.4. Local representation theory. In this section, we recall a number of more
or less well-known results about the representation theory of GSp,(K), where K
is a local field of characteristic zero. Some of these results are in [GT05], but for
convenience we have gathered them all together here, and have usually given proofs.
Since our applications of this material are all global, and some of the definitions we
make (such as the normalizations of Hecke operators at places dividing p) depend
on global information, we have chosen to work in the same global setting that we
consider in the rest of the paper.
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Let p > 2 be prime, and let F' be a totally real field in which p splits completely.
Let E/Q, be a finite extension with ring of integers O and residue field k. Let v
be a finite place of F', and fix a uniformizer w, € Op,. For most of this section,
we will allow v to divide p, although at the end of the section, we will prove some
results (which follow those of [KT17] for GL,) under the assumption that ¢, = 1

(mod p). We fix once and for all a square root @/ e E.

2.4.1. Generalities. We begin by recalling some results on Iwahori Hecke algebras.
It costs us nothing to recall these in a more general setting, so we temporarily
let G/OF, be a split reductive group with T'C B = T - U a maximal torus and
Borel (with unipotent radical U), and let N be the normalizer of T in G. Let
W = N(F,)/T(F,) be the Weyl group. Let A C X*(T) be the simple roots. We
write W = N(F,)/T(Og,) for the extended affine Weyl group.

Let Iw(v) = ker(G(OF,) — B(k(v))) be an Iwahori subgroup, and let Iwy(v) =
ker(G(Op,) — U(k(v))) be a pro-v Iwahori subgroup. Let

Hi = H1(v) = O[lwi (W\G(F,) /[Twi (v)] = O[G(Fy ) //Twi (v)]

be the pro-v Iwahori Hecke algebra. (Here G//K denotes K\G/K — we tend to
prefer the first notation but we also sometimes use the second notation since it is
more compact and some of our expressions are already typographically somewhat

complicated.)
We let T(Op,)1 = (ker T(Op,) — T'(k(v))). We also let
|

T(F,)* = {z € T(F,) | a(z) € Op,,Ya € A}.
]

For g € G(F,), we write [Iwy(v)gIwy(v)] € H; for the characteristic function of the
double coset Twq(v)glwy(v).

Proposition 2.4.2. For z,y € T(F,)*, we have

[Iwy (v)aIwy (v)] - [Iwy(v)yIwy (v)] = [Iwy (v)zylwy (v)]
and moreover [Iwy(v)alwy (v)] € (H1[1/p])*. Ifv{p, then in fact [Twy(v)xIwy(v)] €
Proof. The first statement is a special case of [Cas, Lem. 4.1.5], while the rest is

immediate from [Vig05, Cor. 1]. O

As a result, there is a homomorphism
T(Fy) = (Ha[1/p])*

which is defined as follows: write z € T(F,) as z = yz~! with y,2 € T(F,)* and
send x to

(0™ (y) [Tw1 (v)yIwy (0)]) (05 (2) w1 (v) 21w (0)]) ™!

where dp is the modulus character. The kernel of this homomorphism is T(Op, ).
If v 1 p, then the image of the homomorphism is in H;°.

Proposition 2.4.3. Let 7 be a smooth admissible E[G(F,)]-module. Then the map
T — 7wy, where wy is the (normalized) Jacquet module, induces an isomorphism of
E[T(F,)]-modules

7_[_le(’u) — (WU)T(OFU)I .
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Proof. By [Cas, Lem. 4.1.1] (noting that the Jacquet module in this reference is
not the normalized Jacquet module), the map m — 7y induces an E[T(F,)]-module
homomorphism 71 (") — (77)T(©r)1 Tt is an isomorphism by [Cas, Prop. 4.1.4]
and Proposition [2.4.2 O

For a character x : T(F,) — E”, write m(x) = n—IndG(F”)X for the corresponding

B(F,)
principal series representation. Then we recall

Proposition 2.4.4. For x : T(F,) — E” there is an isomorphism of E[T(F,)]-
modules

(r()v)* ~ P E(w - x).

weWw

Proof. This is a special case of [Cas, Thm. 6.3.5]. O

We say that 7(x) is a tame principal series if x is trivial on T(Op,); and an
unramified principal series if x is trivial on T(Op,). The results recalled above
immediately imply the well-known facts that if 7 is an irreducible smooth E[G(F,)]-
module, then 7™V1(*) £ {0} if and only if 7 is a constituent of a tame principal series,
and 7™(¥) =£ {0} if and only if 7 is a constituent of an unramified principal series.

Write H := O[Iw(v)\G(F,)/Iw(v)] for the Iwahori Hecke algebra. This enjoys
similar properties to those of H; recalled above; in particular, the analogue of
Proposition 2.4.2] gives an embedding E[X,(T)] < H[1/p], and if v { p, then this
restricts to an embedding O[X,.(T)] — H.

2.4.5. Principal series for GSp,. We now specialize our discussion to G = GSp,.
We recall some known results on constituents of unramified principal series repre-
sentations; many of these results are originally due to [ST93], but for convenience
we refer to the tables in [RS07bl App. A]. (Note that the compatibility of the pro-
posed Langlands parameters in [RSO7D, App. A.5] with the correspondence recgr
is proved in [GT11Dbl Prop. 13.1].)

If x1, x2,0 are characters of F*, then we write

v

GSpy4(F,
X1 X X2 X 0o = n-IndB(;ij; )Xl X x2 ® 0,
where
a * * *
b * *
X1® X2 ®0: -l x| 7 xa(@xa®)a(e).
ca=?

Proposition 2.4.6.

(1) x1xx2X0 is irreducible if and only if none of x1, X2, X1Xa " is equal to |-|F'.
(2) If w is an irreducible constituent of x1 X x2 X o, then

recgr,p(m)™® =0 o Arty' @ ((x1x2) 0 Arty @ x1 0 Arty @ xz0 Artp' @1).

(8) If x1 X x2 x 0 is irreducible, then recgr p(x1 X X2 X 0) is semisimple (that
is, N =0).

Proof. Part (1) is [ST93| Lem. 3.2]. Parts (2) and (3) follow immediately from rows
I-VI of [RSO7b) Table A.7]. O
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2.4.7. Spherical Hecke operators. Define matrices
61},0 = diag(wv7 Wy, Wy, wv)a

Bo,1 = diag(w,, @y, 1, 1),
ﬁU,Q = diag(w?n Wy, Wy, 1)'

We have the spherical Hecke operators T, ; = [GSpy(OF, )Bv.: GSp4(OF, )], which
are independent of w,. It is easy to check (using Proposition (2)) that if 7 is
an unramified representation of GSp,(F,) (that is, if 7GSPa(Or) £ 0 so that 7 is
a constituent of an unramified principal series), then the characteristic polynomial
of recgr (7 ® |v|73/2)(Frob,) is

(248> Qv(X) = X4 - tv,lXS + <Qvtv,2 + (qg + q'u)t'u,O)X2 - qgtv,ot'u,lX + qgtaOa

where we are writing ¢, ; for the eigenvalue of the operator T}, ; on 7GSPa(Or,),

Definition 2.4.9. We say that the Hecke parameters of 7 are the roots of Q,(X),
ordered in such a way that the pairs of roots (1,4) and (2,3) both multiply to
give the value v, of the similitude character evaluated on Frob,. We write these
Hecke parameters as [av, B, Vo8, L, Yoy 1], where implicitly we view these terms
as labelling the vertices of a square:

a’U 751}

’Yvﬁu_l - ’YvOé;l
and the ordering is unique up to the action of the Weyl group Ds = Sym((J). In
particular, the data of the quadruple [a,, By, Vo8, 1, Yy, 1] carries with it the value
of the similitude character.

We will be concerned with the case that the central character of 7 is given by
a > |a|?, in which case the Hecke parameters have the form [a,, 8., ¢, 8,1, quay 1]

2.4.10. Iwahori Hecke operators.

Definition 2.4.11. We say that an unramified principal series 7(x) is general if
the Hecke parameters are pairwise distinct and no ratio of them is ¢,. In particular,
m(x) is irreducible, and |W - x| = 8.

We have Iwahori Hecke operators Uf‘vjz‘é‘;z = [Iw(v)By,Iw(v)]. The notation
“gmaiver is intended to indicated that we have not yet appropriately normalized
these operators, as we will shortly do in the case that v|p. Then we have

Proposition 2.4.12. Let @ be a general unramified principal series with Hecke
parameters [auy, B, @By L, quey '] Then ™) is a direct sum of 8 one-dimensional
simultaneous eigenspaces for the UII“S(‘Z% For a given (ordered) choice of o, and

By the corresponding eigenvalues are u, o = q; 2, Uy1 = 0y, and Uy 2 = gy "y Py.

Proof. The first part is immediate from Propositions and To compute
the eigenvalues, by the definition of the Hecke parameters and Proposition [2.4.6| we
have oy, = g/ *(x1x20) (@), Bu = ¢o > (x10) () and g, = g3 (x1x20°) (). We
then have u, ; = 65(By.:) "2 (x1®X200)(By.:), 50 that u, o = (x1x20)%(w,) = ¢, 2,
w1 = 42 (axeo) (@) = @y, o = 2(3x20%) (@) = g, @y By, as required.
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Proposition has the following converse:

Proposition 2.4.13. Let 7 be an irreducible admissible representation of GSp,(Fy),
and suppose that 7V) contains an eigenvector for the Uf‘vj(‘zg’z with eigenvalues w,,
satisfying u,, = q, 2, Up1 = @y and uy 2 = q, ' By such that no ratio of a pair of
[, Bus @By Y, qua Y] is q,. Then m is the unramified principal series with Hecke

parameters [a, By, ¢uBy ', quay ']

Proof. Reversing the calculation in the previous proof, we let x = x1 ® x2 ® 0 be
the unramified character with x1(w,) = @,Buq; !, x2(@y) = @B, !, and o(w,) =
a;lq;u?. We see that there is an inequality HomT(Fv)(wIW(“), X) # {0}, and hence
Hom(m,m(x)) # {0} by Proposition and Frobenius reciprocity. Finally, by
Proposition m(x) is also irreducible. O

2.4.14. Parahoric level Hecke operators for GLs. We will also need to consider
certain parahoric Hecke algebra and investigate how they relate to the Iwahori
Hecke algebra.

We begin by recalling some standard results for the group GLy. We let Tw(v)’ C
GL2(Op,) be the Iwahori subgroup of matrices which are upper triangular modulo
w, (we put a prime because Iw(v) is used to denote the Iwahori subgroup in
GSp4(Or,))-

We introduce the following operators in the spherical Hecke algebra Hspn[1/p]:

Wy

W) 788 = 6La(0r) (G 7) GLa(OR ),

Wy

@) 785 = 61a(0x) (2 ) CLaOr)]

We also define the following operators in the Iwahori Hecke algebra Hy(y) [1/p]:

W oSk =iy (7 9) w1,

GL w, O
@ v =y (7 2 ) o)
(3) eShiz = [GLy(Op, ).
For any element f of the centre of the Iwahori Hecke algebra, the element eg;;h?
defines an element of the spherical Hecke algebra.

Lemma 2.4.15. The centre Z(Hiw(v) [1/p]) of the Twahori Hecke algebra is gen-
erated by US(I;2 and qUUS(I;Q(USP)_l + US{“, the map eSGFﬁf D Z(Hiwy [1/p]) —
Hspn[1/p] is an isomorphism and we have the following identities:

(1) espirUso® =T,
(2) e§it (aUys* (Uy?) 1 + U*) =Ty
Proof. This follows from [HKP10, §1, §2, §4.6]. d

naive

2.4.16. Klingen level Hecke operators. We have Klingen Hecke operators Kii(o),i =
[Kli(v) 8,,:Kli(v)].
Proposition 2.4.17. Let 7 be a general unramified principal series with Hecke pa-

rameters [, B, w3y L, quay t]. Then 7K s o direct sum of 4 one-dimensional
simultaneous eigenspaces for the Ul’é?il("f)’i. For a given choice of {ay, By}, the eigen-

_ -2 _ _ -1
values are uy 0 = @y %, Up,1 = Qy + Bo, and Uy 2 = Gy Py
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Proof. This follows from a direct computation, see [GT05, Prop. 3.2.1, Cor. 3.2.2].
O

Remark 2.4.18. We sketch another (related) proof of Proposition Let us de-
note by Hiy(v)[1/p] the Iwahori Hecke algebra and by Ziii(y) (Hiw(w)[1/p]) the sub-
algebra generated by Uflvféf}‘)al + QU(UIHVSEZ%)_lUIT’Vj(iZ’;’z, U{’ng’iz, UF;&Z’S’O One checks
that Ziiiv) (Hiw(w)[1/p]) commutes with egi,y = [Kli(v)] by using Bernstein’s re-
lation ([HKP10, §1.15]). Therefore we get a map: exii(v) @ ZKiiv) (Hiw(w)[1/p]) —
Hrki(v)[1/p] where Hii(v)[1/p] is the Klingen Hecke algebra. We claim that:

naive naive \—17rnaive __ Jrnaive

* exii(o) Unyioy1 + @0 WUnen) 1) ™ Uiy 2) = Uklifon 10
naive __ yrnaive

hd eKli(’U)UIw(v),2 = UKli(v),Q’
naive __ yrnaive

* exii(o)Ung(n),0 = Ukli(v),0°

The claim can be checked after restricting all these functions to the Levi GLg x
GL; of the Klingen parabolic by [Vig98, Prop. IL.5], so it follows from Lemma/|2.4.15
The result then follows from Proposition [2.4.12

Remark 2.4.19. Proposition could also be proved using Jacquet modules
(as could analogous results for invariants at other level structures which admit
parahoric factorizations).

Proposition 2.4.20. Let 7 be an irreducible admissible representation of GSp,(Fy),
and suppose that 78 contains an eigenvector for the Uﬁ?ii("f))i with eigenvalues
Uy, Satisfying u,, = a2, Up1 = ay + By and uy 2 = q, ', B, such that no ratio
of a pair of {w, Bu, @By L, qua, Y is q,. Then w is the unramified principal series
with Hecke parameters [, By, ¢y L, quary t].

Proof. As in the proof of Proposition we deduce from 7™W(*) £ 0 that 7 is a
constituent of an unramified principal series representation. The central character
of such a constituent is unramified and so is determined by the value on Frobenius.
From the equation u,, = ¢, 2, we deduce that the central character of 7 is |-|?, and
hence the central character of 7 ® |v|=3/2 is | - |7, and hence that the similitude
character of recgr (7 ® |v|~%/2) is the inverse of the cyclotomic character e~
In particular, the value of the similitude character of the Weil-Deligne representa-
tion on Frob, is ¢,, and thus 7 is a constituent of an unramified principal series
representation with Hecke parameters [, 8!, q.(8)) %, qu(’))71]. (Note that the
ordering of these eigenvalues above is determined up to the action of Dg.) Compar-
ing to Proposition [2:4:.17 without loss of generality, we may rearrange the Hecke
parameters of 7 so that we deduce the two equations

O‘i} + ﬂi/; =0y + ﬂv’ a;;ﬂ:; = O‘vﬂva

and thus (again up to reordering) o/ = «,, and 8., = 3,. By Proposition the
principal series 7 is irreducible. 0

2.4.21. Generic unipotent representations. We say that a GSp,(F)-valued Weil-
Deligne representation r is generic if ad(r)(1) has no invariants, and is unipotent if
7% is unramified.

Proposition 2.4.22. Let r be unipotent. Then the L-packet corresponding to r
contains a generic representation if and only if r is generic.
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Proof. By the main theorem of [GT1Ial] (part vii), the L-packet L(r) contains a
generic representation if and only if the adjoint L-factor L(s,ad(r¥~5%)) is holomor-
phic at s = 1, which, by definition, is easily seen to be equivalent to the statement
that ad(rf=*%)(1) has no invariants. Thus we are reduced to checking that r is
generic if and only if 7'~ is generic. Let W denote the vector space underlying
the representation ad(r)(1). We are reduced to showing that Hom(E, W) = 0 if
and only if Hom(E, W~%) = 0.

One implication is trivial. For the reverse implication, a map from E to W= is
the same as giving a vector x in W which lies in the kernel of N and is a generalized
eigenvector for the Frobenius ¢ with eigenvalue 1. For a suitable choice of n € N,
the vector y = (¢ — 1)"z will be non-zero and a genuine eigenvector for ¢ with
eigenvalue one. On the other hand, since z lies in the kernel of N, so does ¢z,
because Nox = q; ¢ Nz = 0. Similarly, any polynomial in ¢ applied to = also lies
in the kernel of N. Thus y also lies in the kernel of N and gives rise to a nonzero
element of Hom(E, W). O

2.4.23. Normalized Hecke operators, ordinary representations, and ordinary projec-
tors. In this section, we assume that v|p. We fix integers k > 1 > 2, and k = [
(mod 2) (these will correspond to the weights of our automorphic forms; see Sec-
tion. Then we will consider normalized Hecke operators at Iwahori and Klingen
level defined by

Utw(v).0 = P°Una(s5.0 Uxii().0 = P*URH(s) 0
Ulw(v)1 = p(k+l)/272U?§EZ‘)S,1 Ukii(v),1 = p(k+l)/272U§ﬁi(vf),1

Utw(v),2 = pk_lUfl“?EZig Ukii(v),2 = pk_lU}réil(‘f),z

We will often write U, ; for the operators Ury(,),; when the context is clear. We will
also keep writing U, o for the Hecke operator p*[K,3, 0K,| for any subgroup K,
of Iw(v) (because U, ¢ lies in the centre of the Iwahori Hecke algebra and therefore
P [KuBooKy] = ex,Uypo). We will also often write U, o for the Hecke operator
Uxkii(v),2 for the same reason (see Remark [2.4.18). We can and do also normal-
ize the Siegel Hecke operators in the same way, so that for example Usgj,),1 =
p(k+l)/272U§iaE1Uv)ol.

An irreducible smooth E[GSp,(F,)]-representation with central character |- |? is
said to be ordinary of weights k > 1 > 2 if there exists an eigenvector v € 7 ™"(®)
for Ury(v),; with eigenvalues u, ; with vp(uy ;) = 0. If a, and B, are defined by
Qy = U1, Bo = Up2/Uy1, then, by Proposition 7 is a constituent of an
unramified principal series with Hecke parameters

[avp2—(k+l)/2’5vp—(l~c—l)/2’5@—1p1+(k—l)/2’a;lp(k+l)/2—1].

We say that 7 is p-distinguished if these four Satake parameters are pairwise dis-
tinct, or in other words if either [ > 2 or «, # f,.

If | > 2, then again by Proposition v € 7 is the unique eigenvector (up
to scale) with unit eigenvalues for the Ury(y),;- In this case, the ordered pair (av, ;)
is uniquely determined by m, and we call (a,, 8,) the ordinary Hecke parameters
of m. If | = 2 and = is p-distinguished, then there may also be an eigenvector
v € 7% with unit eigenvalues Ulw(v), 10" = BuV’, Ulw(v),2V" = auByv" (we will
see below that in fact such a v" always exists.) Thus at least the set {«,, 8,} is
determined by 7w and we again call them the ordinary Hecke parameters of .
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We let ereg be the ordinary projector (in the sense of Section [2.11) associated
t0 Ulw(v),1Utw(v),2, and let eineg be the ordinary projector associated to Uxkii(y),2-

Proposition 2.4.24. Let 7 be an ordinary p-distinguished representation of weights
k> 1> 2, with ordinary Hecke parameters (., By) (or {ay, By} if 1 =2). Assume
that either k > 1> 3 orl = 2.
(1) If k> 1> 3 orifl =2 and k > 2, then 7 is an irreducible principal series.
(2) If k =1 = 2, then in the sense of the tables of [RSOTc, §1], 7 is a rep-
resentation of type Va if {an,B,} = {1,-1}, Ma if B, = 1, Ha if
#{aw, B} N {1, =1} = 1, or otherwise is an irreducible unramified prin-
cipal series.
In all cases, 7 is generic and the L-packet L(w) of m contains no other ordinary
representations. Moreover:
(1) k> 1> 3 then
dim e,«egﬂ'lw(”) =1
on which Uty ()i has eigenvalues 1, a,, a3y for i =10,1,2.
(2) If l =2 then
dim emgﬂ'lw(”) =2
and there are two eigenspaces for Uy (y),i, with eigenvalues 1, c,, o, 3, and
1, By, i, By TeSPectively, and moreover

dim ewmgWK“(”) =1

with Ukii(y),i eigenvalues 1,a, + By, By, fori=0,1,2.

Proof. As remarked above, by Proposition [2:4.4] 7 is a constituent of an unramified
principal series with Hecke parameters

[avp2—(k+l)/2’va—(k—l)/Z,Bv—lp1+(k—l)/2,a;lp(k+l)/2—1].

If either £ > 1 > 3 or I =2 and k > 2, no ratio of a pair of these parameters can be
p, and hence 7 is an irreducible principal series by Proposition [2.4.6

In the remaining case, k = [ = 2, the Satake parameters are [, 8., 8, ', ay 1p),
and the corresponding principal series may be reducible when one of a2, 82, a, 3, is
equal to 1. The constituents of these principal series are listed in the tables [RS07c|,
§1]. The case that either a2 = 1 or 82 = 1 but not both corresponds to type II,
the case that a2 = 32 = 1 corresponds to type V, and the case that a,3, = 1
corresponds to type III.

For each constituent 7 of such a principal series, the tables give a computation
of the Jacquet module 77, which is equal to my because o, # B,. This allows us,
by Proposition [2.4.3] to determine the simultaneous eigenvalues of the Uty (.); on
W) At this point the result follows from an inspection of the tables. O

We now turn to the global situation. Recall that we have fixed an isomorphism ¢ :
Qp 2 C, so that in particular in the following definition we can and do identify the
infinite places of F' with the places dividing p. See Section [2:6] for our conventions
regarding the weights of automorphic representations.

Definition 2.4.25. Let 7 be a cuspidal automorphic representation of GSp,(Ar)
with central character |- |? and weight (., ly)v|osos Where ky > 1, > 2 and k, = [,
(mod 2) for all v|co. Then we say that 7 is ordinary if for each place v|p, 7, is
ordinary of weights k, > [, > 2.
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The following proposition will be useful for going between ordinary p-adic mod-
ular forms and ordinary automorphic representations. For each subset I C S, we

set
Kp(I) = [[Kli(v) J] Iw(w).

vel vele
We also let e(1) = [[,¢; €irreg [ Logr €res-

Proposition 2.4.26. Let 7 be a cuspidal automorphic representation of GSp,(Ar)
of weight (v, ly)vjoo with ky > 1, > 2 and with central character |- |2, and fiz tuples
of p-adic units (cw, By)y|p. Assume that for each v € Sy, either k, > I, > 3 or
ly =2 and o, # Bs.

Let I' ={ve S, |, =2} and let I C I’ be a subset. Then 7 is ordinary with
ordinary Hecke parameters (cw, By)o)p if and only if

(®UESP WU)KP(I)

contains a vector which is:

o for each v € I¢, an eigenvector for the normalized Uy (v),0, Utw(v),1, and
Utw(v),2, with respective eigenvalues 1, a,y, and o, B,, and

o for each v € I, an eigenvector for Uxii(v),0, Ukii(v),1, and Ukiiw),2 with
respective eigenvalues 1, c, + By, and o, By.

Moreover in this case
dime<1)(®vesp7rv>Kp(1) — 2#(1’_1)_

Note that if 7 is ordinary with ordinary Hecke parameters (o, 8y)y), but v ¢ I’,
then the Ukii(y),1 eigenvalue will not be of the form o, + 3,, but rather, up to some
ordering of «, and f3,, be of the form a,, + p* =23,

Proof. This is simply Proposition 2.4.24) applied for each v € S,. O

2.4.27. An instance of the local Langlands correspondence. Given a pair of charac-
ters Xv,1, Xv,2 : k(v)* — O, which we regard as characters of O;v by inflation, we
define a character of x, of T(O) by

Xv : T(Op,) — O*
(a,b,cb™ ca™) = xp1(ab™ ) xu 2(abe™h).
Then if M is an H;i-module, we write
MX» ={m e M |tm = x,(t)ym Vt € T(k(v))}

and

My, = M/{tm — x,(t)m |t € T(k(v)),m € M).
Then we record:

Proposition 2.4.28. If 7 is an irreducible smooth E[GSp,(F,)]-module with the
property that (™1 ()Xe £ L0} then, for all o € Wi,

det(X — recarp(m)(0)) = (X = X1 (Artz) (0)))(X = xo,1(Arty) (0)) )
(X = Xv2(Artp, (0)))(X = xo2(Arty, (0)) 7).

If, moreover, the characters X, 1, X:U_,}?Xv,Qa X;é are pairwise distinct, then there is
an equality dimE(wlwl(”))Xv =1.

Proof. This is an immediate consequence of Propositions [2.4.3] 2.4.4 and 2.4.6, O
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2.4.29. The case ¢, =1 (mod p). We suppose from now on for the rest of this sec-
tion that ¢, = 1 (mod p). Recall that we have a homomorphism T'(F,)/T(Op,)1 —
H{, and thus an (injective) homomorphism O[T(F,)/T(OF,)1] — H1; we identify
O[T(F,)/T(OF,)1] with its image in ;. Given elements @y, @ € F;, we let ma, @,
denote the kernel of the homomorphism O[T'(F,)/T(OF,)1] — F, induced by the
character T'(F,)/T(OF,)1 — F; sending T'(Op,) — 1, diag(w,, wy, @y, @) — 1,
diag(w,, @y, 1,1) + @1, and diag(w?, w@,, @, 1) — a10s.
Proposition 2.4.30. Let 7 be an irreducible smooth E[GSp,(F,)]-module with
central character |-|* and with (71'IW1('“))mal = 7 10}. Suppose ail,ay! are pairwise
distinct. Then

recarp(m) =1 @ Gyt @e Iyt
for characters ~; of Gr, with 7, = Ag, (the unramified character taking Frob,
to @;), and T(k(v)) acts on (7r1""1(”))mal =y Vi@ (Yio Artpv)|0; .

Proof. From Proposition |2.4.28] we know the characteristic polynomial of the corre-
sponding representation, and thus immediately deduce that the semi-simplification
of the Galois representation has the required form. It thus suffices to show that, un-
der the hypothesis on @;, that all Galois representations are semi-simple. Suppose
otherwise. Two tamely ramified characters admit an extension if and only if their
ratio is unramified and takes the value ¢, on Frobenius. Since ¢, =1 mod p and &

is trivial modulo p, this implies that Elﬂ, &Qﬂ are not distinct, a contradiction. [J

Remark 2.4.31. Let Z be the centre of GSp,, let A, be the maximal p-power
quotient of T(k(v))/Z(k(v)), and let A! = ker(T(k(v)) — A,). If the 7 of Propo-

sition [2.4.30| additionally satisfies the condition that (ﬁlwl(”))ﬁél =, 7 10}, then we
immediately deduce that A, also acts on (ﬂlwl(v))ﬁ/gl =, Via (i 0 Artg, )| ox -

We now prove some results about the Iwahori Hecke algebra (under our running
assumption that ¢, = 1 (mod p)). We follow [KT17, §5] closely, and our proofs
are essentially an immediate adaptation of their arguments from GL,, to GSp,. As
recalled above, we have an embedding O[X.(T')] < H. This can be refined to
give the Bernstein presentation of H (see e.g. [HKP10, §1]), which is an algebra
isomorphism

H = O[X.(T)]|@0O[lw(v)\ GSpy(OF,) /Iw(v)],
where the twisted tensor product ®¢ is determined by the following relations, where
Sq € W is simple, corresponding to the simple root «, and p € X, (T):

Osny) — 0
(2.4.32) Ty, 05 = 0.y T + (40 — 1)#.
Here we are writing 6, for the image in H of the group element e, of O[X,(T)]
corresponding to p, and for w € W we write T,, := [Iw(v)wlw(v)] where w €

GSp,(Op,) is any representative for w.
Lemma 2.4.33. There is a natural isomorphism H ®o k = k[ X, (T) x W].

Proof. We claim that the natural k-linear map k[W] — k[Iw(v)\ GSp,(OF,)/Iw(v)]
sending w +— T, is an algebra isomorphism. Admitting this claim, note that

since ¢, =1 (mod p), the relation (2.4.32)) becomes
Ts.0n = 05,0 T,
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in H ®o k, so that there is an isomorphism k[X,(T) x W] — H Qe k sending
exw — 0Ty, as required.

It remains to prove the claim. The Weyl group W is generated by s1, sy with
52 = s2 = (s182)* = 1, so it is enough to show that k[Iw(v)\ GSp,(OF,)/Iw(v)]
is generated by the elements T, ,Ts,, subject to the same relations. This follows
from the assumption that ¢, = 1 (mod p); indeed, we have the usual relations
Ti = (QD - 1)T91 +qu ('L = 17 2)7 and Tsl TSgTel Teg = T@gTel TQQTQl? which are eaSﬂy

seen to be equivalent to T2 = T2 = (T, Ts,)* = 1, as required. O

Recall that by definition an O[GSp,(F),)]-module M is smooth if every element
of M is fixed by some open compact subgroup of GSp,(F,), and it is admissible if
it is smooth, and if for each open compact subgroup U C GSp,(F,), MY is a finite
O-module.

Lemma 2.4.34. If M is a smooth O[GSp,(F,)]-module, then the natural inclusion
MGSPa(Or,) « M™W() s canonically split by the Hecke operator
1
€Sph(v)-
(GSp4(Or,) : Tw(o)]

Proof. The Hecke operator egpp(,y € H induces the natural trace map M w(v)
MGSPa(Or,) 5o that the composite map MGSPa(Or) 5 pfIw(v) . NfGSP(Or,)
is given by multiplication by [GSp,(OF,) : Iw(v)]. Since [GSp,(OF,) : Iw(v)] =
|[W| =8 (mod p) is a unit in O, we are done. O

Corollary 2.4.35. If M is a smooth k[G]-module, then M™) is naturally a k[W]-
module, and MGSP+(Or,) = (MfIw@HW
Proof. This is immediate from Lemmas [2.4.33] and [2.4.34] ([
The centre of H is O[X,(T)]", and there is an isomorphism
O[X.(T)]" = O[GSp4(Or, )\ GSp4(F,)/ GSp4(Or, )]
given by x +— egpn(y)® (where we are regarding = as an element of H); this iso-
morphism agrees with the isomorphism given by the usual Satake isomorphism
(see [HKP10, §4.6]). The classical description of O[X,(T)] is as follows. Let xq, x1,
and zo denote the following three cocharacters:
xo : t — diag(t,t,1,1),

x1:t — diag(1/t,1,1,¢),

x9 : t — diag(1,1/t,t,1).
Then 222125 is the cocharacter t — diag(t,t,t,t) and

O[X.(T)] = Olxo, x1, T2, (x2x129) " ] = Ol20, 21, T2, (ToT1222) "]

The effect of the involutions si, so, and s1s9s7 € W on these cocharacters is to
send (zg,x1,x2) to

(20,2, 21), (T, 71,75 ), (ToT1, 2], T2)

respectively. All of these involutions preserve (xg, zoZ1,ZoZ2, Tox122) considered
as an unordered quadruple. Define elements e; (o, z1,72) € O[X.(T)]W,0 <i < 4,
by the following formulae:

(X — 20)(X — 2021) (X — zo22)(X — mom122) = Z ei(wo, w1, 12) X"
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The relation between the e; and the Hecke operators T, ; is given by
> eiwo, w1, w2) X' = XA g3 T A XP (2T 2+ (1402) T 0) X2 =) > Ty 0 T . X417 .

Since we are assuming that ¢, = 1 (mod p), and in our applications of these results
in the global setting there is a twist which makes all of the powers of g, integral
(as in ), we will ignore all powers of q}/ % from now on.

Given any triple v := (y0,71,72) and w € W, let ((wy)o, (wy)1, (wy)2) denote
the triple obtained by substituting in 7; for z; in the action of W on O[X.,(T)]
described above.

Lemma 2.4.36. Let M be an H ®p k-module which is finite-dimensional over k.
Suppose that egpnyM # 0, and that there is a triple vo, 1, v2 with YByiye =1
such that (y1 — 1)(y2 — 1)(71 — 72) (7172 — 1) # 0; equivalently, writing oy = o,
Qo = YY1, Suppose that

aq, 0, 1/0{27 1/0{1

are pairwise distinct. Suppose also that the following operators act by zero on the
module espy(v)M :

Too—1Ty1 —e1(v0,715,72)s To,2 + 210 — €2(v0,71,72)-
Then, for each w € W, the mazimal ideal

My = (20 — (wy)o, 1 — (wy)1, 22 — (wY)2) C k[X.(T)]
s in the support of M.
Proof. Let n C k[X.(T)]" be the ideal

n= (61(150,3317932)—61(70,71772)» cees 64($0,$1’$2)—€4(’Yo,%,’72)79033313?2—’70271’72)~

Then, by assumption, we have egpnyM C M|n], so that in particular M, #
0. The assumptions on ; imply that all the ideals m,, are distinct. We may
view n as an ideal in k[X.(T)]. The support of n in k[X,(T)] corresponds to
triples (Y0,71,72) (or equivalently, pairs (aq, ag)) such that a;, ag, ay ', and aj*
are roots of the polynomial 3" e; (70, ¥1,22) X . Hence the support of n C k[X,(T)]
consists exactly of the maximal ideals m,,, and the product of the m,, is precisely
the radical of n. The ring k[X.(T)], is thus a semi-local ring which is isomorphic
t0 @wew k[X«(T)]m,,, and correspondingly we may write My, = ®pew Mm,, . It
follows that My, # 0 for at least one w € W. Considering the action of W on the
set of maximal ideals of k[X,(T")] in the support of M, we see that in fact My, # 0
for all w € W, as required. O

Lemma 2.4.37. Let M be an H @@ k-module which is finite-dimensional over k.
Suppose that for each maximal ideal n C k[X.(T)]" in the support of M, the degree
four polynomial

Zei(xmxl;zQ)Xi € kX (T)]V[X]
has roots (Yo, Y071, Y0¥2: YoY172) modulo w satisfying (y1—1)(v2—1) (71 —2) (V172 —

1) # 0 and 73712 = 1. FEquivalently, writing vo = a1, Y%y1 = «Q2, assume
that v3y1v2 = 1 and that

al,a2,1/a2,1/a1
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are pairwise distinct. Then egpnyM # 0. If, furthermore, there is a unique
mazimal ideal n C k[X,(T))" in the support of M, then for each maximal ideal
m C k[X.(T)] in the support of M, the maps

k’[W] Rk My — M,

WRT—w-x,

and
My — eSph(v)Ma

T > €3ph(v) " T

are both isomorphisms.

Proof. After possibly enlarging k, we can and do assume that the ~y; arising from the
roots of the degree four polynomial above lie in k. As in the proof of Lemma[2:4.36]
there exist |W| = 8 distinct ideals m,, such that M, ~ @®yew Mm,, where m =
(to — Y0, t1 — 71,2 —72) C k[X.(T)]. Since M, # 0, we may assume that My, #0
for some and hence all m,,. The operator egpp(,) acts by averaging over the action
of the Weyl group. It follows (because the m,, are distinct) that the map egpp(.) :
My — ©wew Mn,, = M, is an injection, and thus egpn )M # 0.

Suppose that n is the only maximal ideal of k[X,(T)] in the support of M. Then
the maximal ideals of k[X,(T')] in the support of M are necessarily of the form m,,,
and we have M = ®yew Mm, = PwewW - My, and the rest of the lemma follows
immediately. O

Remark 2.4.38. Note that (using as usual that ¢, = 1 in k) we have that Up§"e =
adx1xa, and if this equals 1, then UJ§Y® = ¢ and Uy3Y® = (sis2s1)z1. Con-
sequently we see for example that if the hypotheses of Lemma hold then

(Upo —1,Up1 — o1,Uy 2 — ajae) is in the support of M.

2.5. Purity. Let K be a finite extension of Q, for some p, with residue field of
order ¢. Following [TYQT7, §1], we say that a Weil-Deligne representation (W, r, N)
of Wx on a vector space W over an algebraically closed field €2 which is of char-
acteristic 0 and of the same cardinality as C is pure of weight w if there is an
exhaustive and separated ascending filtration Fil; of W such that

e each Fil; W is invariant under r;
o if 0 € Wi maps to Frob}}((a), then all eigenvalues of r(c) on gr; W are Weil
¢"*(?)_numbers;
e and for all j we have N7 : gr, ., W - gry,—; W. (Note that necessarily
we have N Fil; W C Fil;_» W)
Recall that for a Weil-Deligne representation (r, N), we defined in Section
n(r, N) to be the rank of N.

Lemma 2.5.1. If (V,r) is a semisimple representation of Wy, then there is at
most one choice of N for which (V,r,N) is a pure Weil-Deligne representation. If
such an N exists, then the corresponding Weil-Deligne representation is the unique
choice which mazimizes n(r,N).

Proof. The uniqueness of N is [TY07, Lem. 1.4(4)]. The maximality follows easily,
using that by definition all of the induced maps N7 : glyr; W — gr,,_; W are
isomorphisms if and only if (V,r, N) is pure. a
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2.6. Archimedean L-parameters. We now recall some notation for archimedean
L-parameters following [Mok14| §3.1] (although our w has the opposite sign to this
reference). Recall that Wr = CXUC*j, where jzj ! =Zand j2 = —1. Let w € R.
For an integer n > 0, let ¢y, , : Wr — GL2(C) be the L-parameter given by

dadi <(Z/Z)n/2 (Z/z)_"/2> =" (Zn|2|_" Z‘”|z|">

Jj— <(1)n 1) .

The determinant of ¢, . is equal to |z|** if n is odd and sgn - [2]|** if n is even,
where sgn : Wr — C* is the degree two character which is —1 on j (and triv-
ial on C*). We also write ¢, ,, for the restriction of ¢, to We. The GLa(R)
and GLy(C) representations corresponding to the L-parameter ¢, , are cohomo-
logical if and only if n > 0 and w € Z satisfies w +n =1 mod 2.

Let m1 > mg > 0 be integers, and let w € R. Then we write ¢ (w;m, m,) : Wr —
GSp,(C) for the L-parameter sending

and

|2w

(o7
. (2/7)
z e |2]" (Z/E)—(ml—mg)/2

(o/7) s

and
Jj _1)mi+mz

(_1)m1+m2

Note that @(u;m,,m,) is viewed as having image in GSp,(C) with respect to our
particular choice of model for GSp,(C) where J is anti-diagonal. In particular,
the image of j under the composite of @(um, m,) With the similitude character
is (—1)™*t™2_ With respect to the explicit inclusion of
{(A,B) C GL2(C) x GL2(C) | det(A) =det(B)} C GSp,(C)

given in @ we immediately observe that the composite of ¢(yim, m,) With the
inclusion GSpy(C) — GL4(C) identifies @(uim, ms) With Guw m;+me © Pw,mi—m.,
(note that (—1)™1tm2 = (—1)m™=m2) The L-packet of GSp,(R) corresponding
t0 @(wim,,mo) consists of two elements ﬂﬁ];ml,mz) and W(Ww;mmnz)' When my = 0,
they are (up to twist) non-degenerate limits of discrete series, and when ms > 0,
they are (up to twist) discrete series. The representations w{{u.ml ma) and wg’fv‘ml ma)
are respectively holomorphic and generic. Their central character is given by a —
a®, and they are tempered when w = 0. The minimal K-type of Wg},ml_m2) is the
representation det”2*? @ Sym™ ~™271 C2 of U(2). (See for example [Schi7] for
these facts and their proofs.)

Lemma 2.6.1 (Inductions of real archimedean parameters to GL4(C)).
(1) The induction Ind%FcL Gwn : Wr — GL4(C) is conjugate to ¢ n & G-
(2) The composite map

¢(w;n,0) :Wr — GSp4(C) — GL4(C)
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is conjugate 10 Gy p © P n-

(38) If ¢ : We — GLy(C) is such that Ind%g @ is conjugate 10 Gu.pn B Pwon,
and n # 0, then either ¢ = ¢, ,,, or ¢ is one of the scalar L-parameters
sending z to one of

e (PR 0 N e (0
0 2™z ™" 0 27"z )

(4) If o, ¢" : Wr — GL2(C) are such that ¢ @ ¢’ is conjugate to Guwn O Guw,n,
and n # 0, then ¢ = @' = ¢y .

Proof. Since ¢, , is already a representation of Wg, the first induction is isomor-
phic to ¢y n B P n @sgH. Yet Py p, is itself induced from C*, and so ¢y, , @ sgn
®wn- The second claim was already noted above. Now suppose that ¢ : Wg —
GLy(C) is a complex L-parameter. All such parameters are of the form

29 2|7 2] @ 22 2] T2 [

for integers a; and az. The induction of this representation to Wr is ¢w; 0, B Pws,az-
Now consider the equality of GL4(C)-representations

¢)w1,a1 S ¢w2,a2 = ¢(w;n,0) = ¢w,n @ ¢w,n-

Restricting to S' € C* C Wg, we deduce that |a;| = |az| = n, and then restrict-
ing to the action of C* on the eigenspace where S' C C* acts by 2" (which is
distinct from z7"), we deduce that wy = wy = w, and thus ¢u, 0, = Pwy,as = Pw,n-
If a; and ay have opposite signs, then ¢ = ¢, ,; otherwise we get the possibili-
ties outlined in the statement of the lemma. Finally, (4) is immediate from the
irreducibility of ¢ x. ([

We note in passing that the GSp,(C)-parameter cannot be recovered, in general,
from the GL4(C)-parameter. This is true in particular for ¢(o.1,0), since one may
compute that the GL4(C) representation preserves two symplectic forms whose
similitude characters differ by sgn.

If K is a number field and 7 is an automorphic representation of GLa(A k), we
say that 7 has weight 0 if for each place v|oo of K, 7, corresponds to ¢o,1. If F'is a
totally real field and 7 is an automorphic representation of GSp,(A r), then we say
that m has weight (ky,[,)y|o0 if for each place v|oo of F', we have k, > [, > 2 and
ky, =1, (mod 2), and m, is in the L-packet corresponding to D25k, —1,1,—2)- We say
that 7 has parallel weight 2 if it has weight (2,2),|» (We note that the congruence
ky, =1, (mod 2) is imposed in order to ensure that 7 is algebraic.)

2.7. Galois representations associated to automorphic representations.
We now recall some results from [Mok14] on the existence of Galois representa-
tions (adapted to the particular setting of interest for us), beginning with the
existence of Galois representations for certain cuspidal automorphic representation
of GSp,(AF). The following theorem is essentially due to Sorensen [Sorl0], al-
though at the time that [Sorl(] was written, some additional assumptions needed
to be made, due to the lack of unconditional results on the transfer of automorphic
representations between GSp, and GL4.

Theorem 2.7.1. Suppose that F is a totally real field, and that 7 is a cuspidal
automorphic representation of GSpy(Ar) of weight (ky,ly)vjoc, where ky > 1, > 2
and k, =1, (mod 2) for all v|co. Suppose also that w has central character | - |2.
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Fiz a prime p. Then there is a continuous semisimple representation pr, :

Gr — GSpy(Q,,) satisfying the following properties.

(1) vop,=c1.

(2) For each finite place v, we have
WD(pW7p|GF,,)SS = reCGT,p(Wv ® |V‘73/2)SS'
If furthermore pr p is irreducible, then
WD(prplcp, )F_SS = recgT p(To @ |V‘_3/2)~

(8) If vlp, then pxplcy, is de Rham with Hodge-Tate weights ((ky +1,)/2 —
la (kv - lv)/2 + 17 7(]4311 - lv)/27 2— (kv + 11))/2)
(4) If prp is irreducible, then for each finite place v of F, px play, is pure.

Proof. The existence of a representation p, , valued in GL4(Q,) and satisfying (2)
and (3) is part of [MokI4l Thm. 3.5] (note that the results of [Art04] cited in [Mok14]
hold unconditionally by [GT19]). That the representation actually takes values
in GSp, (Qp) with the claimed multiplier follows from [BC11l Cor. 1.3] (cf. [Mok14]
Rem. 3.3(3)]). Finally, for part (4), note that if p, , is irreducible, then 7 is of
general type in the sense of [Art04] (see Section [2.9), and thus corresponds to an
essentially self-dual algebraic automorphic representation II of GLy4. Purity then

follows from the main results of [Car12l [Car14]. O

For representations which are ordinary in the sense of Section [2.4.23] we have
the following variant on Theorem [2.7.1]

Theorem 2.7.2. Suppose that F is a totally real field, and that 7 is a cuspidal
automorphic representation of GSpy(Ar) of weight (ky,ly)yjoc, where ky > 1, > 2
and k, =1, (mod 2) for all v|oo. Suppose also that w has central character | - |2.
Fiz a prime p. Assume that m, is unramified at all places v|p, and that 7 is

ordinary, with ordinary Hecke parameters (o, By)y)p. Then there is a continuous
semisimple representation pr, : Gp — GSp4(Qp) satisfying the following proper-
ties.

(1) vopm,=ct.

(2) For each finite place vt p, we have

WD (pr plar, )™ & recr p(m @ [v]72/2)%.
If furthermore pr , is irreducible, then
WD (pr plar, )™ = recar p(m @ [v]7/2).

(3) If vlp, then

Ao, eFvtio)/2=2 * * *

o Ag, elke=t)/2 . .

Pr.plGr, = 0 0 )\Elgflf(kvflv)ﬂ "
0 0 S0 Aglel=(kutls)/2

(4) If pxp is irreducible, then for each finite place v of F, pr play, is pure.

Proof. This follows from Theorem part (3) is a standard consequence of p-
adic Hodge theory, and is in particular immediate from [Gerl9, Lem. 2.32] (and
Proposition [2.4.6)). (]
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The following theorem is a variant of the main result of [Mok14], which proves
the existence of Galois representations associated to certain automorphic represen-
tations of GLo(K), K a CM field.

Theorem 2.7.3. Let F' be a totally real field, and let K/F be a quadratic extension.
Write Gal(K/F) = {1,7}. Suppose that 7 is a cuspidal automorphic representation
of GLa(K) of weight 0 with trivial central character.

Then there is a continuous irreducible representation pr , : Gx — GLQ(QP) such
that for each finite place w { p of K, we have

WD gl )™ 2 rocy (mu @1 |/
If wy is not a twist of a Steinberg representation, then in fact
WD gl )77 2 recy(m |- [7112),

For each place w|p of K, the representation px p|cy, is Hodge—Tate, and for each T :
K — Qp, the T-labelled Hodge—Tate weights of px p are (0,1).

Proof of Theorem[2.7.3 In the case that K is CM this is a special case of the main
theorem of [Mok14], and essentially the same proof works in the general case. The
argument of [Mok14l §5.1] goes over unchanged to produce a cuspidal automorphic
representation 7 of GSp,(Ar) (see Theorem below); to see that m, is in the
L-packet corresponding to ¢(a,1,0y at each place v|oo of F, one uses Lemma El
at the places which split in K, and [Mok14l Prop. 5.2] at the places for which K,
is complex. One then easily checks that the arguments of [Mok14) §5.2-5.3] go over
without any changes to the case of general K, as required. ([l

2.8. Compatible systems of Galois representations, L-functions, and Hasse—
WEeil zeta functions. We now recall some definitions concerning compatible sys-
tems from [BLGGTI4D, §5] and [PT15) §1]; in fact, our definition of a “strictly
compatible system” differs slightly from the definitions in those papers, because we
find it convenient to include local-global compatibility at places dividing p. Let F
denote a number field. By a rank n weakly compatible system of l-adic representa-
tions R of G defined over M we mean a 5-tuple

(M, S, {Qv(X)}7 {TA}v {H'r})

where
(1) M is a number field considered as a subfield of C;
(2) S is a finite set of primes of F;
(3) for each prime v € S of F, Q,(X) is a monic degree n polynomial in M[X];
(4) for each prime A of M (with residue characteristic , say)

X : GF — GLn(M)\)

is a continuous, semi-simple, representation such that
e if v & S and v/l is a prime of F, then ry is unramified at v and
rx(Frob,) has characteristic polynomial @, (X),
e while if v|l, then r)|g, is de Rham and in the case v € S crystalline;
(5) for 7: F < M, H, is a multiset of n integers such that for any M — M,
over M we have HT,(r)) = H,.
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IR = (M, S,{Qu(X)}, {ra}, {H,}) and R = (M', 8", {Q,(X)}, {r\}. {HL}) are
two compatible systems, then we write R =2 R’ if Q,(X) = Q. (X) for a set of
places v of Dirichlet density one. This implies that Q,(X) = Q) (X) for all v ¢
SUS’, and that ry = r) for all X\, and H. = H, for all 7.

We say that R is regular if for each 7 : F < M, the elements of H, are
pairwise distinct. We will call R strictly compatible if for each finite place v
of F there is a Weil-Deligne representation WD, (R) of Wg, over M such that
for each place A\ of M and every M-linear embedding ¢ : M < M, we have
¢WD,(R) = WD(T)\|GF1))F'SS.

We will call a strictly compatible system R pure of weight w if for each finite
place v of F' the Weil-Deligne representation WD, (R) is pure of weight w.

The following result is well-known (see for example [Fon94, Rem. 2.4.6]), but
as we do not know of a convenient reference for a proof, we briefly explain how it
follows from results in the literature.

Proposition 2.8.1. If A is an abelian variety over a number field F, then, for
each 0 < i < 2dim X, the l-adic cohomology groups Hi(Af, Q;) form a strictly
compatible system which is pure of weight i and which is defined over Q.

Proof. Since H (A,Q;) = AN'H'(A,Q,), it is enough to check the case i = 1.
The compatible system satisfies strict compatibility at the places not dividing [
by [Nool3l Cor. 2.7]. In the case that A has semistable reduction, it is fur-
thermore strictly compatible by [Nool7, Cor. 2.2]. One can deduce the general
case from this by a base change trick due to Saito [Sai97], which was exploited
in [Kis08, [Ski09, BLGGT14al. Indeed, as in the proof of [BLGGT14a, Thm. 2.1],
it suffices for each finite place v of F' to check that whenever g € Wy, maps to a
positive power of Frobenius in the absolute Galois group of the residue field, then
the trace of g on WD(H'(A,Q,)) is independent of I. One can choose an exten-
sion E/F (for example, the fixed field of the subgroup of Wg generated by g and
the kernel of the restriction to Ir of WD(H'(A,Q;)) for some [) and a place v|w
of E such that Ag is semistable and g € Wg,, and the claim then follows from the
independence of [ for Ag.

It remains to check purity. By [Ray94, Thm. 4.2.2], it is enough to check purity
for the Weil-Deligne representations associated to 1-motives with potentially good
reduction, which is [Ray94], Prop. 4.6.1, Prop. 4.7.4].

The above is of course not a historically accurate account of a proof; indeed,
the strict compatibility of the compatible system at places not dividing [ is stated
in [Del73, Ex. 8.10], and given Fontaine’s definition of the Weil-Deligne represen-
tation associated to a potentially semistable representation, the entire proposition
can be deduced from the results of [GRR72]. We omit the details, but we would
like to thank Brian Conrad for explaining them to us. (|

Definition 2.8.2. If A/F is an abelian surface, then we write pa,; for H'(Ax, Q)),
and R4 for the compatible system {p4;}. We can think of p4; as a representation
pas : Gp — GSpy(Q,;) with multiplier 5[1, and will frequently do so without
comment.

Remark 2.8.3. It will sometimes be convenient to say that a set of GSp,-valued
representations form a compatible system, by which we simply mean that the cor-
responding GL4-valued representations form a compatible system. In particular,
the representations pa; : Gr — GSp,(Q,) considered in Definition form a
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compatible system in this sense. (In general, one might wish to ask for a com-
patibility between the symplectic structures; such a compatibility always holds in
the cases that we consider, and in particular we will only consider representations
whose multiplier character is the inverse cyclotomic character, so we ignore this
point.)

We can define the L-function of R as follows:

L(R,s) = [[ LIWD4(R),s).
v /{/OO
Furthermore, if R comes from an abelian variety (or more generally, arises in a

geometric structure where the Hodge structure is apparent) then (as in [Ser70]) we
can define Gamma factors L, (R, s) for each place v|oo of F', and we set

(2.8.4) A(R,s) = L(R,s) [[ Lo(R.s).

v|oco
In particular, if R arises from an abelian surface over a totally real field F', then the
corresponding Gamma factor is given by L, (R, s) = I'c(s)? for all v|oo where I'c(s) =
(2m)~*T(s).

We also have a conductor N(R) which is a product of local factors depending only
on the WD, (R). Conjecturally, if R is a strictly compatible system, then A(R, s)
admits a meromorphic continuation to the entire complex plane and satisfies a
functional equation of the form

(2.8.5) A(R, s) = e(R)N(R)"*A(RY,1 — s)

for some factor £(R). (When R arises geometrically, there are natural definitions
of the epsilon factor €(R), but it is not immediately apparent how to read off £(R)
directly from the compatible system.)

In particular, if A/F is an abelian variety, then by Proposition m

Ai(A,s) = AH (A#,Q)), 5)
is well-defined, and we define the completed Hasse—Weil zeta function of A to be

2dim A _
AA,s) = [ M4 sV
=0

Note that if v is a finite place of F" at which A has good reduction with corresponding
reduction A, then the local L-factor

2dim A ‘
L,(A,s):= H L(WD(Hl(AﬁQl))aS)(_l)s

=0

can be written as
Lo(A,s) = exp (Z #%W#kwm)
m=1

where k(v) is the residue field of F, and k(v).,/k(v) is the extension of degree m.
We have the following conjectures for the A;(A, s), which we will prove for abelian
surfaces over totally real fields by showing that they are potentially automorphic.
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Conjecture 2.8.6 (|[Ser70], Conj. C9). For each i, A;(A,s) has a meromorphic
continuation to the entire complex plane, and satisfies a functional equation of the
form _

Ai(A,s) = wN' = Ay (Ai+1—s)
where w = 1 and N € Z>;.

Corollary 2.8.7. If Conjecture holds, then A(A, s) has a meromorphic con-
tinuation to the entire complex plane, and satisfies a functional equation of the form
A(A,s) =eN*A(A, 1+ dim A — s) wheree € R and N € Q.

Proof. This follows immediately from Conjecture 2.8.6] by Poincaré duality. O

2.9. Arthur’s classification. We now recall some consequences of Arthur’s clas-
sification [Art04] of discrete automorphic representations of GSp,. The analogous
classifications for Sp, and SOj5 are special cases of the very general results proved
in [Art13], and a proof of the classification announced in [Art04], making use of
the results and techniques of [Art13] is given in [GT19]. This reference establishes
the compatibility of Arthur’s classification with the local Langlands correspon-
dence recgT, which we use below without further comment.

We say that an automorphic representation 7 of GSp,(A r) is discrete if it occurs
in the discrete spectrum of the L2-automorphic forms (with fixed central charac-
ter w = wy,). Note in particular that all cuspidal automorphic representations are
discrete. Arthur’s classification divides the discrete spectrum into six families of
automorphic representations. We will not need the full details of this classification,
but rather just some consequences that we now recall.

If IT is a cuspidal automorphic representation of GL4(Ar), then we say that IT
is of symplectic type with multiplier x if the partial L-function L (s, II, /\2 @x 1)
has a pole at s = 1 (where S is any finite set of places of F'). Note that this implies
in particular that I = 11V ® x.

We say that a discrete automorphic representation 7 of GSp,(Ar) is of general
type in the sense of [Art04] if there is a cuspidal automorphic representation IT of
GL4(AF) of symplectic type with multiplier w, such that for each place v of F,
the L-parameter obtained from recgr(7,) by composing with the usual embedding
GSp, — GLy is rec(Il,). We say that II is the transfer of .

In practice, all of the automorphic representations 7 that we consider in our
main arguments will be of general type. We will often use the following lemma to
guarantee this. (For example, the lemma will be used to show that when we local-
ize a cohomology group at a non-Eisenstein maximal ideal, the only automorphic
representations that contribute are of general type.)

Lemma 2.9.1. Suppose that F is totally real, and that 7 is a discrete automorphic
representation of GSp,(Ar), and that at each place v|oco, m, has the same infinites-
imal character as the representations in the L-packet corresponding to p(2:k,—1,1,-2)
with ky, =1, (mod 2) and k, > 1, > 2. Suppose that 7 is not of general type.
Then there is a compatible system of reducible Galois representations pr, :

Grp — GSp4(Qp) such that for all but finitely many places v of F, we have
WD(prplas, ) = recarp(mo @ [v|72/2)%.
Proof. We follow the proof of [CG20, Thm. 7.11]. Since 7 is not of general type,

7 falls into one of the five classes (b)-(f) listed at the end of [Art04]. In cases (e)
and (f), we see that the Hecke parameters of 7 agree with those of a direct sum of 4
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idele class characters. By the hypothesis on the infinitesimal character, these char-
acters are algebraic, so we may take the direct sum of the corresponding compatible
systems of Galois representations.

In case (d), the Hecke parameters of m agree with those of an isobaric direct
sum of the form A| - |2 B \| - |~Y/2 B u, where X is an idele class character, and p
is a cuspidal automorphic representation of GLa(Af), satisfying w, = A? = w,.
Considering infinitesimal characters, we see that A is algebraic, so that A| - |'/2 B
Al -|~1/2 is regular algebraic. This implies that p is also regular algebraic, and thus
has an attached compatible system of Galois representations.

In case (b), the Hecke parameters of 7 agree with those of an isobaric direct
sum of the form uq B po, where 1 # po are cuspidal automorphic representations
of GLa(AFp) with central character p,. Since their central characters agree, it
follows easily that they both correspond to holomorphic Hilbert modular eigenforms
of paritious weight. Finally in case (c¢), the Hecke parameters of 7 agree with those
of an isobaric direct sum of the form gu| - ["/2 8 u| - |~%/2, where u is a cuspidal
automorphic representation of GLy(Ar) of orthogonal type; that is, it is induced
from a quadratic extension of F. Since p is certainly algebraic, we again have an
attached compatible system of reducible Galois representations, as required. (]

Remark 2.9.2. Suppose that 7 is of general type but otherwise satisfies the condi-
tions of Lemma Then the corresponding Galois representations constructed
in [Mok14] (see also Theorem give rise to a compatible system of Galois rep-
resentations which — in contrast to those occurring in Lemma[2.9.1]— are expected
to always be irreducible.

The following theorem summarizes the consequences that we need from Arthur’s
multiplicity formula.

Theorem 2.9.3. Suppose that F' is a totally real field, and that 11 is a cuspidal
automorphic representation of GL4(A ) of symplectic type with multiplier x. Then
there exists at least one discrete automorphic representation ™ of GSpy(Ar) with
central character x such that I1 is the transfer of .

More precisely, for each place v of F, let m, be an element of the L-packet
corresponding to (recy(Il,), xv). Then 7 := Q| m, is automorphic, and occurs with
multiplicity one in the discrete spectrum.

If, furthermore, 11 is algebraic, then 7 is cuspidal.

Proof. The statements of the first two paragraphs are immediate from the multi-
plicity formula of [Art04] as proved in [GT19] (note that since 7 is of general type
by definition, the group S, considered in [Art04] is trivial). Suppose then that II
is algebraic; then IT., is essentially tempered by [Clo90), Lem. 4.9], so that 7 is
also essentially tempered (as its L-parameter is essentially bounded), so that = is
cuspidal by [Wal84, Thm. 4.3]. O

2.10. Balanced modules. Let S be a Noetherian local ring with residue field k,
and let M be a finitely generated S-module. As in [CG18, §2.1], we define the
defect ds(M) to be

ds(M) := dimy, M/mgM — dimy, Torg (M, k).
Definition 2.10.1. We say that M is balanced if ds(M) > 0.
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Lemma 2.10.2. If M is balanced, then there is a presentation
St 81 5 M —0
with d = dimy, M /mgM.
Conversely if M admits a presentation
S"=S"=>M—=0
for some r > 0, then M is balanced.

Proof. Assume firstly that M is balanced, and choose a (possibly infinite) minimal
resolution
o= P= PP =>FP—-M=0

by finite free S-modules P; of rank r;. (Recall that a minimal resolution is one
whose differentials vanish modulo mg, and that such a resolution always exists.)
Tensoring this resolution with k over S, we see that r; = dimy, Tor’s (M, k), so that
in particular by our assumptions we have d = ry > r1, so that there is a presentation
of the form P; @ S®@—"1) — Py — M — 0, as required.

Conversely, if M admits a presentation S™ — S™ — M — 0, then let K be the
image of the map S” — S”. Then from the exact sequence

0 — Torg(M, k) — K/mgK — k" — M/mgM — 0
we see that
ds(M) =7 — dimk K/msK;
since K admits a surjection from S, it follows that dg(M) > 0, as required. O

2.11. Projectors. Let R be a complete local Noetherian ring with maximal ideal
mp and finite residue field. We let Mod“"'?(R) be the category of mg-adically com-
plete and separated R-modules. Let M € Ob(Mod®™P(R)) and T € Endg(M).

Definition 2.11.1. We say that T is locally finite on M if for all n > 0, M/m%, is
an inductive limit of finite type R-modules which are stable under the action of T

Lemma 2.11.2. If Ty, T commute and are both locally finite on M, then ThTs is
also locally finite on M.

Proof. By definition we can assume that M is m';-torsion for some n. If v € M
then since T} is locally finite, the R-submodule of M generated by the T}v is finitely
generated. Since Tj is locally finite, it follows that the R-submodule generated by
the TiT{v is also finitely generated, and since 77, T commute, this submodule is
stable under the action of T T5, as required. O

The following results from [Pil20] will be used to construct the ordinary projec-
tors associated to certain Hecke operators.

Lemma 2.11.3 (|Pil20, Lem. 2.1.2|). If M is an object of Mod®™P(R) and T is
an endomorphism of M, then T is locally finite on M if and only if it is locally
finite on M /mpg.

Lemma 2.11.4 (|Pil20, Lem. 2.1.3]). If T is locally finite on M, then lim,, o, T™
converges pointwise in the mg-adic topology to a projector e(T) on M.
The operators T and e(T) commute, and we have a T-stable decomposition

M =e(T)M @ (1 —e(T))M,
where T is bijective on e(T)M and topologically nilpotent on (1 — e(T))M.
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We call e(T) the ordinary projector attached to T. Let D(R) be the derived
category of R-modules, let D2*(R) be the full subcategory of D(R) generated by
bounded complexes of flat, mg-adically complete and separated R-modules and let
DPef(R) be the full subcategory of D(R) generated by bounded complexes of finite
free R-modules. Let M € Ob(D#(R)). We say that an operator 7 € End(M)
is locally finite if there is a bounded complex of flat modules N representing M
and an operator Ty € End(N) representing T which is degree-wise locally finite.
By [Pil20, Lem. 2.3.1], T is locally finite on M if and only if T is locally finite
on the cohomology groups H'(M ®% R/mpg) and there is a bounded complex of
flat modules N representing M and an operator T, € End(N) representing 7.
Given a choice of representatives (N,Ty € End(N)) for a locally finite operator
T, we get an associated idempotent e(Tp) € End(N). In general, we do not know
whether two choices of representatives (N, Ty € End(N)) give the same projector
in Endp(gy(M). But by [Pil20, Lem. 2.3.2], if we assume that for one choice of
representative e(Ty)M is an object of DP¢"/(R) then, for another choice of locally
finite representative (N’, 77 € End(N’)), e(T1)M is an object of DP"/(R) and
there is a canonical quasi-isomorphism e(To)M — e(T1)M. In the sequel, these
conditions will always be satisfied and we will write e(T") by abuse of notation.

3. SHIMURA VARIETIES

In this section, we discuss the Hilbert—Siegel Shimura varieties that we work
with, and some properties of their integral models. There are two closely related
algebraic groups here: G7 = Resp/qGSp, and its subgroup G of elements with
similitude factor in G, = Resp;qQ G-

The group G admits a standard PEL Shimura variety and there is a good moduli
interpretation, integral models, and a good theory of integral compactification.
Nonetheless, from an automorphic view point we must work with the group G;
which gives rise to a Shimura variety of abelian type.

Going back to the work of Deligne (see in particular [Del79, §2.7]), there is a
standard strategy for handling abelian type Shimura varieties by relating their con-
nected components to quotients of connected components of Hodge type Shimura
varieties by finite groups. As a particular instance of this strategy, the Shimura
varieties for G and G are closely related: the connected components of G1-Shimura
varieties are quotients of the connected components of G-Shimura varieties by finite
groups. We therefore study both of them at the same time.

For convenience, our main references for integral models of PEL Shimura varieties
and their compactifications are the papers [Lanl3l Lan16| Lani7|, although some of
the results we cite from there were proved in earlier papers, in particular [Kot92]; we
refer the reader to the references in [Lanl3] for a more detailed historical account.

3.1. Similitude groups. Let F be a totally real field. Let V = O% be a free Op-
module of rank 4. We equip V with the symplectic Op-linear form <,>1: VxV —
Op given by the matrix J. Welet <, >:= (Trp/qo <, >1) be the associated Z-linear
symplectic form.

Let G1 = Resp/qGSp, be the algebraic group of symplectic F-linear automor-
phisms of (Vq, <,>1), up to a similitude factor v in Resp/qGin.

Let G C G; be the algebraic group of symplectic F-linear automorphisms of
(Vq, <,>) up to a similitude factor in G,,; that is, G = G, X Resp)/qGm Gm-

m
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3.2. Shimura varieties over C. We firstly briefly discuss some Shimura varieties
over C. We caution the reader that in the bulk of the paper we will work with
Shimura varieties over Z,) which are not quite integral models of these Shimura
varieties, but whose geometrically connected components are the same as these; see
Proposition[3.3.9 below for a precise statement. We begin by recalling the definition
of a neat compact open subgroup from |[Lanl3 Defn. 1.4.1.8].

Definition 3.2.1. Write g = (g:1); € G1(A>), and for each [, write I'y, for the

subgroup of le generated by the eigenvalues of g; (under any faithful linear rep-
resentation of GG1). Then we say that g is neat if

m(éx N Fgl)tors =1

l

Similarly, if g € G1(A®P), then we say that g is neat if

n(@x N Fgl)tors =1

l#p
We say that a compact open subgroup K C G1(A*) (resp. KP C G1(A*P)) is
neat if all of its elements are neat.

We consider the Shimura variety associated to the group G; and a neat compact
open subgroup K C G1(A™):

S(C) = G1(Q)\(G1(R) x G1(A®)) /Z(R)° KL K

where Z(R)® ~ Rggm(RR) is the connected component of the centre in G1(R) =~
GSp, (R)Hem(FR) and KO is the connected component of the maximal compact
subgroup inside G1(R), so that K, is a product of copies of U(2). This Shimura
variety carries a natural structure of complex quasi-projective variety, as we have
G1(R)/Z(R)°KY = (HU —H)Hom(FR) where H is the Siegel half space of sym-
metric matrices M = A + iB € May2(C) with B positive definite.

Let G1(Q)T be the subgroup of G1(Q) equal to v=*(F*F), where F**F is the
subgroup of totally positive elements in F'*. Then by strong approximation,

Gi(A®) =[] G1(Q)TeK

where ¢ runs through a (finite) set of elements in G;(A°) such that v(c) are
representatives of the strict class group F*"T\(A>® ®q F)* /v(K).
One can then write

52(C) = [ Tule, )\ plom PR

where 'y (¢, K) = G1(Q)" NeKc™t.

This Shimura variety, although natural from the point of view of automorphic
forms, is not of PEL type. Therefore, it is also necessary to work with another
Shimura variety. We can consider the double quotient

S%(C) = GIQ\(G(R) x G1(A%)) /R0 KL K;

this is not strictly speaking a Shimura variety, and in particular we emphasise that
it is not the PEL Shimura variety associated to G! By strong approximation we
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may write

G1(A®) =[] G(QTeK

where ¢ runs through a set of elements of G (A°°) such that v(c) are representatives
of the infinite set Q™ T\(A>™ ®q F)*/v(K). For all ¢, we consider the group
I'(c, K) = G(Q)" NneKe™t, so that

SZ(C) = [ T(c, K)\HHomFER),

The inclusion G(R) < G1(R) induces a natural surjective map S%(C) —
Sgl (C). On connected components, it induces the natural map

Q\(A™ ®q F)* /v(K) = F*"\(A™ @q F)* /v(K).

For any ¢ € G1(A*) we have an associated surjective map on the connected
components corresponding to ¢, given by

T (e, K)\HImER) Ty (¢, K)\pHom R,

Let Z(T'1(c,K)) C T'1(c, K) be the centre. Then Z(I'y(c, K)) is a finite index
subgroup of O that we denote by O (K). Let

A(K) =Tu(e, K)/ (0% (K), T(e, K)).
This is a finite group, independent of ¢ and isomorphic to
v(Li(e, K))/v(OF(K)) = (05T Nv(K)) /v(OF(K)),
having noted the following:
Lemma 3.2.2. There is an equality v(T'1(c, K)) = O35 Nu(K).

Proof. Recall that by definition Ty (¢, K) = G1(Q)" NecKc™!, so certainly we have
an inclusion v(T'y (¢, K)) € O3 % Nny(K). Conversely, suppose that v(y) = = €
03T Nu(K) for some element v € cKe™t. Since z € O = v(G1(Q)*), we can
choose g € G1(Q)* with v(g) = 2. Then v(y~lg) = 1, so by strong approxima-
tion, we may find an h € G1(Q)" with trivial similitude character such that h is
arbitrarily close to gy~!, and in particular close enough that hyg~—! lies in cKc™!.
Then hy € G1(Q)* NcKc™! and has similitude character x, as required. ([l

We also have

Lemma 3.2.3. The map T'(c, K)\HT™ER) 5 Ty (¢, K)\HIom(ER) s finite étale
with group A(K).

Proof. The group T'y (¢, K) acts through its quotient T'; (¢, K) /O (K) on HHom(FR)
and since K is neat, this action is free. Il

3.3. Integral models of Shimura varieties. We now introduce the integral mod-
els of Shimura varieties that we will consider in the rest of the paper.
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3.3.1. Compact open subgroups at p. We let p be a prime that is totally split in F'.
Let v be a prime ideal in Op above p. Consider the following chain of Op, -sub
modules of F*:

Vo=-Vi=Vo=2Vs V)

where Vo = V ®0, Op, = &}_Op,e; and V; = (p~ley, -+ ,p~lej,eji1,  ,eq).
We can identify Vj and Vj through multiplication by p and sometimes think of the
indices as being in Z/4Z.

From the perfect pairing <,> on V} we obtain perfect pairings on V5 x V5 and
on V1 X ‘/3

We now recall the definitions of the parabolic subgroups that we use in terms of
flags; this description is well suited to the definitions of our integral models.
GSp4(OF,) = Aut(Vy) N GSpy(F,) (the hyperspecial subgroup),
Par(v) = Aut(V; — V3) N GSp,(F,) (the paramodular subgroup),
Si(v) = Aut(Vp — V2) N GSp,(F,) (the Siegel parahoric),
Kli(v) = Aut(Vy — Vi = Va3 — V) N GSp,(F,) (the Klingen parahoric),
Iw(v) = Aut(Vy - Vi — Vo — V3 — Vj) N GSpy(F,) (the Iwahori sub-
group).

3.3.2. The moduli problem. Let ALG/Z) be the category of Noetherian Z,)-
algebras and AFF/Z,y the opposite category. Let K C G1(A*) be a compact
open subgroup; we will also refer to such a compact open subgroup as a level struc-
ture.

Definition 3.3.3. We say that a level structure K = KPK, is reasonable if K? C
G(A*?) is neat, and if K, =[], Kv where for each v|p we have

K, € {GSp,(OF,),Par(v), Si(v), Kli(v), Iw(v)}.

Let K be a reasonable level structure. We consider the groupoid Y x over
AFF/Z ) whose fibre over S = Spec R € Ob(AFF/Z,)) is the category with
objects (A, ¢, A\,n,n,), where:

(1) A — SpecR is an abelian scheme,

(2) ¢: Op = End(G) ® Z(,) is an action,

(3) Lie(A) is a locally free O ®z R-module of rank 2,

(4) A: A — A'is a prime to p, Op-linear quasi-polarization such that for all
v|p, Ker(\ : Av™] — At[v>]) is trivial if K, # Par(v) and is an order p?
group scheme if K, = Par(v),

(5) nis a KP-level structure,

(6) mp is a Kj-level structure.

Here by a prime to p quasi-polarization X : A — A! we mean a Z (Xp)—polarization

in the sense of [Lanl3, Defn. 1.3.2.19]. By a K-level structure n,, we mean the
following list of data:
(1) For all v|p such that K, = Kli(v), H, C A[v] is an order p-group scheme,
(2) For all v|p such that K, = Si(v), L, C A[v] is an order p* group scheme
that is totally isotropic for the Weil pairing.
(3) For all v|p such that K, = Iw(v), H, C L, C A[v] are subgroups such that
H, is of order p, L, is of order p? and L, is totally isotropic for the Weil
pairing.



POTENTIAL MODULARITY OF ABELIAN SURFACES 45

Let us spell out the definition of KP-level structure. We may assume without
loss of generality that S is connected, and we fix S a geometric point of S. The
adelic Tate module H;(A|s, A®P) carries a symplectic Weil pairing

<,>x: Hi(Alz, A®P) x Hy(Alz, A®?) = Hy (G, |5, AP)
or equivalently an F-linear symplectic pairing:
<, >1’)\Z Hl(A|§7 Aoo,p) X Hl(A|§, Aoo,p) — Hl(Gm|§a Aoo,p) X F.
The level structure 7 is a KP-orbit of pairs of isomorphisms (71, 72), where (with V' =
O% the standard symplectic space defined above):
(1) An O ®7z A P-linear isomorphism of II; (S, 5)-modules 77 : V ®z AP ~
Hi(Als, A7),
(2) An Op ®z A P-linear isomorphism of IT; (S, 5)-modules 1, : F' ®z AP ~
F ®z Hy (Gm 5 Aoo,p).
We moreover impose that the following diagram is commutative:

71 XM

(334) V oz AP x V @z AP — T 1 (Alg, A%P) x Hi(Als, A®P)

l<,>1 J<,>1,>\

F @y A®P 2 F @z H1(Gopls, A%P)

The action of an element k € K? takes (n1,72) to (nik,v(k)ns).

Remark 3.3.5. The reader will observe that 7 is uniquely determined by 7;, but
we find it convenient to record it as part of the data for the sake of comparison to
the PEL setting in Proposition [3.3.9] below.

A map between quintuples (A,:,A,1,m,) and (A’,//, N, n',n,) is an Op-linear
prime to p quasi-isogeny (in the sense of [Lani3| Defn. 1.3.1.17]) f : A — A’ such
that

e f*X =r) for a locally constant function r : S — Z(Xp’)+,

* f(1p) =1y, and
o Hy(f)on=n"
This last condition means that 7’ is defined by Hy(f) on; = 1} and ny = r~1ns.

Also, we have denoted Z(Xp’)+ =QZyN Z(Xp).

Remark 3.3.6. Note that we are allowing the similitude factor in the level structure
to be in A®P @q F (1), but we only allow quasi-isogenies with similitude factor in
AP(1).

We denote by Z(Xp’)+ (AP @ F)* Ju(KP)(1) the set Z(Xp’)Jr\(Aoo’p ® F)* /v(KP)
equipped with the action of Gal(Q/Q) through the cyclotomic character Gal(Q/Q) —
[1rsp, Z; — (A°P)*. This action is unramified at p. It follows easily that

Z(Xp’)+ (AP @ F)* /u(KP)(1) is represented by an infinite disjoint union of finite

étale schemes over Spec Z,,).

Remark 3.3.7. The group Z(Xp’)+ acts freely on (AP ® F)* /v(KP).

Remark 3.3.8. When v(K?) = (Op ®z [[,, Z¢)*, then the above Galois action
is trivial and Z(Xp’)+ (AP @ F)* /u(KP)(1) is simply an infinite disjoint union of
copies of SpecZ,).



46 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

There is a structural map Iy : Y — Z(Xp’)"’\(AOO’p ® F)* /v(KP)(1) which asso-
ciates to an object (A, ¢, A, 1,7m,) of Y the class of 72(1) (where we are identifying
Hq(Gpls, A®P) with A>P(1)).

As we mentioned at the beginning of the complex points of our integral
models are not precisely the double coset spaces considered in §3.2] because our
moduli problem only allows polarizations of degree prime to p. However, the differ-
ence amounts to throwing away some geometrically connected components, as the
following result explains.

Proposition 3.3.9. The groupoid Y g is representable by a quasi-projective scheme
Iy : Yk — Z(p) (AP F)* /u(KP)(1). The morphism Ily has geometrically con-
nected fibres. Let ¢ € ZX "\ (A®PQF)* /u(KP) and let ¢ : Spec C — ZX "\ (A®P
F)Y*Ju(KP)(1) be the assocmted morphism (for the usual choice of pmmztwe roots
of unity in C). Let Yi . be the fibre of Y over c. Then there is an isomorphism
of analytic spaces (Y .)®" = T'(c, K)\HHom(FR)

Proof. This follows from the usual description of integral models of PEL type
Shimura varieties; in the case of hyperspecial level this goes back to Kottwitz [Kot92],
but for convenience we follow the notation of [Lanl3|. To this end, we recall the
description of these integral models for the usual Shimura varieties for G. We
let K = K pK denote a compact open subgroup of G(A*), where KPisa compact
open subgroup of G(A>?), and Kp is of one of the parahoric subgroups considered
above.

Then we let YYKo' be the groupoid over AFF/Z, whose fibre over S €
Ob(AFF/Z,) is the category with objects (A, ¢, \,7,1,), where (A, ¢, \,n,) is as
in the definition of Y i above, but now 7 is given by a KP-orbit of pairs of isomor-
phisms (71, 7j2), consisting of:

(1) An O ® A P-linear isomorphism of IT; (S, 5)-modules 7; : V ®z AP ~
Hy(Als, A>P).

(2) An A°>P-linear isomorphism of II;(S,3)-modules 7 : AP ~ AP Ry
Hy (G, AP).

We moreover impose that the following diagram is commutative:
(3.3.10)
X
71X 71 )

V @z AP X V @z AP — N i (Al AP x Hy (Als, A

J{<,> J{<,>>\

AP e Hi (G ls, A>P)

A map between quintuples (A,:, A, 7,7,) and (A’,//, N, 7',n,) is an Op-linear
prime to p quasi-isogeny f : A — A’ such that

e f*X =r) for a locally constant function r : S — Z(Xp)+

o f(np) =m,, and
o Hi(f)on =1
It follows immediately from the definition that there is a natural isomorphism

~ G,Kott
YK - H Yng(;flﬂG(Aoo,p)7
gEG (A P)\G1(A>P)/KP
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given by the maps
YG Kott

gKPg—1NG(A>:P) - YK

which are defined by
(A7 L, >‘7 (ﬁla 772)3 np) = (Aﬂ Ly >‘a (7717 772 Kz OF).% np)'

(Indeed, one easily checks that this already gives a bijection of tuples before passing
to isogeny classes, and that this bijection is compatible with isogenies.) The result
now follows from [Kot92, §5, §8|. O

We now define an action of (O F) * (totally positive elements in F* which are
prime to p) on Yk, by scaling the polarlzatlon A. Since this scales the A\-Weil
pairing (,)1 x, we see from that it also scales 72. Explicitly, x € (OF)(p)
sends (A, ¢, A, (n1,m2),mp) to (A, ¢,z (m,2n2),mp). By definition, the subgroup
Z(X]D)+ acts trivially on Y.

The group ((’)F)(Xp’)+ acts on the set of connected components ITo(Yx). Since

the cyclotomic character surjects onto [], £p Z/, the stabilizer of each connected
component is

0F* (M) = | (0p) 5 N2t uEn) [[ 27 ) /205
LF#p

which we can and do naturally identify with

ot vk [] 2;-
L#p

Remark 3.3.11. If v(K?) = (Op @z ], Ze)*, then O3 (T1p) = O5 ™.

The subgroup 05" (v(K?)) := 05" Nu(KP) acts trivially on each connected
component of ITy(Yx). The quotient stack of connected components is

((OR)5 125 NET A @ F)* [u(KP)(1)].

It admits a coarse moduli space (OF)(XP’)+\(A°°”’ ® F)* /v(KP)(1) which is a finite
étale covering of Spec Z,).
We now take the quotient stack

Y = Vi /(O0) 5 /57
This is the “Shimura stack” associated to GG; and the level K.
Let us define
OFT(KP) = {2? |z € OF N KP},
where OF is thought of inside Gy (A(p )) as a subgroup of the scalar matrices.

The multiplier of the scalar matrix given by z is 22, and hence the multiplier
of 0" (K?) lands inside v(KP), and hence O}’ +(Kp) is a finite index subgroup
of O;’—"—(V(Kp)) and of O (Ily).

Lemma 3.3.12. The restriction of the action of ((’)F)(Xp’)+ on Yx to Op " (KP) is
trivial. More precisely, there is a canonical natural transformation going from the
action of O3 (KP) on Y to the trivial action of O™ (K?) on Y.
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Proof. Let 22 € O 1 (KP) for a unique z € O N KP. The action of 22 sends
(A, 1,2\, m,mp) to (A, ¢,2%X,n,m,) (note that since x € KP, and 7 is by definition a
KP-orbit, the action of 22 on 7 is trivial). On the other hand multiplication by
z7': A — A provides a map (4, ¢, \,n,n,) — (A, 1,22\, 1,7,) in the groupoid Y.
This provides the natural transformation from the action of 22 obtained from the
action of (OF)(XP’)Jr to the trivial action. O
Lemma 3.3.13. For any geometric point x € Yk, the stabilizer of x for the action
of (OF) (" is O (KP).

Proof. By Lemma [3.3.12) O3 (KP?) is contained in the stabilizer of any = =
(A, 0, A\, n). Let e € ((’)F)(Xp’)+ and assume that there is a morphism

. (A7 LA, (7717 772)7 np) - (Av Ly €A, (771, 6"72)7 7717)

in the groupoid Y. We need to show that f € OF N KP. Since f respects 7y, it
follows from [Lanl3l Lem. 1.3.5.2] that f is an automorphism of A (and not just a
quasi-isogeny).

The polarization A induces an involution z — = on F(f), and we consider the
automorphism o = ff~! of A. It stabilizes the polarization: a*\ = \aa@ = .
It also stabilizes the level structure: f acts like the adjoint of f on Hy(A, AP).
Since KP is neat, this implies that o = 1; indeed, all the eigenvalues of « are roots
of unity, because they are algebraic numbers all of whose conjugates have absolute
value 1. It follows that f = f, and f? = ff = e. Since f is an automorphism,
it follows that e € Of. Hence it suffices to show that f € F, since we then
have e € O (KP).

Assume first that A is simple, so that End(A)q is a division algebra and F(f) C
End(A)q is a commutative field on which the Rosati involution z — Z is complex
conjugation. Since f = f and f? = €, F(f) is a totally real extension of F of degree
at most 2. If F(f) = F, we are done. Otherwise F'(f) is a quadratic extension of F'.
The level structure n provides a KP-orbit of isomorphisms Hy (4, A>®P) ~ VRAP,
and the element f acts via some conjugate of

OO = O
oo o m
a O OO
o~ OO

and has eigenvalues in F: {\/¢, —/€} with multiplicity two. By neatness, no con-
jugate of this matrix is in KP, a contradiction.

We now assume that A is not simple. It is easy to see (using the Op-action)
that the only possibility is that A is isogenous to A; x As where A; and A, are
two abelian schemes of dimension [F' : Q] with F' C End(4;)q. If 4; and A,
are not isogenous, then End(A)q = End(4;)q x End(As)q. Moreover, F(f) is a
commutative subalgebra of End(A;)q x End(As)q and is therefore included in a
product of fields F; x Fy where F; is either F or a CM extension of F. Since f = f,
we see that f = (f1, f2) € F x F and that f2 = (f%, f7) = €. So either f; = fa, and
we are done, or f; = — fo; but this second case is again prohibited by neatness.

Lastly, we assume that A is isogenous to A?. Then End(A4)q ~ M>(End(A4;)q)
and F(f) is a commutative subalgebra, therefore included in Ms(E) where E is
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either F' or a CM extension of F. Writing f = (CCL Z

2
9 a’*+be bla+d) . .
e = f° = (c(a d) betd? ) If a +d = 0, the matrix of f has eigenvalues

{V/€, —v/€} and this is again impossible by neatness. We deduce that a + d # 0,
sothat b=c=0and a =d = /e or a = d = —/e. Since f = f and the Rosati
involution induces the complex conjugation on E, we deduce that /e € F and that

) € GLy(F), we have

f € F, as required. O
We write

(3.3.14) A= (Or) ) /O T (KP),

(3.3.15) A(lp) = O (Tly) /O T (KP),

(3.3.16) A(KP) = O (v(KP))JOST(KP).

These last two groups are finite groups. Let us set Yg ' = A\Yg. This last
quotient exists as a scheme. Indeed, A permutes the connected components of Yy
and the stabilizer of any connected component is a finite group A(Ily), while the
stabilizer of any geometrically connected component if A(K?). Moreover, the action
of A can be lifted to an action on an ample line bundle on Yy (for instance the
tensor product of the line bundles det(Q% A/C) /YK) where C' runs over all subgroups
C = H'u|p C, where for each v | p, C, is either 1 or whichever of H,, L, exist as
part of the level structure, see [Lanl6l §6]). The group A(Ily) acts without fixed
points by Lemma [3.3.13] The following proposition then follows immediately from

Proposition [3.:3.9| and Lemma [3.2.3]

Proposition 3.3.17. There is a canonical map YIC? — Ygl , and Ygl is the coarse
moduli onIC? . There is a quasi-projective morphism Il : Ygl — (OF)(XP’)+\(A°°’p®
F)*/u(KP)(1) with geometrically connected fibres. Moreover, the map Yix — Y2*

is €tale and surjective.

Let ¢ € Z[)"\(A>P @ F)* [u(K?) and let

¢:SpecC — Z(Xp’)+\(A°°’p ® F)* /v(KP)(1)
be the associated morphism (for the usual choice of primitive roots of unity in C).
Let Yk . be the fibre of Y over ¢ and let Yglc be the fibre of Ygl over c¢. Then

there is a commutative diagram of analytic spaces where the horizontal maps are
isomorphisms and the vertical maps are finite étale with groups A(KP) = A(K):

(YK,c)an N F(C, K)\HHom(F,R)

| |

(Y€1) —— Ty (e, K)\HHom(PR)

3.4. Local models. We now recall some basic results about local models for GSp,;
the cases that we need essentially go back to [dJ93]. Continue to let K be a
reasonable level structure. For each place v|p, we let M}?f be the moduli space
over OF, of chains of lattices corresponding to K,; so for example Mf;;cr(v) is the
moduli space of totally isotropic direct factors of Vi ®o, Op, of rank 2. We write
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M}%‘j = xv‘pM}?f. Then by the results of [RZ96, §6], each geometric point of the
special fibre of YE has an étale neighbourhood which is isomorphic to an étale
neighbourhood of a geometric point in M}?; (The description of the local model
in [RZ96, §6] is in terms of chains of Or ® Z,-lattices, but this description can
be immediately rewritten in terms of products over the places v|p of chains of
Op,-lattices.)

Proposition 3.4.1. The scheme Y is flat over SpecZ,), normal, and a local
complete intersection (so in particular Cohen—Macaulay) of pure relative dimen-
sion 3[F : Q]. If K, = GSp,(Op,) for all v|p, then it is smooth, while in general it
18 smooth away from codimension 2.

Proof. Note that normality follows from being smooth away from codimension 2
and Cohen—Macaulay. The properties of being flat and a local complete intersection
over Spec Z,), and of being smooth, or smooth away from codimension 2, can all
be checked étale locally ([Stal3l |[Tag 03E7.Tag 04R3\Tag 06C3|). Furthermore,
these properties are all preserved by taking products. It therefore suffices to show
that they hold for the local models M}?[C This has already been carried out in the
literature: the case that K, = GSp,(Op, ) is trivial, and the cases that K, = Kli(v),
Si(v) or Iw(v) are covered in [Til06b] §2]. In the case K, = Par(v) see [Yulll Prop.
2.5, Thm. 2.11]. O

Corollary 3.4.2. The scheme Ygl is mormal, flat over SpecZ,, and a local
complete intersection.

Proof. Since Y — Yg ! is an étale surjection by Proposition |3.3.17} this is imme-
diate from Proposition [3.4.1] O

3.5. Compactifications. In this section, we state results on the existence of toroidal
compactifications. Toroidal compactifications depend on some combinatorial data
which we first explain. We will follow closely the presentation of [Pin90] and
[HLTT16], see in particular [HLTTI6, §5.2] (that this presentation is equivalent
to Lan’s presentation is explained in [HLTT16, App. B]).

In this section, we write Vg for V ®p, F. Let € be the set of totally isotropic
F-subspaces W C Vg. For all W € €, consider the F' ® R-module of Q-bilinear
forms

¢:Ve/WE xVp/Wt 5 R
which satisfy ¢(Az,y) = ¢(x, \y) for all X € F, z,y € Vp/WL. Let C(Vp/W1)
be the cone inside this R-vector space given by those forms which are positive
semidefinite and whose radical is defined over F. Let C be the conical complex
which is the quotient of [];;,ce C(Ve/W™) by the equivalence relation induced by
the inclusions C(Vp/W+) c C(Vp/Z*) for W C Z.

A non-degenerate rational polyhedral cone of C x G1(A) is a subset contained
in C(Vp/W+) x {v} for some (W, ) which is of the form Zle R qs; for elements
S; - VF/WJ‘ X VF/WJ‘ — Q

A rational polyhedral cone decomposition ¥ of C x G1(A™) is a partition C X G1(A>®) =
1, cs, o by non-degenerate rational polyhedral cones ¢ such that the closure of each
cone is a union of cones.

Let W € €. We let Py be the parabolic subgroup of G; which is the stabilizer
of W. Let us denote by My, the group of F-linear automorphisms of Vp/W+. We
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also denote by My, the group of symplectic similitudes of W= /W (so that this
group is isomorphic to Resp/QGSpy_s dimw, and in particular is non-trivial even
when dim W = 2). The group My = My, x My, is the Levi quotient of Py,. We
have a surjective map Py — My, and we denote by Py its kernel. There is a
surjective map Py, — M p,.

The group G1(Q)* acts on € and also on C. Let W € €, let v € G1(Q)" N Py
and ¢ € C(Vr/W). Let v, be the projection of v in Myy;. Then we set yé(z,y) =
v(y)e(v-x, n-y).-

The set C x G1(A®°) carries a diagonal left action of G1(Q) and left and right
actions of G1(A°) (by left and right multiplication on the second factor). For any
compact open subgroup K C G1(A), a rational polyhedral cone decomposition
¥ is K-equivariant if for all h € G1(Q),k € K and 0 € X, h.o.k € X.

For any compact open subgroup K C G1(A) we say that a rational polyhedral
cone decomposition ¥ of C x G1(A*) is K-admissible if:

(1) The decomposition is K-equivariant.

(2) For all 0 C C(Vp/WH) x {7}, and all p € Py, (A>), we have p.o € X.

(3) For all cones o, let W € € be such that 0 C C(Ve/W+) is in the interior
of C(Vg/W+). Then if there are p € Py, (A®), u € K and h € G1(Q)
satisfying o N hpou # 0, then in fact h € Py, (A>).

(4) G1(Q)\X/K is finite.

There exist K-admissible rational polyhedral cone decompositions. Any two
K-admissible rational polyhedral cone decompositions can be refined by a third
one.

If Ly C Homg(Sym%Ve/W, Q) is a lattice, then a cone

o C Homq(Symp,, Vi/W,Q)

is said to be smooth with respect to Ly if the s; can be taken to be part of a basis
of Ly . Assume that for all (W,v) € € x G1(A>) we have lattices

Lw,, C Homq(SymzVp/W™, Q).

We say that a rational polyhedral cone decomposition ¥ is smooth with respect to
these lattices if each cone o € ¥ is smooth.

We now assume that K = KPK, is a reasonable compact open subgroup. We
choose a lattice V' C Vi with the property that KP stabilizes V' ®z A°P and that
V'@ Op, =V ® Op, for all places v|p such that K, # Par(v) and V' ® O, = V3
for all places v such that K, = Par(v).

Then (Op,V’,(.)) defines an integral PEL datum and K C G (Z) where G} is
the group scheme over Spec Z of symplectic similitudes of V’.

The theory of toroidal compactification associates a lattice Ly i, C C(Ve /W)
to this integral PEL datum, compact open K, W € € and v € G1(A*°) (see [Lanl3l
§5.3] and [Lanl16l, §3]). The K-admissible rational polyhedral cone decompositions
which satisfy the following extra properties form a cofinal subset of the set of all
K-admissible rational polyhedral cone decompositions:

(1) The decomposition is projective (in the sense of [AMRT10]).
(2) The decomposition is smooth with respect to the lattices Ly, k .

In the rest of the paper, we will consider K-admissible rational polyhedral cone
decompositions which satisfy these extra properties unless explicitly stated.

Theorem 3.5.1.
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(1) Let ¥ be a K-admissible polyhedral cone decomposition which is projective.
There is a toroidal compactification Xg s of Yi. It has a stratification
indezed by (G(Q)T N K,)\X/K? = G(Q)*\X/K. The boundary is the re-
duced complement of Y in X 5. This is a relative Cartier divisor denoted
by DK72.

(2) The universal abelian scheme A — Yk extends to a semi-abelian scheme
A — XK,E-

(3) If ¥’ is a refinement of X, then there are projective maps wsy » : X s —
Xk,z, and (Rmsr 5).0x, o, = Oxp - Let Ix, . and Ix, ., be the invert-
ible sheaves of the boundary in Xi s and Xk 5. Then ﬂ'g,’zyIXKYE = IXK,E/
and (R v)«Ix, o = Ixyx-

(4) Suppose that K is reasonable (in the sense of Definition . Then the
toroidal compactification X s is flat over SpecZ,y, normal, and Cohen-
Macaulay. If ¥ is smooth, then Xy s — SpecZ, is further a local com-
plete intersection. Finally if K, = GSp,(Op,) for all vlp and X is smooth
then X 5, — Spec Z(p) is smooth.

Proof. This follows from [Lanl7, Thm. 6.1]. We simply need to specify the choices
we made to construct the toroidal compactification by normalization (see [Lanl6,
§2]). In the first case that K, = G1(Z,) (the nice case: no level at p, prime to
p polarization), the compactification is constructed in [LanI3]. In the second case
that K, = [[,, K, where K, € {GSp,(Op,),Par(v)}, the compactification can
be constructed as a closed subscheme of some toroidal compactification of a Siegel
modular variety with a prime to p polarization (Zarhin’s trick) (and possibly per-
forming again a blow up or a blow down at the boundary as explained in [Lan17]).
In the general case where we have a parahoric level structure, we consider all possi-
ble degeneration maps Y — HK},? Yirk, where K, — K, and K = H'U|p K with
K € {GSp4(Op,),Par(v)} and obtain the toroidal compactification as a closed
subscheme of the product of the toroidal compactifications of the Yi» K, (and pos-
sibly performing again a blow up or a blow down at the boundary as explained in
[Lan1t]).

Now, everything apart from is immediate, while follows from Proposi-
tion [3:5.4] together with the explicit description of the formal completions along
boundary strata given in [Lanl’7, Thm. 6.1 (4)]. O

We also need to consider the action of the group (9;’(; ) Recall that we defined
a quotient A of this group in (3.3.15)).
Lemma 3.5.2. The action of (’);’(';) on Yk extends to X s, and factors through A.

Proof. 1t is possible to prove this directly by looking at the construction of the
toroidal compactification and the boundary charts. We will instead give a simpler
indirect argument. Since Xk s is normal, it follows that X 5, is the normalization
of Y in Xg » x SpecC. It is therefore sufficient to show that the action extends
over C.

We can now use [AMRTT0]. Let c € G1(Ay). By Propositionm the analytifi-
cation of the component Y . C Y xSpec C corresponding to cis I'(c, K)\HHom(FR)
and we need to show that the group A(K) (which is the subgroup of A acting triv-
ially on the geometrically connected components) acts on the compactification of
[(c, K)\H"om(FR) By the main results of [AMRTI0], our choice of ¥ provides a
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partial compactification Hgom(F’R) which carries an action of I'(K, ¢). The compo-

nent of (Xx 5 X Spec C)*" corresponding to ¢ is isomorphic to I'(c, K)\'Hgom(F’R).
This space still carries an action of I'y (¢, K) /T'(¢, K), which is what we claimed. O

Lemma 3.5.3. The action of A on Xk 5 is free.

Proof. Over Y, this is the content of Lemma [3.3.13] We claim that the action
of A is free on the set of non-trivial strata in X 5. This set is simply GT(Q)\ (2
{0} x G(A>))/K. Let ¢ € G1(A®), I'(c,K) = G(Q)" NcKc™! and I'y (¢, K) =
G1(Q)T NeKe™l. Let X, be the restriction of X to C x {c}. We need to show that
the stabilizer of T'y (¢, K) acting on . \ {0} is included in T'(¢, K'). This will imply
that the group A(K) acts freely on I'(c, K)\(Z. \ {0}).

Let W € €\ {0}. We denote by I'yy (¢, K) and I'y w (¢, K) the intersections of
Py with I'(c, K) and T'y (¢, K) respectively. Let o C C(Ve/W=) x {c} in the inte-
rior. By our assumption on the cone decomposition, if an element v € I'1 w (¢, K)
stabilizes o, then its linear part ~; is trivial. We need to see that v(y) is trivial. It
is easy to see that we can find an element 7 € I'y (¢, K) and n € Z>( such that
v(y)"¢ = v'.¢ for all ¢ € C(Vp/W) (it follows from the very definition of the
action that the image of Ty (c, K) in the space of automorphisms of C(Vp/W)
contains a finite index subgroup of (9?“‘). We deduce that «' stabilizes o and
therefore 7] = 1, so that ()™ = 1 and v(y) = 1 since O " is torsion free. O

We form the quotient of Xg 5 by the action of (9;7’(; ) This quotient exists be-
cause, on a given connected component of Xk s, this is the quotient by a finite
group, and the component is projective because ¥ is a projective cone decomposi-
tion. We shall call such a quotient a toroidal compactification X%E of Yg 1. We
summarize our findings in the following proposition:

Proposition 3.5.4. The space XIG{Z has a stratification indezed by G1(Q)T\XL/K.

The map Xk s — XIC;IZ is €tale and surjective. If K is reasonable, then XIC?E s a
flat local complete intersection over Spec Z ), and is normal.

If not necessary, we drop the subscripts K or ¥ and simply write X. We denote
the boundary divisor by D.

3.6. Functorialities. We now briefly discuss some functorial maps between Shimura
varieties at different levels, which we will make use of when we discuss Hecke oper-
ators in All of the functorialities that we consider here extend to the toroidal
compactification for suitable choices of cone decompositions, so we confine our dis-
cussions to the interior.

3.6.1. Change of level away from p. Let K = KPK, and K' = (K?) K, be two
compact open subgroups of G;(A®°) such that K C K'. Then we have finite étale
maps Yx — Yk and Yg b Yg}, given by “forgetting the level structure”; that is,
by replacing the KP-orbit by the corresponding (K?)’-orbit.

3.6.2. Action of the group G1(A°P). Let g € G1(A°P). Then we can define an
isomorphism

[g] : YK — Yg—lKg
by sending an object (4,¢, A, n,m,) of Y to (A, ¢, A\, nog,n,), which is immediately
seen to be an object of Y -1x,.
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We deduce isomorphisms [g] : Yg v chill K"

3.6.3. Change of level at p: Klingen type correspondences. We now fix K? and a
place w above p. We let K}, = Hv|p K, C G1(Z,) be a reasonable compact open
such that K., = GSpy(OF,, ). Welet K, =[], _.,, Ko xKli(w) be another reasonable

level structure at p and let K}/ =[], ,, K, x Par(w). Set K = K¥K,,, K' = KK,
and K" = KPK).

Lemma 3.6.4. There are natural proper surjective, generically finite étale forgetful
maps p1 : Y — Yk and py : Yg,l — Ygl.

Proof. We simply forget the level structure H,, at w. O

We now choose once and for all an element z,, € F'*>* which is a uniformizing
element in F,, and a unit in F, for all v # w above p. This element is well defined

up to multiplication by an element of ((’)F)(Xp’)+.

Lemma 3.6.5. There is a proper, surjective, generically finite étale map ps : Y+ —
Y depending on x,, and sending A to AJH.-. It induces a canonical map ps :
Yo = YS.

Proof. This map is defined to take an object (A,¢, A\, n,7,) of Y/ to the object
(A", N0 my,) € Y defined as follows:

o A'=A/HL, where H: C A[w] is an order p3 group scheme, the orthogonal
complement of H,, for the Weil pairing. Write 7w : A — A’ for the natural
isogeny.

o /(x)=moulx)orm L,

e The quasi-polarization ) is obtained by descending the quasi-polarization
22 .\ from A to A’

e =mon.

e 7, is the data of level structures at places v # w above p deduced from 7,
by the isomorphisms 7 : A[v] — A’[v].

The ambiguity in the choice of z,, disappears when we pass to the quotient stacks
by the action of (O F)(xp,)+ and pass to the associated coarse moduli. (|

Remark 3.6.6. There is another map Y — Yx~ obtained by sending an abelian
surface A to A/H,,; however, we will not need to make use of this map.

3.6.7. Change of level at p: Siegel type correspondences. We now fix KP and a
place w above p. We let K, = H'U|p K, C G1(Z,) be a reasonable compact open
such that Ko, = GSpy(Op,) (resp. Kli(w)). We let K}, = [[,,, Kv x Si(w) be
another reasonable level structure at p (vesp. K}, = [],,, Kv X Iw(w)). Set K =
KPK,, K' = KPK,,

Remark 3.6.8 (Warning). Note that the use of K and K’ (and ps) in this section
( differs from that in the previous section (§3.6.3). Thus the reader should
be careful when these maps are used to note whether we are in the Klingen or
Siegel setting (we indicate in any ambiguous context by giving references to the
corresponding section). We made this choice since otherwise the number of required
subscripts would become excessively cumbersome.

Lemma 3.6.9. There are natural forgetful maps p1 : Y — Yi and py : Yg} —
Yg U which are surjective and generically finite.
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Proof. We simply forget the level structure L., at w. (]

Recall that we have chosen an element x,, € F>** which is a uniformizing
element in F,, and a unit in F,, for all v # w above p.

Lemma 3.6.10. There is a map p2 : Y — Yi depending on x,,. It induces a
canonical map po : Yg,l — Ygl.

Proof. We take an object (A,t,A,n,n,) of Y. We define (A',//, N, n',n)) € Yk
as follows:
o A'=A/L,, call m: A — A’ the isogeny.
o /() =mou(r)or L.
e The quasi-polarization )\ is obtained by descending the quasi-polarization
T from A to A'.
e =mon.
e 17, is a data of level structures at places v # w above p deduced from 7, by
the isomorphisms 7 : Afv] — A'[v].
e In the case K,, = Kli(w), we define H = H-/L,, C A'[w)].
The ambiguity in the choice of xz,, disappears when we pass to the quotient stacks

by the action of (OF) (Xp’;r and pass to the associated coarse moduli. ]

3.7. Automorphic vector bundles. We now work over Z,, and assume from
now on that p splits completely in F. We let S, be the set of places of F' above p.
We have a decomposition O ®z Z;, = [, |, Zp. We also denote by v : Op — Z,
the projection on the v-component.

3.7.1. The principal bundle. Over Yk we have a prime-to-p isogeny class of abelian
schemes and therefore we have a canonical Barsotti-Tate group scheme G. We
let wg be its conormal sheaf. The sheaf wg carries an action of Op. We have a
decomposition O ®z Z, = Hvl » Z,, and accordingly, the sheaf wg decomposes as a
product: wg = Hv‘p wg v where each wg , is a locally free sheaf of rank 2 over Y.

3.7.2. Weights for G and G,. By a dominant algebraic weight x for G we mean a
tuple (ky,l,)ves, of integers such that k, > [, for all v € S),. By a classical algebraic
weight we mean a dominant algebraic weight which furthermore satisfies ,, > 2 for
all v € S,. We will frequently write “weight” for “dominant algebraic weight” where
no confusion can result (note though that we will later also consider p-adic weights).
We associate a locally free sheaf w” on Yx to each weight x by

W = H Symk”_l“o.)gyv ® detl”wg’v.
v

By a weight x for G; we mean a tuple ((ky,ly)ves,,w) of integers with the
property that k, > [, and k, — [, = w (mod 2) for each v; again, we say that k is
classical algebraic if [, > 2 for all v € S},. In fact, we will insist that w is even, and
we will shortly fix the choice w = 2. We claim that given w, there is a canonical
descent datum on w” for the map Yx — Ygl.

For clarity, we describe this descent datum on the level of the groupoid Y . For
all z € (Op) (Xp ’)+, we define an isomorphism

K _ K K
WAe=Amm) T YA nm) T YA mmp)
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by multiplication by [], v(x)*=+=%)/2 (here the first identification is the tauto-
logical one, noting that the definition of w” does not depend on the polarization).

To check that this defines a descent datum, we have to show that it respects the
existing identifications from the action of O (K?). If z € O3 F(KP), then we
may write z = €2 for some € € 05 N KP, and we have an isomorphism ¢ : A — A
which induces an isomorphism in the groupoid Y g:

€ (A, N\ m,mp) = (A u e 2N, n,mp)

and an isomorphism

&*

WA e 2Amm,) = WlAuA )~ CAADD,)
which is multiplication by x(¢) (again, the first equality is the tautological one,
since w" does not depend on the polarization). Now, r(e) = [[, v(e)* v =
[T, v(e?)*etlom©)/2Np o () = [T, v(x)FeHe=w)/2 since Np/q(e)” = 1 by our
assumption that w is even, so this agrees with our the isomorphism defined above,
as required.

This defines a descent datum for the étale map Yx — Yg t. This descent da-
tum is effective. Indeed, after first identifying the sheaf w" on various connected
components of Yx we are reduced to a finite étale descent for the group A(IIy).

Although the descent datum depends on w, we will regard w as fixed (indeed,
in the main arguments of the paper, we always take w = 2), so we omit it from the
notation, and simply denote the resulting sheaf on Yg ! by w”.

Remark 3.7.3. We assume in this remark that we work over F, rather than Z,. We
denote by Yk 1 and Yfgll the fibres of Yx and Y¢* over SpecF,. Let r = (k,, Lo)wlp
be a weight for G. We further assume that k, = [, = 0 mod (p — 1). In this
case, we claim that we can define a canonical descent datum for the sheaf w”, from
Yk 1 to YI?, L. This rests on the observation that the character O3 — F given by

e 1, ,lv(e Yrotle mod p] is trivial. Therefore we can define a descent datum for

the action of z € (O p) , via the tautological isomorphism

K _ K
WALe= ) = WAL )

This remark will be applied to the various Hasse invariants we will construct later.

Finally we will need to consider the canonical extensions of these sheaves to
toroidal compactifications. The conormal sheaf wg/Yx has a canonical extension
to Xk v given by e*(2} AJXx , where A is the semi-abelian scheme of Theorem
(2) and e is its identity sectlon. This gives an extension of the sheaves w” to Xg »
and an extension of the sheaves w1 to XI%E. We will denote these extensions by
the same symbol.

3.8. Coherent cohomology and Hecke operators.

3.8.1. Basics. Let Kk =
RF(XK72, ) and RT’

(X
and RT(X {1, w"(—D)).

l,) be a weight. We will study the cohomologies

(Fo
IG( w™) as well as their cuspidal variants RT'(X g 5, w"(—D))

Lemma 3.8.2. The cohomologies RT'( Xk »,w"), RF(XIG(}27 w"), RT'( Xk, »,w"(—D))
and RF(XIG(}E,LU"(—D)) are independent of 3.
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Proof. This is immediate from Theorem 3. O

Because of this lemma, we often drop X from the notation. We now clarify the
relationship between RT'(X ¢, w™) and RD(X$!, w").

Proposition 3.8.3. The pull back maps
RIO(XE, w") — RT(X g, w"™)
and
RI(X ', w"(—D)) = RI(Xg,w"(—D))
split in the derived category of Z,-modules.

Remark 3.8.4. It is often easier to work over Xg rather than ch(l because the
former has a clear moduli interpretation. Proposition tells us that we can
easily transfer a good property of the cohomology over Xk to a property over Xgl.

Proof of Proposition[3.8.3 Attached to the weight « is a descent datum (see §3.7.2))
which takes the form of an action of ((’)F)X’)+ on the sheaf w” over Xx. Namely,

for all € € (OF) , there is an isomorphism € : €*w"” — w" satisfying the usual
cocycle relation. Thlb map induces a map on cohomology:

¢ : RI(Xg,w") = RT(Xk, €'w") = RI(X g, w")

and defines the group action.
Recall that there is a commutative diagram:

Xk XIG<1
lno lHUGl
Z35 (A7 @ F)* [u(KP)(1) — (Op) (5 \ (A7 © F)* [u(K?)(1)

Each Galois orbit ¢ € [ZE;)+ (AP @ F)*/u(KP)(1)]/Gal(Q/Q) determines

a connected component of ZE;;L (AP @ F)* /u(KP)(1), and its fibre is a con-
nected component Xg . of X » which is a proper bcheme over Spec Z,,. Obviously
RI'NXg,w") =[[,RI'(Xk,,w") and for all € € (OF) ) , we have an 1somorphlsm
€: RI'( Xk ec,w") = RI'( Xk e, w").

The subgroup that fixes a component X . is denoted by (9;’+(H0) and the
action of this group on Xk . and RI'(Xk ., w") actually factors through the finite
group A(Ily). Let m(c) be the image of ¢ in

[(OF) 5y \(AXP @ F)* /v(K?)(1)]/Gal(Q/Q).

This determines a connected component X¢ of Xgl and the map Xk . —

K 77((‘)

X Klﬂ(c) is a finite étale cover with group A(Ilp).
It follows from Lemma below that RI‘(XIG{1 (0¥ w") is split in RT'( Xk ¢, w"),

and therefore the map

RO(X G W) EBRF Xglﬂ(c), w") = [[RT (Xk e, ") = RT (X, w")

is split. ([



58 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Lemma 3.8.5. Let G be a finite group. Let I C Z[G] be the augmentation
ideal. Let f : T — S be a finite étale morphism with Galois group G. Then
f*OT = OS 53] IG ®Z[G] f*OT

Proof. There is an obvious map of coherent sheaves Ogs @ Ig ®z(q) f+Or — f«Or.
The sheaf f,Or is a locally free sheaf (for the étale topology) of Ox[G]-modules.
Therefore, the above map is an isomorphism as this can be checked locally for the
étale topology. O

3.8.6. Abstract Hecke algebras. Let H = CX(G1(A*®)//K,Z,) be the convolu-
tion algebra of locally constant, bi-K invariant, compactly supported functions
on G1(A) with coefficients in Z,,. (The Haar measure is a product of local Haar
measures, normalized by vol(K;) = 1 for all finite places ¢t of F.) If S is a finite set
of places of F, we let 15 be the subalgebra of # of functions whose restriction to
GSp,(Fs) is the characteristic function of K for all s € S. For all finite places s,
we let Hs be the local Hecke algebra C°(GSpy(Fy)//Ks, Zy), so that H = QL H,.

3.8.7. Cohomological correspondences — motivation. We begin by giving some brief
motivation for the way in which we define Hecke operators on coherent cohomology
(following [Pil20]).

As usual, the geometric interpretation of Hecke operators is via correspondences

C
N
X Y
(Giving an integral definition of the correspondence associated to a Hecke operator
at a place dividing p is in general difficult. This question will be addressed later in
the paper in some very special cases.)

Let F, G be coherent sheaves on X, Y. We assume that we have a map of sheaves
p5F — piG. When F and G are automorphic vector bundles (which will typically
be the case for us), this map is provided by the differential of the universal isogeny
over C.

One would like to use the correspondence to define a corresponding map on
cohomology RI'(X, F) — RI'(Y,G). This map could be defined by first taking the
pull back via ps : RI'(X, F) — RI'(C, p5F), then using the map p3F — piG to get
to RI'(C, p7G), and finally applying some trace map to RT'(Y,G). In other words,
the action of the correspondence on cohomology should take the form of a map
T : R(p1)«p3F — G. There are, however, at least two serious difficulties with
making such a definition in our context.

The first obvious difficulty is the existence of the trace map, because in general
one cannot assume that p; is finite flat. Nevertheless, in our cases the existence
of the trace map will follow from the machinery of duality in coherent cohomology
and the existence of certain fundamental classes, which can be constructed because
the schemes C, X, Y will have reasonable geometric properties over the base.

The second difficulty (which already arises for modular forms for GL, /Q) is that
the action of the correspondences defining the Hecke operators at places dividing p
is typically divisible by a positive power of p, so that one has to divide by this power
in order to define the correct operator mod p. It is hard to check this divisibility
at the level of the derived category.
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The solution to this introduced in [Pil20] (which we also employ here) is as
follows. By adjunction we can view T as a map T : p5F — p}G, and in favourable
circumstances p}G will be a sheaf (and not merely a complex). Furthermore it will
be sufficiently nice that we can check the condition that 7" is divisible by a power
of p after restricting to the complement of a codimension 2 locus, and define our
normalized Hecke operators.

3.8.8. Duality for coherent complexes. We let S be an affine Noetherian scheme.
We say that a morphism f : X — Y of S-schemes is embeddable if there is a
smooth S-scheme P such that f can be factored as a composite

X5 PxgY Y

where ¢ is finite and the second map is the natural projection. We say that f
is projectively embeddable if p can be taken to be a projective space over S. In
our applications of this material all of our maps will be obviously projectively
embeddable (essentially because our Shimura varieties are quasi-projective), and
we will not comment further upon this.

As usual we write Dgcon(Ox) for the derived category of O x-modules with quasi-
coherent cohomology sheaves, and D;rcoh((’) x ) for the bounded-below version. Then
if f: X — Y is an embeddable morphism of S-schemes, there is an exact functor

of triangulated categories

[ DY, (Oy) = Df, (Ox).

qcoh

If f is projectively embeddable, the functor f'is a right adjoint to Rf, and there
is a natural transformation Rf,f' = Id of endofunctors of Dz—;_coh(oy)’ which we
refer to as the trace map.

If X — S is a local complete intersection then we write Kx,g for the relative
canonical sheaf, which may be defined as the determinant of the corresponding
cotangent complex. The following is [Pil20, Cor. 4.1.3.1].

Lemma 3.8.9. Let f: X — Y be an embeddable morphism between two embeddable
S-schemes, such that X — S, Y — S are both local complete intersections of pure
relative dimension n. Then f'Oy = Kx/s ®ox f*K;/ls is an tnvertible sheaf.

We will make repeated use of the following lemma.

Lemma 3.8.10. Suppose that f : X — Y is an embeddable morphism of em-
beddable S-schemes, each of which is a local complete intersection of pure relative
dimension n over S. Let h be a section of a line bundle L over' Y, and suppose that
neither h nor f*h is a zero-divisor. Write Yn—o for the vanishing locus of h, and
Xp—qo for the vanishing locus of f*h.

Then for any locally free sheaf F on'Y , we have an equality of invertible sheaves

(fI‘F)|Xh:O = f!(fh’h:o)'
Proof. This follows from [Har66, Prop. II1.8.8]. More precisely, note that Oy, _,
is represented by the perfect complex of Oy-modules £7! KN Oy (here we use
that h is not a zero-divisor). In addition, by Lemma [3.8.9) f'F is a sheaf, and
it follows from the assumption that neither h nor f*h is a zero-divisor that the

derived tensor products in [Har66l, Prop. I11.8.8] are in our case given by the usual
tensor product ®. (I
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3.8.11. Fundamental classes. In two particular situations, we now construct a nat-
ural map
©:0x = f*Oy — 'Oy
which we call the fundamental class.
We firstly consider what we call the lci situation, which is the case that:

e X and Y are local complete intersections over S of the same relative di-
mension,
e X is normal, and
e there is an open V C X which is smooth over S, whose complement is of
codimension 2 in X, and an open U C Y which is smooth and such that
f(V)ycU.
In this situation, f'Oy is an invertible sheaf by Lemma so by the alge-
braic Hartogs’ lemma, it is enough to specify the fundamental class over V' (note
that X is normal by assumption). Again by Lemma we have f'Oyl|y =
det Q%,/S ® f*(det Q%]/S)_l, so over V, we can define the fundamental class to be
the determinant of the map

The other case we consider is the finite flat situation, in which f: X — Y is a
finite flat map, so that f, is exact, and

[ 'Oy = Homo,, (f.O0x, Oy).
We have the usual trace morphism try : f,Ox — Oy, and we define the fundamen-
tal class f.Ox — Homo, (f+Ox,Oy) by O(1) = try.
Note that if X — Y is a finite flat morphism and X,Y are both smooth over S,
then the morphism X — Y is automatically a local complete intersection. The
following compatibility between these definitions is [Pil20, Lem. 4.2.3.1].

Lemma 3.8.12. Suppose that X — Y is finite flat, and that X, Y are both smooth
over S. Then

~ d
Lx/y — [Qy/s ®o, Ox 4 Q% /sl
and the determinant det(df) € wx,y = f'Oy is the trace map try.

3.8.13. Base change for open immersions. Consider a Cartesian diagram

X x

lf ! lf
Y — Y
If 7 is an open immersion, and f is in either of the finite flat or lci situations, then

sois f’. Since i' = i* and j' = j*, we have j* f' = (f’)"i*, and if f has fundamental
class O, then j*© is the fundamental class of f.

3.8.14. Fundamental classes and divisors. We now briefly recall the results of [Pil20],
§4.2.4], which show that the correspondences we define below are suitably well
behaved on the boundaries of our compactified Shimura varieties.

Let Dx — X, Dy — Y be two effective reduced Cartier divisors with respect
to S, with the properties that f : X — Y restricts to a map f|p, : Dx — Dy, and
the induced map Dx — f~!(Dy) is an isomorphism of topological spaces. Write
X™ Y™ for the smooth loci of X,Y. The following is [Pil20, Lem. 4.2.4.1].
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Lemma 3.8.15. Suppose either that we are in the finite flat situation; or that we
are in the lci situation and that furthermore Dx N X*™ and Dy NY ™ are normal
crossings divisors.

Then the fundamental class © : Ox — f'Oy restricts to a morphism Ox(-Dx) —
f'Oy (—Dy).

3.8.16. Traces and restriction. In this paper we will have to study how Hecke oper-
ators behave with respect to restriction to subschemes of the Shimura variety. This
section contains some preliminary material. Consider the following setup:

e f: X — Y a finite flat map between smooth varieties over a field k.

e D CY is a smooth Cartier divisor.

e f~Y(D)=mnD’ for D' C X asmooth Cartier divisor.
In this setting we have the following;:

e Trace maps on canonical bundles

f«Kx — Ky
and
f+Kp — Kp.
e Adjunction isomorphisms
Kp ~ Ky(D)|p
and

KDI ~ Kx(D/)lpl.

If £ is a line bundle on Y, we can use the projection formula to get a map:
f+«(Kx ®oy L) - Ky ®o, L. We call such a map a twisted trace map. We
use a similar terminology over D. The goal of this section is to prove the following
compatibility between them.

Proposition 3.8.17. There is a commutative diagram

fo(Ex(=(n = 1)D")) ———— Ky

| |

f«(Kp ® Ox(—nD')|p') —— Kp ® Oy (—=D)|p

Here the vertical maps are restriction followed by adjunction, the top horizontal
map comes from the inclusion of Kx(—(n—1)D’) in Kx followed by the trace, and
the bottom horizontal arrow is the twisted trace for f : D' — D and the line bundle
Oy(—D)‘D (note that f*Oy(—D)|D = Ox(—’n,D)‘D/).

Proof. We write T = Oy (—D) for the ideal sheaf of D and 7' = Ox (—D’) for the
ideal sheaf of D’. First consider the following commutative diagram:

f*Iln_l HOmOY (OXa (I)Y)C—> f* HOmOY (OX7 OY) — OY

| |

f« Homo, ;1(Ox /T, Oy [T)—— f. Homo, ;7(Ox /IOx,Oy [T) —— Oy /T

where Homo, (Ox, Oy) is sheaf of Oy-homomorphisms from f.Ox to Oy, which
we view as a coherent sheaf of Ox-modules. By definition Home, (Ox,0y) =

f'Oy.
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Consider first the square on the right: the horizontal maps are evaluation at 1,
while the vertical maps are given by reduction modulo Z, and it is clear that this
square commutes.

Now we consider the left hand square: the horizontal maps are the obvious
inclusions so we must explain why the dotted arrow exists. But a local section s of
't Home, (Ox,Oy) will send Z' into Z (using that Z'" = ZOx) and hence the
reduction of s mod Z factors through Ox /7'

Finally we note that the square in the statement of the proposition tensored with
K;l may be identified with the outer rectangle of this diagram because we have
KX(X)K;l ’ZfIOy Z%moy(OX,Oy). O

3.9. Cohomological correspondences — definitions. Let S be a Noetherian
scheme. Let X, Y be two S-schemes.

Definition 3.9.1. A correspondence C over X and Y is a diagram of S-morphisms:

C
N
X Y
where X, Y, C have the same pure relative dimension over S and the morphisms
p1 and ps are projectively embeddable.

Let F be a coherent sheaf over X and G a coherent sheaf over Y.

Definition 3.9.2. A cohomological correspondence from F to G is the data of a
correspondence C over X and Y and a map T : R(p1)«p5F — G.

The map T can be seen, by adjunction, as a map p5F — piG. It gives rise to a
map still denoted by 7" on cohomology:

RI(X, F) 3 RD(C, p3F) = RT(Y, R(p1).p3F) 5 RI(Y, Q).

3.9.3. Hecke action away from p. Let K = KPK, be a reasonable compact open
subgroup of G1(Ay). Let H? = C°(G1(AP>°)//K?,Z,) be the Hecke algebra away
from p.

We claim that there is an action of H? on RI'(Xg »,w") and RF(XIC?}E, w"). To
this end, let g € G1(A°°P). We will define an endomorphism of RT'(X g, w") which
corresponds to the action of the double class [KPgKP].

We define (for suitable choices of cone decompositions omitted from the notation)
a correspondence:

)(KﬁgKg*1

% K
Xg Xy

where p; is the map induced from the inclusion KNgK¢g~! C K and the functoriality
of BT

The map p; is the composite of the map [g] : Xgrgrg-1 = Xkxng-1k4 (se€3.6.2)
and the natural map X xn,-1x, — Xk deduced from the inclusion KNgKg™ C K
and functoriality of §3.6.1]
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We have a canonical isomorphism piw” —— piw"”, because the construction of
the sheaf w” depends only on the p-divisible group. Moreover, because Xg and
Xkngkg-1 are lci and smooth outside codimension 2 (for a cofinal subset of the set of
all polyhedral cone decompositions), there is a fundamental class p;Ox, — p}Oxy,
extending the trace for the finite étale map p; on the interior, which we can tensor
with piw® to obtain a map pjw" — piw" = piOx, @ piw".

Composing the maps piw” — pijw® and piw® — p'w" we obtain a cohomo-
logical correspondence ©4 : pjw"™ — piw” which induces the operator [KgK] on
cohomology:

(€]
RF(XK7WH) — RF(XKﬂgKgflap;wn) # R’F(XKﬁgKgflap!lwn) g R’F(XKva)

where the last map is induced by the adjunction Tr : R(p;).piw" — w”.
We have a similar definition on cuspidal cohomology. Moreover, all these defini-

tions commute with the action of (O F)(Xp’)+ and therefore we also get an action on

the cohomology RT'(X$*,w") and RI(X$!,w*(—D)).

The characteristic functions of the double classes [KPgK?”] generate HP as a Z,-
module. In Proposition below we prove that when K, = [[,, GSp4(Z,) is
spherical, the actions we just defined of the [KPgKP| are compatible with products
in HP (the composite action of [KPg1KP] and [KPgyKP] is equal to the action of
[KPg1 KP][KPgo KP] decomposed into sum of elementary double classes) so that we
get an action of the Hecke algebra HP.

The difficulties come from the boundary. Away from the boundary, all the cor-
respondences are finite étale and one can follow the discussion of [FC90, Chap. VII,
§3], to show the compatibility. Following that reference, it should be possible to
show in a similar fashion that the action of the double class is compatible with prod-
uct in the Hecke algebra on the compactified Shimura variety, but giving all the
details would involve a delicate study of the composition of the correspondences
at the boundary. We instead give a different ad hoc proof by exhibiting special
complexes computing the cohomology. These complexes are Cousin complexes as-
sociated with the Ekhedal-Oort stratification on the Shimura variety. The action
of all double classes [KPgK?] on the cohomology is given by a canonical action on
the complex. Moreover, each term of the complex is the global sections of a certain
sheaf and the restriction of the sections of this sheaf to the interior of the Shimura
variety is an embedding. We are therefore able to prove that the action of the
double classes is compatible with products in the Hecke algebra because we know
this holds on the non-compact Shimura variety.

Remark 3.9.4. Over Q,, the property that the action of the double class is com-
patible with product in the Hecke algebra follows from [Har90b, Prop. 2.6]. The
strategy of that paper is to define an action of the group Gl(A?) after passing to
the limit over the level K? and then deduce an action of the Hecke algebra at a
finite level, but this strategy requires more work over Z, because at some points
one needs to control the cohomology of finite groups (which vanishes in character-
istic zero). Nevertheless, this is enough to prove that the Hecke algebra HP acts
on the torsion free part of the cohomology (which embeds in the cohomology with
Q,-coeflicients).

3.9.5. Cousin complexes. Our main reference for this section is [KemT78|. Let X be
a topological space. Let Shx(Ab) be the category of abelian sheaves on X. For
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a subset Z C X and abelian sheaf F we denote by I'z(F) the subsheaf of F of
sections supported on Z. Let Z : Zo = X D Z1 O --- D Z,--- be a decreasing
sequence of closed subsets of X (called a filtration). For any abelian sheaf F on X,
one can build the Cousin complex of F with respect to the filtration Z, denoted by
Cousz(F) [Kem78| p. 357].

The Cousin complex Cousz(F) is a complex of abelian sheaves in positive degree.
The object in degree i is HiZi/ZHl (F), where Hléi/zi+l (+) is (by [KemT78| Lem. 7.3])
the k-th derived functor of the functor:

Shy(Ab) — Shy(Ab)
G = [U—=Tzaz.,,(U\Zit1,9)]

The differential #, 1z (F) = 'HlZJrL /7:1,(F) is induced by a certain boundary
map. The Cousin complex has an augmentation F — Cous(F).

We now specialize the discussion: X is a Noetherian scheme and F is a quasi-
coherent sheaf. Then Cous(F) is a complex of quasi-coherent sheaves.

We have the following theorem:

Theorem 3.9.6. Let X be a Noetherian scheme with a filtration Z by closed sub-
schemes that satisfies:

(1) codimx(Z;) > i.

(2) The morphism Z; \ Ziv1 — X is affine for all i.
Let F be a mazimal Cohen—Macaulay coherent sheaf on X. Then Cousgz(F) is
quasi-isomorphic to F.

Proof. This follows from [Kem78, Thm. 10.9] (by definition a sheaf F is locally
Cohen—Macaulay with respect to a filtration Z if Cousz(F) is a resolution of F,
see [Kem?78| p. 358]). O

Remark 3.9.7. If we further assume that each Z; \ Z; 1 is affine, then Cousz(F) is
a complex of acyclic sheaves by [Kem78, Thm. 9.6].

One can sometimes compute the complex Cousz(F) more explicitly. Write
Uiy1 = X\ Zi41, and write j;41 : U;y1 — X for the inclusion. Under the as-
sumption that Z;\ Z;,11 — X is affine, we have by [Kem?78| Lem. 8.5(e)] (note that
the spectral sequence there degenerates by [Kem78, Thm. 9.6(c)], as in the proof
of [Kem78, Thm. 9.5]):

(3.9.8) My iz (F) = (Gis1) R 20\ 2, , (F

In general, for a Noetherian scheme X and a closed subset Z defined by an ideal
sheaf 7, we have

Uq‘,+1)'

RTz(F) = ligéfxti(OX /T, F)

and these Ext sheaves can be computed by taking projective resolutions of Ox /Z".
We also remark that in the previous limit, we can replace the ideals Z" by any
other decreasing sequence of ideals {J,,} with the property that for all n, there is
k and k' such that Ji C I"™ C Jy.

Example 3.9.9. We are going to compute these Ext sheaves in a special case. Assume
that we have effective Cartier divisors Ox =% L; for 1 <t < i and assume that they
intersect properly, by which we mean that for all n, the “twisted” Koszul complex:
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Kos(s?, - ,s?):O—)@Et_" —>@t,®£;”—> = LT > O0x =0
t t#t
is a projective resolution of Ox /(L™ -, L; ™).
Welet Z=V(L7', -+, L) and let F be a locally free coherent sheaf. We find
that: Extd (Ox/(LT", -+ ,L;™),F) =0 unless j =4, and

Ext (Ox /(L™ L7"), F) = Coker(@s) : Q) LI @ F — (R L) @ F).
tA£t t
Taking the direct limit over n gives R'T'z(F).

3.9.10. The Cousin complex of the FEkedahl-Oort stratification. We now assume
that K, = [[, GSpy(Z,), and let X = Xk » and denote by X* the minimal com-
pactification. We have a morphism f : X — X*. We fix an integer n and work over
X, =X xSpecZ/p"Z and X = X* x SpecZ/p"Z, and let Y,, denote the interior
of X,,. We consider the filtration Z* on X given by taking Z to be the closure of
all Ekedahl-Oort strata of codimension i. Here are some known facts (see [Box15]
Thm. 6.2.3]):

(1) Z* is a filtration.

(2) Z;\ Zf,, is affine.

(3) Zf\ Z;,, is a set-theoretic local complete intersection in Uj,; = X\ Z7, ;.
We now consider the pull-back Z of Z* on X,,. We deduce that:

(1) Z is a filtration.

(2) Z;\ Ziy1 — X, is affine.

(3) Z;\ Zit1 is a set-theoretic local complete intersection in U; 1 = X, \ Zi11.

Proposition 3.9.11. The cohomology RT'(X,,,w"(—D)) is computed by
I'(X,, Cousz(w"(—D))).

Proof. Tt follows from Theorem that w™(—D) — Cousz(w"(—D)) is a quasi-
isomorphism. It suffices to prove that Cousyz(w"(—D)) is a complex of acyclic
sheaves. By (3.9.8), the sheaf in degree i is equal to (ji4+1)«R'T 2\ z,,, (W*(=D)|u,., )-
This sheaf is supported on Z;\ Z; 1. We claim that Rf, (ji-i—l)*RiFZi\ZHl (W*(=D)|v.sy)
is concentrated in degree 0. Since f,(ji+1):R'T 2\ z,,, (W*(=D)|y,,,) is an acyclic
sheaf because it is supported on Z \ Zf,,, the proposition will follow from our
claim.

Let us prove the claim. By construction, Z; \ Z;4; is a finite disjoint union of
Ekedahl-Oort strata and (ji+1)-R'T 2\ z,,, (w"(=D)|v,,,) is a finite direct sum in-
dexed by these Ekedahl-Oort strata. Let E be an Ekedahl-Oort stratum appearing
in Z;\ Z;+1. It can be written as the intersection of ¢ Cartier divisors in U, 1, using
the theory of generalized Hasse invariants (one can also assume that these Cartier
divisors are pulled back from X; note that a sufficiently large power of each gen-
eralized Hasse invariant can be lifted to X ). Let us denote these Cartier divisors
by Ox 25 7,. Tt follows from Example that the direct summand of the sheaf
RTz0\z,,, (@ (=D)lu,.,) corresponding to E is the inductive limit of the sheaves:

HiHom(Kos(sy, - - - ,s%),w(=D)).

» 97

n

The complex Hom(Kos(st, -+, sP?),w"(—D)) is a complex of sheaves acyclic rela-

tively to the minimal compactification, and concentrated in degree i. O
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Lemma 3.9.12. There is an injection of complexes
(X, Cousz(w"(—D))) = I'(Yy,, Cousz (w"(—D))).

Proof. This follows directly from the description of the objects of the complex
Cousz(w"(—D)) given in the course of the preceding proof. O

It remains to prove that our Hecke operators act on I'(X,,, Cousz(w"(—D))) and
(Y, Cousz(w"(—D))). Let g € G(A];). We consider the correspondence:

)(KﬁgKg*1
% K
XK XK

and more precisely its reduction modulo p™. We have a cohomological correspon-
dence piw*(—D) — piw"(—D), as defined in §3.9.3}

Lemma 3.9.13. This cohomological correspondence induces a cohomological cor-
respondence of complexes compatible with the augmentation:

p3Cousyz(w™(—D)) — pllCousZ (W (=D))

Remark 3.9.14. In the above correspondence, the functors pj and p) are applied

to each object of the complex. Moreover, for each object Cousz(w"(—D))" of
Cousz(w"(—D)), piCousz(w"(—D))* is a sheaf (i.e it is concentrated in degree 0).

Proof of Lemma[3.9.13 For each index i, we have
Cousz (wl{(iD))i = (ji+1)*R’iFZi\Zi+1 (wn(iD)|Ui+1 )

We choose (by considering powers of generalized Hasse invariants) an increasing
sequence (Z; \ Z;1+1)x of subschemes U1 with support Z; \ Z;11, which are local
complete intersections, and are cofinal among all subschemes of U; 1 with support
Zi\ Ziy1.

We have R'T z,\ z,,, (w*(=D)|v,,,) = lim, Ext' (O 2\ zis 1) W™ (—=D)|u,,, ). Also
recall that Ext(Oz,\z,, 1), W (=D)|viy,) = Ext' (O 20\ 2,11)1 > W (= D)u, iy ) [l
‘We have
p!l(é'xt((’)(zi\ziﬂ)k,w“(—D) Ui+1) = g‘rt(pio(zi\zi-u)k7p!lwn(_D) Ui+1)

by [Har66, Prop. I11.8.8]. One checks that piO(z,\z,,,), = LPTO(Z,-\ZiH)k because
the pull back of a local regular sequence defining (Z;\ Z;+1) is again a local regular
sequence; we will not comment on the vanishing of higher pullbacks in the rest of
this argument. We deduce that

Pi(Ext (027 2,11y @ (=D)lviy,) = Ext' (PTO (27 2,11, P (= D)|u,)-
On the other hand there is by adjunction a map:

psgxti(o(zi\zi+1)k s wﬁ(_D)|Ui+1) — gxti (pSO(Zi\Zin)k’pzwn(_D)|U¢+1 )
Since the Ekedahl-Oort stratification is invariant under prime to p isogenies, we
deduce that p; *(Z; \ Zit1) = py ' (Zi \ Zis1). Therefore, for each k, for all large
enough ¢, there is a natural map piO(z,\z,,,), = P3O0(z,\z
We therefore get a map:

pEExti(O(Zi\ZHl)k y wn(fD)

i1k

Ui+1) — 5$ti(P§O(Zi\Zi+1)kaP;wK(*D) U71+1)
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= Ext' (D102 2,11)0 P10 (= D)|usy) = P1(E (O 20\ 2041w (= D)|u,ss)-
Passing to the inductive limit over k£ and ¢ yields the cohomological correspon-
dence:
pSRZFZi\Z¢+1 (wn(_D)|U¢+1) — p%LRZFZz‘\ZiJA (wﬂ(_D)‘UHl)'
Moreover this construction is canonical and is compatible with all differentials
in the Cousin complex and with the augmentation. ([l

Proposition 3.9.15. The Hecke algebra HP acts on RT(X % w"(—D)) and also
on RI(X %1 wr).

Proof. By Serre duality, it suffices to treat the case of RI'(X%1 w®(—D)). The
cohomology RI'(X,w"(—D)) is represented by

lim I'(X,, Cousz (w*(~D)))

and this complex injects into

@F(Yn, Cousz (w™(=D))).
The double class 1x»4x» acts everywhere. We can restrict to the “G,” direct factor
(the Ekedahl-Oort stratification is preserved by the action of (OF)E;’)+) and the
compatibility with the product in the Hecke algebra is known on

@F(Yfl , Cousz (w™(—D))).

Therefore it holds everywhere. (I

Remark 3.9.16. It follows by an identical argument to the proof of Proposition[3.9.15
that if K{, K%, K% are three choices of tame level, and 31, 35, X3 are suitable
choices of polyhedral cone decompositions, then the composite of the Hecke opera-
tors

[KTg1K5] - RD(X g}

i, @) = RI(XCL

K
KPKy 5% )

and

[K?g, KP] : RI(X S}

G
e, 00 ") — RECXES

K
KPKp, 5% )
is the Hecke operator

(K791 K3][K5 g2 K] - RD(X )

K G
Kng,E3,w )—> RF(X 1

K{’Kp,zl’wn)'
3.9.17. Hecke operators at p: Siegel type operator. We assume here that K = KP K,
and K, = Gi(Z,). Let us fix a place w above p. We are going to define an
action of a Hecke operator Ty, 1 on RI'(Xk 5, w"), RF(Xg}E, w"), and their cuspidal
versions. The action on RT'(Xg 5, w") and RT'(Xg 5, w"(—D)) is not canonical, and
depends on the choice of z,, made in but the action on RF(XIG;}E,M‘) and
RI(X Y, w*(—D)) is canonical.

Set K’ = KPK}, where K}, = [],,, GSp4(Op,) x Si(w). In §3.6.7 we defined
maps p1,p2 : Xg» — Xk giving a Hecke correspondence:

XKI
N
XK XK

The key geometric properties of this correspondence are (see Proposition |3.4.1)):
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(1) Xk and X are relative complete intersections over Spec Z,,, and are pure
of the same dimension,

(2) Xk is smooth over SpecZ,,

(3) Xk is smooth over SpecZ, up to codimension 2 and normal.

In particular, we are in the lci situation in the sense of §3.8.11] so we have an invert-
ible dualizing sheaf p}Ox,, and a fundamental class p;Ox, — piOx,. Moreover,
for all weights x = (ky,l,) with [, > 0, we have a natural map psw"” — pjw”
provided by the differential of the isogeny piG — p5G on Xk-.

Composing these maps, we obtain a cohomological correspondence O : pjw" —
phw”.
Lemma 3.9.18. When [, > 2, this map is divisible by p>.

Proof. We need to prove that © factors through p>p}w”. As Xg is normal and the
source and target are locally free sheaves, it is enough to establish this factorization
in codimension one. As this factorization is furthermore trivial over the generic fibre
of Xk, it is enough to prove it over the completed local rings of the generic points
of the special fibre of X .

There are three types of generic points in the special fibre classified by the
multiplicative rank » = 0,1 or 2 of the isogeny p;G — p3G. In each case one calcu-
lates separately the p-divisibility of the map piw” — pjw” and of the fundamental
class as in the proof of [Pil20, Lem. 7.1.1]. One finds that the fundamental class
piOx, — p}Ox, is divisible by p? when r = 0, p when 7 = 1, and p° when r = 2,
and the map piw® — piw” is divisible by p® when 7 = 0, p'v when r = 1, and
pFwtle when r = 2. The result follows as 3,1, + 1, ky + Ly > 3. O

We can thus consider the normalized cohomological correspondence T, 1 : p~30 :
piwr — pllw", and we obtain a Hecke operator:

-3
Twi : RU(Xg,w") = RE(X g, p3w”) =" RO(X g, phoo) B RI(X e, 0.
A similar definition applies to cuspidal cohomology and works over X IG(l.

Remark 3.9.19. One readily checks that the Hecke correspondence used to define
T corresponds to the double coset [GSp,(OF,)diag(1,1,p~1,p~1) GSp,(OF, )]
(see [FP21, Rem. 5.6] for instance) which differs by an element of the centre from
the spherical Hecke operator considered in §2.4.71 We justify this discrepancy as
follows: when doing geometry and working with the moduli interpretation, we
prefer to use this Hecke operator, while when doing local representation theory and
considering Galois representations, we prefer to use the Hecke operators considered
in In this paper we will systematically work on spaces with fixed central
character so that the (normalized) action of these two Hecke operators are the
same. The same remark will apply to all the Hecke operators at p considered in
this paper. We hope this will not cause any confusion.

3.9.20. Hecke operators at p: Klingen type operator. We again assume that K =
KPK, and K, = G1(Z,). Let us fix a place w above p. We are going to define
an action of a Hecke operator T, on RI'(Xk s, w"), RF(X%E,w’”") and their cus-
pidal versions. As before, the action on RI'(Xg »,w") and RI'( Xk »,w"(—D)) is
not canonical and depends on the choice of z,, made in §3.6.3 but the action on
RF(X%Z,UJ“) and RI(X &L, w"(—D)) is canonical.
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Remark 3.9.21. The Hecke operator that we define in this section does not corre-
spond to the double coset operator [GSp,(OF, ) diag(1,p~1,p~1,p~2) GSp,(OF, )]
but rather some variant of it that we call T;,. The formula for T}, in terms of double
cosets is

T, = [GSpy(OF )diag(l,pil,pfl,pfl)Par(w)][Par(w) diag(1,1, l,pfl) GSp,(Or,)]

w w

= p[GSp,(OF, ) diag(L,p~ ", p~',p?) GSp,(Op,, )]
+ (L4 p+p*+p*)p *[GSpy(OF, ) diag(p~ ", p~ ", p~ ", p") GSp4(Or,)].
Set K' = KPK}, where K}, =[], ,, GSp4(OF,) x Kli(w) and K" = KP K}/ where

K} = Ilyz0 GSp4(OF,) xPar(w). In §3.6.3, we defined morphisms p1 : Xx» — Xk,
p2 @ Xg» — Xk giving a Hecke correspondence:

XKI
VN
X XK

The key geometric properties are again (see Proposition :
(1) Xk, Xk and Xk are relative complete intersections over SpecZ,, of the
same (pure) dimension,
(2) Xk is smooth over SpecZ,,
(3) Xk and Xk~ are smooth over Spec Z, up to codimension 2 and normal.
We are again in the Ici situation, so we have invertible dualizing sheaves p}Ox .
and pIQOXK,, and fundamental classes p;Ox,. — pll(QXK and p50x,, — p!QOXK,,.
For all weights k = (ky,1,) with [, > 0, we have natural maps piw" — pfw"
provided by the differential of the isogeny p7G — p5G on Xk, and pjw” — piw”
provided by the differential of the isogeny p5G — p7G. We therefore obtain two
cohomological correspondences O : piw" — piw” and O, : piw” — phw".
Lemma 3.9.22. When 1, > 2, the map O is divisible by p*>*' and the map O
is divisible by p.
Proof. This can be proved in exactly the same way as Lemma by an explicit
check over the completed local rings of generic points of the special fibre of Xg-.
The details may be found in the proofs of [Pil20, Lem. 7.1.1, 7.1.2]. O

We can therefore consider the normalized fundamental classes T!, = p~2~1w©; :
piw® — plw” and T = p~10, : piw” — phw”, and we obtain Hecke operators:

Té] : RF(XK//,WH) — RF(XK,LUK)
and

T : R[(X g, w™) — RO X g, w").
We set T, := T, oT". Similar definitions apply to cuspidal cohomology and work
over Xgl.
Remark 3.9.23. Just as the complexes that we are considering are independent
of the choice of compactification by Lemma [3.8.2} so too are the actions of T, 1
and T, on them. See [Pil20, Prop. 7.2.1] for the case of T,; the argument for T, 1
is similar, but easier, and is left to the interested reader.
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3.10. Cohomology and automorphic representations. Let K = [[ K, C
GSp,(AY) = Gl(Aoo) be an open compact subgroup, let S O 5, be a finite set of
places such that K, = GSp,(OpF,) for v ¢ S, and let

T = Q) O[GSp(F,)// GSpa(OF, )]
v S

be the ring of spherical Hecke operators away from S. We say that a maximal ideal
m C T is non-Eisenstein if the residue field T/m is a finite extension of F,, and

for (any) inclusion T/m — F, there exists an irreducible representation p : Gp —
GSp,(F,) with the property that, for each v ¢ S, we have det(X — p(Frob,))

= X' - v,1X3 + (%TM? + (qg + qv)Tv,O)Xz - q'UT'U 0l X + q'UT’L?O (mod m).

(¢f. @L).

Our main aim in this section is to prove the following result.

Theorem 3.10.1. Let k = (ky,ly)y|oc with ky, > 1, > 2 and k, =1, (mod 2) be a
weight and let m be non-Fisenstein.
(1) Fori=0,1, there is an E[GSp,(A%Y)//K]-equivariant inclusion
J— . 2 —
(3.10.2) Pr)E@ECH (X w(-D) @ F
where, on the right hand side, the superscript | - |* indicates the space on
which the diamond operators at placesv ¢ S act via |-|*; and on the left hand
side, m runs over the cuspidal automorphic representations of GSp,(AFr)
with weight k and central character | - |* such that
e m, is holomorphic for those v|oo for which 1, > 2, and
o #{v|oo | m, is not holomorphic} = i.
(2) There is an absolute constant R such that if for each v|oo
e k,— 1, >R, and
e citherl, =2 orl, > R,

then the inclusion (3.10.2) is an equality.
(8) If i = 0, then (3.10.2)) is an equality. In fact, a version of this statement

holds without having to localize at a non-Eisenstein maximal ideal; there is
an E|GSp,(A%)// K]-equivariant isomorphism

(3.10.3) HO(X$ W (-D)' @ E = P(r

where ™ runs over the cuspidal automorphic representations of GSp,(Ar)
with weight k and central character |-|? which are holomorphic at all infinite
places.

Remark 3.10.4. Theorem is by no means optimal; the same results should
hold for any cohomological degree i, and with a much weaker regularity assumption
on k in part (2). However, it seems difficult to deduce results in this generality from
the literature, so we have restricted ourselves to this result, for which we only need
to consider the cohomology of the boundary in degree 0. We explain the proof
below, after proving a corollary and a preparatory lemma.

Theorem [3.10.1] has the following useful corollary.
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Corollary 3.10.5. Suppose that we are in the setting of Theorem [3.10.1] and the
hypothesis on k in (2) holds. Let ly denote the number of infinite places v with I, =
2. Then

|12 |12

dimEHl(XIG{HwK’(—D))m ®F=lodim§H°(Xf_§Hw”‘(—D))m ®E.

Proof. Since m is non-Eisenstein, the automorphic representations « which con-
tribute to are all of general type in the sense of [Art04] by Lemma [2.9.1
There are [y ways to choose an infinite place v with [,, = 2, and we let m, be generic
for this place and holomorphic at the other infinite places. The result then follows
from Theorem 2.9.3 O

Remark 3.10.6. The following lemma is essentially a special case of the much more
general results proved in [HZ01], and can presumably be proved using the techniques
of that paper, but since our Shimura varieties do not satisfy the precise assumptions
needed to cite the results of [HZ01|, we have chosen to give a direct proof.

Lemma 3.10.7. Let k = (ky,ly)y|oc be a weight, with k, > 1, > 2 and k, = 1,
(mod 2), and let m be a non-FEisenstein maximal ideal. Let D denote the boundary

of X$'. Then HY(D,w")m @ E = 0.

Proof. In the case that F' = Q this follows from [Fre83| IV, Satz 4.4], as in the proof
of [Pil20, Cor. 15.2.3.1], so we can and do assume that F' # Q in what follows. We
let 7 : Xgl — X;}’Gl be the map between toroidal and minimal compactifications.
We let 0X* C X}?Gl be the (reduced) boundary of the minimal compactification,
which we can write as 9y X* [[ 91 X™*, where 9; X* is a union of Hilbert modular
varieties for the group Resp;qGLz, and the complement Jp X is a finite union of
points.

Suppose firstly that we are in the case that k, = [, = k for some k inde-
pendent of v. Then w" is pulled back from the minimal compactification, and
since . (W*|p) = w"|ox+, we have H’(D,w") = H°(0X*,w"). (To see that we
have an identification 7. (w"|p) = w*|ox~, it suffices by the projection formula to
show that 7.(Op) = Ogx~. This follows from the facts that Tl'*oxgl = OX;,G“
7T*ID = Iax*, and Rlﬂ'*ID = 0)

Suppose now that we are not in the case that k, and [, are equal and inde-
pendent of v. Then it follows from the results of [Lan13|, see [BR16, Prop. 1.5.8],
that any element of H°(D,w") vanishes on 71(9pX*); so the map H°(D,w") —
HO(7n= (0, X*),w") is injective, and it suffices to show that HO(7~1(9; X*),w") is
Eisenstein. Again by [BR16, Prop. 1.5.8] it follows that m.(w"|-1(s,x+)) is zero
if the [, are not all equal, and otherwise is equal to the sheaf w*v)vip (where we
are using the usual labelling of weights for sheaves on Hilbert—Blumenthal modular
schemes).

In either case, we have seen that the space that we are considering either vanishes,
or injects into H°(9; X*,w®)). Now it is convenient to work adelically. Let us fix
W e € with dimp W = 1. Then 9; X* is as follows (where Py, and My, are defined
in §3.5)):

P @\ x G1(A%) /K

= PLQ\HT Y x Py (A®) xPw(A™) ¢y (A%) /K
= M Q\HE Y x My (A%) xPvA™) Gy (A=) /K.
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‘We therefore find that

HO(0u X", mow®)) = (nd G2 ()"

where M = lim g c aryy (ave) HO (M (Q\HY Y x My (A=) / K, w®)) from which it
follows that the eigensystems arising from H(9; X*,w(*)) are Eisenstein. Indeed,
since we are assuming that F # Q, it follows from Koecher’s principle that the
cohomology groups HO(M‘}"V(Q)\H[lF:Q] x My (A>®)/K,w®)) are spaces of Hilbert
modular forms, and thus have associated two-dimensional Galois representations.
More precisely, we have Satake transforms between spherical algebras (say at some
unramified place v):
HGl — HMW — C[X*(T)]
for which the element [1, 1, w,, @,] is mapped to
[15 Wy, 1a wv] + [wva 17wva 1] + [wva Wy, 1a 1] + [17wva va]
= (L @v, Lw] + 1wy, Lwl) + (@, 1,1, (L @, Lw] + (1,0, 1 @),

This expresses the relation between the Hecke operators on G; and My, so that if

X X 7 is an automorphic representation contributing to M, it will contribute to the
cohomology of G via the compatible system of representations p, ® (pr ® x). O

Before proving Theorem [3.10.1} we introduce some notation. Let
h:Resc/r(Gm)(R) = C* = GSp,(R)

be the homomorphism sending x + iy to the matrix

(EIQ yS
<—y5’ sclg> '

Let K" denote the centralizer of h in GSp,(R) (acting by conjugation). Then
since h(i) = J, we see that we may identify K" = R*U(2), so that U(2) is a
maximal compact subgroup of the identity component of GSp,(R). Let gc =
g%%ag 1@gh ! denote the Hodge structure on g, where g*° = €, ¢ is the complex
Lie algebra of K". Let pt = g7, p~ = gV~ !, and Py = €,.c @ p~. We now
define P~ to be the parabolic with Lie algebra 3, with P~ N GSp,(R) = K". We
warn the reader that this parabolic is denoted by P}, in [Har90al, by @~ in [BHR94],
and by @ in [CG18|. (Note, however, that the fundamental object is really the Lie
algebra 9B, because P~ only intervenes below via its Lie algebra.)

For each place v|oo, we write P, and K for the corresponding groups for GSp, (F,)
GSp,(R). We write V,, for the representation of K" = R*U(2) such that the
automorphic vector bundle corresponding to Vi := ®y|00 Vi, via Definition 1.3.2
of [BHR94| is identified with w”®. We set P :=[], . P, and K =[], .. K"

o~

v|oo

Proof of Theorem[3.10.1. We begin by proving (3.10.2). By Lemma [3.10.7| we can

and do replace Hi(Xgl,w"(—D)) by the interior cohomology

v|oo

H' (XS, W) = im (Hi(xgl,w(_D)) = Hi(Xgl,wﬁ)) .

(This is the only place that we use our assumption that ¢ < 1, or the non-Eisenstein
localization.) Let Acusp(G1) C A(2)(G1) be respectively the space of cuspidal auto-
morphic forms on G with central character |-|?, and the space of square integrable
forms with this central character. By [Har90a, Thm. 2.7], we have inclusions
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) SMeusp ()

D () & wtie e, Kisna ) ST (XG0

TrE.Acusp(Gl)

and
. ) ®m(a) ()
H(xgwy)c @ ((WOO)K®HZ(LiePO;,KfO;7TOO®VR)) @
TEA2)(G1)

where m.,(7) denotes the multiplicity of 7 in A,(G1). By Arthur’s multiplicity
formula for GSp, [Art04} [GT19], we in fact have meusp(7) = Mgy (m) = 1 for all .

In the proof of [BHR94, Thm. 4.2.3|, it is shown that if 7 € Ax;)(G1) with
Hi(Lie Py, K" ; 70 ®V,;) # 0 and if the infinitesimal character of 7, is sufficiently
far away from all the root hyperplanes that it does not lie on, then m, is essentially
tempered. In view of the relation between the infinitesimal character of 7., and
k arising from the Casselman—Osborne theorem (see [BHR94, Prop. 2.4.5]), the
regularity condition on the infinitesimal character is exactly what we have assumed
on & in (2). Then by [Wal84, Thm. 4.3], we in fact have 7 € Acusp(G1), and so the
inclusions above are equalities. In addition, by [Har90a, Thm. 3.5] (a theorem of
Mirkovi¢) and [BHR94, Thm. 3.2.1], for each v|oo we have that H’ (Lie P, , KI'; 7, ®
Vs, ) = 0 unless either:

e [, >2 j=0, and m, is the holomorphic discrete series of weight (k,,1,),
or;
e [, =2,5 =0, and m, is the holomorphic limit of discrete series of weight (k,, l,,),
or;
e [, =2,j =1, and 7, is the generic limit of discrete series of weight (k,,[,).
Moreover, in each of these cases that H(Lie P, K;m, ® V,.,) is nonzero, it is
one-dimensional. The first two parts of the theorem then follow from the Kiinneth
formula.

We now prove (3.10.3). In this case the map from HO(X$', w®(—D)) to the
interior cohomology is an isomorphism by definition. Furthermore, by [Har90al
Prop. 2.7.2], the only 7 that contribute are automatically cuspidal (without needing
to assume any regularity conditions). It follows from the theory of lowest weight
representations, see for example [PS09, §2.3], that if H°(Lie P, , K"; 7, ®@V,.,) # 0,
then m, is the holomorphic (limit of) discrete series of weight (k,,[,), as required.

O

4. HIDA COMPLEXES

In this section, we construct (higher) Hida theories for GSp,(Ar). The classical
Hida theory is developed in [Hid04] and takes the form of a projective module over
the total weight space (which is 2[F : Q]-dimensional). The construction of higher
Hida theory was carried out when F' = Q in [Pil120], and takes the shape of a perfect
complex of amplitude [0, 1] over a one dimensional hyperplane of the weight space.

We assume that p splits completely in F' and we construct all possible Hida
theories, allowing the weight space at each place above p to be either 1- or 2-
dimensional. Many of our arguments are simply the “product over the places v|p”
of the arguments of [Hid04] and [Pil20]. To keep this paper at a reasonable length,
we will often refer to [Pil20] for the details of arguments which go over directly to
our case.
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The bookkeeping needed to deal with having multiple places above p is con-
siderable, and in the hope of orienting the reader, we begin this section with an
overview of the arguments we will make. The main theorem of this section (and
the only theorem that we will need later in the paper) is Theorem which
proves the existence of integral Hida complexes, and gives a control theorem for
them in sufficiently high weight. Say that a classical weight £ = (ky,[,)y|, With
ky, > 1, > 2 is “singular” at v if [, = 2, and “regular” at v if [, > 2. Fix any set [
of places above p; these will be the places at which we interpolate automorphic
forms of singular weight, while at the places in I¢, we interpolate forms of regular
weight. (Thus traditional Hida theory considers the case I = (), while the higher
Hida theory of [Pil20] is the case F = Q and I = {p}.)

There is a Hecke operator U’ (an analogue of the U, operator for elliptic modular
forms), which acts locally finitely on a complex of p-adic automorphic forms. The
Ul-ordinary part My of this complex is a perfect complex over a weight space A7,
concentrated in degrees [0,#I]. Furthermore, there is a constant C such that
if ky—1, >Candl, =2forv e I,and [, > C for v ¢ I, then the H® of the special-
ization of M; in weight k agrees with the ordinary part of the degree 0 cohomology
of XIG<1. (We expect that in fact this specialization should be quasi-isomorphic to
the ordinary part of the classical cohomology, but we do not prove this. We do
prove that there is also an injection of H's from the classical cohomology into that
of M, which we will make use of in §6])

The definition of M; is motivated by the traditional case I = () considered
in [Hid04]. In that case one considers the cohomology at infinite Iwahori level
over the ordinary locus, with coefficients in a certain interpolation sheaf which
can be thought of as an interpolation of the highest weight vectors in the finite
dimensional representations of the group GLs/F. Since the ordinary locus is affine
in the minimal compactification, one can prove that there is only cohomology in
degree 0. Then one cuts out the ordinary part using a projector attached to U’
and proves that this defines a finite projective module over the Iwasawa algebra.

For general I, we instead consider the cohomology at infinite Klingen level of
the locus which has p-rank at least 1 at places w € I, and infinite Iwahori level
over the ordinary (that is, p-rank 2) locus at places w € I¢. This locus is no longer
affine and it has cohomology in higher degrees. In fact by relating the cohomology
of the toroidal and minimal compactifications, one can show that the cohomology
is supported in degrees [0, #1].

One of the major difficulties in the proof of Theorem is to show that the
operator U’ acts locally finitely (in order to be able to associate an ordinary pro-
jector) and that the ordinary projection defines a perfect complex. By Nakayama’s
lemma for complexes, one reduces to showing that U’ has these properties for the
cohomology modulo p, in some fixed weight. In particular, it suffices to consider
the case of sufficiently large weight, i.e. the case that k, — [, > C and [, = 2
forv e I, and I, > C for v ¢ I, for some constant C. The first part of the argu-
ment is to relate this cohomology with the cohomology of the automorphic vector
bundle of the corresponding weight over the locus X]G(}il of the special fibre of the
Shimura variety which has p-rank at least 1 at the places w € I, and is ordinary at
places w € I¢. This boils down to a computation at the level of the sheaf w” itself,
and to a computation in the Hecke algebra to show that the UZ-operator decreases
the Klingen and Iwahori level.
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In the case of Hida theory for 0-dimensional “Shimura varieties” (e.g. p-adic
families of automorphic forms on definite unitary groups, as considered in [Che04,
Ger19]) these arguments at the level of the sheaf and the Hecke algebra are all
that is needed. In the geometric setting, more work is needed to establish the
required finiteness of the ordinary part of the cohomology in characteristic p; recall
that we are considering the cohomology on the locus Xg}l’l, so the cohomology
groups are infinite dimensional before taking the ordinary parts. One has to show
that (in sufficiently large weight, in characteristic p) ordinary cohomology classes
on this locus extend to the whole Shimura variety (which is proper and has finite
cohomology).

In order to do this, one shows that (again, in sufficiently regular weight, in
characteristic p) the Hecke operator U’ acts by zero on the complement of XIG(,II’I7
so that after passing to ordinary parts, the cohomology agrees with that of the full
Shimura variety, and is in particular finite-dimensional.

The vanishing of the Hecke operators on the part of the Shimura variety which is
either of p-rank 0 (if w € I) or is non-ordinary is accomplished by local calculations,
using the definitions of the Hecke operators as cohomological correspondences. The
case of w € I€ is relatively straightforward, as we are able to use the Hecke opera-
tor 1,1 to prove this vanishing. (Note though that in this case we need to use the
operator U, 2, which is the operator at Klingen level corresponding to T,,, in the
part of the argument explained above which takes place at the level of the sheaf.)
The case w € I is much more delicate, as we need to use the operator T,,, which
is significantly harder to control. (In this case, though, we use the same Hecke
operators in the argument at the level of the sheaf as we do for the geometric part
of the argument.)

The arguments below are in fact written in roughly the reverse order of the
explanation above. We begin in by recalling some standard results on Hasse
invariants and the p-rank stratification, before proving the vanishing of the Hecke
operators in small p-rank at spherical level in §4.2] In §4.3] and [£.4] we introduce
the Igusa tower over the Shimura variety at Klingen and Iwahori level, and define
the interpolation sheaves whose cohomology we use to define M;. We then define
the Hecke operator U’ in §4.5, and in §4.6| we prove Theorem by relating the
ordinary parts of the cohomology at spherical and Klingen level, and then carrying
out the argument sketched above.

4.1. Mod p-geometry: Hasse invariants and stratifications. In this section,
we introduce the p-rank stratification on our Siegel variety and the definition of sev-
eral Hasse invariants attached to this stratification. The discussion follows [Pil20),
§6.3, 6.4].

4.1.1. Over X. We assume that K = K?K,,, K, =[], K, with

vlp
K, € {GSp,(Op,),Par(v)}.

We fix a polyhedral cone decomposition 3, and write X = X 5 if the context is
clear. We let G = A[p*°] be the p-divisible group corresponding to the semi-abelian
scheme A defined over X (well defined up to prime-to-p quasi-isogeny). This p-
divisible group decomposes as G = ][, Gv- If Ky = GSp4(Op,), the p-divisible
group G, defined over X carries a principal quasi-polarization. If K,, = Par(v) then
the p-divisible group G, carries a quasi-polarization of degree p*: G, — GP. Let
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X1 be the reduction of X modulo p. Then we let
Ha(G,) € HO(X1,detw? )

be the Hasse invariant corresponding to G,; it is compatible with étale isogenies
(by construction) and also with duality.

For any place v|p, we let X%“Q = X1=”2 be the open subscheme defined by
Ha(G,) # 0. This is the ordinary locus at v. We let XIS”1 be its complement
defined by Ha(G,) = 0. This is the non-ordinary locus at v. It carries the reduced
schematic structure by the proof of [Pil20, Lem. 6.4.1]. (Whenever we use notation
of the form X 12’”2, X f“l etc., the superscript is referring to the multiplicative rank
of the group scheme G,.)

As a very special case of the general constructions of [Box15l [GK19], there is a
secondary Hasse invariant

Ha'(G,) € HO(Xlgvl,detwgfv_l)

(see also [Pi120), §6.3.2] when K = Par(v)). Its non-vanishing locus is X%, the rank
1 locus at v. We define its schematic complement X »0 the supersingular locus
at v, by the equation Ha'(G,) = 0. It carries a non-reduced schematic structure,
see [Pi120, Rem. 6.4.1].

We can intersect the locally closed subschemes we have defined. Consider disjoint
subsets I1,...,I. C {v|p}, symbols (i) € {<,>,=} for 1 < i < r and numbers

#(i) 1, a5, i=1, 7

a; € {0,1,2} for 1 < i < r. Then we define X, as the intersection of

the spaces Xl*(i)”ai for all 1 < i <r and v € I;. It will be convenient to denote by

X% = X7 the ordinary locus and by X! = X7 """ the rank 1 locus.

Note that for any disjoint sets I,J, K, the scheme XFILZJI’ZK2 is Cohen—
Macaulay, and indeed is a local complete intersection over SpecF,. To see this,
note that Xlgfl’zjl’ZK2 is open in Xlﬁll, and Xlgf1 is a complete intersection in X7,
because it is given by the vanishing of the Hasse invariants Ha(G, ) for v € I. Since
X itself is local complete intersection by Proposition the result follows. We
will in particular repeatedly use this fact in order to apply Lemma [3.8.10

We will also frequently use some well-known results on the density of the ordinary
locus, and on the density of the p-rank 1 locus in the p-rank less than or equal
to 1 locus. We will need these results in slightly greater generality than has been
considered above. To this end, consider disjoint subsets I,--- , I, as above, and
let v|p be a place not contained in I; U---UT,.

We assume that K = KPK,,, K, =[] K,, x K,, and that

w|p,w#v
K, € {GSp4(Op,), Par(v), Kli(v), Si(v), Iw(v) },
while K, € {GSp,(OpF, ), Par(w)} for w # v. We can define topological spaces

R G S and
using the p-rank stratification as before. The point is that the p-rank is invariant
under isogeny so we can consider the p-rank of any of the Barsotti-Tate groups of
the chain. Note that one could give these spaces a schematic structure by using the
Hasse invariants, but this structure will in general depend on which Barsotti—Tate
group of the chain we use to define the Hasse invariants.
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Our claims about density are then the following: | X ;(ll) T ’=”2| isdensein | X ;((21) T
while if we further assume that K, € {GSp,(OF,),Par(v),Kli(v)}, |X;((’11)I"a“:” |
is dense in |X1*<(711) Iia""§"1|. To see this, it suffices to prove the first statement in
the case K, = Iw(v), and the second statement in the case K, = Kli(v). It then
suffices to prove the corresponding statements for the corresponding local mod-
els, which follows easily from an explicit calculation. Indeed, the first statement is
already proved in [dJ93], while the second follows from an analysis of the Kottwitz—

Rapoport stratification at Iwahori level, and its image at Klingen level; see [Yulll,
Thm. 4.2] for a precise statement.

1

4.1.2. Over X1, The p-rank stratification is independent of the polarization and
therefore all of the spaces we have defined in this section carry an induced action of
(0 F)(Xp’;r. It follows that the stratification descends to a stratification on X&', We

moreover observe that the sheaf det wg,_vl can be canonically descended to a sheaf

det wéj on X% (see Remark . It follows that the Hasse invariants Ha(G,)
and Ha'(G,) (whose definition is independent of the polarization) also descend to
sections of this sheaf over X' and X 1G bSel respectively.

Therefore, if we consider disjoint subsets Iy, -, I, C {v|p}, symbols (i) € {<
,>,=} for 1 < i < r and numbers a; € {0,1,2} for 1 < i < r, there is a unique
locally closed subscheme (Xg}l)*(i)fi i, i=L T of XIG<,11 whose inverse image in X ;

is (Xg 1 )*@nas =l

Remark 4.1.3. In §4.3-4 below we will define some other locally closed subschemes
of the special fibres of the spaces Xk ; at Klingen and Iwahori level, which will be
important in the rest of the paper. We caution the reader that these will not be
defined in terms of the p-ranks of the G,[p], but will rather depend on subschemes
of G,[p] given by the Klingen and Iwahori level structures.

4.2. Vanishing theorem for ordinary cohomology. We assume that K, =

G1(Zy). Let 5 = (ky,1y)y)p be a weight (recall from §3.7.2] that we are assuming

that it satisfies the parity condition k, — I, =0 mod 2). Let S, := {v|p} =I[[I°
be a partition. We write X{ := X%ILZ”Q — X, an open subscheme, and similarly

XlGl’I < XY, The main theorem of this subsection is:

Theorem 4.2.1. Let T = Hwel Tw Hwelc Tw,1. There is a universal constant C
depending only on p and F but not on the tame level KP such that if 1, > 2 for allw,
kw—ly > C forallw € I, andly, > C for allw € I¢, then RT(XS! | wr(—D))carries
a locally finite action of TT. Furthermore, under this assumption on k,

(1) e(TI)RF(XlGl’I,w”(fD)) is a perfect complex of amplitude [0, #I].

(2) The map e(TT)HO (X, w"(—D)) — e(TI)HO(XlGl’I,w"”"(fD)) is an iso-

morphism.
(3) The map e(TT)H' (X' wF(—D)) — e(TI)Hl(XIGI’I,w"”"(—D)) is injective.
(4) If furthermore l,, > 3 for all w € I, then

e(T")RD(X[",w*(=D)) = e(T)RT(X,w"(~D))

18 a quasi-isomorphism.

,
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Here e(T7) is the ordinary projector associated to the operator T (see §2.11)).
We remark that (2), (3), (4) of the theorem hold true for non-cuspidal cohomology
as well.

Remark 4.2.2. Various improvements on Theorem should be possible. For
example, the reader will see from the proof below that it is possible to prove that
the Hecke operators at each place act locally finitely (rather than just proving
it for their product), provided they satisfy explicit mild bounds on the weights
(rather than depending on the indeterminate constant C'); see Remark for
one approach to this. It may also be possible to give explicit values of C. For the
purposes of this paper the statement of Theorem [.2.1] suffices, and is well-adapted
to a (somewhat involved) inductive proof working one place at a time.

We now briefly explain the main idea of the proof. We will often work at the
level of X; rather than X1G t. It is easier to work on X; because of the moduli
interpretation. One can always deduce results for the cohomology on XIG ! from
results on the cohomology for X; by Proposition [3.8:3] We nevertheless warn
the reader that X; has infinitely many connected components and therefore one
cannot expect any finiteness results for the cohomology over Xi; accordingly, we
work over X 1G ! when we want to show that a Hecke operator acts locally finitely.

The basic principle underlying these arguments is that the ordinary projectors
e(Tw1), e(T) can be used to kill many cohomology classes. This idea is already
used in [Pil20 §7, §8] (this is what we call Klingen vanishing below, because the
Hecke operator T,, is associated with the Klingen parabolic) and of course also in
[Hid04] (this is what we call Siegel vanishing, because the Hecke operator T, 1 is
associated with the Siegel parabolic).

We will typically not comment on the commutativity of the actions of Hecke
operators at one place with multiplication by Hasse invariants at other places,
which is easily checked.

4.2.3. Vanishing theorems: Siegel vanishing. Let K = KPK,, be a reasonable level
at p. We assume that K, = G1(Z,). We let X = Xg s and X% = XIG(}E. Let
K = (kv,lv)y|p be a weight. We begin with the following theorem.

Theorem 4.2.4. There is a universal constant C' depending only on p and F but
not on the tame level KP such that if J C S, and for each w € J, we have l,, > C,

then RF(XlGl’ZJQ,w"‘) has a locally finite action of T := [loesTw,, and
e(TT)RT(XE, W) — e(TY)RD(X 1272 oF)

is a quasi-isomorphism. In particular e(TJ)RF(Xfl’Z"27w”) is a perfect complez.
The analogous statements also hold for cuspidal cohomology.

Remark 4.2.5. In fact Theorem [£.2.4] is not quite strong enough for our purposes;
we will later replace it with Theorem which is proved in exactly the same
way. Our justification for presenting the material in this way is that the proof of
Theorem [£:2.4]is a good warmup for the arguments that we will later make to prove
“Klingen vanishing”, and it seems simplest to make these arguments before consid-
ering the Klingen level Hecke operators and the much more complicated statements
and arguments that we make in that context.

We only give the proof in the non-cuspidal case. The arguments go through un-
changed in the cuspidal setting. The proof of Theorem is by induction on #J
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(the case J = () being vacuous), and depends on several lemmas. In our inductive
argument we will feel free to increase the constant C in a manner depending only
on J without comment. Write J = J'U{w}, and assume that Theorem holds
for J'.

Recall from that the correspondence underlying the operator T, is
X with K" = KPK), and K}, = [],,, Ko x Si(w). We let (Xg/)1 denote the
special fibre of this correspondence. Let k = (ky,ly)yp be a weight such that
ly > 2, so that we have a cohomological correspondence T, ; : piw"™ — phwr.
By reduction modulo p, it follows from Lemma (and the flatness of X
and Xg over Z,) that we get a cohomological correspondence still denoted T, 1 :
ps(w”|x,) — pi(w"|x,). This cohomological correspondence is a map of locally
free sheaves over (Xk+)1. As in §3.8.13] this correspondence pulls back to the open
G1,> 12
subscheme X|""'=7"".

Adopting the notation of i we consider the dense open subscheme X%‘/ﬁ =
(X IZ(,J /12):'1“2 of X 12(,{/12, which is by definition the ordinary locus at w (that is, the lo-
cus for which G, is ordinary). This scheme is the union of several types of connected

components. Let piG,, — p5G,, be the universal map on the p-divisible group. We

let (XIZ(;’ '12):w27et be the étale components (that is, those for which the kernel of this

isogeny doesn’t contain a multiplicative group), and we let (X;;’:f)zwlnet be the
other components. We can therefore decompose the cohomological correspondence
T,1 over (X]%;’f):w2 into To,1 = T5'y + T where T is the projection of Ty, 1
on the étale components and Tg@f is the projection on the other components.

Lemma 4.2.6. The map T[Uwf is zero as soon as l,, > 3. For all l, > 3 we have a

. . ZJ’2 :w2 .
commutative diagram of maps of sheaves over (XK,71 ) :

Tet

w,1

*, K ! K
pow rw

lpéHa(gw) lpTHa(gw)
T{:t

P (w" ® det wg;l) 5 pl (w" @ det wggl)

Proof. The first point follows from an inspection of the proof of Lemma [3.9.1§]
(since Iy + 1, kyw + Ly > 3). The second point follows from the fact that the Hasse
invariant commutes with étale isogenies. O

Lemma 4.2.7. The following diagram of locally free sheaves on X[Z(;"l2 is commu-
tative for 1, > 3:

Twa \
*, K ’ . K
pow nw

lp;Ha(gw) in Ha(Guw)

T, _
P (w" ® det wg;l) 0 pl (w" @ det wgwl)

Proof. Since X;;’"f is Cohen—Macaulay and all of the sheaves are locally free, it

suffices to prove the commutativity over a dense open subscheme. We may therefore
prove it over (X%;’"lz):"”?, so we are done by Lemma O
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. . > 02 .

Lemma 4.2.8. Ha(G,,) is not a zero diwvisor on X{”'", and p3Ha(G,,) is not a zero
. > 2

dwisor on X377,

Proof. Since X 12 7% and X ;?"12 are Cohen—Macaulay, this follows from the fact that
the non-ordinary loci have codimension 1. O

In what follows, we warn the reader that while the schemes p; ' (X 1ZJ/2’S’”’1) =

> 2 >512,<wl
Xk Xm,Xlz‘ﬂZXl

they have different (non reduced) scheme structures. In particular sheaves like
P;w"| > 2.<01 for i = 1,2 have different (scheme theoretic) support.

for ¢ = 1,2 have the same underlying topological spaces,

Lemma 4.2.9. For all l,, > p+ 2 the cohomological correspondence Ty, 1 restricts
to give a cohomological correspondence

Twp: pa(@l 2 p2cu) = Pll(w”|Xlz.ﬂ2éw1 ).

Proof. Since the cokernel of

sHa(Gw) _
piwt Talgw) pi(w" @ det wgwl)

is p}(w" ® det wg;l‘XZJ,2,§wl)7 and (by Lemmas [3.8.10| and |4.2.8)) the cokernel of
1

THa(Gu) _
piet S (@ @ detw )

is p} (w* ®det wg;1| 2,<w1), it follows from Lemma|4.2.7|that provided that [,, >

> 5
=J
X,

3, Ty 1 restricts to give a cohomological correspondence
x( K p—1 ! K p—1
py(w @ detwg, |X12J,2,gwl) — py(w ® detwg, |XIZJ’2’S“’1)’
as required. O

Lemma 4.2.10. There is a universal constant C which depends only on F and p
(but not on the tame level KP) such that the map of Lemma[4.2.9

Twa: pa(@] 2 p2su1) —>P!1(w”|X121/2éw1)

is zero for all l, > C.

Proof. We may and do assume that J' = (), as the general case follows immediately
from this by restriction to an open. We moreover note that it suffices to find such a
constant C' for a single tame level K. Indeed, if K C K are two choices of tame
level, the natural forgetful map Xy, r — Xp/ xr commutes with p; and py, and
is faithfully flat, from which it follows that C' works for K7 if and only if it works
for K¥.

Let J be the ideal defining Xlg“’1 in X and let Z = pjJ. We need to prove that
for [,, sufficiently large, the cohomological correspondence over X, Ty, 1 : p3w™ —
piw” factors through Twa : pow’ — Ipiw".

By definition, we have T\, 1 = p~20(k), where O(k) is the composite of a map
01 (k) : phw" — piw” and a fundamental class O2 (k) : piw, — piw", so in turn we
need to show that ©(x) factors through pZp}w” (of course, we have already shown
that it factors through p*p}w").

Let « be a generic point of V(Z) C Xkr. It corresponds to a Barsotti-Tate
group in characteristic p whose p-rank at w is exactly one. The map p35 detwg, —
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pi det wg,, is zero over k(x) because the isogeny piG,, — p3G,, is not étale at x. Let
I(x) be the ideal defining the Zariski closure T in Xg/. We deduce that the map
01 (k) : phw" — piw" factors through I(z)' piw".

It follows that the map ©(x) factors through p3piw” (N I (z)'*piw®. By the
Artin-—Rees lemma, it factors through p*Zpiw® for [, larger than a constant C,
as required. (We note that strictly speaking V(I) has infinitely many connected
components, however there are only finitely many orbits for the action of (O F) . +,

so there is some constant C' which works for all of them.) D

Proof of Theorem[].2.], Take C as in Lemma[4.2.10} Recall that we write J = J'U
{w}, and we are assuming that the theorem holds for J’'. We begin by showing that
the action of T/ on RI'(X] X202, w") is locally finite. By the inductive hypothesis,
the action of 7" on thls complex is locally finite, and e(T”" )RD(X] X022 )
is perfect, so that in particular the action of 77 on e(T” )RI(X] Gl’ 72 WEY s
locally finite. It is therefore enough to show that 77 acts locally ﬁnltely on (1 —

e(T J/))RI‘( XEn2a2 w"). Since T acts locally nilpotently on the complex (1 —

e(T7))RT(X] Gl >"'2 w") by definition, so does T, so in particular it acts locally
finitely, as requlred.

Now we consider the exact triangle

RI(X{077% %) — RO(X 0772 wr@det wh ') — RO(X[HZ7 250! wr@det wh
The operator T acts everywhere and is zero on RI'(X] XG2Sl
by Lemma [£.2.10] We therefore deduce that

e(TT)RD(X{ 272 W) = e(T7)RD(Xy V7%, w0 @ detwl ).

,w"® @ det wg;l)

Since RD(X 1272 wh) = lim RI'(X; X202y *®det wg, (®=1)) 'the theorem follows.
(]

4.2.11. Vanishing theorem: Siegel and Klingen vanishing. We now turn to the more
general situation, which involves the study of the Hecke operator T,,. Our analysis
is similar to that of §4.2.3] but it is rather more involved because T, is defined as the
composite of two correspondences and because we need to study the supersingular
locus at w rather than the non-ordinary locus at w. This subsection is devoted to
the proof of the following theorem, which implies most of Theorem

Let I, Iy, J be pairwise disjoint subsets of .S;,. Then we will write

1721131-,2.]2 G, <1a1 >1b1 >J2

XlabJ_X dXGI abJ_X

Theorem 4.2.12. Let I,, 1, J be pairwise disjoint subsets of S,. Set Th/ =
[lwer, Twllyes Twa- Then there is a universal constant C depending only on p
and F but not on the tame level KP such that if ky, — 1, > C and 1, > 2 for all

w € Iy, and l, > C for all w € J, then RI'(X, x&vlant
action of TT7. Furthermore:
(1) e(TT )RI‘(X Ta,e,d ,w™) is a perfect complex.
(2) The map

,w") carries a locally finite

e(TIb )HO(XG1,<Ia K)—>€(TII” )HO(XGh abaJ7wK)

18 an isomorphism.

Y

1
et
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(8) The map
e(TIb,J)Hl(XlGl,SIal’wn) N e(TIb,J)Hl(XlleIa,va7wl{)

18 injective.

(4) If furthermore l,, > 3 for all w € I, then
e(TTTYRD(X {15t W) — e(T RO (X0 wr)

18 a quasi-isomorphism.

Moreover, the same results hold for cuspidal cohomology.

We only give the proof in the non-cuspidal setting. The same arguments work
in the cuspidal case. The proof of this result again depends on several lemmas. We
will firstly prove the result in the case I, = (), by induction on #.J. We will then
prove the general case by induction on #1;.

Recall from §3.9.17) that if we set K’ = KPK), with K, = H#w K, x Si(w),
there is a cohomological correspondence of Siegel type:

Tt = 93 (W5 xic) = P1(W"]xc)-
By reduction modulo p and Lemma [3.8.10, we again get a cohomological corre-
spondence: Ty 1 : p3(w™|x,,) = PL(w"|x,,). We let X[I{“,’f’l"] be the pre-image
of Xll“’b"] in Xg1 (via any of the projections, it doesn’t matter). These corre-
spondences may be restricted to X Ilg,"l 7 whenever w ¢ I, by another application
of Lemma [3.8:10] because this correspondence obviously commutes with the Hasse
invariants at places in I,.

Theorem 4.2.13. There is a universal constant C' depending only on p and F but
not on the tame level KP such that if I, J are disjoint, and if l,, > C for allw € J,

then RF(XlGl’SI“l’zﬂ,w”) has a locally finite action of T?” = [TocsTwa, and

e(Tm’J)RF(XlGI’SI‘Il,wR) N e(TV),J)RF(XlGhSIaLZJQ,wn)

is a quasi-isomorphism. In particular e(TQ’J)RF(XlGl’SI“l’ZJQ,w“) is a perfect

complez.

Proof. The case I, = () is Theorem m and the theorem at hand may be proved
by an identical inductive argument on #.J, once we have proved the base case J = ().
But in this case XlGl’SI“1 is proper, so RF(XlGl’SI“l,w”) is a perfect complex, and
we are done. O

We now reintroduce Klingen type correspondences. Let w|p. By §3.9.20| if
we set K’ = KPK) with K}, = [[,,, Ko x Kli(w), and K" = KPK] with
K, = Il,4, Ko x Par(w), there are cohomological correspondences of Klingen
type: T0, @ p3(w”|x,,) = pi(w"|x,) and T : pi(w”|x,) — ph(w"|x,,) for all
weights k = (ky, l,) with ky, > 1, > 2. By reduction modulo p and Lemma [3.8.10
we again get cohomological correspondences: Ty, : p5(w”|x,.,, ) — P (W] x,,) and
Ty : pl(w”|xp,) = p!Q(w"‘|XK,,’1). We let Xllg,’f’l"] be the pre-image of Xll"’b"] in

Xgr.1. These correspondences may be restricted to XIIg,’)bl’J whenever w ¢ I, by

another application of Lemma [3.8.10] because they obviously commute with the
Hasse invariants at places in I,.
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In the rest of this section we prove Theorem [£:2.12] by induction on #1I;,. To this
end, choose w € Iy, write I = I’ [ [{w}, and write I, = I'NI, = I,, and I; = I'NI,.
We assume that Theorem (4.2.12 holds (for some value of C, which we fix) for all

smaller values of #1I;, (as we may, having proved the case I, = () in Theorem 4.2.4)).

. I T\ . . . s
We now consider the scheme (X" )=»? (which is again by definition the sub-

scheme where G, is ordinary), which decomposes into several components. Let

. . Iy Js
piG — p5G be the universal isogeny of degree p®. We denote by (X" )=w>¢
the “étale” components, namely those where the kernel of the universal isogeny has

multiplicative rank 1 (so it is as étale as possible), and by (X[I(”,b1 J):’w27”5t the other
components where the kernel has multiplicative rank 2.

This provides a decomposition of the correspondence Ty, = Ty, ., + T}, ,,.; Where
Ty, ¢ stands for the projection on the “étale” components and Ty, ., for the pro-
jection on the “non-étale” components.

,net

. Iy d = .
We also have an isogeny p5G — piG of degree p and over (X ;5% )¢ this

. T o I\

isogeny has multiplicative kernel, while it is étale over (X ;2" )=w2net (observe that

the étale and non-étale components are interchanged when we pass from the isogeny

piG — p5G to the isogeny p5sG — piG). This provides a second decomposition
L. Iy J\—

Ty =T}y ot + Ty ey Where Ty ., stands for the projection on (X" )=+*"" and

w,ne
Tl/

et TonsT\ =2t
wonet for the projection on (X" ) ===

I pod
Lemma 4.2.14. If I, > 2, and ky, > 3 then over (X&' )= we have Ty, .., =
Ty et = 0. Moreover, the following diagrams are commutative:

T’

w,et

*, K K
pow hw

lpéHa(gw) lp’{Ha(gw)

Tw e —
P5(w" @ det wgzl) 2 P (W @ det wgwl)

T

w,et

* K Kk
pw pow

lpIHa(gw) JP; Ha(Gw)
T//

w,et ]

P} (w" @ det wg;l) —— py(w* @ det wggl)

Proof. That Té))net = quﬂ/,net = 0 follows from an inspection of the proof of Lemma
more precisely, by the proofs of [Pil20, Lem. 7.1.1, 7.1.2], T}, ., is divisible
by p*» 2, and T net 18 divisible by ptv 1. The commutativity of the second diagram
follows immediately from the fact that the Hasse invariant commutes with étale
isogenies. The commutativity of the first diagram is slightly more delicate; see
the proof of |[Pil20, Prop. 7.4.1.1], which explains how it reduces to [Pil20, Lem.

6.3.4.1]. O

Lemma 4.2.15. The following diagrams of locally free sheaves on XII(",‘bl’J are com-
mutative for l, > 2 and k,, > 3:
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T’
*, K w ! Kk
Dow piw

J(p;Ha(gw) lpIHa(gw)

w

T
i (w” @ det wéll) — ph (" ® det wggl)

T

w

*, K ! K
nw pow

JPTHa(gw) J(:DE Ha(Gw)
T

P (w" ® det wgll) — ph(w" @ det wggl)

I,J . I
Proof. Since all sheaves are locally free and X K"’,"bl is Cohen—Macaulay, it is enough

. Il L
to check the commutativity over the dense open subscheme (X K”,’f’l )=»2, which is

Lemma [4.2.14] O

Corollary 4.2.16. Assume that for allv € I' we havel, > 2 and k, —1, > C, and
that for allv € J we havel, > C. Then the action of TTo:7 on RF(X%{I“’Z”J’:WQ,W“)

is locally finite if 1, > 2 and ky, > 3.

% Gl»I;,b’J,:wQ kY _ 1: « G17I(/17})7J K (p—1)n
Proof. We have H* (X | ,wh) = lim H (X1 ,w@detwg ") where
the transition maps (given by multiplication by Ha(G,,)) are T'/-equivariant by

Lemma [4.2.150 By the inductive hypothesis, each e(T%/)H*(X AL

det w(gl; 71)") is finite-dimensional and T'o7/-stable, while T/ acts locally nilpo-

tently on (1 — e(TIé’J))H*(X[G(’ll’I”'b’J, w" ® det w(gz;_l)n) (because T7»7 does). The

result follows. 0

G114, J
1

Exactly as in Lemma[f.2.9] for alll,, > p+1=p—1+2and k,, > p+2 =3+p—1
we obtain cohomological correspondences:

Ty PS(WWXI{IJ,,J,SM) - P!1(WH|XI;J,,J,§1U1)

K1 K,1
and
Ty = pi(W"| 1<) —>P!2(WH| 1, St )-
XK,E K’>,1

J

We now consider the space (X II;,,:,l )=»! where G,[p] has p-rank 1. We have a
universal quasi-polarization G,, — G2 over Xf~. Over the interior of the mod-
uli space, the kernel of the quasi-polarization is a self dual rank p? group scheme
which is either connected or an extension of a multiplicative by an étale group

I J— .
scheme. The space (X%} )==! decomposes as the union of connected components

1Ly J I ds — . . s
(XK“/,"J )=« 100 and (XK“,’,'”1 y=wbm-¢t for which the kernel of the quasi-polarization

doesn’t contain (respectively contains) a multiplicative group (see [Pil20, Lem.
7.4.2.3]).
. Il ,,J . .
We now counsider the space (X Ig;f’l ) , which we view here only as a topolog-
ical space (it has multiple natural non-reduced scheme structures defined by the

=l
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vanishing of either pfHa(G,,) or p5Ha(G,,)). We have the chain of isogenies pjG —
ng — plg where the composite is multiplication by p. We have a decomp051t10n of

(Xlg’,b’ )=»! as a union of connected components: (XK“,“ yTwlm (XK“,“ )Twhet

and (XK",I”J)_ 1,00 Here the open and closed subspace (XK“,”’J)_ Lm is the locus

where the kernel of p5G — piG is an étale group scheme; the open and closed sub-

J
space (X K",bl )=wLet is the locus where the kernel of p3G — p;G is a multiplicative

=w1,00 i3 the locus where

Il J
group scheme; and the open and closed subspace (X K“/fl' )
the kernel of p3G — piG is a bi-connected group scheme.

It follows from the definitions (see [Pil20, Lem. 7.4.2.4]) that
(4.2.17) (X)) € (i) no0
and that at the level of topological spaces,

I T — I, J I, J :
(42.18) Pl Y= U (g et € (g e,

Over (X;(‘i’f’J):“’l and (X;L“,b1 7)=u1 we can decompose the cohomological corre-
spondences T, and T, by projecting on the various components (in other words,
composing with the various idempotents associated to each of these connected com-
ponents). This gives us decompositions T,, = Ty, ., + Ty, oy + Ty, 00 and T, =

Ty + T oo + Ty oo Obtained by projecting on the multlphcatlve étale and bi-
connected components respectively.

Lemma 4.2.19. The following diagrams of sheaves on XII(”,’f’l’J are commutative
forly,>p+1and ky, > 2p+ 3:

T/
% | w,et

prw"

p1w "
(XK“ 1 )_wl (XK )_“’1

Jp;Ha%gw) FH&I(QW)

’

- p2—1 wet 1ok p?—1
p2(w ®detwgw )l g 4)])1(&] ®detWQw )| g

(X&) )=t (X )=wt
prwt| . Ty et péwm‘
(X & )=wt (XK” )wl
lPIHa,(gw) lp;Ha/(gw)
*(, K p°—1 ’“/”/’et ! K p°—1
pi(wr ®detwg ~)| n —— py(wt @detwg )| 1

(XK 1 ) wl (XK// 1 ) wl
Moreover, T,, ,,, = T,, oo =0 and Ty, ,, = 0. If l, > p+2, then T}, o = 0.
Proof. See [Pil20, Prop. 7.4.2.1]. O

We recall that by definition we have T, = T, 0T as operators on the cohomology
Ig oy . . T~ .
over X ;""" . It will also be useful to consider the composition T, := T}, 0T, defining

I,
an operator on the cohomology over X%/
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Lemma 4.2.20. Ifl, > p+1 and ky, > 2p+ 3, then we have T, =Ty, ;y 0T, o4 €

End(RF(XIIg"f’J’:wl,w”)), and

J=wl J=w

T, Ha'(G,) = Ha!(G,,)T, € Hom(RI(X " ™! %), RU(X 20 ™! wradetw ).
Similarly, if ky > 2p+3, then we have T, = Ty 0Ty, e € End(RF(X}r(“;fﬁJ’:wl,w“)),

and -

I} 4oy =wl

T Ha'(G,) = Ha!(G,,)T, € Hom(RT(X 57~ w®), RU(X &y~ wradetwd ).

Proof. We give the argument for T,,; the argument for T, is essentially the same,
and is left to the reader. From (4.2.17)) and (4.2.18) we see that we can write T,
as the sum of the two operators T}, g © Ty oo and (T}, o + Ty, ) © (Lo or + T 1)

By Lemma {4.2.19, we have Ty, . = T, oo = 0 and T, ,, = 0, so that T;, =

T}, i 0T} ;. The commutativity with Ha'(G,,) then follows from the commutative
diagrams in Lemma O

Corollary 4.2.21. Assume that for all places v € I}, we have I, > 2 and k, > C,

and that for all places v € J, we have I, > C. Ifl, > p+1 and ky, > 2p + 3,
G114, =wl

then the action of T™7 on RI'( Xk | ,w") is locally finite. Similarly, if

ky > 2p + 3, then the action of T T, on RF(XIC(:},’,II‘;’Z”JF’wl,w“) is also locally

finite.

Proof. Again, we give the proof for 77/, the argument for T,T17 being essen-

tially identical. We have H*(X§';/**”" =" wr) = ling HA (XS on

detwgfupz_l)). More precisely, for all n > 0, the map H*(ngl’l‘/"b’J’Swl,w” ®
aprh=wl

2
det wgip 71)) — H*(Xf(lll ,w") is defined by the composition:

G Il T, <l 24 G, =l 24
H (X , w" ® det wgip )) = H (X , w" ® det wgip )
Ha'(G) ™" v/ vG1dopi=wl g
= H (XK71 W),

G1,1} 4, J,=wl . . . -
The vector space H*(X K,ll * ,w") is therefore an inductive limit of the

images of the spaces

G1,I!, 4, J,<wl
* daprHSw
H* (X

-1
,w” ® det wgip ))
under these maps. The first map is obviously T7**/-equivariant, and by Lemma |4.2.20
the second map is also T7/-equivariant. The result follows from our inductive
hypothesis that Theorem holds for all smaller values of #I,, because by

.. G1,I! ., J, <l G1,<r,u{w} 1,211,252
definition we have X, | ** =Xp, b ) 0

Lemma 4.2.22. The following diagram of sheaves on X]I(“,’f’l’J is commutative for
lw>p+1andky >2p+3:
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powt| ar PIe| i
a, (XKG/,E[ )Swl

JPZ Ha'(Gw) Jp{ Ha'(Guw)

2 T, 2
Pt @ detwf, | g et ©detad |y
(X, &0 ) sw (X&) Sw

If l, > p+2 and ky > 2p + 3, the following diagram is commutative:
L , ! Wk ,
P1 |(XII:;7”1'J)&U1 P2 ‘(X;a,v}j’l‘])éwl

Jera%gw) Jp;Haww)

2_ T 2
pi(w" @ detwg Yoo 1—)p!2(w“®detwgw DI

b b
(X&) (X, &0 )sw

Proof. 1t is enough to check the commutativity over a dense open subscheme of the
support of these Cohen—Macaulay sheaves, and this follows from Lemma|4.2.19] [

Since pyHa'(Gy) is not a zero divisor on Xg 1| 1, _ ,» it follows exactly as
(Xy )swt

in the proof of Lemma that there is for all [, > p? + p and k,, > p? +2p+ 2
a cohomological correspondence:
/oL K , ! K ,
Tw . p2(w |( ;a,,,b,’l‘]):uyo) _>p1(w |(X;gﬁ1bvj):m0
and similarly for all I, > p?> + p+ 1 and k,, > p®> + 2p + 2 a cohomological corre-
spondence:
1", k(K , ! K ,
T pi(w |(X;‘ff”J):w0) — py(w |(lef/>ljij):w0)'
Lemma 4.2.23. There is a universal constant C' which depends only on F and p
but not on the tame level such that

oL k(K
T, 'pZ(W | Towd
K1 )=

)

! K
BRI

is zero for all ky — Ly > C' and all L, > p* + p.

Proof. See [Pil20, Prop. 7.4.2.2]. O

We now increase our constant C' if necessary, so that C' > C’, where C' is as in
Lemma [4.2.23

Lemma 4.2.24. Assume that for all places v € I;, we have l, > 2 and k, —1, > C,

that 1, > C for all v € J, and that l, > p+ 2 and k, — 1, > C. Then the
map e(TIb’J)RF(Xgll’IQ'b’J’Sw1,w"”") — e(TIb’J)RF(Xgll’Ia'b’J’zwl,w”) is a quasi-

. . . G1,I! 4, =w .
isomorphism. In particular, e(TIb"])RF(XKj1 @b 1,w”) s a perfect complex.
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Proof. Consider the following diagram of exact triangles:

G1,1} 4,0, <wl T, G1,1}, . J,<wl
RT (X 77 w") R (X 77", w")

lHa'(gw) lHa/(gw)

G, T, <l g, T, G, 4, <l 2
RI(X 0 " ,wh @detwg ) — = RO(X " ,w* @ detwg )

J |

G1,1., 4 J,=u0 2_q, T, G1,I, 3 J,=w0 2_q
RI(X 0/ " ,wh @ detwg ) — = RO(X " ,wh @ detwf )

By Lemma [4.2.23] the rightmost operator T! acts by zero. We have the or-
Gl, o <wl Gl, o <wl

dinary projectors e(T77) on RT(X ,w") and RI(X , Wt ®
_ G114, <w

det wgi 1), and the ordinary prOJectors e(TwTIb’ ) on RF(XK,I,,f’b = 17w”) and
G I, 0 J <w - . .

RF(XK,I,fl“’b 7= 1,w”‘ ® det wgi 1). It follows from the defining properties of the

ordinary projectors that after applying them, the left two vertical arrows T, are
quasi-isomorphisms.

By Lemma the projectors commute with multiplication by Ha'(G,,). It
follows from a short diagram chase that the map

le api<wl Ha’ (Qw)

e(T™)\RD(X s ) XS Taw IS0l

2
e(T"")RT (X, ,w" @ det wgw_l)
is a quas1—1s0morphism. The claimed quasi—lsomorphlsm now follows by taking an
inductive limit as in the proof of Corollary [f.2.21] By our inductive hypothesis,

G Tl T <wl ,
e(TT/)RT(X " fap ,w™) is a perfect complex, so we are done. O

Lemma 4.2.25. Assume that for all places v € I, we have l, > 2 and k, — 1, > C,
that 1, > C for all v € J, and that l, = p+ 1. Then the ordinary cohomology

G 7 7J> wl .
e(THRI(X o] " ,w™) is a perfect complex, and the map

G I 4,0, <l G114 J=wl

e(TIb’J)HO(XK,l P W) — e(TIb’J)HO(XKl ' ,w")
is an isomorphism.
Proof. The map

RO(X o h=et ey HG) g xffom?=e m g detwt 1)

is a quasi-isomorphism, which commutes with the pro jector e(T"7) by Lemmal4.2.20

G J,=wl .
It follows from Lemma [4.2.24f that e(T7*/)RI'(X 1’ @b ,w') is perfect
W, <w
We now prove the claimed 1som0rphlsm on degree 0 cohomology. Since X K 1 Tap !
G b )J7 wl
is Cohen—Macaulay, and X Kll @b is an open dense subscheme, we have injec-

tions , ,
G1,1, 4, <wl G117, 4, J,=wl
HO(XK,ll * F) = HO(XKjl . :F)

for any locally free sheaf F, so it is enough to prove surjectivity. In order to do
this, it is enough to prove that for all n > 0, the map

G1,1 a bu]Swl (Ha/(_(j)w))n

G1,I, .
H° (XK1 ;w™) et

HO(XK’1 W= ,w”@detwgiptl))
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(which commutes with e(7T,,) by Lemma [4.2.20| and the injectivity of the restric-
G1. I, di <l [T (o =

tions HO(X F) = HY(X gy , F) discussed above) induces a
surjection:

’ ’ n ’ 2
(T Y HO(X oy oSt gy TG ot 1y ot Ton Sl g ot w1,

In fact, by Lemma [£:2.24] it suffices to prove the surjectivity for n = 1. We
consider the following diagram:

G1,I! 4, J,<wl T/ G I, J<.,1
0 1ita,pr/s>w K w 0 1:dg 555 Sw K
H (XK”,l ;W) H (XK,l ,w")

lHa' (Gw) JHa’ (Gw)

G1,I' ,J, <ol 2_ Ty, Gy,I' ,,J,<uwl 2_
HO(X 00 "7 wr @ detwl, ') — HO(X 27" wh @ detwl, )

| |

G1,I' ,,J,=u0 2_ T,, G1,I' ,J,=u,0 2_
HO(X 070 e @ detady )~ HOXGY 070 e detufy )

Let f € e(TIbaJ)HO(ngila,b,J,§w1

,wi@det wgi_l). As in the proof of Lemmal|4.2.24

T! induces a bijection

G1.I} 4 d Sl G1.I} 4y Sl

6(TwTI’/”J)HO(XK//71 ,w"@)detwgi_l) - E(le"])HO(XK,l ;W @det wgi_l)'

. G, I, ) <l 2_
In particular, f = T/ g for some g € HO(XKj1 * ;W @ detwg ) and

therefore, since the rightmost operator T, acts by zero by Lemma [4.2.23] f has

o . G1.I, 4,J,=00 2_
trivial image in HY(X K,ll "’ ;W' @ det wg "). Tt follows that f comes from a

class f € HO(X%{I“’“J’S”I,W“). Replacing f by e(T") f we deduce the required

surjectivity. O

Corollary 4.2.26. Assume that for all places v € I, we have l, > 2 and k, — 1, >
C, and that for all places v € J, we have I, > C. Then TT7 acts locally finitely
on RF(chl’I“’b’J,w"‘) and e(TIb’J)RI‘(XlGl’I“””J,w"‘) is a perfect complex.

We have an isomorphism:
e(TIb,J)HO(thSIal,wn) o~ G(le’J)HO(chl’Ia’bJ, wm)

and an ingjection:

e(TIb,J)Hl(XlGlélal’wn) BN e(TIb,J)Hl(XflaIa,va’wn).
If furthermore l, > 3, then the map
(T )RD(X 00 r) o eI YRD(X VT )

is a quasi-isomorphism.

Gr I}y 202

Proof. We begin by showing that 77/ acts locally finitely on both RT'( X
and RO(X e ey = RO(XTV a0 h 20t m) For RO(XT V=020 m) | this

is Corollary [£.2.16]

;W)
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G1, T, 0T, > - .
Our argument for RI'(X; vlap )2 l,w“) is slightly more involved. We have an

exact triangle

Gl 2wl G,y )2 02
RI(X; ;w") 1

RI(X L w")

Gi,I) >0l
RrXcle&,bJﬂ:wl(Xl et b 7wn)[+1]’

- . G1,I}, 4, J,>wl
so it is enough to prove that the action of 77>/ on RI' 4, v poa=uwt (X1 1l ;W [+1]
x, e

is locally finite. We have

G1,I, 4, J,>wl
R vyt (X005 ) 1]
1

(4.2.27)

Gr Il d 2wl
1

RIT(X , héﬂn w" ® det wgfﬂp_l) |V(Ha(gw)"))

o . G1,I; 4,0, 2wl
so it is enough to prove that the action of T7**/ on each RI'(X; """ , Wt ®

det wgip_l) |V (Ha(g.,))) 18 locally finite. In the case n = 1, this is Corollary 4.2.21L
and the general case follows by induction by taking the cohomology of the short
exact sequence of sheaves

_ _ Ha(G., K _
(4228) 0%w”®detwg; D U‘V(Ha(gw)”*l) * A )w ®detwgip 1)|V(Ha(gw)")

K n(p—1
— w" @ det wQEJp )|V(Ha(gw)) —0
Consider now the following diagram of exact triangles:

G147

RI(X, Szwl

,w")

) RO(X, e

’ ’
R]-—\(Xlelvla,b»JvaQ’ w,{) RF(ch:hIa’b’J’ZU,Q, {JJH)

G110, 40 J, 2wl

Gi,lopd . K
1] = R g e (X ;w")[+1]
1

RFXGIWIé,b*JWSwl (X
1

We have already seen that 770/ acts locally finitely on all but the last term of
the first row, so it acts locally finitely on every term in the diagram. The middle
vertical arrow is the identity map. In order to show that the left vertical arrow is
a quasi-isomorphism after applying e(T?*”/), it is therefore enough to prove it for
the right vertical arrow. By and the similar expression

Towd ok G, 1), 4, J
b

G . n(p—
RFXGLI;‘I,,~J,§U;1(X1 ' w™)[+1] = RI(X; ,@w”@det ngp 1)|V(Ha(gw)”))7

it suffices to show that for each n > 1, the map
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e(TIb,J)RI‘(Xlal ,w" ® det wgipfl) |V(Ha(gw)”))

J, 2wl

e(TT)RD(X e , 0" ® det Wi |y (a(gu)m))

is a quasi-isomorphism. To see this, note that the case n = 1 is Lemma [4:2.24]
and the general case follows by induction on n, by taking the cohomology of the
exact sequence of sheaves . The remaining claims follow from the quasi-
isomorphism just proved and the inductive hypothesis. O

Corollary 4.2.29. Assume that for all places v € I, we have k, — 1, > C and
ly, > 2, that for all places v € J, we have I, > C. Then the ordinary cohomology

Gi,1a,p,J
e(T)RT (X7 wr)
is represented by a perfect complex. Moreover we have an isomorphism:
e(TIb’J)HO(XIGI’SI”l,wK’) -~ e(TIb,J)HO(XlGl,Ia,bJ, OJR)
and an injection:
e(TIb’J)Hl(Xfl’SIal, UJH) SN e(TI’“J)Hl (Xf111a,b7J’ w”).
Proof. To see that
Iy,J Gi,lap,d |k
e(T)RI(X{H 77 w™)

is represented by a perfect complex, we consider the exact triangle:

G1,1}, 4,J,>w1 Ha(Gw G1,1}, 4, J,>w1 —
RT(X) ™ merh2et gy BGe) gy iten? 2ol r @ detwp )
G1,1), ] =wl _ 1
— RI(X, "7 LW ®detw§w1) =

Applying the projector e(T70:7) everywhere (which commutes with the various maps

by Lemma|4.2.15)) we deduce this from Corollary |4.2.26|and Lemma [4.2.25] By our

inductive hypothesis, in order to prove the claims about the morphisms

e(TIb,J)Hi(XlleSIa17wl{) % e(TIb,.])Hi(XlGlJa,baJ7w/{)’

it is enough to prove the corresponding statements for the morphisms

(T ) H (X o0 ory o e(Tle T H (X G TonT | ey,

Firstly, the natural restriction map

G114, ,
. 1 dgp J7wn) N HO(XlGl’Ia’b’J,wn)

!
T,y d

HY(X

. . . G1
is an isomorphism, because X,

G1,1ab,J
X

is Cohen—Macaulay, and the complement of
is of codimension at least 2. It remains to prove the injectivity of the
map of H's.

We have a commutative diagram of exact triangles:
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’
fl’la’ba‘]7wﬁ) RF(X?I’Ia’b)J7wK)

| |

Jawﬁ X det w((fwil)) RN RF(XlGhIE’b)J,UJK ® det w(g?wil))

| |

il oSl - Grull =l -
11 b ,w"@detng“ 1))*>RF(X1 1fab ,w"@detwg; 1))

RI(X

RO(X ) et

RI(X

1,1 45 Gi,1ap,J

The injectivity ofe(TIbJ)Hl(XlG ,wh) — e(TTYH (X ,w") there-
fore follows from a short diagram chase, using the quasi-isomorphisms provided by
Corollary [4.2.26| and the isomorphism on H®s of Lemma [4.2.25 (I

Proof of Theorem [[.2.19 This is immediate from Corollaries[£.2.26)and [£:2.29] O

4.2.30. A Cousin complex computing RI‘(XlGl’I, w"(—=D)). Our goal in this section
is to provide an explicit Hecke stable complex computing RI‘(XIGI’I, w"(=D)). This
complex will be used to complete the proof of Theorem and will also be used
in to compare the cohomology at spherical and Klingen levels (by considering
the corresponding complex at Klingen level, and the natural map between these
complexes). This complex is the Cousin complex associated to ch =1 and the
stratification given by the p-rank (see . This section is very similar to
where we introduced the Cousin complex over the full Shimura variety associated
with the Ekedahl-Oort stratification. The case we consider here is, however, much
simpler because we have canonical global equations provided by the partial Hasse
invariants for our stratification. We has thus decided, despite redundancy, to give
a complete and explicit construction of the Cousin complex in this case.

Let S be a smooth scheme over a field k and let £ be an invertible sheaf on S. We
assume that £ = ®%_,£; and that we have non-vanishing sections s; € H°(S, L;).
We let D, = V(s;), an effective Cartier divisor on S. Set s = H?Zl s;. Set D =
V(s) = U;D;. We assume that D = U;D; is a strict normal crossing divisor on S.

For all n, consider the following exact complex of coherent sheaves on S:

d
0= 0s S L @ L/sp - @ L£r/(spsh) == L(sh, -+ s)) =0

1197
i=1 1<i<j<d
This is a complex of length d + 2. For all 0 < k < d, the object placed in degree
k+1is@1<i, <. cipca £™/(s75 -+ 5 85, ) (when we write £7/(s7, - -+ , s}, ), we mean

LrLr(sy L+, si £3™)). The differential

» 9gp
D s B L)
1<t << <d 1<ig < <ig41<d

takes a section (fi, ... i, )1<ii<---<ip<d to the section

(Z(—l)ij Fis o Gy sips NS << <d

- i A . - S
where fil,w,ij,m gy 1 the class modulo s} of le7.,,7lj,m,1k+1
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The following diagram is commutative:

0—— 05 5 L7 —— @, L7 /1 —
id] ST ST
0 Og—" s rn PL, Lr)sr —— -

Passing to the limit over n, we get the following exact complex:
d
0= Os = lim £ — lim P L /57 —
n nog=1

lim @D L7/(s7,s)) == HmL"/(s], -, 55) = 0
n 1<i<j<d n

where in all the direct limits, the transition maps are given by multiplication by

powers of s.

Lemma 4.2.31. Let1 < i1 < -+ < i <d. Set L' = ® E,J, = H?Zl S,
D' =V (s(s')"1). There is a canonical isomorphism

hm ‘Cn/( Sips 75:2) = h_I>n ((ﬁl)"/(sﬁ7 e 7S?k))|S\D’

><s” x (s)m
Proof. Easy and left to the reader. |

Remark 4.2.32. The complex

0— lﬂﬁ" — 1&@5"/8 —
noo4=1
i @ £/(ss}) = I L (sh, -, s5) = 0
n 1<i<j<d n
is just the Cousin complex of Og associated with the stratification given by the
divisors D;.

We now work over S = XGI’I We take £ = ®ycr(det G, )P~ L, Lo, = (det G, )P~ L

and s, = Ha(G,,), and we consider the complex K° — K!... — K< obtained by
applying HY to the complex

@cn—ng@ﬁ /st = lim @) L7/(spis}) = o T L/ (s, )
noi=1 n1<i<j<d n
tensored with w”(—D). (So in the above notation, the indices ¢ will correspond
to the different places v € I, the s; will correspond to Hasse invariants, and the
assumption that the divisor V'(s) has strict normal crossings is an easy consequence
of the Serre-Tate theorem and the product structure on the p-divisible group G.)
It follows from Lemma that K* equals

Dcrpsr  lim  HOXTE WM (=D)@ Q) (det Gu)" PV /(D (Ha(Gu)™))).

X [T yes Ha(Guw) weJ weJ

Proposition 4.2.33. The complex K*® computes RF(Xlgl‘I,w”(fD)).
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Proof. The argument is the same as in the proof of Proposition It suffices
to show that each of the sheaves

W"(=D) ® Q)(det Gu,)" "~V /(Y (Ha(Gu)"))
weJ weJ

when restricted to XlGl’I’Z"CQ and then pushed forward to Xlgl’I is acyclic on

XlGl’I. Since the inclusion XlGl’I’ZJC2 — XlGl’I is affine, it suffices to show that
the restriction of this sheaf to XlGl’I’Z”2 is acyclic. By [Lanl7, Thm. 8.6], this sheaf
is acyclic relative to the minimal compactification and its support in the minimal
compactification is the locally closed subscheme given by the set of equations:

e Ha(G, )" =0 for w € J,
e Ha'(G,) # 0 for w € J,
e Ha(G,) # 0 for w € J¢,

which is affine. U

Remark 4.2.34. Using Proposition [.2.33] one can show that if we have l,, > 2 and
ke > 2p+3forw € I, and [, > 3 for w € I¢, then the individual Hecke operators T,
forw € I and T, for w € I¢ act locally finitely on RT'(X ', w*(—D)) (by showing
that they act locally finitely on each term of the complex K*®). We leave the details
to the interested reader.

We can finally complete the proof of Theorem [4:2.1]

Proof of Theorem[{.2.1l Everything is immediate from Theorem[4.2.12|(taking I, =
) and J = I°), except for the claim that e(TI)RF(XlGl’I,w"(fD)) has amplitude
[0, #1], which follows from Proposition |4.2.33 O

4.2.35. Commutativity over the ordinary locus. While we do not prove the com-
mutativity of the correspondences T, 1 and T, we do prove it over the ordinary
locus at w, where all of the correspondences are finite flat over the interior. We
will need this result at the places w € I¢, because we need to make use of both
of these Hecke operators in this case (because the Hecke operator U, 2 at Klingen
level which corresponds to T, is needed for those parts of the control theorem which
take place at the level of the sheaf, but we need to use T, to prove the finiteness
of cohomology).

Lemma 4.2.36. Suppose that w € 1€, and that l,, > 2. Then on RF(chl’I,w“(—D))
we have Ty 1 0Ty =Ty 0Ty 1.

Proof. We can easily compose cohomological correspondences when the projections
are finite flat. In particular we may form the compositions T, o Ty,1 and Ti, 1 ©
T, over the interior, and it is easy to see that the compositions give the same
cohomological correspondence.

In order to check that they commute on RF(XlGl’I,w“(—D)) we use a similar
trick to the one that we used to prove Proposition [3.9.15} recall the complex K*
of Proposition which computes RF(chl’I,w”(—D)). We may form another
complex K'* by applying the same construction to the interior YIGI’I cX lG vl As
we have explained above, the Hecke operators T, and T}, ;1 commute on each term

HO (Y1G17I7ZJC2’WR(_D) ® ®(det gw)n(p—l)/<Z(Ha(gw)n)))

weJ weJ
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in the definition of K’®, and hence on the subcomplex K*® of K’® and thus on
RO(XE! W (—D)). 0

We end this section by proving the following technical result, whose formulation
relies on Lemma [£.2:36] We will make use of it in §€.6] in order to compare the
complex of Proposition [£.2:33] to the analogous complex at Klingen level. Fix a
subset J C I; we now consider the space XII(’le’:"CQ = X;fll’:JCQ.

Lemma 4.2.37. There is a universal constant C depending only on p and F but
not on the tame level KP such that if I, > 2, k, — 1, > C for allv e I, [, > C
forallveI€andl, >p+1 forallv € J, then RF(XII(’T’L:"CQ,w“(—D))carries a

locally finite action of TT = Hw‘p Tw [Lwere Twa-

Proof. Note that by Lemma all of the Hecke operators in the definition
of TT commute. We begin by showing that the action of 77 on RI'(X% ;,w"(—D))
is locally finite. To this end, note that by Theorem the action of 17
on RI'(XF ,,w"(=D)) is locally finite, and e(T")RT(XF ,w"(—D)) is a perfect
complex if [, > 2, k, — 1, > C for all v € I, and [, > C for all v € I°.
Since T1 = T [I,cre Tw, it follows that the action of 77 is also locally finite
(as it acts locally nilpotently on (1 —e(T7))RI'(Xf ;,w"(—D))).
Taking the exact triangles induced by
Wt YY) 5 @ det wéll — w" ®det wgll/Ha(Qw)

for all w € J, and using Lemma we deduce that 77 is locally finite on
RI(X 7" w™(—D)) for all weights r = (ky,l,) with I, > 2, k, — 1, > C for all
vel l,>CforallveI€andl, > p+1if v € J. Passing to the limit over
multiplication by Ha(G,) for w € I\ J, we deduce that T7 is locally finite on
RF(X{éle’:JCQ,w“(—D)), as required. O

4.3. Formal geometry. In this section we continue to assume that K = K?K,,,
Ky =1, Ko with K, € {GSp,(OF, ), Par(v)}. Our goal in this section is to define
the Igusa tower at Klingen level, and the p-adic sheaves whose cohomology defines
our spaces of p-adic automorphic forms.

4.3.1. Completion of X. We adopt the convention that if Z is a scheme over Spec Z,),
then we write Z,, for Z @z, Z/p"Z, and 3 :=1i . Z,, for the formal p-adic com-
pletion of Z, which is by definition a p-adic formal scheme. In particular, we let
Xk be the formal p-adic completion of Xy, and we write .’{%2 — f{lz(l — Xk for
the open formal subschemes corresponding to XIZ{}I and XIZ{?I. We write 9 g for
the complement of the boundary of X, with special fibre Y 1. We write 2)12(2 for
the ordinary locus on the interior, and so on.

4.3.2. Deep Klingen level structure. For all m > 1 we consider the formal scheme
%%%Kh (™) — .’{12(1 which parametrizes a subgroup H,,, C G[p™] which is locally for
the étale topology isomorphic to p,m ® Op; equivalently, H,, = lep H,, ., where
for each w|p, Hy,w C Guw[p™] is isomorphic to ju,m.

Proposition 4.3.3. The morphism %IZ&KH(pm) — %? is affine and étale. Its fibre

%%?Kli(pm) over X2 is finite étale.



96 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Proof. This can be proved in exactly the same way as [Pil20, Lem. 9.1.1.1]. O

We denote by }I?Kh (p>) = m }:IZ(,lKli (p™) the p-adic formal scheme obtained
by taking the inverse limit (in the category of p-adic formal schemes). It exists
because the transition morphisms are affine (see for example [Far08, Prop. D.4.1],
or [Stal3, Tag 01YT] for the corresponding statement for schemes, from which this
follows easily). Over %?KH (p>°) we have for all places v|p a Barsotti-Tate group
of height one and dimension one Hy, , — G,.

4.3.4. Igusa towers. We fix a partition {v|p} = I'[] I, and we let X>I1 Par-m-et,2 re2

be the open subscheme of X>I1 2re2

where for each place v € I with K, =
Par(Op,), the kernel of the quasi-polarization \ : G, — GP contains a multiplica-
tive group (so away from the boundary, this kernel is an extension of an étale group
of rank p by a multiplicative group of rank p). We then let }C[Z(Il’Par‘m‘et’Z”Q be
the corresponding open of X, and in order to save some notation, we will for the
moment set XL := X71HPA2102 e fibre of Z{%}Kli(pm) over X1 is denoted
by $§<,K11 (p™). Over $§<,K11 (p™) we have for all places v € I a Barsotti-Tate group
of height one and dimension one H , — G,. Observe that for all v € I¢, we have
a rank 2 multiplicative Barsotti-Tate group G, — G, and that Hy, , (—> G'is a
rank one sub-Barsotti—Tate group.

If K, = GSp,(OF,) for all v|p, this gives us a convenient alternative description

of X 1i(p)- Set

H Kli(v H Tw(v

vel vele
Then we have %kKli(p) = .'f%p(l)Kp, where the superscript I refers to the fact that
for each v € I, the Klingen level structure H, is multiplicative, and at each v € I¢,
we have extended the given multiplicative Klingen level structure to the canonical
(ordinary) Iwahori level structure.

We denote by J6&7 — %% k1i(p°°) the profinite-étale torsor of trivializations:

Yy Ly >, ( ) vlp; by Ly ~ Tp((gf}n/Hoc,v)D)v vel.

The upper script D stands for the dual of these Barsotti—Tate group schemes and
T, stands for the Tate module which here is a pro-étale sheaf. For all v € I, there
is an action of A € Z; on 1, mapping ¢, to ¢, o A. For all v € I, there is an

action of (A, 1) € (Z)* on (v, du), mapping (Y, ¢u) to (Y 0 A, dy 0 ).
The Galois group of the torsor J&" — X% 1, (p™) is

n=]1log [T©g)? =112y 1]z
vel vele vel vel®
4.3.5. Sheaves of p-adic modular forms. Let Ay, = Z,[[0F 1] ~ Z,[[Z)]] and

Ay = Z,[[(OF )] ~ Z,[[(Z))?]] be the one and two variable Iwasawa algebras.
Let

K] = ®UGIK1,U®UEICK2,’U = ZPHTIH
and let k7 : T7 — KIX be the universal character.
We define a sheaf Q" over %%}Kn (p>°) by the formula:

Qg” = ((W*OSGI)®ZPK1)TI
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where 7 : 36" — X :(p™) is the affine projection, and the group 77 acts diago-
nally (via its natural action on m,O5g1, and via &y on Aj).

sheaf is given below in § (see in particular Lemma[4.3.8). This is an invertible
sheaf of Ox% “ (poo)®sz1—modules.

i

We set QF1 = Q5 ®, » det? wg, . The explanation for the twist by this invertible

4.3.6. Comparison with classical sheaves. Over %%7Kli(pw) we have for all v[p a
surjective map wg, — wp,__ , arising from the differential of the inclusion Hy , <

Go

oo, v

Let & = ((ky,2)ver, (Ko, lo)vere) € (Z2)%0, k, > 2ifv e I, k, > 1, if v € I¢, be
an algebraic weight. By construction there is a surjective map
(4.3.7)

w"|x1 (p>=) (®1J61wl]cf;i) ®(®velcwé:7§{ww ® wfif;i) ®(®v|p det wév)

Kp,Kli
This map should be interpreted as the projection to the highest weight vector.
Moreover over J&' the Hodge Tate map (see [Mes72, p. 117], as well as Section

below) provides maps:
ZP ﬂ TP(HOZ,U) Iil; wH

for all v € S, and
@ m Dy HT
Z, - Tp((gv [Hoon)™) = WG,/ Heo v
for all v € I°.
These maps induce isomorphisms after tensoring with Oyg: on the left. There-
fore the Hodge-Tate map provides a Z;-reduction of the GLj-torsors wg,, , and

CUgU/Hoom .
Let & = ((ky,2)ver, (kv, ly)vere) be a classical algebraic weight. Then we can

naturally identify « with a p-adic weight (that is, an element of Hom(/ﬁij7 Z,)) via
the character:

(@o)vers (@o,yo)vere) € Tr e [[ ko2 T ko2l —2
vel vele

Let us define Q~ = QF @R, x Lp-
Lemma 4.3.8. For all k = ((ky,2)ver, (Ko, l)vere) € (Z2)% with k, > 2 ifv € I,
ky > 1, if v € I€, there is a canonical isomorphism
HT" : (®v€1w§f;i) ®(®”€1°wg;_/?‘1w,u ® wl;{gz) ®(®v|p detwg ) ~ Q.
Proof. By definition, it suffices to construct an isomorphism
HT* : (®U61wlff;i) ®(®U€I“’ngﬂi]m,v ® wff;%) ~ Qf
where Qf = Qf7 ®3, . Lp- Sections of the sheaf €2f are rules f associating to
(z, (dv)vere, (Yv)ves,) € 736’ (R), an element
[z, (90), (¥0)) € R
such that
Fl, (b0 0 A1), (B 0 B,1)) = KMo, B)) f(, (60), (1)

= T 2= TT 8t (00, ()

vES)y vele
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for ((/\v)vespv (Bv)vere) € Ir.
Sections of the sheaf

@verwhi 2) @ @verewg iy, @k )

are rules g associating to triples
(SC, (aU)’Ulpﬂ (bv)UEIC)

for R a p-adically complete Z,-algebra, = € %%,Kli(poo)(R), a, : R ~ x*wy
by : R~ 1" wg, /g, . an element

v, 00

f(z,a,,b,) € R
such that
fla ayo Ay by o6, h) = T M2 T ob 2 f (2, a0, by)

v|p vel®
for all (\,) € (R*)%,(8,) € (R*)!".
To a rule g as above, we associate a rule

HT*(9)(@, (¢)vere, (Yo)ves,) = 9(@, (HT(¢y(1)))vere, (HT (¢u(1)))ves, )-
It is easy to check that the map HT”" is an isomorphism. O

We can now summarize the interpolation property of the sheaf Q%!.

Corollary 4.3.9. For all k = ((ky,2)ver, (kuslo)oere) € (Z2)% with k, > 2 if
vel, k, >1, if vel® there is a canonical surjective map:

K K _ ORI o .
w ‘x%,m (poo)g)Q = ®A1,H Zp.

Proof. In view of Lemma [4.3.8] this is just the map (4.3.7). O

4.4. Sheaves of p-adic modular forms for G;. In this section we explain how
we can descend our construction to the Shimura variety for G;. This section is the
analogue for p-adic sheaves of

4.4.1. Weight space for G1. We now assume that p # 2. We let 77 be the pro-p
sub-group of 17, so that T} = TIf x TP is the product of a finite group TIf and T7.
We let A; = Z,[[T?]]. There is a canonical projection Ty — T¥ and a canonical
character x1 : Ty — AF which identifies A; with the deformation space of the
trivial character of T;. This canonical projection makes A; a quotient of Ar. We
let kK = k1 ®((2,2)y)p). The pair (x7, Ar) is the universal deformation space of the
character ((2,2),,) mod p. We let Q"7 = Q" @5 A;.

If kK = ((ky,2)ver, (ky, Ly)vere) is a classical algebraic weight such that k, =1, =
2 (mod p — 1), then x defines a Z,-point of Spf A; in the following way: we
associate to k the character

((a:'u)'uefz (xvvy'u)vefc) €1 — H xilfuiQ H '7;51172:‘;5;]72
vel vel®c

which factors through a character of TY and therefore defines a morphism f : A; —
Z,. The specialization of x; along the map f,; recovers the character .
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4.4.2. Descent. The group (O F)(Xp’)+ can be embedded “diagonally” in 77 by sending
x € (OF)ZI;)+ to ((xy)y € I,(Xy,xy)pere) where for all places v|p we denote by
T, € O;ﬂ = Z, the image of z in F),. For an element x € T}, we denote by z¢ the
projection of  to T?. For an element z € T}, we denote by & the corresponding
group element in Aj.

Since T? is a pro-p group, and p > 2, the map = ~ 2 is bijective on T?.
Accordingly if z € T?, then we define /= € T? by the equation (\/z)? = z. We

then define a character d : (Op) (Xp ’)+ — (A7)* (where “d” stands for “descent”) by

d(z) = /To.

The group (OF) (Xp’;r acts on X%.; in the notation of the element z € (O F)(Xp’)+

sends (A, t, \,n = (n1,12),mp) to (A4, ¢, X, (m1,212),mp). We can lift this action to
QFI by setting

2

the formula:

x " Q] - QF
to be the composition of the tautological isomorphism (the construction of Q%!
doesn’t depend on the polarization) and multiplication by d(x). The reader can
easily check that this defines an action and is compatible with the construction
of §$3.7.2} as always, we are making the choice w = 2.
For all n € Z>¢ U {oc0}, we can form the quotient of x%’mi(p”) by the action
of (Op)(xp’)+ (which factors through a finite group acting freely) and we denote by

}CIG(IKIh(p") the corresponding quotient. The maps %%’Kh(p") — }C[G(IKIh(p") are

étale. We can also descend the sheaf 2°7 to a sheaf Q"7 over %%I’gﬁ (p>) using the
descent datum provided by d. 7

We let MY " = RI(X,(p), 2% (=D)) be the cohomology of the p-adic
cuspidal modular forms of Weight KI.

Proposition 4.4.3. The canonical map MP*H" — RI (X i (p™), Q7 (= D)) is
split in the derived category of Z,-modules.

Proof. See the proof of Proposition [3.8:3] O

4.5. Hecke operators at p on the cohomology of p-adic modular forms.
In this section we define Hecke operators at p acting on the cohomology of p-adic
modular forms. Recall that we have fixed a partition S, = {v|p} = I'T] I°.

4.5.1. Hecke operators of Siegel type. Let w € I¢ be a place above p. Let K = KP K,
be a reasonable compact open subgroup with K, = G1(Z,). In we defined
a Hecke operator attached to the correspondence (for suitable choices of polyhedral
cone decompositions omitted from the notation):

Xk
N
XK XK

where K" = KPKJ, and K, = [],, y20 GSP4(OF,) x Si(w). The map ps depends
on the choice of an element x,, € F*T. We are now going to pull back this
correspondence to a deep Klingen level structure and isolate the “essential part”.
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As in Remark[3.9.23] the resulting Hecke operators are easily seen to be independent
of the choice of polyhedral cone decomposition.
Taking formal p-adic completions, we obtain a correspondence:

(4.5.2) X

N
.%K xK

We consider the fibre product X g+ Xp, x, %ﬁ(?Kh (p™). Recall that by our assump-
tion that w € I¢, G,, is an ordinary Barsotti-Tate group. We denote by €, 1(p™)
the open and closed formal subscheme of this fibre product where the kernel of the
canonical isogeny piG — p5G has trivial multiplicative part (it is open and closed
by the rigidity of multiplicative groups).

There is an obvious map uy : €, 1(p™) — %kKh(pm), given by projection onto
the second factor of the fibre product. We claim that the projection €,, 1 (p™) — Xk
induced by p, can be lifted to a map ug : €, 1 (p™) — x%’mi(pm). Indeed, since H,,
is multiplicative, the isogeny piG — p5G induces an isomorphism from pj H,, to its
image in p5G. We call this image p5H,,. We therefore have a correspondence

€1 (p™)
/ \4
%%,Kli(Pm) 35%@1(11 (™)
We now associate to this correspondence a Hecke operator U, ;.

Remark 4.5.3. The Hecke operator U, 1 is the standard “U,” operator (at the
place w) that is considered in the usual theory of p-adic modular forms.

Lemma 4.5.4. There is a normalized trace map “p%Tru1 7 R(u1)«Og,,  (pmy —
Oxﬁ(‘Kli(pm) ’

Proof. The formal schemes €, 1 (p™) and %%KH (p™) are smooth over Z,,. Consider
the map induced by u; on top-differentials:

1 1
dug : det kami(pm)/zp — det QQ‘w,l(Pm)/Zp‘

This map is divisible by p? by the same arguments as in the proof of Lemma/[3.9.18
Namely, the map u; is totally inseparable and hence a homeomorphism. For
any closed point x € %%7Kli(pm) in the interior, one sees by Serre—Tate theory

L —

that the map of completed local rings (9355( e Oc¢,, 1(pm),« 18 given by

®v‘pW(1€(CL’))[[TLv,TQJJ,T&U]] — ®v|pW(k(fE))[[TLv7T2,v7T3,uH where Ti,v — Ti,v if
v#Aw, and T, — (1 4+ T5.4)P — 1.
By reduction modulo p™ of uy, we get a proper map uq : Cyy 1 (0" )n, — XII(,Kli P")n
of smooth schemes over Spec Z/p™Z. The above map p%dul induces a map O¢,, | (pm), —
u!loxk o (pm),, OF by adjunction a map “p%Trul” :R(u1)«(Og,, () /P") — (Ox;{‘m(pm))/p”

i

(see §3.8.11). Passing to the limit over n yields the map of the lemma. (I

Remark 4.5.5. We sketch another argument for the proof of the lemma. Write
Cw,1(p™)gy for the restriction of €, 1(p™) to Q‘jﬁ(’Kh(pm). It is easy to show that
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the map u; @ €1 (p™)y — @%’Kh(pm) is finite flat of degree p3. Therefore, the
restriction of the map of the lemma to i{)f(,Kh(pm) is the usual trace map, nor-
malized by a factor p~3. Let ¥ be the K-admissible polyhedral cone decompo-
sition such that X = Xgx and Xj x;(p™) = X xi(P™)s - We can use the
same ¥ to get the (non smooth) toroidal compactification of X » and then of
Cuw1(P™)s. Now we observe that the map &€, 1(p™)s — %%)Kh(pm)z is finite
flat and therefore has a trace map. It remains to recall that for any refinement
¥ of ¥, the map m : €, 1(p™)yy — €u1(p™)x induces a quasi-isomorphism:
Rﬂ-*oew,l@m)z’ = OCw,l(Pm)z'

To define the Hecke operator Uy, 1 on RI(X i (p™), Q%7), RT (X 15 (p™), w"),
and so on, we argue as follows. By the usual formalism, if F is one of Q"! or w”,
it is enough to define morphisms u5F — ujF; we can then compose with the trace
map of Lemma [£.5.4]

To this end, note that over €, ;(p™) we have the canonical étale isogeny ujG —
u5G, which determines an isomorphism on differentials. We thus have a canonically
determined isomorphism ujw” — ujw" (with no need to normalize). Similarly,
since the canonical isogeny induces an isomorphism ujH,, — u5H,,, we have a
canonical isomorphism u5Q"% — ui Q" (again with no need to normalize).

4.5.6. The operator Ukji(w),1- We now introduce another Hecke operator of Siegel
type for w € I, which we denote Ukjj(y),1- This operator will not be used until
and §7] We decided to introduce it here because its definition is similar to the other
operators of Siegel type introduced in and because it is convenient to discuss
the commutativity of all of our Hecke operators at p in one go (see Lemma
below). We defer the details of the normalization of this Hecke operator to §5.3
where we will consider the operator Ukji(,,),1 in a more general context.

We again consider the correspondence , and the product Xg+ Xp, %,
%kKli (p™). We denote by €kii(w),1(p"™) the open and closed formal subscheme of
this fibre product where the kernel of the canonical isogeny p;G — p3G has trivial
intersection with the group pj H,,. Exactly as above, we obtain a correspondence

CKii(w),1(P™)
/ K
%ﬁ(,Kli (p™) %% ki (™)
We show in Lemma below that there is a Hecke operator
(4.5.7) Ukli(w),1 R(v1)viw? — w?,

defined using a trace map normalized by a factor of 1/p3. On the other hand, we
have natural isomorphisms v3Qy7 — v7Q47, and tensoring this map with (4.5.7)
produces the desired cohomological correspondence (and associated Hecke opera-
tor):

UKli(u;),l : R(Ul)*USQm — QFL,

4.5.8. Hecke operators of Klingen type. Let w|p be a place. Let K = KPK,, be a
reasonable compact open subgroup with K, = G1(Z,). In §3.9.20| we have defined
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a Hecke operator attached to the correspondence (again, for suitable choices of
polyhedral cone decompositions omitted from the notation):

XK'
VN

Xrkr XK

where K' = KPKj, with K|, =[], ,2,, GSP4(OF,) x Kli(w), and K" = KPK}/
with K7 = [[, vz GSP4(OF,) x Par(w). The map p» depends on the choice of
an element x,, € %, and over X g we have natural isogenies

P19 = p2G = p1g
whose composite is multiplication by x,,. As in §4.5.1] we are going to pull back
this correspondence to a deep Klingen level structure and isolate the “essential part”

of the correspondence.
Taking formal p-adic completions, we obtain:

2N
Xrr XK
We consider the fibre product X+ Xp, x,c Xf¢ g;(p™). We denote by €, 2.1(p™)

the formal subscheme where the kernel of the isogeny pjG — p3G has trivial inter-
section with the group piH,,.

Lemma 4.5.9. The formal subscheme €, 2.1(p™) is open and closed in Xx' Xp, x
%%,Kli (™).

Proof. Let L = pyH,, NKer(piG — p5G). Since L is a closed subscheme of p; H,,,
it is finite over X+ Xp, %, }Ckmi(pm) and the condition that L = {0} is there-
fore open. It is also closed because if at some point z there is a non-trivial map
piHple — Ker(piG — p5G)|., this map will extend on the completed local ring at
x by the rigidity of multiplicative groups. O

There is an obvious map ri : €, 21(p™) — x%’mi (p™) induced by the projec-
tion p;. We claim that the second projection pz, which induces a map €, 2 1(p™) —
X g, can be lifted to a map 75 : €21 (p™) = Xfer g (pP™). Indeed, over € 51 (p™)
the isogeny piG — p3G induces an isomorphism from p}H,, to its image in p5G
(which we call p5H,,). We therefore have a correspondence

Cu2,1(p™)
/ \
x%”,xn(?m) xﬁ(,}(n(pm)
We now associate to this correspondence a Hecke operator
U,, € Hom(RT (X e yi5(p™), ), Rr(xﬁ(,Kli (p™), Q1))

To do so, we have the following lemma.
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Lemma 4.5.10. There is a normalized trace map “p%Tr,«1 7 (r11)xO¢ o r(om) —
Ox%,Kli(pm)

Proof. The formal schemes €, 2 1(p™) and %kKh (p™) are smooth over Z,. Con-
sider the induced map on top differentials:

. 1 !
dry : det Q351“((“(107")/2p — det QQ:w,Q,l(pm)/Zp

This map is divisible by p? for the same reason as in the proof of Lemma
Namely, let us fix a closed point = € %%,Kli (p™) which is in the interior and ordinary
at w. The fibre of r1 at = parametrizes the subgroup L = Ker(piG — p3G) of
Guwlp] of étale rank 2, multiplicative rank 1 and trivial intersection with H,,. The
total degree of r; is p3. The fibre of r; over x has p points (corresponding to
the choice of the multiplicative part L™ of L). The inseparability degree is p?
(corresponding to finding sections of G, [p]/L™ — Gy [p]*'). For any 2’ € €, 2.1(p™)
lying/a&ove x, Serrei&t\e theory shows that the map on completed local rings
Oka(pmm = Og, o (pm),e 18 isomorphic to @, W (k(z))[[T1,0, T2, T3.]] —
QupW (k(x")[T1,0, Tow, T3] where Tj, = Tip if v # wor i = 1, and Tj o =
(1+T;)P — 1 fori=2,3.

By reduction modulo p™ of 11, we get a proper map r1 : Cyy 21 (p™)n, — XII(,KU (P™)n

of smooth schemes over Spec Z/p™Z. The above map p%drl induces a map O¢ —

w,2,1(p7n)n
r!loxf( (™), ot by adjunction a map “p%’ﬁrl” ‘R(r1)«(Ocy o (o) /D7) — ((’)ka(pm))/p”
(see §3.8.11)). Passing to the limit over n yields the map of the lemma. O

Remark 4.5.11. We could give an alternative proof of Lemma as in Re-
mark [4.5.5]

As usual over €, 2 1(p™) we have the canonical isogeny ;G — 735G, whose dif-
ferential determines a morphism rjw” — rfw”. We have a commutative diagram

riwg, — ToWH —0

m,w

L

riwg, —— TIWH —0

which Zariski locally on affine opens Spf R is isomorphic to

(4.5.12) YV R o

GOl

RP— S R——0

It follows that we can and do normalize the morphism r5w”™ — rjw”™ by dividing
by p'». When m = oo, the isogeny induces an isomorphism T Hoow = "5 Hoo w,
and we therefore obtain an isomorphism r3Q%7 — Q. Combining this with
Lemma gives the desired operator U),.

We now exchange the roles of p; and p,, and consider the fibre product X g X, x7.
Xfer g1 (p™). We denote by €, 2.2(p™) the open and closed formal subscheme where
the kernel of the isogeny p3G — piG has trivial connected component (so that away
from the boundary, the kernel of this isogeny is étale). Note that by definition
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this kernel is contained in the kernel of the quasi-polarization p3G — p3GP”, so the
kernel of p5G — p7G has multiplicative rank at least 1.

The projection pa induces a map s3 : €y 2,2(p™) = Xfer g (p™). We claim that
the first projection p; : €, 22(p™) — Xk can be lifted to a map s1 : € 12(p™) —
X ki (p™). Indeed, since H,y, is connected, we see that over €, 22(p™) the isogeny
p3G — piG induces an isomorphism from p} H,, to its image in p;G (which we call
piHy); and the map €, 02(p™) — Xk factors through X%.. Accordingly, we have
a correspondence

xf{,Ku(pm) %%H,Kn(pm)

We can associate to this correspondence a Hecke operator

U’lll; € Hom(RF(xﬁﬂKli (poo>7 Qm)’ RF(:{%",KH (poo)7 o ))7
which again depends on the construction of a trace map:
Lemma 4.5.13. There is a normalized trace map p~* Try, : R(52)+O¢,, 5 ,(pm) —
Ox1,, ™)
Proof. This is a calculation in Serre-Tate theory which is similar to the proof
of Lemma [4.5.10, Namely, let us fix a closed point = € xg,/,m(p’”) which is
in the interior. The fibre of so at z parametrizes rank p étale subgroups in the
kernel of the quasi-polarization G,, — G2 (which is a rank p? finite flat group

scheme, extension of an étale by a multiplicative subgroup). We deduce that
the map sy is totally inseparable at x of degree p. Serre—Tate theory shows that

the map on completed local rings 0361{(,, wza(

®v‘pW(1€(CL’))[[TLv,TQJJ,T&U]] — ®v|pW(k(m))[[TLvaT2,v7T3,7JH Where E,v —> Ti,v 1f
v#Fwori=1,2 and T3, — (1 4+ T5,)" — 1. O

e O¢ pm),z 18 isomorphic to

Over €, 22(p™) we have the canonical isogeny s3G — siG, which is étale, and
therefore determines isomorphisms sjw" — s3w" and s7Q"" — 55077, Combining
with Lemma we get the desired Hecke operator U!”.

We set Uy, 2 :=U,, o U

4.5.14. Commutativity of the Hecke operators. We remind the reader that whenever
we write Uy, 1 below, we mean Uty (y),1-

Lemma 4.5.15. The operators {Uxii(v),1, Uv2ver and {Uy1,Up2}vere commute

with each other on RF(%%I}IH@W), 051 (=D)).

Proof. We prove this in the same way as Lemma We first introduce a similar
complex as in to compute the cohomology. Namely, there is a complex L*®

computing RF(.’{KfI’(h(pm), Q"1 (—D)), such that L* = Jim, LY where LF is

Dicrpik lim H° (xifié’@iii Z/ptZ®Q"‘I(—D)®®(det gw)n(pfl)/(Z(Ha(gw)n))
X [Tyes Ha(Gw) weJ weJ

Note that in that formula we use the fact that Ha(G,)™ has a canonical lift to
Z/p'Z for all n’s which are multiples of p!~! and these are cofinal among all natural
numbers.
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Each term
(4.5.16)
lim  HO(X00, 2/p' 200" (- D)@ Q) (det G,)" PV /(D (Ha(Gu)™))
X ngJ Ha(Gw) weJ weJ

appearing in this complex is stable under the Hecke action and it is therefore enough
to prove the commutativity for each of these terms. Each of the terms
can be embedded into the corresponding direct limit of cohomology groups taken
over the interior of the moduli space. Over the interior of the moduli space all
our correspondences are finite flat and the commutativity follows from standard
properties of the Iwahori and Klingen Hecke algebras. O

Lemma 4.5.17. If w € I then we have an equality of Hecke operators
Utw(w),1 (Ukli(w),1 = Utw(w),1) = Uw,2

on RT (X2, Q1 (=D)).

Proof. Using a Cousin complex computing the cohomology as in the proof of
Lemma we reduce to proving that the underlying (cohomological) corre-
spondences agree away from the boundary. By definition, the correspondence asso-
ciated to Ury(w),1 Parameterizes triples (G, Hp,, L) where L C G, [p] is étale, totally
isotropic of degree p?, and has L N H,, = {0}. Similarly, the correspondence asso-
ciated to Z,, parameterizes triples (G, H,,, M) where M C G,,[p] has multiplicative
rank 1, is totally isotropic of degree p?, and has M N H,, = {0}. Finally, as
in [Pi120, Prop. 10.2.1], the correspondence associated to U,, 2 parameterizes triples
(G, Hp, N) where N C G, [p?] is totally isotropic of degree p*, N[p] has degree p?,
and N N H,, = {0}.

Comparing these definitions, we see that on the level of underlying correspon-

dences, we have pUy 2 = Uly(w),1Zw- Since the normalization factors involved
in the Hecke operators Uy, 2, Unw(w),1, Zw are respectively p=,p~3,p™2, and since
5+ 1 =3+ 3, the result follows. O

4.6. Perfect complexes of p-adic modular forms. Let K = KPK,, be a rea-
sonable compact open subgroup with K, = G1(Z,). Set

Ul =[] Uv2 [] UvaUse.

vel vele

This is an endomorphism of M? "~ = RP(%IG(ll’éi(poc), Q%1 (=D)), an object of the
bounded derived category of Aj-modules. In this section we prove the following

theorem.

Theorem 4.6.1.

(1) The operator U is locally finite on Mlp'ad"”.

(2) Let e(UT) be the ordinary projector attached to U and let My := e(UT)MP*"1
be the associated direct summand. Then the complex My is a perfect com-
plex of Ar-modules concentrated in the interval [0, #1].

(8) For all classical algebraic weights k = ((ky,ly)y|p) with L, = 2 when v €
I and k, =1, = 2 (mod p — 1) for all v|p, there is a canonical quasi-
isomorphism:

e(UNRT (X)) nr 0" (=D)) = My @F, . Zp.
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(4) There is a universal constant C' depending only on p but not on the tame
level K such that for all classical algebraic weights £ = ((ky,ly)y|p) with
l,=2 whenvel, k,=1,=2 (mod p—1) for all v|p, k, — L, > C when
vlp, and l, > C when v € I¢, the map:

e(H T, H Tv,1>Hi(Xglva(_D>) - Hi(MI ®I&1,n Zy)
v|p vele
is an isomorphism for i = 0 and injective for i = 1.
We will deduce the theorem from a number of intermediate results. In particular,

we need to analyze the Hecke operators U, ; and U, and relate them to T\, 1
and T, in order to be able to use the results of

4.6.2. Reduction of the correspondence modulo p. Let w € I°. We begin by consid-
ering the special fibre of the correspondence over %%,Kh(m underlying the operator
Uw,1; we write Cy, 1(p)1 for this special fibre. By reduction modulo p, it follows
from Lemma that for each classical algebraic weight x we obtain a cohomo-

logical correspondence which we continue to denote by Uy, 1 : uj(w"| XL ) —
ul (W" |X,I{ Kh(p)l)'

Lemma 4.6.3. For any place w € I°, we have a commutative diagram

Uu 1 \
*, WK ’ . K
USw U W

J{u;Ha(gw) lu’l‘Ha(gw)

U'w, _
ub (W @ det wg;l) —0 4 (W @ det wgwl)

Proof. Since the kernel of uiG — u3G is étale, and the formation of Ha(G,,) com-
mutes with étale isogenies, this is immediate. O

We now consider the operator U, 2 on XII<,K11 (p)1, where w is any place lying
over p. Taking the special fibres of the correspondences of §4.5.8 with m = 1, we

have a correspondence
w,2,1

I
XK”,Kh K k1 (P)1

and by Lemma|3.8.10} a cohomological correspondence 75w |X{(” e rhw ‘X{( (D)1

and a correspondence
w,2,2

I
XK Kh K” Kli (P

and again by Lemma [3.8.10, a cohomological correspondence sjw”|yr

K, k1 (P)1 -

Slw ‘XK// Kh(p)l
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We can associate to these cohomological correspondences Hecke operators which
we denote as before as

U, € Hom(RF(XII(”,Kli(p)laWﬁ)vRF(XII(,Kli(p)lawH))v
U, € Hom(RF(X;(,Kli(p)lawﬁ)aRF(X;(”,Kli(p)lawn))'
We continue to write U, 2 = UJ, o UJ.
Lemma 4.6.4. For any w|p, we have commutative diagrams

* K U’l/” | Kk
Tow riw

J(TZ Ha(Gw) J/TI Ha(Guw)

r3 (W @ detwg )iw"l(w ® detwg H

*, K Us ! K
sjw SHw

lSIHa(Qw) J(SZHa(gw)

s7(w" ® det wggl) — b (w* ® det wg;l)

Proof. See [Pil20, Lem. 10.5.2.1]. O

4.6.5. Reduction of the correspondences to the non-ordinary locus.

Lemma 4.6.6. For any w|p, the Hasse invariant Ha(G,,) is not a zero divisor on
each of Cy2,1(p)1 and Cy 2.2(p)1-

Proof. See [Pil20, Lem. 10.5.2.2]. O

We now assume w € I (otherwise the schemes we consider would be empty) and
consider the rank one locus at w, XII(’}’%I (p)1, which by definition is the vanishing
locus of Ha(G,,) in XII<,K1i (p)1. Taking the zero locus of Ha(G,,) at all entries of
the correspondences Cy, 1(p)1, Cuw.2,2(p)1 and Cy 2,1 (p)1 (and taking into account

Lemmas and , we obtain correspondences

/\

I I:*w
XK Kh KKh (Ph

C(1;21

/\

I,=41 I,=,
Xin Kh XK Kli (P)l
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I,=1 I,=y1
XK Kl (Ph XK”,Kli(p)l
By Lemmas [3.8.10] and [£:6.6] we also obtain cohomological correspondences

* K ! K *, K Kk
UoW I,=q1 — UW I,=q1 ToWw I,=y1 — riw I,=q1
20 Xt ) 7 W [x Loy T2 xn et ), 7 W s ),

and

*, K Kk
SoW I,=q1 — STw I,=qp1 .
2 |XK,K1f)i (p)l 1 |XK//juKli(p)1

We can associate to these cohomological correspondences Hecke operators which
we again write as

U, € Hom(RD(X 232 ()1, 0"), RO(X 24 (0)1,w0%)),
UL, € Hom(RT(X 7% (0)1,w™), RD(X i (0)1,w").
Ul € Hom(RD(X 238" (9)1,0"), RO(X 2 2 (0)1, ™).

We of course continue to write Uy, 2 = U,, o U)).
By Lemmas [4.6.3] and [£.6.4] the long exact sequence

« xHa(Gw) ;s - * =w -
H (XII(,Kli(p)lva) 20 (X{gKli(p)laWR@det wéwl) —H (X;(’,,,th(p)l,w”@det Wgwl)
is Uy,2- and U,, 1-equivariant.

Lemma 4.6.7. We have commutative diagrams

u%w"| I,=q1 UWJ ullw"”"| I,=q1
XK Kh (P)1 XK Kh (P)1
J/uEHa'(Qw) JuIHa/(Qw)
2 Uw,1 2
*(, K p°—1 w, ! K p°—1
ul(w" ® det wg., |X;€?{gl(p)l) —— rj(w" ®det wg., |X§(,‘:K11,il(p)1)
!
r§w’“”| I,=1 Yu T!lwﬁl I,=q1
X (P)1 XK Kh (P)1

K/ Kli

J/T;Ha'(gw) lr{Ha’(gw)

* K d t P2—1 U;‘J ! K d t Pz—l
r3(w" @ detwg ‘X;/:/jf(ln(p)l)%rl(w ® det wg | |X£(,):K,i,il(p)1)

1"
w

s*w“| I,=q1 Slw'{| I,=1
I IX S (o 2% X (P

lsIHa'(gw) J/ssHa'(gw)

2 ur 2
p-—1 w ! p°—1
s7(w" ® detwg |X{(‘jgg1(p)1) — sh(w" @ detwh

Proof. See [Pil20, Lem. 10.5.3.1] . O
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4.6.8. Comparison of Uy 2,Uy 1 and Ty, Ty 1 in a special case. We fix J C I. The
space Xé’ﬁi’:"d(p)l carries a finite étale map to the space XII(’:lJl’:"”2 studied
in , This map is given by forgetting the multiplicative gr(;ups H, of order
p at the places v € J¢. Therefore, it has degree (p + 1)#/°. Let x = (ky,l,) be a
classical algebraic weight. We have an injective map

HO (X"t 0" (=D)) = HO(X g ™ (0)1,w" (D).

We assume that [, > 3 if v € I°, that k, > 3, [, > 2 if v € I, and moreover that
l,>p+1andk, >2p+3if v € J. On the left hand side, we have an action of T,
for w|p and Ty, 1 for w € I°. On the right hand side, we have an action of U,, o for
wlp and U, ; for w € I°. This follows from the fact that all these Hecke operators
have been proved to commute with the Hasse invariants (by Lemmas
[4.2.19] [4.6.3] |4.6.4] |4.6.7)).

The main result of this subsection is:

Proposition 4.6.9. There is a universal constant C depending only on p and F
but not on the tame level KP such that if L, > 2 for all w, ky, — 1, > C for all w|p,
and l,, > C for all w € I°, then:

(1) The operator U = Hw‘p Uw,2 [Tyere Uw,1 is locally finite on
HO(X™ 772 (), W (D).
(2) Let TT = [Lwp Tw were Tw,1- The map

e(THH (X702 W (D)) = (U H (X~ ()1, (- D))
s an isomorphism.
(3) This isomorphism is equivariant for the action of Ty 1 on the left and Uy, 1

on the right for all w € I¢ and of T\, and Uy 2 for all w € J.

This result establishes a first relation between the cohomology at Klingen level

and spherical level and will allow us to reduce a big proportion of the proof of
Theorem F.6.1] to Theorem 211

Remark 4.6.10. One can interpret this result as saying that the ordinarity condition
prevents the existence of “newforms” of Klingen level.

We have a finite étale map:
I=yl,=sc2 I=y1,=7c2
Xz 77 = (X777 )

which parametrizes multiplicative subgroups of order p, H,, C G, [p] for all w € J°.
We introduce various Hecke operators that decrease the level at places w € J¢ and
compare them with our existing Hecke operators.

We first define a correspondence for each w € J¢ (with X,, defined below),

Xuw
/ \
(X2, (X2,

as follows. We let =7 : X, — (XII(’:JL:"“Q)l be the natural forgetful map,
where X,, parametrizes subgroups L,, C G,[p?], where L,, is totally isotropic of
étale rank p® and multiplicative rank p. A standard computation shows that
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is finite flat. For a suitable choice of polyhedral decomposition, there is a map
Tt Xy — (X;g:Jl’:"cz)l, which on the p-divisible group is given by G +— G/L,,
(since we are only dealing with H® cohomology groups, we will for the most part
suppress the discussion of the boundary in this section).

We can define an operator, using the usual procedure, associated to X, T, w €
End(H((X " 177%)1,0"(=D))).

If we denote by XII(’;(‘{111;=J62(17)1 — (X[Igz"l’:"&)l the finite étale cover that
parametrizes subgroups H,, C Gy, [p] of order p, then we observe that the projection

w3 lifts to a map X, — Xy~ *(p)1 by sending (G, Ly) to (G/Lu, Gulp]/Luw)

and therefore one can promote Tw to maps i’u and JN“TZ fitting in a commutative
diagram (where vertical maps are the injections given by the obvious pull back
maps):

— —_— . T‘L’u’ = =jJc
(4.6.11)  HO(Xp 3772 (p)h,w"(=D)) — HO(X =7 (p)1,w™(—D))

T T
HO((XE=102), wn(— D)) — T2 HO((XJ="1=°2),, (- D))

On the other hand we have already defined a Hecke operator T, on HO((X g=7"=7°%),, w*(—D)).
We also have a chain of finite étale maps:

X ™01 = X e = (X0
where the first map forgets the multiplicative subgroup of order p, H,,» C G, [p] for
w € J°\ {w}. We have defined an operator U,, 2 on HO(XII(’:(‘{il’:ch(p)l,w"“(—D)),

but clearly it descends to an operator on HO(Xf(’}‘{izz"CQ(p)l,w"“(—D)) because
only the Klingen level structure at w matters in the definition of U, 2.

Lemma 4.6.12. Assume that ky, — 1, > 1.
(1) We have Ty, = T,,.
(2) We have Uy, 20T = Uy20Uy 2.

Proof. See [Pil20, Lem. 11.1.1.1, Lem. 11.1.1.3]. O

Lemma 4.6.13. Let w € J. The canonical map HO(X%I’I’:JI’:JCQ,w"(—D)) —
HO(X[G(jI’(IIi:"l’:"CQ(p)l,w"“(—D)) intertwines the actions of T, and Uy 2.

Proof. By Lemma|.2.19| we have T, = T}, ., o T}, .;, which corresponds to Uy 2 by
definition of the right hand side. O

Lemma 4.6.14. Let w € I¢. The canonical map HO(XIG{HI’:"I’:"627w”(—D)) —
HO(X%I’(IIi:"l’:"CQ(p)l,w"(—D)) intertwines the actions of Ty1 and Uy 1.

Proof. By Lemma [4.2.6] we have T}, 1 = ijl, which corresponds to U, ; by defi-
nition on the right hand side. (I

Corollary 4.6.15. Suppose that we have l,, > 2 and ky — 1y, > 1 for all w € J°.

Then the action of [ ,,c je Uw,2 on HO(ngkllinl’:JCQ(p)l, w"(=D)) is locally finite,
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the action of HweJr w 18 locally finite on HO(XG1 =sL=002 8(—D)), and the
map

e T Tud HO (X" =072, w5 (=D)) = e [] Van) UKl 201, (=D)

weJ° weJe

18 surjective.

Proof. Combining the diagrams (4.6.11]) for all w € J¢, we see that there is a
commutative diagram:

2l
[Moese T

H (XglKl; J17—JC2(p)1’UJK(_D)) +>HO(XIG(ij(IIi:lezJCZ(p)l’wn(_D))

=
o=

HO(XIG;HL:JL:JCQ’ w"(=D)) o Twerw HO(XI(?HI,:JL:JC{ w"(=D))

where the vertical maps ¢ are the natural injections. We deduce from Lemma[1.6.12]
that [T, cse Uwz2 o (ITpese Tw)” = [wese Uw2 © [1we e Unw,2. The argument now
follows the proofs of [Pil20, Cor. 11.1.1.1, Cor. 11.1.1.2]. We deduce that [], ¢ ;e T
acts locally finitely on HO(XG1 L= e ,w"(=D)) by Lemma It follows
that for any f € HO(XIC(;II’JII*’1 =7°2(p)1,w"(—=D)), there is a [Locse T,,-stable
finite-dimensional vector space V' containing (I],c e T,)'f, and then the sub-
space of HO(XIG(TI’(II;:ﬂ’:"CQ(p)l,w”(fD)) spanned by «(V'), [[,cse Uw2t(V), f,
and [],,c e Uw,2f is finite-dimensional and [],,c ;e Uw,2-stable, so [],,¢ je Uw,2 acts
locally finitely, as claimed.
To prove the claimed surjectivity, if f € e(I],,c s Uw,2)H® (Xglkh_"l =7°2(p), w"(—D)),

then one checks from the definitions that we have

f=e( I Uw2)le( IT To)(IT TCTT Uu2)™'0). O

weJe weJ° weJe weJe

It remains to prove the injectivity of the map considered in Proposition .
This will be done by exhibiting an inverse up to a certain power of p. For this
reason, it is necessary to lift the situation to a Z,-flat base. This is done by
considering certain formal schemes. Let us denote by .’fGl L=11=7°2 the formal
completion of %%’I’:JCQ along XGl’ =71:=7°2 We also denote by %%l’(l’fﬂ’:‘]&(p)
the formal completion of %ﬁ?kﬂ JCQ( ) along X%I’(II;:J L=72(p);. We denote by
T the ideal of definition of these formal schemes. Observe that p € I and that
I/p = (Ha(Gy) detw&:p), w e J).

We consider the modules

HO(XG 1702 w5 (= D)) and HO(XZiGT" 072 (p), " (= D)),
which are I-adically complete and separated, and also Z,-flat. Moreover, the nat-
ural map HO(%IG(I’I":JL:J“Q,w"‘(fD)) — HO(XIG(figl’i:"l’:"uz(p),w"”"(fD)) reduces
modulo I to the map HO((X""=777°2)) wh(—D)) — HO(X =" V=7 (p)1,w"(—D))
(we are using here that (XIG;”I’:JL:JCQ)l and XIG(}I’(Ili:"l’:"CQ(p)l have affine image

in the minimal compactification and thus that higher cuspidal cohomology over
these spaces vanishes).
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We can lift the map
Ty o HO((XG=7172), i (= D)) = HO((X =712 (= D))

to a map T, : HO(X§T=71=7°2 wr(—D)) — HO(xGT=71=7°2 r(—D)) (the
correspondences X, lift to correspondences on the formal schemes).
There is a trace map

Tr: HO(X i 7772 (p), " (D)) — HO(XGH 770772 Wi (D))

: A G1,1,=51,=5¢2 G1,1,=51,=5¢2
associated to the finite étale map X'} (p) = X% .

Lemma 4.6.16. For any n € Z>y, we have the congruence

Tro( [ Un2)oulf)=p*" ([] Tw)™(f) (mod pifweseutn)

weJe weJe
for any f € HO(%GI’I =b=0e2 R~ D)),
Proof. We have

Teo (J] Vua) 0ulf(@.6) = g 3 3 (30 £(6/(@u L) )

weJe WEJC Lyy,n Huy

where H,, runs over all multiplicative subgroups of rank p of G, [p] and L,, , runs
over all totally isotropic subgroups of order p3" of G, [p?"], with trivial intersection
with H,, (this implies that L., , is locally in the étale topology an extension of
Z/p"Z & Z/p" 7 by pn ), and where w is a trivialization of wg and w’ is a rational
trivialization of wg (e, L., ), defined by the condition that 7w’ = w for the isogeny
G — G/(®Ly ). Given a group Ly, ,, we can find p subgroups H,, of order p and
of multiplicative type such that L., ,, N H,, = {0}. This means that the groups L, ,
in the formula defining Tr o (][] Uw.2) © t(f) occur with multiplicity p#’". On
the other hand,

I 7.56.) = sy 3 A0/t )

weJe WEJC Ly,

weJe

where L,, runs over all totally isotropic subgroups of order p* of G, [p?] with mul-
tiplicative rank 1. Now we observe that

(H T)"f(G,w) = nZu,erl = Z Z f(G/(@®wLlyn),o') (mod prfwesekuw=lu)

weJe weJe L

where L, , runs over all totally isotropic subgroups of order p3" of G,,[p*"], which

are locally in the étale topology an extension of Z/p"Z ® Z/ p"2Z by pipn. Indeed,
if we write

(H Tw)nf(ng) ”ZweJC lw+3 Z Z f g/ @w wn) )

weJe weJe L’

using the definition of ], . ;. T, we find that all the groups L, , appear exactly
one time among the groups L, ,,, and that all the remaining groups precisely contain
the multiplicative subgroup of Guwlp] (and these give a contribution divisible by
(Fuw—lw)
D ). O
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Lemma 4.6.17. Assume that for all w € J¢, we have ky, — ly, > p#’°. Then the
natural map

e [T T)EOXE 0772, w0 (=D) = e [] Vw) HOXERGT 72 ()1, w"(=D))
weJe weJe
is bijective.
Proof. We will show that the map:
vie( [ Tw)HO@T 0772w (=D)) = e [[ Uwe) HOXGZ57 772 (p), 0" (—D))
weJe weJe

is bijective (note that it is legitimate to apply the ordinary projectors on these
spaces, because they can be written as projective limits (modding out by I™) of
spaces carrying a locally finite action). The result will then follow by taking re-
duction modulo I. The map is surjective by Corollary (and using I-adic
approximation). It remains to prove injectivity. Let us take

fee( [T TwH @R "=/ %, W (-D)),
weJe
with f # 0 and ¢(f) = 0. Without loss of generality, we can suppose that
f ¢ pe( [T Tu)HO =777, 0 (=D)).

weJe
It follows from Lemma [4.6.16| that Tr(.f) = p#/" f (mod p™fw ¥w—tw), Therefore,

f e plintwku=lo)=#"e(T] T, )HO(XGHH=71=7°2 w*(~D)). This is a contra-
diction. =

Proof of Proposition[{.6.9 This is immediate from Corollary [4.6.15] Lemmal[4.6.17}
and Lemmas [4.6.12] [£.6.13] and [£.6.14] O

4.6.18. Comparison of the cohomology on X{é%lli(p)l and X}ggl. We now deduce

the following proposition.

Proposition 4.6.19. There is a universal constant C depending only on p and F
but not on the tame level KP such that if 1, > 2 for all w, ky — 1, > C for
all wlp, and l, > C for all w € I¢, then the operator U' is locally finite on
RF(Xf{’%h(p)l,w“(—D)) and there is a canonical quasi-isomorphism:

e(T"RD(X T, w"(=D)) = e(UNRL(X 55 (p)1,w" (= D).

Proof. In we constructed a complex K*® computing explicitly the cohomol-
ogy RT'(X 7", w*(—D)). We recall that K* =

BIcr bk lim  HO(XZ5500% w0 (D)@ @) (det Go)"P~1 /(D (Ha(Gw)™))).-
X [Tyes Ha(Gw) weJ weJ

In exactly the same way, there is a complex L® computing RI‘(X]I(’%h(p) 1, w*(=D)),
such that L*F =

Dycrpi=k lim  HO(XEEGT 2 (0)1,w (D)@ (det G,)" P71 /(D (Ha(Gw)™))).
XHu,eJHa(gw) weJ weJ
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It therefore suffices to prove that for each J C I and each n > 1, U’ is locally
finite on

HO(XZha=" 2 (p)1, 0" (=D) @ @Q(det G,)" P~V /(D (Ha(Gu)™))),

weJ weJ
and the map
(T H (X557 (D)1, w™(—=D) @ R)(det Gu)" PV /(Y (Ha(Gu)™))) —
weJ weJ
e(UNH (X877 ()1, 0" (—D) ® @) (det Gu)" = /(> (Ha(Gu)"™)))
weJ weJ

is an isomorphism. In the case n = 1, this is Proposition 4.6.9] and the general case
follows by induction on n, using the short exact sequence

0= (D) @ @ (det G) "1 /(3 (Ha(Gu)" ) =

weJ weJ
W (=D) @ Q)(det G,)" =1 /(Y (Ha(Gu)"™)) —
weJ weJ
W"(=D) ® @Q)(det G,)" P~V /(Y (Ha(Gw))) = 0
weJ weJ
and the acyclicity of these sheaves (for which see the proof of Proposition [4.2.33]).

(Il
4.6.20. The proof of Theorem [{.6.1}

Lemma 4.6.21. If k = ((kv,lv)o|p) 5 a classical algebraic weight with l, = 2 when
velandk, =1, =2 (mod p — 1) for all v|p, then for each n > 2 there is a
diagonal map making a commutative diagram:

RT(XE (p), w(—D)) —Z— RT(XEL (p), w(~D))

RE(XZL (07 1), w™(—D)) —— RO(XZ (1), w"(~D))

Proof. This is an easy computation in the Hecke algebra, see the proof of [Pil20,
Thm. 11.3.1]. d

We now make repeated use of Nakayama’s lemma for complexes, in the form
of |Pil20, Prop. 2.2.1, Prop. 2.2.2]. In fact, we need the following slight strength-
ening of [Pil20, Prop. 2.2.1], which is proved in the same way; for ease of reference
we explain how it follows from results in the literature.

Lemma 4.6.22. Let R be a complete local Noetherian ring with mazimal ideal m,
and let M® be a bounded complex of m-adically complete and separated, flat R-
modules, with the property that the cohomology groups of M® ®pr R/m are finite-
dimensional and concentrated in degrees [a,b]. Then M® is a perfect complex, con-
centrated in degrees [a,b].

Proof. Tt follows from [Pil20, Prop. 2.2.1] that M* is a perfect complex, and it then
follows from [KT17, Lem. 2.3, Cor. 2.7 that it is concentrated in degrees [a,b]. O
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All the complexes we consider below can be represented by bounded complexes
of flat, complete and separated Z,-modules (resp. A;-modules), as can be seen
by considering a Cech complex for any finite affine cover, so the hypotheses of
Lemma [£.6.22] apply in our situation.

Lemma 4.6.23. For all classical algebraic weights k = ((ky, ly)o|p) with L, > 2 for

allw, ky —1ly, > C for all w|p, and 1, > C for allw € I¢, the operator U' is locally

finite on Rl"(f{f(f[’éi(poo)7w”(—D)) and there is a canonical quasi-isomorphism:
e(T")RL(XE, w™(—D)) — e(U"RI(X 55 (p™),w™(~D)).

Proof. By Proposition [4.6.19] together with [Pil20, Prop. 2.2.2, Prop. 2.3.1], the
action of U7 is locally finite on RF(%%’%H (p),w"(—D)), and the map

e(THRD(XE™,w"(=D)) = e(U)RL (X5 (p), w" (= D)
is a quasi-isomorphism. It follows easily from Lemma[4.6.21|that U is locally finite
on RF(Xﬁ(’%h(p‘x’),w“(—D)) and that the map e(UI)Rl"(x%’%h(p),w”(—D)) —
e(UI)RF(%ﬁ(’%h(pOOLw”(—D)) is a quasi-isomorphism, as required. O
Let k = (ky,l,) be a classical algebraic weight. Let Kw" denote the kernel of
the surjection of Corollary so that over Zﬁ(’Kh (p™), so we have a short exact

sequence of sheaves
0— Kw' = w*— Q% —=0.

A key step in the comparison between the ordinary forms of these weights is the
following basic lemma.

Lemma 4.6.24. For any w|p, we have Uy 2 € pEnd(RF(.’{kK“(poo), Kw")).
Proof. This follows immediately from an examination of (4.5.12]). O

Lemma 4.6.25. For all classical algebraic weights k = ((ky,ly)y|p) with I, = 2
whenv € I and k, =1, =2 (mod p—1) for all v|p, the operator U’ is locally finite
on RF(%%I’gli(poo),w“(—D)) and RF(%%I’éi(poo), 0% (=D)), and the map
e(UDRI (X5 (p), " (= D)) = e(U RO (X5, (), (= D))
is a quasi-isomorphism.
Proof. We consider the exact triangle
RI (X355 (0°), Kw™ (= D)) = RL (X' (), w" (= D))
= RE(X 5 (0%), 2" (= D).
By Lemma [4.6.24, the operator U’ is topologically nilpotent on
RF(%?I’(IIi(pOO)y Kuw"(=D)),
so in particular it acts locally finitely with e(U?) = 0.
If we further assume that l,, > 2 for all w, k,, — 1, > C for all w|p, and 1, > C

for all w € I, then it follows from Lemma [4.6.23| that U’ is locally finite on
RF(%%RIH (p*°),w™(=D)). Therefore in this case, it follows from the above exact

triangle that U? is locally finite on RF(X%I{h(pOO), 0% (=D)).
Again using [Pil20, Prop. 2.3.1], we deduce that U is locally finite on the com-
plex RF(%%I{M(I)“),Q“(—D)) for any weight , and therefore (again using the
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above exact triangle) it is also locally finite on RF(%%RIH (p>°),w"(—D)) for any
weight x, as required. ([l

Lemma 4.6.26. For all classical algebraic weights k = ((ky,ly)y|p) with [, = 2
whenv € I, ky, =1, =2 (mod p—1), for all v|p, l,, > 2 for all w, ky — 1, > C for
alw eI, and l, > C for all w € I¢, the complex e(UI)Rl"(ffi(’%n(poo),Q”(—D))
is a perfect complex of Z,-modules concentrated in degrees [0, #1].

Proof. This follows from Lemma 4.6.25] Lemma 4.6.23| and Theorem m (not-
ing that T divides T7, so that e(TT)RT(XZ! wF(—D)) is a direct summand of
e(THRI (X we(—D))). O

Lemma 4.6.27. The operator U! is locally finite on RF(I{ﬁ(’%H(pw),Q’”(—D)),
and e(UI)RF(%k%lh(p"o),Q""(—D)) is a perfect complex of Ar-modules concen-
trated in degree [0, #I].

Proof. This follows from Lemma [4.6.26) by Nakayama’s lemma, in the form of
Lemma [4.6.22| and [Pil20, Prop. 2.3.1]. O

Proof of Theorem[{.6.1 Parts (1) and (2) are Lemmal4.6.27] Part (3) is Lemma[4.6.25

together with Lemma [£.6.21] which shows that the natural map
e(UDRD (X R(p),w" (= D)) = e(UNRI (X (), (= D))

is a quasi-isomorphism. Part (4) follows from Theorem together with Propo-
sition .6.19] and Lemma [.6.25] O

5. DOUBLING

In this section, we prove a doubling result (see Theorems and which
is the key ingredient for proving local-global compatibility in §7.9] The general
ideal of doubling is that certain spaces of ordinary low weight modular forms admit
(at least) two degeneracy maps to spaces of ordinary modular forms of either higher
weight or higher level. For example, the space of weight one elliptic modular forms
modulo p of level T'1(N), pt N, admits degeneracy maps f — Ha- f and f — fP
(where Ha is the Hasse invariant) to spaces of forms of weight p and level T'; (V).
(Alternatively, after dividing by Ha, these degeneracy maps can also be thought
of as maps from classical forms of level I'1 (N) and weight one to ordinary p-adic
modular forms of level I'; (V) and weight one.) If one can show that the direct sum
of two copies of the original space embeds under the direct sum of these degeneracy
maps, then, following ideas going back to Gross [Gro90] and isolated and expanded
by [Wield] (see also [CG18] for further exploitation of these ideas), one can make
deductions about the local properties of the Galois representations of interest.

Let us explicate this in the example of weight one forms mentioned above (the
following is implicit in the first few lines of [Gro90), p.499] and explicit in [Edi92]
Prop. 2.7]). If f is a weight one elliptic modular cuspidal eigenform with Nebenty-
pus character x and T)-eigenvalue a, satisfying af, # 4x(p), one can show that the
associated Galois representation is unramified at p in the following way. Since the
polynomial X2 —a,X + x(p) has distinct roots, one can show using the degeneracy
maps above (and having established doubling) that there are two weight p ordinary
forms congruent to f with level I'1 (V) and T),-eigenvalues given by the roots o
and 3 of X? —a,X + x(p). Using the known properties of the corresponding Galois
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representations, one shows that the restriction to p is an extension of distinct un-
ramified characters, and thus that the extension is split (because the representations
corresponding to the two weight p forms are extensions in the opposite orders).

The above argument for local-global compatibility at p works equally well in
the ordinary symplectic case once we have established a doubling theorem, and we
will use this in §7.9) below. Before proceeding, we begin by recalling the doubling
argument in more detail in the case of GLy /Q.

5.1. The case of GLy/Q. For the moment, let X denote the special fibre of a
classical modular curve of level I'y(N) with N > 5 with p t NV, and let w denote
the usual invertible line bundle on X (as in [Gro90, §2]). The doubling strat-
egy of [CGI18, [Call8| may be reduced to ruling out the existence of simultaneous
eigenforms f € H°(X,w) for the operators T}, and U,. This is easily seen: in-
deed if f is a simultaneous eigenform for 7, and U, then it is also an eigenform
for V,, =T}, — Up, which is immediately seen to be impossible by examining the ac-
tion on g-expansions. This argument does not directly generalize to the symplectic
case (even over Q), and instead, the paper [CG20] employs a rather labyrinthian
argument involving g-expansions to prove an analogous result for GSp, /Q. In this
paper, we give a different argument which is based on analyzing the behavior of
the U, operator at the non ordinary locus. This argument in this form appears to
be new even for modular forms of weight one (although there are certainly some
echos of this argument in papers such as [Joc82l [Ser73| [Cail4]), and so we present
it first as a warm up for the general symplectic case.

If f e H'(X,w), we may think of U,f as a section of H%(X \ SS,w) for the
finite set S.S of supersingular points of X. We claim that there is a commutative
diagram

Ha-U.
(5.1.1) HO(X,w) ——2 HO(X, wP)

| |

H°(SS,w) —— H°(SS,wP)

where the vertical maps are the natural restriction maps, and the lower horizontal
map is an isomorphism. The existence of such a diagram can be proved in several
ways; for example it can be checked in the same way as the corresponding statements
for GSp, /F later in this section, by using the Kodaira—Spencer isomorphism to
describe the U, operator as a trace map on differentials.

Suppose that f is a Up-eigenform in H°(X,w) with non-zero eigenvalue. Con-
sidering the commutative diagram , we see that since Ha - U,f maps to
zero in H°(SS,wP), the restriction of f to SS must vanish. Thus f = Ha - g for
some g € H%(X,w? P), and this cohomology group vanishes if p > 2, so f = 0 in
this case. If p = 2, the only non-zero sections of H(X, Ox) are constants, and we
deduce that f is a multiple of the Hasse invariant.

In the rest of this section we prove a generalization of this to the Hilbert—Siegel
case. The analogue of the commutative diagram in the Siegel case (with
F = Q) is the following commutative diagram (where we write Y'=! for the locus in
the interior of the special fibre of the Shimura variety with Klingen level H which
is multiplicative, and we write Y =! for the divisor where the abelian variety is non
ordinary.)
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Ha-UIW(p%l
—_—

HO(Y21,0?) HO(Y2L wrH)

HO(Y=',0?) — & HO(Y=1, wpt1)

However, in contrast to the modular curve case, the map on the bottom line of this
diagram is probably not injective, so we cannot conclude as before. Instead, we
construct a larger commutative diagram

Up,2

Ha-Ury(p),1
_—

HO(YZ,0?) HO(Y'Z1 ot 1) HO(YZ21,0?)

HO(Y=! w?) — S HO(Y=! WPty — s HO(Y =1, w?).

If we assume that f € H°(Y =1 w?) is also a U, o-eigenform with nonzero eigenvalue
(which suffices for our purposes), we can use this diagram to make a similar argu-
ment to the above, considering the composite morphisms from the top left to the
lower right hand corner. It may help the reader to note that there is an analogous
diagram for GLg:

—5 HO(X, wP) H(X,w)

J J |

HO(SS,w) —— HY(SS,wP) —— HY(SS,w)

(again, the existence of this diagram can be checked in the same way as our calcu-
lations below). We see that if U, f has no poles, then the image of f in the bottom
right hand copy of H°(SS,w) vanishes; since the diamond operator (p) is an iso-
morphism, it follows that the restriction of f to SS vanishes, and we conclude as
before.
There is an additional complication in the Hilbert—Siegel case, which is that
rather than considering the entire Shimura variety, we are only working on an open
Zverl,2yere2
subspace XKP(I)KP)1
negative weight modular forms is not obvious. We sketch a proof for this vanishing
in below, using Fourier-Jacobi expansions (which ultimately reduces to the
vanishing of spaces of Hilbert modular forms of partial negative weight), but we do
not rely on this result. Instead, we give a complete proof of a slightly weaker result
which is nonetheless sufficient for our purposes; this argument does not use the

. This means that the vanishing of the space of (partial)
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boundary, but rather considers the behavior of another Hecke operator Uxkij(w),1 —
Utw(w),1 (called Z,, below) along the w-non-ordinary locus.

5.2. Conventions. Throughout this section, we fix aset I C S, and a prime w € I.
Recall that, as in §.3.4} for each subset I C S, we set

K,(I) = [[Kli(v) J] Iw(v),
vel vele

and we write X{ := Xiz(:(ef)lj’i”ff 2. We will use the following simplified notation:

Zverl,Zypere2
Kp(I)KP,1

e We write X["=*2 for the open subspace where A[w™] is ordinary.
e We write X { =1 for the (reduced) complement of this open subspace, which
is a divisor in X7{.

e We write X{ for the space X

We also write Y/, ¥;"=*? and ¥;"=*! for their interiors. We use the analogous
notation X7, 97 etc. for the corresponding formal schemes. We denote detwg by
w and detwg,, by w,,. We will finally denote the partial Hasse invariant Ha(G,,) €
HO(X{, wP=1) by Ha,,.

5.3. The operator Ugji(y),1- We now define a Hecke operator Ukii(.,,1 (see also §4.5.6)).

We again consider the p-adic completion of the correspondence considered in §

Xk
N
%K }:K

where we recall that K = KPK, with K, = [[, GSp,(OF,) and K’ = K? K}, with
K} = Si(w) * [T, GSp(Or,).

We can form the fibre product X/ X, % L. As xT — X is étale by Propo-
sition [£:3:3] this inherits the properties of X deduced from the theories of local
models and toroidal compactifications. In particular it is flat over Z,, normal,
Cohen—Macaulay, and the ordinary locus is dense in the special fibre, see The-
orem and We denote by Cxii(y),1 the open and closed formal subscheme
of this fibre product where the kernel of the canonical isogeny pjG — p3G has trivial
intersection with the multiplicative group pj H,,.

We obtain a correspondence

CKli(w),1

2 K

x! x!
where vy @ Ckiiw),1 — ¥! is induced by the projection X g~ X1, X5 ¥ — %! and
vy is defined as follows: the projection X+ X,, x, X! — Xk composed with
p2 : Xg — X induces a map Ckiiy),1 — Xx which we would like to lift to a
map vz : Cxiiw),1 — X¥!. In other words, given a point of CKli(w),1, We need to
give multiplicative subgroups of order p, H, C p5G,  for all w' € S,. But for
all w' € S, the kernel of the isogeny p;G,, — p3G, has trivial intersection with
piHy, (for w' # w it is an isomorphism, and for w’ = w this was assumed in the
definition of €kji(,),1) and we take H;, to be the image of pj H, under this isogeny.
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Lemma 5.3.1. We have R(v1)«Ocyy(,, 1 = (V1)xOcyyy., and there is a trace map
R(vl)*OCKu(w),l — O:{I.

Proof. We have X = Xk x for a smooth polyhedral cone decomposition ¥ and
we have Xg+ = Xg/». We can now assume that ¥’ = 3 because we have
RW*OXK/,E/ = O%K',z for m : Xg 5 — Xk the projection (we note that the
cone decomposition at level K’ may not be smooth but we will not need this).
Since ¥ = X', the map v; is quasi-finite, and (since it is proper) is therefore finite.
Hence we have R(v1)«Ocyyy = (V1)5Oyyy(y., - Moreover, as Cxii(w),1 is Cohen—
Macaulay and X! is regular, we deduce that the map v; is also flat, and so it has

an associated trace map. U
We let Qth(w) | be the open formal subscheme where v1G,, (or equivalently v3G,,)
is ordinary. It restricts to a correspondence over X/*=«2. Over CKi‘l’ (w),17 the mul-

tiplicative rank of ker(viG, — v3G,,) is either 0 or 1 (it cannot be 2 because H,,
has trivial intersection with ker(viG — v3G)), and hence we have a decomposition

= =20t 2,m-et
Q:Kh(w) Q:Kll(we H QKh(u;)nle
where Q:Kl“’(w) is the locus where the isogeny viG — v3G is étale, while Q:gﬁ’i;)” °t
is the locus where ker(viG — v3G) has multiplicative rank 1.
For any weight k = (ky,l,), we have a map

vaw™ = viw"[1/p]
induced from the universal isogeny (we note that we are not assuming l,, > 0.)
Tensoring this map with the trace map of Lemmal[5.3.1] we obtain a map of sheaves
over X':
O : (Rvy),vsw™ — w™[1/p].
We now define Uxkji(w),1 = p~ 1O, if I, < 2 and Uxli(w),1 = p30, if I, > 2.
Lemma 5.3.2. We have Ukjj(w),1 : (Rv1).v50" — w".

Proof. We follow the same strategy as the proof of Lemma[3.9.18] Both the source
and target of this map are locally free sheaves over the smooth formal scheme X'.
To prove that the map is indeed p-integral, it is enough to prove it over the ordinary
locus, and we check it separately on each type of component

On the component of the map corresponding to €% the isogeny is étale

Kli(w),1’
over the ordinary locus and therefore the map viw" —>( v)lw ®[1/p] is actually an
isomorphism vjw® — viw", while the trace map is divisible by p* (see the proof of
Lemma [3.9.18).

On the component of the map corresponding to I:(l‘fleet, the isogeny has mul-

tiplicative rank one over the ordinary locus and therefore the map
vaw"™ — viw"[1/p)
is actually a map
V3wt — plevtw”,
while the trace map is divisible by p (again see the proof of Lemma .

Therefore, on the étale component, the map is divisible by p? and on the
multiplicative-étale component it is divisible by p=+1, ([l
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5.4. The operators Upy(,),1 and Z,,. Now we consider some Hecke operators on
X1=v2 The restriction of ©, to X/*=»2? decomposes as a sum 0, = ©¢ + @M,
according to the decomposition of QEI‘{(Qw) 1~ We define normalized cohomological

correspondences Uty (y),1 = p 20 and Z,, = p~lv—tOm-et,
Lemma 5.4.1. The cohomological correspondences Ury(w),1 and Z,, are p-integral.
Proof. This follows from the proof of Lemma O

We have the following identities of Hecke operators over the ordinary locus at w:
(1) Uxiitw)1 = Utw(wya + D' 22y if Ly > 2,
(2) Ukiiwyn = P* " Urw(u) 1 + Zu if Ly < 2.
It follows in particular that:
(1) UKli(w),l = UIw(w),l mod p if [, > 2,
(2) Ukii(w) = Zw mod p if [, < 2.
Another important property is the following:

Proposition 5.4.2. For any weight k, we have the following identities of cohomo-

w4,

logical correspondences over Xll’
(1) Z,Ha,, = Ha,Z,,
(2) UIw(w),lHaw = HawUIw(w)J-

Proof. The correspondence Z,, is the tensor product of the fundamental class (de-
duced from the trace map normalized by p~!) and a map viw" — viw” which is
obtained by normalizing the natural map by a factor p~'». It suffices to check that
for w® = wP~! this normalized map matches the Hasse invariants viHa(G,,) and
viHa(G, ). This is the content of [Pil20, Lem. 6.2.4.1]. The case of Ury(w),1 is clear
because the universal isogeny is étale. (I

Finally, we will need the following property:
Proposition 5.4.3. Ifl, <0, the cohomological correspondence over X{:
Ukili(w),1 : (v1)xv5w" — w"

factors through
Ukii(w),1 ¢ (v1)030" — w“(_va:wl)_

Before giving the proof we need some preparations. Let BT /F,, be the smooth
algebraic stack of quasi-polarized 1-truncated Barsotti—Tate groups of height 2 and
dimension 1 over SpecF,. Let Y/F, be a modular curve of level prime to p. The

map Y — BT is a presentation of BT (that is, it is a smooth surjection). We denote

_, Ha(E
by E the universal object on BT. We have a Cartier divisor w}E P a—(>) Opr

whose support is the non-ordinary locus of BT. Let w : BTy, — BT be the
representable finite flat map which parametrizes a subgroup H C FE of order p.
Let Yp(p) be a modular curve of Iwahori level at p. The map Yy(p) — BTy is a
presentation of BTiy,. Over BTy, we have a universal morphism g : E/H — E
with kernel HP (using the polarization to identify £ and EP, E/H and (E/H)P).
By differentiating, we get a map of line bundles dg : wg ® wg} u — OBy, -

Lemma 5.4.4. We have a canonical factorization (dg)®? : (wp ® wE}H)m —

1-p
w*wE — OBTIW'
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Proof. 1t suffices to prove the claim over any presentation of BTi,. We therefore
reduce to proving the statement over the modular curve Yy(p). The vanishing
locus of 7*(Ha(E)) is a product of Artinian local rings of length p + 1 (the degree
of 7) indexed by the supersingular points. The vanishing locus of dg is the entire
irreducible component of Yy (p) which is degree p over Y via 7 (this is the component
where H is generically étale). Therefore, for any supersingular point x € Y, the
image of dg in Oy, () ®o, k(z) defines a closed subscheme of length p, and hence
the ideal generated by the image of dg in Oy, ) ®o0, k(z) is both nilpotent and
length 1. It follows that (dg)? maps to zero in Oy, () ®o, k(z). O

Proof of Proposition[5.4.3 Let k be a weight with [, < 2. Let &’ be another
weight with (k,,1,) = (kl,1) for v # w, ky — Ly = ki, — 1!, and I/, = 2. Let
us denote by Ukij(w),1(2) : (v1)svw® — w" the cohomological correspondence
in weight /. Let Ukii(w),1 : (v1)«vfw"” — w" be the cohomological correspon-
dence in weight k. The proof of Lemma @ shows that the map v3 detwlw =2 —
v det w!l»=2[1/p] induces a regular map p' ~2v} det whv =2 — v} det wl» =2, and that
moreover Ukji(,),1 is obtained from UKli(w) ( ) by twisting by this map. It thus
suffices to show that on the special fibre, p'»~2v} det whv =2 — v} det whv—2 factors
through v} det wh ~2(—=X71=") when [, < 0.

This statement is local in a neighbourhood of X 11 =1 and we can therefore replace
X! by its completion along this closed subscheme. We may also work on the interior
of the moduli space, as the interior of the divisor X{ =1 is dense. Therefore, we
may suppose that G,, comes equipped with a multiplicative sub-Barsotti—Tate sub-
group G of rank 1, and we denote by G2° = (G™)+/G™, which is a Barsotti-Tate
group scheme of height 2 and dimension 1. The isogeny viG,, — v3G,, induces an
isomorphism viG;" — v3G," and a degree p map v1Go — v3Go°.

The normalized map p~tviw,! — viw,! is the tensor product of the isomor-

o 1U2wg?}, — vlwgoo which is the trans-

phism vzwgi — vlwgm and the map: p
pose of the map viwgse — viwgee obtained by dlfferentlatlng the dual isogeny:
v3(G9°) — v1 G5, The result follows from Lemma[5.4.4] O

Corollary 5.4.5. Let k be a weight with 1, < 0. Let f € HO(X{,w") be such that
Zwf = PBwf for some B, #0. Then f =0.

Proof. Since l,, < 0, we have Z,, = Ukjj(w),1 O HO(X{,w"r). Assume that f # 0,
and let n be the order of vanishing of f along Xi!. By considering Ha(G,,) ™" f and

using Proposition we can suppose that n = 0. This contradicts Proposition
O

5.5. Preliminaries on Kodaira—Spencer. In this section, we recall the Kodaira—
Spencer map and its compatibility with certain functorialities. A convenient refer-
ence for what we need is [Lan13].

Let S be a Z,)-scheme and let X be a smooth S-scheme of relative dimension
3[F : Q]. Suppose that we have a tuple (A,, \) with

e A/X an abelian scheme of dimension 2[F : Q).
t: Op — End(A)®Z(;,) making Lie (A) into a locally free O ®z0O x-module
of rank 2.

e \: A — A a prime to p, Op-linear quasi-polarization such that A[p] :
A[p™] — A![p™>] is an isomorphism.
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Then we have the first de Rham cohomology of A/X together with its Hodge
filtration

0= wa— Hig(A/X) = whe =0
as well as the Gauss—Manin connection
Hir(A/X) = Hip(A/X)® Qﬁc/&
Passing to subquotients for the Hodge filtration we obtain the Kodaira—Spencer
map for A
WA — Wi ® Qk/s.

The polarization A\ induces an isomorphism A* : w4t — wa. Using this we may
obtain a Kodaira—Spencer map for (A, \)

wa Qwa — Q?X/S'

Then one checks (see [Lanl3, Prop. 6.2.5.18]) that this map factors through the
quotient Sym?gx@OF w4 of wa ®wy, so that we obtain a map

2 1
Symp, g0, WA — QX/S.

As usual, if Y/ is a smooth scheme of relative dimension d, we write Ky g for the
relative canonical bundle /\dQ%/ /8" We will be especially interested in the induced
map on top exterior powers

NFRI(Syme, oo, wa) = det(wa)® = Kx/s.

Proposition 5.5.1. Suppose that (A, 1, \) and (A’,/,N) are tuples as above and
that we have a prime to p quasi-isogeny ¢ : A — A’ satisfying ¢r = /¢ and
O*Np =\ for somexz € Op ® Z,). Then we have a commulative diagram

det(wA/)3 —_— Kx/g

Jd)* J'NF/QW

det(wA)3 — KX/S

Proof. Tt follows from the definitions that under the Kodaira—Spencer maps, ¢* :
Syméx®OF war — Sym?gx@OF w4 induces the endomorphism of Qﬁ(/s given by
multiplication by x. The result follows on passing to top exterior powers. 0

Proposition 5.5.2. Let f : X — Y be a finite flat map of smooth S-schemes
of relative dimension 3[F : Q] and let (A,t,\)/Y be a tuple as above. Then the
Kodaira—Spencer map is compatible with base change in the sense that there is a
commutative diagram

frdet(wa)® —— f*Ky/s

|

det(WAX)S EE— Kx/s

where the horizontal maps are the Kodaira—Spencer maps for A and Ax, the right
vertical map is pullback on differentials, and the left vertical map is the natural
isomorphism.
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Moreover it is compatible with traces in the sense that there is a commutative
diagram

fedet(way)® —— fiKxs

| |

det(wy)? ——— Ky/s

where again the horizontal arrows are the Kodaira—Spencer maps for Ax and A
while the vertical map on the left comes from the (unnormalized) trace map on
functions f.Ox — Oy and the isomorphism wa, ~ f*wa, and the right vertical
map is the trace map on dualizing sheaves.

Proof. The commutativity of the first diagram follows from the compatibility of the
formation of de Rham cohomology with flat base change, and the compatibility of
the Gauss—Manin connection with flat base change (which in turn follows from the
compatibility of the Hodge to de Rham spectral sequence with flat base change).

To see that the second diagram commutes, it is by adjunction equivalent to show
that the lower square in the following diagram commutes.

frdet(wa)® —— f*Ky/s

| ]

det(way )? — Kx/s

| I

frdet(wa)® —— f'Kys

Since we have already seen that the upper square commutes, and since the indi-
cated vertical arrows are isomorphisms, the commutativity of the lower square is
equivalent to the commutativity of the outer square. This commutativity follows
from unwinding the definitions; indeed, this outer square is the natural one obtained
from the Kodaira-Spencer morphisms and the natural transformation from f* to f*
(which is given by the trace of the morphism f). O

Finally, we recall the Kodaira—Spencer isomorphism for our Shimura varieties.
Proposition 5.5.3. The Kodaira—Spencer map
UJ3 — K@I/Zp
is an isomorphism.

Proof. This follows from the usual Kodaira—Spencer isomorphism [Lanl3l Thm.
6.4.1.1] and the compatibility with étale base change proved in Proposition m
(noting that the formation of the canonical sheaf is compatible with étale base
change). O

5.6. The Hecke operator Uy ()1 and traces for partial Frobenius. We
recall the construction of the Hecke operator Uy (.),1- We have a correspondence

see §5.4] where this correspondence was denoted eow2e  hut we adopt here a
Kli(w),1
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simplified notation €1 )

QJI,:wz QJI,:/WQ

where € parameterizes a point (A, ¢, A\, {Hy}ves,,n) of P72 along with an étale
maximal isotropic subgroup L,, C A[w]. The map p; simply forgets L,,. To describe
p2, consider the étale isogeny 7 : A — A/L,. Then ps sends (A,¢, A\, {H,}ves,)
to A/L, with the induced action of Or ® Z(,), the prime to p quasi-polarization
obtained by descending z,,A, and the level structures 7(H,) and m(n). Since the
subgroup A[z]/ Ly of A/L,, is the canonical multiplicative subgroup of A[z,,], we
see that ps is an isomorphism.

For any weight  for G, pullback by the universal étale isogeny over €. induces an
isomorphism of sheaves p5w"™ — pijw”, and the Hecke operator Ury(y),1 is obtained
from the composition of maps of sheaves over )7=w?2

« L omy »

3 Pl
* K *, K P K
D1,xPowW™ — P1xP1W - w.

Now we turn to the Kodaira—Spencer isomorphism w? ~ Koyr=2.

Proposition 5.6.1. There is a commutative diagram of sheaves on 2)1=w?2

3 3
PLaPow” —————————— W

N zy)3
J 7F/Qé ) tr J

P1,+P3Kyr=u2)z, — Kyr=w2/z7,

where the vertical arrows are the Kodaira—Spencer isomorphism, and the top hori-
zontal arrow is Ury(w),1- The bottom horizontal arrow is defined as follows: since po
is an isomorphism, we may identify p5Kgy1.=w2 /7, with Ker /7, and the morphism
then comes from the trace map for p1 on dualizing sheaves, multiplied by a factor

Nr/q(zw)? X
of — € Z(p).

Proof. This follows from Propositions [5.5.1] and [5.5.2] O

We note that although we are primarily interested in using Proposition [5.6.1] on
the special fibre, we cannot apply Propositions[5.5.1]and [5.5.2]directly on the special
fibre because some of the maps in the commutative square reduce to 0 modulo p.

We may also describe Uty(y),1 in weights other than parallel weight 3 using traces
on differentials. For any weight £ = (ky,ly)ves, we let k=3 = (k, — 3,1, —3). Then
tensoring the Kodaira—Spencer isomorphism with w"~3 we have an isomorphism
W'~ Kyr=w2/z, @ w3, Then we have a commutative diagram of sheaves on

g)[,:wQ

K

P1,xP5w" w

| |

P1,+05(Kyr.=w2/z, ® wr3) — (P1,+p3Kyyr.=u2/z,) @ w3 — Kyr=uw2)z, ® w3
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where on the bottom row, the first map is an isomorphism coming from the pro-
jection formula and the isomorphism piw"~3 ~ piw"~2 and the second map is the
tensor product of the map of Proposition [5.6.1] and the identity.

We would now like to understand the behavior of Uy (4,1 beyond the w-ordinary
locus on the special fibre. In order to do this we make the following definition.

Definition 5.6.2. We define a “partial Frobenius” map
Fy:Y] =Y/

as follows: given a point (A, t, A, {Hy}ves,,n) of Y{, we may consider the maximal
isotropic subgroup L., C A[w] defined by

Ly = ker(F : A[w™] — A[w™]®)
and form the subgroup of degree p*fQl—2

iw = Lw X H A['U} cA
vFW

and the isogeny m: A - A= A / Ly. Ly, is isotropic for the polarization ;’iA which
thus descends to a principal polarization A on A/ Ly. Then the map F, 1ws defined
by
Fw(Aa Ly )‘v {Hv}vespa 77) - (121’ E? 5‘7 {Hv}vespa ﬁ)
where A, and X are as described above, i is the induced action of Op @ Z,
H, = nH, for v# w, H, = HY C Afw>®]®P) ~ (A/Ly)[w*>], and 7 = %m].
Note that this definition depends on the choice of x,,.

To explain why we call the map F,, a partial Frobenius, observe that according
to the product decomposition

Alp™] =TT A™]
vlp
we have A[w™] = A[w™]/L, ~ Aw>®]® while A[v>®] ~ A[v*>] for all v # w. In
particular, according to the local product structure of Y;! coming from the Serre—
Tate theorem and the product decomposition of the p-divisible group A[p™], F,
looks like Frobenius on the factor corresponding to w.
As a consequence of this we may record

Proposition 5.6.3. F,, is finite flat of degree p>. It restricts to a map F, :
YII’:’”’1 — Yll’:wl which is finite flat of degree p?.

Proof. Using the Serre-Tate theorem and the description of F, on the p-divisible
group above, this follows from the fact that Frobenius on a smooth variety of
dimension n is finite flat of degree p™. O

The identification A[w*] ~ A[w*]®) induces a canonical isomorphism F*w,, ~
wP while the isomorphisms A[v>°] ~ A[v>] for v # w induce canonical isomor-
phisms Fjjw, ~ w,.

The point of this definition is that if we identify ¢! with 97=»2 via py, the
map p; on the special fibre is simply the partial Frobenius F,, restricted to Yll’:“’2.
Moreover making these identifications, the isogeny piG, — p3G. becomes V :
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@ 5 G, (as its dual is Frobenius) and so the pullback map piw, — piwy
becomes Ha,, : wy, — wh.
As in §3.8.16] we may consider trace maps for F,, on differentials Fw,*KYII —
Kyll. Tensoring with any line bundle £ on Y;' and using the projection formula
FuKyr @ L~ Fy, . (Kyr ® FL), we obtain a twisted trace map

Fw)*(Kle ®F£;£) — KYII ®£.

We may similarly consider twisted trace maps for line bundles on the divisor YII’:’wl.

Now we restrict to parallel weight 2 and work on the special fibre. With the iden-
tifications we have made, our discussion above shows that we have a commutative
diagram of sheaves on Y1I’=2w

Ulw(w),1
Fw,*w2 w2

J Np/glew)® Ha—! J

p3 w _ _ _
Fm*(KYlI,:wz Quw™l) —— Fw’*(KYII,:w2 Ruwlewl?)— Kylz,zwz Qw™!

Now we want to extend this description to all of Y. Here is the first main result
of this section.
Proposition 5.6.4. The map Hay, - Ung(w),1 : Fusw? = w? @ wh™! of sheaves on
YII’:w2 extends to Y{' and fits in to a commutative diagram of sheaves on Yy

9 Haw -Ulw(w),1

2 —1
Fysw w* @ wh

l 7NF/Q($W>3 HaP ! J/

3 12
F‘w’*(KYI,zwz (024] wil) p*> va*(KYI,:wz X w1t ® wg’ b ) E— KYI,zwz ® wﬁfl ®w’1
1 1 1
Proof. To prove the proposition, it suffices to establish the commutativity of the
. I,=02 . . .
diagram over Y; , as the vertical maps are isomorphisms, and the maps on the

bottom are already defined over Y;. This commutativity follows from the discussion
above and the fact that F;Ha,, = Hal . O

Now we are going to restrict to the divisor Ylj’:“’l. The Kodaira—Spencer iso-
morphism Ky ~ w? of Proposition induces by the adjunction formula an
isomorphism

Kylf,:w1 ~ s X wﬁl_1|Y11,:w1.

Proposition 5.6.5. There is a commutative diagram of sheaves on Y{

aP—1 12
Fuu(Kys @) —— Fy o (Kys 9w 0wl ™) — Ky @ w !l @wh !

| |

Fw7*(Ky11=:w1 X w1 ® wlly—p) Kle,:wl X w1

where the vertical maps are obtained from restriction and the adjunction formula
as recalled above, and the bottom horizontal map is a twisted trace for F,, on the
divisor Ylj’:”1 and the line bundle w™".
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Proof. The commutativity of this diagram follows from Proposition where in
the notation of that proposition we take X =Y =Y{, D' =D =Y =wl f=Fy,
and n = p, and identify Oy (Y;"=*') with w?~! via Ha,, (tensor the commutative

diagram of Proposition [3.8.17| with w™! @ wP~1). O
We may then define a map 71 : Fy«(w?|yr-u1) = w? ® wfu_l\ylf,:u,l by the
1
diagram
(566) Fw)*(w2|Y11,:w1) % w? X w{’u_1|ylz,:w1

ZJ Jz
- -1 1—p _ -1
Fw,*(Kylfyfwl X w ®ww ) 4>KY11,7W1 R w

where the vertical maps are Kodaira—Spencer and the bottom horizontal map is
3

M times the twisted trace for w™1!.

Now combining Proposition [5.6.4] with Proposition [5.6.5] with the definition of

~v1 by (5.6.6) we have proved the following.

Proposition 5.6.7. There is a commutative diagram

Hay - Urw (w),1

HO(Yllawz) HO(YllaW2®w5;71)

| J

HO(Y ™ 0Py rmun) —— HOYV T w0 @ wl | yrmun)

where the vertical maps are restrictions and the horizontal maps are as explained
above.

5.7. The Hecke operator U, > on the w-non ordinary locus. In this section
we consider the Hecke operator U,, o that was first introduced in We consider
the correspondence

I
Qtw,Z

which is the composition of the correspondences €, 2 1(p) and €, 2 2(p) considered
in (or more precisely their restrictions to the interior of the moduli space).
The correspondence €,, 5 admits the following direct description: it parametrizes
isogenies p;G — p3G whose kernel K, is a totally isotropic subgroup of G, [p?]
which has trivial intersection with the group pj H,,. To see this, note that K, fits
into an exact sequence 0 — K, [p]| = K, — K,/ Ky[p] = 0 where K, [p] is a finite
flat group scheme of rank p® and étale rank p, and K,,/K,[p] is a finite étale group
scheme of rank p.

There is yet another description of Qﬁfug that will be important for us. To any
point (G, 1, \, {Hy}ves,,n) € Y’ we can associate a subgroup Ly C G[p?] as follows:
the finite flat group scheme x ' H,,/H C G,,/H of degree p? contains a canonical
multiplicative subgroup L!, of degree p (as 7 'H,, /Gw[p] ~ H, is multiplicative
and G, [p]/H: ~ HY is étale, we see that x;' H,,/H; is isomorphic at geometric
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points to p, X Z/pZ, and hence over the entire (reduced) special fibre, the kernel of
Frobenius on z,'H,,/H. is a multiplicative group of order p which lifts uniquely
over 97). Then we may define the group L,, to be the preimage of L/, under the
isogeny A — A/HZ. Observe that L, C A[w?] is a totally isotropic subgroup of
degree p*. Then we take
Ly = Ly % H Al?.
vFW

We temporarily write )£ for the formal completion of Yk, ke with K, =
GSp4(OF,) ITver,vpw Kli(v) [1,e7e Iw(v), along the open subvariety of the special
fibre where A[w*] has p-rank > 1, H, is multiplicative for v € I, v # w, and
L, is multiplicative for v € I¢. Then there is a natural map f : 97 — Q‘jijfsph
which forgets the Klingen level structure H,, at w. It is étale and affine (see

Proposition 4.3.3)).
We define a map v, : 97 — @fu_sph by sending a point (G, ¢, A\, {Hy}ves,,n) to
G/ L,, with the polarization descended from ;’—24)\, the induced action of O and the
2

level structures p~“7n and 7wH, for v # w where 7 : G — g/iw is the isogeny.

Lemma 5.7.1. The correspondence Qf{u,g fits in the following Cartesian diagram

I P1 I
Q:w,Q @

prz Jf
I Ywo gy
iy w—sph
Proof. Let piG — p5G be the universal isogeny over Qﬁig. Then the composite of

this isogeny with the isogeny p53G — p3G/ L,, identifies with multiplication by p?
on pigG. O

Lemma 5.7.2. The map p; : QIU,Q — ! is finite flat of degree p*.

Proof. The correspondence Qﬁﬂﬂ is smooth, and the map p; is generically étale of
degree p* and finite. It follows from miracle flatness that it is finite flat. O

We can now deduce the following important relation between Q{m? and F2 over
vl

Proposition 5.7.3. The restriction of ps to the scheme theoretic preimage p;l(Y1 ’:“’1)
s an isomorphism to Yll’:wl. Making this identification, py becomes F2 : Y} =wl
y=et

Proof. We observe that the restriction of f to Yll’:“’1 is an isomorphism. This im-
plies that the restriction of py is an isomorphism. Now we examine the definition of
Ew. The key observation is that L,, coincides with the kernel of Frob? : Guw — gfj’ 2).
It suffices to check this on geometric points. Over a geometric point of Yll’:“’l, the
p-divisible group G,, has a decomposition into a product of multiplicative, slope %
and étale group p-divisible groups: G, = ggf x Go? x Gi'. Then the kernel of Frob?
is simply G2°[p] x G™[p?], and this group equals L. O
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Pullback by the universal isogeny over 65,2 induces a morphism dg : piw, —
Diwy, as well as isomorphisms piw, — pjw, for v # w. The following proposition
is implicitly contained in Lemma [£.6.4] but we briefly recall the argument.

Proposition 5.7.4.

(1) The map & is divisible by p and the resulting map 6 = %50 D PhWw — Diwy
18 an tsomorphism.
(2) Under the isomorphism §P~1 : p3wP =1 ~ piwP =1 we have p{Ha,, = piHa,,.

Proof. Because @{0’2 is smooth we are free to check the first claim on the ordinary
locus where it simply follows from the fact that the isogeny p;G — p35G has kernel of
multiplicative rank one. The second claim follows from [Pil20, Lem. 10.5.2.1]. O

Making the identifications of the Proposition we may view the restriction
of § to Y;"=*! as an isomorphism

— 2
(‘5|Y},:w1 T Wy — (Fi)*ww ~ wk

. L. . _ =01 2_
or equivalently as a non vanishing section 5|Y}*:w1 € HO(Y; ™ wP —1). We also
1

denote by ¢’ : HU?&U} Diwyy Hv#w DPiwy, the isomorphism coming from the pullback
of differentials.
In weights k = (ky, ) with I, > 0, the Hecke operator

. * K K
Up,2 : p1xpow”™ — w

is defined by tensoring the unnormalized trace map p1,.p50ys — Oy with the

unnormalized pullback map piw”™ — pjw”, and normalizing by a factor of ,ﬁ

(see equivalently, the normalized map piw"™ — pjw” is constructed with the
help of the operator ¢).

First we may use the Kodaira—Spencer isomorphism to describe U, 2 in weight
3 in terms of traces on differentials.

Proposition 5.7.5. There is a commutative diagram of sheaves on 2!

Uw,2
3 ’ 3
PLapow”’ ———w

J/ 7NF/Qémw)6 tr J

p1PsKoyr )z, —— Kyi1/z,

where the vertical arrows are the Kodaira—Spencer isomorphism, and the bottom
horizontal arrow is defined as follows: since py is étale, we may identify p5Kg1 7,
with K1 V2 and the morphism then comes from the trace map for p1 on dualizing

6
sheaves, multiplied by a factor of NF/‘;# € Z(Xp).

Proof. This follows from Propositions [5.5.1] and [5.5.2] O
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In parallel weight 2 we can still express the cohomological correspondence Uy, 2
by using a similar commutative diagram of sheaves on 2)7:

Uw,2

P1sPhw? w?
l 71\’”%1“’)6 tr@(5'8) ! J
p103(Ky1/z, @ w™1) Kyi/z, ®w™!

We can restrict to Y/'=»! and obtain the following:

Proposition 5.7.6. There is a commutative diagram

P1p5(Kys Qw™) Ky Quwt

| J

PLp3(Kymr ® Oy (V=D)L 1 @ wY) — Kyriman © Oy (<Y =) 11 @070

J J

(Fi)*(KY11,=w1 Ruwl @wlP) Kyr-u ® wl@wl?

where:

o The upper vertical maps are obtained by restriction to Yll’:“’1 and the ad-
Junction isomorphism Ky r lyr=w1 Kyll,:wl ® Oy .

e The lower vertical maps are obtained from making the identification of po
with id and p; with F2 of Pmposition as well as using the isomorphism
Ha,, : O(Y]"=") — we- 1,

e The top horizontal arrow is the composition of (66') ™! and the twisted trace
forw™! on KSIG , as on the bottom row of the diagram immediately preceding
this proposition.

e The middle horizontal arrow is multiplication by (60") ;};wl followed by

1

the twisted trace for py on the sheaf OYII(—Yll’:wl) ®@w™t.
o The bottom horizontal arrow is multiplication by 5|;’,’1:w15’|;}:w1 followed
1 1

by the twisted trace for F2 on the line bundle w™! @ wl™P (normalized by

6
the p-adic unit NF/C;#).
Proof. The commutativity of the top square follows from Proposition while
the commutativity of the bottom square follows from Proposition [5.7.4l The reason

we get multiplication by 8| _ 4 ;},:wl in the bottom horizontal arrow is because
1 1

we multiply the original (66’)|;}‘:w1 with 6|;};’fyl which arises when relating the
1 1

isomorphisms p(Ha,, : O(Y;"=*") = wp=1) for i = 1,2. O

Our goal from now on is to interpret the bottom horizontal line of this diagram in
terms of the map v; of (5.6.6). We introduce a map s : F, . (w? ®w5‘1|yz,:w1) —
1
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w2\Y11,:w1 defined by the diagram
(5.7.7)

Fw,*<w2 ® W{)u_1|yi’=:w1)
zl Jz
Fw)*(KYII,:wl X w‘l) Fw’*(KYII,:wl 24 w1l X o.)llv_p2) — Kyll,:wl ® w1 ® wilu_p

V

-1
3l ki

w2|Y11,:w1

where the vertical maps are induced by Kodaira—Spencer, and on the bottom the

first horizontal map is multiplication by § ‘;};wu while the second is the twisted
1

3
trace for £ = w™! ® wl P (normalized by the p-adic unit M)

We now consider the composition v, 071 : (FE))*(UJ2‘YII,:1U1) — w2|ylz,:w1.
Proposition 5.7.8. There is a commutative diagram
(F2)u(@0?yriman) —— s Fypa (02 @ 08 1m0 ) ——— s 2] 1=t
1 1 1
zl Jz
(F2)e(Kyrmm @0t @wi™®)  (F2)u(Kyrmw @0 ® wl=r) 5 Kyrmm @ ' @wl P
-

—pgsr—1
378 \yll,:uyl

where the vertical arrows are given by the Kodaira—Spencer isomorphism and on the
bottom row we first multiply by 5| % _ . and then take a twisted trace for F2 (nor-

1=
1
6
malized by the p-adic unit NF/‘;#) and the line bundle £ = w™' @ wlP|,1-u1.
1
Proof. This follows from the fact that F;d|y 1,1 = 5\5,7%1. O
1 1

Combining Proposition[5.7.6|with Proposition[5.7.8| we have proved the following:

Proposition 5.7.9. There is a commutative diagram

Uw,2

HO(Yll, w2) HO(Y1]7 w2)

J J

HO(Y ™ @ yrman) =5 HOY 7Y 02y man)

where the vertical maps are restrictions and the horizontal maps are as explained
above.

5.8. Main doubling results. There is an obvious injective restriction map:
HO(X{,0*(=D)) = H(X{"™"* w*(~D))

which is equivariant for the action of the Hecke algebra away from w, and for the
actions of U, 2 and Uy 0. We now compare the action of Ukij(y),1, Which acts on
both the left hand and right hand modules, and Uty (.),1, which acts on the right
hand module.
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We have defined a Hecke operator Z,, on HO(X{="*? w?(—D)) with Ukiliw),1 =
Ulw(w),1 + Zw (see §5.4).
Lemma 5.8.1. On H° (Xll*:wZ, w?(—D)) we have the identity of operators Uy (w1 Zw =
Uw,2.

Proof. This is immediate from Lemma

We introduce the doubling map:
HO(X{,0*(=D)) ® H'(X{,*(-D)) — H(X{™***(-D))
(fr9) = [+Zug

In this formula f and g on the right hand side are viewed as sections of H(X1'=*2, w?(—D))
via the above restriction map.

We can define an operator that we formally denote by Uty (y),1 on the left hand
side by the following matrix:

Uxiiw),1 Uw,2
UIW(w),l = < _(:1[1}) 0

Lemma 5.8.2. The doubling map is equivariant for the action of Ury(w),1- The
operator Ury(u)1 on HY(X{,w?(=D))®H(X{, w?(—D)) commutes with the action
Of Uw,2-

Proof. The equivariance follows from Lemma [5.8.1] and the commutativity follows
from Lemma [£.5.15] O

We now consider the U, s-ordinary part:
e(Uu2) HO(X{",0?(=D)) @ e(Uu o) HO(X{"',0?(~D)).

We have restricted to the direct factor HO(XZ! w2(=D)) of HO(X],w?(—D)) in
order to be able to use local finiteness and apply ordinary projectors.

Lemma 5.8.3.
(1) The image of
e(Un2) HO (X7 0P (=D)) @ e(U 2) HO (X[, 0 (D))
via the doubling map lands in e(UIW(w),1Uw,Q)HO(Xfl’I’:wz,wz(fD)).
(2) The operator Ury w1 is (left and right) invertible on
e(Uu o) H(X[,0?(=D)) @ e(Uy 2) H (X7, 0 (=D)).

(3) On e(Uy2)HO (X w2 (=D)) @ e(Uy o) HO(XE  w2(=D)) we have the
identity Ukii(w),1 = Utw(v) + Uw,QUI:Vl(U) 1 In particular Ukyiw),1 and
Ulw(w),1 commute with each other.

Proof. The doubling map
H (X7 W (=D)) & HO(X[, w?(=D)) - HO(X[V 7% w?(=D))

can be written as an inductive limit of maps between finite dimensional vector
spaces stable under the Ury(w),1 and Uy, 2 operators, so we will freely use the usual
properties of linear endomorphisms on finite dimensional vector spaces. We first
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observe that the operator U, o is invertible on e(U, 2) HO(X ", w?(=D)). Con-
cretely, for any f € e(Uy2)HO(XT! w2(—D)) we have e(Uy2)f = f = Uf;]’\;f for

N!
N large enough, and U;}zf = Uf)’Qflf. Therefore we may consider the operator

1 {0 —Upa
U 1 w,
w2 (1 UKIi(w),l)

on e(Uy2) HO(XE w2(=D)) @ e(Uy2) HO(X ! w?(=D)), and it is straightfor-
ward to check (using that Uxji(y),1 and U, 2 commute, as we noted in the proof
of Lemma that this is a 2-sided inverse of Ury(y),1- This proves the first
and second points. The third point is obvious from the formulae defining Uty ()1

and U} O

Iw(w),1°

We now prove our doubling theorems, combining ingredients from the previous
sections.

Theorem 5.8.4. Suppose that w € I and that f € HO(XlGl’I,wQ(fD)) satis-

ﬁes UKli(w),lf = (aw + ﬂw)f7 UIw(w),lf = awf; and Uw,2f = awﬂwf; where
Quy, By 0. Then f=0.

Proof. First suppose that the restriction of f to
write f = Hayg for some g € HO (X" w2 @ wl=P(—D)). Moreover because we
have Z,,f = B, f by hypothesis, we would then have Z,,g = B,9 by Proposition
[5-2:2] But then by Corollary [5.4.5, ¢ = 0 and hence f = 0.

Now we may suppose that the restriction of f to X 1G vl=wl i nonzero. Combin-

ing Proposition [5.6.7 with Proposition [5.7.9] there is a commutative diagram

XlGl’I’:"”1 is zero. Then we may

HO(YlGl’Iawz) HO(YlGl’L:wlvw2|y1G171>=w1)

JHaw Utw(w).1 l“{l

Us.o HO(}/IGI’I,LU2 ® wg—l) SN HO(Y'1G17I7=w1’ w? ® wﬁ_l‘ylGLL:wl)

|-

HO (YIGI’I, w2) N HO (}/'lGl,I’:wl7 w2|Y1G171~=w1)

where the horizontal maps are the natural restriction maps, and the vertical maps
on the right column are as in diagrams (5.6.6) and (5.7.7).

If we start with f in the top left of the diagram, we obtain something nonzero on
the bottom right because Uy, 2f = aufBwf and the restriction of f to YlGl’I’:w1
is nonzero. The commutativity of the diagram implies that Ha, Uty (y),1f has

nonzero restriction to YIGI’I’:wl. On the other hand, because Ury(w),1f = Quwf,
Ha, Ury(w),1f = awHay f which vanishes along Ylgl’l’:wl. This is a contradic-
tion. ([l

Remark 5.8.5. In fact, something stronger than Theorem [5.8:4is true: if w € I, and
fe HO(XY! w?(~D)) satisfies Uy, 2 f # 0, then Ury(u) 1 f € HO(XV!, w?(=D)).
This can be proved in exactly the same way as Theorem [5.8.4] given the following
strengthening of Corollary if w € I, then

Gq,1 —
HO(XKw(I)KP,p('UQ ®w11u p(_D)) =0.
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In the case p > 3, we will sketch a proof of this result in §5.9] using Fourier—
Jacobi expansions, but since a complete argument in the case p = 3 would involve
developing considerably more of the details of toroidal compactifications than we
need in the rest of the paper, we have decided not to give the details.

When p > 3, this vanishing result holds even for non cusp forms, so the same is
true of Theorem [(.84

We can now prove the injectivity of the doubling map.
Theorem 5.8.6 (Doubling). The doubling map
e(Un2) HO (X7 0P (=D)) @ e(U 2) HO (X[, 0 (D))
— e(Urw(uy1 Uw 2 HO(XTV 0702 w2 (= D))

1s injective.

Proof. Assume the map is not injective. By Lemma[5.8.2] the kernel is an inductive
limit of finite dimensional vector spaces stable under the commuting operators U, 2
and Ury(y),1. We may therefore take a nonzero simultaneous eigenvector (f, g) for
Uw,2 and Upy(y),1 in this kernel, with respective eigenvalues o, B, and 3, for
some vy, By # 0 (the eigenvalues are nonzero because we are by assumption in the
ordinary space for both Upy(yy,1 and Uy 2). It follows from the definition of the
action of Upy (w1 that f = —B,g and Ukii(w),1f = (aw + Bw)f. Since we are also
assuming that f + Z,g = 0, we see that the image of f in HO(X1=v2 ,2(—D))
satisfies Ury(w),1f = auwf. The result follows from Theorem m (note that the

eigenvalues for Uy (.,),1 and Uy 2 are nonzero because we are in the ordinary space
for these operators by hypothesis). ([

Remark 5.8.7. We now put the Theorem [5.8.6] in a form that is used in 7.9
Assume that M C e(Uy ) HO(XE w2(=D)) ® F, is a finite dimensional vector
space, stable under Ukji(y),1 and Uy 2. Assume that there are distinct elements
O, Bw € 1_“; such that Ukii(w),1 — (0w + Bw) and Uy, 2 — By are nilpotent on M.
The sub-algebra £ of End(M) generated by Ugij(w),1 and Uy 2 is therefore a local
Artinian algebra and there are elements @,,, Bw € & satisfying a,, = a,, mod mg
and B, = B, mod mg and such that on M &M we have (Utw(w),1 = 0w) (Urw(w),1 —
Bw) = 0. }

We can define maps g, : M — M & M by f— (f, =, f) for & € {auw, Buw}-
Then one checks easily that the map ¢, Beg,, : MOM — M S M is an isomorphism
and that the composite with the doubling map takes the form (f1, f2) — ((1 —
Bu Ul;l(w),l)ﬁ +(1—ay UI;vl(w),l)fz)' The first and second components of this map
therefore define injective maps

M — 6<Ulw(w)71Uw,2)H0 (X1Gl7I’:w25 w2(_D))UIW,17§’w'
for &, respectively equal to au, and f,,.

5.9. Vanishing in partial negative weight: Fourier—Jacobi expansions. We
end this section by giving a proof of the following vanishing result in “partial neg-
ative weight”, which partially strengthens Corollary [5.4.5 but is not needed in this

paper (see also Remark [5.8.5)).
Proposition 5.9.1. Assumew € I. If p> 3 and [F : Q] > 1, then

HO(XII(,,(I)KP,UWQ ®wy ?)=0.
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Remark 5.9.2. We have a sketch of an argument to show that if p = 3, then
HO(XL (DK, L w? @wlTP(=D)) = 0. We also have a sketch of an argument for
F = Q. But to give complete proofs would require us to justify certain properties
of Fourier—Jacobi expansion for which we could not find references (for example we
would need to have good geometric theory of cuspidal Fourier—Jacobi forms).

We will prove Proposition by restriction to a boundary stratum, and ul-
timately reducing to the vanishing of spaces of Hilbert modular forms of partial
negative weight.

We let K, = Hv‘p GSp,(Opr,), and by possibly shrinking K? we may assume
that it is a principal level structure in the sense of [Lanl3, §1.3.6]. We let ¢ €
Z(xp)+ (A®PRF)* /v(KP), and we may work with the connected component X 1 .
of Xg,1. We now choose a boundary stratum Z — Xk 1. corresponding to a one
dimensional totally isotropic factor W € € (see §3.5). It means that the restriction
of the semi-abelian scheme along Z is an extension of an abelian scheme A of
dimension [F' : Q] with Op-action by a torus T of dimension [F' : Q] with Op-
action.

Let H := ker(Resp/q GLa — (Resp/q Gin)/Gm). The abelian scheme of di-
mension [F : Q] is parametrized by a (connected) Shimura variety for the group
H (this is a Hilbert-Blumenthal modular variety) that we denote by Yy 1 and is a
moduli space of isomorphism classes of triples (A4, ¢, A, n):

(1) A — SpecR is an abelian scheme,

(2) ¢: Op = End(G) ® Z(,) is an action,

(3) Lie(A) is a locally free O ®z R-module of rank 1,

(4) A : A — At is a prime to p, Op-linear qua51—polarlzatlon such that for all
v|p, Ker(\ : A[v>°] — At[v®°]) is trivial,

(5) n is a prime to p level structure.

We denote by X1 a toroidal compactification of Yz ;. We have partial Hasse
invariants A, for all v|p. Let YI_IL1 cX JILM be the Zariski opens where A, is invertible
for all v € I°. We have a map Z — Yp; and we let VAR XYy YI—II,1~

The étale map Xp (nxr1 — XK1 has a section along T — XKk,1 which is
provided by the rank one multiplicative groups T'[v] for all v € I. Therefore the map
Xk, (nkr,1 — Xk 1 has a section restricted to the completion of X 1 along AR

Proposition 5.9.3 (Fourier—Jacobi expansion principle). There is a natural injec-
tive Fourier—Jacobi expansion map

HO(XII(,](I)KP,LC’W2 ®wi*p) - H HO(A{vMZ ®wi*p ® L:f)
fcat

where a is a fractional ideal of Op and a™ are the positive elements, Al — YI{M
is an abelian scheme isogenous to the universal abelian scheme A and L¢ is an
invertible sheaf over AL, rigidified along the identity section.

Proof. The existence of such a map follows from the description of the toroidal
boundary charts, as in [FC90, §V] or [Lanl3, §6.2.3,§7.1]. It is obtained by restrict-
ing sections to the completion along Z!. The sheaves L are obtained by pullback
from a Poincaré bundle which is rigidified along the identity section.
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The injectivity result is clear as long as we can show that X Il(p 1) is con-

KP1,.c
nected. This follows directly from the connectedness of Xk ; . and the irreducibility
of the Igusa tower, for which see [Hid04, Cor. 8.17] or [Hid09, Thm. 0.1]. O

We will now prove the vanishing of the groups H°(A!,w? @ wl™?® L¢). We first
need the following preliminary lemma.

Lemma 5.9.4. Let S be a scheme and let A — S be an abelian scheme. Let L be
an invertible sheaf on A, rigidified along the unit section. Then for alln € Z>,,

cn’ |a[n) is trivial.

Proof. Tt is well-known ([MumO8, Chap. II, §6 and §8|) that n*L ~ £’ ® Lo where
Lo is a sheaf algebraically equivalent to zero. Moreover n*Ly ~ Lj. Therefore
L ~ (n*L)" @ n*Ly " is trivial on Aln]. O

Now we may prove the following sequence of vanishing results for negative weight
forms. (Note that the first part is a very special case of the main theorem of [DK17],
although the argument there is different.)

Proposition 5.9.5. Assume that [F : Q] > 1. Let k = (ky)ves, be a weight for H
and suppose that there is a w € I such that k,, < 0. Then:

(1) HO(Yy1,w™) = 0.

(2) HO(Y,,w") =0.

(3) For any & € at, HO(Al,w* ® L¢) = 0.

Proof. We derive each claim in turn from the previous one:
(1) Let Cy C Y 1 be the simultaneous vanishing locus of the Hasse invariants
A, for v # wj; it is a (union of) smooth curves (since p is split completely,
this is an easy local calculation). Furthermore, because [F : Q] > 1, it is
also proper (note that if [F': Q] = 1, then C\,, = Yy 1 is not proper).
By the existence of the secondary Hasse invariants, w,|c, is a torsion
line bundle for v # w, while w,,|c, has positive degree on each component.
Let Z be the ideal sheaf of C, in Yp 1. It follows from the Kodaira—Spencer
isomorphism that we have an isomorphism

7/7* = P wr.
v#W
Thus for all m > 0, Z™/Z™! = Sym™ Z/Z? is a direct sum of torsion line
bundles. Because k,, < 0, it follows that Z™/Z™"! @ w” is a direct sum
of line bundles of negative degree, and hence has no sections. The result
follows from this and the fact that every irreducible component of Xp
contains a component of C,, (by considering the formal expansion of any
form along C,).
(2) If f € HO(Y};,,w"), then, for ¢, > 0 for all v € I°,

FIT Ag € BO(Yua, v @ Q) wir®™h)

vele vele

and hence vanishes by part . Thus the same conclusion holds for f.

(3) For all n € Z>y with (n,p) = 1 we will show that any section of f €
HOY(Af,w" @ L¢) vanishes on the n-torsion subgroup Af[n], and hence van-
ishes identically. After replacing f by f”s, we can assume that L¢ is the
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trivial sheaf (see Lemma [5.9.4). We then consider the norm of f for each
irreducible component of the finite étale map Al[n] — YI{L1 to reduce to

part . (Il

Proof of Prop.[5.9.1] This is an immediate consequence of Proposition [5.9.3] and
Proposition (3), because all the terms in the Fourier-Jacobi expansion will be
Z€ro. (]

6. HIGHER COLEMAN THEORY

In this section, we construct (higher) Coleman theories for GSp,(Ar). As in
we assume that p splits completely in F' and we construct all possible Coleman
theories, allowing the weight space at each place above p to be either one or two-
dimensional. In the case that F' = Q this was carried out in [AIP15] and [Pil20].
Many of our arguments are simply the “product over the places v|p” of the arguments
of [AIP15] and [Pil20]. To keep this paper at a reasonable length, we will often refer
to these papers for the details of arguments which go over directly to our case.

The main results of this section are Theorem m (a classicality result for over-
convergent cohomology classes of small slope), and Theorem m (which shows
that in the case that I has size at most one, the cohomology of the Hida com-
plex M constructed in is overconvergent, once p is inverted). These results
together improve (at the expense of inverting p) on the classicality results of
in that they do not require the weight to be sufficiently large; this is crucial for
our applications to abelian surfaces, which correspond to modular forms of parallel
weight 2.

We begin in §6.1] with the construction at the level of formal schemes of a version
of the analytic sheaves of overconvergent forms that we will use later in this section.
The purpose of these sheaves is to allow us in to show that the cohomology
of our analytic complexes is concentrated in degrees [0, #1]; as usual, this involves
a comparison of the toroidal and minimal compactifications, and we do not know
how to carry out this argument purely in the analytic setting. In §6.3] we construct
the corresponding structures in the analytic world, and we show that an appro-
priate Hecke operator (a product of “U,” operators at the places dividing p) acts
compactly.

We then recall in §6.4] the analytic BGG resolution comparing the cohomology
with locally analytic coefficients to that with algebraic coefficients, which is one of
the ingredients in our small slope classicality theorem, which is proved in §6.5] the
other ingredient being a version of the analytic continuation argument of [Kas06].
Finally, in we apply our results to the complexes constructed in We
are only able to show that the ordinary cohomology is overconvergent if #1 < 1;
fortunately, this suffices for the arguments that we make in §7}

6.1. Sheaves of overconvergent and locally analytic modular forms: the
formal construction. In this section the base is C,, the p-adic completion of an
algebraic closure of Q,. We will construct overconvergent versions of our interpo-
lation sheaves Q" and develop a finite slope theory. It is necessary to connect the
ordinary theory and the slope 0 overconvergent theory, because we are only able to
prove a strong classicality theorem in the overconvergent setting. In the first part
of this section, we begin by working at a formal level. The reason is that we need
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to prove a vanishing theorem (Theorem [6.2.6) for the overconvergent cohomology
and we don’t know how to prove it without using formal models.

6.1.1. Slope decompositions. We very briefly recall the basics of the theory of slope
decompositions for compact operators, which was introduced in [AS0O8] and further
developed in [Urbil]. Given a vector space M over C, with a linear endomor-
phism U, and a rational number h, an h-slope decomposition of M with respect
to U is a decomposition M = M= @& M>" into U-stable subspaces, where

e M=M is finite-dimensional,

e all of the eigenvalues a of U on M =" have v(a) < h, and

e if ) is a monic polynomial whose roots all have valuation less than h,
then Q(U) acts invertibly on M>".

If slope decompositions exist, they are unique. If they exist for all h, then we say
that the finite slope part is the union of the M =" for all h € Q.

The notion of a slope decomposition can be generalized to the case of modules
over a C,-Banach algebra A. In particular, it is known that compact operators
on projective A-Banach modules admit slope decompositions locally on Max A.
It is explained in [Urblll §2| and [Pil20, §13] how to generalize this notion to
perfect complexes of modules over Banach algebras. In brief, an endomorphism U
of a perfect complex is said to be compact if it admits a representative U as an
endomorphism of a bounded complex M?* of projective Banach modules, which is
compact in each degree. Then one may consider the product of characteristic power
series of U on the individual M i and the corresponding spectral variety for U as
in [Col97]. The complex M*® determines a complex of coherent sheaves M® over
this spectral variety, and one defines the spectral variety of U to be the support
of the cohomology sheaves H®*(M?®). One checks that this is independent of the
choice of M* and U. The sheaves H®*(M®) over the spectral variety for U admit
slope decompositions.

6.1.2. Recollections about formal Banach sheaves. An admissible Oc, -algebra is a
flat Oc, -algebra which is a quotient of a converging power series ring Oc, (X1, -+, Xp)
by a finitely generated ideal. In this section we work with quasi-compact and sepa-
rated p-adic formal schemes over Spf Oc, which admit an open covering by formal
spectra of admissible algebras. We call these formal schemes admissible. (In some
parts of the literature, an admissible affine formal scheme Spf A is one for which A is
admissible, in the sense that it is a complete and separated topological ring, which
is linearly topologized and has an ideal of definition, i.e. an open ideal I such that
every neighbourhood of 0 contains some power of I. Our admissible algebras are a
special case of this definition, and we hope that our terminology will not cause any
confusion.)

We recall some definitions taken from [AIP15] Defn. A.1.1.1]. We let & be an
admissible formal scheme. A formal Banach sheaf over & is a family (§,)n>0 of
quasi-coherent sheaves such that:

(1) §n is a sheaf of Og /p"-modules,
(2) &, is flat over Oc, /p",
(3) For all 0 < m < n, we have isomorphisms §, ®oe, Oc, /™ T
We can associate to (§n)n a sheaf § over & equal to the inverse limit ]gln Sn
(the maps in the inverse limit are those provided by (3) above). Since §, = §®o,
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Oc, /p", the sheaf § clearly determines the (F,) and we identify § and the family
(Fr) in the sequel. We say that a Banach sheaf § is flat if §,, is a flat Og /p™-module
for all n.

We say that a Banach sheaf § is small if there exists a coherent Og /p-module F
such that §; is an inductive limit of coherent sheaves hgnj,eN $1,; and the quotients

§1,j+1/81,; are direct summands of F.
We now recall a vanishing result from [AIP15].

Theorem 6.1.3. Let & be an admissible formal scheme. Assume that & admits
a projective map & — &' to an affine admissible formal scheme which induces an
isomorphism of the associated analytic adic spaces over Spa(C,,Oc,). Let § be a
small Banach sheaf over &. Let L be an affine cover of &. Then the Cech complex

Cech(t, ) ®oc, Cp
is acyclic in positive degree.

Proof. This is a special case of [AIP15, Thm. A.1.2.2]. Indeed, the proof of [ATP15]
Thm. A.1.2.2] is by reducing to this case, which is case (1) of that proof. O

6.1.4. Recollections about the Hodge—Tate period map. If H — Spec S is a finite
flat group scheme, we denote by HP its Cartier dual and by wyp the conormal
sheaf of HP along its unit section. This is a coherent Og-module. We can view
wyp as an fppf-sheaf of abelian groups. If ¢ : T — S is an S-scheme, we let
wyp(T) = HY(T,q*wyp). There is a well-known Hodge-Tate map HTy : H —
wgp of fppf-sheaves of abelian groups which associates to any S-scheme T and
point z € H(T) the differential z*4t, where we are (thanks to Cartier duality)
viewing z as a morphism = : HR — G,,|r of T-group schemes.

Let K = K, K" be a neat compact open subgroup with K, = [[,, GSp4(Or,).
Consider the non-compactified Shimura variety Y — Spec Oc,. We denote by
Dk — Spf Oc, the associated p-adic formal scheme. We fix a toroidal compacti-
fication Y — Xk and denote by Xx the p-adic formal scheme associated to Xg.
Let Yk — Xk be the associated analytic adic spaces over Spa (C,, Oc, ).

Let n = (ny)ves, € Z‘;%. We let K (p™) be the compact open subgroup defined

by K (p") = K,(p")K? where K,(p") =[], Ker(GSp,(Or,) = GSp4(Op, /p")) is
the principal congruence subgroup of level n.

We let Yr(pn),c, = Yk X $pec O, Spec C, be the Shimura variety with level
K (p") structure over Spec C,. This map is finite étale with Galois group equal to
[1., GSp4(OF, /p"™). Associated to our choice of polyhedral cone decomposition we
have a toroidal compactification Y (,n).c, = Xk pn),c,- We denote by Vi (pn) <
Xk (pny the associated analytic spaces over Spa(C,, Oc,). The map X (n) — Xk
is finite flat. We denote by X (,n) — Xk the normalization of X in Xk (,n) and by
D K (pn) the normalization of Y in Vi (pn). These are admissible formal schemes
(see [PS16al §1.1]). There is a universal, Op-linear map Hvlp(Oﬂ/p””OF)4 —
Hv‘p Gu[p™] over Yk (pny, which is symplectic up to a similitude factor and is an
isomorphism on the associated analytic adic spaces.

There is a Hodge-Tate period map HT : [, Gu[p""] — II,, wg,/p" wg, (we
are using the quasi-polarization of G, to identify G, and G”) which we can compose
with [],,(OF, /p"™ Op,)* — [L,, Go[p™] to obtain an Op-linear map of sheaves
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over SDK(pn)
HT : [[(Or, /p" OF,)* = [[we. /™ wg, -

vlp vlp
We claim that this map admits an extension

HT : [[(OF, /p" OF,)* = [ wa, /P wg,

vlp vlp

over Xg (pny. When F' = Q, this is the content of [PS16al, Prop. 1.2]. For a general
F we can use the Koecher principle of [Lanl7, Thm. 8.7].

According to a result of Fargues ([Farl0, Thm. 7], see also [PS16a, Thm. 1.5]),
the cokernel of the linearization of HT is annihilated by pﬁ. By [PS16al, §1.4]
when F = Q (and an immediate generalization for general F'), there exists an
admissible formal scheme %}’;E’gn) — Xk (pn), which is the normalization of a blow-
up (the ideal of the blow-up is finitely generated and contains a power of p), and a
modification wg“’d C wg such that:

(1) wgedis alocally free Op ® Ox??dn)—module of rank 2,

(2) p7Twg C WP C wg,
(3) The Hodge—Tate map HT factorizes into a map

HT : [[(OF, /p" OF,)* = []wg [p" T T wgod
vlp v|p

and the linearized map

HT o 1 [[Or 0 Or)t @ Oy, = [ 7t
vlp vlp
is surjective.
We say a few words about the construction of this formal model. We first intro-
1
duce the subsheaf wg“’d of wg generated over Xk (,n) by pP~Twg and local lifts of
HT(HMP(OFU/p””(’)FU)‘l) in wg. The sheaf wZ*? constructed in this way is not

locally free, but becomes locally free after pulling back to X??gn) (and we continue

mod)  We now describe the procedure used to

to denote this pulled back sheaf by wg

construct X??ﬁn). Zariski locally over Xk (,») we can find a map

H(OFv ®Zp OxK(p"))4 Y
v|p

by considering local lifts of the Hodge-Tate classes in wg, and the image of this
map is w’Q’wd. Zariski locally, we can trivialize wg and we can represent the above
map by a 2 x 4 matrix at each place v|p. The formal scheme is obtained by taking
the normalization of the blow-up of the ideal which is the product at all places v
dividing p of the ideal locally generated by the 2 X 2-minors of the matrix at v.
We denote by e,1,...,€,4 the canonical basis of O}l,v. We let € = (€,)y)p €
IL,, ([0, nw— ﬁ] NQ). We define an admissible formal scheme X (,n)(€) — f{%?gn)

(an open subscheme of an admissible blowup of %%‘()gn)) by the conditions that:

e HT (e, 1) € pe"wglv(’d/p"’“_%wgff’d for all v|p,
o HT(ey2) € pewged/p" ™ 7=Twgo? for all v € I°.
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For all v € I¢, the Hodge-Tate map factorizes into an isomorphism HT ® 1 :
Ox e (€)/D7 €03 D Oy, (€) /P Eva — W&T,Od/l’e”wgff’d~

For all v|p, we let Fili™ C wg*?/p® be the sub-module generated by HT (e, 2)
and HT(€v73).

Lemma 6.1.5. Fil;™" is a locally free Ox . (,n, (€)/p* - module of rank one, and is
locally a direct factor in wg:"d / pei’wgffd.

Proof. See [Pil20, Lem. 12.2.2.1]. O

We let Gri™ = wgod /(p=wg® 4 Fily™). Then for all v|p, the Hodge-Tate map
induces an isomorphism:

HT ®@1: (Ox e (pn,(€) /P )ena — Gry™".
If v € I, the Hodge-Tate map also induces an isomorphism

HT @ 1: (Oxn,(€) /P )en,3 — Fil™.

6.1.6. Flag varieties. We denote by §£, — Z{%‘(’gn) the flag formal scheme which

parametrizes locally free direct summands of rank one (as O ® O%mgn)—modules)
Filwg“’d in wg“’d. This space decomposes into a product §£,, = Hv| » 3Luyn Over all
places v above p.

Let w = (wy) € [[,,[0,€,]NQ. Welet FE, ¢y — X (pn)(€) be the moduli space
of locally free direct summands of rank one Filwgf)"d C wgf)"d such that Filwgf)"d =
Fil™ mod p™».

We let w’ = (wy,) € [[,,[0, ws] N Q. We let SS:’E’w’w, — L, e, be the moduli
space parametrizing:

(1) For all v[p a basis p, : Oge+ — wWgmod /Filwgmea such that p,(1) =

HT(e,4) mod p“e,
(2) For all v € I¢ a basis v, : Ogzq+

HT(e,3) mod p“v.

w,w!

— Filwgmea such that v,(1) =

6.1.7. Some groups. The group [, GSp4(OF,/p"") acts on X () and %??;ln).
The parabolic subgroup [, ;. B(OF, /p"™) [[,c; Kli(OF, /p™") acts on X g pn)(€).

Let us denote by X (7 =) (€) the quotient of X (,n(€) by the action of this finite
group. This is an admissible formal scheme.

We have maps B(OF, /p™) — ((OF, /p™)*)? provided by the last two diagonal
entries and Kli(O, /p™) — (OF, /p"™)* provided by the last diagonal entry.

We denote by T°, the formal group defined by

T, (R) =[[a+p=R) [] (0 +p"R)?
vel vele

for any admissible Oc, -algebra R.
We denote by ¥, the group

Tw(R) = [[ 05 (1 +p"R) [] (OF,(1+p" R))?
vel vele

for any admissible Oc, -algebra R.
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Finally, we denote by ¥, ., the fibre product
Twr Xz, /50, [[ BOR,/p™) [ [ KU(OR, /p™).

vele vel

6.1.8. Torsors. The map S,Q;;EJMU/ = §L.cw is a T2 -torsor. The group TV, acts

on p, and v,. This action extends to an action of ¥, ,,v on SSZ’e’w’w, — Xy (6),

compatible with the action of [ [, c;. B(Or,/p™) [I,c; KIi(OF, /p™) on Xg(pny(€)-

6.1.9. Formal Banach sheaves. Let A be a normal admissible O¢,-algebra. Let
ta: [Tyer O, [yere(OF, )> = AX be a character, which we assume is w’-analytic,
in the sense that it extends to a pairing T,,, x Spf A — G,,.

We denote by m : 3£Z7€,w7w, — §L, 0w the projection. We can define an

invertible sheaf of Oz ®A-modules,

n,e,w

L4 = ((m1) Og o+ /®A)Tﬁ,/

L€, W, W

where the invariants are taken for the diagonal action.

We let 72 : §L, .0 — Xg(pny(€). This is an affine map. We define a formal
Banach sheaf &"4" = (72),£"4 over Xk ,n)(€); this is independent of the choice
of w’, as is easily seen from the construction.

Finally, we let 73 : X (pn)(€) = X (r,pn)(€), and we define F=4% = ((r3), BF4w)Fnw
This is a formal Banach sheaf over X g (7 ,n)(€).

6.1.10. Some properties. For each v € I we choose an element i, € {2,3}. Let
Xk (pm) (€ (i) be the open subset of X i (,n(€) where Fili™ is generated by HT (e;, )
for all v € I.

Lemma 6.1.11. The quasi-coherent sheaf &*4:* /p™v e restricted to X i (pn) (€, (iv))
is an inductive limit of coherent sheaves which are extensions of the sheaf Ox . ., (e,(is))/P

inf, w,

Proof. This can be proved in the same way as [AIP15, Lem. 8.1.6.2]. O

Lemma 6.1.12. The quasi-coherent sheaf 4" /p is a flat sheaf of (’)xk(pn)(e)/p—
modules.

Proof. See [Pil20], Lem. 12.6.2.1]. O
6.2. Vanishing theorem.

6.2.1. The minimal compactification. The main result of this subsection is Theo-
rem [6.2.6] As in the proof of Theorem [£.2.1] we will use the minimal compact-
ification, and in particular the facts that the pushforward of our sheaves to the
minimal compactification are supported on open subsets that admit an explicit
affine cover, and that the higher derived pushforwards from the toroidal to minimal
compactifications of the cuspidal cohomology vanish.

We denote by X}, the minimal compactification of Yg. There is a natural map
Xk — Xj. The invertible sheaf det wg over X descends to an invertible sheaf still
denoted by detwg over Xj.. Let n = (n,) € Zi%. In this subsection we consider
only the case that n, is independent of v, and accordingly we will write n for n,.
We let %}‘((p") be the Stein factorization of the morphism: Xk @pry = X%. This
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is a normal admissible formal scheme. In [PS16al, Cor. 1.4] it is proved that the
determinant of the Hodge-Tate map on X g (pn):

A%HT : ®A2((9Fv/pnopu)4 — ®det wg, /p"

vlp vlp

is the pull back of a map denoted the same way:

APHT : Q) AX(Op, /p"OF,)* — X detwg, /p"

vlp vlp

which is defined over X}{(pn).

Remark 6.2.2. Literally, the determinant of the Hodge—Tate map is a map:
AR OL /p"Op)* — detwg /p".

But using the action of O, it is easy to see that it factors through the direct factor
Q,1p A*(OF, /p"OF,)*.

By [PS16al, §1.4] (for F = Q, and the same construction for general F'), there is
a normal admissible formal scheme %*K_(ngd — %*K(pn) which is the normalization

of a blow up and carries a locally free modification det wgwd C detwg such that:

2[F:Q]
(1) p7=t detwg C detwd? C detwg.
(2) The Hodge—Tate map factorizes into a surjective map:

2[F:Q]

Q) A2 (OF, /p"OF,)* @ Oye—moa — detwg® /p"~ o1
K(p™)
vlp

The construction f{}‘;(;ff;d follows a similar procedure as the construction of

%%‘(’gn) explained in section one can lift locally the map A?HT to a map
Ruip A*(0) ® Ox; 0y — &), |pdetwg, and consider the normalization of the
blow up of the ideal which is locally the product at all places v of the ideals
generated by the coefficients of the above map at the place v. By the universal
properties of blow-ups and normalizations, there is a map %}?‘(’gn) — %;{(;’ff’)d. Let
2[F": * *—1NO
e= (&) € Hv‘p([(), n— [p_?]] N Q). We denote by %K(pn)(e) — %K(pn)d the formal
scheme defined by the condition:
o HT(ey,1)AHT (€y,i) @y |p,vr o HT (€0r 5, )AHT (€0 1, ) € p det wgwd/p"_
for all v|p and 1 <4, jyr, ky < 4,
_2(F:Q]
o HT(ey2)AHT (e4,:)®u|p,vr 2o HT (€0 5, )JAHT (€41 1, ) € P detwg“’d/p" p—1
for all v € I¢ and 1 < 7, jyr, by < 4.

There is a Cartesian diagram (see the proof of [Pil20, Lem. 12.9.1.1]):

2[F:Q]
p—1

:{K(pn) (6) —_— }:ﬁfgn)

|

*—mod
(0 — X

By the proof of [Sch15l Thm. 4.3.1, pp 1029-30] (see also [PS16al, Thm. 1.16]), there
is an integer N such that for all n > N, there is a normal admissible formal scheme

Xk (om)
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*—HT *—mod *—HT
Xk ) Kpry XK
associated analytic spaces and satisfies:

and a projective map X which is an isomorphism on the

(1) The invertible sheaf detwg? descends to an ample invertible sheaf on
*—HT
k)
(2) For all rational numbers € > 0, there is n(e) > N such that if n > n(e), then
there are sections s, j,),, € HO(%}_(E?;,det wg“’d) satisfying s¢;, ;) =
@upHT(ey,5,) AHT (e, 5,) in det wd*?/p¢ for all 1 < iy, j, < 4.

Let € = (e,) € (Qs0)®». Let n > sup,n(e,). We define a formal scheme
%}YPH% (e) = Z{}YPH% by the condition:
e for all v|p, for all (iy, ju )|y € ({1,2,3,4} x{1,2,3,4})%, such that i, = 1,
we have s(; , ; ) € p® det wg“’d,
o for all v € I¢, for all (i, ju ) € ({1,2,3,4} x {1,2,3,4})% such that
iy = 2, we have s(; , ; ,) € p det wgwd.

We have a Cartesian diagram

* *—mod
Lo () — Xepmy

| ]

*—HT *—HT
Xy (€) = Xipm)

where both vertical maps are projective maps and induce isomorphisms on the
associated analytic generic fibres.

For all v € I, let i, € {2,3}. We define an open subspace %}_(g};(e, (iy)) of
x*—HT

K(pm)

We similarly define an open subspace X3 (,n) (€ (iv)) of Xy (. (€) by the condi-
tion that ®,erHT(ey4,) AHT(€y,4) ®vere HT(ey,3) AHT(ey,4) # 0 for all v € 1.
oy (6 (1)) = %;;(5;1;(67 (iy)) which
is an isomorphism on the associated analytic adic spaces. Moreover, .’{}‘;(;IE; (€, (iv))
is an affine formal scheme.

(€) by the condition that s¢;, 4y,.,.(3,4),c;c 7 0-

Lemma 6.2.3. We have a projective map .’f}(

Proof. The first point is clear. The second point follows from the ampleness of

det wg™®® on %;{_(?1;(6) and the fact that %;(_(51; (€, (iy)) is the open subscheme de-

fined by the non-vanishing of a section of an ample sheaf. O

6.2.4. Vanishing. We have a map 7 : X (pn)(€) — X% (pmy(€). We denote as usual
by D the boundary divisor.

Proposition 6.2.5. We have Riﬂ*OxK(pn)(e)(—D) =0 for alli > 0.

Proof. This can be proved in exactly the same way as [Pil20, Prop. 12.9.2.1] (which
is the case F' = Q). O

Theorem 6.2.6. Let e = (¢,) € Qi%- Let n = (n,) with inf, n, > sup, n(e,). The
complex

RE(X g () (€), 84 @ (det wg'*!)*(=D))[1/p]

has cohomology concentrated in degrees [0, #I].
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Proof. Consider the hypercube [2,3]7. We can associate to it a category denoted
by C. Its objects are the faces o of the hypercube. By definition, a face is a product
[I,cr Ao where for each v € I, A, € {2,3,[2,3]} (our convention is that faces are
closed). There is a map o’ — o between faces if ¢’ is included in o.

We now define a functor C% — Op(X*-,™°%(¢)), where the target is the category

K(p)
of open subsets of .’{;{(fo;d(e) (whose morphisms are open immersions). It sends a

face o to U,, the intersection of all the formal schemes %*K_(Z}f’)d(e, (iy)) for (iy)ver €
o (we recall that i, € {2,3}).

Write f 1 Xg(pny(€) — %*K_(;'Lo)d(e) for the map defined above. For all o € C,
consider the following Cartesian diagram:

Xk pm) (€)g — X pm (€)
L]
J *—mod
Up —— Xy ()
where j is the natural open immersion.
Let Sh(Xgpn)(€)) be the category of sheaves on X g (,n)(€). We define a functor
C — Sh(Xgpn)(€)) which sends o to the sheaf

Gy = i, i* (8" @ (det wgh)?(—D)[1/p)]).

We deduce from Lemmas[6.1.11] and [6.1.12] together with Proposition [6.2.5] that
the sheaf f,®, is a small formal Banach sheaf and that R’ f,®, = 0 for all i > 0.
It follows from Theorem (which applies because of Lemma that f.&,
is acyclic.

We deduce that the cohomology RI'(Xx (pn)(€), &4 @ (det wg°?)?(—D)[1/p])
is represented by the complex C'® concentrated in degree 0 to #I, whose ith term
is B4 dim UZiHO(xK(pn)(e), ®,) and whose differentials are alternating sums of the
restriction maps H (X (pn)(€), B5) = HO (X (pn)(€), &,) for o' C o, dimo’ =
dimo — 1. (]

6.3. Sheaves of overconvergent and locally analytic modular forms: the
analytic construction. We now translate our previous formal constructions to
the analytic setting, which is well adapted for the spectral theory.

6.3.1. Analytic Hilbert-Siegel varieties. This section is parallel to [Pil20, §12.7]. We
let X (,») be the generic fibre of Xg (,n). We write X'k for the generic fibre of X .
We let X (pny(€) C Xi(pny be the generic fibre of X g (,n)(€). We let X (1 ,ny(€) be
the generic fibre of X g (;,n)(€). We now give a modular interpretation of this last
space. Let A be the universal semi-abelian scheme and G be its p-divisible group.
Let wg be the conormal sheaf of A at the origin and let wér C wg be the subsheaf
of integral differentials (we use the slight abuse of notation to write wg instead of
w4). These are sheaves over X'k on the analytic site.

We let wg' 4+ he the subsheaf of w¢ generated by the image of the Hodge-Tate
map. This is an étale sheaf over Xk.

The fibres of the map X (7 n)(€) = Xk parametrize:
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e For all v € I, a subgroup H,,, C G,[p™] which is locally for the étale
topology isomorphic to Z/p™Z and is locally for the étale topology gener-
ated by an element e, ; which satisfies HT(e, 1) = 0 in wgzOd’Jr/pE”.

e For all v € I, totally isotropic subgroups H, ,, C Ly, C Gy[p™] such
that H, ,, is locally for the étale topology isomorphic to Z/p™Z, L, .,
is locally for the étale topology isomorphic to (Z/p™Z)?, and is locally
for the étale topology generated by elements e, ; and e, which satisfy
HT(e,1) = HT(eyp2) =0 1in wgff’d#/pe“.

We can define for all v|p an étale sheaf Fil'™ = Im(HT : H", ® O}K(I (e ™
w’QRUOd’+/p€"’). This is a étale locally free sheaf of Ojﬁm n)(e)/pfv_modules of rank

].. We let Grzan — wgzOd’J”/(pév + Fﬂgan)'
We have isomorphisms deduced from the Hodge-Tate map:

e HT: HP, ® (’);;K(I‘pn)(e)/pev G for all vlp,

e HT : (Lypn,/Hyn,)P ® O;K(I,pn)(e)/pev — Fil™" for all v € I°.
We let FLk(1pr),e0 — Xk (1,pm)(€) be the moduli space of flags Filwg C wg
satisfying Filwg, N wgflOd”L /p¥r = Fil;™ /pve.
We let Xg (7 pny+(€) = Xi(r,pn)(€) be the étale cover parametrizing trivializa-
tions:
o Z/p"Zey s — Hv[fnv for all v|p,
o Z/p*Zeys — (Lyn,/Hpn,)P forallve I°.

We let FLYE (o) cavr = FLETp) e X Xy () Xrc(1,pm)+ (€) be the moduli
space of trivializations of:

o for all v|p, py : O, — Grwg, = wg, / Filwg, such that p,(1) =

K(I,p™),e,w,w’
HT(e,,4) modulo p¥».
o forall v € I° vy : Opp+ — Filwg, such that v, (1) = HT (e, 3)

, K(I,p™),e,w,w’
modulo p¥v.
We can connect these definitions with the constructions of the previous sec-
tions. Let FL, cw — Xkpn)(€) be the analytic space associated to §£,, .. Let
FLF be the analytic space associated to £

’ X
n,e,w,w n,€,W,W

Lemma 6.3.2. We have

-F[:n,,e,w = fﬁK(I,p"),e,w XX}((]ypn)(S) XK(p")(e)
and
+ _
]:‘Cn,s,w,w’ - ]:ﬁK(I,p”),e,w,w’ XXK(I,pn)Jr(E) XK(P")(E)'

Proof. This follows from the definitions. ([l

6.3.3. Banach sheaves. Welet L"4 be the invertible sheaf over FL,, ¢ ., X Spa(A[l/p], A)
associated to £74. We let G"4"” be the Banach sheaf over X'k (,n)(¢€) associated to
G4 We let 774" be the Banach sheaf over X (1 ,n)(€) attached to §#4*. A di-
rect definition of F*4-" is the following. Let 7 : ]:[';_((I,p"),e,w,w’ — X (1,pm)(€) be
the affine projection. Let T, be the generic fibre of T,,,. This group acts naturally
on F E}( Ipn trivially on X (1 n)(€), and the morphism 7 is equivariant for

!
),e,w,w’?
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the action. It follows from the definitions that

FEa = (1,0 AT

K(I,p"),e,w,w

where the invariants are for the diagonal action (with the action on the second
factor being via £4).

6.3.4. Locally analytic overconvergent cohomology. We define the n, e-convergent,
cuspidal w-analytic cohomology of weight parametrized by A to be:

Ceusp(n, €, w, k4 ® (2,2)y)p) := RI(Xg (1 pmy(€), F™ @ (detwg)?(—D)).
For ¢ > €, n' > n, w' > w, we have maps: Ceysp(n, €,w, 64 @ (2,2)y)p) —
Ceusp(n', €, k4 @ (2,2)yp)-
Passing to the limit over n, €, w, we define the ith cohomology groups of cuspidal,
overconvergent, locally analytic cohomology of weight parametrized by A:

Héusp(.i-’ KA ® (2, 2)v|p) = h_n} Hi(ccuszl(na 6w, KA @ (2, 2)1}\1)))'
6.3.5. Properties of locally analytic overconvergent cohomology.

Proposition 6.3.6. The complex Ceysp(n, €, w, 54 @ (2,2)y),) is represented by a
bounded complex of projective Banach A[l/p]-modules.

Proof. This follows easily by considering a Cech complex; see [Pil20), Prop. 12.8.2.1].
|

Proposition 6.3.7. The cohomology H,, ., (1, 5a4®(2,2),p) vanishes fori ¢ [0, #I].
Proof. This follows from Theorem [6.2.6 O

6.3.8. Descent. We now assume that the character

ka: [[OF TI(0F)? — A%
vel vele
is trivial on the torsion subgroup of [],c; O [l,e;c(OF,)? (of order prime to p
since p > 2).
The group (OF)(XP’)+ acts on Xg (7 pny, and the action factors through a finite

group. We let Xg(ll o) be the quotient. The action of (OF)(XP’)+ can be lifted to the
sheaf 74" by setting

x gt R o Fraw
for all z € (OF) (Xp ’)+, to be the composition of the tautological isomorphism (the

polarization is not used in the construction of the sheaf) and multiplication by the

character d : ((’)F)(Xp’)Jr — A — A% of !

We denote by }"”‘il’“’ the descended sheaf on Xg(ll o) We let
Ccusp(Gh n,e,w,kA &® (27 2)1}\;))

be the cohomology of the sheaf
Fra' @ (detwg)*(~D)
over X&'t (€). This is a direct factor of Ceysp(n, €, w, k4 @ (2,2)y),). We also let

) K(I,p™) _
Héusp(Gla Ta Kg® (2a 2)v|p) = thl(CCusp(le n, €W, kA & (27 2)v|p))
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6.3.9. Spectral theory: construction of the operator U, . Firstly let v € I. We
define an analytic adic space s1 : Cy2 — Xk (1pn)(€) Which parametrizes isogenies
A — A’ with associated Barsotti-Tate group G — G’ whose kernel is a group
M, C G,[p?] which:

e is totally isotropic and locally isomorphic to (OF, /pOF,)? ® OF, /p*OF,,
e has trivial intersection with H,, .

There is a second projection sz : Cy2 = X7 ,n(€') Where:
o 0/ = (n),)y|p where nj, = n, + 1, and nj, = n, if v’ # v.
o ¢ = (€y)y)p Where €, = €, + 1, and €, = €,/ if v' # v.

This map is provided by sending (A, A’) to A’, equipped with the subgroups:

o H,, , =Im(Hyy,) for all v/ # v,
e L, =Im(Ly,,) foralv €I°

e H,, . =Im(p~'H,,,) where p~'H, ,, is the pre-image in G, [p"**'] of
One checks as in [Pil20, Lem. 13.2.1.1] (see also Lemma below) that the
image of sp lands in XK(Lpn/)(EI). The natural map wg: — wg induces a nat-
ural map s3FrAY = sEFRAY where w' = (wy) with w!, = w, if v/ # v,
and w, = w, + 1. (See [Pil20, Lem. 13.2.2.1].) We deduce that there is a nor-
malized map s3F54%" @ (detwg)?(—D) — st F4% @ (det wg)?(—D) obtained by
taking the tensor product of the above map and the normalized map (by p~2)
si(detwg)?(—D) — si(detwg)?(—D).
We can therefore construct a Hecke operator U, : RI'(Xk (s pm)(€), F*" @
(detwg)?(=D)) — RI( Xk (1 pn), F*4* @ (detwg)?(—D)) by the following compo-

sition:

RI(Xg (1 pny (€), F*4 @ (det wg)*(—D)) — RF(XK(Lpn/)(e’),fﬁAM'@(det wg)*(—=D))

— RD(Cy2, s5F4% @ (detwg)?(—D)) —

RI(Cy, s7F4 @ (det wg)*(—D)) = RL(Xi(1,5m)(€), (51)48TF ™ @(det wg)* (—D))

—3Ty
P RE(Xge(1 pny (€), FF4" @ (det wg)?(—D)).

Now let v € I¢. We define an analytic adic space s1 : Cy 2 — Xk (7pn)(€) Which
parametrizes isogenies G — G’ whose kernel is a group M, C G, [p?] which:

e is totally isotropic and locally isomorphic to (O, /pOFr,)? & OF, /p*OF,,
and
e locally in the étale topology there is a symplectic isomorphism (G, )[p®] ~
(F,/OF,)* such that
— M, is generated by p‘lev}g,p_levﬁg,p_zev,zl,
- H,p, is generated by p~"ve, 1, and
— Ly n, is generated by p~"ve, 1 and p~"ve, 2.

There is a second projection sy : Cpo — Xk (rpn)(€), sending (G,G’) to G,
equipped with the subgroups:

o H,, , =Im(Hy,,) for all v # v.
. L;,’n , =Im(Ly ) for all v’ € I¢, v # v.
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e In the notation above, H{]’nv is the group generated by the image in G’ of
p~"e,1 and Lj , is the group generated by the image of p~"ve, ; and
p " "Le, 2. One checks easily that these groups only depend on M,, H, p,
and L, ,, (and not on the choice of symplectic basis).

Again, there is a natural map s3F"4" — i Fr 4. (See |[Pil20, Lem. 13.2.2.1]
and [ATPT5, §6.2].) We deduce that there is a normalized map s3F"*4 % ®(det wg)?(—D) —
st Fr4Y @ (det wg)?(—D) obtained by taking the tensor product of the above map
and the normalized map (by p~2) s}(detwg)?(—D) — st(detwg)?(—D).

We can therefore construct a Hecke operator U, o : RI'(Xg (1 pn(€), FF4" @
(detwg)?(=D)) — RI( Xk (1 pn), F4* @ (detwg)?(—D)) by the following compo-
sition:

RD(Xg (1 pny(€), F™ " @ (detwg)?(—D)) — RL(Cy 2, s5F "4 @ (det wg)*(—D)) —
RI(Cy 2, s F" 4 ®(det wg)?(—D)) = RI (X (1,pn)(€), (51)«8]F " @(det wg)?(—D))

—3Ty
P RE(Xge (1 pny (€), F™" @ (det wg)*(—D)).

Remark 6.3.10. When v € I¢ we observe that U, s itself is not improving analyticity
and convergence in the v direction (while it visibly does so in the case v € I). We
next define an operator U, ; when v € I°. We will then show that the composite
operator U, 1U, o improves analyticity and convergence. (This is related to our
needing to use both the operators T;, and Tj,; at places v € I¢ in )

6.3.11. Spectral theory: construction of the operator U, 1. We let v € I¢. We define
an analytic adic space t; : Cy1 — Xk (7,pn)(€) which parametrizes isogenies A — A’
with associated Barsotti-Tate groups G — G’ whose kernel is a group M, C G,[p]
which:

e is totally isotropic and locally isomorphic to (Of, /pOF,)?,
e has trivial intersection with L, .
There is a second projection t5 : Cy;1 — Xx (1 pn)(€), given by sending (4, A’) to
A’ equipped with the subgroups:

e H,, =Im(Hy,,) for all v/,
e Ly, , =Im(Lyy,) foral v eI

There is a natural map t3F%4% — t;Fr4" (again see [Pil20, Lem. 13.2.2.1]
and [AIP15, §6.2]). We deduce that there is a map t5F"4* @ (detwg)?(—D) —
t; Frav @ (detwg)?(—D) obtained by taking the tensor product of the above map
and the map t3(det wg)?(—D) — t1(det wg)?(—D).

We can therefore construct a Hecke operator U, 1 : RI'(Xk (s pm)(€), F*" @
(detwg)*(—D)) — R ( Xk (1pn), F4* @ (detwg)?(—D)) by the following compo-
sition:

RD(Xg (1 pmy (€), F™" @ (det wg)*(—D)) = RI(Cp 1, t3F ™" ® (det wg)*(—D)) —
RI(Cy,1, 5 F 4 ®(det wg)*(—D)) = RI(Xpe(r,pn)(€), (t1)t [ F 4 @(det wg)*(—D))

-3
p~°Tr
—

RE (X (1,pm) (€), F*4 @ (det wg)* (= D).
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6.3.12. Spectral theory: construction of the operator U, U, 2. Let v € I¢. We
now consider the composite operator U, 1U, 2. Our main task it to show that this
operator improves convergence and analyticity in the v-direction. We begin by
giving the correspondence corresponding to this composite.

We define an analytic adic space u; : C, — Xk (spn)(€) which parametrizes
isogenies A — A’ with associated Barsotti-Tate groups G — G’ whose kernel is a
group M, C G,[p?®] which:

e is totally isotropic and locally isomorphic to O, /pOr, & OF,/p*OF, ®
Or,/ p3(9Fv7
e locally in the étale topology there is a symplectic isomorphism (G, )[p™] ~
(F,/OF,)* such that
— M, is generated by p~le, 2,p %€, 3,0 2ep 4,
- H, p, is generated by p~"ve, 1, and
— Ly, is generated by p~"ve, ;1 and p~"ve, 2.

There is a second projection us : Cy, = X (g ) (€'), given by sending (4, A’) to
A’, equipped with the subgroups:

=1Im(H, ;) for all v # v,
t o Im(Ly ) for all o' € I¢, v" # v,
e In the notation above, H{)n 41 is the group generated by the image in G’ of
p~™le, 1 and L;J,nqul is the group generated by the image of p~"*~le, ;
and p_"“_2evﬁg. One checks easily that these groups only depend on M,
H,,, and Ly, .

Lemma 6.3.13. The image of us lands in Xy (1 ,ur(€).

Proof. We argue in the same way as in the proof of [Pil20, Lem. 13.2.1.1]. We fix
symplectic bases (ev,i)1§i§4 of Tp(g), (6;11-)1Si§4 of Tp(g/), (fi)lSiSQ of wg?u‘)d’, and
(f)1<i<2 of wgz"d (compatible with the canonical filtration) such that there is a
commutative diagram:

diag(1,p,p*,p%)
) ——— Tp(

Tp(Go o)

lHT lHT
. 2 .3
mod  4iag(p”,p”) mod

B
WQ Wg/

By definition we have that HT (e, 1), HT (€y2) € p“wg®?. On the other hand,
HT(ey,3), HT (e, 4) generate wg'*? and HT (¢, 5), HT (e}, ;) generate w’g’ZOd. The group
Ly pn,+1 is generated by diag(1, p,p?,p?®)-e,1 = €y.1 and diag(1,p,p*,p®) - p ey 2 =
¢}, 5. Therefore we deduce that HT (e, ), HT (e}, 5) € p™twged. O

There is again a natural map uz}""fhw/ — ufFra? where w' = (w,) with
wh, = wy is v # v and w], = w, + 1; see [Pil20, Lem. 13.2.2.1] and [AIP15]
§6.2]. We deduce that there is a normalized map u5F"4* @ (detwg)?(—D) —
ui Fr4% @ (det wg)?(—D) obtained by taking the tensor product of the above map

and the normalized map (by p~2) u}(det wg)?(—D) — u}(detwg)?(—D).
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We can therefore construct a Hecke operator U, 2U, 1 : RI'(Xg (1 pn)(€), F*4" @
(detwg)?(=D)) — RI( Xk (1 pn), F*4* @ (detwg)?(—D)) by the following compo-
sition:

RI (X (1 pm) (€), FF4 @ (det wg)? (—D)) ™5 RT (X por) (€), F*4 @(det wg)?(—D))
— RD(Cy, u F*4 " @ (det wg)?(—D)) —
RI(Cy, uf F @ (det wg)*(—D)) — RT (X (1 pny (€), (u1)uf F*4 " @(det wg)*(—D))
STy KA ,W
P RO(Xg (1 pny (€), F*4" @ (det wg)?(— D))
We now set U =[], c; Uv2 [Tyere UnaUs2.

Lemma 6.3.14. The operator U acting on Ciusp(G1,n,€,w, k4 ® (2,2)ypp) s
compact. Moreover, for n+1 = (ny+1)yp, e+1 = (e, +1)y and w+1 = (w, +1),
we have a factorization (where the vertical maps are the natural restriction maps):

UI

Ccusp(Gla n,E,wW, KA ® (27 2)v|p) Ccusp(Gh n,€,W, KA & (27 2)1}\;})

| ]

I
Cousp(Gryn+ 1,6+ 1w + 1,54 @ (2,2)n)p) —— Cousp(Gr,n + e+ Liw + 1,54 @ (2,2)y)

Proof. By construction, the action of U’ can be factored into

G1 el
RI(X o (€), FF4 U @(det wg)*(—D)) — RF(XE(II’an)(e—i—l),]-'“Alv“f“@(det wg)}(—D))

UI K',Gl.w

= RE(X 0 (€), F740 @ (detwg)*(=D))
where n+1 = (ny, + 1)y, and e +1 = (€, +1),, w+1 = (w, + 1),. It is enough to
show that the map RI'(XE! (¢€), Fratw g (detwg)2(—D)) — RI(XE! )(e—|—

K(I,pm™) K(Ipn+t
Gy
1), Fra v+l @ (detwg)?(—D)) is compact. This follows by consideration of an
appropriate Cech complex, as in [Pi120, Lem. 13.2.4.1]. O

6.3.15. Spectral theory: local constancy of the Euler Characteristics. Let W be the
set of weights k = ((ky,ly))u)p € Z%, with [, =2 if v € I, k, =1, = 2 mod(p — 1)
for all v|p. Tt is equipped with the p-adic topology.

For all Kk € Wy, we let Crysp(Gi1,n,€,w, k) be n, e-convergent, w-analytic co-
homology of weight x and we set H.,.,(G1,1,x) = @Hi(Ccusp(Gl,n,e,w,ﬁ)).
In other words, following the notation of §6.3.8, we have A = C,, and k4 = £ ®
(=2, =2)y|p- It follows from Lemmathat the cohomology groups e(U')H{,, ., (G1, 1, k)
are finite-dimensional. The following standard consequence of our constructions
will be crucial in our comparison in of the complexes constructed in §4]and the
overconvergent cohomology we are considering in this section.

Theorem 6.3.16. The map
Wcl — 7
K Z(—l)idime(UI)Hiusp(GhT,n)

is locally constant.
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Proof. This follows from Coleman’s theory [Col97, §A5], as in [Pi120], §13.4]. Indeed,
there is a perfect complex C*® interpolating Ceysp(G1,n, €, w, k) over the spectral
variety, and the dimensions of the slope zero parts of the C* are locally constant. [

Remark 6.3.17. In particular if #1 = 1, we deduce that
k= dime(UNH?, . (G1,1, k) — dime(UT)HL,, (G1,1, k)

cusp cusp
is locally constant. We will use this in to reduce the comparison of ordinary and
overconvergent cohomology to the case of high weight, where the control theorems
proved in §4] apply.
6.4. Locally analytic overconvergent classes and algebraic overconvergent
classes. Let k = ((ky,ly))p)p with I, =2ifv e I, k, =1, =2 mod (p—1) be a
dominant algebraic weight.

Proposition 6.4.1. On H!, (G1,1,k), the slopes of (Uy1)vere and (Uy2)y), are

cusp

> —-3. On ngsp(Gl,T,n) they are > 0.

Proof. The proof of [Pil20, Prop. 13.3.1.1] goes through essentially without change.
O

’
w

Below, we denote by F*% = hﬂw«w F

Proposition 6.4.2. Let k = ((ky,ly))y|p withl, =2 ifve I, k, =1, =2 mod (p—
1) be a dominant algebraic weight. There is a relative analytic BGG resolution:

0 — w"(=D) = F** & (detwg)*(—=D) —

P 7o @ (detwg)*(—D) = ...~ P Fo @ (detwg)*(—D) = 0
seW ) sEW (D
where W is the Weyl group of GLa(F ®q Qp), W stands for the elements of
length i in W, and e is the twisted Weyl action.

Proof. This is a relative version of the main result of [Jon1I], and is proved in [ATP15]
§7.2]. (Note though that there is a minor error there; one needs to replace F"*

with F%%"  as defined above, but having made this change, the arguments go
through unchanged.) O

The actions of U, and U, 2 by cohomological correspondences on the sheaf

Frw @ (det wg)?(—D) restrict to actions on the subsheaf w®(—D) (and the action
of U! is compact on the cohomology).

Corollary 6.4.3. Let k = ((ky,1))v|p withl, =2 ifvel, k, =1, =2mod (p—1)
be a dominant algebraic weight. Then the map

e(UNH (Xg (1 pry(€),w"(=D)) = e(UN) H (X (1 pny (€), F* @ (det wg)*(—D))

is an isomorphism for i = 0 and injective if i = 1. It is an isomorphism for i =1
if we further assume that k, — 1, > 3 for all v|p.

Proof. Propositiongives aspectral sequence EV? = @ ¢y HY (X (1 pn)(€), F**V®
(detwg)?(—D)) converging to HPT9(Xg (1 pm(€),w*(—D)). We shall see that the
ordinary projector kills the terms E}'? of the spectral sequence for p > 1 un-
der a suitable normalization of the action of the Hecke operators and suitable
assumptions on the weight k. We analyze the differentials of proposition [6.4.2}
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D,cwi F*0 @ (det wg)*(=D) — D, F*0 @ (detwg)*(—D). We
let W = [[,,{1v,wo} with f(w,) = 1. For any subset J of places diving p,
we let wy; = HverU. The above map is given by the product of the maps
0o 1 F**5 @ (detwg)?(—D) — F5*»%" @ (detwg)?(—D) for s = w; (for a sub-
set J of cardinality i) and s’ = w yg,y for v ¢ J. By [AIP15] §7.3], this map induces
on cohomology an equivariant map for the operators U,, ; for w # v and U, 1; and on
the other hand, we have U, 206, s = p(’“v*l”)“@&s/ oU, 2. A way to interpret this
relation is to say that the spectral sequence is equivariant for the action of Hecke op-
erators, if the standard action of U, 3 on H*(Xg (1 ymy(€), F*7**" ® (det wg)?(—D))
is twisted by multiplication by p**~!»*1 if v € .J. The corollary therefore follows
from the slope bounds of Propositions [6.4.1 O

6.5. Small slope forms are classical.

6.5.1. Fargues’ degree function. We now recall some results on the degree of quasi-
finite flat group schemes, following the papers [Farl0), [Far1l]. Let K be a complete
valued extension of Q,, with corresponding valuation v : K — R U {oo}, which we
assume to be normalized so that v(p) = 1. We also write v : Ok /pOx — [0,1]
for the induced map. If M is a finitely presented torsion Og-module, then we can
write M = ®I_, Ok /x; for some z; € O, and we set deg M := 22:1 v(z; mod p).

If H is a group scheme over Ok, we let wy denote the conormal sheaf to the
identity section. If H is finite flat, then wy is finitely presented and torsion over Ok,
and following Fargues we define the degree of H to be

deg H := degwy.

More generally, let A — A’ be an isogeny of semi-abelian schemes with associated
p-divisible groups G — G’ over some analytic adic space S. We denote by wg and
wgr the conormal sheaves of A and A’ along their unit sections and by w;’ and
wg, the subsheaf of integral differentials (which means that locally on S they arise
from differentials on a formal model of A or A’). Let H be the kernel of G — G'.
This is a quasi-finite group scheme. To this isogeny we may attach a section dy of
the locally free sheaf of rank one detwg ® detwg !, Moreover, this section lies in
the subsheaf (detwg )™ ® (det wg 1)+ of integral differential forms. For each point
x € S, we may compute the associated norm |§g|,, by choosing a trivialization of
(detwg/)T @ (detwg')* in a neighbourhood of z and viewing 0y as a function (the
norm |0p|, is independent of the trivialization). If z € S is a rank one point with
associated valuation normalized by v, (p) = 1, and if H, C G, extends to a finite flat
group scheme on a formal model &, of G, over Speck(z)™, then v, (dy) = deg H,.

6.5.2. Neighbourhoods of the ordinary locus. Recall from that we define
Kp(I) = [[ Kli(v) J] Tw(v).

vel vele

We can consider Xg, (nx». Let Xk, i, (1) be the associated analytic space. For
each v|p, we have an isogeny G — G’ whose kernel is a quasi-finite group scheme H,
which is of order p away from the boundary. For each v € I°, we have an isogeny
G — G’ whose kernel is a quasi-finite group scheme L, which is of order p? away
from the boundary.

Let XIT(I?K,,( n be the subset of rank one points. To each rank one point x is
associated a rank one valuation vy : Oxy ()i, — RU {00} which we normalize
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by v, (p) = 1. If v € I, we define deg,, : X}’(TKP(I) — [0,1] by deg,(x) = v, (dm,)-
Similarly, for all v € I¢, we define deg, : XIT(TKP(I) —[0,2] by deg, (z) = v.(dL,)-
We can put all these degree functions together into a function

deg : Xih 1y = [0,1)7 x [0,2]"",

For each rational interval J C [0,1]f x [0,2]!", there is a unique quasi-compact
open subset XKpr(]) (J) C XKT’KP(I) SUCh that XKPKP(I) (J)Tkl = deg_l (J)
Of particular interest is the multiplicative locus:

Xk oy = Xrrrc,(n ({1 x {217).
Let (&,) € ([0,1)F x [0,2)"") N Q% and set

Xiric, (1) ((€0)ves,) = XKPKP(I)(HU — €, 1] x H 2 — e, 2]5).
vel vele

Observe that XII?"’I}%,(I) = XKpr([) ((O)UESP) while {XKpr([) ((G’U)’UESP)}EH—)(Vr YvES,
is a fundamental system of strict neighbourhoods of X }?;LJ}EP( -
All these spaces are stable under the action of OF(XP ’)+ on the polarization, and

descend to open subspaces of X g; K, ()" We can therefore add a superscript G to
P

any of these spaces with the obvious meaning.

6.5.3. Comparison between spaces of overconvergent cohomology. In this section we
make the connection between the spaces Xxrx,(1)((€v)ves,) (With €, € ([0, 17 x
[0,2]7°) N Q%) that we just introduced and the spaces X (7 pn)((€,)ves,) (say for
parallel n € Z>; and with ¢, € ([0,n — p—il] N Q)°7) introduced in Both
types of spaces are neighbourhoods of the multiplicative locus in an appropriate
sense. The previous spaces are well adapted to the construction of interpolation
sheaves and eigenvarieties while these new spaces appear naturally when one wants
to prove classicity theorems.

There is a natural forgetful map X (1 pm)((€v)ves,) = Xxrk, ). By [Pil20,
Lem. 14.1.1] (for the places v € I, and a trivial extension for the places v €
I¢), this map factors into a map X (1 pn)((€v)ves,) = Xx,(r)rr (1 — %(n — € +
p%l))vel x(2—2(n—e,+ p%l))velc). Observe that when €, = n— p—il and n — oo,
1—-2(n—e,+ p—il) —land2—2(n—e¢,+ p%l) — 2. Conversely, by [Pil20, Lem.
14.1.2], there is a natural inclusion: X (1yxr((€v)ves,) = Xi(1,p)((1 — p%l)vesp)

forallev217%ivaIandeUZQf%if'UEIC.

Lemma 6.5.4. Let (¢,) € ([1 — %, I x[2- %,2)16) N Q. Let k be a classical
algebraic weight.

(1) The cohomology RI'(Xgr k., (1)((€v)ves, ), w") carries an action of the oper-
ators Uy 1 and U, 2.

(2) The operator [, c; U2 [[,ere Usa is compact RF(XIC(:;KP(J)((GU)veSp)»W”)'

(3) The canonical map RF(X}%KP(I)((GU)UESP)’ wh) — RF(XE(ILP)((l—ﬁ)veSP)aWﬂ)
induces a quasi-isomorphism on the finite slope part for [[,c; Uv 2 [ [,ere Uv-

(4) The same holds for cuspidal cohomology.

Proof. The definition of the operators is a routine computation. To prove com-
pactness, we need to show that the operators improve convergence. This is entirely
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parallel to Lemma [6.3.14, For the degree functions considered here this follows
from of |Pillll, Prop. 2.3.6]. The quasi-isomorphism follows from an easy analytic
continuation argument (see Lemma [6.5.18| below, for example). g

It is sometimes convenient to consider the dagger space
It, — T;
(655) X;(n;lK:(I) = . 15%+ XKPKP(I)((e'U)UeSp)'

and its Gip-variant. In view of the previous lemma we can define the complex
e(UNRT (X 35T we(=D)) as being equal to e(U)RT(XZ} 1) ((n)ves, ), w").
Lemma 6.5.6. The complex e(UI)RF(XE;EIm)?p’T,w"‘(—D)) is a perfect complex
supported in degrees [0, 1.

Proof. That the cohomology vanishes outside of degrees [0, #I] follows as usual by
pushing forward to the minimal compactification. The finiteness of the cohomology
follows from the compactness of U’. (]

6.5.7. Main classicity theorem. We now state our main classicity result for over-
convergent cohomology, which we will prove using a generalization of the analytic
continuation method of [Kas06] to higher degree cohomology, which was proved
in [Pil20, §3]. Let k = (ky,ly)y, be a dominant algebraic weight. There is a
canonical restriction map

RI (X (1) o, @ (~D)) — RE(AEIS w0 (— D))

vlp

which is equivariant for the Hecke operators U, ; and U, 2.
Theorem 6.5.8. The canonical map

RO(X ) jers 0" (D) [Unp < ky + 1y =30 €L, Upy <ly =3 v €]

— RF(X%&I;‘}?I;T,w"”"(—D))[U%g <ky+ly,—3vel Uy <l,—3vel
is a quasi-isomorphism.

Remark 6.5.9. The meaning of [Uy s <k, +l, —3vel, U1 <l,—3velqin
Theorem [6.5.8]is the obvious one: it means the part of slope less than k, +1, — 3 for
Uy2 at v € I and less than [, — 3 for U, ; at v € I°. (Note that while the individual
operators U, 1,U, 2 do not act compactly on the complex on the right hand side,
their product U does by Lemma @ It follows the individual operators U, 1, U, 2
act compactly on the part of the complex with bounded slope for U, and so this
small slope part is well-defined by the procedure explained at the start of this
section.)

Remark 6.5.10. When I = (), Theorem (for HO) is proved in [BPS16]. It may
be possible to improve on the bound [, — 3 at the places v € I¢, but this does not
matter for our purposes.

6.5.11. Hecke correspondences again. Let w € I. We consider the following corre-
spondence, whose corresponding Hecke operator is U} 5 (the nth iterate of Uy, 2):

tw,n,lv tw,n,Q : O1(Un) — XK,,(I)KIH which parametrizes (gv {Hv}vela {Hv - LU}UEICa g —
Gn) where the isogeny G — G,, has kernel M,, ,, C G,, [p®>"] which is totally isotropic
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and locally isomorphic to (O, /p")* & Op, /p*", and satisfies M,, ., N H,, = {0}.
The first projection is

tw,n,l((ga {Hv}velv {Hw C LU}UEIC7 g — gn)) = (gv {HU}UEIa {Hv - LU}'UGIC)

and the second projection is

tw,n,Z((gv {Hv}vefa {Hv C Lv}velca g — gn)) - (gn7 {H{;}UED {H;; - L;}’UEIC)
where {H] },cr and {H| C L. },ecre are the images of {H,},er and {H, C Ly }yere
in G,,.

There are cohomological correspondences

(B n, 1)ty 20" = W5 (bwn,1) sty n 0w (= D) = w*(=D),

which give U}, 5. Moreover, these cohomological correspondences restrict to
(twn, 1)ty m 2 (@) = 7MW, (fwn)etiy 2 (@ (=D)TF = p72" (W5 (=D)) T,
and they induce maps on cohomology in the usual way.

Let w € I°. We consider the correspondence: ¢y 51, twn,2 : Cfvn) — Xk, (nK»
which parametrizes (G, {Hy }ver, {Hyv C Ly }vere, G — Gp) where the isogeny G —

G, has kernel M, , C G,[p"] which is totally isotropic, locally isomorphic to
(OF, /p™)?, and satisfies M,, ., N L, = {0}. The first projection is

tw,n,l ((g7 {Hv}velv {Hu) C Lv}ve[°7 g — gn)) - (ga {Hv}vela {H’U C LU}UEIC)

and the second projection is

tw,n,Q((Qv {Hv}velv {Hv C Lv}vGI% g — gn)) = (gna {H{;}velv {H:; C LL}UGIC)
where H] and H/ C L! are the images of H, and H, C L, in G,.
The Hecke operator attached to this correspondence is U ; (the nth iterate of
Uw,1)- More precisely, there are cohomological correspondences
(tw,n,l)*tfu,n,2wn — w", (tw,n,l)*t:},ngwﬁ(—D) — w"(=D).
Moreover, these cohomological correspondences restrict to
(twn, 1)ty m 2 (@) 7T = 7 W) T, (fwn)etiy 2 (W (=D)TF = p72" (W5 (=D)) T,

and they induce maps on cohomology.

Lemma 6.5.12. Let w € I. Let x = (G,{Hy}ver,{Hy C Ly}tver,G — G1) €
cP (Spa(K, Ox)).

(1) Ifv eI and v # w, we have deg H, = deg H).

(2) If v € I, we have deg L, = deg L.

(3) We have deg H!, > deg H,,, and in case of equality, deg H,, € {0,1}.

(4) deg H] =1 — deg M1 .,/ My w[p]-

(5) deg M .[p]/pMiw =1, and degpMy o, > deg M /M [p].

(6) Let € > 0. If deg My, < 3 — 2¢, then deg H, > e.

Proof. Parts (1) and (2) follow because the maps H, — H,, L, — L’ are isomor-
phisms. The remaining parts are [Pil20, Lem. 14.3.1, Cor. 14.3.1]. |

Lemma 6.5.13. Let w € I°. Let x = (G,{Hy}ver, {Hy C Ly}tvere,G — Gi1) €
i (Spa(K,0k)).

(1) If v € I, we have deg H,, = deg H),.

(2) If v € I¢ and v # w, we have deg L, = deg L',
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(3) We have deg L], > deg L,,, and in case of equality, deg L., € {0,1,2}.
(4) deg L}, = 2 — deg M 4.

Proof. Parts (1) and (2) follow as in Lemma [6.5.12] Parts (3) and (4) follow
from [Pillll Prop. 2.3.1, 2.3.2, Lem. 2.3.4] (and their proofs). O

Corollary 6.5.14. Let w € I°. Let 1 > ¢ > € > 0. There exists n € Z>q such
that for all intervals Hv;éw Jy, € [0,1]7 x [0, 2] Mw},

Un s (X, nmer (T Jo x 14 €,2))) € X,y (J] Jo > [14€,2])

vAEwW vFEW

Proof. This follows from Lemma 6.5.13| (3) and the maximum principle; see [Pil11]
Prop. 2.3.6]. O

Corollary 6.5.15. Let w € I. Let 1 > € > e > 0. There exists n € Z> such that
for all intervals ], ., Jo C [0, )Mt o, 2177,

Ug,l(XKp(I)KP(H Jy x [e,1])) C XKP(I)KP(H Jo x [€,1])

vEW vFEW
Proof. This follows in the same way as Corollary [6.5.14] using Lemma [6.5.12] (3).

O

6.5.16. First analytic continuation result. Let J =[]
product of intervals.

J, € [0,1]F x [0,2]" be a

v|p

Lemma 6.5.17. Let w € I°. Assume that Jy, = [2 —€,2]. The operator U, 1 acts
on HZ(XKpr(I)(J),wK).

Proof. In view of Lemma[6.5.13[ (3), the correspondence Ci(ul) restricts to
tw,172 : Ci(l)l) th,l,l,XKpr(I) XKPKP(I)(J) — XKPKP(I)(J)' U

We denote by H"(XKP(I)K;»(J),u)"“)fs_U““1 the finite slope subspace for U, 1.
This is the subspace generated by classes which are annihilated by a polynomial in
U1 with non-zero constant term.

Lemma 6.5.18. For all 1 > ¢’ > ¢ > 0, the restriction map

H' (Xgorie, (0 ([ Jox[2—€,2]),0) 75Vt 5 H (Ko, oy ([] Jox[2—€,2]), 007) 75~V
vF#W vFEW

is an tsomorphism.

Proof. Take n as in Corollary Let f € H'(Xgvr,1)([Typw Jo % 2 —
€,2]),w")f*~Vw1 be a cohomology class. Let P(X) = X™ + ap 1 X™ L4+ ag
be a polynomial with ay # 0 such that P(U,1)f = 0. Therefore, if we set
Q(X) = —ag"(P(X) — ag), we obtain that Q(U,1)f = f. By iteration we get
that Q(Uy.1)"f = f. The operator

QUu)" : H' (Xicore, iy ([ Jox[2—€,2)), ") = H' (Xico i,y (] Jox[2—€,2]),0")
vFEW vFW
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can be factored into:

i oy QU™ K
H (XKPKP(I)(H Jyx[2—¢2]),w") T =" H (XKPKP(I)(H Jo x [2—€,2]),w")
vAW vAW
S H (Xerie, (o ([ Jo x 2= €,2]),07),
vFEW

—~—

where the map Q(U,,,1)™ is the one coming from Corollary|6.5.14] We therefore get
an extension f of f to

H (Xgor,ry([] Jo x 2= €,2]),w")
vFW

by setting f = Q (Uw,)™f. This proves the surjectivity of the map of the corollary.

We now prove injectivity. Let f, g € Hi(XKPKp(I)(HU¢w Jox[2—€,2]),w")fs7Vuwa
be two classes having the same restriction to H* (X i, (1) (I 1ot Jox[2—¢€,2]), wr)fs=lua,
We can find a polynomial P as before such that P(Uy1)f = P(Uwi1)g = 0.
Therefore, using the same notation as before, we get that Q(U,1)f = f and
Q(Uyw,1)g = g. We can factor the operator Q(U,,1)" into:

Hi(XKpr([)(H Jy X [2 — 6,,2]),WK) 73 Hi(XKPKp(I)(H Jy X [2 — 6,2]),&)”)

vFW vFW
Q@/)n i K
S HY (Xgog, ([ Jo x 2= €,2]),0%)
vFW
Since res(f) = res(g), we deduce that f = g. O

The following two lemmas are the analogue of Lemma [6.5.18| for a place w € I.
The proofs are identical and left to the reader.

Lemma 6.5.19. Let w € I. Assume that J, = [1 —¢€,1]. The operator U, o acts
on HZ(XKpr(I)(J),wK).

We denote by Hi(XKp(I)Kp<J), w")7s=Uw.2 the finite slope subspace. This is the
subspace generated by classes which are annihilated by a polynomial in U, > with
non-zero constant term.

Lemma 6.5.20. For all 1 > ¢ > ¢’ > 0, the restriction map

H (Xgeo i, (1) ([ [ Jox[1—€ 1)), %) 572 — H (X g, (1) ([ [ Jox[1—€, 1)), 0) 75702
vF#W vtw
is an isomorphism.

6.5.21. More analytic continuation results. Let w € I°. Let 0 < ¢ < 1. The
cohomological correspondences:

(B, ) (B, 2) " (W) [, (1w (T o x146,2D) = WX 10 (T o x[146,2])
and
(twfﬂ,l)*(tw7n,2)*((wm>|XKp(1)Kp(H,,¢w Jv><[0,2])) — wH|XKp(I)KP(HU¢W Ju»x[0,2])

can be related if we work with torsion coeflicients.
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Proposition 6.5.22. Let 0 < € < €. There is a factorization of the Hecke corre-
spondence Uy, 4 :

(wn/pn(lw(lfg/)*B) (wn)++)‘XKp(I)KP(Hv¢w Jox[1+6.2))

/

()« (o) (@) e en ([T S [1402D)

(wn/pn(lw(l—g)—:&) (Wﬁ)++)|/”5xp<z>m(l'[“¢u, Jox[0.2])

/

(tw,n,1)x(twn,2)” (W)™ |XKP(I)KP (Tt Jox [072]))

Proof. Let x € X, (1r)kr ([ [0 Jv % [0,2])). We have to find a neighbourhood U
of z and to construct a canonical map

(tw,n,Q)*((wK)_‘"’_ lXKp(I)Kp (quéw Jy X [1+6,2]))(t1;,1n,1 (U))

N (wn/pn(lw(lfe')fii) (wﬁ)++)|xkp(1>xp(l_[v¢w J,vx[o,Q])(U)-

Pick €’ € (e,€) such that for all y € t,} |

Myn C G, we have [0nr,, |y 7# [p"(1=<")|,. Tt follows that there exists an open

neighbourhood U of x and a disjoint decomposition t;,an(U) = V][W, such
that for all y € W, we have |dp

‘5Mw,n|y < ‘pn(lie//”y'
The cohomological correspondence is a map:

trn 2 (W) (V) @17, o (W) THW) = w"(U).

w,n,2

The image of £, (w™) (V) lands in p™(e(1=<")=3) (7 ) ++(T7) (see [Pi120} Lem.

w,n,2
14.6.1]). Therefore, we have a factorization:
t*

w2 @) TH ), 1 (0) = £, (W) THW) = w /p 0= =8 () (),
On the other hand, we claim that ¢y n2(W) C X, (1yxr ([0 Jo X [1 +€,2])).

Indeed, let 2’ € U and let y € t;lnl({w}) Without loss of generality, we may
assume that 2’/ and y’ are rank one points. Let us define My, ; = M, .|, [p?] for all
1 <4 < n. Then we have a sequence of isogenies:

gw‘x/ — gw|m//Mw,1 — = gw|m’/Mw,n

We let Ly, ; be the image of Ly |y in Gy /My ;i (s that Ly = Lylt, ,, 4())- Then,
by Lemma [6.5.13| (4), we have that deg Ly, = 2 — deg My n/Myn—1. On the
other hand, for all 1 <i <n —1, the map p : My ;41/My; — My,i/My i1 is a
generic isomorphism. It follows that deg My, i+1/My,; < deg My, /My ;—1. Since
deg My, = Y1 deg My /My ;—1 and deg My, ,, < n(l —€”), we deduce that
deg My /My n—1 <1—€" and therefore deg Ly, , > 1+ €’ > 1 + ¢, as required.

(z) corresponding to a subgroup

ly > |p”(1’€”)|y, and for all y € V, we have

w,n
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We can therefore produce the expected map as the composition:

(tw7n»2)*((wn)++|XKP(I)KP(H'u#w Ju X[1+672]))(t;}n71(U))
- (tw,n,Z)*((wm)++|XKp(1)Kp(H,U#w JU><[1+6,2]))(W) = t*w,n,Q(wH)++(W)

- wn/pn(lv(lfe')fii) (wn)++(U)' 0

Corollary 6.5.23. Let P = X™ + a1 X™ 1+ +ag be a polynomial, with the
property that all the roots a of P satisfy v(a) < l, — 3. Then there is a map

ext : H' (X, (o ([ [ Jo % [1+€,2]),w)[P(Un 1) = 0] =
vFEWw

tim H' (X, 1y o ([T o ¢ 0,20), 07 /07 (@) FF) | [P(Un1) = 0]
vFW

such that the composite of ext followed by restriction to XKp(I)Kp(Hv;ﬁw Jp X [14
€,2]) is the natural map induced by w® — w®/p"(wWF)TT.
Furthermore, the composite of the restriction map

Hi(XKp(I)KP(H Jy x [0,2]),w")[P(Uyp,) = 0] —
vFW

H' (X, (e ([T Jo x (14 €,2)),0)[P(Us1) = 0]
v#W

followed by ext is the natural map induced by W™ — W= /p™(wWF)TT.

Proof. Let € > 0 be such that for all roots a of P, we have l,,(1—€¢)—3 > v(a). Let
o = inf,{l,(1—€')—3—v(a)} (so that in particular & > 0). By Lemma[6.5.18] we can
assume that 0 < € < €. Suppose that f € Hi(XKP(I)Kp(HU;éw Jp X [1+€,2]),w™)
satisfies P(Uy,1)f = 0. By rescaling f, we can and do also assume that f €
H (Xk, (1 e ([Typ Jo X [14+€,2]), (w05)TF). Let Q(X) = —ag ' (P(X) —ap) so that
QUW)f = 1.

Since Q(U,,1) can be written as a sum of products of the éUw,l, where a runs
over the roots of P, it follows from Proposition [6.5.22 that the map

Q(Uwyl)n : Hi(XKp(I)KP( H JUX[1+€, 2]), (w"‘)++) — Hi(XKp(I)KP(H JEX[1+€, 2]),w“)
vEW vFEW

= H' (X, (naer ([ Jo x [1+€,2]), (0F) /0" (@) )
vFW
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can actually be factored into:
Hi(XKp(I)KP(Hv¢w Jy X [1+€,2]), ("))

Q(Uw,l)n

Hi(XKp(I)KP(Hvy&w Jy % [0,2]), (W) /p"*(w")TT)

H' (X, (nyrcr (T Jo X [1 4 €,2]), (w)/p" (W) )

We define sections f, € H' (X, (xr ([Tys Jo X [0,2]), 0" /p"* (W) TF) by fr =
Q(Uw,1)™(f). It follows from the definitions that f, = f,—1 in
H' (X, ryrer (] o % 10,2]), w /prm=Demmie(meh=a) (ry )
vEW
and that Q(Uy,1)fn = fn in
H (X, ryrer (] o % [0,2]), w /p(meme0=eh=a) (my )
vFW

(see the proof of [Pil20), Cor. 14.6.1| for a similar verification). We let ext(f) be the
projective system given by the f,,.
It remains to check that if f is the restriction of a class in

Hi(XKp(I)Kp(H Jy X [OaQ])awN)a
vFW

then the f, are obtained from the natural map w® — w®/p™(w™)**. This follows
easily from the factorization

H Xk, (v [Ty Jo % 0,2]), (W) )

Q(Uw,l)n

Hi(XKp(I)KP(Hu;éw Jv X [07 2])7 (wm)/pna(wm)++)

—

Q(Uw,l)n

H' (X, (nykr (T Jo X [14€,2]), (W) /p"(w") )
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The next proposition and corollary are the analogue of the above results for a
place w € I. The proofs are virtually identical to the above, and are left to the
reader (or look at [Pil20 Prop. 14.6.1, Cor. 14.6.1]).

Proposition 6.5.24. Let w € I, and let 0 < € < €. There is a factorization of the
Hecke correspondence U, o:

(w’i/pn(lw+kw7372€/kv) (wm)++)

/

(tw,n,1) s (Fun2) (@) T 2 1y rep (T s o x[61])

| Xicp 1y 0 (T sy Jo x[e:1])

(wn/pn(lm+kw—3—26’kw) (wF) )

/

(tw,n,l)*(tw,n,Q)*((wﬁ)++|XKp(1>Kp(Hv¢w Ju ><[1,0]))

‘XKP(I)KP(HU;éw Jy x[0,1])

Corollary 6.5.25. Let w € I, and let 1 > € > 0. Let P = X™ 4+ @1 XM +
-+ ag be a polynomial, with the property that all the roots a of P satisfy v(a) <
kw + Ly — 3. Then there is a map

ext : Hi(XKp(I)KP(H Jy X [67 1]);“)’{)[P(Uw,2) = O] -
vFEW

lim H' (X, 1y 00 ([T o % [0, 1)), 0% /" (@) ) | [P(Us2) = 0]
vFW
such that the composite of ext followed by restriction to XKp(I)KP(Hv;éw Jy X [€,1])
is the natural map induced by w® — w"/p"(w") .
Furthermore, the composite of the restriction map

Hi(XK,,(I)KP(H Jy x [0,1]),w")[P(Uy,2) = 0] —
vFW

Hi(XKp(I)KP(H Jy x [€,1]),w™)[P(Uy,2) = 0]
vFW
followed by ext is the natural map induced by w* — W™ /p™(wWF)TT.

6.5.26. Proof of the main classicality theorem. Let S C S, be a subset. Let
J(S7 6) = HUGSQI[07 1] X HUGSﬂ]C[0u2] X HSQ’T[[Q 1] X HSCQIC[]" + 672}' We say
that a cohomology class f € H'(Xk, 1)k (J (S, €),w") is of finite slope if for all v|p,
there is a polynomial P, all of whose roots are nonzero, such that:

o ifvel® P,(Uy1)f =0,

o ifvel, P,(Uy2)f =0.
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Lemma 6.5.27. The canonical map

HY(XZ e (J(S,€)),w™) = lim HY (X! ), (J(S,€)), " " (W) )

is surjective and induces an isomorphism on the finite slope part.

Proof. The surjectivity follows from [Pil20, Prop. 3.2.1]. The injectivity can be
proved in exactly the same way as [Pi120, Lem. 14.7.1]. We have put the superscript
(G1 because we need some finiteness property to deduce the injectivity. [l

Lemma 6.5.28. Choose polynomials P, such that

e ifv €I all the roots a of P, satisfy v(a) <1, — 3, and

e if v €I, all the roots a of P, satisfy v(a) < k, + 1, — 3.
Write U, = Uy ifv € I¢, and U, = U, tfv € I. If S C T, then the natural
restriction map

H(XE 100 (T(T, ), [P(U,) = Ol

HI(XE 11 (T(S,€),w ) [P(Uy) = Olues,
is an isomorphism.

Proof. By induction, it is enough to treat the case T = S U {w} for some w. The
result then follows from Lemma [6.5.27| (applied to both S and T'), together with

Corollary [6.5.23] and Corollary [6.5.25] O

Proof of Theorem[6.5.8 This follows immediately from Lemmal[6.5.28] applied with
the choices S =0 and T' = S,,. ad

6.6. Application to ordinary cohomology. In this section we study the case
#I = 1, where we are able to relate the Hida complexes constructed in §4 to
the overconvergent cohomology considered in this section. Our first result is the
following, which shows in particular that in this case the ordinary classes in H'!
are overconvergent. The proof can be viewed as a generalization of the familiar
argument for GLs which shows that ordinary p-adic modular forms are overconver-
gent (see [BT99, Lem. 1]), by using the continuity of the ordinary projector to the
finite-dimensional space of ordinary forms.

Recall that we defined the complex M in Theorem [£.6.1} By Theorem [4.6.1] (3),
for all classical algebraic weights k with [, = 2 forv € I and k, =1, =2 (mod p—1)
for all v|p we have

G1,mul K
My ®k1,/§ Cp = B(UI)RF(XKP(I)Ktp»W (*D))

Proposition 6.6.1. Suppose that #1 = 1. For all classical algebraic weights k
with I, =2 forv el and k, =1, =2 (mod p — 1) for all v|p, the restriction map

e(UNRO(AZ T W (-D)) = My ©k, . C,

induces an injective map on H® and a surjective map on H'.
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Proof. The injectivity of the map on H's is clear. In the case F' = Q, the surjectiv-
ity of the map on H's is proved in [Pil20, Lem. 14.8.2]; we now recall this argument
in our setting. Let 7 : Xk, (r)g» — XI*(IJ(I)K,, be the projection to the minimal com-

pactification; as usual, we have Rim,w"(—D) = 0 for i > 0. Let X;“(l}l;tm, be the
p

image of X [r?:(l}) v (the rigid analytic generic fibre of Xép( n s») in the minimal

compactification; it admits an affinoid cover X ;(:(“II)MKP =U; UU,.

Then the complex RT'(X I’?;‘(l}) sr> W (—D)) is represented by the complex
H°(Uy,w"(—D)) & H*(Us,w"(—D)) = H° (U N Uz, w"(—D)).

The terms of this complex are Banach spaces; a norm giving their topology is pro-
vided by taking an appropriate formal model. The topology on H! (X I‘?;‘(I}) oW (=D))
is the induced quotient topology, which coincides with the topology obtained by
declaring that H' (%%p(l)Kp,w"(—D)) is open and bounded.

The complex RT'(X ?:g;)TKp, w"(—=D)) is represented by the subcomplex of over-
convergent sections

H°(Uy,w™T(=D)) ® H°(Us,w™T(=D)) — H°(U; N Uy, w™1(-D)),
where by definition for an open U,
woH(U) = lim w®(V)
VoU

where V' runs over the strict neighbourhoods of U.

It follows in particular that the map

HY (X2, w (= D) = HY (XR o w™ (= D))

has dense image. The operator U is continuous on H! (X?p“(lg)Kp,w“(—D)) (con-
sider the action of U’ on Hl(%%p(l)Kp,w“(—D))), so the projection
G1,mul G1,mul K
HY (X e w* (=D)) = e(U) H (X iy, 0" (=D)

is also continuous (we have introduced the superscript G; to make sure that the
projector e(U') is well defined, the passage from the cohomology of X }?;‘(1}) Ko O

the cohomology of X gli?l)'}?p is given by a projector so all density statements are
p

preserved). It follows that the induced map

I 1 G1,mult, I 1 G1,mult
(U H (XZ LT (- D)) (U ) BN (XS, (- D))
has dense image. But the target is a finite-dimensional Banach space over C,, so
its topology is the unique one extending that on C,, and in particular it contains

no proper dense subspaces, so we are done. [

Proposition 6.6.2. Suppose that #1 < 1. For all classical algebraic weights k
with 1, = 2 for v € I, we have the equality of Euler characteristics:

EC(e(UNRT (XY 0" (= D)) = EC(M; €%, ,, Cy).

Proof. By Theorem and Lemma both complexes are perfect complexes
in degrees [0, 1]. By Corollary and Proposition [6.3.7} we have that

EC(e(U) ., (G1, 1, 5)) < EC(e(UNRT (X T w*(~D)))
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and the inequality is an equality if k, — [, > 3 for all v|p. By Proposition [6.6.1} we
have that

EC(e(UNRD (X TEY wi(=D))) < EC(M; @, . Cp).

Consequently, it suffices to prove that

EC(e(U")Hyp (G, 1,5)) 2 BC(M; ®F, . Cy).

cusp

By Theorem [6.3.16] and Theorem [£.6.1] both Euler characteristics under considera-
tion are locally constant functions of k. It therefore suffices to prove the statement
when [, > C for all v € I°, and k, — I, > C for all v|p. In this range of weights we

can compare these cohomology to classical cohomology.
It follows from Theorem [6.5.8] that

o(UNRD(XG T W5 (= D))) = e(UNRT(A 1 ™ (~D))).

We claim that the natural map
RI(X) . " (~D))) = RD(XZ! ;)00 " (~D)))
induces a quasi-isomorphism
e(THRD(XGhye " (~D))) = e(UNRD(XE 1) 0" (~D))).

Indeed, by Theorem (2), the cohomology groups on each side can be com-
puted in terms of automorphic representations, and the claim follows from Propo-
sition [2.4:26] as explained in Remark [6.6.3] below.

Now, it follows from Theorem that the map e(TI)RF(Xg;,Kp,w“(—D)) —

My ®k1,ﬁ C, is an isomorphism on H° and is injective on H'. Putting this all
together, the proposition follows. O

Remark 6.6.3. Let us point out a subtle point in the proof of Proposition [6.6.2}
In order to use Proposition [2.4.26| one needs to check that for any v|p, any rep-
resentation 7, of GSp,(Op,) contributing to either e(TI)RF(Xg},K ,w"(=D))) or

(UI)RF(XIC{;I(I)KP7 w®(—D))) is ordinary. For all places v € I¢, this is true essen-
tially by definition since the two Hecke operators at v|p occur in the projector. For
places v € I, this is a bit more subtle since only one operator T, or U, 2 is involved
in the definition of the projector. The U, s-ordinarity of a local representation m,

with Hecke parameters

[avpl ky/2 Bupt™ ky/2 B 1 k,,/2 —1pk,,/2]

implies that a3, is a p-adic unit. Ordinarity means that «, and 3, are both p-adic
units. This is implied by U, 2-ordinarity if we assume the Katz-Mazur inequality
which says the the Newton polygon is above the Hodge polygon with the same initial
and terminal point. Indeed, in our case, the Katz—Mazur inequality translates into
the condition that «, and (3, are p-adic integers.

However, this inequality is subtle at non-cohomological weights. For F' = Q the
Katz—Mazur inequality for H° and H'! classes is proved in [Pil20, Prop. 14.9.1],
and the argument generalizes without difficulty to our case. We also remark that
for classes in the H®, we can use eigenvarieties to deduce that the Katz—Mazur
inequality holds in non-cohomological weights because it holds at cohomological
weights. A similar argument will apply for classes in the H' once eigenvarieties are
constructed for H' cohomology classes. Note that alternatively we could force the



POTENTIAL MODULARITY OF ABELIAN SURFACES 167

Katz—Mazur inequality by localizing further at certain p-adically integral eigenval-
ues of the operators T}, 1 and Uxij(y),1, and in fact such a localization will be in force
in the rest of the paper. We could also directly deduce the Katz—Mazur inequality
for classes in the H' from the corresponding inequality for classes in the H after
making a non-Eisenstein localization (because after making such a localization, the
Euler characteristic vanishes). Such a localization will also be in force in the rest
of the paper. In view of this, we do not spell out the details of the generalization
of [Pi120, Prop. 14.9.1] to our setting.

Theorem 6.6.4. Suppose that #I < 1. For all classical algebraic weights k
with 1, = 2 for v € I, we have a canonical isomorphism:

e(UNRD (X IET wh(=D)) = M; @, ,. C,

Proof. For all classical algebraic weights, let us denote by d;(x) the dimension of
H'(M; @Y%, . Cp) and by d! (k) the dimension of e(UN)H}, ., (G1,1, k). We deduce
from Proposition that di(k) — do(k) = dJ{(n) - d(li) for all k. Therefore
di (k) — di (k) = do(r) — dg (k) for all k. By Proposition the first difference is
non-positive and the second difference is non-negative, so both are equal to zero.
We deduce in particular that the map e(U')H{, . (G1,1, k) — H (M ®k”§ C,) is
an isomorphism.
We now consider the composite

e(UNH (X w0 (=D) = e(U") Hiyyy (Gt v) — H (M ®%, . Cy).

By Proposition [6.6.1] this composite map is an isomorphism for ¢ = 0, and is sur-
jective for ¢ = 1. On the other hand, the first map is injective for i = 1 by
Corollary and we have just seen that the second map is an isomorphism. It
follows that the composite is injective for ¢ = 1, and is thus an isomorphism, as
required. (I

Finally, we deduce the following classicity theorem.

Theorem 6.6.5. Suppose that #1 < 1, and that k is a classical algebraic weight
with l, =2 ifvel, andl, >4 if v ¢ I. Then the canonical map

C(UNRT(XE ) (~D)[1/p] = My %, , Qy
s a quasi-isomorphism.

Proof. This follows from Theorem and Theorem [6.5.8 ([

7. THE TAYLOR-WILES/CALEGARI-GERAGHTY METHOD

In this section, we implement the Taylor—Wiles patching method to patch the
complexes M| constructed in §4 More precisely, we carry out the analogue of the
patching argument using “balanced modules” which was introduced in [CG18], and
used there to study weight one modular forms for GLs /Q. This argument works
in situations where the cohomology appears in at most two degrees, which for us
means that #1 < 1; we are restricted to working in this case due to the limitations
of our understanding of the cohomology of our complexes in higher degree, as was
the case in §4 and §6] For our modularity result, it is crucial to be able to work
with I = S§p; we will do this in §§| by considering the spaces of modular forms
coming from the various complexes with #1 < 1.
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The papers [GT05, [Pil12, [CG20] apply the Taylor-Wiles method to GSp, over Q,
but a number of changes are needed in order to apply it over general totally real
fields. We do not attempt to prove results in maximal generality, but instead
develop the minimal amount of material that we need. The reader familiar with
the literature on modularity lifting theorems will not find many surprises, but we
highlight a few things that may be less standard:

e In we study the ordinary deformation rings at places dividing p.
We show that their generic fibres are irreducible under a rather mild p-
distinguishedness assumption; in particular, this assumption is not suffi-
cient to guarantee that the deformation rings are formally smooth, and it
takes us some effort to prove the irreducibility. Working in this generality is
important for our applications to modularity of abelian surfaces in For
the potential modularity results of §9] however, it would be enough to work
with a stronger p-distinguishedness assumption which would guarantee the
formal smoothness.

e In {74 we prove the statements about local deformation rings needed
for Taylor’s “Thara avoidance argument”; the proofs are similar to those
for GL,,, although there are some complications which arise because the re-
lationship between conjugacy classes and characteristic polynomials is more
complicated. We also need to do some additional work to handle the case
p = 3; again, this is crucial for §I0] although it is not needed for §9]

e In §7.5| we study the “big image” conditions needed in the Taylor—Wiles
method. Here our approach is slightly different from that of [CHTO08] and
the papers that followed it; again, this is with the applications of in
mind, where it is important to be able to consider representations with
image GSp,(F3). For the same reason, when we impose a condition at an
auxiliary prime which will allow us to assume that our Shimura varieties are
at neat level, we make the weakest hypothesis that we can, at the expense
of slightly complicating the corresponding local representation theory.

e We make repeated use of the doubling results of they are needed in
order to prove local-global compatibility for the Galois representations we
consider, and also to compare the spaces of p-adic modular forms for dif-
ferent I.

e Our implementation of the “Thara avoidance” argument of [Tay08] uses the
framework of [EG14} [Shol8]|, and compares the underlying cycles of various
patched modules. In particular, we use the patched modules with I = ()
to prove a local result, which we then apply to the patched modules with
#I = 1. In order to apply Ihara avoidance, we repeatedly use the fact
that the Galois representation associated to our abelian surface is pure,
to deduce that the corresponding points on the generic fibres of the local
deformation rings are smooth; we use this smoothness to be able to com-
pute the dimensions of various spaces of p-adic automorphic forms, using
a characteristic 0 version of the freeness arguments of Diamond and Fuji-
wara [Dia97]. While we do not use the full strength of purity, since we make
arguments with base change we would otherwise need to impose a hypoth-
esis of being “stably generic” on our local Galois representations, and we
do not know of any natural examples where this condition is known, but
purity is not.



POTENTIAL MODULARITY OF ABELIAN SURFACES 169

Having carried out the patching argument, we know from the results of §f] that
for each I with #I < 1 there is a nonzero space of ordinary p-adic modular forms
corresponding to our given Galois representation, which are “overconvergent in the
direction of I”. We will combine these spaces in using as an input that by a
version of Diamond’s multiplicity one argument [Dia97], we know the dimensions of
these spaces when #1I < 1 (they are given by the expected product of local terms).
(Here we are again using our assumption that the local Galois representations are
pure, in order to know that the corresponding points of the generic fibres of the local
deformation rings are smooth. A similar characteristic zero version of Diamond’s
argument first appeared in [All16].)

7.1. Galois deformation rings. We let I be a finite extension of Q, with ring
of integers O, uniformizer A and residue field k. We will always assume that F is
chosen to be large enough such that all irreducible components of all deformation
rings that we consider, and all irreducible components of their special fibres, are
geometrically irreducible. (We are always free to enlarge E in all of the arguments
that we make, so this is not a serious assumption.) Given a complete Noetherian
local O-algebra A with residue field k, we let CNL, denote the category of complete
Noetherian local A-algebras with residue field k. We refer to an object in CNL, as
a CNLj-algebra.

We fix a totally real field F', and let S, be the set of places of F' above p. We
assume that F contains all embeddings of F' into an algebraic closure of E. We
also fix a continuous absolutely irreducible homomorphism p : Gp — GSp, (k). We
assume throughout that p > 2.

Let S be a finite set of finite places of F' containing S, and all places at which p
is ramified. We write Fg for the maximal subextension of F/ F which is unramified
outside S, and write G g for Gal(Fg/F). For each v € S, we fix A, € CNLp, and
set A = @vesAv, where the completed tensor product is taken over ©. Then CNLj
is a subcategory of CNL,, for each v € S, via the canonical map A, — A.

Remark 7.1.1. In our applications, we will take A, = O if vt p. If v|p, then we will
take A, to be an Iwasawa algebra.

Fix a character ¢ : Gp g — A™ lifting v o p.

Definition 7.1.2. A lift, also called a lifting, of p|q,, is a continuous homomor-
phism p : Gp, — GSp,(A) to a CNL, -algebra A, such that p mod ma = p|a,,
and v o p = la,, .

We let DUD denote the set-valued functor on CNL,, that sends A to the set of
lifts of p|g, to A. This functor is representable (see for example [Ball2, Thm.
1.2.2]), and we denote the representing object by RS,

Let z € Spec RY[1/p] be a closed point. By [Tay08, Lem. 1.6] the residue field
of x is a finite extension E'/E. Let p, : G, — GL,(E’) be the corresponding
specialization of the universal lifting. By an argument of Kisin, (RY[1/p])% is the
universal lifting ring for p,, i.e. if A is an Artinian local E’-algebra with residue
field E" and if p : ' — GSp,(A) is a continuous representation lifting p,, then there
is a unique continuous map of E’-algebras (RY[1/p])2 — A so that the universal
lift pushes forward to p. (See [AIIL6, Thm. 1.2.1] for the analogous result for GL,,;
the result for GSp, can be proved by an identical argument.) We say that x is
smooth if (RJ[1/p])2 is regular. Let ad” p, denote the Lie algebra g°(E’) with the
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adjoint action of G via p.; then we have the following convenient criterion for z
to be smooth.

Lemma 7.1.3. Suppose that v 1 p. Then the point x is smooth if and only if
(ad® p,)(1)GF = 0. In particular, if p. is pure, then x is smooth.

Proof. The first claim is a special case of [BG19, Cor. 3.3.4, Rem. 3.3.6]. If p, is
pure, then Homp/ (g, 1(pz, pz(1)) = 0 (because the definition of purity is easily seen
to preclude the existence of a morphism between the corresponding Weil-Deligne
representations), as required. (Il

Definition 7.1.4. A local deformation problem for p|g,. is a subfunctor D, of DE
satisfying the following:

e D, is represented by a quotient R, of RE.
e For all A € CNL,,, p € Dy(A), and a € ker(GSp,(A) — GSp,(k)), we
have apa~! € D,(A).

Definition 7.1.5. A global deformation problem is a tuple
§= (ﬁ» S» {AU}UGSv 7/)7 {D’U}’UGS)7

where:

e 0,5, {A,}ves and 1 are as above.
e For each v € S, D, is a local deformation problem for p|g.. .

As in the local case, a lift (or lifting) of p is a continuous homomorphism p :
Gr.s — GSpy(A) to a CNLj-algebra A, such that pmod mg = p and pov = 9.
We say that two lifts p1,p2 : Grs — GSpy(A) are strictly equivalent if there is
an a € ker(GSp,(A) — GSp,(k)) such that ps = apia=t. A deformation of p is a
strict equivalence class of lifts of p.

For a global deformation problem

S = (ﬁ, S, {Av}v€S7 1/)7 {DU}UGS)7

we say that a lift p: Gr — GSp,(A) is of type S if p|g, € Dy(A) for each v € S.
Note that if p; and py are strictly equivalent lifts of p, and p; is of type S, then so
is pa. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by Dg the set-valued functor that takes a CNLj-algebra A to the set of
lifts p : Gp — GSp4(A) of type S.

Given a subset T C S, a T-framed lift of type S is a tuple (p, {7y }ver), Where p
is a lift of type S, and 7, € ker(GSp,(A) — GSp,(k)) for each v € T. We say that
two T-framed lifts (p1, {7V }ver) and (p2, {7, }ver) to a CNL,-algebra A are strictly
equivalent if there is an a € ker(GSp,(A) — GSp,(k)) such that ps = ap1a™!, and
v, = ay, for each v € T. A strict equivalence class of T-framed lifts of type S is
called a T-framed deformation of type S. We denote by DL the set valued functor
that sends a CNLj-algebra A to the set of T-framed deformations to A of type S.

The functors Ds and DL are representable (as we are assuming that p is abso-
lutely irreducible), and we denote their representing objects by Rs and RE’; respec-
tively. If T is empty, then Rs = REL, and otherwise the natural map Rs — R%
is formally smooth of relative dimension 11#T — 1. Indeed Dg — Dgs is a torsor
under (J],cr (?S\p4)/éy\n Define 7" to be the coordinate ring of (], cp (38\134)/6;
over A. This is a power series algebra over A in 11471 — 1 variables.
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Lemma 7.1.6. The choice of a representative ps: Ggp — GSpy(Rs) for the uni-
versal type S deformation determines a splitting of the torsor Dg: — Ds and a
canonical isomorphism Rg >~ Rs@AT.

Proof. This is obvious. U

7.2. Galois cohomology and presentations. Fix a global deformation problem

§= (ﬁ: S, {AU}UESa 1, {DU}UES)7

and for each v € S, let R, denote the object representing D,. Let T be a subset
of S containing S), with the property that A, = O and D, = DY forallv e S\ T.
Define Rg’loc = ®yer Ry, with the completed tensor product being taken over O. Tt
is canonically a A-algebra, via the canonical isomorphism @UGTAU = @)UGSAU. For
each v € T, the morphism Dg — D, given by (p, {vv}ver) — 7, 'plar, 7o induces
a local A,-algebra morphism R, — RL. We thus have a local A-algebra morphism
R — RL.

The relative tangent space of this map is computed by a standard calculation
in Galois cohomology, which we now recall. We let adp (resp. ad’p) denote g(k)
(resp. g°(k)), with the adjoint G p-action via p.

The trace pairing (X,Y) — tr(XY) on ad’p is perfect and G p-equivariant, so
ad®p(1) is isomorphic to the Tate dual of ad’ 5. We define

Hé“,T(adO p) = ker <H1(FS/F, ad’ p) — H HY(F,,ad° P)> ,
veT

H. p(ad”p(1)) := ker (Hl(FS/F,adOp(1))—> 11 Hl(Fv,adOp(l))).
vESNT

Proposition 7.2.1. Continue to assume that T' contains Sp, and that for all v €
ST we have A, = O and D, = DE' . Then there is a local A-algebra surjection
R"([Xy,..., X,]] = RE, with

9= hss p(ad’ (1)) = BO(Fs/F,ad” p(1)) = Y h'(F,, ad”p)
v|oo

+ Y B(F,,ad”B(1)) + #T — 1.
veS\T

Proof. We follow [Kis09, §3.2]. By [Kis09) Lem. 3.2.2] (or rather the same statement
for GSp,, which has an identical proof), the claim of the proposition holds with

g9 =hsr(ad’p) — hO(Fs/F,adp) + Y h°(F,,adp).
veT

By [DDT97, Thm. 2.19] (and the assumption that p is absolutely irreducible, which
implies that h°(Fs/F,adp’) = 0), we have

hs r(ad’p) = hk. p(ad’p(1)) — h°(Fs/F,ad’ p(1)) — Z hO(F,,ad’p)

v|oo

+ Y hM(F,,ad’p) = Y hO(F,,ad’p).
veS\T veS
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The result follows from the local Euler characteristic formula and Tate local duality.
O

7.3. Local deformation problems, | = p. Assume from now on that p splits
completely in F'. Let v be a place of F' lying over p. If x € k£, then we write A, :
Gp, — k* for the unramified character with A, (Frob,) = z.

Definition 7.3.1. We say that p|q,, is p-distinguished weight 2 ordinary if it is
conjugate to a representation of the form

Az, O * *
0 )\Bv * ES
0 0 z*lxgl 0 :
0 0 0 =i

where @, # 3,.

If play, is p-distinguished weight 2 ordinary, then we say that a lift p : Gp, —
GSp4(0) of pla, is p-distinguished weight 2 ordinary if p itself is conjugate to a
representation of the form

Aay O * *
0 )\Bv * *
0 0 e'xgb 0
0 0 I Y

where o, 3, lift @,, 3, respectively. Note that p is then automatically semistable,
although not necessarily crystalline.

Remark 7.3.2. The terminology “weight 2 ordinary” is not ideal, but we were unable
to find a better alternative. Possibilities include “P-ordinary” (referring to the
Siegel parabolic subgroup), which clashes with “p-distinguished”, or “semistable
ordinary”. We could of course restrict to the crystalline case and use “flat ordinary”
representations, but as it costs us little to allow semistable representations, and it
may prove to be useful in future applications, we have not done this.

Remark 7.3.3. For the purposes of proving the potential modularity of abelian
surfaces, it would suffice to work with a stronger p-distinguishedness hypothesis,
as in [CG20]. In particular, by assuming that none of aﬁ,ﬁi,mﬁv are equal to 1,
we could arrange that the various deformation rings considered in this section are
formally smooth. However, such a hypothesis is very restrictive in the case p =
3, and in particular would seriously restrict the applicability of our modularity
lifting theorems to proving the modularity (as opposed to potential modularity) of
particular abelian surfaces.

We assume from now on that plg, is p-distinguished weight 2 ordinary for
all v|p; the roles of @,, (3, in the definition of p-distinguished weight 2 ordinary are
symmetric, and we fix a labelling of @,, 3, for each v|p.

Set A1 = O[[OF (p)]], Av2 = O[[(OF; (p))?]], where OF (p) = 14pOF, denotes
the pro-p completion of (9;5”. Both A, ; and A, are formally smooth over O
(because we are assuming that F,, = Q,,). Let A, be either A, or A, 2. There
is a canonical character Ip, — (9;1) (p) given by Art;vl, and we define a pair of
characters 0,; : Ir, = Ay, ¢ = 1,2 as follows: if A, = A, 1, then we let 0, =
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y.2 = 0, be the natural character and if A, = A, 2, then we let 8, ; correspond to
the embedding O} (p) to (O (p))? given by the ith copy.

Let ?, denote a choice of either @, or 3,, and write ?2} := @, f3, /%, for the other
choice. Recall that we have the Borel subgroup B of GSp, consisting of matrices
of the form

* k% %
0 *x % =
0 0 x =x
0 0 0 =«
We let P denote the subgroup of B consisting of matrices of the form
* 0 =
0 * % x
0 0 x 0
0 0 0 =«

If A € CNL,,, then we say that a lift pa : Gr, — GSpy(A) of pla,, is (B,?,)-

ordinary if there is an increasing filtration of free A-submodules
0=Fil cFil' c--- C Fil' = 4*

of A* by A[Gp,]-submodules such that the action of G, on Fil*/Fil’™! is via a
character x; with X; = X, X2 = v, X1l1p, = Ou1, Xal1m, = Ou2, and x3 =
e xa=e gl |

By [CHTOS, Lem. 2.4.6] such a filtration is unique; since {(Fil*~*)*} gives an-
other filtration satisfying the same conditions, we see that p4 is ker(GSp,(4) —
GSp(k))-conjugate to a representation of the form

X1 * * *
0  xeo * *
0 0 eyt *
0 0 0 eIt

where 1, X2 are as above.

If Ay = A,1 (so that 6,1 = 63,), then we say that p4 is P-ordinary if it is
both (B, a,)-ordinary and (B, 3, )-ordinary; equivalently, if p4 is ker(GSp,(A) —
GSp(k))-conjugate to a representation of the form

x1 O * *
0 xeo * *
0 0 eyt 0

0 0 0 e x !

If A, = Ay o (resp. Ay, = Ay 1) then we let Df}” (resp. DF) be the subfunctor of
(B,?U)—ogdinary lifts (resp. of P-ordinary lifts). By [CHTO0S8| Lem. 2.4.6], we see
that DE* and DF are local deformation problems in the sense of Definition

so they are represented by CNL, -algebras RZ 75“, RP respectively.
Most of the rest of this section is devoted to the proof of the following result.

Proposition 7.3.4. The generic fibres RE™[1/p], RY[1/p] are irreducible, and are
of relative dimensions 16 and 14 respectively over Q,.

Our arguments are rather ad hoc, and will require a number of preliminary
lemmas.
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7.3.5. Ordinary deformation rings for GLo. We begin by studying some ordinary
deformation rings for GLs. As well as being a warmup for our main arguments, we
will often be able to show that our deformation rings for GSp, are formally smooth
over a completed tensor product of deformation rings for GLo, thus reducing to this

case.
Let 7: Gq, — GL2(k) be of the form

)\a *
0 )

Set A = O[[1 + pZ,]], and write 6 : Iq, — A for the canonical character defined
above. If A € CNL,, then we say that a lift of 7 to 7 : Gq, — GL2(A) is ordinary
if it is ker(GLg(A) — GLa(k))-conjugate to a representation of the form

X *
0 E_lx_l

where ¥ = Az and Y| I, = 0. As above, this is a local deformation problem, and

is represented by a CNLy-algebra RP2:0 where B, denotes the Borel subgroup
of GLs of upper triangular matrices.

‘We write
~_ (= EIN 0z
- S

where 7,2 is a cocycle in Z 1(Qp,§)\(72). Rescaling our basis vectors has the ef-
fect of changing 7,2 by a coboundary, so we can and do think of 7,2 as a class

n Hl (Qpa g)\?)-
Let by be the Lie algebra of Bs, given by the matrices

by — V+Zy T2
2= 0 v—24)’

where aud%2 corresponds to v = 0. With respect to the basis given by the matrices

corresponding to the variables {42, z, } — that is, the basis { (8 é) , <é _01) }

— the Galois representation adOB2 7 is given explicitly as follows:

g)\aZ — 27’042
0 1 '

Note that if M is annihilated by p, then H?(Q,, M) is given by H°(Q,, M*)V ~
Homeq (M,2)V. Tt follows that hQ(Qp,ad%2 7) = 0 unless @> = 1 and 7,2 = 0,
in which case we have hQ(QP,aLd%2 7) = 1. We write RP? for RP>D unless we
particularly want to emphasize the GLy-framing variables.

Lemma 7.3.6. The generic fibre RP2[1/p] is irreducible, and has relative dimen-
sion 5 over Q.

Proof. By a standard argument (see [Maz89, Prop. 2]), RP? has a presentation of
the form O[[z1,...,z]]/(y1,-..,ys), where

r=4—h%(Qp,adp, 7) + h'(Qp,ad}, 7) = 3 — h°(Qy, ad%, 7) + h'(Qy, add, 7),
s = h*(Qp,ad}, 7).

Note that, a priori, even when s > 0, some of the y; may vanish, although one
does not expect this to happen. By the local Euler characteristic formula, r — s =
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3 + dimad}, 7 = 5. In particular, if H?(Q,,ad}, 7) = 0, then RP2 is formally
smooth over O of relative dimension 5, and we are done.

If H2(Q,, ad%,2 7) # 0, then the above discussion shows that @ = £1, 7 is split,
and s = h?(Q,, ad%2 7) = 1. Since any quotient of a formal power series ring by a
single relation is a local complete intersection, it follows from the presentation of the
previous paragraph that R?? is a local complete intersection, and in particular Ss.
Note that, at this point, we don’t know if the relation y; is non-zero or not, so we
do not as yet know the dimension of RP2.

Twisting by a quadratic character, we can and do suppose that @ = 1, so that ¥ =
1 @& 1. We begin by showing that Spec RP2[1/p] is connected, following [Ger19,
Lem. 3.13]. Note that the map Spec RP2[1/p] — Spec A[1/p] admits a section,
because we can always find a lift of the form y @ y~'e~!. Since Spec A[1/p] is
connected, it therefore suffices to show that the fibres of this map over closed
points x of Spec A[1/p] are connected.

By (for example) the proof of [BLGGT14b, Lem. 1.2.2] (see also [BGI9, Lem.
3.4.1]), the irreducible components of Spec RP2[1/p] are fixed by conjugation by
elements of GLy(RP?) whose image in GLo (k) is diagonal. It is therefore obviously
the case that all the closed points which are conjugate to representations of the
form x @ x~'e~! lie in the same connected component of the fibre over z, so it
suffices to show that each closed point of the form

_ (X *
r<0 f‘lx_l)

lies in the same connected component as the corresponding point with x« = 0. To
this end, we consider the representation

e - diag(t, t 1) rdiag(t,t )" = GLo(O(t)).

Note that the specializations of this representation at ¢ = 0 and ¢ = 1 correspond
to the two closed points that we are considering.

Letting A C O(t) be the closed subalgebra generated by the matrix entries of
the elements of the image 7, one checks exactly as in the proof of [BLGGT14b]
Lem. 1.2.2] that A is a complete local Noetherian O-algebra with residue field k.
Since 7 is split, it follows that the representation r; arises from a map RP? — A.
Since A is a domain (being a subring of O(t)), we see that the points corresponding
tot =0 and ¢t = 1 lie on the same irreducible component, as required.

To see that RP2[1/p] is moreover irreducible, it is enough to check that it is
normal, or equivalently that it is R; and S;. We have already seen that it is S5, and
to show that it is Ry, it suffices to show that there is an open regular subscheme U
of RP2[1/p] whose complement has codimension at least 2. We will in fact show
that there is such a subscheme with the property that the tangent space at any
closed point u € U has dimension 5, thus also proving the statement about the
dimension of RP2[1/p] (if the one relation in our presentation of RP2 was trivial,
then RP2 would be formally smooth of relative dimension 6, and there would be no
such points).

Over RP2, we have a universal lifting r™ : Gq, — GLa(R??), and we let H2, ; :=
Hz(GQp,ad%2 V) a finite RP2-module. Since the cohomology of Gq, van-
ishes in degree greater than 2, the formation of H? is compatible with special-
ization, so that in particular if  is a closed point of RP2[1/p] with corresponding
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representation 7, : Gq, — GL(£,) (with E, a finite extension of Q,), then
H?(Gq,,ad}, i) = H2 4 @gs, By

We let U be the complement of the support of HZ2 , in Spec RP2[1/p]. (It is
not obvious a priori that U is not empty, but we will prove this below.) Then at
any closed point = € U, we have H2(G<;2p,ad%,2 ry) = 0, so by a standard Galois
cohomology calculation (essentially identical to the one used in the first paragraph
of this proof), U is formally smooth over Q, at x, with relative tangent space of
dimension 5. It follows that U is regular.

The complement of U is the support of H?, so just as above, its closed points are
those = for which p, is a direct sum of two characters whose ratio is the cyclotomic
character. But in any Zariski open neighbourhood of such a point there are points
of U (for example, points which are a direct sum of two characters whose ratio
is not the cyclotomic character, given by twisting the characters occurring in p,
by unramified characters), so U is dense in Spec RP2[1/p], and Spec RP2[1/p] is
equidimensional of relative dimension 5 over Q,.

It remains to show that the complement of U (that is, the support of H?) has
codimension at least 2, or equivalently that it has relative dimension at most 3
over Q. In fact, it has relative dimension at most 2 over Q,: the only freedom we
have is to make twists of the two characters in p, (and the determinant is fixed), so
the corresponding dimension is the dimension of GLs minus the dimension of the

centralizer of <(1) 591>7 which equals 4 — 2 = 2, so we are done. O

Let RP>N denote the Bs-valued framed deformation ring of 7 with fixed deter-
minant. It follows from the assumption that 7 is p-distinguished that RZ20 is
formally smooth over RPN of relative dimension

dimadg;, —dimad}, =3 —-2=1

(see Lemma for the details of an analogous argument in the symplectic case).
It will prove useful to give (somewhat) explicit descriptions of RP2>Y (and thus RP?)

in a number of explicit cases. Lemma below will also give another proof of

Lemma although not one we shall generalize to the symplectic context.

Let v € k, and let
_— Ay 5_1/\;17] .
0 & '\!

Via restriction to the character in the upper left hand corner, the ring RP>Y is
naturally an algebra over the universal deformation ring RS for GL;. This gives
a map

RGM 5 RB2Y,

The ring R is formally smooth of relative dimension 2 over @, and also formally
smooth over the Iwasawa algebra A corresponding to restricting the character to
inertia. Let us choose isomorphisms A = O[[ys]] and RS = Ol[y1,y»]]. In the
lemma below, we shall use y; for the variables of RPN corresponding to the algebra
structure over RO | we use x; for framing variables, and z; for variables related
to extensions (informally corresponding to the upper right corner). More precisely,
by “framing variables” we mean the following: the map ¢ — (1 + e¢)T gives an
isomorphism

Z4(Qp,ad},) — Home(RP>Y, k[e] /(7)) = Homy (m/m?, k),
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where m is the maximal ideal of RPN and on the level of reduced tangent spaces, the
framing variables are by definition the coboundaries B'(Q,,ad%,) C Z1(Q,,ad},).

Lemma 7.3.7. Let m denote the mazimal ideal of RP>N. The ring RP>Y is a
complete intersection, is flat over A, and is irreducible of relative dimension 4
over O. The rings RP>N as RS™ -algebras have the following explicit presentations.
(1) If 4% # 1 and n # 0, then RP>N ~ O[[zy, 2,31, y2]].
(2) If ¥* # 1 and n =0, then RP>N ~ O[[x1, 21, y1, y2]]-
(3) If ¥ =1 but n # 0, then:
(a) RPN is formally smooth over O,
(b) RPN is formally smooth over A unless 1 is peu ramifice,
(¢) RPN ~ O[[x1, 22, 21,y1,Y2]]/gn, where g, = cyy1 +dyya mod (X, m?)
for [cy, : dy;] € PY(k), and where [c, : dy] depends only onn € H' ().
(4) If ¥* =1 and n = 0, then:
(a) RB2N =~ Ol[zy, 21, 29,91, 2] /g, where

g=7z1y1+ 2292 mod (A, m?).
(b) The special fibre RB2Y/\ is not formally smooth.

Remark 7.3.8. Explicit descriptions of ordinary deformation rings (even over general
extensions K/Q,) for GLy have been given by Bockle in [B00, §7]. However, we
require some precise information about these rings as algebras over RS and A
which is not explicitly given in the required form in [B00|, and thus we have found it
easier to give the argument below. However, all the methods below already appear
(in a more complicated setting) in previous work of Béckle and others.

Proof. We first note that aud%2 is simply the 2-dimensional representation given by
0 — k(A28) = ady, — k — 0,
and where the extension class is given by 7 (so this is just a twist of 7). The framed
tangent space has dimension
dim Z*(Q,, ad},) = dim H'(Q,, ad},) + dim BY(Q,,, ad}, ),
with precisely
dimad},, — dim H°(Q,,ad}, )
framing variables. The maps from RSt and from A correspond on tangent spaces
to the maps Z'(Qy,ad},) — H'(Qp, k) and Z'(Qy,ad},) — H'(Iq,, k) given by
the composites of the maps
Zl (Qpa ad%z) - Hl (Qpa ad%g) - Hl(Qpa k) — Hl(IQp7 k)
We now consider the four possible cases in turn.

If 2 # 1 and n # 0, then H°(Q,, adOBQ) is trivial, and there are two framing
variables z1 and z2. The map from H'(Q,, adOB2) to Hl(Qp, k) is an isomorphism.
Note that H 2(Q,g,aud%,z) = 0, and so RP2Y is formally smooth over O and all
statements are clear in this case.

If v2 # 1 and = 0, then HO(Qp,ad%2) = k and there is only one framing
variable z1. However, the map from H'(Q,, ad%z) to H'(Qy, k) is now surjective
with kernel H'(Qy, k(E\,2)), which is of dimension one. Note that H?(Q,,ad%,) =

0, and so RP2Y is formally smooth formally smooth over ©® and once again all
statements are clear.
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If 42 = 1 but n # 0, then H?(Q,,ad% ) = 0 and the tangent space has dimen-
sion four, exactly two dimensions coming from framing, one dimension from the
image of H'(Q,,%) in H'(Q,, ad%Q), and one dimension coming from the image
of Hl(Qp,ad%Q) in H'(Q,, k). To compute the image, it suffices to consider the
(surjective) map from H'(Q,, k) to H*(Q,,Z) and determine the kernel, or, taking
duals, considering the map H°(Q,, k) — H'(Q,,%) and taking the image. The
image of the latter map is precisely given by 7.

The corresponding ring will fail to be flat over the space of weights A precisely
when the image of

HY(Qp,ad},) — HY(Qyp. k)

maps to zero in H 1(IQP, k), or equivalently when the image is unramified. Under
Tate local duality for H'(Q,, k) x H'(Q,, &) — k, the unramified classes are exactly
annihilated by the peu ramifiée classes. Hence the failure of formal smoothness
over A occurs precisely when 7 is peu ramifiée. All the claims follow except possibly
the claim that RP2N is flat over A, which is also transparent except in the peu
ramifée case, where RP2N is formally smooth over @ and is the quotient of a
formally smooth A-algebra by the relation g, = y2 mod (m?,\). This will be flat
over A as long as y» ¢ ARP2Y, which can be easily ruled out by looking at points
in characteristic zero. For example, we see from [GHLS17, Theorem 2.1.8] that the
fibre over every point in A[1/p] is non-trivial. In particular, there are points where
the restriction to inertia of the character lifting A, is finite of arbitrarily large
order, so that v(y2) becomes arbitrarily close to 0, which would not be possible
if yo € ARB2N,

It remains to consider the case when 7 = 1@e~!. The representation underlying 7
decomposes as a direct sum which induces corresponding decompositions of ad%z
and ad%L2 respectively. In particular, the adjoint aud%2 = k @ € of 7 thought
of as inside the Borel is naturally a direct summand of ad%L2 =kocoz
Let Zl(Qp,adOBQ) denote the 1-cocycles with values in ad%f There is a natural
surjection

Z'(Qp,ad,) — H'(Qp,ad},) = H'(Qp, k) & H'(Q,, 7).
We now chose a basis for Z1(Q,, ad%z) as follows:

(1) 71 generates the kernel B1(Q,,ad})) of Z1(Q,,ad},) — H'(Q,, ad}, ).
(2) s1 and so generate H'(Q,, k), where s; is unramified and s, is ramified.
(3) t1 and t5 generate H'(Q,, ), where ¢; is trés ramifiée and ¢ is peu ramifiée.
(4) Under the alternating cup product pairing

HY(Qy, k) x H'(Q,,8) = H*(Q,,2) ~ k,
we have s; Ut; = d;5.
We now define the dual basis of
m/(m? \) = Homy (Homy, (m/m?, k), k)
to be given by x;, y;, and z; for i = 1 for z; and i = 1,2 for y; and z;, where
zi(r) = yi(s;) = zi(t;) = dij)
and all other combinations vanish. The representation aud%2 (p) has a Lie algebra
structure via the map

ad}, (p) x ad, (p) — ady, (7), (A,B) — AB — BA.



POTENTIAL MODULARITY OF ABELIAN SURFACES 179

The corresponding cup product on cohomology groups composed with this Lie
algebra structure induces a symmetric bilinear pairing (the bracket cup product)

M : Z1(Qp,ad},)? — HY(Qp,ad},)? — H*(Q,,ad},),

Writing H'(Q,, adOBZ) = H'(Qp, k) ® H'(Q,, %), this map can be given explicitly
in our case as follows:

M(a7b) = M((al,ag), (bl,bg)) = 2(&1 Uby —as U bl)

(Note that U is alternating so this map is indeed symmetric.) As noted by in [Maz89|
§1.6], the image of the corresponding map gives the quadratic relations in the
deformation ring, which produces the desired quadratic relation g.

More precisely, note that H2(Q,, ad%z) = H?(Q,,¢) is 1-dimensional. By [BJ15]
Lem. 5.2], the relation g can be determined (up to the required order) by the relation
given by the image of the natural map

H*(Qp,ad%,)" — (Z21(Qp, ad},)Y)?

induced by the bracket cup product. But now the non-zero terms can be read off
from the explicit form of M (a, b) above and the description of our basis of m/(m?, \)
as a dual basis to the explicit basis of Z(Q,, ad%Q). It follows that, after rescaling,
the leading term of g is given by y121 + Y222, as required.

Part is a straightforward consequences of the presentation just determined
above. Note that the structure over RSt and A is one again determined by the cor-
responding map from H'(Q,, ad%z) to H'(Qy, k), and from our explicit description
above this corresponds to our choice of the parameters y; and ys. ([

We also have:

Lemma 7.3.9. The points of RP2[1/p] which are non-smooth over A are — up to
unramified twist — crystalline extensions of e =% by 1.

Proof. This is the characteristic zero version of the computation done in the proof
of Lemma [7.3.73b), and amounts to noting that in the Tate duality pairing

Hl(Qm Q,) x Hl(Qpa Q,(1)) = Qp,

the unramified classes in the first group are annihilated exactly by the crystalline
extensions in the second. (I

We next introduce a class of partially framed deformation rings, which will allow
us to relate framed deformation rings for different groups.

7.3.10. Partially framed deformation rings. Since we are assuming that F, = Q,,
for the rest of this section we write Q, instead of F,, and p instead of p|g,, . We

shall also henceforth (in this section) write R? for RE-™ and RP for RI’. These
are framed deformation rings with respect to GSp,, and as such, could also be
denoted by R”H and RPU to emphasize the framing. However, the images of the
corresponding Galois representations may always be conjugated to land in B or P
respectively. In particular, we may consider deformation rings in which the image
is required to actually land inside these subgroups rather than land there up to
conjugation.
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Definition 7.3.11. Let D5 and DY denote the subfunctors consisting of de-
formations which land inside B or P respectively. Let RZN and R”Y denote the
corresponding deformation rings.

(Here the adornment N represents that the framing is all taking place inside the
“upper right corner” corresponding to B or P respectively.) The ring R? ~N may be
identified with the universal framed deformation of p with fixed similitude character
thought of as a representation to B. The ring RPN is not quite the universal
deformation ring of p to P (framed in P) with fixed similitude character, because we
are imposing an extra condition on the restriction of the first two diagonal entries
to inertia. On the other hand, if RP"™V = RPwiv.D denotes the deformations
to GSp, of fixed similitude character which may be conjugated to P (without
imposing this condition on inertia), then there is also a corresponding ring RN
which is the universal P-framed deformation of p with fixed similitude character.
Note that there are tautological maps R® — REY and R — RPN respectively.
Let us write adgsp,, adp, and adp for the groups adgsp, (p), adp(p), and adp(p)
respectively. Since p is odd, there exist corresponding direct factors ad%sp4, ad%,

and ad% corresponding to deformations with fixed similitude character.

Lemma 7.3.12. Suppose that p is p-distinguished weight 2 ordinary.
(1) There exists a splitting
RBN _, pBO _, pBN
which realizes R® = RPD as formally smooth over RZN of relative dimen-
sion
dim adgg,, —dimady = 10 — 6 = 4.
(2) There exists splittings
RPwnivY _, pPuniv.0 _, pPuniv,

RPN _, pPO _, pPN

which realize RY and RP"™Y as formally smooth over RPN and RPiv:-Y
respectively, of relative dimension

dim ad%sp4 —dimad} =10 -5=>5.

Proof. As previously noted, the p-distinguished hypothesis implies the existence
(by [CHTOS, Lem. 2.4.6]) of a unique Galois stable filtration Fil’ on (RZF)4. In
particular, we may choose a splitting of this filtration by a symplectic matrix M €
GSp,(RPY) with the property that M = I mod m. Conjugation by M induces
the desired map from GSp,-framed deformations to B-framed deformations, and
thus induces a splitting from RZY to RE. In the P case, one can additionally
choose the splitting such that the choice of new vector in Fil? is Galois stable, and
then the corresponding conjugate is valued in P.
The p-distinguished hypothesis implies that the maps

H(Qp,adp) — H"(Qp, adp) — H(Qy, adggy, )
are all isomorphisms (see for example the explicit descriptions of ad?g and ad%

following the proof of this lemma). By construction, the reduced tangent spaces
of RE'B and RPN are given by extensions of H'(Q,, ad%) (in both cases) by B1(Q,, ad%sp4)
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and B'(Q,,ad%) respectively (and analogously with P). On the other hand, the
map on B! groups is precisely dual to the map

adl /H®(Qp, ad}) — addg,, /H(Qy, adgs,,)

(and once more similarly with P). Hence, from the identification of H° groups
above, it follows that the map on reduced tangent spaces corresponding to RP'H —
RPN is an injection whose cokernel has dimension

(dim adgs, — dim H%(Q,, adgg,, ) — (dimady — dim H%(Q,, ad))

= dim aud%sp4 — dim ad

(And similarly in the P case with B replaced by P.)

We now prove the maps are formally smooth, which will be a direct consequence
of the fact that the obstruction group is given (for R 0 and RN or for RFwiv.H
and RP"ivN and RPH and RPY) by the groups H2(Qp,ad%) and HQ(Qp,ad(I);)
respectively. We consider first the case of B; for simplicity of notation, we drop B
from the superscripts from now on. Consider a surjection R:= RY[[x1, 2o, T3, 24]] —
RY which induces an isomorphism on reduced tangent spaces, and let J denote the
kernel (so it suffices to show that J = 0). Let m be the radical of R. Recall that we
have a unique symplectic filtration Fil* on (R9)* = (R/J)* and a choice of splitting
corresponding to the matrix M. Lift this to a filtration Fil for E/ m.J, and consider
a corresponding set theoretic deformation p: Gq, — GSp, (R/f.J) which preserves
this filtration. (There are no issues lifting filtrations because the symplectic group is
formally smooth.) The corresponding 2-cocycle [c] € H?*(Q,, adOGSp4) ® J/mJ then
lands in H?(Q,,ad}) ® J/mJ. Now choose a symplectic splitting of this filtration
lifting the one for Fil’. Conjugating p by the corresponding matrix M (lifting M
above) gives a set theoretic map MpM~! from Gq, to B(R/m.J). But this map
lifts puniv . Gq, — B(RY). By universality of p™"V  since E/IT‘LJ is an RY-
algebra, there is no obstruction to lifting this to a B-representation of Gq,, and
hence the class [c] becomes trivial in the corresponding obstruction group for the B-
deformation problem. Since the obstruction group in this case is H 2(Qp, ad%) for
both the B-deformation problem and the ordinary GSp,-deformation problem, it
follows that [c] is trivial and hence that J = 0.

The same argument applies to P, except now the splitting of Fil has to be chosen
so that it is preserved by Gq, — equivalently, an identification of the first two

eigenspaces to E/ J to ensure that the deformation is of P-type. In the case of R”,

one additionally requires the set theoretic lift to act diagonally after restriction to
2
inertia on Fil . ([l

7.3.13. The GSp,-deformation rings. We are assuming that p|c,, has image of the
form

Az O é—l/\%lnaﬁ EIA e
0 Az g—lAgnﬁg E I as
0 0 ?1)\%1 0

0 0 0 Gl
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where @ # 3, and where we write 75 to denote a (possibly zero) class in H'(Qy, EXz).
Our analysis of the deformation rings (particularly in the B case) will depend on
which of these classes are equal to zero or not.

The dimensions of B and P are 7 and 6 respectively. Recall that we are con-
sidering deformations of p to B or P with fixed similitude character. For p > 2,
the adjoint representations p and b admit a splitting with a canonical one dimen-
sional summand corresponding to varying the similitude character. Let ad%(p) C b
and ad% (p) C p denote the complementary 6 and 5 dimensional subspaces. Explic-
itly, b is given as follows:

V+ Ty —Ta/B Tap Tn2
0 v+ xa xg2 Tap
b= ,
0 0 V—1Ig T/
0 0 0 V— Ty
where the subspace with z,,3 = 0 corresponds to p, and the subspace v = 0

corresponds to adOB. With respect to the basis given by the matrices corresponding
to {x42, Zp2, Tap, Ta/B> Tas zg}, the Galois representation adOB (p) is given explicitly
as follows:

sz 0 0 2)@)\%1 Nap  —2Maz 0
0 g)\Ez 0 0 0 —2ng2
0 0 g)\EE )\a)\%l “ 182 —Nap —Naps
0 0 0 )\EA%I 0 0
0 0 0 0 1 0
0 0 0 0 0 1
and, on the space ad%(p) C ad%(p) with respect to the basis {Za2, 252,08, Ta, T}

(not a direct summand!), we have

Elg2 0 0 — 202 0

0 5)\32 0 0 —2ng2
0 0 g)\aﬁ “Nap  TTNap
0 0 0 1 0
0 0 0 0 1

As in the case of GLy above, we may compute HQ(Qp,aLd0 (p)) for P and B by
counting whether the subspaces generated by {z,2, 22,743} generate € subspaces
and whether these subspaces split. The following lemma is immediate from the
explicit description above.

Lemma 7.3.14. The dimension of H*(Q,,ad%(p)) is zero unless one of the fol-
lowing holds:
(1) The classes 1o and 12 are both zero, and &> = 1.
(2) The class ng= is zero, and Bz = 1. In this case, either:
(a) The conditions of part (1) also hold, or:
(b) The dimension of H*(Q,,ad%(p)) is 1, and there is a Q,-equivariant
map from the representation V underlying p to the Borel of GL(2)
corresponding to the representation

pym 0 1 0
w75 —
- (0 gl/\ﬁ1> =A5® (0 s—l) ’
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and the corresponding map relating H*(Q,, ad%(p)) = H*(Q,,ad%(V))
to H2(Qp,ad%2 (W) is an isomorphism.
(3) The classes nag and 1z are both zero, and af = 1.

Moreover, the dimension of H*(Q,,ad%(p)) is > 2 only in case , in which it
has dimension 2.

We could give a similar (but easier) computation of H?(Q,,ad%(p)), but it is
not needed in the sequel so it is omitted.

Recall that R”"™V denotes the universal deformation ring for P. The quo-
tient R” is given by imposing the condition that the action of inertia on Fil* (given
by the upper left 2 x 2 matrix after changing basis) is through a scalar. Recall that
we also have corresponding rings R”"™V-N and RPN where the image lands in P
directly (rather than up to conjugation). Any deformation of type R”"™V-N deter-
mines deformations of the three 2-dimensional subquotients of p, given respectively
by the extension 74 of éfl)\gl by Ag, by the extension 7p of é’l)\%l by Az, and
the extension 745 of E7'AZ! by A\g. Similarly, any triple of such deformations with
the appropriate coincidences of the corresponding characters defines a representa-
tion of type P. (These identifications require that we work with N framings rather
than [J framings, since otherwise there would be superfluous framing variables in
this identification.)

Let Ry = RB2N for 74 and Rp = RB2N for 7. Let Rap = RB2N det o TAB,
where RB2Ndet g the framed B, deformation ring in which one does not fix the
determinant, so (since p > 2) one has that RPN det = RB2Ng , RGL is formally
smooth over RPN of relative dimension 2. There are natural maps from R4, Rz,
and Rp to RPN and RPN respectively. Write RGL1 * GL1 — RCL1® 4, RGN for
the deformation ring corresponding to the pair of characters (A, ,As,). We have
the following:

Lemma 7.3.15. The ring R s formally smooth over
RPWVN ~ (RA®0RB)® gor, xaL Rap
of relative dimension 5. The ring RY is formally smooth over
RPN~ (Ry®ARB)®gov, x e, Rap
of relative dimension 5.

Proof. The isomorphisms follow directly from the discussion above, and the state-
ment about formal smoothness is Lemma [T.3.121 O

We now prove the P-part of Proposition [7.3.4]

Proposition 7.3.16. Suppose that p is p-distinguished. Then RT"™Y and RY are
both complete intersections. Moreover, they are connected in characteristic zero,
and the non-smooth locus in characteristic zero has codimension at least two. In
particular, the generic fibres RP"V[1/p] and RT[1/p] are irreducible of dimen-
sions 15 and 14 over Q, respectively.

Proof. The strategy is as follows. By Lemma we can immediately reduce
to the rings RV and RPN respectively and prove that they satisfy the same
properties above (with 15 and 14 replaced by 10 and 9 respectively). Given the
explicit form of the presentations for the 2-dimensional Bs-deformation rings, in
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order to show that RPN and RPN are complete intersections, one can simply
write down enough about the equations for the tensor products in Lemma [7.3.15]
and observe (for the appropriate value d = 10 or 9 in either case) that they are
either:

(1) Formally smooth of the relative dimension d over O,

(2) Given as a quotient of a power series ring in d+ 1 variables by one relation,

(3) Given as a quotient of a power series ring in d+ 2 variables by a 2-generator
prime ideal which is not contained in (\).

(The last example occurs only in a single case.) We say more about this computation
below.

For the remaining claims, it suffices to prove that the generic fibre is connected
and that our tensor products are R; and S (and thus normal); since they are
complete intersections, it is enough to show that the non-smooth points have codi-
mension at least 2. It is convenient to consider two separate cases.

Suppose that o = 1. In this case, it follows from the p-distinguishedness
hypothesis that o # 1 and 32 # 1. In this case, the rings above have a particularly
simple form even over . Namely, R4 and Rp are formally smooth over O and
over A, and the resulting tensor product is formally smooth over R4p, and thus
the result follows from Lemma since the rings RP2'Y satisfy all the required
geometric properties above.

Now suppose that a8 # 1. In this case, R4p is formally smooth over RGT1 x Gl
and by Lemma RPiv and RPY are formally smooth over Ri®oRp or RA®ARE
respectively. Let us now consider the case of RN, which corresponds to R AQARE,
the case of R4 @o Rp being easier and also following immediately from Lemma|7.3.7
Since R4 and Rp are either smooth or have a non-smooth locus of codimension 4
(corresponding to twists of 1@e~! by a (possibly trivial) unramified quadratic char-
acter), it is certainly the case that the points on the generic fibre of R4&; Rp which
are non-smooth on R A@)@R B have codimension at least 2. Hence it suffices to con-
sider the non-smooth points of R4®,Rp which are smooth on R4®pRp. In par-
ticular, such a point must have a tangent space of dimension 8, and will be smooth
if and only if it has an infinitesimal deformation which does not lie on RA®ARE.
Equivalently, given a point 2 = (x4, zp) on the generic fibre of Ry®sRp[1/p], it
will be smooth if it has a deformation in which the weight over A varies for one x 4
or xp but remains fixed for the other point. Equivalently, we can look for a de-
formation of x = (z4,xp) such that one point is fixed but the other point varies
over A[1/p]. For x4 or xp, such a deformation exists as long as x4 (or zp) is a
smooth point over A. But the non-smooth points in characteristic zero over the
space of weights A are (up to unramified twist) exactly the crystalline extensions
of e71 by 1 (see Lemma , and hence these non-smooth points certainly have
codimension at least 2. To show it is connected, it suffices to note that, for each
fibre of R4 above A, any x 4 is connected over this fibre to a point which is smooth
over A. This reduces to showing that any extension of e~! by 1 which is crystalline
has a deformation to a non-crystalline extension. But this is trivially achieved by
a perturbation of the extension class, noting that H'(Q,,¢) is free of rank 2 and
the crystalline subspace is a line of rank 1.

It remains to prove the claim that these rings are complete intersections in all
the possible cases. Almost all the time, the tensor product is either immediately
seen to be formally smooth of the right dimension, or given by a single non-zero
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equation and of the right dimension. In fact, the only way in which there can be two
equations is when two of the rings R4, Rp, and R 4p are not formally smooth. This
implies that at least two of @2, BQ, and af are equal to one, and this trivially only
happens when @ = 1 and B2 =1, and hence af # 1. Thus the only possible case
when there exist at least two equations is when @? = BQ =1 and ng2 = g = 0.
The corresponding tensor product is then

O[[IA,17 ZA1,%A2,YA1,YA2, TB1,ZB,1,%B,2, yB,l]]

modulo the ideal (noting tensoring over A forces y4 2 = yp.2):

(z4,1ya1 +2a2Ya2+ ..., 2B1YB1 + 2B2Ya 2+ ...).

This pair of elements is easily seen to generate a height 2 prime ideal.
The cases when there are no equations and the rings are formally smooth are
trivial. In the cases when there is an extra generator one has to show that the

resulting equation is non-zero. Essentially the most subtle case of this form occurs
72 .
when @? = 3~ =1 and 742 and Tg2 are both non-zero and peu ramifiée. In that

case, there are naively two equations which have the following form:
Yaz =h(ra1,241,242,94,1),

Ya2 = h(Tp1,2B.1,2B,2,YB,1);
which immediately reduces to one equation. (Here h is the same h because both
extensions generate the same line — the other cases are trivial). We then need to
show that the resulting equation obtained by taking the difference of the RHS is
non-zero. But this is obviously the case unless the RHS is zero. If this is true,
then ya 2 is zero in RB2Y/)\ which is impossible since R is flat over A. a

Proof of Proposition[7.3.4 By Proposition[7.3.16 we only need to prove the results
for R®. As in the proof of Lemma we have a presentation of RP of the
form O[[z1,...,z.]]/(y1,--.,Ys), Where

r=11-h%(Q,,adsp) + h'(Q,,ad% 5), s = h*(Q,,ad% 5),

so that by the local Euler characteristic formula, r — s = 10 4+ dim ad%? =16. In
particular, if H*(Q,, ad%(p)) = 0, then RP is formally smooth over O of relative
dimension 16, and there is nothing to prove.

It is therefore enough to consider each of the cases of Lemrna In case ,
we see that RP is formally smooth of relative dimension 11 over the deformation
ring RP2Y for 7 = 79D A%lé_l, so the result follows from Lemma From the

presentation in the previous paragraph, we see that in cases (1) and (3), R” is a
complete intersection, while in case , we see that every irreducible component
of RP has relative dimension at least 16 over ©. By Lemma we may (and
we do) pass freely between R® and RPN when convenient.

Suppose that we are in case (3), and suppose that 7,2 # 0. Let g be the

representation with the same @, 8 as p, but with 7,2 = Ng2 = Nag = 0. Let REBN
be the corresponding deformation ring. We claim that in fact Rg N and RBN are
isomorphic. To see this, note firstly that since @3 = 1, and @ # 3, we have &> # 1.

Let
_ g 02
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We have already shown that, in this case, R®>Y is formally smooth over A. In
fact, we can be more explicit. Write A for what we called RC™ above, so that Ais
the formally smooth A-algebra of relative dimension 1 which carries the additional
information of the actual lift of Az (rather than just its restriction to inertia), so
that RPN and RP>Y are naturally /N\—algebras. Let )A\% :Gq, — A% be the universal
lift of Az. Then since @ # 1, H*(Gq,, )\NEQe) is a free A-module of rank 1, and the
universal lift of 7 is represented by

—~ ~——1 o

)\a )\a 5717’042
N_li_l

0 Aa e

where 7,2 lifts n42. It is then easy to verify that if o
triangular lift of g to Rg N, then

UnV- s the universal upper-

Quniv +

OO OO
o O O

0

is a lift of p. This gives a map Rg’ﬂ — RPN and we can obtain a map R%Y — Rg’ﬂ

in the same way. It is clear that the composites of these maps are the identities, so
that Rg ~Nand RBN are isomorphic, as claimed.

Accordingly, whenever we are in case , we will assume from now on that 1,2 =
0. It is now easy to see that in each of the cases , , and (3)), Spec REN[1/p]
is connected. Indeed, in each case we have 7,2 = 1.3 = 0, so by arguing as
in the proof of Lemma (using conjugation by diag(t,1,1,t71)), we see that
every closed point of Spec R®*Y[1/p] may be path connected to one which lands

in P(Q,). Now we may immediately conclude by knowing the corresponding result
for Spec RP"iv:N[1 /p] proved in Proposition

To obtain irreducibility we now argue as in the proof of Lemmal[7.3.6] by studying
the singular locus of Spec RB[1/p]. More precisely, we let p"V : Gq, — GSp,(RB)
be the universal lifting, and let H? := HQ(GQP7ad% PV a finite RP-module,
which is compatible with specialization. Let U be the complement of the support
of H? in Spec RB[1/p]. At any closed point x € U with corresponding representa-
tion p, : Gq, — GSpy(E,), we have HQ(GQp,ad?B pz) = 0, so it follows that U is
formally smooth over E, at z of relative dimension 16. In particular, U is regular.

The points in the complement of U are those for which Hz(qu, ad% p,) # 0.
We claim that this has codimension at least 2. We may explicitly describe this
locus as follows (this description follows easily from the explicit description of ad%
preceding Lemma . In case (1), we may suppose without loss of generality
(by twisting with a quadratic character if necessary) that @ = 1, and then the
points in the complement of U are those conjugate to representations of the form

10 0 0

0 ¥ * 0

0 0 e'x ' o0

0 0 0 g7l
where x lifts )\E. The locus of such points has dimension at most 13; indeed, the
action of PGSp, by conjugation contributes at most 10 to the dimension, and the
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choice of x and * at most 3 (there is a two-dimensional family of choices of x, and
if x? is non-trivial then the choice of * gives one more dimension, while if x? is
trivial then it gives 2 dimensions).

In case , we have in addition the points of the form

X ox 0 0
0 A1 0 0
0 0 671A_1 *
0 0 0 eyt

where ' lifts Az = 1. The locus of such points again has dimension at most 13.
In case (3)), we have the points of the form

X * 0 *
0 x! o0 0
0 0 ety * ’

0 0 0 eyt

where x lifts Az. The locus of such points has dimension at most 14 (with 2
dimensions for the choice of x, and then generically one dimension each for the
choices of the extension class of x~! by x and of e~ 1x~! by ¥, or two dimensions
each if y2 = 1).

Thus in cases and 7 since we know that RZ is a complete intersection, we
see that it is normal (being Ry and Ss), so we are done. The case having already
been dealt with, we are left with case , where we have seen that every irreducible
component of Spec RZ[1/p] has dimension at least 16, while the complement of U
has dimension at most 12. It now suffices to show that R is a complete intersection,
and thus also normal as above, and to check that Spec RZ[1/p] has dimension
exactly 16.

We have a presentation of R = RP of the form O[[z1,...,215]]/(y1,v2). This
is a complete intersection as long as dim(R) < 19 — 2 = 17, which also implies
that the relative dimension of R over O is 16, and so the dimension of the generic
fibre is 16. Assume otherwise, so that dim(R) > 18. Then the support of R
in Spec O[[z1,...,x18]] contains a height one prime p of O[[z1,...,218]]. Suppose
firstly that p has residue characteristic zero, and let T" denote the corresponding
closed subscheme of Spec R[1/p], which will have dimension 17. For any closed point
x € T with corresponding representation p, : Gq, — GSp,(E,), the tangent space
at = certainly has dimension at least dim(7") = 17. Hence there is an inequality

11— h%(Q,,adp p.) + RH(Q,, ad% p,) > 17,

and so, by the FEuler characteristic formula, hZ(GQP,ad% pz) > 17—16 > 1. In
particular, it follows that z lies in the support of H?, and hence that T C U. But
we have already seen that U has dimension at most 12, and this is a contradiction.

Hence R can only fail to be a complete intersection if the support of R con-
tains (). It follows that dim(R/A) = dim(k[[z1,. .., 21s]]), and hence that R/\ =
k[[x1,...,718)]. Twisting, we may without loss of generality assume that 8 = 1.
Let 7 = 1 @z~ %, and let RP2Y denote the corresponding fixed determinant de-
formation ring to the Borel of GL(2). By realizing 7 as the subquotient of the
representation p given by the span of the second and third standard basis vectors,
there is an induced map

Y:RE2N 5 RY 5 R — RN =E[[z1,...,218]]-
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Let W denote the representation underlying 7, and (as previously) V the repre-
sentation underlying p. Let us now consider the induced map on reduced tangent
spaces. To compute this, we may look at the corresponding deformation rings, and
consider the induced map on tangent spaces. For RP2:Y, the tangent space is given
by Zl(Qp,ad%z(W)). For RY, it is given by Z'(Q,,ad%(V)). Note that we are
assuming that 7,5 = 1,2 = 1732 = 0, and so p is completely split, and so ad?32 is
a direct summand of ad}. Thus Z'(Q,,ad%, (W)) — Z'(Qy,ad%(V)) is injective.
On the other hand, Lemma shows that (for this 7) the ring RP2Y/\ is
not formally smooth. But this is a contradiction; a minimal set of generators of the
maximal ideal of RB2"Y/X satisfy at least one polynomial relation, but their images
under v do not satisfy any such relation under our assumptions because the map
on tangent spaces is injective and (as we are currently assuming) RY/\ and R/\
is formally smooth. Hence A also cannot be in the support of R, and thus R is a
complete intersection. O

Remark 7.3.17. The last argument shows that, in case , the ring R = RP is a
complete intersection. But we certainly expect (in this and in all other cases) the
stronger properties that R is flat over O and R/\ is also a complete intersection,
whereas the argument only shows that dim(R/\) < 17, rather than dim(R)—1 = 16,
which would be necessary in order for A to be a regular element. In general, we have
often only attempted to prove exactly enough about the deformation rings that we
require for the argument, rather than giving a fuller account of their geometric
properties. We apologize to readers who examine this argument in closer detail
who were hoping for something more comprehensive.

As in we say that a closed point = of RB*v[1/p] (resp. RE'[1/p]) is smooth
if (RB*[1/p]), is regular (resp. (RB**[1/p]), is regular). We say that the corre-
sponding Galois representation p, is pure if it is de Rham, and if WD(p,) is pure
(that is, it arises as the base extension of a pure Weil-Deligne representation over
a number field).

Lemma 7.3.18. If z is a closed point of the generic fibre of Rf’gv [1/p] or RE[1/p],
and x is pure, then it is smooth.

Proof. We first consider the case of B. From the proof of Proposition we
see that it is enough to check that H?*(Gq,, ad% p,) = 0. By Tate local duality,
this means that it is enough to check that Homeq (pe, p2(1)) = 0, and therefore it
is enough to check that Homwpg, (WD(ps), WD(px(1))) = 0. This follows easily

from the definition of purity. The same argument also applies to RJ"V[1/p]. We
now consider R7’[1/p]. The non-smooth points = of R7’[1/p] are either non-smooth
in REuiV[1/p] (for which the previous argument applies) or, via the isomorphism
of Lemma [7.3.15] and the proof of Proposition [7.3.16] arise in the following way:
the representation p, admits a 2-dimensional reducible subquotient r, such that
the corresponding point on the deformation ring R?2[1/p] is not smooth over A,.
By Lemma m such representations are (up to unramified twist) a crystalline
extension of e =1 by 1. Since these are not pure (and purity is preserved by taking
subquotients), the representation p, is also not pure, and we are also done in this
case. a

7.4. Local deformation problems, [ # p.
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7.4.1. Unobstructed deformations. Assume that v 1 p.

Proposition 7.4.2. If H(F,,ad’p(1)) = 0, then RS is isomorphic to a power
series ring over O in 10 variables. If furthermore p|a,, is unramified, then so are
all of its lifts.

Proof. By Tate duality, the condition is equivalent to H2(F,,ad’?) = 0, and the
result follows from a standard calculation in obstruction theory (see e.g. [Til96,
§5.2]). O

7.4.3. Taylor-Wiles deformations. Assume that ¢, = 1 mod p, and that both ¢|q,,
and p|g,, are unramified. We take A, = O. We assume that p(Frob,) has 4 distinct
eigenvalues in k, and we fix an ordering of them as @, as, @3 = ¢(Frob,)/aa,
ay = Y(Frob,)/@;. For each i = 1,2, let 7, : Gp, — k* be the unramified
character that sends Frob, to @;.

Lemma 7.4.4. Let p: Gp, — GSpy(A) be any lift of p. There are unique contin-
uwous characters v; : Gg, — A* fori=1,2, such that p is GSp,(A)-conjugate to a
lift of the form v1 ® v2 & wvgl & z/ryfl, where v; mod m4 =7, for each i =1,2.

Proof. This can be proved in exactly the same way as [GT05, Lem. 5.1.1]. |

Let A, = k(v)*(p)?, where k(v)* (p) is the maximal p-power quotient of k(v)*,
and let p : Gp, — GSpy(RY) denote the universal lift. Then p is GSp,(RL)-
conjugate to a lift of the form v; ®y2 D¢y, ! DYy, Lasin Lcmma For: =1,
2, the character 7; o Artp, | ox factors through k(v)* (p), so we obtain a canonical

local O-algebra morphism O[A,] — RS, Note that this depends on the choice of
ordering @y, ...,a4. It is straightforward to check that this morphism is formally
smooth of relative dimension 10.

7.4.5. Thara avoidance deformations. Let v be a finite place of F' with ¢, = 1 mod p.
Assume further that p|g,, is trivial, and that ¢|g,, is unramified and has trivial
reduction modulo A\. We take A, = O.

Let x = (x1,x2) be a pair of continuous characters x; : (’);v — O that are
trivial modulo A. We let DX be the functor of lifts p : G, — GSp,(A4) such that
for all o € Ip,, the characteristic polynomial of p(o) is

(X —x1(Artz, (0) (X =x2(Arty! (0)))(X —xa(Artp, (0)) ) (X —xa(Artz) () 7).
Then DY is a local deformation problem, and we denote its representing object

by RX.

Lemma 7.4.6. If x1,x2 # 1 and x1 # x5, then every closed point of Spec RX[1/p]
is smooth.

Proof. We can choose o € I, with x1 (Art;vl (o)), Xg(Art}vl(a)), Xl(ArtIZvl(a))_l,
XQ(Art;Ul(a))_l pairwise distinct. As in Lemma we need to check that for

every point z, we have Homg/ |, 1(pz, pz(1)) = 0. Any such homomorphism would
have to respect the eigenspaces for p. (o), and must therefore be zero. ([l

The proof of the following two results occupies the rest of this subsection.

Proposition 7.4.7. Assume that x1 = x2 = 1. Then R} satisfies the following
properties:
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(1) Spec R} is equidimensional of dimension 11 and every generic point has
characteristic zero.

(2) Every generic point of Spec R /() is the specialization of a unique generic
point of Spec R..

Proposition 7.4.8. Assume that x1,x2 # 1 and x1 # XQﬂ, Then Spec RX 1is
irreducible of dimension 11, and its generic point has characteristic zero.

We follow the strategy of [Tay08| (which proves the corresponding results for GL,,)
closely. A source of minor complications in the case of GSp, is that nilpotent cen-
tralizers need not be connected. Even though we are interested only in deformation
rings with fixed multiplier, we have found it more convenient to carry out the anal-
ysis without fixing multipliers until the end. We also take advantage of the fact
that we only care about GSp, (rather than, say, GSp,,) to be a bit more ad hoc in
our arguments.

Throughout the rest of this section, ¢ will denote an integer which is not a
multiple of p.

7.4.9. Preliminaries on nilpotent matrices. Let U C GSp, /O be the closed sub-
scheme of matrices with characteristic polynomial (X —1)*, and let N C Lie (GSp,)
be the closed subscheme of matrices with characteristic polynomial X*.

In [Tay08|, under the assumption that p > n, Taylor uses truncations to de-
gree X"~ ! of the usual exponential and logarithm maps in order to relate unipo-
tent and nilpotent matrices (see in particular [Tay08, Lem. 2.4]). For p > 3, we
could in the same way use the truncations to order X3 of the usual exponential
and logarithmic maps. However, both exp and log to third order involve terms of
the form X3/3! and (X — 1)3/3, which we need to avoid when working in residue
characteristic three. In the proof of [Thol2, Lem. 3.15] an alternative approach is
given (again in the case of GL,,), using the maps exp; =1+ N and log, = (U — 1)
in order to avoid assumptions on the characteristic. However, neither the matri-
ces I + N for nilpotent N nor U — 1 for unipotent U will in general be symplectic,
and thus our truncated exponential and logarithm maps must be at least quadratic.
This motivates the following definitions.

For p > 3, we have the following modified versions of the exponential and loga-
rithm map, which are the same as the usual definitions up to and including order X?2:

expy : N = U
N2 N3
N T4+ N+ — =
2 2
and
logy : U = N
U—1)?
v 0=

It is easily verified that these maps do indeed have image U, respectively A, and that
they are in fact inverses to each other, and in particular are bijective. Additionally,
they commute with the conjugation action of GSp,, and for m € Z satisfy

exp (MmN +m* N?) = expy(N)™,  logy(U™) = mlogy(U) +m* logy (U,

where m* = (m —m?)/3 € Z.
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We define the following elements of N (O):

00 0 1 0010 010 0
00 00 00 0 1 001 0
No=0, N=145 00 0o ™={000 0] ™=|0oo0o0 -1
00 00 00 00 00 0 0

We also let N; C N be the reduced, locally closed subscheme consisting of
nilpotent matrices of rank 7, so that N; € N;.
The following is an analogue of [Tay08| Lem. 2.5].

Proposition 7.4.10.

(1) Zasp,(N;) is a smooth group scheme over Spec O with fibres of dimensions
11,7,5,3 fori = 0,1,2,3. Each connected component of Zgsp,(N;) is ir-
reducible with irreducible special fibre. Moreover, ZGsp, (V;) is irreducible
except when 1 = 2, in which case it has two components.

(2) Locally in the étale topology, the universal nilpotent matriz over N; is con-
jugate to N; by a section of GSp,.

(8) N is smooth over Spec O with irreducible fibres of dimensions 0,4,6,8 for
1=0,1,2,3. In particular, N; is irreducible.

Proof. Part can be checked by brute force calculation. For instance in the most
interesting case when ¢ = 2 a direct computation (using that p > 2) shows that

ZGSp4(N2) ~ O[%Zh zZ,w, a7ﬁ7775» (’LU{I? - yz)_l}/(xvazvy/y —wo — 20 — Zﬁ)

where the matrix is given by

oo w8
coo&8w
[SERS
E R o™

and from this all the properties are clear (for instance, the two components are
given by x =w =0 and y = z = 0).

For part , we explain the case when ¢ = 2. The others are similar but easier.
We may view the universal nilpotent N over A3 as an endomorphism of (’)j{/z with
the “standard” symplectic form 1. Then, by the definition of N3, ker(N) is a local
direct summand of rank 2. Then one checks that

Y O,/ ker N x Oy, [ ker N = Oy,
(v, w) = P(Nv, w)

is a well defined non-degenerate symmetric pairing.

Etale locally, one may trivialize ¥": For any point z € N5 we may pick a Zariski
open neighbourhood z € U = Spec A C N3 over which (’)jlvz /ker N has a basis
f1, fo with @' (f1, f2) = 0 and ¥'(f1, f1), ¥ (f2, f2) € A*. Let A’ be the étale A-
algebra A[\/¢'(f1, f1), /¥'(f2, f2)], so that over U’ = Spec A’, (OR,,/ ker N)y» has
a basis fi = fi/\/V'(f1. f1), fo = fo/ /U (fo, f2) with &' (f], f1) = ¢'(fa, f5) = 1
and ¢/(f], f4) = 0. Now lift f| and f} to sections e; and ey of Of,. We may
further arrange that ¥ (ej,es) = 0 by replacing e; by es — ¢(e1,e2)Ney. Then
Nea, Neq, e1,es forms a symplectic basis for Of,, and if we let ¢ € GSp, have

these elements as columns, then Ny» = gNog™!.
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Finally we turn to part . For each ¢, there is a map

GSpy = N;
g~ gNig™".
By the first two parts of the proposition, this map is smooth and surjective. Indeed,
it suffices to check this after base change to a suitable étale cover U — N, over
which it becomes isomorphic to Zgsp, (N;)y — U. Tt follows that N is smooth over
O. The fibres of N; are irreducible because those of GSp, are, and the statement

about dimensions follows from the computation of the dimensions of the fibres of
GSp, — N in part (). O

Remark 7.4.11. By contrast to the situation for GL,, considered in [Tay08§], it is no
longer the case that Zgsp, (N;) is connected, nor is it true that the universal matrix
over N; is Zariski locally conjugate to N; (both fail when i = 2).

7.4.12. Some spaces of polynomials. Let P = G3 be the diagonal torus in GSpy;
we somewhat abusively write

P={X-a)(X - B)(X 78X —ra"")}
where the order of the linear factors matters, and we let
P = 75/W ={X*+ a3 X+ axX* + a1 X +ag | ag € G, a3ag = at},

so that there is a finite map m : P — P, given by multiplying out the linear factors.
We consider some reduced closed subspaces of P:

Po="P

Pr=a({(X —a)(X = B)(X =987 ) (X —ya™h) | ya™! = qa})

Py = w({(X — a) (X — qa)(X —¢~"a")(X —ya~")})

Ps = m({(X — a)(X — qa)(X — ¢*a)(X — ¢’a)})

We will find it useful to consider some explicit elements of GSp,(R), for an
O-algebra R. For «, 5,7 € R* we let

Do(a, B,7) = diag(a, 8,787, va™")
¢1 (a7 B) = diag(qaa Ba qaz/ﬁa O{)

Dy o (v, ) = diag(ga, ya™ ', a,vg et

0 ga 0 O

g6 0 0 0

0 0 B 0

Fa 0 q(lng)a 0

1—¢?)
By(a) = 0 o 0 ( o

0 0 qo 0

0 0 0 «a
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7.4.13. Spaces of matrices. We define N'(q) to be the closed subscheme of GSp, XN
consisting of pairs (®, V) satisfying

ONP™" = logy(expy(N)?) = gN +¢*N?,

where as above we write ¢* = (¢ — ¢3)/3. This definition is motivated by the
following. The actual equation we wish to study has the form
PUP =U?

for a unipotent matrix U. If we let N = log,(U), we have U = expy(N), and so,
applying log, to the equation above, one finds precisely that

DN~ = log, (U?) = logy(exp,(N)?).

Noting that
1 . q .

N=_(aN+q N?) AN +a N?)?,
we see that the centralizers of N and ¢N + ¢* N3 coincide. It follows that if (®, V)
is a point of N'(g), then (¥, N) is another point if and only if ¥®~! centralizes N
if and only if U=1® centralizes N. Note also that if N3 = 0, then the condition
on ® is simply that ®N®~! = ¢N, while, if ¢ = 1, then the equation is simply
that PN®~1 = N.

Consider the projection

Ng) - N
(®,N) s N

and let N (g); denote the locally closed preimage of N;. We let Z;/N; be the
centralizer of the universal element over N;. Then there is an action of Z; on N(q);
by z-(®,N) = (2P, N).

Proposition 7.4.14. The above action makes N (q); into a Z;-torsor over Nj.

Proof. By Proposition [7.4.10] we may check the proposition after base change to
a suitable étale cover U — N, over which the universal nilpotent over U is of the
form gN;g~! for some g € GSp,(U). Let ®; be any of the explicit choices of ®
given above for N; (for i = 2, take any specialization of either ®, , or ®3;). Then
one readily checks that (®;, N;) is a point on N (g);, and that

(Zi)v = N(@iv
2 (29®ig~ " gNig ™)
is an isomorphism compatible with the Z;-action. (I

Corollary 7.4.15. Fori=0,1,2,3, N(q); is smooth over O with fibres equidimen-
sional of dimension 11. For i # 2, N(q); is irreducible with nonempty irreducible
special fibre, while N'(q)2 has two connected components, each of which is irreducible
with nonempty irreducible special fibre.

Proof. The smoothness and dimension are an immediate consequence of Proposi-
tions [7.4.10] and [7.4.14] Moreover, for i # 2, N(¢); — N is flat with irreducible
fibres, and N is irreducible, and hence N(q); is irreducible. The same argument
applies to the special fibre.

Now we explain why N(q)2 has two connected components. As we explained
in the proof of Proposition [7.4.10] over N2 we have the rank 2 non-degenerate
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quadratic space O3, / ker(N) with quadratic form given by v — (v, Nv). Over N3
we have N3 = 0, so the relation ®N = ¢N® holds on N(q)z2, which implies that ®
preserves ker(N) and the computation

Y(®0, NBv) = ¢~ (B0, BNv) = ¢~ '1(®)i)(v, Nv)

shows that ® is an element of the general orthogonal group of this quadratic space.

This general orthogonal group has two components (corresponding to whether
the determinant and multiplier agree or differ by a sign). As a result we may write
N(q)2 = N(q)2,a [TN(q)2,» where N(g)2,, is the locus where @ lies in the identity
component and N(q)2 is the locus where @ lies in the nonidentity component.
Each of these loci is in fact nonempty; for example, we can consider points of
the form (P2, (v, 7), N2) and (P25 (v, 3), N2). As N(q)2.. and N(q)2p are unions
of connected components, the action of Z, restricts to an action of the identity
component Z35 on each of them, and one easily checks that they must each be
torsors for Z3, and so the same argument as above shows that N (g)2,, and N(¢)2,5
are irreducible with nonempty irreducible special fibre. ([l

For the rest of this section, we will continue to use the notation N(q)2, and
N(q)a,p for the two connected components of A(g)2 as introduced in the proof of
Corollary [7.4.151 We also write N(g), for the Zariski closure of N (q);, (N(q)i,F)

for the Zariski closure of its special fibre, and so on.

Proposition 7.4.16. The irreducible components of N'(q) are N(q), ., N(4)q

and N (q); fori=0,1,3. The irreducible components of the special fibre N'(q)r are
N(@)2,a,F), N(q)2.F), and (N (q)i ) for i =0,1,3. Each irreducible component
of N(q) has irreducible and generically reduced special fibre.

Proof. N'(q) is set theoretically the disjoint union of the five locally closed sub-
schemes N (¢)2.q, N(¢)2,5, and N (q); for i = 0,1, 3, which are each irreducible and
of the same dimension by Corollary [7.4.15] Hence their closures are the irreducible
components of A (q). The same argument applies to the special fibre.

To prove the last statement it will suffice to prove that for i = 0,1,2, 3, WZ
does not contain the generic points of N (g); ¢ for j # i. Indeed it already fol-
lows from Corollary that (N(g)2,4)r does not contain the generic point of
N(q)2,6,F and vice versa; and we also see that the special fibre of each irreducible
component of A/(q) is reduced at the generic point of the corresponding component

of N(q)F o
In order to do this for i = 0,1,2,3, let N(q); C N(q) be the reduced closed
subscheme consisting of pairs (®, N) such that rank(/NV) < i and the characteristic

—_—

polynomial chare(X) is in P;. An easy calculation shows that N (q); € N(q),,

—~—

and hence N (q); C N(g),. (One can either follow the proof of [Thol2, Lem. 3.15],
or observe that we have seen above that it is enough to check that this holds for
the points of the form (z;P;, N;) for our explicit choices of ®; and for z; € Z;.)
Thus to conclude the proof, all we have to do is exhibit a point on each irreducible

—_—

component of N'(g)g which is only contained in one of the N(g),’s. For instance,
we may take the following five points:

e (p(a, B,7),0) for general values of a, 8,7y € T
e (®1(a, ), Nyp) for general values of o, 8 € F
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o (3 4(cv,y), Na) for general values of o,y € F

(®2,5(c, 5), No) for general values of o, 8 € F
(®3(1), N3). O

For z,y € O* and g a positive integer which is not a multiple of p, we let
M(z,y; q) be the closed subscheme of GSp? /O consisting of pairs (®, ¥) satisfying:

The characteristic polynomial of ¥ is (X — 2)(X —y)(X —y~)(X —271).
oo~ =39,

We note that the order of x and y doesn’t matter.
There is evidently an isomorphism

M(1,1;9) = N(q)
(®,%) — (P,1logy(X)).

We now have the following analogue of [Tay08, Lem. 3.2].

Proposition 7.4.17. Let q be a positive integer with ¢ =1 (mod p).

(1)

(2)

Proof.
(1)

Let M; be the irreducible components of M(1,1;q) with their reduced sub-
scheme structure. Then the special fibres M; g are distinct, generically
reduced and irreducible, and their reductions are precisely the irreducible
components of M(1,1;q)r.

Suppose that either ¢ # 1 and x,y are non trivial (¢ — 1)st roots of 1 in
1 + \O with x # y*'; or that ¢ = 1 and =,y are arbitrary elements of
1+ )XO. Then M(z,y;q)™ is flat over O.

This is an immediate consequence of Proposition and the isomor-
phism M(1,1;q) =~ N(q) above.

When ¢ # 1, we observe that, as x,y,y 1, 2! are distinct (¢ — 1)st roots
of unity,

chars(X) = (X — 2)(X — y)(X =~ )(X —y™)|(X7! ~ 1),

Hence, by the Cayley—Hamilton theorem, 39 = .. This implies that there
is an isomorphism M (z,y;q) = M(z,y;1). We are therefore reduced to
the case that ¢ = 1.

To show that M(z,y;1)™? is flat over O, it suffices to show that each
generic point of its special fibre is the specialization of a point of the generic
fibre. It suffices in turn to show that a Zariski dense set of points of the
special fibre lift to the generic fibre. Then as x and y reduce to 1, we have
M(z,y; D) = M(1,1;1)p =~ N(1)p. This isomorphism, combined with
the proof of Proposition shows that the following five kinds of F-
points are Zariski dense in M(x,y; 1)r (because the corresponding points
are dense in each N (q),):

(9%o(a, B, )91, 1)

(9%1(a, B)g™ 7gexp2(N1)g‘1)
(9P2,a(,7)g~ ", gexpy(Na)g 1)
(9P2,p(ev, )9 ', gexpy(Na)g™)
(9®3(a)g™", gexpy(N3)g™?)

No
Ny
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where a, 3,7 € F and g € GSp,(F). Then letting &, 3,5 € W(F) and
g € GSp,(W(F)) be lifts, we can lift these to W (F) points of M(x,y;1) of
the following form (recall that we are in the case ¢ = 1):
(9%Po(a, B, ’7)~_ ,gdiag(z,y,y~ " 27 )g )

(§®1(a, 5)g~ hgdiag(e, 5™ 27T expy (N1)g )
(§2.0(8, 37", geling(w. 3y~ o) expy(N2)g ")
(

GP2,(6, 8)g ", gdiag(A, X (AT)~1X) expy(N2)g "), where X = (

0 1
1 0

and A is a 2 by 2 matrix with coefficients in W (F) which has trivial

reduction, commutes with ( ) and has eigenvalues z,y (for the

6 0
existence of such a matrix, use that ( E 0) has distinct eigenvalues

mod p, and is therefore diagonalizable).
o (§Ps(@)g", gdiag(z, v,y z7") expy(N3)g ). O

Next we have an analogue of [Tay08|, Lem. 3.4].

Proposition 7.4.18. Let ¢ > 1 with ¢ = 1 (mod p) and let x,y be non trivial
(g —1)st roots of 1 in 1+ O with x # y*'. Let R = @M(z,y;q),(l,l) be the complete
local ring of M(x,y;q) at the point (1,1) of the special fibre. Then Spec R[1/p] is
connected.

Proof. The proof of [Tay08|, Lem. 3.4] carries over with minor modifications. Let pg
denote the maximal ideal of R[1/p] corresponding to (®g, Xg) with ®q trivial and 3
the diagonal matrix diag(x,y,z~%,y~!), and let p be another maximal ideal, cor-
responding to a pair (®,%). We need to show that p is in the same connected
component as pg. One deduces as in [Tay08| that @ is in the same connected com-
ponent of Spec(R[1/p]) as the maximal ideal corresponding to (E~1®FE, E~1YE)
where E € GSp,(0O) is arbitrary. In order to pass to an upper triangular form, we
require the existence of a filtration Fil of k(p)* such that:

(1) Each Fil® is preserved by ® and X.

(2) The graded pieces gr’ are one dimensional and their eigenvalues (in order)
are oy, 3, Y87, ya~!, which are the generalized eigenvalues of ®.

(3) The orthogonal complement of Fil® is Fil*~*.

As in the proof of Proposition ® and ¥ commute, so we may choose Fil'
to be a common eigenvector of ® and X. We define Fil® to be the orthogonal
complement of Fil', and then choose Fil? to be any lift of a common eigenvector
of ® and ¥ in Fil® / Fil'.

The constructions of paths in [Tay08] from upper triangular to diagonal and
between diagonal matrices (eventually to (®g, %) and thus connecting p to o)
have obvious symplectic modifications. [l

7.4.19. Application to deformation rings. Now let x = (x1, x2) be a pair of contin-
uous characters y; : (9;1} — O* that are trivial mod A, let 7.55 be the functor on
CNLpo of continuous homomorphisms p : Gg, — GSp,(A) which are trivial mod
my4 and such that for o € I, the characteristic polynomial of p(o)is

(X —x1(Artp, (0))) (X —xa(Arty! (0)(X —x2(Arty) (0)) ") (X —xa(Arty) (o)) 7).

).



POTENTIAL MODULARITY OF ABELIAN SURFACES 197

Asin we let DX C DX be the subfunctor of p with vop = e~1. The functors DX
and DY are representable by rings ]%25 and RX. We also let D; be the functor with
D1(A) parameterizing continuous unramified characters ¢ : Gg, — A* which are
trivial mod my4. It is representable by O[[T]] with universal object "™V : G, —
O[[T))* given by x""V(Frob,) =1+ T.

For any A € CNLg, then as A is complete and p > 2,

1+my —14+my
t—t?
is a bijection and we denote its inverse by x + y/z. Then we have
Proposition 7.4.20. There is an isomorphism of functors
DX x Dy — DX
(P) = p@Y
Consequently there is an isomorphism RX[[T]] ~ RX.
Proof. For the inverse we may take the natural transformation

DX — DX x D,
—1
pr=(p@\e-(vop) Ve -(vop)

The only thing that we need to check is that if p € 155(14) then vop is trivial on If, .
For o € If,, (vop(c))? is the constant term of the characteristic polynomial of p(o)
which is 1 by definition. But also v o p(c) =1 (mod my), and hence v o p(o) =1
asp> 2. ([

We may now relate these deformation rings to the spaces of matrices considered
in this section.

Proposition 7.4.21. Let o be a chosen topological generator of the tame inertia
subgroup of Gp,. Let x = Xl(Art}j(U)) and y = XQ(ArtEvl (0)). Then

R’L))( =~ @M(xvy;%r)v(lvl)'

Proof. Since plg,, is trivial, any lifting of it factors through the quotient T} =
Gr,/Pr,, where Pp, denotes the maximal pro-prime-to-p subgroup of I, (that
is, the kernel of any non-trivial homomorphism Ip, — Z,). If ¢ is an arithmetic
Frobenius element in G, , then the group 7, is topologically generated by ¢ and
the image of o, subject to the constraints that ¢ generates a pro-p group, and that
pop~! = g%. The result then follows from the definitions. O

We can now conclude the proofs of Propositions and exactly as
in [Tay08§].

Proof of Proposition[7.4.7 Combining Propositions (1) and[7.4.21 with [Tay08],

Lem. 2.7] proves the corresponding result for RL. The result for R} follows from
this and Proposition [7.4.20] O

Proof of Proposition[7.4.8 Proposition implies that (RX)™d is flat over O.
Proposition [7.4.18| implies that Spec(R[1/p]) is connected. On the other hand, by
Lemma for any closed point x € Spec(RX[1/p]), the localization (RX[1/p])s
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is regular and hence a domain. Then the result follows from Propositions|7.4.17|(2)
and [7.4.21} as in the proof of [Tay08, Prop. 3.1]. O

7.5. Big image conditions and vast representations.

7.5.1. Enormous subgroups. Following [CG18, [KT17| (which give the analogous
definition for GL,,) we now define the notion of “enormous image,” with some minor
modifications.

Definition 7.5.2. We say that a subgroup H C GSp,(k) is enormous if it satisfies
the following conditions:

(E1) H'(H,ad’) = 0 for the 10-dimensional representation ad’.
(E2) H acts absolutely irreducibly in its natural representation, in particu-
lar, HO(H,ad’) = 0.
(E3) For all simple k[H]-submodules W C k @ ad”, there is an element h € H
such that
e h € GSp,(k) has 4 distinct eigenvalues, and
e 1 is an eigenvalue for the action of h on W.

If H only satisfies (E2) and (E3), then we say that H is weakly enormous.

Lemma 7.5.3. If H and H' are subgroups of GSp, (k) with the same image in PGSp,(k),
then H is enormous (resp. weakly enormous) if and only if H' is enormous (resp.
weakly enormous).

Proof. Suppose that P is the projective image of H in PGSp,(k) and Z is the
kernel. Then the action of H on ad® factors through P. In particular, H O(P, ad’) =
HO(H,ad”), and there is an inflation restriction sequence

0— H'(P,ad’) — H'(H,ad") — H'(Z,ad’)” = 0.

Hence all the conditions in the definitions of enormousness and weakly enormous-
ness depend only on the projective representation. [

Note that if H' C H is weakly enormous, then so is H, but if H’ is enormous,
then H is not necessarily enormous.

Remark 7.5.4. Some “big image” conditions in the literature have the additional
assumption that H has no p-power quotient. In practice, however, that hypothesis is
often only used in a very weak way, namely, to ensure that the image of p restricted
to Gp(c,) coincides with the restriction to Gp(c ) for all N > 1. The stronger
hypothesis has the unfortunate side effect of ruling out some perfectly fine Galois
representations to which the Taylor—-Wiles method applies, most notably, surjective
representations p : Gq — GLa(F3) with cyclotomic determinant (exactly the case
which arises in the original work of Wiles!). In order not to rule out some interesting
subgroups which occur for p = 3, we therefore do not assume this hypothesis.

Let p > 3. The cyclotomic character induces a homomorphism:
Grp — 2, ~(Z/pZ)* © (1+ pZ,) — (1 + pZ,).

If p is unramified in F', then this composite map is surjective. In general, the image
contains 1 + p® for some integer 6. In order to address the passage from F (¢p)
to F'((,~) in the Taylor-Wiles argument, we have the following lemma:
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Lemma 7.5.5. Suppose that p > 3. Let
p:Gp — GSpy(k)
be a continuous homomorphism. Then there exists an integer § depending only on F

such that the image of p restricted to Gp(gpN) is independent of N for N > 1+ 9
ifp>5o0rN>2+40 forp=3. If p is unramified in F, then one may take § = 1.

Proof. There is a canonical injective homomorphism
Gal(F(¢v)/F) — (Z/p"Z)*

for all N, and we will identify Gal(F((,~)/F) with its image in (Z/p™~Z)* in the
below. We choose & such that for all N, the image contains 1 + p°. In particular,
if p is unramified in F', we can take 6 = 1.

Let M denote the fixed field of p. There are natural maps as follows:

Gal(M (Cyni1)/F) <> Gal(M/F) x Gal(F(Cn+1)/F)

Gal(M(Cyn )/ F) — Gal(M/F) x Gal(F(¢,x)/F)

where the composites of the horizontal maps with the projections to each factor are
surjective. The images of p restricted to F((,~) and F'((,~v+1) coincide precisely
when the left hand vertical map has non-trivial kernel (necessarily of order p). We
prove this is so under our assumptions on N.

It suffices to show that the horizontal image of the upper map contains an element
of the form (idys, 1 + mp™) for some m with (m,p) = 1. By the surjectivity onto
the second factor, it contains an element of the form (g,1 + p°). Let m be the
prime to p order of g, so that h := ¢" has p-power order. Since p > 2, we
have (g,1 —|—p6)m”N75 = (h’”Nﬁé7 1+ mp"), and hence we are done providing the
order of h divides p™¥ 9. Yet all p-power elements of GSp, (k) have order dividing p
if p > 5 or order dividing p? if p = 3. (The p-Sylow subgroup of GSp,(k) consists
of unipotent matrices which satisfy (¢ — 1)* =0, so o?" =1 when pF > 4.) O

In anticipation of Lemma below, we make the following definition:
Definition 7.5.6. A representation p : Gp — GSp, (k) is vast if one of the following
two conditions holds:

(1) The image of p restricted to G F(¢,n) is enormous for all sufficiently large N.
(2) The image of p restricted to Gp( ) is weakly enormous for all sufficiently

large N, and the fixed field L of ad® 7 does not contain Cp-

Remark 7.5.7. If p is unramified in F, then, in Definition [7.5.6] one may replace
sufficiently large N by N = 3, since, by Lemma [7.5.5 the image in this case does
not depend on N for N > 3.

Remark 7.5.8. By Lemmal7.5.3] 7 is vast if and only if any twist of p by a character
is vast.

The following lemma will prove useful for constructing Taylor—Wiles primes:
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Lemma 7.5.9. Suppose that p > 3. Let p : Gp — GSp,(k) be a continuous
representation. Fix an integer N > 1. Suppose either that:

(1) The fized field L of ad’p does not contain Cp, OT
(2) The restriction of p to GF(CPN) has enormous image.
Then
HY(L(¢yn)/F,ad’ p(1)) = 0.

In particular, if p is vast, then the conclusion above holds for all sufficiently large N .

Proof. We first consider the case when ¢, ¢ L. By inflation-restriction, it suffices
to prove that the groups

HY(L(¢p)/F,ad” B(1)), H(L(Gn)/L(Cp),ad” p(1)) G L)1)
both vanish. The group Gal(L((,)/L) C Gal(L(¢,)/F) acts trivially (by conjuga-

tion) on both the group Gal(L({,~)/L((p)) and the module ad”. However, it acts

by non-trivial scalars on the twist ad’(1) since we are assuming ¢, ¢ L. Hence the
second group vanishes after taking invariants. Applying inflation-restriction now
to the first group, it suffices to prove that the groups

H! (L/F, (ado ﬁ(l))Gal(L(ﬁp)/L)), e (L(Cp)/L7 ad® ﬁ(l))Gal(L/F)

both vanish. The second group vanishes because p 1 [L((,) : L]. The first group
vanishes because ad’p is fixed by Gal(L(¢,)/L) and thus has no invariants after
being twisted by the mod-p cyclotomic character (which by assumption is a non-
trivial character of Gal(L((,)/L)).

Now we consider the second case. Let M denote the splitting field of p, so
that M/L is a (possibly trivial) cyclic extension of degree prime to p. Inflation—
restriction shows that we have an injection

HI(L(CpN)/Fa ado p(l)) — Hl(M(<pN)/Fa ado p(l))a

so it suffices to show that the latter group vanishes. By inflation-restriction, it is
enough to show that the cohomology groups

H' (F(Gyn ) /F, HO(M (G [ F (G ), ad” (1)),
HI(M(CpN)/F(CpN)v ad" ﬁ(l))
both vanish. We are assuming that
H = Gal(M (v )/ F(Gpn))
is enormous. Thus to show that both groups above vanish, it suffices to note that
H°(H,ad’) = H'(H,ad’) =0
because H is enormous. [l

Remark 7.5.10. The two parts of this proof are essentially standard — in particular
the first part is exactly the same as the proof of Lemma 5.3 of [Pil11].

We will require a weakly enormous (or in practice vast) image assumption in
order to use the Cebotarev density theorem to guarantee the existence of Taylor—
Wiles primes. Similarly, the following condition will allow us to use Cebotarev to
arrange for our level structures to be neat by increasing the level at an auxiliary
prime.
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Definition 7.5.11. We say that a subgroup H C GSp, (k) is tidy if there is an h €
H with v(h) # 1, and such that no two eigenvalues of h have ratio v(h) (but the
eigenvalues need not be distinct). We say that a representation p : Gp — GSp,(k)
is tidy if it has tidy image.

Note that the property of tidiness is inherited from subgroups.

Lemma 7.5.12. Suppose that H C GSp, (k) is absolutely irreducible, and the cen-
tre Z of H has order at least 3. Then H is tidy.

Proof. By Schur’s lemma, the centre is cyclic and any element in the centre is
scalar with eigenvalues ((, ¢, ¢, () for some (. If |Z] > 3, there thus exists such an
element h in the centre with ¢? # 1. Since v(h) = (% # 1, and since the ratio of
every pair of eigenvalues is 1 # v(h), it follows that H is tidy. O

Lemma 7.5.13. Let A C GLy(F,) x GLo(F,) be the subgroup of pairs (A, B)
with det(A) = det(B), and consider A as a subgroup of GSp,(F,) via the map
of 2.2 Ifp>5 and A C H, then H is tidy.

Proof. The argument is very similar to the proof Lemma The group A
contains a cyclic subgroup of scalar matrices of order p — 1 > 2. (I

Lemma 7.5.14. If p > 11 and H C GSp, (k) is absolutely irreducible, then condi-
tions (E1) and (E2) are satisfied.

Proof. This is immediate from [Thol2] Thm. A.9]. O

Lemma 7.5.15. If p > 3, then H = Sp,(F,,) is enormous and G = GSp,(F),) is
tidy. If p : Gp — GSpy(F)) is a surjective representation with similitude charac-
ter 71, then p is vast and tidy.

Proof. For all such p, the representation ad® is absolutely irreducible. Hence for
weak enormity it suffices to note that H contains elements with distinct eigenval-
ues, and every such element has at least one eigenvalue 1 on ad’. Thus for enor-
mity it suffices to check that H'(Sp,(F,),ad’) = 0. For p > 11, this follows from
Lemma For p = 3, 5, and 7, it can be checked directly using magma [BCP97].
(All of the magma code and output for this paper can be found at the github re-
spository here [BCGP21].)

For tidiness, the centre of G has order p—1 so the result follows from Lemmal[7.5.12]
when p > 3. (It also follows from Lemma ) When p = 3, the group GSp,(F3)
contains an element g of order 20 with v(g) = —1; more precisely, its eigenvalues
are of the form (¢, ¢3,¢?, ¢?7 for a 20th root of unity ¢, and v(g) = (10 = (3% = —1.
The ratios of the pairs of eigenvalues are of the form ¢3~1, ¢!, and ¢*"~!, and
since none of these quantities is equal to ('° = —1, we are done.

For vastness, note that the image of p restricted to Gp(¢,) will be H = Sp,(F},).
Since this group has no quotients of p-power order (indeed PSp,(F,) is simple), the
image of the restriction of p to G F(¢,n) will also be H for all N. Hence the image
of p restricted to G F(¢,n) is always H and hence enormous; thus p is vast. O

7.5.16. Representations Induced From Indexr Two Subgroups. Suppose that G C
Sp, (k) is an absolutely irreducible subgroup such that the underlying representa-
tion W becomes reducible on an index two subgroup H. Write x for the quadratic
character x : G — G/H — k> (we assume the characteristic of k is different
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from 2). Write G/H = {1,0}. Then one may write W|y =V @ V7, and one has
the following G-equivariant decompositions (not necessarily into irreducibles):

WeoW=WeW'=Fkak(y)®Indfad (V))& As(V) ® As(V) ® x,
ad®(W) = Sym?(W) = Ind% (ad®(V)) @ As(V),
NW) =k k(x) ®As(V) @ x.
Here As(V) is the Asai representation, which satisfies As(V)|g = V ® V7. These

identifications follow from computing what happens over H and noting that W ~
W ® x.

Lemma 7.5.17. Suppose that As(V) and Ind% (ad®(V)) are absolutely irreducible
representations of G. Suppose that G\H has an element g of order neither dividing 4
nor divisible by p. Then G satisfies condition (E3) of enormousness.

Proof. Let g be an element of G\ H. Since W is induced, the eigenvalues of ¢ are in-
variant under multiplication by —1. Since G C Sp,(k), the eigenvalues are invariant
under inversion. It follows that the eigenvalues are of the form (a,a™!, —a, —a™1)
for some a. If g has order neither dividing 4 nor divisible by p, then a* # 1 and
these eigenvalues are all distinct. To show (E3), it is enough to show that any such
element g has an eigenvalue 1 on both As(V) and Ind% (ad’(V)). Let T' = (g), and
work in the Grothendieck group of representations of I'. The representation Sym?
differs from A2 by containing the squares of all the eigenvalues. Hence

Sym?) = (%] + [02,07%, 0%, a7,
Moreover, since x(g) = —1,

[A%] = [1] + [-1] + [-As(V)].

It follows by counting eigenvalues in W @ W that

(A% =[]+ [-1] + [1,-1, —a? —a™?],

[Sym?] = [-1,1,0%, a7 2] + [1,—-1,0% —a?, a2, —a~ 2.
from which it follows that
[As(V)] = [-1,1,02, a7,
nd% (ad®(V)) = [1,-1,02, —a?, a2, —a7 2,
both of which have 1 as an eigenvalue. O

Lemma 7.5.18. Assume k has characteristic p > 3. Let G be the group SLa(k)2
Z/27Z = (SLa(k) x SLa(k)) x Z/2Z, where the semi-direct product swaps the two
copies of SLa(k), considered as a subgroup of Spy(k) as in §2.2 Then G is weakly
enormous, and is furthermore enormous if #k # 5.

Proof. We begin by checking that property (E1) holds. Let H = SLy(k) X SLy(k) =
A x B, say, and let V4 and Vg denote the tautological 2-dimensional representations
of A and B, so that W|y = Vi ® Vg, and Sym?*(W)|x = ad’(W)|g = ad’(V4) @
ad’(Vp) @ V4 ® Vp. Since H'(G,ad’(W)) = H'(H,ad"(W))%/# it suffices to
prove that

HY(H,ad’(W)) = H(A x B,ad’(W)) = 0.
By inflation-restriction, we see that there are exact sequences:

H(A,ad’(Vy)) = HY(A x B,ad’(V4)) = (HY(B, k) ® ad’(Va))4 = 0,
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0=H"(A, (VAo Vs)?) = H'(Ax B,V4® Vg) = (H'(B,Vg) ® V4)* = 0.

Thus it remains to show that H'(A,ad’(V4)) = 0. But this is the same as showing
that

HY(SLy(k), Sym?(k?)) = 0.

This holds for #k # 5 (which we are assuming) by [DDT97, Lem. 2.48|.

Property (E2) is obvious. For property (E3), it suffices by Lemma to
show that G\ H contains an element g of order not dividing 4 and not divisible
by p. Since p? — 1 is always divisible by 8, there exists a matrix a € A of order
exactly 8. The automorphism o : A x B — B x A of order 2 identifies A with B,
and with respect to this identification let g = o(a,a) = (a,a)o. Then g% = (a?, a?)
has order 4, so g has order 8 which does not divide 4 and is not divisible by p, as
required. (Il

For p = 5 one has the following substitute:

Lemma 7.5.19. Let H/F be a quadratic extension, and let 7 : Gg — GL2(F5) be
a surjective representation with determinant 1. Let p: Gp — GSp,(F5) be the
induction of 7 to F', and assume that the image 0fﬁ|GF(<5) is equal to G = SLo(F5)?
Z/2Z. Assume furthermore that 5 is unramified in F. Then G := p(Gr(cy)) 15

weakly enormous for all N > 1 and (5 does not lie in the fized field of ad® D5 in
particular, p is vast.

Proof. Since the abelianization of G has order prime to 5, the image of p over F((5)
is the same as the image over F((s~) for any N, and is weakly enormous by
Lemma, Let T denote the image of p. Since 5 is unramified in F' and the
similitude character of I is inverse cyclotomic, it follows that the similitude charac-
ter is surjective and [I" : G] = 4. In particular, the group I is the full pre-image of G
in GSp,(F,), and is generated by pairs (A, B) in GLy(F,) with det(A) = det(B)
together with an involution sending (A4, B) to (B, A). The fixed field L of ad’ 7 is
the fixed field of the projective representation. But one can now observe directly
that the image of I' in PGSp,(F5) has abelianization (Z/2Z & Z/2Z), which does
not surject onto Gal(F((5)/F) = Z/4Z. So (, ¢ L, and p is vast, as required. O

7.5.20. The enormous subgroups of Sp,(F3). By an exhaustive search, one can de-
termine precisely which of the subgroups of Sp,(F3) are enormous. There are 162
conjugacy classes of subgroups, and it turns out that precisely 11 of them are
enormous, of orders 40, 128, 160, 192, 240, 320, 384, 384, 1152, 1920, and 51840
respectively. Our main interest will be in representations p to GSp,(F3) which are
vast and tidy. In particular, it is of interest to consider subgroups G of GSp,(F3)
which are tidy and such that H = Sp,(F3) N G is enormous. Sometimes the
tautological 4-dimensional representation V' of one of these groups G fails to be
absolutely irreducible on an index two subgroup — necessarily this subgroup is
not H = GNSp,(F3) because we are assuming that H is enormous and hence acts
absolutely irreducibly on V. The representation V underlying G restricted to this
index two subgroup either becomes reducible over F3 or over a non-trivial extension
of F3. In the former case, we say that G is split induced. In this case, the index
two subgroup is necessarily a subgroup of

A = {(4, B) C GLy(F,) x GLy(F,) where det(A) = det(B)}
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and G is a subgroup of ' := A x Z/2Z where Z/2Z swaps the factors. Hence we
may write the index two subgroup in this case as G N A.
We collect a number of interesting examples in the following lemma.

Lemma 7.5.21. The following groups G C GSp4(Fs) are tidy, and such that the
index two subgroup H = G N Spy(F3) is enormous.

(1) The group G = GSp,(F3).

(2) A group G of order 3840. The projective image has index 27 in PGSp, (F'3).
It may be identified as the stabilizer of the natural action of PGSp,(F3) on
the 27 lines of a cubic surface.

(3) Split Inductions. The following subgroups of I' = A x Z/2Z:

(a) The group G =T of order 2304.

(b) The two groups G of index 3 in T. They are the two groups of order
768 inside GSp4(F3) up to conjugacy, and they are distinguished by
their intersections H = G N Sp,(F3) C SLa(F3)1Z/2Z and HNA C
SLo(F3)%. Note there is a homomorphism x : SLy(F3) — Ay — Z/3Z.
One intersection H N A is given by pairs (A, B) with x(A4) = x(B),
and the other by pairs with x(A) = —x(B). Note that these groups
are abstractly isomorphic (the outer automorphism of SLs(F3) sends x
to —x) but not conjugate inside GSp,(F's).

(4) Other Inductions. A group G of order 480 with projective image S5 X
Z/2Z. There is an isomorphism PSLy(Fg) = Ag, and hence a projective Fy
representation of the subgroup As C Ag. This is not unique — there are
two natural conjugacy classes of A5 permuted by the exotic automorphism
of Ag. But that automorphism is induced by Frobs acting on the field of
coeflicients Fg, so the choice does not matter. There is a corresponding lift:

115 — GLs (Fg)

by a group 1&5 which is a central extension of As by Z/4Z. The outer
automorphism group of As is (Z/2Z)?2, and there is a unique such outer
automorphism which acts by —1 on the centre and by an outer automor-
phism on As. Moreover, this lifts to a genuine automorphism o of Aj of
order 2. Then G := As x (o) C GSp,(F3) has order 480. This is the
only enormous subgroup which both has induced image and is not solvable.
Warning: The group G is not determined up to conjugacy by its order.
Indeed, there exists a second conjugacy class of subgroups G’ of order 430
with H = G’ N Sp,(Fs3) of order 240 such that G’ contains As with in-
dex two and such that the corresponding outer automorphism is given by
the class of 0. The group G’, however, is not a semi-direct product. The
groups G and G’ can be distinguished as follows: the group PGSp,(F3) has
a natural action on 40 points corresponding to the action on P3(F3). The
orbits of G are of size 20 and 20 respectively whereas G’ acts transitively.

Proof. This can be proved using the computer algebra package magma [BCGP21].
‘We omit the details. Note, however, that case was proved in Lemma|7.5.18 [

Lemma 7.5.22. Suppose that p > 3, that K/F is a quadratic extension such
that K is unramified at p, and that T : Gx — GLa(k) restricted to Gk (c,) has
image SLa(k). Choose 0 € Gp \ Gk, and assume that Proj7 % Proj7T, but that
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det 7 = det7 is equal to L. Let p:= Indgf( 7:Gp — GSpy(k). If p=3, assume
that the fixed fields corresponding to the kernels of Proj7 and Proj7° are disjoint.
Then p s vast and tidy.

Proof. Note that F' is necessarily unramified at p (since K is). By Lemmas
and in order to show that p is vast, it suffices to show that for all N > 1, the
image of p restricted to F'((,~) is G = SLa(k) 1 Z/2Z. First assume that #k > 3.
Then PSLy(k) is simple. If the image of 77 is disjoint from the image of 7, it
would follow by Goursat’s Lemma that the image of ﬁ|GK(<P> is the group SLy(k)2,

and hence the image of plg, . ., is also SLa(k)?, and thus the image of Plere o
P P

)
is SLa(k)1Z/2Z. Since the automorphism group of PSLy(k) is PGL2(k), it follows
that the projective representations associated to 7 and 7° have the same image
if and only if they are the same. Since we are assuming otherwise, we are done
unless k = Fs.

Now assume that & = Fj3, and so the images of 7 and 7 restricted to K((3)
are both isomorphic to SLo(F3), which is a degree two central extension of Ajy.
The non-trivial quotients of SLy(F3) are given by PSLa(F3) = A4 and Z/3Z. By
assumption, the fixed fields corresponding to the kernels of Proj7 and Proj7“ are
disjoint and both have Galois group A4. Thus by Goursat’s lemma, the image
of p restricted to F((3) is SLa(F3) 1 Z/2Z. This is enormous, by Lemma
The abelianization of this group has order prime to 3, so the image of p restricted
to F({3~) is also of this form.

Tidiness follows for p > 5 by Lemma [7.5.13] For p = 3, the image contains

an element g of order 8 with v(g) = —1 and eigenvalues (¢, —¢~!,¢,—¢71) for a
primitive 8th root of unity (. The ratio of any two eigenvalues is either trivial or
is a primitive fourth root of unity. ]

Remark 7.5.23. When p = 3, we may weaken the hypotheses of this lemma slightly.
By Lemma and Lemma [7.5.5] it suffices that the image of p restricted
to F(Ca7) is either SLy(F3) 2 Z/2Z or one of the subgroups of SLa(F3)1Z/2Z of in-
dex three and order 384 considered in Lemma[7.5.21] Unfortunately, the hypothesis
that Proj7 is distinct from Proj7? is not quite enough to force this. For example, it
is possible that the image of p restricted to F/((3) might be the (unique) subgroup of
order 384 in SLy(F3)1Z/2Z with abelianization Z/6Z, and this means it is possible
that the image of p restricted to F({y) is the 2-Sylow subgroup of SLo(F3)1Z/2Z
of order 128. However, this latter subgroup is not enormous.

7.5.24. Crossing with dihedral extensions. The goal of this section is to construct
certain representations induced from quadratic fields K/F which will allow us to
prove modularity results for elliptic curves over K even when K is neither totally
real nor CM (see Theorem . Suppose that F' is a totally real field in which p
splits completely, and let K/F be an arbitrary quadratic extension of F' in which p
is unramified.

Lemma 7.5.25. There ezists a Galois extension H/F containing K such that:
(1) D = Gal(H/F) is the dihedral group of order 8, and Gal(H/K) = (Z/2Z)>.
(2) H/F is the Galois closure over F of a quadratic extension M/K.
(8) H/F is unramified at each v|p, and (Frob,) € D is not central.
Furthermore, H/F may be chosen to be linearly disjoint from any given fized finite
extension of F linearly disjoint from K/F.
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Proof. Let L/F be a second quadratic extension to be chosen later. The obstruction
to constructing a dihedral extension H/F containing K and L as quadratic subfields
with Gal(H/K) ~ Gal(H/L) ~ (Z/2Z)? is the vanishing of the cup product xx U
XL, where xx,xr € H'(F,F3) are the quadratic characters corresponding to the
fields K and L. Equivalently, if L = F(y/B) and K = F(y/a), it is the condition of
requiring that 8 € N, p(K*); if 3 = N(x + y/a), then one may take

H = F(a,\/B,\Jz +yJa).

The extension M = K(y/z + y/a) will have Galois closure H over F. Suppose 3
can be chosen so that every v|p is inert in L, and moreover such that S is prime
to p. Then H/M will be unramified at each v|p, and Frob, will be non-central,
since the fixed field of the non-trivial central element is the compositum K.L.

We now construct many such 5. Note that F, ~ Q, by assumption, and we
may assume that « is a v-adic unit for all v|p. Let us consider Ng,p(K*), which
consists of the non-zero elements of F of the form 2
quadratic form

— ay? where z,y € F. The

22 —ay? —422 =0 mod v

for any v # 0 always has a non-trivial solution with z # 0. Hence, by taking v to be
any quadratic non-residue in F;, we may choose z and y modulo v so that 2 —ay?
is a non-zero quadratic non-residue. Making such a choice for all v|p, we find
that 8 = 22 — ay? is a v-adic unit and a quadratic non-residue modulo v for all v|p.
Since p > 2, the resulting extension L = F(y/8) is thus inert at all primes v|p,
giving rise to the desired extension H/F'.

Finally, by taking x and y sufficiently close to 1 and O respectively in Op,, for
any finite set of auxiliary primes w, can ensure that H/K splits completely at any
such collection of primes, and hence we may ensure H/F is linearly disjoint from
any fixed finite extension of F' which is linearly disjoint from K, as required. [J

We may write D as D = (a,bla? = b* = (ab)* = 1), where [a, b] is the order two
element of the centre of D.

Lemma 7.5.26. Let 7 : Gp — GLao(F,) be an absolutely irreducible Galois repre-
sentation with determinant 1. Suppose that, for each v|p, the restriction Tlap,

takes the shape
Xv *
0 ="'

for some unramified character x,. Let K/F be an arbitrary quadratic extension
linearly disjoint from the fixed field F(T) of the kernel of T, let H/F be any corre-
sponding D-extension as guaranteed by Lemma[7.5.25, chosen to be linearly disjoint
from F(T), and let M/K be a quadratic extension with Galois closure H/F. Let p
be the following symplectic induction

ﬁ = Indgi (7|GK & 6M/K)7

where dpp/x s the quadratic character corresponding to the extension M/K, and
the induction is constructed as in 2.4 Let T' denote the image of 7, and let G
denote the image of p. Then:

(1) p is weight 2 ordinary and p-distinguished with similitude character 1.
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(2) If V denotes the underlying representation of G given by ¥, and U the 2-
dimensional faithful representation of Gal(H/F) = D, then p is given
by V@ U. In particular, p is absolutely irreducible.

(3) If T has a central element of order 2, then the image of p is

G =T xD)/(=1=[a,b]).

Otherwise, the image is G =1 x D.

Proof. The restriction of 7 to Gk has determinant -1, which is preserved by the

quadratic twist, and hence the induction also has ="' as the similitude character.
The induction of dy;/x from G to G is precisely the representation U of D =
Gal(H/F).

By the construction of Lemma for each place v|p, Frob, € D is not cen-
tral. It follows that the restriction of Gal(H/F) acting on U to the decomposition
group at v is of the form ¥ @ x for distinct unramified characters ¢» and x. Then
the representation p|g,, naturally takes the form 7|g,, ® v ©T|g,, ® x. This is
automatically weight 2 ordinary and p-distinguished.

Finally, the image of p is the image of the map I' x D — GL(V ® U), and the
kernel of this map is given by the elements of the form (z,z~') with 2 central. [0

We now show that many of the groups G occurring as the image of representa-
tions p as constructed in Lemma have big image.

Lemma 7.5.27. Letp > 5, and suppose that we are in the setting of Lemma[7.5.26,.
Suppose either that I' = GLy(F)) or that p =5 and T is the pre-image in GLa(F5)
of S4 C S5 = PGL2(F5). Then G N Spy(F)p) is enormous unless I' = GL3(F))
and p =5, in which case G N Spy(F)) is weakly enormous. In any case, p is vast
and tidy.

Proof. By Lemma [7.5.26] G acts faithfully on W = V ® U, where V is the tauto-
logical representation of I', and U is the faithful 2-dimensional representation of D,
with image G = (I' x D)/(—1 = [a,b]). We begin by checking condition (E3).
Clearly
WeoW*=({VeV)e UaUT).

The latter factor is the regular representation of the abelianization of D, and is
a direct sum of characters of order dividing 2. The first factor is the direct sum
of adO(V) with the trivial character. Both the trivial representation and the adjoint
representation of GLo(F,) have the property that 1 is always an eigenvalue of any
element. Hence, for any irreducible summand of W ® W*, 1 will always be an
eigenvalue on an index two subgroup ¥ C G which is the kernel of one of the
degree 2 characters of D. Yet given g € I', there is an element in ¥ with eigenvalues
the roots of g together with the negatives of the roots of g. Hence it suffices to note
that T'N SLy(F,) has an element with eigenvalues {a,a '} with o # +a~!. (In
particular, in the case that p = 5 and I is the central cover of Sy, one could take g
to have order 3.)

For I' = GLy(F,), p > b, since D has order prime to p, (E1) reduces to the
fact that H'(SLa(F)), Sym2(F12,)) = 0, which is [DDT97, Lem. 2.48|. If p = 5, the
group G is of order 384 = 42|S,|, and therefore satisfies (E1) automatically because
the order is prime to p.

For the final claim, note firstly that for each N > 1, we have p(G F(CPN)) =

G N Sp,(F,). Indeed this is clear for N =1 (as the similitude factor of p is e~ 1),
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and since G has no quotients of order p, the same is true for all N > 1. That p
is vast is then an immediate consequence of the previous claims except in the case
when I" = GLy(F'5), where G N Sp,(F5) is not enormous. But in this case, exactly
as in the proof of Lemma the image of the projective representation factors
through PGL2(F5) x (Z/2Z)* which does not surject onto Z/4Z, and hence the
fixed field of the adjoint representation cannot contain (5 when FE is unramified
at p = 5. Finally, for tidiness, we note that I' and hence G contains a centre of
order at least p — 1, and we are done by Lemma [7.5.12] O

7.6. Taylor—Wiles primes. We again fix a global deformation problem

S= (ﬁ, S, {Av}v€S7 wv {DU}UES)'

Then we define a Taylor-Wiles datum to be a tuple (Q, (@1, ..,0,4)veq) cON-
sisting of:
e A finite set of finite places @ of F, disjoint from S, such that ¢, = 1 mod p
for each v € Q. B B
e Foreachv € @, an ordering @, 1, @y,2, @y,3 = w(Frobv)agé, Ty = w(Frobv)agj
of the eigenvalues of p(Frob, ), which are assumed to be k-rational and pair-
wise distinct.
Given a Taylor-Wiles datum (Q, (@y,1,...,Qy4)veq), We define the augmented
global deformation problem

SQ = (ﬁ, Su Qa {AU}UGS U {O}UEQ7 1/% {Dv}ves ) {DE}UEQ)'
Set Ag = HUEQ A,. For each v € @, the fixed ordering @, 1,. .., a0y, 4, determines
a A[AgJ-algebra structure on RgQ for any subset T of S (via the homomorphisms
0[A,] — RY defined in . Letting ag = ker(A[Ag] — A) be the augmentation
ideal, the natural surjection R?.;Q — Rg has kernel aQRgQ.

Lemma 7.6.1. Assume that p is vast, that p > 3 is unramified in F, that ¢ =
e~ Y, and that k contains all of the eigenvalues of all elements of p(Gre,)). Let
q > h'(Fs/F,ad’ p(1)). Then for every N > 1, there is a choice of Taylor—Wiles
datum (Qn, (Qu 1, ..., Cu.a)veqy) Satisfying the following:

(1) #Qn =q.

(2) For each v € Qn, ¢, = 1 mod p".

(3) hgéws(adoﬁ(l)) =0.

Proof. Without loss of generality, we may assume that N > 3, and hence (by the
definition of vastness and Remark ) that p(Gp( y)) is weakly enormous. By
definition, we have

Hg. 5(ad’p(1)) =ker | H'(Fs/F,ad"p(1)) — ] H'(F.,ad’p(1))
vEQN

By induction, it suffices to show that given any cocycle k representing a nonzero
element of Hg, S(ado p(1)), there are infinitely many finite places v of F such that
QN

e v splits in F((,n);
e p(Frob,) has 4-distinct eigenvalues @, 1, ..., 0% 4 in k;
e the image of x in H'(F,,ad" (1)) is nonzero.



POTENTIAL MODULARITY OF ABELIAN SURFACES 209

By Cebotarev, we are reduced to showing that given any cocycle k representing a
nonzero element of H'(Fs/F,ad’ 5(1)), there is some o € Gr(c,) such that

e p(0) has distinct (k-rational) eigenvalues;

o pok(0) # 0, where p, : ad’p — (ad’p)? is the o-equivariant projection.
(The latter condition guarantees that the image of x in H'(F,,ad’5(1)) is not a
coboundary.) Let L/F be the fixed field of ad” 5. The kernel of the restriction map

H'(Fs/F,ad’p(1)) — H' (Fs/L(¢p~),ad’ p(1)) "
is, by inflation—restriction, isomorphic to
HY(Gal(L (G )/F), ad’ p(1).

The assumption that p is vast implies by Lemma [7.5.9] that this group vanishes.
In particular, the restriction of x defines a nonzero G F(c, ~)-€quivariant homomor-
phism Gal(Fs/L((pn)) — ad’p. Let W be a nonzero irreducible sub-G'p(¢ x)-
representation of the k-span of x(Gal(Fs/L((,~)). Since ﬁ(GF(gpN)) is weakly
enormous and k is sufficiently large, there exists o9 € Gp(¢ ) such that p(oo)
has distinct k-rational eigenvalues and such that W70 #£ 0 (tlilis follows from the
vastness assumption, in particular, by condition (E3) of . This implies that
k(Gal(Fs/L((p~)) is not contained in the kernel of the cg-equivariant projection
Doy - ad’ 5 — (ad’ )70, If pg,k(00) # 0, then we take o = 0. Otherwise, we choose
7 € G, y) such that Doy k(T) # 0, and we take o = 70y; since p(o) = p(op) and
k(o) = k(og) + k(7), we are done. O

Definition 7.6.2. We say that p : G — GSp,(F,) is odd if the similitude char-
acter 1 is odd, i.e. if for each place v|oco of F' with corresponding complex conjuga-
tion ¢,, we have ¥(c,) = —1.

Corollary 7.6.3. Assume that p is odd, that p is vast, and that k contains all of
the eigenvalues of all elements of p(Gp(,)). Let ¢ > h'(Fs/F, ad’5(1)). Then for
every N > 1, there is a choice of Taylor-Wiles datum (Qn, (@1, --,0p4)veQn)
satisfying the following:

(1) #Qn = q.

(2) For each v € Qn, ¢, = 1 mod p".

(3) There is a local A-algebra surjection RY'[[X1, ..., X,]] — REQN with ¢ =

2q —4[F : Q]+ #S — 1.
Proof. By Proposition and Theorem the claim holds with g instead
equal to
#S—1-Y h(F,,ad’p)+ > hO(F,,ad’5(1)).
v|oco vEQN

(Note that the assumption that 7 is vast implies that h®(Fs/F,ad’5(1)) = 0.)
For v € Qu, by the assumptions that ¢, = 1 mod p and that p|g,, has distinct
eigenvalues we have

hO(F,,ad’ p(1)) = h°(F,,ad" p) = 2.

For v|oo we have hO(F,,ad’p) = 4 by the assumption that 7 is odd. It follows
that g = 2¢ — 4[F : Q] + #5 — 1, as claimed. O
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7.7. Global Galois deformation problems. We now begin to introduce the
framework that we need to carry out our Taylor—Wiles patching argument. As
always, F' is a totally real field in which the prime p > 3 splits completely, and
we write S, for the set of primes of F' dividing p. Let 5 := Gp — GSpy(k) be an
absolutely irreducible representation. We assume the following hypotheses.

Hypothesis 7.7.1.

(1) The representation p is vast and tidy.
(2) If v € Sp, then p|g,., is p-distinguished weight 2 ordinary.
(3) There is a set of finite places R of F' which is disjoint from S, such that
(a) If v € R, then p|g,, is trivial, and ¢, =1 (mod p). If p = 3 then we
further insist that ¢, =1 (mod 9).
(b) If v ¢ S, UR, then p|g,,, is unramified.

Set ¥ = ¢!, and drop ® from our notation for global deformation problems from
now on. Let I C S, be a set of places of cardinality #/. We will eventually need to
assume that #7I < 1, although the more formal parts of the patching construction
can be carried out without this assumption, so we do not impose it yet. We write
I° for S\ 1.

By the Cebotarev density theorem and our assumption that p(Gr) is tidy, we
can find an unramified place vy ¢ RU S, of F' with the properties that

® qu, #1 (mod p),
e 1o two eigenvalues of p(Frob,,) have ratio ¢,,, and
e v has residue characteristic greater than 5.
Then H?(F,,,adp) = H°(F,,,adp(1))¥ = 0. We set S = RU S, U {vo}.

The reason for choosing vy is that all liftings of p|¢ r,, A€ automatically unram-
ified by Proposition [7.4.2] and our choice of level structure at vy will guarantee that
our level structures will be neat, by Lemma [7.8.3]

For each v € R we choose a pair of characters x, = (Xv,1,Xv,2), Where Xy, :
(’);5“ — O are trivial modulo A. (Note that at this stage the characters x,; are
allowed to be trivial.) We write x for the tuple (x»)ver as well as for the induced

character x = [[,cpXo : [[,epIw(v) = O
For each place v|p, we fix A, (and thus 6,) as in §7.3] in the following way: if v €

I, then we take A, = O[[OF (p)]], while if v ¢ I, then we take A, = O[[(OF (p))?]].

We write ¢ = {?, },eg, for a choice of @, or 3, at each v € S,.
We have the corresponding global deformation problem

S)I{? = (pv Sv {AUJ}UEI U {Av,2}v€1” U {O}’UES\SP7
{DF}oer U{DE" }oere U{DX}oer U{DI}).

Let (@, (@v,1,.-.,®n)veq) be a choice of Taylor-Wiles datum. We set Sg = SUQ
and define the associated global deformation problem

Si?Q = (P, 5@, {Av,1 fver U{Ay 2}vere U{O}yes s,
{D]oer U{DF " }vere U{D)}oer U {DE}UESQ\(RUSP))~

Note that by definition S>I<?Q does not depend on the choice of ¢, for v € I.



POTENTIAL MODULARITY OF ABELIAN SURFACES 211

7.8. Taylor—Wiles systems: initial construction. In the next two sections,
we will construct the Taylor-Wiles systems that we will patch in §7.11] using an
abstract patching criterion explained in ( is mainly concerned with the
construction of the Taylor—Wiles systems, whereas §7.9] is mainly concerned with
proving the required local-global compatibility statements for the corresponding
Galois representations.)

Since we are only dealing with the cases that #I < 1, we do not need to make
use of the full machinery of patching complexes developed in [CGI18, [KT17, [GN20];
rather, we can and do use the notion of “balanced” modules introduced in [CGIS|
§2], which we recalled in This has the advantage that we do not need to
consider local global compatibility at places dividing p for Galois representations
associated to classes in higher degrees of cohomology, but rather just have to prove
the vanishing of the Euler characteristic of a certain perfect complex, which follows
from a calculation of the cohomology in terms of automorphic forms.

We now make the following hypotheses on a representation p : G — GSp,(k),
which include those made in Hypothesis

Hypothesis 7.8.1.

(1) F is a totally real field in which the prime p > 3 splits completely; we
write S}, for the set of primes of F' dividing p.

(2) The representation p is vast and tidy.

(3) For each v € Sy, plg,, is p-distinguished weight 2 ordinary.

(4) There is a set of finite places R of F' which is disjoint from S, such that
(a) If v € R, then p|g,,, is trivial, and ¢, =1 (mod p). If p = 3, then ¢, =

1 (mod 9).

(b) If v ¢ S, U R, then moreover p|q,, is unramified.

(5) There is an ordinary cuspidal automorphic representation = of GSp,(Ar)
of parallel weight 2 with central character | - |? such that:
() Prp =7

(b) If v € RUS,, then ) £ 0.

(c) If v ¢ RUS,, then r5i9Pa(Or) # 0.

As in by the assumption that p(Gp) is tidy we can and do choose an
unramified place vo ¢ RU S, with the properties that

e ¢y, Z1 (mod p),
e 1o two eigenvalues of p(Frob,,) have ratio ¢,,, and
e the residue characteristic of vy is greater than 5.

Definition 7.8.2. We define an open compact subgroup K? = [, K, of GSp,(A%"?)
as follows:

o If v g S, URU{vy}, then K, = GSp,(Or,).
o If v € RU{vp}, then K, = Twy(v).

For any Taylor-Wiles datum (Q, (@1, ..., Qv 4)veq), We have open compact sub-
groups K{(Q), K¥(Q) of K? given by

e It v ¢ Q, then K(Q), = KV(Q), = K.

e If v € Q, then K(Q), = Iw(v), KV(Q), = Iw1(v).
We define the open compact subgroup group K§(Q, R) as follows:

e If v ¢ QUR, then K}(Q,R), = KP.



212 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

e If v € QUR, then K} (Q, R), = Iw(v).
Finally, we let K¥(Q, R) = K7(Q). (Note that we already have K?(Q), = Iwi(v)
for v € R.)

The following lemma (applied with v = vg) guarantees that for any compact
open subgroup K, C GSp,(F,), K, K{(Q) and K,K?(Q) are neat.

Lemma 7.8.3. Suppose that K =[], K, C GSp,(A%¥) is an open compact sub-
group and that there exists a place v of F such that v is absolutely unramified of
residue characteristic greater than 5, and K, = Iwy(v). Then K is neat.

Proof. Suppose that there is an element g, € K, which has an eigenvalue ¢ € F,,
which is a root of unity; by the definition of “neat” (see Definition , it is
enough to check that we must have ¢ = 1. Since the reduction modulo v of the
characteristic polynomial of g is (X — 1)*, the v-adic valuation of (1 — () is at
least 1/4. On the other hand, if v has residue characteristic [ and ¢ # 1 is a root
of unity, then the v-adic valuation of (1 — () is either 0, or is at most 1/(I — 1), so

we are done, as [ > 5 by assumption. O
We let B
T= @  O[GSpi(F.)// GSps(OF,)]
vg€Sp,URU{vo }

be the ring of spherical Hecke operators away from the bad places, and similarly
we set

TQ — & O[GSp,(Fy)// GSpy(OF, )]
vZSpURU{wo}UQ

We let m®" C T be the maximal ideal corresponding to p (the “an” stands for
“anaemic”); so by definition m containins A, and the polynomials det(X — p(Frob,))
and Q,(X) are congruent modulo m for each v ¢ S, U R U {vp}, where in a slight

abuse of notation, if v ¢ S, URU {vg} we write Q,(X) € T|[X] for the polynomial
X4 - Tv,lAX3 + (QUTU,Q + (qg + QU)TU,O)Xz - quv,OTv,lX + QSTg,O

(cf. (2.4.8)). Similarly we write m*»Q C T2 for the maximal ideal corresponding
to p. For any choice of I we let

T! = T|{U, 0, Uxkii(v),1, Uv 2 oer, {Uv,0, Uv,1, U 2 Foere]
and B B
T'9 = TUU,.0, Uxiiw),15 Uv2 oer, {Uv,0, U1, Un 2 }oere]
and additionally for any choice of & we let m!* C T! be the maximal ideal
(7.8.4)
m'f = (W {Uso — 1,Up2 — 0B }ves,  {Uxtiw),1 — @ — Botvers {Un1 — 8o }oere)

and we let m!/*@ ¢ T1Q be the maximal ideal

{ﬁl’?’Q = ({ﬁan,Q7 {Uv,O_]-v U’U,2_avﬁv}v63pv {UKli(v),l_av_ﬁv}vGU {Uv,l _?’U}UGIC)‘

Let x = (Xv,1,Xv,2)ver be any choice of p-power order characters of Ip, for
v € R, and also write x, for the corresponding characters of T'(k(v)) given by
Xv,1 © ATtr,, Xu2 0 Artp, .

Then we consider the Aj-module

MIt = RHomY (M ph, Ar)gre

2|12
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and the A;[Ag]-module

150 _ 0 o]
M1 = RHomy, (Migy ) AD)r@ g 2

where:

. M;(,{ denotes the complex M} defined in Theorem at tame level KP.

e The localizations m’¥, m’"? are defined above.

e The localization mg is with respect to the maximal ideals m,, of the subalge-
bras O[T(F,)/T(OF,)1] of the pro-v Iwahori Hecke algebras H; (v) for v € @
as considered in so that A e my, U, o — 1 € m,, and U, 1 and U, o
are respectively congruent to @y, 1, 0y,10y,2 modulo m,.

e The subscript x denotes that we take the y-coinvariants for the action

of [Tyer T(k(v)).
e The subscript |-|? denotes that we are fixing the central character, by taking
coinvariants under T, o — g, 2 for all v ¢ S, U RU {v}.

The following lemma motivates our definition using RHom§ (M*, A), and will be
useful for proving various properties of MX1:HW below (see also Remark [7.8.7)).

Lemma 7.8.5. Let A € CNLp, and let M*® be a perfect complex of A-modules
bounded below by 0. Set M := RHom{ (M®,A). Then, writing * for the usual
duality of finite-dimensional vector spaces and ¥ for Pontryagin duals, we have

(1) M @p k= (HO(M® Q% k))*.
(2) For any homomorphism of O-algebras A — E, M@ E = (H*(M*®% E))*.
(3) For any homomorphism of O-algebras A — O,

M @5 O = Hom(H°(M*® @% E/O), E/O) = H*(M* @ E/O)V.

Proof. Let P* = PY — P! — ... — P be a bounded complex of finite projective
A-modules which is bounded below by 0 and is quasi-isomorphic to M*®. Then, by
definition, we have an exact sequence

Homy (P, A) — Homy (P°,A) — M — 0.

In particular it follows that for any A-algebra R, we have an exact sequence of
R-modules

Homp(P! @5 R, R) — Hompg(P® @5 R, R) — M ®, R — 0.
On the other hand, by definition, we have an exact sequence of R-modules
0— HY(M®*®@% R) » P°®y R — P' @, R,
and therefore, for a field R = F', an exact sequence
Homp(P! @p F,F) — Homp(P° @, F, F) — Homp(H°(M* @% F),F) — 0.

Parts (1) and (2) follow immediately with ' = F or F = k. Part (3) follows from
Lemma below, applied to the morphism P% @, O — Pt ®4 O. O

Lemma 7.8.6. If ¢ : M — N is a morphism of finite free O-modules, and ¢pp,0 =
PRQFE/O is the map MQFE/O — NQE/Q, then the Pontryagin dual ‘Z%/o of br/0
is the map

q%/o : Hom(N, Q) — Hom(M, O).

In particular, the Pontryagin dual of ker(¢g o) is coker(gz%/o).



214 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Proof. Because M and N are free, the Pontryagin duals of M @ E/O and N® E/O
are Hom(M, Q) and Hom(N, O) respectively, and the result follows immediately.
O

Remark 7.8.7. In [CGI18] and [CG20], the patched modules are constructed by
first taking cohomology with coefficients in £/O and then taking Pontryagin duals.
Lemma explains how our construction coincides with this in the special
case when A = O.

Definition 7.8.8. For any I C S, a weight is a homomorphism « : Ay = O;
by definition, s corresponds to a tuple (0,,1,0y2)vcs, where 0, ; : Ip, — O* is a
character with trivial reduction, and moreover 6, 1 = 6, 2 forv € I. Welet p,, C Ay
denote the kernel of this homomorphism.

We say that « is classical if there are integers k, > [, > 2 such that 6,; =
ghotlo)/2=2 ¢ o = ebo=l)/2 (50 that k, =1, =2 or p+ 1 (mod 2(p — 1)), and if
v € I, we must have [, = 2). If k is classical, then we write w” for the automorphic
vector bundle corresponding to (ky,ly)ves,, as in

For any I we denote by ko the classical algebraic weight where k, = [, = 2 for
all v. For I = () we pick some sufficiently regular classical algebraic weight, Kyeg;
for example, we could choose the one given by the characters 6, ; = g2V (P=1) and
00 = VP~V for all v € S, where N is sufficiently large.

Remark 7.8.9. In practice we choose rreg s0 that we can apply Theorems [3.10.1
and in weight Ke;. We will do this without comment from now on.

We will now prove some very important properties of the action of Ag on the
modules that we patch. It will also be important for us to understand the action
of the diamond operators at the places in R (that is, at the places involved in
the “Thara avoidance” argument). We can and do treat the places in @ and in R
simultaneously; recall, by Deﬁnition we have the groups K7 (Q) and K} (Q, R)
such that

e If v ¢ QUR, then K} (Q, R), = K? which equals K{(Q),.
e If v € QUR, then K{(Q, R), = Iw(v) which contains K7 (Q), = Iwy(v).

In particular, there is an inclusion K7(Q) C K{(Q,R). In contexts in which
we particularly want to emphasize the fact that K7 (Q) has level structure Iwy (v)
at v € R, we write K7(Q, R) = K¥(Q).

Let K, be any reasonable level structure at p (for example K, (I)). Let X KP(Q.R).S
be the Shimura variety of the corresponding level K,K}(Q, R) for a choice ¥ of
good polyhedral cone decomposition. Over the interior Yk, K?(Q,R) We have for
all v € QU R a flag of subgroups 0 C H, C L, C H} C Afv] and all the graded
pieces are étale k(v)-group schemes of rank 1. We now consider the Shimura variety
Xk, k7(Q,r),x for the same choice of cone decomposition.

Proposition 7.8.10.
(1) For allv € QU R, the groups H,, L,/H,, H}/L, and A[v]/(H;}) extend
to finite étale k(v)-group schemes of rank 1 over Xg, rr(q.r)s-
(2) The map Xk kr(qQ.r),s — Xk,Kk?(Q,R),s 18 finite étale with group [[,cour T'(k(v)),
and Xk kv (q,r),x identifies with the torsor of trivializations of the groups
H,, L,/H,, H}/L, and A[v]/(H;), compatible with duality.



POTENTIAL MODULARITY OF ABELIAN SURFACES 215

Proof. We observe that when F' = Q, this is the content of [Str15, §2.4.5]. The
argument can be adapted to our setting. The extension problem is local so let us
pick o € ¥ and consider the completion (XKng(Q,R),Z)Q ~ Spf Rof Xk kr(q.r).s
along the o-stratum. The semi-abelian scheme A over Spf R is obtained by Mum-
ford’s construction as the quotient of a semi-abelian scheme B of constant toric
rank by a finite free Op-module X,,. Let U, — Spec R be the Zariski open comple-
ment of the boundary and let us consider any of the groups H,, L, /H,, H;-/L, or
Alv]/(H). If this group is a subquotient of B[v], then since B exists over all Spec R
and B[v] is a finite étale group scheme, the group extends as a subquotient of Blv].
Otherwise, the group maps isomorphically to its image in A[v]/B[v] = X, ®o, k(v)
and is constant over U,. Therefore it extends to the constant group scheme. This
proves (1).

We may now define a scheme X}(,,K{’(Q,R),E — Xk, k7(Q.r),s as the torsor of triv-
ializations of the (extended) groups H,, L, /H,, H;}*/L, and A[v]/(H;), compatible
with duality for all v|p. This scheme is canonically isomorphic to X K,K"(Q,R),s be-
cause the two schemes are generically equal, and both are normal, and finite flat
over XKPKS(Q,R),Z' O

Proposition 7.8.11.
(1) MXO7Q s g finite free Ag[Ag]-module.
(2) If #I = 1, then MX1%Q s a balanced Ar[Ag]-module.
Proof. The complex M;(g @ (which is the complex M} defined in Theorem
1
for the tame level K1 (Q)) is a perfect complex of Ar-modules of amplitude [0, #1].
We claim that it is actually a perfect complex of Af[[[,cqur T'(k(v))]-modules of
amplitude [0, #1].
The complex M ;(,{ @ is obtained by considering the cohomology over X, r7 (@) Kii(p>)
1
of the sheaf of A;-modules Q% (—D) and applying the ordinary idempotent. Equiv-
alently, it is obtained by considering the cohomology over Xy, K2(Q).Kli(p>) of the
sheaf of A;-modules
Qe (_D) ®0x

KpKP(Q.R),Kli(p™) OprKf(QR),Kli(p“’)

and applying the ordinary idempotent. Using the independence of the cohomology
with respect to choices of toroidal compactifications, we may assume that we are
in the setting of Proposition @ so that the morphism Xx, k7 (q,r) Kii(p=) —
XK, K?(Q,R)Kli(p>) 18 finite étale with group [[,co,p T'(k(v)). Therefore, it follows

(by considering a suitable étale covering to compute the cohomology) that M;q{( Q
is represented by a bounded complex of flat complete A;[[[,cqup T'(k(v))]-modules.
We can apply Lemma (or rather its straightforward extension to the semi-
local situation; see also [Nak84l Prop. 2]) to conclude that MI.G’{ @ is a perfect
complex of Ar[[[,cour T(k(v))-modules of amplitude [0, #I]. It follows that the
corresponding complex M;(lpl(’é) is a perfect complex of A;[Ag]-modules, also of
amplitude [0, #]].

Given an ideal m’*, we can f localize the complex with respect to the action
of a lift of a suitable idempotent for this ideal in the Hecke algebra, and this
localization also preserves the property of being perfect of the correct amplitude.
(The endomorphism ring at the level of derived categories of a perfect complex
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of Ay modules is a finite A; module. So, if one has a commutative subalgebra, it
is a semi-local ring. See the discussion following [KT17, Lem. 2.12] for a lengthier
treatment of such localizations.)

It remains to consider the passage to coinvariants under the centre. To this end,
consider the spaces

MX’L? = RHOI’H?\I (MI.{’I{’ AI)TTIIVF,Xa

ol 0 I

MX 6Q RHOIIIAI (M;(f(Q)’ A[){ﬁI,F,Q){ﬁQ’X,
obtained before taking coinvariants under the centre. The component groups of our
Shimura varieties are indexed by a finite abelian (ray) class group C' = F*\A}/U
for some U. The action of v € A} on components is via the class [y]?, and the
action of the central character on our cohomology groups is via |-|? times a character
of C. Let C = C}, ® C?, where C,, is the p-Sylow subgroup of C. There are always
natural isomorphisms of O[Ag] modules

M = MY g6 010,

MXIHQ ~ ApeliQ g ) o[c,],

with Ag acting trivially on the second factor. The reason for such an isomorphism
is that, after localization at a maximal ideal m of the Hecke algebra, the elements of
the centre which act through an element of order prime to p are already determined,
because they are fixed modulo m and the polynomial 7™ — 1 is separable modulo p
if (m,p) = 1. On the other hand, if we consider only the connected components
corresponding to the subgroup C?, the entire space is canonically isomorphic to |C)|
copies of this space, and moreover, the action of C'/C? = C), on these components
is transitive and fixed point free (this crucially uses that p # 2). Hence working
with the |- |* part of the cohomology is simply equivalent to working with the
components indexed by CP instead of C, and the passage between the cohomology
(or complexes) for either of these two spaces (even before localization) is simply to
tensor with O[C)).

Part follows immediately from these considerations, because M;(lg(’é) is per-
fect of amplitude [0,0]. By Lemma to prove part , it is enough to prove
that the corresponding perfect complex (of amplitude [0,1]) has Euler characteris-
tic 0 after localization at m’*. We can check this modulo any prime ideal of A;, so
the result follows from Theorem [6.6.5] and Corollary a

7.9. Taylor—Wiles systems: local-global compatibility. We write TX ' for
the Ar-subalgebra of Endy, (MX-I) generated by the image of T!. Similarly, we
write TX1:H@ for the Ar-subalgebra of Endy, (MX:!%@Q) generated by the image of
T7Q. We remind the reader that none of these objects depend on the choice of ¢,
for v € I (but they do depend on the choice of ¢, for v ¢ I). If v € I, then by
Hensel’s lemma and our assumption that @, # 3,, we can write

X? = Uiy X + U = (X — @) (X — Bv)

where @, 8, € TX!HQ are respectively lifts of @,, 3,

If I C I, then there is a natural surjective map A; — A/, corresponding to the
closed immersion Spec Aj» — Spec Ay given by 6,1 = 0, 2 for all v € I'. Then we
have the following key doubling statement:
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Proposition 7.9.1 (Doubling). For each choice of ¢, and each I C I, there are
natural surjections

’
MY @p Ap — MXTF

and
Mx1nQ ®n, A — Mol
which commute with all the Hecke operators away from I' \ I. Furthermore, if

v € I'\ I, then these surjections are equivariant with respect to U, o and U, 2, and
intertwine the actions of U,1 on the source and ¢, on the target.

Proof of Proposition[7.9.1 We give the proof for MX-1* as the argument for MX1:%@
is identical. By induction, it suffices to consider the case that I’ = T U {v} for some
v ¢ I. We have a map of complexes

oI o]
M K, — M K,
induced by the restriction map coming from the inclusion

Gy,I G1,I'
X Kii(pe) 7 XK Kii(pee)

together with the natural map Ay — Ap. This induces a map
MXIT @y Ap 5 MXJ/f’

~
and the map that we are seeking is the map 7o U, — ¢, o 7. It is clear that this
satisfies all of the claimed properties except possibly for the surjectivity and the
claimed intertwining of U, and ?,.

To see the intertwining, it is convenient to introduce the module MX-I'F=v2
whose definition is

e I
MX:I =02 — RHOm?\ﬂ (M;(p ®AI AI/7AP)1?11/177X7H2;

that is, it is defined in the same way as MX-I¥ but we are now over the weight
space Ap/, rather than A7, and we localize with respect to the Hecke operator (Ugij(y),1—

(ay + By)), rather than (Ury(v),1 — ¢»). By Lemma 4.5.17, on MX1T5=v2 we have
the identity

U1 (Ukiiw),1 — Uv1) = Uy 2,
or equivalently (writing {a, 8y} = {%,,7,}) the identity

(792) (Uv,l *?:)(Uv,l *?1)) = 0.

We need to show that U, 1 :A?JU on MX1¥ @, Ap. Now, noting that MX1f @, A
is a subspace of MX-! E=02 (because it is obtained from it by localizing with respect
to (Utw(v),1 — %), and because holds on MX’I/’?’:'“Q), we see that also
holds on MXI* @, Ap; since Utw(v),1 acts via ?, modulo the maximal ideal of Tx-1?,
it follows from Hensel’s lemma that U, ; = ¢, on MLt ®a, A/, as required.

It only remains to check the surjectivity. By Nakamaya’s lemma, it is enough to
check surjectivity modulo my ,, or equivalently (by Lemma|7.8.5)) the injectivity of
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the map
' .G
e(UI )HO(XKPK;(I’),P w2(_D))n~11/;’X7‘.|2
(7.9.3) (Uo,1-7,)
INg70( y1,G1 2
e(U")H (XKP(I)KP,I’W (=D)ars x.l-12
on the special fibre. This follows from Theorem as in Remark O

Recall from that if v € I, we defined a character 6, : Ip, — AY, and if
v ¢ I we defined a pair of characters 0,1,0,2 : Ir, = AY. We extend all of these
characters to G, by sending Artp, (p) — 1. In the following theorem, we allow the

Taylor-Wiles datum (Q, (@y,1, ..., @y 4)veq) to be empty.
Theorem 7.9.4. There is a unique continuous representation
p bt Gy — GSp4(TX’I’?’Q)

which is a deformation of p of type Si?Q such that the induced homomorphism

Rgre — TXI5Q s a homomorphism of Ar[Ag]-algebras, and moreover such that
x,Q

(1) Ifvé S, URU{ve} UQ, then det(X — pX1"Q(Frob,)) = Q,(X).
(2) If v eI, then

Aa, Oy 0 * *
Az O, * *
e 0
0 0 0 Az l0 e !
(3) If v € I¢, then
>\U1,,10v,1 * * *
0 )‘U U, 0 2 * *
XIAEQ A v2/Upa 70,2 1
p lar, ~ 0 0 Aot Okt «
0 0 0 Mgt 0,5t
v,1 U,

Proof. First we treat the case I = (). By Proposition [7.8.11, M*?%*@ ig a finite free
Ag-module, so there is an injection of T?“@-modules

Mx0EQ H M0EQ Ohgr E
K

where the product is over all weights xk = (ky,ly)y|oc With ky, > 1, > 4, k, =1, =2
or p+1 (mod 2(p —1)). (Note that these points are scheme-theoretically dense in
Spec Ay.)

From the definition of MX:?%Q Lemma and Theorem we have

i\ {T(k(v))=Xv Yvers||?
(M9 @4, B)Y = (O (X3 g, oy @ Dare <

and by Theorem [3.10.1] we have

0 Gy K T~ K;(Q)Kp(w) Enl
HY (X, 00@") © B = D O F,

s
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where in the sum, 7 runs over all the cuspidal automorphic representations of weight
(kv,ly), with 7, holomorphic for each v|oo, and 7 is the finite part of 7.

Next we observe that for such a m, if the T%Q_module

— _ 12
e(@)(wf‘f(Q)Kp(@) ® E)g,(fé”))_"“}veRJ |

is nonzero, then 7 has central character |-|? and by Proposition 7 is ordinary,
and moreover T?@ acts on it through a character O : TQ E, and the ordinary
Hecke parameters are (O,(Uy1), 07Uy 2/Uy 1))

We now argue as in the proof of [CHTO08, Prop. 3.4.4]. By Theorem [2.7.2]
Proposition [2.4.13] Proposition[2:4:28 Proposition[2.:4.30] and Remark [2.4.31] there

is a Galois representation pr , : Gp — GSp,(F) such that
o Ifv ¢ S,URU{wo}UQ, then pr p|G ., is unramified and det(X —px, 7 (Frob,)) =

0. (Qu(X)).
o If v € S, then

Ao, (Uy1)0u,1 * N §
~ 0 >‘9«(UU,2/UU,1)9v,2 * *
PrplGr, = 0 0 )\(j)}r(Uv o/U 1)0;%571 N
0 7 -1 —1_—
0 0 0 )\@ﬂ(val)gv’lg 1

o If v € R, then for all o0 € Iy, det(X — p(0)) is equal to

(X = Xw,1(Artp) (0)) (X = xo1 (Artz, (0)) 7 X = X0.2(0)) (X = Xo2(Arty) () 7).
o If v € ), then
Plar, = Y,1 @ Vo2 @ 3*17;5 ® 671%_,1
for characters v, ; : Gp, — E” satisfying 7, = Xa, ;- Furthermore T'(F,)
acts on (7™W1(») via the characters v, ; o Artp, .

After conjugation, we may assume that p., is valued in Of,  for some finite
extension E,/E, and since p, , = p, we may assume after further conjugation
that p, , = p. Let A be the subring of k © P, Op, consisting of those ele-
ments (a,(arx)x) € k® @, O, such that for all = the reduction of a, modulo
the maximal ideal of Op_ is equal to a (where the direct sum is over the infinitely
many 7 corresponding to the infinitely many ). Then A is a local A-algebra with
residue field k (with the A-algebra structure coming from that on Op_ given by k).
Set

Maq &y

pa=p&EP prp: Gr — GSp,(A).

There is a natural injection TX?7Q — A4 (this map is injective because X070
is reduced, by a standard argument using Proposition . We can choose (for
example, by ordering the k) a decreasing sequence of ideals I, of A with N,,I,, = (0)
such that each A/I,, is an object of CNL,, and it follows from [GGI12, Lem. 7.1.1]
that for each n the representation ps ®4 A/I, is ker(GSp,(A/L,) — GSp,(k))-
conjugate to a representation

plHQ L G — GSpy (TXHQ (1, N TX0HQY),

After possibly conjugating again, we can assume that pﬁf’f’Q (mod I,) = pﬁ’w’?’Q,

and we set p¥0HQ .= lim pX05Q By construction this satisfies the required
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properties at places v ¢ S, UQ (in particular, at the places v € R, the deformation
is of the required type by the definition of RY).

It remains to verify the claimed properties of px95@ lg, forv e S,UQ. Suppose
that v € S,. We claim firstly that it is enough to show that there are elements
Vo1, Voo € (TXPH@)X such that

)\VUJ 91},1 * * *
0 A, 0 * *
X,0,7,Q ~ vy 20,2
(795)  p lar, = 0 0 N .
0 0 0 )\;vl,lg;%gfl

Indeed, if this holds, then the equalities v,1 = U1 and v, 2 = U, 2/U, 1 can
be checked after composing with the injection TX?%®@ < A where they follow
from local-global compatibility for the pr |c,, . Now, is equivalent to ask-
ing that the homomorphism RS — TX?%@ corresponding to pX’@’F’Q|GFU factors

through the quotient RZ #vand this can again be checked after composing with
the injection TX?%Q < A, as required.
Suppose now that v € Q, so that we need to check that the morphism Rgr: —
x,Q

TXI5Q is A -equivariant. By Lemma [7.4.4] there are unique characters Yo, 15 Vv,2
Gr, — (TX0HQ)x lifting A&, Aa,., respectively such that va@v?’Q\GFU = Vo1 @
Yo,2 D Vo2 ! @ Y167t We claim that the action of T(F,) on MX1%Q is given
by Yu,1 0 Artg,, Yu,2 0 Artg,; this can be checked after composing with the injec-
tion TX?HQ < A so it follows from the analogous result for prplar, recalled
above. Restricting this claim to T'(OF,) gives the result.

We are done in the case that I = (. We now prove the result for general I
by induction on #I. Accordingly, assume that the result holds for some I # S,
choose w € I¢, and set I’ = I U {w}. By Proposition we have a natural
surjection of Aj/-algebras

~ ~ !
TX16HQ ®n, Ap — e ,?,Q7

and we let pX! "%Q be the pushforward of p 1@ Tt follows from the result for I
that we need only check that property (2) holds for v = w. However, we could
equally well have performed the same construction with ¢, replaced with # (the
two candidates for pX! "7Q are conjugate by property (1), the Cebotarev density
theorem, and [GGI12, Lem. 7.1.1]), so from (3) and the equivariance properties
for Hecke operators at w in Proposition we see that pX’I/’?’Q|GFw admits
both Ag,, 0 and Ag 6, as subcharacters. Since @, # B, the result follows. g

As a corollary, we have the following result about Galois representations asso-
ciated to automorphic representations of parallel weight 2. As ever, some of the
hypotheses in this result could be relaxed (in particular, the assumption that Prp
is vast and tidy can presumably easily be relaxed to irreducibility), but in the in-
terests of brevity we have contented ourselves with this result, as it is sufficient for
our purposes.

Corollary 7.9.6. Let w be a cuspidal automorphic representation of GSp,(AFr) of
parallel weight 2 with central character |-|?. Fiz a prime p > 2, and assume that
is ordinary. Then there is a continuous semisimple representation pr, : Gp —

GL4(Q,,) such that
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(1) For each finite place v { p, at which 7, is unramified, pr play, is unramified
and

det(X — prp(Froby)) = Qu(X).

Suppose further that p,. , is vast and tidy, and that for each v|p, the ordinary Hecke
parameters o, 3, of T, satisfy &, # B,. Then Prp can be conjugated to be valued

in GSp,(Q,), and

(2) vopy,=c L

(8) For each finite place vt p, we have

WD(prplap, )™ = recar p(me ® |V‘_3/2)SS'
(4) For each place v|p, then
Aoy O * *
~ 0 g, * *
prolor, = g 0" Ajlet 0
0 0 0 Agle!

Proof. This could be proved by repeating the arguments of [Mok14l, §4], using
Theorem instead of the results of [MT15|. For brevity, we instead explain
how to deduce the result from [Mok14, Thm. 4.14] and Theorem

Firstly, if 7 is not of general type in the sense of [Art04], then the existence of
a (unique) semisimple reducible representation p, , satisfying (1) is an easy con-
sequence of standard results on Galois representations for GL; and GLy (see the
proof of Lemma [2.9.1)), and parts (2)-(4) are then vacuous.

Accordingly, for the remainder of the proof we assume that 7 is of general type,
in which case the existence of a representation p, , satisfying (1) and (3) follows
from [Mok14, Thm. 4.14], except that this representation is only given to be valued

in GL4(Q,,) rather than GSp,(Q,)-

Choose a solvable extension of totally real fields F’/F, linearly disjoint from
—=kerp,

F over F', with the properties that p splits completely in F’, and that there
is an automorphic representation II of GSp,(A /) of parallel weight 2 and central
character |-|2, which is a base change of 7 (that is, for each finite place w of F’, lying
over a place v of F, we have recgr,,(II) = recGT,p(w)|WF1,u ), which is holomorphic

at all infinite places, and which satisfies HL)W(UJ) # 0 for all finite places w of F’ (the
existence of such an F’ and II follows from [Mok14l Prop. 4.13]).

We claim that if pr, admits a symplectic pairing with multiplier e~!, then
so does pr . Indeed, since pr, = prpla,, is irreducible, it admits at most one
perfect pairing with multiplier ¢~!; while by (1), px,p admits a perfect pairing
with multiplier 1, which must therefore also be symplectic. In addition (4) holds
for pnp if and only if it holds for p, ,. Replacing F' by F” and = by II, we can and
do assume that w},w(v) # 0 for all finite places v of F.

Taking p :=p, ,, we see that Hypothesis holds, so the required properties
of pr p follow immediately from Theorem taking I = S,, x =1 and Q = 0.
(Note that as in the proof of Theorem it follows from Theorem that 7
contributes to M15»70)) O

We now turn to the final lemmas that we need to prove in order to construct our
Taylor-Wiles systems.
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Lemma 7.9.7. Let A € CNLp, and let f® : C* — D* be a morphism of bounded
complexes of mp-adically complete and separated flat A-modules. Supposed that the
induced morphism C* @% A/my — D* @% A/m, is a quasi-isomorphism. Then f*
s a quasi-isomorphism.

Proof. See [Pil20, Prop. 2.2]. O

Proposition 7.9.8. The natural map MX 5@ — MXDT induces an isomorphism
(MX;I;77Q)AQ — Mx L,

Proof. We follow the proof of [KT17, Lem. 6.25]. We claim that we have natural
isomorphisms

~ I
(7.9.9) (M@)o MG Y
and
X,I,?,Q ~ X)Is?
(7.9.10) Mgy = M

whose composite is the claimed isomorphism. We begin with (7.9.9). It suffices to
show that we have a natural isomorphism in the derived category

oI Myco T(k(v) _~ oI
(M) ee — Mgy )

As in the proof of Proposition the complex on the left (before taking in-
variants) is a perfect complex of A;[[],cqo T'(k(v))]-modules. But now the result is
immediate from Proposition as the map Xy gr(q) s = Xk, kr(Q)n I8 finite
étale with group [[,co T'(k(v)).

We now turn to proving . Again, we mostly work on the level of com-
plexes. We begin by considering the composite

o] o] ol
(MKg(Q))ﬁan’QvﬁQ - (MKg(Q))n?an,Q — (M) gena.

By Lemmal[7.9.7] these maps induce quasi-isomorphism of complexes if the following
maps are isomorphisms
N I s
H*(M;(é)(Q) X k)ﬁian,QyﬁiQ — H*(MI.<§(Q) X k)fﬁan,Q — H*(M;(P X k)h‘ian,Q.

This follows formally from Lemmas [2.4.36] and [2.4.37}, applied at each place in @,
because, for K = GSp,(Op,) and K’ = Iw(v), we have the identities of Hecke
operators

[K1K'|[K'1K] = [K : K]
[K/IK] [KIK/] = €K = €GSp,(OF,)
and we note that [K1K’] is the trace from level K’ to GSp,(Op,) and [K'1K] is the

inclusion from level K to level K’ (recall that since p > 2, [K :UK’] = [GSp4(OF,) :
Iw(v)] is not divisible by p).

Finally, consider the natural map
J J
(M) mane = (M) man.

For our purposes, it suffices to prove that this map becomes an isomorphism after
applying RHomO(—, A). Since this map is a localisation, it suffices to check that it
is an isomorphism modulo the maximal ideal of A; so by Lemma (1), it is in
turn enough to prove that

HO(M;(’;I) & k)ﬁan,Q — HO(M[.(}{ & k)ﬁa“
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is an isomorphism, or in other words, that m®" is the unique maximal ideal n of T
lying over m* @ and in the support of HO(My! © k). Equivalently, we need to
show that the Hecke eigenvalues away from the primes in @ (which are prime to
the level) determine the Hecke eigenvalues at ). This follows from the fact that the
Hecke eigenvalues at primes of good reduction and residue characteristic different
from p are determined by the Galois representation (exactly as in the proof of The-
orem [7.9.4] this local-global compatibility statement for HY is a consequence of the
corresponding local-global compatibility statement for the Galois representations
in Theorem . But the Galois representation itself is determined from m*™?
by the Cebotarev density theorem. Hence n = m®", as required. O

7.10. An abstract patching criterion. We have the following slight variant
on [CG18|, Prop. 2.3, Prop. 6.6] (although our formulation is also informed by [KT17]
Prop. 3.1]); we leave the details of the proof as an exercise for the interested reader.

Proposition 7.10.1. Let Iy be equal to either 0 or 1, let A € CNLp, let Sy :=
Al[z1,...,z4]] for some ¢ > 1, and set a :=ker(Seo — A). Let Soo D11 DI D ...
be a decreasing sequence of open ideals of Soo with NIy = 0. For each N > 1 we
set SN = Soo/IN

Suppose that we are given the following data.

o Objects R, RX, of CNL,.

e Objects R', RX of CNLy, an R'-module M, and an RX-module MX, each
of which is finite as a A-module. Furthermore if ly = 0, then they are both
free as A-modules, and if lo = 1, then they are balanced A-modules.

e For each integer N > 1, finite Sy-modules My, My, which are free
if lo = 0 and balanced if lg = 1, together with isomorphisms of Sy -modules
M} /a — M'®s._ Sy, MX/a > MX ®g_ Sy (where the action of Se
on M, MX is via the augmentation So — A).

e For each N > 1, objects Ry, RY; of CNLg,, and maps of Sy-algebras
RN — R'Y/INn, Ry, — RX/In and Ry — Endg, (M},), RY — Endg, (My),
such that the two following diagrams commudte.

Ry ————— Endg, (M})

| |

Rl/IN 4)EndA/[N(M1 XS SN)

R, — 5 Endg, (MY)

J |

RX/IN *}EndA/[N(MX s, SN)

e For each N > 1, surjections of A-algebras RL, — R, RX — RY.
We suppose also that we are given the following compatibilities between the data
indexed by 1 and the data indexed by x.
e isomorphisms of A/A-algebras R /X = RX /X, RY /A = RX/)\, and Ry /A =
RY; /A, compatible with the surjections R, — Ry and RX — RY;.
o An isomorphism of R'/\ = RX/\-modules M /\ = MX /).
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e For each N > 1, isomorphisms of Sy /A-modules M} /X = MX /X, compat-
ible with all actions, and such that the following diagram commutes, where
we write Jy for the kernel of the composite A — Soo — Soo/IN.

Mll\/'/()‘va) 4>M]>\<//(/\73)

J

MY\, In) —— MX/(\, JN)

Then we can find the following data.
e Homomorphisms of A-algebras So — RL,, Soo — RX,.
o Finite Soo-modules ML, MX | which are free if lo = 0 and balanced iflo = 1,
together with isomorphisms ML ®s._ A — M', and MX ®g. A — MX.
o Commutative diagrams of So-algebras

.Rclxj —_— Endsm (Molo)

| [-esms

R!' — 5 Enda(MY)

RX, —— Endg_ (MX)

l j®sxA

RX — 5 End, (MX)

o Anisomorphism ML /X = MX /), compatible with the actions of R, /XA —
RX /A, such that the following diagram commutes.

M /(A a) —— MY /(A a)

| |

MY/X——— MY/

7.11. The patching construction. We now apply Proposition[7.10.1]to our spaces
of p-adic automorphic forms. We continue to assume that Hypothesis holds.
Enlarging F if necessary, we can and do assume that E contains a primitive pth
root of unity, and a primitive 9th root of unity if p = 3. By Hypothesis[7.8.1] (4a)), for
each v € R we can and do choose a pair of non-trivial characters x, = (Xv,1, Xv,2),
with Xy, : (’)IX;U — O which are trivial modulo A, and such that x,1 # Xfé
We will now apply the constructions of the previous sections, simultaneously using
both this choice of x, and also the choice x = 1. In the former case we will label

our objects as we did before, and in the latter we will replace x by 1.

Let

q=h'(Fs/F,ad’p(1)),  g=2¢—4[F:Q]+#5 -1,

and set Ay, = Z29. Let Soo = T[[Ax]], where T is as in Viewing S, as an
augmented A-algebra, we let a denote the augmentation ideal.

For each N > 1, we fix a choice of Taylor-Wiles datum (Qn, (®u,1,- - -, ®v.4)veQn )
as in Corollary [7.6.3] For N = 0, we set Qo = (. For each N > 1, we let
An = Aqy = [lyeqy k() *(p)* and fix a surjection Ay, — Apn. The kernel of
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this surjection is contained in (p™Z,)?4, since each v € Qy satisfies ¢, = 1 mod p™
We let Ag be the trivial group, viewed as a quotient of A,,. We write Sy = T[Ap].

For each N > 0, we set R”? = Rg s and RX’I’? = RSHQ . Note that
XN
R(l)’]’? = Rs and RX Ri«? Let RV /Ao — RSII?C and Rx-IHloc — Ri,l(?c denote

the corresponding completed tensor product of local deformation rings, as in
By definition we have

Rl,I,?,lOC — (®vEIR ) (®’U€I“R )@(@vERRl)Q?RE(N

RXIHRe — (&, RPY® (B ypese REF)S(BuenRX)BRE,

with all completed tensor products being taken over O.

1 5,1
For any N > 1, we have RS 0¢ = RLIAoc and ROT o¢ = R ltloc There are
1 QN X5 QN

canonical isomorphisms RL-1510¢ /()) =2 RX’I’?’IOC/(/\) and RY'T/(\) = RS /()
for all N > 0. For each N > 1, Ry"" a nd RY;"" are canonically A[A y]-algebras and
there are canonical isomorphisms R L Qpjan] A = R1 LF and Rﬁ” @pjan] A =
Rff , which are compatible with the isomorphisms modulo A.

Fix representatives p SL Pl of the universal deformations which are identiﬁed
modulo A (via the identifications R z,s/()\) = Rgr, +/(A)). By Lemma these

. . 1155
give rise to an RLIH1Calgebra structure on Ry @47 and an RX’I*?’IOC algebra

structure on R’ﬁ,’ "®AT; the canonical isomorphism R.1510¢ /(X)) = R Iifloc /(\)
is compatible with these algebra structures and with the canonical isomorphisms
R/ = RS /(N). We let RLIF and RXIT be formal power series rings
in g variables over RV1:01¢ and RX-IHloc respectively. By Proposition and
Corollary we can choose local A-algebra surjections RLT — le\’,l’?@AT and
R’ggf (L R?ﬁ,’ R AT for every N > 0. We can and do assume that these are com-
patible with our fixed identifications modulo A, and with the natural isomorphisms
levl o ®A[AN] A Ré’j’? and Rﬁl’? CININY A= RBC’I’?.

Fix a subset I C S, of cardinality #I < 1, and a choice of . We now apply
Proposition taking (in the notation established in §7.7)):

e AtobeAj.

e S, Sy to be as above.

e R :=RLIF RX := RXF, R := Ry", RX := RY"', RY == Ry™T@AT,
RY, = RS™T®AT.

o M= MU MX = MXTE ML = MUIHRNQLT, My = MXLHRN G\ T,

By Theorem Proposition and Proposition this data satisfies the
assumptions of Proposition Consequently, we have:

e Aj-algebra homomorphisms S, — Ry and So, — RX!.

e Finite S,-modules ML57 MXIF which are free if #I = 0 and balanced if
#I = 1, together with isomorphisms ML17 /a = MULE MPOLTE Ja =2 ppel?,
Morphisms of Sy.-algebras Ry — Endg _ (MY17), RGHT — Endg, (MX1F),
which are compatible with the actions of R', RX on MYf, MX17 respec-
tively.

Isomorphisms

MQI(,)I,?/AM;;IJ ~ Mg(O,I,?/)\Mg(O,I,?’ Ml,I,?/)\Ml,I,? ~ MX’I’?/AMX’I’?
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compatible with the actions of RLIT/(N) ~ RXI7/(\) and RVLT/(N) ~
RXLF/(\) and the above isomorphisms.

We now briefly pause to introduce some notation that will be in force throughout
the rest of §7] We will need to work with O-flat modules M over complete local
Noetherian O-algebras R which are not necessarily O-flat, but for which we have
good control of R[1/p]. There are various ways that we could do this, but we
have found it convenient to reduce to the O-flat case in the following way. For
a Noetherian complete local O-algebra R we denote by R’ the maximal O-flat
quotient of R (i.e. the image of R in R[1/p], or equivalently the quotient of R by
its ideal of p-power torsion). Note that if M is an R-module that is O-flat then it
is naturally an R’-module.

Returning to the situation at hand, by definition, S, is formally smooth over A;
of relative dimension 2g+ 1145 —1, and A; is formally smooth over O. By Proposi-
tions [7.3.4} [7.4.7, [7.4.8] and |7.4.2] and [BLGHTTI], Lem. 3.3], (R ) and (RX7)
are equidimensional of relative dimension g + 10#S + 4[F : Q] — #I over A;. By
the definition of g, we conclude that

(7.11.1) dim(RL5T) = dim(RXT) = dim So, — #1.

Proposition 7.11.2. M%7 is a mazimal Cohen—Macaulay (RLEF) -module, and
MXE is a mazimal Cohen—Macaulay (RX;17) -module.

Proof. These statements have identical proofs, so we give the argument for the
first of them. From , we see that the support of ML® in Spec S, has
codimension at least #1. By [CGI8| Lem. 6.2] (applied to a resolution S%, — S
of MLI¥if #I =1 — such a resolution exists, by Lemma — and to ML!F
itself if #1 = 0), we see that the codimension is precisely #1I, and that M1 has
depth dim S, — #I = dim(RL!?)" over S,,. It follows that the depth of MLT?
over (RLIF) is at least dim(RL!), so that ML!" is maximal Cohen—Macaulay
over (RLI?) | as required. O

7.12. Cycles and modules over products of local deformation rings. In
preparation for our study of the dimensions of certain spaces of p-adic modular
forms in the next section, we formalize some arguments which are at the heart of
our version of the “Thara avoidance” argument of [Tay08]. Following [EG14], we use
the language of cycles on the special fibres of (completed tensor products of) local
deformation rings; our perspective is also informed by [Shol§|.

We recall some notation for cycles and multiplicities from [EG14, §2]. In par-
ticular, if R is an equidimensional Noetherian local ring of dimension d then by a
cycle (or a d-cycle) on Spec R we mean simply a formal Z-linear combination of the
generic points of Spec R. We denote the group of cycles on R by Z%(R) (or just
Z(R), with the understanding that we will only consider top-dimensional cycles).
If M is a finite R-module then the cycle of M is defined by

Z(M,R) = leng, (M,) -7

where the sum is over the generic points 7 of Spec R and leng, (M,) denotes the
length of M, as a R,-module.

If R is an equidimensional, flat, Noetherian (O-algebra of dimension d + 1 and 7
is a generic point of Spec R then we write R" for the quotient of R by the minimal
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prime corresponding to 7, and we let 7 = Z(R"/(\), R/(A)). Then [EGI14] Prop.
2.2.13] states that if M is a finite R-module which is O-flat, then

Z(M/AM,R/(\)) =Y leng, (M) -7

where the sum is over the generic points 77 of R.

Next we recall several facts about completed tensor products. As in §7.11}
if R € CNLp, we let R’ denote the maximal p-torsion free quotient of R. Let
Ri,Rs € CNLo. First we note that the natural map R1&Ry — Ri@R’Q induces
an isomorphism (R;®Rs) ~ R/ ®RY,. (Indeed this follows from the fact that the
kernel is p-power torsion and that R} @R} is O-flat, see [Thol5, Lem. 1.3].)

Now suppose that R; and Ry are O-flat and equidimensional of dimensions d; +1
and dy + 1 respectively, and further assume that all the irreducible components of
Spec R; and Spec R;/(\) for i = 1,2 are geometrically irreducible (for instance by
enlarging O if necessary). Write R = R; ®Rs; then R is O-flat and equidimensional
of dimension d; + ds + 1. (This, and the other facts recalled in this paragraph, can
be read off from [Thol5l Lem 1.4].) Moreover if n; is a generic point of Spec R; for
i = 1,2 then the kernel of the natural map

R — RI'®RY
is a minimal prime of R which corresponds to a generic point of Spec R which we
denote by 7 = (n1,12), and the generic points of Spec R are precisely the (11, 72)
as 1); ranges over the generic points of Spec R; for i = 1,2. Similarly if p; C R;/(\)
is a minimal prime for i = 1,2 then

(p1,p2) = ker (R/(A) = R1/(X,p1)@Ra/(\ p2))

is a minimal prime of R/(\), and every minimal prime of R/()) has this form. It
follows that there is an isomorphism

ZN(R1/(N) @ 2% (Ry/ (V) = ZMHE(R/(N)),
m @ n2 = (M1,72)-

According to [EG14], Lem. 2.2.14], if M; is a finite R;-module for ¢ = 1,2, so that
we may form the R-module M = M, ®0M27 then under the above isomorphism we
have

(7.12.1)  Z(My/AMy, Ry /(X)) @ Z(Mz/AM3, Ry /(X)) = Z(M/AM, R/(})).

In particular for a generic point 7 = (n1,72) of R we have an isomorphism R" ~
RM®R™ of R-modules and hence, in the notation introduced above, under this
isomorphism we have 7 =7, ® 7)5.

We wish to apply this discussion to the rings

R1 = ®UERR11)7 RX = ®U€RR%{

as well as to R! :~R1®]§ and RX = RX(@E, for some auxiliary R e CNLp with
the property that R’ is irreducible. (In applications R* and RX will be R and

o0

RX;I* for some choice of I and ?; so R is formally smooth over a completed tensor
product of the deformation rings considered in Proposition and R’ is indeed
irreducible.)

We recall that for each v € R we have RL/(\) = RX/()\). Passing to p-torsion
free quotients, it is not the case that (R!)'/()\) is identified with (RX)'/(\), but



228 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Propositions[7.4.7 and [7.4.8]imply that at least the underlying topological spaces of
Spec(RL)/(A\) and Spec(RY)’/()) coincide with that of Spec RL/(X) = Spec RX/()),
and so in particular Z((RL)' /(X)) = Z((RY)'/()\)). Passing to products we obtain
identifications Z((R')'/(\)) = Z((RX)'/(A)) and Z((RY)'/(\)) = Z((RX)' /().

Lemma 7.12.2. Let M1 be a finite O-flat }Nil-mogule, and let M* be a finite O-flat
RX-module, such that M*/JAXM* ~ MX/AMX as R*/(\) = RX/()\)-modules. Then

Z(M'JAM', (RY) /(X)) = Z(M*[AMX, (RX)'/(A))
under the identification of Z((RY)/(\)) with Z((RX)' /(X)) from above.

Proof. As we explained above we have two quotients (R')'/(\) and (RX)'/()) of
R'/(X\) = RX/()\) whose spectra have the same underlying topological space. Each
generic point of this space corresponds to minimal primes p! and pX of (El)’ /(A)
and (RX)'/()) as well as to a (not necessarily minimal) prime p of R*/(A) = RX/())
which is the preimage of both p' and pX. Then we claim that we have equalities

len((ﬁl),/()\))pl ((Ml/)\Ml)pl) = len(ﬁl/(/\))p ((Ml/)\Ml)p) = len((ﬁx)//(k))px ((MX/AMX)yx)

which exactly gives the statement of the lemma. Both equalities follow from the
fact that if A — B is a surjective map of rings and M is a finite length B-module
then lens (M) = leng(M). O

For the next lemma we need to introduce some more notation. From a tuple
1 = (Ns)ver of generic points 7, of Spec(R.)’ for v € R we obtain a generic point
1 of Spec(R) (resp. a generic point also denoted 7 of Spec(R')") and moreover
these are all of the generic points of Spec(R')’ (resp. of Spec(él)’). By Proposition
if 1,1 and 7, are two distinct generic points of Spec(R})" for some v € R,
then the cycles 7, ; and 7, 5, have disjoint support.

It follows from this and that if 77 and 7, are two distinct generic points of
Spec(RY) (resp. of Spec(R!)’) then the supports of 7j; and 7, are disjoint. Finally
recall that by Proposition[7.4.8] for each v € R, Spec(RY)’ is irreducible. Passing to
products, Spec(RX)" and Spec(RX)' are irreducible as well. We denote the unique
generic point of either by nX.

As already indicated, in the statement and proof of the following lemma, we
freely identify the generic points of Spec(R!)" and Spec(ﬁl)’ (and we also identify
the generic points of Spec(R')’/(\) and Spec(RY)'/(X)).

Lemma 7.12.3. Suppose there exists a finite, O-flat R'-module M, and a fi-
nite, O-flat RX-module MX, along with an isomorphism M'/AM?' ~ MX/\MX
of RY/(\) = RX/(\)-modules. Suppose furthermore that M* is supported on at

least one generic point n of Spec(él)’. Then there exist unique positive integers d,,
labelled by generic points 1 = (1y)ver of Spec(RY)" such that

(1) As elements of Z((RY)'/(\)) = Z((RX)'/(\)) we have

(7.12.4) x=> dpn
n

where the sum is over the generic points 1 of Spec(R')’.
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(2) For each generic point 1 of Spec(RY)" we have

(7.12.5) len(ﬁl)% (M) = dy, len(ﬁx);x (MY).

In particular M* is supported on every generic point of Spec(ﬁl)’.

Proof. As explained above, the cycles 77 as 1 ranges over the generic points of
Spec(R')’ have disjoint support. Thus the formula uniquely determines
the integers d;r Moreover, as the cycle X is supported on every generic point of
Spec(RX)'/(N), also implies that the integers d,, must be positive, if they
exist.

Now using [EG14, Prop. 2.2.13] as recalled above, we have

Z(M/AMY, (RY /(\) = Zlen(ﬁl),n Mg

and

2 AN, (BYY /(N) = lengny, M 7K
and moreover these two cycles coincide by Lemma _
Our hypothesis that M? is supported on some generic point 1 of (R!)" implies
that 1en(§1)% M, > 0. Hence by the above equality of cycles, len(ﬁ");x My, > 0.
Because the cycles 77 have disjoint support, we must have that

v len(él)%(M%)
n len(ﬁx),nX (M;fx)

is an integer for each generic point 7 of Spec(R')’, and for this choice of d%, the

formulas (7.12.4) and (7.12.5) hold. O

Remark 7.12.6. We note that the “multiplicities” d;, in Lemma [7.12.3| are inde-

pendent of the modules M! and MX and even of the auxiliary ring R. In the
next section they will be given a local representation-theoretic interpretation (see

Proposition [7.13.5| and Remark |7.13.12)).

Remark 7.12.7. In §7.13] we will use Lemma to compute the dimensions of
spaces of p-adic modular forms at Iwahori level. The idea of comparing patched
modules over R and R goes back to [Tay08|; the key point is that RX;![1/p]
is a domain, which guarantees that the support of an appropriate patched module
is all of Spec RX,!", and the isomorphism RL!7/(\) = RXDT/(A\) which allows us
to transfer this information to RLI".

7.13. Multiplicities of patched spaces of p-adic automorphic forms. We
now make use of our patching constructions to determine the multiplicities of
systems of eigenvalues corresponding to p in spaces of p-adic automorphic forms
with #1 < 1.

We begin by introducing some notation and assumptions. We suppose that
we have fixed a representation p : Gp — GSp,(O), which satisfies the following
properties. (While this list of properties may appear to be too restrictive to be
useful, we will later use base change to reduce to this situation.)

Hypothesis 7.13.1.

(1) F is a totally real field in which the prime p > 3 splits completely; we
write S}, for the set of primes of F' dividing p.
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(2) vop=eL

(3) For each finite place v of F', p|g,., is pure.

(4) For each v € S, plgy, is p-distinguished weight 2 ordinary, with unit
eigenvalues «,, 8, € E.

(5) There is a finite set R of primes of F' not dividing p such that if v ¢ RUS,,
then p|g,, is unramified, while if v € R, then:

e g, =1 (mod p), and if p = 3 then further ¢, =1 (mod 9).
® Dlgy, is trivial.
® p|g, has only unipotent ramification.

(6) There exists m = ®,7, an ordinary cuspidal automorphic representation for
GSp, /F of parallel weight 2 and central character |- |?, such that p, , = p,
and such that:

e Forall v ¢ RUS,, m, is unramified.

e Forallve RUS,, m"™ +£0.
e For each finite place v of F, pr plc,, is pure.
(7) The representation p is vast and tidy.

Remark 7.13.2. Note in particular that Hypothesis [7.13.1] implies that Hypothe-
sis holds for p.

As in 777 it follows from Hypothesis[7.13.1] and in particular from the hypoth-
esis that p(Gp) is tidy, that:

(8) There exists an absolutely unramified prime vy ¢ S, U R with ¢, # 1
(mod p) and residue characteristic greater than 5, such that P|Gp,,0 is un-
ramified, and p(Frob,,) has (not necessarily distinct) eigenvalues with the
property that no ratio of these eigenvalues is congruent to ¢,, modulo A.

Given a closed point z € Spec RY¥[1/p] or & € Spec RX1*[1/p], we will always
assume that E is large enough to contain the residue field of x, so that in particular
x parameterizes a Galois representation p, : Gp — GSp,(O). We denote by p,
the height one prime ideal which is the kernel of the corresponding homomorphism
RV — B or RIY — E. and we also use the same symbol p, for the ideals
obtained by pulling back under the homomorphisms RY!:®loc — RLIF _ RLIF op
under the homomorphisms RX-:010¢ 5 RXIF  RGIF Agin §7.4] we say that z
(or pg or p,) is smooth if R;f’?’loc (resp. R;‘;I’?’IOC) is a regular local ring (note that
this is equivalent to their completions being regular).

For a Galois representation p’ : Gp — GSp,(O) giving rise to a point z’ on
one of the deformation rings R or RX*17 we let p2' C T be the corresponding
prime ideal. Explicitly, this is the prime ideal generated by the coefficients of the
polynomials Q,(X) — det(X — p'(Frob,)) for v ¢ RUS, U {vo}. (As before, the
“an” stands for “anaemic”.)

For any choice of I and ¢, we let ﬁi’f c T7 denote the prime ideal
(7.13.3)

ﬁif = (P37 {Uv,0 — 1, Uy 2 — B, }ves, , {Uxti) 1 — &y — By tver, {Uv1 — & }oere),
where, for v € S, al, = @, (mod \), 8, = B, (mod \) and ?, € {a),f,} are

determined by the local representations p'|q,, as in

Definition 7.13.4. Let KPV = Hv@ o K, and KPv1 =T] K/, where

e K, =1Iw(v) and K| = Iw;(v) for v € R.

vtp,00
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[ ] KUO = K{)o = IWl(’Uo).
o K, =K =GSpy(Op,) for v RU{uvp}.

We now define some spaces of p-adic modular forms. For any I C S,, ?, classical
algebraic weight x, and choice of KP™ as in Definition 7.13.4] we let

I, 1,G K
Sn,?KPvIWK,,(I) = (e(UNH (X ko @™ (=D))iars) ®0 El{Us0 — 1}ves,
{UU,O - q;2}v€Ra {TU,O - q;2}1)€SpURU{'U(J}:|
We also let

17 L 17 Ilyer Iw(w)/Iwi(v)=x
SR,KP=IW1KP(I),X = ( K,vallep(I)) <

be the subspace with “nebentypus”’ corresponding to x. By Lemma (2), we
have isomorphisms

(Ml,I,F/pKMl’IVF)[l/p} =~ (S;QEKPYIWKP(I))V’

(MX,I,?/pHMx,I,?)[l/p] ~ (Si:?K”‘I“’le(I),X)V'

In particular, with this notation in place, for a Galois representation p’ : Gp —
GSp,(O) giving rise to a point on one of the deformation rings RY'* or R and
of weight & (i.e. such that the composition A; — RV — E or Ay — RIT 5 B
is k) we have

1,1, 1,1, ~ (LT, 1,1, o~ al? ~1
(Moo ?/pl”Moo ?)[1/79] — (M ?/pz/M ?)[1/10] — (SK,KPVIWKP(I) [pz/ ])vv
I I 1,1 1,1, o (al ~1F

(M oo ML) 2 (M [ MY p] 2 (S e [

In order to state our results on the dimensions of eigenspaces of p-adic auto-
morphic forms, we need to make a further study of the local deformation rings at
places v € R.

Proposition 7.13.5. Let 1, be a generic point of Spec R} for some v € R. The
set of y € (Spec RL™)(E) such that the L-packet L(p,) contains a generic repre-
sentation is nonempty, and the number

dy, = > dimg™®

mEL(py)

is independent of such a y. More explicitly, the rank n(n,) of the monodromy
operator N is generically constant on Spec R:" | and

if n(ny) =0, then d,, = 8;

if n(ny) =1, then d,, = 4;

if n(ny) = 2, then d,, = 4;

if n(ny) =3, then d, = 1.

Proof. This can be read off from [RS07b, Tables A.7, A.15] (note that the rank of
the monodromy operator is given in the column of [RSO7bl Table A.15] headed “a”;
note also that the unipotent L-packets which contain supercuspidal representations

also contain generic non-supercuspidal representations, namely those of type Va
and Xla, see [RS07d, §1], and [RSO7bL Table A.1]). We see that:
e On the unramified components (those with n(r,) = 0), the L-packets con-
taining a generic representation are singletons {m} of type I (unramified
principal series), so d,, = 8.
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e If n(n,) = 1, the L-packets containing a generic representation are single-
tons {7} of type Ila, so d,, = 4.

e If n(n,) = 2, the L-packets containing a generic representation are either
singletons {7} of type Illa, or pairs {m,,m} of respective types VIa and
VIb, and in either case d,, = 4. (Note that the representations of type
Va do not contribute, as they never correspond to residually trivial Galois
representations.)

e Finally, if n(n,) = 3, then the L-packets containing a generic representation
are singletons of type IVa (unramified twists of Steinberg) and d,,, =1. O

We write 7 = (1,).er for a tuple of generic points 7, of Spec R! for v € R, which
H

as explained in § gives rise to a generic point, also denoted 7, of RV1:51°¢ or of
RLIT. We let
dy =[] dn.
vER
where d,,, is as in Proposition We also let d, = d,, for the generic point 7
of RMIH10¢ that the local representations of p lie on (this point is unique, as the
representations p|q,, are pure by assumption). Concretely, by Proposition

we have
d, = ]l fol 4| Rl +|Re

where for i = 0,1,2,3, R; C R is the set of primes v € R for which n(p|g,, ) = i.
We can now state our main result about p-adic modularity at Iwahori level.

Theorem 7.13.6. Assume Hypothesis[7.13.1] for p = p,. For any I with #1 <1,
and any choice of ¢, we have
. 15 SIF
dimpg SI{Q,KP’IWKP(I) [px ] = 8dp

Remark 7.13.7. The reason for the factor of 8 = |IW| on the right hand side is that
we are working at Iwahori level at the auxiliary place vg, and not imposing any
conditions on the Hecke operators at this place. It would be possible to impose
such conditions and remove this factor, but we have found it more convenient not
to do so (and it makes no difference for our main automorphy lifting theorems).

Before proving the theorem we recall a standard lemma, essentially due inde-
pendently to Diamond and Fujiwara (see e.g. [Dia97]) which is the key to proving
“multiplicity one” (or “multiplicity 8d,”) results in characteristic 0 using the Taylor—
Wiles method.

Lemma 7.13.8. Let R be either (RLT) or (RXIT) for some choice of I and ¢
and let M be a mazimal Cohen—Macaulay R-module. Let x € Spec R[1/p] be a
smooth closed point with residue field E, and let p, C R be the corresponding prime
ideal. Then M, is a free R, -module, and hence if 0 is the unique generic point
of R specializing to x, then

dimp, M, = dimg(M/p, M)[1/p].

Proof. The first statement follows from the fact that a maximal Cohen—Macaulay
module over a regular local ring is free, and the second statement is an immediate
consequence of this freeness. O

We also record the following proposition on “doubling”
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Proposition 7.13.9. Let p = p,. For any choice of I C S,, w € I, K? as in
Definition[7.134), and ?, there is an injection

Codu{w}e ~Tu{w}, 1,7 =1,
(Uwa —,) SHQ,Kpr(IU{w})[ vk Snz,KpKP(I) P27

Proof. This immediately reduces to the corresponding statement with O-coefficients,
and hence to the injectivity of the map (7.9.3) (with w = v), which we proved in
the course of the proof of Proposition [7.9.1] O

We are now ready to prove Theorem

Proof of Theorem[7.13.6. We first consider the case that I = 0. As M%7 is a
maximal Cohen-Macaulay (R'?7)’-module, it is supported on some irreducible
component of Spec(R*%7) and hence we may apply Lemma to the RLO--
module ML%% and the RX%*-module M%7, In particular we conclude that M%7
is supported on every irreducible component of Spec(Rl’@’?)’ .

As MLP7 is a finite free Soo-module, and (RL?7)*ed acts faithfully on ML%" (and
is therefore finite and torsion free over S ), the map Spec(RL?7) — Spec S, is sur-
jective and generalizing by [Stal3l, Tag 080T]. It follows that we may pick some pyeg :
Gr — GSp,(O) whose corresponding point is in the support of M10%/p,. 1107
and such that p and preg (or their corresponding points « and ez ) lie on the same
component of R&)@’?; we write n for the generic point corresponding to this com-
ponent. Similarly, we may pick some pX, : Gr — GSp,(O) whose corresponding
point z, is in the support of M /p,.  AXOF,

reg

By Proposition below, we have
. : 0, 507 1 —
dlmE(M;o’@’?/eregM;é@’?)[l/p] =dimg Snreg,KP,IWKp(Q)) [pg:eg] = 8d,,
and
. . 0, =0
dlmE(M;(c;@’?/pw?%gMgg@’?)[l/p] = dimg Snreg’[{p,lwl Kp(@),x[pﬂcz(eg] =8.

In addition, there are automorphic representations myeg, T, of GSp 1(A ) of weight Kreg
and central character | - |? such that pr,., , = preg and Pryp = Pog-

Applying Lemma|7.13.8|to p, and p;,, (which we may, by our assumptions on p,
and by Theorem for pr,.,.p, together with Lemmas and |7.3.18),we obtain

dimp(ML"? /p, ML) /p) = dim 0., M = dimp(ML"? /p.,, ML) [1/p) = 8d,,

(R o
As

0,2 =07 ,0, 0,
S,{%KP,IW,KF(@) [pg ?] = (M;om ?/po;O(i) ?)[1/17]\/7
the theorem is proved for I = ().
Before we go on to the case that #I = 1, we note that we may also apply

Proposition [7.13.11 and Lemma to p,x _ and conclude that

dim o o, MG = dimp (M oy, M) [1/p] = 8.

By another application of Lemma this implies that d; = d, (where d;,
is as in Lemma [7.12.3). Following Remark we will apply this in the case
#1 = 1 below.

Now consider the case that #I = 1. We consider the automorphic representa-
tion 7 of Hypothesis [7.13.1] By assumption, for all finite places v of F the repre-

sentation pr |G, is pure, and therefore determines a unique component of Rééw’?,
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which we denote by 7,. Arguing as above, we find that d; = d,_, (where d; is
as in Lemma|[7.12.3). Write pL7 for the height one prime ideal determined by pr .
Then by Proposition [7.13.11] we find that

(7.13.10) dlmES L KPI K (D) L] > 8d,, .

Again ML17 is a maximal Cohen—Macaulay (R.!%)-module and so we may apply
Lemmas|7.12.3[and|7.13.8[to the R/ "-module M1’ and the R/ *-module MX1*.
We find that

~ 1
7d dimp Sﬁ KP VK, (I) b2 = 1 dimp (M /py "My )1 /p]
P P

1
_ i A [1,],?
jp 1 (Rclo’l,’,f)/ 00,m

= dlm(Ri(.oI"? ) MX7777X
1

:dp dlm 117),]\41

0, N
TP

dimp (ML /pR  METT)[1/p]

Pr,p

dlrnESN KK (T) [pﬂ ].

Pr,p
It follows from (|7.13.10) that
dimpg S’i P E () [pz ] > 8dp
On the other hand by Proposition [7.13.9] we have that

dimg S < dimg S 8d

2, KP WK (])[pz ] 2, KP WK (Q))[pw ] P

and so the theorem is proved. (Il
Proposition 7.13.11. In the notation of the proof of Theorem we have
. 0,¢ /R
dimpg Smrepr,lep(@) [pxrcg] = 8dpa

=07 7
ckrin i, ) x P =8

dimpg Sm KK, (1) [p,r ] > 8dp7(,p-

In addition, there are automorphic representations Treg, %y Of GSp4(AF) of
weight kreg and central character | - |2 such that Privessp == Preg and prx o, =

dimg S@’?

- preg'

Toof. By eorem an eorem mg Tw P’ | 1s equa
Proof. By Th 6.6.5 and Th 3.10.1) di Sﬁng PR 1

to
Z dimf(woo)Kp’Ipr(ﬂ),{Uv 1=F8,Uy 2= a”gﬂreg}vesp

where the sum is over all the cuspidal automorphic representations m of weight Kycg
such that 7 has central character |- |, 7, is holomorphic for all places v|oco, and
Prp = Preg; and we write o} %, 3,°8 for the lifts of 61,731) determined by preg|c p, - N
particular, note that we can take m,e; to be any of the automorphic representations 7
contributing to the sum.

Since preg is irreducible, such a 7 is of general type in the sense of by
Lemma[2.9.1] and therefore corresponds to an essentially self-dual regular algebraic
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cuspidal automorphic representation II of GL4y(Ap). By strong multiplicity one
for GL4 [JS81], II is uniquely determined by the condition that prp, = preg, S0 by
Theorem 2.9.3] we see that we can rewrite the above sum as

> dim 7l o) | T S dimr®

Tuo €L(preglcr, ) veR \mu€L(preglcy, )

(note that at all places v ¢ RU S, U {vo}, we are taking the space of hyperspecial
invariants in an unramified representation, which is 1-dimensional; and at the places
v € Sp, the contribution is 1-dimensional by Propositions [2.4.24] and [2.4.26]).

By Proposition Ty, is an irreducible unramified principal series represen-
tation; indeed, by the choice of vy, pw,p|GFUO is unramified, and no two eigen-

values of pr p|ay, (Frob,,) can have ratio g,,. It follows from Propositions W

0

and that we have dim Wi‘gl(v‘)) = 8. The claim then follows from Proposi-
tion (which we can apply, because for each place v € R, preglay, is pure
by Theorem m (4), and therefore the corresponding Weil-Deligne representation
is generic by Lemma so that the corresponding L-packet contains a generic
representation by Proposition .

The statement for p¥,, reduces in the same way to the claim that for each
place v € R, we have

Z dim 71'11}""1(”)”‘ =1,

myEL(preglay, )

which follows from Proposition [2.4.28] Finally, in the case of Si’; KpIw K (1) [pL,
the result follows as above, by computing the contribution of the automorphic

representation 7 of Hypothesis [7.13.1] (note that it contributes by Theorem [3.10.1)).
O

Remark 7.13.12. In the course of the proof of Theorem we showed that for
the generic point 1 corresponding to p, the quantity d;) of Lemma is equal
to d,. It is presumably possible to go further following [SholS8], and to use our
patched modules to show that for each v € R and each generic point 7, of Spec R},
if we write
Z(Spec Ry /(N)) =1,
then
Z(8pec(RY™/() = 3 dy. 7,
Mo
where d,, is as in Proposition

8. ETALE DESCENT AND THE MAIN MODULARITY LIFTING THEOREM

8.1. Introduction. Our main goal is to remove the assumption #I < 1 of The-
orem [7.13.6] in order to eventually apply Theorem [6.5.8 with I = S, and from
this conclude that we have constructed classical automorphic representations. The
starting point is to consider the spaces of p-adic automorphic forms considered in
Theorem for both #I = 1 and #I = 0. By studying the way in which
these spaces are related, we will be able to (inductively) determine precise linear
combinations of such forms which belong to spaces of p-adic automorphic forms for
larger #1I. Our argument uses the doubling results of the analytic continuation
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results of §6 and étale descent. Finally, we apply solvable base change to prove our
main modularity lifting theorem.

We briefly indicate some of the main features of our argument. As we mentioned
in the introduction, the analytic continuation arguments that we are using here are
analogous to those used for Hilbert modular forms of weight at least two, rather than
those of weight one — in particular, there is no “gluing” of the kind used in [BT99],
and we are simply analytically continuing a single form at a time (using the method
of Kassaei series [Kas06]). This part of the argument is quite standard, although we
have to take some care to show that the regions that we have analytically continued
to are large enough. For this reason, we ignore the issues of analytic continuation
in this introduction.

We show that the conclusion of Theorem [7.13.6] holds for all I by induction
on #I. The key step is to go from #I < 1 to #I < 2; indeed, the general
inductive step considers two places v, vs dividing p, and essentially ignores the
other places above p, so for the purpose of exposition we assume that S, = {v1,v2}.
Write oy, 8; for au,;, Bv,, ¢ = 1,2. We denote the various spaces of forms considered
in Theorem [7.13.6) with I = 0 by Vi, a0, Vai,a0s Vaugas V51,8, (s0 that for example
on Vg, «, the eigenvalue of U, 1 is a1 and the eigenvalue of U,, 1 is ag). Each of
these spaces has dimension d := 8d,,, and considering the action of U, 1 and Uy, 1,
we see that these spaces together span a 4d-dimensional space of p-adic modular
forms of Iwahori level.

We expect that this space contains a d-dimensional subspace of p-adic modular
forms which descend to Klingen level (and are suitably overconvergent in both the v;
and ve directions). The difficulty (even if d = 1) is in identifying this subspace; recall
that there is no obvious relationship between the Hecke eigenvalues and Fourier
coefficients. However, we also have the spaces of forms for I = {v;} and I = {vs},
which we denote by Vi, as+8:5 VBi,ao+825 Var+81,a0s Vai+81,8., Where for example
the forms in V4, o,+p, have Klingen level at v, (and are highly overconvergent in
the vy direction), and are Ugji(y,),1-eigenforms with eigenvalue ap + (2. Again, all
of these spaces has dimension d by Theorem

Now, the relations between the Hecke operators at Klingen and Iwahori levels

(more precisely, Lemma [4.5.17)) imply that we have a map
(le,l - 51) V481,02 = Vay,as-

Furthermore, this map is injective by Proposition [7.13.9| (that is, by our main
doubling results), and since the source and target both have dimension d, this map
is in fact an isomorphism. Similarly, we have an isomorphism

(Um,l - 51) : Va1+ﬁ1,ﬁ2 - Va17ﬁ2

and thus an isomorphism of 2d-dimensional spaces
(811) (thl - 61) : VoélJrﬂl,Oéz @ Va1+51,52 — Val,oéz ® Va1,52‘

By pulling back from Iwahori to Klingen level, we can think of Vi, «,+s, as a d-
dimensional subspace of the target of . The inverse image of this space in the
source of is the d-dimensional space of forms that we are seeking; considered
as living on the right hand side of , it comes from Klingen level at vy, and
on the left hand side of , it comes from Klingen level at v;. We make this
precise using an argument with étale descent.
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8.2. Etale descent. In this section we carry out the argument explained above,
showing that the conclusion of Theorem holds for all I by induction on #1
(in fact, we show slightly more, keeping track of the overconvergence of our p-adic
modular forms). Recall that by definition for each choice of I,? we have

Si’:,KPJWKp(I) = (HO(:{ﬁ(’g%pr(j)vw2(_D))ﬁ1”) ®o E[{Uv,o - 1}v€Sp’

{UU,O - qu}veR, {TU,O - QJQ}vQSPURU{vO}]
The maximal ideal m!¥ of the Hecke algebra is defined in equation (7.8.4). It

contains an ordinary projector. We have given ourselves (see the beginning of §7.13))
a Galois representation p satisfying Hypothesis We want to prove that it is
modular. Associated to this representation is a point x on the deformation space
of p and an ideal pL7 (see equation ) of the Hecke algebra contained in
ml whose definition we recall here for convenience. It is the ideal of the Hecke
algebra T given by

Q) OIGSps(F.)// GSp4(Or,)] | {Us,0, Ukii(o).1> Us 2 tvets {Us.0, Un1, Us 2 boere]
vg€Sp,URU{wvo }
which is generated by:

o the coefficients of det(X — p(Frob,)) — Q. (X) for each v ¢ S, URU {vo},
and

L d {Uv,O -1, Uv,2 - avﬂv}vespa {UKli(v),l — Oy — ﬁv}ve[, {U'u,l - ?’U}’UGIC7 Where7
for v € Sy, v, B, are determined by p|g,. as in Definition

Recall that X II(,)G . 0 is the analytic adic space over C,, associated to %;ﬁ}w Ko (1)
By definition, we have:
1.7 oI — 1,G &I,
Snz,KP’IWKp(I) [pajc ?] ®F C:D - e(UI)HO(XKp,Ilep(I)a w2(_D>) [p:{: ?]-

We may also introduce overconvergent versions of these spaces. Recall that we

defined the dagger space Xg;jf‘n,,'}?’g[) in |D (whose associated rigid analytic
p

: Gy,1
space is XKNWK,,(I))‘
There is a natural injective restriction map:

(U HOXGmT W2(=D)) = e(UHO XG4y w?(=D)).

Let

17,1 _ I\ 170/ 4 G1,mult,} 2 17
Snz,KP’IWKp(I) =e(U")H (XK;JWKP(I)’W (=D))n Sng,KPvIWKp(I) ®Cp

where the intersection is taken inside e(UT)HO (X2, (I),w2(fD)).

Theorem 8.2.1. Assume that p satisfies Hypothesis[7.13.1, Then for any I C S,
and choice of ¢, we have

. Iz =1, : Iz, ol.f —
dimp SK2,K”’IWKP(I) [pw?] = dlmcp Sﬁz,;(P)IWKp(I) [pz ?] - Sdp'
Before proving this theorem, we record the following important corollary.

Corollary 8.2.2. Suppose that p satisfies Hypothesis[7.13.1, Then p is modular.
More precisely, there is an ordinary automorphic representation ' of GSp,(AF)
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of parallel weight 2 and central character | - |?

place v of F' we have
WD(plep, )" = recar p(m, © v 7*?).

Proof. The existence of 7’ with pr, = p is immediate from Theorem tak-
ing I = S, together with Theorem and Theorem [3.10.1} By Corollary

we have

, with pr p = p, and for every finite

WD(plap, )* 2 recar p(, @ |v| /)
at all finite places v of F', so we need only prove that the monodromy operators agree
at the places v € R. Since p|g,,, is pure by assumption, it follows from Lemma
that it suffices to prove, in the notation of Section that n(p|ay, ) < n(m,).

Now, if , is any irreducible admissible representation of GSp,(F),), then an ex-
amination of [RS07b), Table A.15] (noting that the column there headed “a” records
n(m,)) shows that:

e n(m,) > 1 if and only if (m,)E5P(Or.) = (.
e n(m,) > 2 if and only if (m,)5P1(Or) = (1,)Par(v) = 0,
e n(m,) = 3 if and only if ()X = (7,)81") = 0.

Suppose that n(p|q,, ) = 1, so that we need to show that (m,)Pa(Or.) = 0.
Suppose for the sake of contradiction that (w;})GSm(OFU) = 0; then by Hida theory
(more precisely, by T heoremand its proof), the Galois representation p. , is a
p-adic limit of Galois representations p,~ ,, where 7 has regular weight and satisfies
(7/)GSPa(Or,) 2£ 0. In particular, by Theorem n(pxr plar, ) = n(my) = 0. By
the semicontinuity of the rank of the nilpotent operator N in such a family, it
follows that n(p|g,, ) = 0, a contradiction. We leave the (very similar) arguments
in the cases n(p|gy, ) = 2,3 to the reader. O

Proof of Theorem[8.2.1. We prove this by induction on #I. The result is true
for I = () and #I = 1 by Theorem [7.13.6| and Theorem m (ordinary implies
overconvergent if #1 < 1). For any I, the restriction map

83 51, I ST,
SRQ,IT(P’IWKP(I) [p2] — S KP K (1) [pz"] ©5 Cy

is injective, while by Proposition [7.13.9| (and a simple induction) we see that for
any I, the dimension of SI’?KP,IWK o [pL7] is at most 8d,. It therefore suffices to
P

K2,
Lt
show that SI{Q,KP’IWKP

2, and hence we may write I as a disjoint union J U {vy, vy} for two primes v;|p.
We fix the choice of ¢ at all primes in J U I€.
By the inductive hypothesis applied to J, for each choice of ¢ at v; and vy

the corresponding eigenspace SZ;?;@,IW Ko () [pl] is 8d,-dimensional, and we denote
’ p

these eigenspaces by Vi, asy Viy.ass Var.fss V1.8 (S0 that for example on Vy, o, the
eigenvalue of U,, 1 is ay and the eigenvalue of U,, 1 is a2). Considering the action
of Uy, 1 and U,, 1, we see that these spaces span a 4 x 8d, = 32d,-dimensional

subspace V' of HO(X;SI;KP(J),UJQ(—D)).

By the inductive hypothesis applied to JU{v;} and the two possible choices of ¢
JU{’Ul},?,T ["JU{’Ul},f]

Ko, KPIW K, (JU{v,}) T

are both 8d,-dimensional, and we denote the corresponding spaces by Vi, +4;,a-

and Vi, 44,8, Similarly, the inductive hypothesis applied to J U {v2} yields 8d,-

dimensional spaces Vi, as+8, and Va, a,18,-

o0 [p1?] has dimension at least 8d,. We may assume that #I >

at vy (the choice at vy is irrelevant), we see that the eigenspaces S
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Recall that our goal is to construct an 8d,-dimensional space of eigenforms Vi, 48, a.+8,
which are eigenforms for the operators Ukii(y,),1 and Ukii(v,),1 (and for the Hecke
operators at all the other places), and which lie in

G1,mult,
HO(XKP,IWI;(iEr]y w2(_D))'

We will combine the analytic continuation results of §6| with a descent argument to
prove the existence of the sought-after eigenforms.

We need to introduce some notation in order to be able to describe the adic spaces
we are working with. Recall that Xxpiwg, (1) is the analytic space associated to
Xgravg,(1)- For each v € I, H, refers to the quasi-finite subgroup (of order p over
the interior of the moduli space) related to the Klingen level structure, and for each
v € I¢, L, D H, refers to the quasi-finite (maximally isotropic rank p? over the
interior of the moduli space) subgroup corresponding to the Iwahori level structure.

For any tuple (e,) € [0,1]7x[0,2]'" we defined an analytic adic space Xierw i, (1)((€0)ves,)
which is the open subspace of Xr.1w g, (1) Where:

(1) If v € I, the degree of the subgroup H,, which takes values in [0, 1], is
greater or equal than 1 — ¢,,.

(2) If v € I¢, the degree of the subgroup L, of rank p?, which takes values
in [0,2], is greater or equal than 2 — €,. Note that we have deg(L,) =
deg(H,) + deg(L,/H,).

It will be convenient to adopt the following notation in this proof (note that I

is fixed). We write (cf. (6.5.5))
Xmult = XKp,Ipr(I)((O)UeSP),

1 It, :
Jymu t,t = XII?J’I’I’IWTI(I)(I) = 6v1i1’>%+ XKPvIWKP(I)((ev)UGSP)v
and XM for the dagger space
Xmult,i = lim XKPvIWKp(I)((EU)UESP\{Ul,vg})a

€,—0T1
where we take the limit over all primes except vy and vy. It follows that:

Xmult,f _ lim Xmult,fp(evl , 61,2),
€y ,€vy =0T
and there are maps of locally ringed spaces X™ult — pmultt _y ypmultf By
adding the subscript Iw(v1) (or Iw(vs), or Tw(vy, vg)) to Amult ymulti  ymultf e
mean the space where one has now added an Iwahori level structure at v (or ve,
or v; and v) to the relevant space. For i = 1,2 we write d = deg H,,, d- =
deg L., whenever these quantities are defined. We will adorn X™u!t and xmult:}
with superscripts indicating the regions (which will typically strictly contain A™ult
and X™W%H) where various inequalities hold.
Returning to the spaces we defined above, we have

‘/?1,?2 C HO(X[I?:,IIE;“:[(IJ(J)?U‘)2(_D))7

mult,
X/;1+?/1’?2 - HO(XKP»IEVTKP(JU{W})’w2(_D))’

mult,
V?17?2+?'2 C HO(XKPJE"TKP(JU{UZ})’w2(_D))'

mult,i,d? >1—e,d¥ >1—€,dl>1,d>1
Lemma 8.2.3. The elements of Vs, 5, extend to XIW(Uli’Uz)l > 22 1 2

for some € > 0. Similarly, the elements of Vi s s, and Vi s, 1s extend to the
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It,1,d¥>1—€,df >1—€,db >1 It,1,d? >1—e,df>1,dH¥ >1— .
spaces Xlr‘r;(lw;( L=1m0% “%2 7% and Xlrgl(lm;t ! B0 207 pespectively for
some € > 0.

Proof. This follows from Lemmal6.5.18| (taking I there to be J, JU{vz} and JU{v; }
respectively). Note that our forms are ordinary for U,, 1 for the appropriate w, and
therefore of finite slope for these operators. (I

By Koecher’s principle, all of our cohomology groups may be replaced by the
cohomology of the corresponding open spaces of “good reduction” Y™t ¢ pmult,
ymultt c pmult and ymultt ¢ ymultt respectively. (Since the sheaf w? is pulled
back from the minimal compactification, the form of Koecher’s principle we are
using is just the following statement: if X is a normal formal scheme, ) C X
is an open formal subscheme whose complement is codimension > 2, and £/X is
a line bundle, then H°(X,£) = H°(Q),L). That the boundary in the minimal
compactification does indeed have codimension > 2 follows from an analysis of the
blowup in the boundary charts.) We now restrict to these spaces to avoid minor
technical issues related to the boundary. In particular we will want to use that
forgetting the level structure induces finite étale maps between our spaces. The
reader will check easily that the forms we construct are indeed cuspidal because
they are obtained by “descent” of cuspidal forms.

For any € > 0 and for ¢ = 1,2 there is a finite étale map:

ymultid >l—e,df>1—¢ ymult,i,dle,g,dgzl,e
Tw(v;) .

There is a corresponding fibre product map (still finite étale):

mult,},d? >1—¢,d >1—¢ mult,},d? >1—¢,d >1—¢
wa(vl,vg yIW(’UQ)
(and similarly for g,,).
We now somewhat abusively also write Vi, 15, o, instead of ¢} Vo, 15,0, We
claim that the action of (U,, 1 — 1) induces an isomorphism

(8.2.4) (U1 = B1) = Vay 181,00 — Vayas-

To see this, note that (U,, 1 — 1) is injective by Proposmon and both spaces
have the same dimension.

In the same way, we have an isomorphism (U, 1 — 1) : Vay 181,00 — Vi, .00
so we see that in fact the span of Vi, 13,.a, and Uy, 1Va, 48,0, is exactly Vi, o, @
Vs,,ap- It follows from Lemma [82.3) that the forms in Vi, o, ® Vj, a, extend

ymult .1, d1 >1—e¢ d2 >1—e¢ d2 >1

Iw(vy,v2)

Set

for some € > 0.

mult,t,d? >1—¢,d >1- ed2>1
Iw(vy,v2)

=W

The map ¢,, restricts to an étale map:

multid >1— ed >1—e
Qo, = Viw(or)

We claim that for e sufficiently small, the restriction of ¢,, to U, is surjective. Note
mult,f, d >176,d§12176

(o, o) (without any condition on d)

that a pre-image of a point in ),

corresponds to a choice of L = L,,, which is determined by a line in H+/H C
Alvg]/H for H = H,,,. We need to show that deg(L) > 1 for at least one such L.
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Let us first assume that deg(H) = 1. Then we can choose any line C ¢ H+/H
with deg(C) > 0 (such a C exists as H'/H is not étale) and the corresponding L
has deg(L) = deg(H) + deg(C) > 1.

We pass from deg(H) =1 to deg(H) > 1—¢ by a continuity argument. The
mult,f, Ul1 >1— ed2 >1—¢
Iw(vq
of deg(L) is continuous. It follows that for e s(ufﬁmently small, we can ensure the
existence of a subgroup L such that deg(L) > 1.

Consider the corresponding descent diagram:

function which sends a rank one point z € N2 to the maximum

dva,1 v

U€ multid >1— ed >1—¢

ylw(vl)

U x mult,f,df >1—c,alf >1-c U.
Iw(vy) Qug,2

Lemma 8.2.5. After possibly further shrinking e > 0, any element of Vu, ay+8,

1t,1,dM >1—¢,dlf >1—
descends to )}I‘r;zvlj): © N

Proof. Any element of V,,, 4,13, tautologically satisfies descent over the (smaller)

mult, f,d? >1—€,dl>1,d >1—¢,di>1
space yI A2 ! 2= 2 c U, to

w(v1,v2)
mult,},d? >1—¢,dl>1,d >1—-¢,d}>1 mult,f,d >1—e,dl>1,d >1—¢
Quy (wa(vl,uzl 2 2 ) = wa(vl) ! ! 2
since it is (by Lemma [8.2.3) obtained simply by pulling back a form on this space
under q,,. Therefore, we deduce that for any element G € V,,, 4,+4,, we have that
ng,lG = (If;z,zG on

ymultid >l1—e,dl>1,dE >1—¢,dl>1 ymultid >1—e,dl>1,df >1—¢,d} >1
Iw(v1,v2) mult ,dff >1—c,all >1-e Py (v 05)
Iw(vy)

The point is now to show that each connected component of

Ue x mult,,dff >1-¢,alf >1-c U.
Tw(vy)

intersects
mult,f,d? >1—¢,dF >1,d >1—e,df>1 mult,f,d? >1—¢,dF>1,d >1—e,df>1
wa (v1,v2) mult,t,df >1—c,dff >1- £yIW (v1,v2)

Tw(vy)

so that we have that ¢;, ;G = ¢, ;G on U, x mutt 1,af 31 ali >1-c Ue and can perform
Tw(vy)

the descent of G.
It follows from [Poi08, Thm. 2] that after possibly further shrinking e, there is a
surjective map
(82-6) 7TO(UO X mult,tdH =aH =1 UO) — 7TO(UE X mult,f,aff >1—e,alf >1-c Ue)-
Tw(vy) Tw(vy)
We need to see that gy, ;G = g, ,G on

Ue X mult,§,dfl >1—¢,ddl >1-¢ Ue-
Tw(vy)

By (8.2.6), it is enough to show ¢;, G = g;, ,G on the subspace

UO X mult, ,d =dalf =1 UO-
Iw(vy)

As discussed above, this identity holds over the region

ymultid H_gll=1,dF>1,d}>1 ymultid H_gf =1,dF>1,d5>1
Tw(vy,v2) mult, ,d =df =1 Iw(vy,v2)
Tw(vy)
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by definition. It therefore suffices to show that this region intersects all connected
components of Uy x malt, §,dH —af =1 Up.
Iw(vy)
Accordingly, it is enough to show that every connected component of UpX i 1,0 =a
IW(U1)

Uy contains a point which is non-ordinary at v;. Indeed, if such a point had di =
then we would have deg(H,,) = deg(L,,) = 1, which implies that deg(L,,/H,,) =
0, so L,, /H,, is étale, and the point is ordinary at v, a contradiction.

We will prove in Corollary below that any connected component of either

of the spaces

271

mult, I, d 7d =1,=y,1

Iw(v1)

mult,,dy 7dH 1,=4,2
y yw(vl

contains a point which is non-ordinary at v;. Recall that the superscripts =,, 1

and =,, 2 respectively mean the rank 1 and the ordinary locus at v2
mult, I, d _d2 =1,=y,1

Now we observe that the maps U0: = Viw(or) and U_’,z
ylrf,lvuzcli ' =dy’=1,=0, 2 are both finite étale. It follows from Lemma [8.2.7| below that
any connected component of any of the spaces U, "> 1, U_”2 LUy vl mute, £, —all =1

Tw(vy)
=1 =, 2 =0, 2 . . D .
Uy ™ or Uy, ™" x mate £, —ati—1 U “2" contains a point which is non-ordinary at
Tw(vy)
v1. It finally follows that any component of Uy X mute,,afl—ati—1 Ug contains a point
Tw(vy)
which is non-ordinary at vy, as required. ([

We can now complete the proof of Theorem [8.2.1] Consider the diagram:

J)mult .1, Ul1 >176,d§2176 (Ivl ymult .1, d1 >1—¢ d2 >1—¢
Iw(v1,v2) Iw(v2)

Quy Gvgy

mult,},d? >1—¢,d >1—¢ vy mult,},df >1—e,df >1—e
wa(vl — ) = 2=
By Lemma [8.2.5, we have proved that all elements of our spaces Vo, 44,4, and

H _ H _
Vai 48,8, are sections on the whole y{jv‘;gj’dl 21769 217¢ and that all elements of

multid >1— edH>1 €

our spaces Vo, ay+p, and Vs, a,+4, are sections on the whole Y /"

multid >1— ed >1—e
Iw(vy,v2)

The isomorphism |b and the similar isomorphism ( 11—51) Vo +81.8, —
Va, 8, induce an isomorphism

We can pull back these sections to )

( vy,1 61) : 041+51,042 D VO&1+51,52 - Val ar D Val,ﬁw

and we define Vi, 48, as+8, to be the preimage of Vi, as+8, C Vo ,an @ Vay 8, under
this isomorphism. This is an 8d,-dimensional space of eigenforms with the appro-
priate eigenvalues, so we only need to check that all of the elements of V4, 18, as+8.
descend to Ymult:f,di’ >1—ed3’ >1—¢

Consider an element F' of this space. By definition, F' has the property that (U, 1—

mult,t,d? >1—¢,d >1—¢ multid >l—e,di>1—¢ .
B1)F on yIW (v, v; 2 is pulled back from Y| ! 2 via gy, .

Let G = deg(quv,) ' qu, «F be the trace of F to Yymult:t dl 21 edy'21-¢ The form F
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comes via pullback from Yymult:ddi’ =1-edy’>1—¢ if anq only if F = ¢;,G. Since the
trace map at vy commutes with U,, ; (for the usual reasons, ultimately coming
down to Serre-Tate theory and the product structure on the p-divisible group), we
deduce (since gy, is surjective) that (Uy, 1 — 51)(¢;,G — F) = 0, so that F' = ¢;,G
(because (U,, .1 — p1) is injective) as required. O

We conclude this section with some lemmas that were used above. We first
record the following easy lemma:

Lemma 8.2.7. If S — T is a finite étale map of adic spaces of finite type over a
field, then the image of any connected component of S is a connected component
of T.

Proof. Since S and T are of finite type, they have only finitely many connected
components. In particular the connected components of S and T are precisely the
connected subsets of S and T which are both open and closed. Since finite étale
morphisms are both open and closed [Hub96, Lem. 1.4.5, Prop. 1.7.8], the result is
immediate. a

Next we have the following lemma and its corollary:

I,=p,1 . L
Lemma 8.2.8. Any connected component of YKP«I?KP(I),l contains a point in
I, =(0: o1 I,=y,2 . o
YKP,IEK,”}%;?;)J, and any connected component of YKT,,IZ?KP(I)’1 contains a point in
I=y, 1,=0,2
=vy L=uy
YKP(I)KP,I

Corollary 8.2.9. Any connected component of either of the spaces
mult,f,df =d¥=1,=,,1 mult,,df =d¥=1,=,,2
yIW(Ul) b s yIW(Ul) s ’

contains a point which is non-ordinary at vy.

mult,f,df =df=1,=,,1 H_gH_q1 _ . o,
Proof. The map wa(vl) 1 =03 2ty ymulthdi’=dy'=1,=,1 ig finite étale, so

. . H__ jH_ 4 __ H__ jH__ 4 __

it suffices to prove the claims for Ymult-hdi=dy=1,=u,1 gpq ymult.fdi=dy =1,=0,2
H _ jH __ . . .

Also, the map ymult,fdyf=dy’=1 _y ymult jj,qyces an isomorphism of 7y’s, because

both spaces have the same rank one points and any higher rank point admits a
7=yl
p’IW?Kp(I

ymult, =2 s the tube of YII(;:*I?IQQ(I)J' Since all these spaces are smooth, the tube

generalization to a rank one point. Thus Y™4t=v21 is the tube of Yé ) and

A= . )

of a connected component in YK,),IWQ;( (1 18 connected for ¢ = 1,2. But now by
P 5

Lemma [8:2.8| these components contain points which have rank one at v; and hence

are not ordinary at v;. ([

The rest of this section is devoted to proving Lemma [8.2.8] This statement
is a very special case of a general expectation that “all possible specializations
between EKOR strata are realized.” Unfortunately, as far as we are aware, this
exact statement does not yet appear in the literature, but we will explain how
it can be deduced from what is available using standard techniques. This will
necessitate a small digression into the theory of stratifications of special fibres of
Shimura varieties.

To aid the reader’s understanding, we first recall a general strategy for producing
specializations between strata: first one produces a specialization to a point of a
very special stratum, and then one uses deformation theory at that special point
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to “go back up” to the desired stratum. For achieving the first step, there is also
a standard strategy: if one can show that open strata are (quasi)-affine, while the
closures of strata are proper, then it follows that any component of any stratum
must specialize to a point of a zero dimensional stratum. This argument becomes
a bit more complicated for non compact Shimura varieties, where one must study
the extension of the stratification to the boundary of the minimal compactification.
In order to use results readily available in the literature, we will carry out the first
step at spherical level, then carry out the second step at Iwahori level, and finally
explain how this implies the result that we want at level K,(I).

First we consider the Ekedahl-Oort stratification at spherical level, see for in-
stance [VW13]. Let K = [],, GSp4(Or,). Then Yg».1uk, 1 has an Ekedahl-Oort

stratification into 4[F*Ql strata, according to the four possibilities for each of the
finite flat group schemes G, [p| at geometric points. Let G1 1 = E[p| for E a super-
singular elliptic curve. Then these four possibilities are:

e Ordinary: Gy(p] ~ 2 x (Z,/pZy)?

o prank 1: Gy, [p| ~ pp X Z,/pZ, x G11

e Supergeneral: G, [p] is connected-connected, but not isomorphic to G7 ;.
e Superspecial: Gy [p] ~ G7 ;.

This stratification refines the p-rank stratification, with the last two cases corre-
sponding to G, having p-rank 0. We call a point of Yg».1wfc, 1 superspecial if G, [p]
is superspecial for all w|p. This is the unique zero dimensional stratum.

Lemma 8.2.10. Let J C S,. Fach irreducible component of Y;p’;f;:} contains a

point of Y;zi};v(v)K,,,l in its closure.

Proof. 1t is shown in [Box15l [GK19|] that the Ekedahl-Oort stratification extends
to a stratification of the minimal compactification of Yipiwg, 1, and that each
(open) stratum is affine. Moreover the superspecial locus does not intersect the
boundary. It follows that any component of any Ekedahl-Oort stratum contains a
superspecial point in its closure. By the explicit description of the Ekedahl-Oort
stratification recalled above, the p-rank strata in the statement of the lemma are
also Ekedahl-Oort strata. (Il

Now we will switch to Iwahori level and consider the Kottwitz—Rapoport strati-
fication, see for instance [NG02]. Let K} = [ 1. Iw(v). Then Ygpaw w1 and its

local model M}?ng = Hv‘ » MIISVC(U),l carry a Kottwitz—Rapoport stratification. In

fact, there is a Kottwitz—Rapoport stratification of MII“)’VC(W1 and the stratification
of M}?}I‘:W,l is simply the product stratification. The strata of MIISVC( v) are indexed by
a set Adm(u) of cardinality 13. This set, as well as the partial ordering given by
closure, is pictured in [YuO8| p. 1273].

We will use below the following argument, which is a consequence of the theory
of local models. If C'is an irreducible component of the Kottwitz—Rapoport stratum
labeled by w € Adm(p)®», then the closure C has a decomposition into strata:

c=1] cu-

w!' <w
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A priori the strata C',» might be empty, although it is expected that they are always
nonempty. However, the theory of local models implies that if C,, is nonempty,
then so is C',» for any w” satisfying v’ < w” < w.

We will not need to recall in detail the definition of the Kottwitz—Rapoport
stratification. We do recall that, as explained in [Yu08]|, the Kottwitz—Rapoport
invariant determines whether the groups of order p, H, and L, /H,, are étale,
multiplicative, or connected-connected (and so in particular the Kottwitz—Rapoport
invariant determines the p-rank of G,,, a theorem of Genestier-Ngo). Conversely
these invariants determine the Kottwitz—Rapoport invariant when the p-rank of G,,
is not 0. All of this is recorded in the table in [Yu08| p. 1276].

We will use the following points:

e There is a Kottwitz—Rapoport condition, s3s1s27 in [Yu08|, which corre-
sponds to the condition that G, is ordinary and L,, = G[F] (equivalently
L., is multiplicative).

e There is a Kottwitz—Rapoport condition, $1s97 in [YuO8|, which corre-
sponds to the condition that G, has p-rank 1, H,, is multiplicative, and
L, = G[F] (equivalently H,, is multiplicative and L.,/H,, is connected-
connected).

e There are three Kottwitz—Rapoport conditions, 7,17, and se7 in [Yu0§],
which have p-rank 0 and are in the closure of the first stratum recalled
above. We observe crucially that they are also all in the closure of the second
stratum recalled above. We refer to these three strata as the canonical p-
rank 0 Kottwitz—Rapoport strata (here “canonical” refers to the fact that
L., = Gy[F] is the canonical subgroup of G,,).

. — 2= 1.m— .
For J C S, we write YKI{TW’K;‘Q”lm “" for the locus in Yip.1w kiw,1 Where for

w € J¢ G, is ordinary and L,, = G,[F], while for w € J, G, has p-rank 1,
H,, is multiplicative, and L,, = G,[F]. By what we have just recalled, this is a
Kottwitz—Rapoport stratum.

Y:JcQ,:Jl,m—can

Lemma 8.2.11. For J C J' C S, any irreducible component of oo K Iw |
v,

. . =(je2, =y 1l,m—can .
contains a point of Y\ ore T in its closure.

KpoIw KIw 1

Proof. Let 7 : YKp,IwKiw,l — Ygrawg, 1 be the projection from Iwahori to spherical

=jc2,=51,m—can

level. It is proper, and the Kottwitz—Rapoport stratum Y, )1 %) maps
P

finitely onto the p-rank stratum Y;,;’)?f’;] } (the fibres correspond to the p 4+ 1
P>

choices of H,, for w € J¢). If C is an irreducible component of Y /s2=m=cn

K KIw 1 ’
then 7(C) is an irreducible component of Y,/ ?f;p" } By Lemma [8.2.10} the closure

m contains a point which is p-rank 0 for all w € S,. By the properness of 7 it
follows that the closure C contains a point which is p-rank 0 for all w € S,.

By what we have shown, in the closure C, at least one of the canonical p-
rank 0 Kottwitz—Rapoport strata is nonempty. Now we apply the argument with
local models and the explicit description of the closure relations between the strata
recalled above to conclude. (]

Remark 8.2.12. One could give a more direct proof of Lemma [8.2.11] avoiding
the consideration of the Ekedahl-Oort stratification and the superspecial locus at
spherical level, if one knew that the Kottwitz—Rapoport stratification of Y, 1w KL
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extended to a stratification of the minimal compactification, for which the (open)
strata are quasi-affine. However we lack a reference for these facts.

Proof of Lemma[8.2.8 Let 7 : Yigowwicw 1 = Yierawc, (1)1 be the projection from
Iwahori to K, (I) level. On Yirw i, (1),1, ™ has a“canonical section” s : Yipaw g, (1),1 —
Yirawkiv 1, defined by taking L., = Gy [F] for w € I (recall that on Ygp1wg (1)1
H,, is multiplicative by definition, and hence H,, C G,[F]). It follows that for

=jc2,=51,m—can
Y Je4,=Ji,
Kp.IwKIw

and Yéﬁ{fé;:(;)l’l. We deduce the following statement from Lemma [8.2.11f for

J C J' C I, every irreducible component of

YKp,Ipr(I)’l in its closure.

Applying this with J = {va}, J' = {v1,v2} and J = 0, J' = {v1} we conclude
7 =up,ugl
PV (1).1

J C I, s and 7 define mutually inverse isomorphisms between

I,=;c2,=,1 : :
YKPJWK,,(I),l contains a point of

I=(rye2,=y1

Y:sp\{m?a:w 1

that any irreducible component of Y, 7.5 (N1
P )

contains a point of ¥

.. . . =5p2
in its closure, and any irreducible component of Y, 7, K, (1)1

of YII@:I;;(;I’S'Zl in its closure. Finally as recalled at the start of section

contains a point

=5p\{va}2=va 1l . . =yl =5,2 . . =ug
YKNWKP(I),1 is dense in YKP,IWKAU’1 and YK},,IWKP(IL1 is dense in YKP,IWKP(I)J,
and the lemma follows. O

8.3. Solvable base change. We will use solvable base change to deduce our
main modularity lifting theorem from Corollary [8:2.2] We firstly prove a couple
of preparatory lemmas, beginning with the following well-known result.

Lemma 8.3.1. Let K be a number field, and let p : G — GL4(Q,) be an irre-
ducible representation which preserves a generalized symplectic form with similitude
character v. Then either v is uniquely determined by p, or, if p also admits a simil-
itude character v with 1 # 1, then 1 has finite order and p is reducible over a
quadratic subfield of the fixed field of 1 and hence also over the fixed field of 1.

Proof. Let V denote the underlying representation of p, and let v and v denote two
possible similitude characters. Then there is an inclusion v @ v C Hom(V*,V), or
equivalently, 1 @ ¢ C Hom(V*(v), V). It follows that V ~ V*(v) and V ~ V*(v1)),
and thus V ~ V(v), and also V ~ V(¢) ~ V()?). By comparing determinants,
it follows that 1* is trivial, and hence either 1 or ? is a quadratic character 7,
such that V' ~ V(n) and hence 1 ®n C Hom(V, V). By Schur’s Lemma, V' becomes
reducible over the fixed field of 1, which by construction is a quadratic subfield of
the fixed field of . O

We now prove a slightly technical lemma on solvable base change; it is an ana-
logue of [BLGHT11l, Lem. 1.3] for GSp,, but the proof is slightly more involved.

Lemma 8.3.2. Suppose that p > 2 splits completely in the totally real field F/Q.
Let F'/F be a solvable extension of totally real fields. Suppose that p : Gp —

GSp,(Q,) satisfies:
(1) vop=e1.
(2) For allv|p, play, is p-distinguished weight 2 ordinary.
(8) The representation p is vast and tidy.
(4) pla,, is irreducible. Furthermore, there is an ordinary automorphic repre-
sentation 7' of GSp,(Ar/) of parallel weight 2 and central character | - |?,
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such for every finite place w of F' we have
VVD(p|GF1,U)F_SS = vecar (), @ |v|73/2).

(So in particular, p , = pla,. )
Then p is modular. More precisely, there is an ordinary automorphic representa-
tion m of GSp4(Ar) of parallel weight 2 and central character | - |2, with pr, = p.
Furthermore, for every finite place v of F' we have

WD(P‘Gpv)FisS = recaT,p(m @ |V|73/2)~

Proof. Since pr p is irreducible, 7' must be of general type in the sense of [Art04],
so that it corresponds to a cuspidal automorphic representation II' of GL4(Af/).
By induction we may reduce to the case that F'/F is cyclic of prime degree, in
which case it follows from [AC89, Thm. 4.2 of §3] that there is an automorphic
representation IT of GLy(A ) with BCp//p(II) = IT'.

We can write

2 2
LS(87H/7/\®| : |_2) = HLS(57H7A®| ' ‘_2/(/)_1)
¥

where the product is over the characters ¥ of AL /F*Np/ pAj,. The left hand
side has a simple pole at s = 1 (by the assumption that I’ is the transfer of 7’),
while by the main result of [Sha97], all but at most one factor on the right hand
side is holomorphic and non-vanishing at s = 1. Thus some factor on the right
hand side must also have a simple pole at s = 1, say L5 (s, II, A> ®| - | 2¢71).

It follows from Theorem [2.9.3] that II is the transfer of a cuspidal automorphic
representation m of GSp4(A p) with central character |-|?¢. Since BCpr /(1) = IT,

we see that 7 is of parallel weight 2. Letting pr;, : Gr — GSpy(Q,,) be the Galois
representation corresponding to 7 (whose existence follows from [Mok14, Thm. 3.5]
exactly as in the proof of Theorem , we have pr ,lq,., = pla,,, so that (since
F'/F is cyclic of prime degree, and p|q,, is irreducible) pr , differs from p by a
twist by a character of Gal(F'/F).

Replacing 7 by the corresponding twist, we may assume that p,, and p are

isomorphic when considered as representations valued in GL4(Qp). We claim that
we necessarily have vop = vop, , = €71, so that 7 has central character |-|?. Indeed,
this follows from Lemma since it holds after restriction to G/, and p|q,, is
irreducible by assumption. So pr , = p, as required.

Since we have assumed that p is vast and tidy, it follows from Corollary [7.9.6]

that for every finite place v of F' we have
WD(pla, )™ = recarp(m @ [v|72/2)™.

It remains to check that the monodromy operators agree; but this may be checked
after base change, and since 7’ is the base change of 7, it follows from the assumption
that WD(p|g,, )F' ™5 = recar (), ® |v|73/2). O

8.4. The main modularity lifting theorem. We now prove our main modular-
ity lifting theorem.

Theorem 8.4.1. Suppose that p > 3 splits completely in the totally real field F/Q.

Suppose that p : Gr — GSpy(Q,,) satisfies:
(1) vop=e~t.
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(2) The representation p is vast and tidy in the sense of Definitions
and 7511

(3) For all v|p, play, is p-distinguished weight 2 ordinary in the sense of Defi-
nition [Z.31]

(4) There exists © of parallel weight 2 and central character | -
ordinary at all v|p, such that p, , = p.

(5) For all finite places v of F, play, and prplay., are pure.

12, which is

Then p is modular. More precisely, there is an ordinary automorphic representa-
tion ' of GSp,(Ar) of parallel weight 2 and central character | - |* which satisfies
Prp = p. Furthermore, for every finite place v of F' we have

WD(plgp, YEoss recgr (T, @ |V|_3/2).

Proof. Choose a solvable extension of totally real fields F’/F, linearly disjoint
from FX'? over F, with the following properties:
e p splits completely in F’.
e At every place w of F' lying over a place v { p of F' for which 7, or p|a,,
is ramified, p|g,, is trivial, p|g,, has only unipotent ramification, and
qw =1 (mod p?).
e There is an automorphic representation 7’ of GSp,(A r/) of parallel weight 2
which is a base change of 7 (in the sense that for each finite place w of F”,
lying over a place v of F', we have recqr ,(7') = recar p(7)|w,, ). Further-

more, for all finite places w of F’ we have (7/,)™W(®) =£ 0.
(The last property can be arranged by [Mok14, Prop. 4.13].) Then p|q,, satisfies

Hypothesis [7.13.1} so the result follows from Corollary (applied to p|a,,) and
8.3.2 [

Lemma

8.5. Base change and automorphy lifting. Throughout the paper, we have
fixed the similitude factor of our Galois representations to be ¢!, in order to
streamline both the notation and some arguments. We now explain how to use
base change to relax this condition in our main automorphy lifting theorem. We
do not use this result elsewhere in the paper, so we have contented ourselves with
a slightly ugly statement, and with a sketch of the proof.

Definition 8.5.1. We say that a representation p : Gq, — GSp,(Q,) is twisted p-
distinguished weight 2 ordinary if it is an unramified twist of a representation which
is p-distinguished weight 2 ordinary in the sense of Definition Similarly, we
say that an admissible representation m, of GSp,(Q,) is twisted ordinary if it is an
unramified twist of an ordinary representation.

Theorem 8.5.2. Suppose that p > 3 splits completely in the totally real field F/Q.

Suppose that p : Gr — GSpy(Q,,) satisfies:

(1) vop = xe 1, where x is a totally even finite order character, which is
unramified at all places dividing p.

(2) The representation p is vast and tidy in the sense of Definitions
and [Z.5.111

(3) For allv|p, pla., is twisted p-distinguished weight 2 ordinary.

(4) There exists w of parallel weight 2, which is twisted ordinary at all v|p, such
that p,. , = p.

(5) For all finite places v of F', play, and prplay, are pure.
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Then p is modular. More precisely, there is a twisted ordinary automorphic repre-
sentation ' of GSp,(Ar) of parallel weight 2 which satisfies pr p, = p. Further-
more, for every finite place v of F we have

WD(plgp, YEoss recgr (T, @ |V|_3/2).

Proof. Let x’ be the finite order character Gg — Q; such that v o p, = x'e~ L.

Note that x’ is totally even (since we have X' = X by assumption). We can choose a
quadratic extension of totally real fields F’/F, linearly disjoint from F*¢? over F,
such that:

e p splits completely in F’, and

e there are finite order characters v,v' : Ggpr — Q: such that x|g,, = ¥?,

Xlap = @)%

Indeed, the obstruction to taking the square root of a character is in the 2-torsion of
the Brauer group, and there are no obstructions to taking a square root of either y
or X' at the places dividing p (because both characters are unramified at such
places) or at the infinite places (because x, x’ are totally even).

Let mp be the base change of 7 to F’. Since plg,, @ Y™, m7p @ (')~ o Artp
satisfy the hypotheses of Theorem it follows that p|q ., ® is modular, so Plar,
itself is modular. The result follows from Lemma m (or rather, from an obvious
generalization of this lemma to the case of more general central characters, which
may be proved in the same way). (Il

9. POTENTIAL MODULARITY OF ABELIAN SURFACES

We now use the potential automorphy methods introduced in [Tay02] to prove the
potential modularity of abelian surfaces. It is presumably possible to follow [Tay02]
§1] quite closely, but we instead make use of potential modularity results for GLo
and the local to global principle of [Call2] §3| (see also [MB90, Thm. 1.2]).

9.1. Compatible systems and potential automorphy. Recall that the notion
of a C-algebraic automorphic representation is defined in [BG14], and in the case
of automorphic representations of GL,,, this definition agrees with the notion of an
algebraic automorphic representation defined in [Clo90].

Definition 9.1.1. Let K be a number field and let R be a strictly compatible
system of representations of Gx. We say that R is automorphic if there is an
automorphic representation II of GL, (A k), with the properties that:

(1) IIis an isobaric direct sum of cuspidal automorphic representations H7_,II;
where each II; is a C-algebraic cuspidal automorphic representation of
some GL,, (Ak).

(2) The fixed field My of the subgroup of Aut(C) consisting of those o €
Aut(C) with TI* 2 TI*° is a number field.

(3) For each finite place v of K, WD, (R) = &;rec(1l; ,| det |§,17ni)/2).

Remark 9.1.2. There are many (conjecturally equivalent) variants of Deﬁnition
that could be made. The definition is in some sense redundant, because con-
dition is implied by condition ; indeed, by the definition of a compatible
system, it follows that for all but finitely many v, II, is an unramified principal
series representation, defined over a number field which may be chosen indepen-
dently of v. Condition then follows from strong multiplicity one for isobaric
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representations [JS81]. The reason that we have chosen to include the condition
separately is that conjecturally (see [Clo90]) condition implies condition ,
and also implies the existence of a compatible system R satisfying condition .

In fact, the only cases of Definition that we will need to consider are those
where either:

(1) Each II; is regular algebraic, or

(2) K is totally real, II is cuspidal, and II is the transfer to GL4 of a cusp-
idal automorphic representation of GSp, of parallel weight 2 and central
character | - |2.

In either case, condition is satisfied by [Clo90, Thm. 3.13] and [BHR94, Thm.
3.2.2]) respectively.

Remark 9.1.3. The reader may wonder why we did not demand an analogue of
condition of Definition at the infinite places. One reason is that we do
not need to do so, as condition already determined IT uniquely (indeed, as
in Remark this is already true if one only considers condition at all
but finitely many places). The main reason that we do not make a requirement
at the infinite places is that (in keeping with the literature) our definition of a
compatible system does not include a requirement that the l-adic representations
are compatible on complex conjugations, which makes it harder to formulate a
precise compatibility. One could certainly ask (as in [BG14]) that the Hodge-Tate
weights of R correspond to the infinitesimal character of II, but to save introducing
additional notation and terminology we have not done so.

Remark 9.1.4. As explained in Remark condition of Deﬁnition at all
but finitely many places v determines II uniquely. One might ask whether if this
condition holds for all but finitely many v, it necessarily holds for all v. In general
this is a hard problem; indeed even if is known up to semisimplification, it is
often difficult to show that the monodromy operators agree. If however R is pure
and IT is generic then the agreement of monodromy operators is automatic; we will
use this fact in our arguments below.

If R and II are as in Definition we as usual have Gamma factors L, (I, s)
for each place v|oo of K, and we set

An(R,s) = L(R,s) [ ] Lo(I1, 5).
v|oco

This is of course just the usual completed L-function of II, but we have included R
in the notation to emphasize that the L-functions of IT and R agree — note that here
it is important that we know Definition at all finite places, and not just
at almost all places, or up to semisimplification. As noted above, since we do not
a priori demand any local-global compatibility at co for our compatible system R,
we use the automorphic representation II in this definition mostly as a convenient
way to write down the correct Gamma factors at infinity. For those who find this
notation unpleasant, note that — in the restrictive context of abelian surfaces over
totally real fields — we defined a function A(R,s) in by explicitly writing
down the Gamma factors in question, and then (for all the A and II that arise in
this paper) we indeed have equalities A(II, s) = Ag(Ra,s) = A(Ra4,s).

We also have an epsilon factor e(IT), and a conductor N (II), and by [GJ72] Cor.
13.8], An(R,s) admits a meromorphic continuation to the entire complex plane,
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and satisfies the functional equation
(9.1.5) An(R,s) = ()N *An(RY,1 - s).

Definition 9.1.6. Let A/K be an abelian variety. We say that A is automorphic
if R4 is automorphic in the sense of Definition [0.1.1] We say that it is potentially
automorphic if there is a finite extension of number fields L/K such that Ralq, is
automorphic.

Remark 9.1.7. If A/K is an abelian variety, and A is automorphic with the cor-
responding II being of the form considered in Remark then the Gamma
factors L, (I1, s) and the conductor N (II) agree with those defined for the compati-
ble system R4 in §2.8 Indeed, for the Gamma factors this is a direct consequence
of the definitions, and the conductor respects the local Langlands correspondence.
In particular, we have A (Ra,s) = A(Ra,s), and the functional equations
and agree; so A(R 4, s) satisfies the expected meromorphic continuation and
functional equation.

Definition 9.1.8. Let F' be a totally real. We say that a representation p: Gp —
GSp,(Q,) is modular if there is a cuspidal automorphic representation of GSp,(A )
of parallel weight 2 and central character | - |? for each finite place v of F' we have
WD(prplap, )F ™% 2 recar p(my @ [v|~2/2); in particular, p = p, .

We say that r is potentially modular if there is a finite Galois extension F”/F of
totally real fields such that r|g,, is modular.

If A/F is an abelian surface, we say that A is modular (resp. potentially modu-
lar) if p4 , is modular (resp. potentially modular) for some (equivalently, for any)
prime p.

Remark 9.1.9. The relationship between the definitions of what it means for an
abelian surface A/F to be (potentially) automorphic or modular is somewhat com-
plicated, because of the various possibilities in Arthur’s classification of the discrete
spectrum of GSp,(A r). In this paper we will only show that A is (potentially) mod-
ular if the corresponding automorphic representation of GSp, is of general type,
in which case A is also (potentially) automorphic, essentially by the definition of
“general type”; note that this is the case considered in Remark .

We now prove some technical lemmas that we will use in proving our main
potential automorphy /modularity results. A weakly compatible system R is defined
to be irreducible if there is a set £ of rational primes of Dirichlet density 1 such that
for A|l € L the representation ry is irreducible. We say that it is strongly irreducible
if for all finite extensions I’/ F' the compatible system R|g,,, is irreducible. If n = 2,
then we say that R has weight 0 if H,(R) = {0,1} for each 7, and we say that R
is odd if det R(c,) = —1 for all v|oo. If 7 is a cuspidal automorphic representation
of GLa(AF) of weight 0, then R(7) is odd and has weight 0.

We have the following standard lemma.

Lemma 9.1.10. Let R be a rank two weakly compatible system.

(1) The following are equivalent:
(a) R is irreducible.
(b) For all \ the representation ry is irreducible.
(c) For some X\ the representation ry is irreducible.
(2) If R is irreducible and regular, then the following are equivalent:
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(a) R is strongly irreducible.

(b) Sym? R is irreducible.

(¢) For all \, Sym?®ry is irreducible.

(d) For some X, Sym?®ry is irreducible.

If these equivalent conditions do not hold, then there is a quadratic exten-
sion F'/F and a weakly (equivalently, strongly) compatible system X of
characters of Gpr such that

R = Indg", X.

(8) If R is strongly irreducible and regular, then for a density one set of primes |
of Q, if Ml is a place of M, then the image of T contains SLa(Opr/A).

Proof. This is well known. Part (1) is JACCT 18| Lem. 7.1.1], and part (3) is JACCT 18,
Lem. 7.1.3]. For part (2), note that by JACCT18| Lem. 7.1.2], either R is strongly
irreducible, or we can write R = Indgi , X. It follows that if R is not strongly

irreducible, then Sym?ry is reducible for every .

Conversely, if Sym? 7y is reducible for some A, then there is a nontrivial charac-
ter ¢ such that 7y = ) ® 1. Considering determinants, 1 is a quadratic character.
Letting F’/F be the quadratic extension corresponding to 1, it follows from Schur’s
lemma that 7)|q,, is reducible, so by part (1), R is not strongly irreducible. O

We now use a standard trick with restriction of scalars to give some slight im-
provements to some applications of the theorem of Moret-Bailly.

Proposition 9.1.11. Let Fy/F be a finite extension of totally real fields, and
let p,q > 2 be distinct primes which split completely in Fy. Let 7 : Gp, — GLo(F)
be a representation with determinant 1.

Suppose that for each place vlq of Fi, T|a,,  is of the form ()\8 5_10)\_1)

Suppose also that 7 is unramified at all places above p. o
Let F®°) /F be q finite extension. Then there is a finite Galois extension
F'/F of totally real fields in which p and q split completely and which is linearly
disjoint from FlF(aVOid)/F, and a q-ordinary cuspidal automorphic representation
of GLa(A g rr) of weight 0 and trivial central character which is unramified at all

places dividing pq and which satisfies p, , = F|GF1F,.

Proof. In the case F; = F, this is a straightforward consequence of [Sno09, Thm.
8.2.1]. Indeed, in Snowden’s notation, we take p = 7", 1 = 1, we let S consist of
the places dividing pg and we let ¢ assign the type A at places lying over ¢ and
type AB at places lying over p. To prove the general case, one simply replaces
the scheme X to which Snowden applies the theorem of Moret-Bailly with the
restriction of scalars Resp, /p Xr, . O

Proposition 9.1.12. Let G be a finite group, let E/Q be a finite extension, and
let S be a finite set of places of E. Let E'/E be a finite extension, and let F(V°) /E
be a finite extension, linearly disjoint from E'/E.

Let S'/S be the set of places of E' lying over places of S. For each finite
place v € S’, let H]/E! be a finite Galois extension together with a fixed inclu-
sion ¢, : Gal(H)/E!) — G with image D,,. For each real infinite place v € S’,
let ¢, € G be an element of order dividing 2.
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Then there exists a number field K/E and a finite Galois extension of number
fields L/ K such that if we set K' = KE', L' = LE’, then

(1) There is an isomorphism Gal(L'/K') = G.

(2) L'/E is linearly disjoint from E'F@void) /p.

(8) All places in S’ split completely in K'.

(4) For all finite places w of K' above v € S’, the local extension L. /K, is
equal to H! /E!. Moreover, there is a commutative diagram:

Gal(L!,/K!) — D, C G

Gal(H'/E!) — D, C G
(5) For all real places w|oo of K' above v € S, complex conjugation ¢, € G is
conjugate to c,.

Proof. The case E' = E is [Call2, Prop. 3.2] (see also [MB90, Thm. 1.2]). The
general case may be proved in exactly the same way, by replacing the application
of [Call2, Thm. 3.1] to (an open subscheme of) X /E with an application of it
to RQSE//EXG. U

9.2. Abelian surfaces. We begin by recalling some results from [FKRS12|] and [Joh17],
which allow us to deal with various cases where the abelian surfaces have ex-
tra endomorphisms, and can be handled with the potential automorphy theorems

of [BLGGTI14b]. Let A/F be an abelian surface over a totally real field F', and let
L/F be the minimal extension over which all its endomorphisms are defined. This

is a Galois extension, and following [FKRS12| we say that the Galois type of A/F

is the Gal(L/F)-module Endy,(A) ®z R. These possible Galois types are classified

in [FKRS12|, and they are divided up into 6 families A-F.

The precise classification of monodromy groups in these references is not actually
strictly necessary for our purposes. Write {pa,;} for the compatible system of
Galois representations { H! (A, Q;)}. In practice, it suffices to know that the l-adic
representations p 4 ; fall into precisely one of the following categories independently
of [:

(1) strongly irreducible (type A),
(2) reducible (type B[C4], C, E[C,], some D, some F),
(3) potentially abelian but not reducible (of type the remaining D and F cases),
(4) induced from a quadratic extension K/F but not potentially abelian, in
which case either:
(a) the two 2-dimensional representations over K are equivalent up to
twist (type E[D,]), or
(b) the two 2-dimensional representations over K are not equivalent up to
twist (type B[C2]).

Proposition 9.2.1. Suppose that A/F is not of type A or B[Cs]. Then A is
potentially automorphic.

Proof. We freely use the discussion of [JohlT7, §4]. In cases D, F, Ay, is of CM type,
so the compatible system R 4 is potentially abelian, and in particular potentially
automorphic.
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In cases B[C4], C, and the cases of type E other than those of type E[D,],
it follows from the discussions at the beginnings of [Johl7, §4.2, 4.4, 4.5] that
we can write R4 = RY & R?% where each RY is an irreducible, odd, weight 0
weakly compatible system of rank 2 [-adic representations of Gr. The potential
automorphy of R4 therefore follows from [BLGGT14b, Thm. 5.4.1].

It remains to treat the case that A is of type E[D,]. In this case, as explained
in [Joh1T, §4.5-4.6], there is a quadratic extension F’/F and a strongly irreducible
weakly compatible system S = {s;} of weight 0 representations of Gp/ which is
defined over Q such that Ry = Indgi ,S. Furthermore, there is a finite order
character § of Gp/ such that if we write Gal(F'/F) = {1,0}, then s7 = s; ® ¢;.

It follows from Lemmal[9.1.10] (2) and [BLGGT14D| Prop. 5.3.2] that for a density
one set of primes I, Sym? Sila, - is irreducible, [ is unramified in F’, and both s;
and ¢; are crystalline at all primes above [. Fix one such [ > 7.

Since Proj sy = Proj s;, it follows from Schur’s lemma that Proj s; extends to a
representation Gp — PGL2(Q,). By [Patl9, Lem. 2.3.17, 2.7.4], we may lift this
to a representation 7 : Gy — GL2(Q;) which is unramified at all but finitely many
places, and is Hodge—Tate at all places dividing I, with Hodge—Tate weights (0, 1).

By construction, there is a character ¢ : Gpr — le such that 7|g,, = s ® 1.
Since 1 is Hodge—Tate of weight 0, it has finite order.

Since [ is unramified in F’ and s; is crystalline at all primes above [, after possibly
replacing 7 by a twist by a finite order character, we may assume that it is crystalline
at all places dividing {. By [CG13| Prop. 2.5], 7 is odd, so by [BLGGT14bl Thm.
4.5.1], 7 is potentially automorphic. Since

pay = Indgr, s = Indgr, (7, @ ),
it follows that R 4 is potentially automorphic, as required. (I

We say that A/F is challenging if it has type A (which is the case that Endg A =
Z) or B[Cy]. In the latter case, as explained in [Johl7, §4.3], there is a quadratic
extension K/F, and a strongly irreducible weakly compatible system S = {s;} of
rank 2, weight 0 representations of G with determinant el_l such that R4 =
Indgf( S. Furthermore, writing Gal(K/F) = {1,0}, s7 and s; do not become
isomorphic after restriction to any finite extension of K. (The case when K/F is
totally real can be handled using potential automorphy theorems for GLo, but our
argument (at this point at least) does not need to distinguish between the various
infinity types of K.)

Lemma 9.2.2. If A/F is a challenging abelian surface, then for a density one set
of primes 1, p 4 ; is vast and tidy.

Proof. 1f Endc A = Z, then, for all sufficiently large I, p,,(Gr) = GSp,(F;)
by [Ser00], so the claim follows from Lemma

If A is of type B[C3], then writing pa; = Indf{ s1, we see from Lemma
and Lemma (3) that we need only check that for a density one set of primes [,
we have Projs7 # Projs;. (Note that the inverse of the mod [ cyclotomic character
is surjective for all | which are unramified in F.) To see this, note that since
Projs{ # Proj s;, we have Sym? sy # Sym? s; by [DK00, Appendix, Thm. B]. There
is therefore some finite place v of F' at which the compatible systems {Sym? s7},
{Sym2 s1} are unramified, for which the eigenvalues of Frob, differ for the two
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compatible systems. Then the same applies for Sym? 57, Sym?73; for all sufficiently
large [, so that in particular Projs] # Projs;, as required. ([

Definition 9.2.3. Let A/F be an abelian surface over a totally real field. We say
that a rational prime p > 3 is a good prime for A if:

A admits a polarization of degree prime to p.

p splits completely in F'.

The representation py4 , is vast and tidy.

For each place v|p, paplay, is p-distinguished weight 2 ordinary.

Remark 9.2.4. The point of Definition [9.2.3]is that the good primes p are the ones
for which we can apply our modularity lifting theorem (Theorem [8.4.1)) to pa .

Lemma 9.2.5. Let A/F be a challenging abelian surface. Then the set of rational
primes which are good primes for A has relative density one in the set of primes
which split completely in F'.

Proof. By Lemma[9.2.2} it suffices to show that 7, |G, is p-distinguished weight 2
ordinary for a density one set of finite places v of F' (with residue characteristic p).
To do this, we follow the approaches of [Saw16] and [CG20l, Lem. A.7]. Consider the
places v of F' that are split over a prime p of Q, for which A has good reduction;
the set of such primes has density one. Fix a prime [ # p. The characteristic
polynomial of p4 ;(Frob,) is of the form

xt — a1x3 + a2z2 — pa1x —|—p2

where ay,as are integers.

Then A has good ordinary reduction at v if and only if p { ag. If this holds, then
we see that p s ,|ap, will be p-distinguished weight 2 ordinary if and only if af —4as
is not divisible by p. By the Weil bounds, we have |ai| < 4,/p, |az — 2p| < 4p, so
if a? — 4a, is divisible by p, then it is equal to pc for ¢ in some finite list of integers,
independent of p.

Let G be the Zariski closure of p4;(GF) in GSp,, and write V for the standard
representation of GSp,, and x for the similitude character. Arguing exactly as in
the proof of [Sawl16, Thm. 1], it follows from the Cebotarev density theorem that
it is enough to show that the virtual representation (V®? —4A?V)® x~! does not
have constant trace on any connected component of G.

By the proof of [Saw16, Thm. 3], we can replace G by the Sato—Tate group of A,
which is either the connected group USp, (if A has type A), or the normalizer
of SU3 xSUs in USp, (if A has type B[C5])) (which has two connected components).
The result now follows easily from an explicit check. O

Lemma 9.2.6. Let A/F be a challenging abelian surface. Then there are distinct
rational primes p, q such that p and q are both good primes for A, and for all
places v|p of F, p4 ,(Frob,) has distinct eigenvalues.

Proof. By Lemma [9.2.5] a density one subset of the set of rational primes which
split completely in F' are good primes. Let p be any good prime for A; then, for
each place v|p of F, pa|g., has p-distinguished weight 2 ordinary reduction, and
in particular the eigenvalues of the crystalline Frobenius Frob, on T, A are distinct.
Consequently, for all but finitely many rational primes ¢ of good reduction for A,
Pa,q(Frob,) has distinct eigenvalues for all places v|p. O
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If g is a good prime for an abelian surface A/F, then for each place w|q of F we
may write

Aaw 0 * *
B 0 )\B * *
Pagler, = o 0 g—l)\%l 0
0 0 0 =
Then we write
Aa, O 0 0
3 - 0 AE, 0 0
(Pagler,)” = 0 0 g—l,\%l 0
0 0 0 =

When reading the proofs of the following two results, it may be helpful to recall
that our convention is that the representation p , is the dual of Alp]; this accounts
for the various duals occurring in the proofs.

Lemma 9.2.7. Let A/F be an abelian surface over a totally real field, and let p,
q be primes as in Lemma . Fiz a totally real quadratic extension Fy/F in
which p and q split completely, and which is linearly disjoint from the kernels of the
actions of Gg on Alp] and Alq].
Then there is a finite Galois extension of totally real fields F'/F, and a repre-
sentation T4 : Gprp, — GLo(Fy), with the following properties:
(1) p and q both split completely in F'.
(2) F'/F is linearly disjoint from F|/F and from the kernels of the actions
of Gr on Alp] and Alq].
(3) detr, =g L.
(4) To(Gr ) = GLo(F,), and the projective image of T4 is not equal to its
congugate under Gal(F'Fy/F").
(5) Setp, := IndgijFl 7y : Gr — GSpy(F,) with similitude factor =1, Then
e for any place w|q of F' and any place w'|w of F”, ﬁq|GF,/ = (Paglar,)”
and ’
e for any place v|p of F and any place v'|v of F’, ﬁq|GF,/ = Daqlcr,-

(6) The representation p, is vast and tidy.

Proof. Fix a finite place v of F' not dividing pg and splitting in F;. We apply
Proposition taking £ = F, B/ = F1, G = GLy(F,), S to be the set of
places dividing pgroo, and F(°id) o be the extension cut out by the intersection
of the kernels of 54 , and p4 ,. For each infinite place v € S” we choose ¢, to have
eigenvalues {1, —1}. For each place w € S dividing pqr we write w = wywsy for
its decomposition in Fy. If w|p, then the eigenvalues of (A[q]Y|g,., )(Frob,) can be
written as au, Buw, pBy’, payt, while if w|g we use the notation above. In either

- . A 0 -
case, we choose ¢,,, to correspond to the representation < ‘6” -1 )\_1> ,and ¢,
Qo

ABu 0
0 5‘1)\[;‘1)
to have determinant !, in such a way that ¢, | is unramified, while Proj ng, is

ramified.

to correspond to < > Finally, if w = ¢, then we choose awl, 54412
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We obtain an extension F’/F (the extension K/E from Proposition with
the ¢, there being our ¢,) and a representation 7y : Gpp — GLa(F,) which
satisfies (1), and (2). It need not satisfy (3), but by construction £det7, is an
even character which is trivial at all places dividing pgr. The obstruction to the
existence of a square root of €det7, is therefore a class in the 2-torsion of Brg, g
which is trivial at all places dividing pqroc.

We can therefore replace F’ by a quadratic totally real extension in which p, g,
t split completely, and assume that €det 7, has a square root. By [AT09, Ch. X,
Thm. 5] we can (by replacing this square root by a twist by a quadratic character)
arrange that the square root is trivial at all places dividing pgt. Replacing 7, by
its twist by this square root, we ensure (3), at which point (5) follows (note that
for each place v|p of F, p A,q|GFU is unramified with distinct eigenvalues of Frob,,,

and is therefore semisimple). Considering the places lying over t, we see that (4) is
satisfied. Finally, (6) then follows from Lemma [7.5.22 O

Theorem 9.2.8. Let A/F be a challenging abelian surface over a totally real field.
Then A is potentially modular. More precisely, there is a finite Galois extension of
totally real fields F'/F and a prime p splitting completely in F" such that pa pla,.,
is modular and irreducible.

Proof. Let p, q, F1, F', 7y and p, be as in Lemma Let Y/F’ denote the
moduli space of triples (B,1,,1,) consisting of abelian surfaces B and symplectic
isomorphisms

w : Blpl = Alplley
1q = Blg] — 1, -

This is smooth and geometrically connected. (Over either C or Q, we may iden-
tify Y with the moduli space of principally polarized abelian surfaces with full
level pq structure.)

We claim that for each place v|pgoc of F, the subspace (2, := Y°'4(F!) C Y (F!)
consisting of points corresponding to abelian surfaces with good ordinary reduction
(when v is finite) is nonempty. If v|oo, this follows from detr) = e, while if v|p,
then A itself gives a point of Y(F) (by point (5) of Lemma . Finally, if v|q,
the canonical lift of A modulo v gives a point of Y'(F}). (Since A has good ordinary
reduction at v|p and v|q, the corresponding point on Y does indeed land in €2,.)

By [BLGGT14bl Prop. 3.1.1] (a theorem of Moret-Bailly), we may find a finite
Galois totally real extension F”/F’ in which p and ¢ split completely, and which is
linearly disjoint from the compositum of F} F’ and the kernels of the actions of G
on Alp], Alg] and p,, with the property that Y (F) N, @ # 0. Let B/F”
be a corresponding abelian surface, which by construction will have good ordinary
reduction for all v|p and v|q.

By Proposition[9.1.11] after replacing F”//F’ with a further totally real extension,
we can maintain all of the above assumptions, and we can further suppose that there
is a g-ordinary automorphic representation 7 of GL2(A g, pr) of weight 0 and trivial
central character, which is unramified at all places dividing pq and which satisfies
pﬂ',q = 7Q‘GFIF” !

It follows from [Rob01l Thm. 8.6] that there is an automorphic representation 7
of GSpy(A ) of parallel weight 2 and trivial central character whose transfer
to GL4(Ap~) is the automorphic induction of w ® | - |, so that in particular p, , =
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G — ~ — sy . . .
IndGilF” pr.q> SO that o, = p,lc,, . In addition, 7 is ordinary, by construction.

The representation p, ) is pure at all finite places because pr 4 is (for the places
away from ¢, this is proved in [Bla06], and for the places dividing g it is for example
a very special case of the main theorem of [Carl4]).

We can therefore apply Theorem [8.4.1] to pp 4, and conclude that it is modu-
lar. Thus pp, is modular, and applying Theorem [8.4.1] a second time, we deduce
that pA,p|GF// is modular, as required. (The purity of ppq,p5,, and pa, at all
finite places is part of Proposition M) O

9.3. Potential modularity and meromorphic continuation. We now deduce
the meromorphic continuation and functional equation of the L-functions associ-
ated to abelian surfaces over totally real fields from our potential modularity (and
automorphy) results.

Theorem 9.3.1. Let F be a totally real field, and let A/F be an abelian surface.
Then R 4 is potentially automorphic, and Conjecture[2.8.¢ holds for A, for each 0 <
1< 4.

Proof. Since H(A,Q;) = N'H'(A,Q,), it is enough to treat the cases i = 1,2.
Note that since for any R we have e(R)e(RY) = N(R) (see [Tat79l (3.4.7)]), and
we have H'(A, Q)Y = H'(A,Q)(i), the claimed functional equation will follow
from in the case R = H' (A4, Q).

To see that the meromorphic continuation and the functional equation
hold, note firstly that if A has type D or F, then the compatible system R4 is
potentially abelian, and the result follows from a standard argument with Brauer’s
theorem; more precisely, it is immediate from [JohI7, Prop. 11, Lem. 14]. In the
general case, the same argument (see e.g. the proof of [Tay02], Cor. 2.2]) shows that
it is enough to show that there is a Galois extension of totally real fields F’/F such
that for each Galois extension F’/F" with Gal(F’/F") solvable, the compatible sys-
tems Ralg,,, and AR 4la,., are both automorphic. (Note that the meromorphic
continuation and functional equations for the compatible systems follow from the
functional equations for the corresponding automorphic representations.)

Suppose now that A has type B[C4], C, or is of type E but not of type E[D,].
Then as we saw in the proof of we can write R4 = RY & R% where RY,
R? are irreducible, odd, weight 0 weakly compatible systems of rank 2 [-adic rep-
resentations of Gp. It follows from [BLGGTI4b, Thm. 5.4.1] that there is a Ga-
lois extension of totally real fields F’/F such that RY|q,,, R%|c,, are automor-
phic and irreducible. It follows from [BLGHT11, Lem. 1.3] that for each Galois
extension F’/F” with Gal(F’/F") solvable, RY|c,.., R%|c,, are automorphic.
Thus R4la,., is automorphic, and since we have

NRalc,, =det RY|a,, ®det RY|a,, ® (Rilc,, ® Rila,.),

it follows from [Ram00, Thm. M] that A*R 4]¢,., is also automorphic, as required.

In the remaining cases, namely those of types A, B[Cs], or E[D,,], it follows from
Theorem (the proof of) Proposition Lemma and Theorem
together with Lemma that there is a Galois extension of totally real fields
F'/F such that for some p, and all Galois extension F'/F” with Gal(F’/F") solv-
able, papla,., is irreducible and modular (and also automorphic). By the main
result of [Hen09] (which is a refinement of the main result of [Kim03]), together
with Theorem we see that /\2pA7p|G 18 automorphic, as required. (]
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Remark 9.3.2. Our use of the results of [Kim03] and [Hen09] in the proof of The-
orem [9.3.7] is almost certainly overkill, and can be avoided by working with au-
tomorphic forms on GSp, rather than GL4 as we now explain. Since the four 4-
dimensional Galois representations H'(4, Q) are generalized symplectic with re-
spect to the Weil pairing, the exterior square A2H' (A, Q;) = H?(A, Q;) decomposes
as the direct sum of a 5-dimensional Galois representation and the one dimensional
summand Q;(—1). (The corresponding Galois invariant classes in H?(A, Q,;(1)) are
generated by the image of a hyperplane section under the cycle map.) Once one
knows that the 4-dimensional representation H'(A, Q;) corresponds (potentially)
to an automorphic representation m for GSp,, then the L-function associated to
the 5-dimensional summand of H?(A, Q;) is none other than the degree 5 standard
L-function, whose analytic properties have been known for some time (see §6.3
of [GPSR&T]). On the other hand, many of our arguments in this paper do crucially
require passing between GSp, and GL4 using Theorem [2.9.3] and Lemma In
particular, the proof of Theorem [9.3.1| uses base change in the form of Lemma|8.3.2
and therefore depends directly on Theorem and of course our main modu-
larity lifting theorems also depend on these results, in particular to prove that the
modules that we patch are balanced.

If C/F is a curve over a number field, then we can define the completed L-
functions A;(C, s) and the completed Hasse-Weil L-function A(C, s) exactly as for
abelian varieties. By definition we have A1(C,s) = Ay (Jac(C), s), where Jac(C) is
the Jacobian of C.

Corollary 9.3.3. Let C/F be a genus two curve over a totally real field. Then
the completed Hasse—Weil L-function A(C,s) has a meromorphic continuation to
the entire complex plane, and satisfies a functional equation of the form A(C,s) =
eN"°A(C,3 —s) wheree € R and N € Qxyg.

Proof. This follows from Theorem with A = Jac(C). O

Finally, we treat the case of genus one curves over quadratic extensions of totally
real fields.

Theorem 9.3.4. Let K/F be a quadratic extension of a totally real field F', and
let E/K be either a genus one curve or an elliptic curve. Then E is potentially
modular. More precisely, there is a Galois extension of totally real fields F'/F and
a weight 0 cuspidal automorphic representation w of GLa(A i ) with trivial central
character such that for each prime I, we have pg i|a,. ., = px,i, and in fact for each

finite place v of KF' we have WD (prla, )" & rec(m, | det /%),
Furthermore, Conjecture holds for E.

Proof. We may immediately replace E by its Jacobian and hence assume that F
is an elliptic curve. If E is CM, then it is modular, while if E is isogenous to
a twist of its Galois conjugate over F', then the result follows as in the proof of
Proposition We therefore assume that neither of these applies, and set A =
Resg/rp E. Then A is an abelian surface of type B[Cs], and R4 = Indgf( RE-
By Theorem there is a Galois extension of totally real fields F’/F, linearly
disjoint from K/F', and an automorphic representation = of GSp,(A /) such that
pA,p|GF/ = Prp-

Let II be the transfer of 7 to GL4(Ag). If k is the quadratic character of G g cor-
responding to K’ := KF'/F’, it follows that II® (ko Art g odet) = I, so by [AC89,
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Thm. 4.2, 5.1 of §3] there is a cuspidal automorphic representation 7 of GLo(K")
such that II is the automorphic induction of 7 ® | det |. Write Gal(K’/F") = {1,7}.
We claim that 7 is of weight 0 and has trivial central character. Admitting this
claim, it follows from Theorem that we can write

pE,p|GK/ D (PE,p|GK/)T = Prp® p;,p

where all four 2-dimensional representations are irreducible. After possibly replac-
ing m by w7, we conclude that pg pla, . = prp, so that by Theorem for
each place v { p of K’ we have WD, (pg.|a,,, )* = rec(m,| det |;1/2)SS. It follows
that in fact

WDv(pE,l|GK; )Es = rec(m,| det |, 1/?)

(because we know the corresponding statement for A). Repeating the argument for
a second prime p, we see that this holds for all finite places v.

It remains to prove the claim. By Lemma for each place v|oco of K,
either 7, corresponds to ¢ 1, or v is complex, and the L-parameter of , is scalar,
given by (z/z)*!; in particular, in either case it is algebraic, and so the central
character x, of 7 is algebraic. Moreover, if x, is trivial, then the second case
cannot occur, so that 7w automatically has weight 0. We therefore assume from now
on that x, # 1, and derive a contradiction.

Since IV 2 I ® | - |2, we have
rHaT2aV@B(r")Y,

~ T

so that either mV = m, or w¥ = «7. In the former case, we would have m =
7wV = 7 X x, !, from which it follows (if x5 # 1) that x, is the character of a
quadratic extension L’'/K’ and 7 is induced from GL(1)/L’. This implies that p4 ,
is potentially abelian, and thus that E is CM, a contradiction.

We can therefore assume that 7V = «7, so that yxr = X', and we shall
derive a contradiction from these assumptions. Write y for the p-adic character
Gg — Q; corresponding to the algebraic character x.. Let v { p be a place

of K’ for which p4p|a,., is unramified, and let the eigenvalues of pg ,(Frob,) be
{aw,qv/a,} and those of (pg )7 (Frob,) be {B,,¢,/8,}. Now, avq;1/2 is either
a Satake parameter of 7 or w7, so (using that xn- = x;') it follows that one
of By, Gv/w, @/ By is equal to either g,x(Frob,)/a, or q,x (Frob,)/a,.

Since x is non-trivial, there is a set of places S of K’ of positive density such
that x(Frob,) # 1. Shrinking .S if necessary, we deduce that there exists a set S of
positive density so that one of the following equalities holds for all v € S:

qu(FI'ObU)/OzU = Bu,

QvX(FYObv)/av = Qv/ﬂvv
quxfl(FI“Obu)/% = Bu,
¢uX ' (Frob,)/ay = qu/ By

By symmetry (replacing x by x~! if necessary and 3, by ¢,/3, if necessary), we
may assume that o, 8, = ¢, x(Frob,) for all v € S.

Now, the representations pg p|a,., and (pg |, )" have monodromy groups GL(2)
by [Ser68, Thm. IV.2.2] and are not twist equivalent (by our running assumptions).
It follows that the monodromy group of their tensor product is the identity com-
ponent of GO(4). Since this is connected, we deduce by considering the formal
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character of the corresponding Lie algebra sl x gl, that for any fixed character &,
the generic element of the tensor product {~! ® p ® p7 does not have 1 has an
eigenvalue.

However, for each place v € S, we have (since x(Frob,) = a,8,/q, for v € S):

e (W)X W) @ {aw, qu/aw} @ {Bu, qu/Bu} = {1,423 /0282, 40/ B2, qual}.

Since S has positive density, this is a contradiction, as required. O

9.4. K3 surfaces of large rank. If A is an abelian surface over a totally real
field F, then one may define the Kummer surface Km(A) to be the resolution
of the quotient of A under the map = — —z. The variety Km(A) is a smooth
projective algebraic K3 surface with (geometric) Picard number > 17. (All Picard
numbers in this section will be geometric Picard numbers.)

Proposition 9.4.1. Let A be an abelian surface over a totally real field F', and
let X = Km(A). Then Conjecture holds for X.

Proof. The cohomology groups H*(X, Q,) are trivial in odd degree. In even degree,
they are generated by H*(A,Q,) plus the 16 dimensional space of Tate cycles
in H?(X, Q,) spanned by the 16 exceptional divisors in the resolution X — A/(£1).
The latter classes are all defined over a finite extension of Q, and hence the Galois
representation (up to twist) they generate is an Artin representation. Hence the
result follows from Theorem [9.3.1] applied to A, together with the meromorphic
continuation of Artin L-functions. (I

More generally, if a K3 surface X/F admits a Shioda—Inose structure [Mor84]
§6] over F, then H*(X,Q,) ~ H*(Km(A), Q,) for some abelian surface A/F, and
Prop implies Conjecture for X. It might also happen that X/F admits
a Shioda-Inose structure over some finite extension E. Recall Ribet’s notion of
a Q-curve (JRib04]) as an elliptic curve over Q all of whose conjugates by Gq are
isogenous:

Definition 9.4.2. An F-abelian variety is an abelian variety A over a Galois
extension E/F all of whose Gal(E/F)-conjugates are isogenous to A over E.

Suppose that the conjugates A” over A are isogenous to (at most) quadratic
twists of A (as necessarily happens if {£1} are the only automorphisms in Endc(A)).
Then the Galois representations associated to A2H*(A) and thus to Km(A) extend
(even as compatible systems with Q-coefficients) to Gg. Moreover, the (abso-
lutely irreducible) projective Galois representations associated to H!(A) also ex-
tend to G, and thus, from the vanishing of H?(Gr,Q/Z) due to Tate, also give
rise to G representations (now with coefficients). If F is totally real and A is
an F-abelian surface, one expects that the methods of this paper will have implica-
tions for the potential modularity of A. (Note that for primes p splitting completely
in F, the mod p representations over F locally arise from abelian surfaces over Q, —
namely A itself.) We have not endeavored to undertake the task of proving results
along these lines, however, since verifying that the Galois representations extend in
the appropriate manner (especially when all the different possibilities for Endc(A)
are taken into account) would necessitate a somewhat involved analysis which we
avoid due to issues of time and space.
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9.4.3. General K3 surfaces of Picard rank > 17. An algebraic K3 surface of Picard
number 17 or 18 need not admit a Shioda—Inose structure even over C ([Mor&4]).
There need not even be a correspondence between X and an abelian surface A
inducing a Hodge isometry of transcendental lattices (Tx ® Q) ~ (T4 ® Q). The
problem, as noted in [Mor84], is the following. Let U denote the hyperbolic plane
— the lattice of rank two generated by two isotropic vectors which pair to 1. Then
there are obstructions on the lattices Tx of signature (2,20—p(X)) = (2,3) or (2,2)
which arise from K3 surfaces to admit an injection of the form (T4 ®Q) — (U®Q)3.
One might still hope to construct abelian varieties from K3 surfaces of large Pi-
card rank by directly lifting the weight two polarized Hodge structure on T'x to a
weight one Hodge structure of the smallest possible dimension. This amounts to
considering the GSpin cover of the corresponding orthogonal group and relating
that (in an ad hoc manner) to weight one Hodge structures via the identification
of the associated Shimura variety as one of Hodge type. This differs slightly from
the Kuga—Satake construction in which one has a functorial map from weight two
Hodge structures to weight one Hodge structures via the Clifford algebra construc-
tion — the latter gives rise to abelian varieties in a uniform way, but introduces
(in general) auxiliary dimensions, and, for a transcendental lattice T'x of rank 5,
would produce an abelian variety of dimension 2% = 8. In the case of interest to us,
the corresponding GSpin Shimura variety will now (over C) be precisely the mod-
uli of abelian fourfolds with quaternionic multiplication (as considered in [KR99]),
where the degenerate case D = M5(Q) corresponds to the usual moduli space
of abelian surfaces. In particular, we arrive at the conclusion that a K3 surface
with p(X) = 17 or 18 should either admit a correspondence with an abelian sur-
face A inducing an isometry (Tx ® Q) = (T4 ® Q), or there will exist an abelian
fourfold A with quaternionic multiplication (a fake abelian surface, see the dis-
cussion after the statement of Lemma and a correspondence inducing an
injection (Tx ® Q)* < (T4 ® Q). This can also be predicted more arithmeti-
cally by using the Yoga of motives. For convenience, suppose that p(X/F) = 17.
Let R be the compatible system associated to the transcendental motive (that is,
the motive associated to the transcendental lattice), and assume that the Galois
representations r, are strongly irreducible for a density one set of primes p. One
can try to lift R (up to quadratic twist) to a 4-dimensional compatible system S
via the isogeny GSp, — GOs, and then realize S as the motive associated to an
abelian surface. This happens, for example, when X = Km(A) for some A over F.
In general, however, one encounters two obstructions. The first is that one should
expect to have to extend coeflicients of the motive by a compositum of quadratic
fields. This is because a characteristic polynomial of an element in GO5 with co-
efficients in Q lifts to a characteristic polynomial for GSp, whose coeflicients lie
either in Q or v/D - Q for some D. (This is an elementary computation with sym-
metric polynomials.) Let °S denote the compatible system obtained by applying
an automorphism o € Gq to the coefficients of S. Since A2S = R = A?(°S), the
irreducibility assumptions imply that S is a quadratic twist of °S for all 0 € Gq
acting on the coefficients. The restriction of S will thus have rational coeflicients
over some field F/F with Gal(E/F) = (Z/2Z)™ where all the quadratic twists
become trivial. If this restriction corresponds to an abelian surface A, this would
predict (and even imply, see the remarks at end of [Mor84|) that there existed an
algebraic cycle on X x Km(A) which identified the corresponding transcendental
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lattices over Q. Moreover, the abelian surface A would be an F-abelian surface
in the sense of Definition [0.4.2] On the other hand, even supposing S has Q-
coefficients over FE, it need not be the case that S comes from an abelian surface,
even though (for weight reasons) it must be an abelian motive. One also has to
allow the possibility that it comes from a fake abelian surface, that is, a fourfold A
with quaternionic multiplication (see the proof of Lemma . In summary,
given a K3 surface X of Picard rank at least 17 over a number field F', one should
be able to associate to X a canonical isogeny class of F-abelian surfaces or F-fake
abelian surfaces. Under sufficiently big image hypotheses, it should be possible to
rigorously justify the arguments of this paragraph using the methods and language
of [Pat19] §4].

9.4.4. Fake Kummer surfaces. This raises the natural question as to whether, given
an abelian fourfold with an inclusion D < End®(A) (a fake abelian surface), there
are any natural geometrical constructions which produce a K3 surface (or, con-
versely, a construction in the other direction). For that matter, one might ask for
an explicit geometric construction of either of these objects. Given six lines in gen-
eral position in P2, the desingularization X of the double cover branched over those
lines is, in general, a K3 surface of Picard rank 16. If the 6 lines are all tangent
to a smooth conic, however, then the K3 surface generically has Picard rank 17,
and moreover X is the Kummer surface associated to the Jacobian of the hyperel-
liptic curve obtained as the double cover of the conic branched at the six tangent
points [Mor85]. This suggests looking for other degenerations of the six lines which
could give rise to transcendental lattices with different integral structures.

The following construction, suggested to the authors by Madhav Nori, gives
a 3 = 20 — 17 dimensional rational family of such degenerations corresponding
to D = (—1,3)q. Given a generic point in this family of Picard number 17, the
corresponding K3 cannot be isogenous to a Kummer surface, and so indeed defines
a genuine false Kummer surface. It is an interesting question to determine whether
one can also see the corresponding abelian fourfold from this construction — possi-
bly associated to a generalized Prym variety of some natural cover of curves under
the map 7 : X — P2. Consider five lines L; for i = 1,...5 in P2. These determine
a conic C which passes through the intersections Ly N Lo, LoN L3, L3N Ly, LyN Ls,
and Ls N Ly, which we denote by P; for i = 1,...5. Let Lg denote a sixth line

which is tangent to C at Ps;. Note that C - Z?=1 L, =2 <Z?=1 Pi) is divisible

by 2. Let Y denote the degree 2 cover of P2 and X its desingularization. The
lifts of P; in Y for 4 = 1,...,5 are ordinary double points, and so the exceptional
divisors F; in X satisfy F;.F; = —2. Let M = E?:1 E;. If 7 : X — P? denotes
the projection, then 7=(C) = M + D, where D is now an everywhere unramified
double cover of C. But C ~ P!, so D must decompose into two components A + B
meeting transversally at 7~ !(Ps). Note that M.M = 5(—2) = —10, that A.B = 1
(meeting transversally at 7=(Pg)), and 7~ }(C).7~1(C) = 2(C.C) = 8. More-
over, A.M = B.M =5, intersecting in F; for i = 1,...5. It follows that, if we
let E = A — B, then E.F is equal to

(A+ B+ M).(A+B+M)—-2(A+B).M—~MM—4AB=8-20+10—4= —6.

The class E is transverse to all exceptional classes as well as the pre-image of the
hyperplane class, so gives a new class in NS(X). Note that U®Q ~ ((2k)®(—2k))®
Q for any integer k. The transcendental lattice of the generic X is (U? @ (—2)?)q ~
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((6) & (—6) B U & (—2)?)q, hence the corresponding transcendental lattice of this
restricted family is rationally contained in (U & (—6) & (—2)?)q. Since this rational
family has dimension 20 — 17 = 3, the generic member will have Picard rank 17. As
the form of the corresponding orthogonal group does not split, the lattice does not
admit an injection into (U®Q)?, and so X is not isogenous to any Kummer surface.
Indeed, from the rational structure of the resulting lattice, the corresponding fake
abelian surface A will have endomorphisms by D = (—1,3)q. (A related example
was also considered in [LPS13] — in particular the divisor denoted in [LPS13]|
by X(;)

9.4.5. An Ezample. Take the conic to be y = x2, and the points P; for i = 1,...5
to be (n,n?) forn = —2,...,2. Now choose the point of tangency Ps to be at (3,9),
so Y can be given by:

w? = (—x +y)(x+y)(y —42)(=3z + y + 22)(3z + y + 22) (=62 + y + 92).

The classes considered above are all defined over Q, and so Pic(X/Q) > 17.
Let R = (Q,S,{rp}) denote the corresponding 5-dimensional compatible system
of GO5(Q,)-representations. One checks that the set S of places of bad reduction
is contained in the set of primes {p < 11,23,37,00}. Using both the determina-
tion of S and the fact that R(1) is self-dual, one computes that the determinant
of R(1) is 9, the quadratic character associated to K = Q(v/—2-3-7-23-37). The
compatible system R(1) ® 9 is valued in SO5(Q,). The corresponding symplectic
compatible system S of rank 4 need not have coeflicients in Q, since it may come
from a Q-abelian variety in the sense of Definition [0.4:2] Indeed, it has coefficients
in Q(v/3), and °S ~ S ® ¢, where o is the non-trivial element of Gal(Q(v/3)/Q),
and 1 is the character as above of conductor Ag. In particular, although A is
a Q-fourfold, the field of definition will be K.

Over C, one expects that Nori’s construction gives a rational parameterization of
a component of the GSpin Shimura variety associated to the quaternion algebra D =
(—1,3)q with some small (possibly trivial) level structure. Over Q, the Q-structure
appears (by examining examples) to be associated to a twisted form associated to Q-
fourfolds A over a quadratic extension whose associated rank four motive over Q
has coefficients in Q(v/3).

10. APPLICATIONS TO MODULARITY

In this section, we apply our main modularity lifting theorem (Theorem
to prove modularity theorems for abelian surfaces. The methods generalize those
of [Wil95, [SBT97] for elliptic curves. In and we show that our results
confirm the paramodular conjecture of [BK14] in many cases, but that there are
counterexamples to the original formulation of the conjecture (arising from “fake
abelian surfaces”).

10.1. First modularity results. We begin this section with a proof of Theo-
rem [I.1.7] of the introduction.

Proposition 10.1.1. Let F' be a totally real field in which p > 2 splits completely.
Let A/F be an abelian surface with good ordinary reduction at all places v|p, and
suppose that at each v|p, the unit root crystalline eigenvalues are distinct modulo p.
Assume that A admits a polarization of degree prime to p. Let

Pay: Gr — GSpy(F,)
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denote the dual of the mod p Galois representation associated to Alp|, and assume
that p ,, is vast and tidy. Assume that p, , is ordinarily modular, in the sense that
there exists ™ of parallel weight 2 and central character | - |*> which is unramified
and ordinary at all v|p, such that Prp = Payp, and prplar, is pure for all finite
placesv of F'. Then A is modular. More precisely, there is an ordinary automorphic
representation ™ of GSp,(Ar) of parallel weight 2 and central character |- |* which

satisfies prr p = pap.

Proof. As before, we write pa, : Gp — GSp,(Q,) for the Galois representation as-
sociated to the dual of the p-adic Tate module of A. The assumption that A admits
a polarization of degree prime to p implies that the image of p4 , lands in GSp,(Zp,)
and p, , lands in GSpy(F,). By Proposition the representation p4 ), is pure
for all places v of F. The assumption that A has good ordinary reduction for all v|p
and distinct unit root crystalline eigenvalues for all v|p implies that the represen-
tations p4,p restricted to G, are p-distinguished weight 2 ordinary. Prop is
then an immediate consequence of Theorem [8.4.1] O

Remark 10.1.2. If A does not have a polarization of order prime to p, then, by
considering the kernel A[)\] of any polarization A\ : A — A!, we deduce that the
representation p, , : Gq — Aut(A[p]) = GL4(F,) is reducible. Hence one could
replace the assumption of the existence of a polarization on A of order prime to p
in Prop. by the assumption that the Galois representation associated to A[p]
is irreducible. On the other hand, we do not phrase our theorem in this way for the
following reason: if A does not have a polarization of order prime to p, then it need
not even be the case that the (necessarily reducible) representation p4 , : Gq —
GL4(F,) associated to A[p] lands in any conjugate of GSp,(F,). Indeed, let E/Q
be any elliptic curve such that 7g 3 : G — GL2(F3) has surjective image, let K/Q
be an auxiliary degree 3 cyclic extension, let B = Resg/q(F), and let A denote
the kernel of the map B — F induced from the trace map Z[Gal(K/Q)] — Z.
Then A is an abelian surface, and py 5 ~7p3 @ W, where W € Ext1GQ (F3,F3) is
the unique non-trivial extension which splits over Gal(K/Q). The group theoretic
image of 74 3 is isomorphic to GL(F3) x Z/3Z, but this is not isomorphic to
any subgroup of GSp,(F3). These examples are also related to the failure of the
Shafarevich—Tate group III to have square order — William Stein [Ste04] found
abelian surfaces A exactly of the form considered above with 3||III(A4)[3°].

We now give some examples where one can directly establish the modularity of
certain residual representations.

Proposition 10.1.3. Let F' be a totally real field in which p > 2 splits completely.
Let p, : Gr — GSpy(F)) be an absolutely irreducible representation with similitude
factor e=1 which is vast and tidy and p-distinguished weight 2 ordinary. Suppose
furthermore that either:

(1) p = 3, and ps is induced from a 2-dimensional representation with in-
verse cyclotomic determinant over a totally real quadratic extension E/F
in which 3 is unramified.

(2) p =15, and py is induced from a 2-dimensional representation valued in GLa(F5)

with inverse cyclotomic determinant over a totally real quadratic exten-
sion E/F in which 5 is unramified.
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(8) b, is induced from a character of a quartic CM extension H/F' in which p
splits completely.

Then p,, is ordinarily modular, that is, there exists w of parallel weight 2 and central
character | - |2 which is unramified and ordinary at all v|p, such that Prp = Ps
and pr play, is pure for all finite places v of F.

Proof. Suppose that we are in one of the first two settings, so that p = 3 or 5,
and p = Indgg o for some representation 9 : Gg — GLo(F,) with determinant e~ 1.

The assumptions on p imply that g|¢ B(¢p) is absolutely irreducible, and the restric-

tion of g to the inertia group at any prime w|p is an extension of e~ by 1. If p = 5,
the condition on the determinant and the fact that E is unramified at p addition-
ally ensures that the projective image of g is not As. The representation g locally
has the structure of a representation associated to an ordinary Hilbert modular
form of parallel weight two and trivial nebentypus. Suppose that g is modular. It
follows from [BLGGI3, Thm. A] that g does indeed arise from a Hilbert modular
form of this kind, and we may take 7 to be the automorphic induction of this form
from F to F. Since E/F is unramified, this will preserve the property of being
ordinary. As in the proof of Theorem purity follows from the main results
of [Bla06, [Carl4]. Hence it suffices to establish the modularity of .

If g has solvable image, then, from a classification of the finite subgroups of GL (k)
for a finite field k (see for example [SD73]), we deduce that the projective image of @
is either Ay, Sy, or dihedral, and is in particular a subgroup of PGLy(C). By a the-
orem of Tate (see [Ser77, Theorem 4]), this implies that there exists a characteristic
zero lift of g which is totally odd with finite solvable image, and the result follows
from an application of the theorems of Langlands and Tunnell ([Lan80, Tun81]) as
in §5 of [Wil95]. It remains to consider the representations with vast non-solvable
image. For p = 3, the only non-solvable induced representations which are vast
come from representations (Lemma ) 03 : Gp — GLo(F9) with projective
image As. The modularity of such a representation follows as in the solvable case,
except now invoking the odd Artin conjecture for totally real fields ([PS16b, Thm.
0.3]) rather than Langlands—Tunnell. Alternatively, the arguments of [EII05] over Q
may be adapted to this setting.

Thus we are left with the case of non-solvable representations g : Gg — GL2(F5)
with determinant £~!, which necessarily are surjective. The method of Khare-
Wintenberger implies the existence of characteristic zero lifts of the required form
(for example by [Sno09, Thm. 7.2.1] — the assumption that 5 is unramified in F
guarantees that [F((5) : F] = 4). To show that such a lift is modular, it suffices (by,
for example, the main theorem of [Kis09]) to show that g is modular. However, this
follows from a standard argument going back to [SBT97, [Tay03] by realizing g as
the 5-torsion of a modular elliptic curve over a solvable extension. In our situation,
we may explicitly invoke [PS16b, Prop. 2.1.3].

Suppose finally that p, = Indgfl X, where H/F is a quartic CM extension in
which p splits completely. Let v|p be a prime in F. The assumption that p,
is ordinary implies that for two of the primes w|v of H the restriction of x to
inertia at w is e ', and it is trivial at the other two primes above v. Let 7 denote
an algebraic Grossencharacter of Gy with conductor prime to p and CM type
corresponding to the mod-p weights of x. If 1, is the p-adic avatar of 1, then,
by construction, the character v,/x mod p is unramified at p, and hence, after
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twisting ¢ by the Teichmuller lift of this character, we may assume that ¢, = x
mod p. Let E/F denote the intermediate real quadratic field inside H. Then
the automorphic induction of ¢ to GL2(Ag) is a Hilbert modular form of parallel
weight two which is ordinary at all v|p and has trivial central character. Inducing
once more to F', we obtain the required form . O

For explicit examples of abelian surfaces A/Q with Endc(A) = Z whose mod-3
or mod-5 representations p, , satisfy Prop. @ — and hence, by Prop. [10.1.]
are modular — see [CCG20]. In contrast to the examples found in |[BPPT19|
and [BK20| of large prime conductor, the examples found in [CCG20] have good
reduction outside 2, 3, 5, and 7.

We also have the following application to modularity over number fields which
need not be totally real (or even CM).

Theorem 10.1.4. Let F' be a totally real field in which 5 splits completely, and
let K/F be a quadratic extension in which 5 is unramified. Let E/K be an elliptic
curve which has good ordinary reduction or semistable ordinary reduction for all
places w|5 of K. Finally, assume that the representation 05 : Gk — GLa(F5)
has the following properties:

(1) The projective image of 0 5 is either S5 = PGLa(F5) or Sy.
(2) There exists a representation 75 : Gp — GL2(F5) with determinant e~
such that Ts|c, = 0p 5-

1

Then E is modular. In particular, there exist infinitely many modular elliptic curves
over K up to twist which are not CM and do not come from any subfield of K.

For example, one could take F' to be Q(\/Zi) for any d = 1,4 mod 5, and then
take K = Q(v/d), which is a field of mixed signature.

Proof. Tt suffices to prove that the twist of £ by some quadratic character is mod-
ular. We now apply Lemma [7.5.26] to the representation 75 of Gr to obtain a
representation

P =Indgr (Fsla ® Snryi) = IndE, (2 5 ® Sar/ i),
where 0y is the character of an auxiliary quadratic extension. By Lemma|7.5.27]
this representation is vast and tidy and p-distinguished weight 2 ordinary.

As in the proof of Proposition it follows from our hypotheses that 7
comes from an ordinary Hilbert modular form 7 for F'. By taking the base change
of this form to K/F, twisting by the quadratic character 6,/ x, and then inducing
back to F, we construct a 7 of parallel weight 2 and central character | - |2 which
is unramified and ordinary at all v|p such that p, , = 5. Again, the purity of pr
follows from the main results of [Bla06, [Car14]. It follows from Theorem that

p= Indgf((QE,5 ® 5M/K)

is modular, and hence (exactly as in the proof of Theorem that op 5 ® 0 K
and hence F is modular.

It is easy to produce examples of F satisfying the hypotheses of the theorem
(starting with an elliptic curve over Q, for example). Using the fact that the genus
zero curve X (9 5) is isomorphic to P! over K (there being at least one rational
point coming from E), we deduce that there will be infinitely many such points.
On the other hand, by choosing such points with appropriate local properties (for
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example, ramified at one prime w above v but not at the other) we may find
infinitely many examples which do not arise via base change. Since the mod 5-
representations associated to these curves are not projectively dihedral or cyclic,
they also cannot have CM. O

10.2. Abelian varieties with fixed 3-torsion. We have produced a number of
residual representations mod p for small p which are automorphic. It is natural to
ask whether any such representation (satisfying necessary local conditions) arises
from infinitely many abelian surfaces over F. The corresponding question for 2-
dimensional representations has a positive answer precisely when p = 2, 3, or 5,
where the corresponding moduli space is a smooth curve of genus zero. We show
that for abelian surfaces there is a positive answer for p = 2 and p = 3. When p > 5,
the moduli space in question is of general type [HS02], and so one would not expect
(in general) that they admit infinitely many rational points not lying on a special
Shimura subvariety, although we do not attempt to address this question.

When p = 2, the problem is pretty much obvious. The fact that the corre-
sponding moduli space for the trivial representation p is rational goes back to Igusa
(see [HS02, Theorem IV.1.4] and [Igu64]). The fact that the corresponding moduli
space for non-trivial p is unirational is also surely well-known (we shall now give
a sketch of this result although we shall never use this fact). Fix a representa-
tion p : Gp — GSp,(F3). Since GSp,(F2) ~ Sg, one may write any G-extension L
of F for G C Sg as the splitting field of a degree 6 separable polynomial f(z)
over F. If one then takes A to be the Jacobian of the curve y? = g(z) for any g(x)
with Q[z]/g(z) ~ Q[z]/f(x), then p is the representation associated to the 2-torsion
of A. An elementary computation shows that this gives a 3 = 6 — dim PGLy di-
mensional family of abelian surfaces up to isomorphism with fixed p for any such p.
Explicitly, one may let e; for ¢ = 1 to 6 be any basis over Q of the étale Q-
algebra Q[z]/f(z), and then let g(x) be the minimal polynomial of > t;e;. (The
Jacobian A depends only on g(z) up to the action of PGLy on P1.)

This leaves the case p = 3. The answer in this case can be extracted from the very
extensive literature on the subject, essentially following the main idea of [SBT97].
Fix p : Grp — GSp,(F3) with inverse cyclotomic similitude character, and let V'
denote the underling symplectic space over F3. Let B(p)/F denote the moduli
space of pairs (A,3) consisting of abelian surfaces A and symplectic isomorphisms

131 A3 25 VY.

(The dual is here because our Galois representations have been normalized coho-
mologically, so it is the dual representations which actually occur inside the p-
adic Tate modules.) The variety B(p) is smooth and geometrically connected.
Over C, we may identify B with the moduli space of principally polarized abelian
surfaces with full level 3 structure. This space is well-known to be a (geometri-
cally) rational threefold, and is isomorphic to an open subvariety of the Burkhardt
quartic [Bur91l, [Cob06], [Bak46, [Hun96), [BN18]|, specifically, the complement in the
Burkhardt quartic of the Hessian hypersurface.

The Burkhardt quartic is exceptional for a number of different reasons, not least
of which is that it admits an action of the group PSp,(F3) (tautologically from
the description above). If V = (u3)? & (Z/3Z)?, we write B for B(p). One knows
(IBN18|) that B is rational over Q. Suppose we knew that p actually came from
an abelian surface A, so that B(p) admitted a smooth rational point over F. One
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might ask whether this is enough to force the twist B(p) to be rational over F'; this
question is resolved in the negative in [CC20]. The difficulty in a naive attempt to
replicate the argument of Taylor and Shepherd-Barron ([SBT97]) in this case is that
the birational map B — P3 is not equivariant with respect to PSp,(F3) and any
embedding PSp,(F3) — PGL4(Q) = Aut(P3). This means that a PSp,(F3)-twist
of B does not naturally inherit the structure of a Severi—Brauer variety.

It turns out, however, that we are lucky. There exists a cover P(p) — B(p) of
degree 6 corresponding to an additional choice of level 2 structure of A, namely
an odd theta characteristic, (or, for A = Jac(C), a Weierstrass point on the corre-
sponding genus two curve C). The cover P(p) now does have the property that it is
not only rational, but PSp,(Fs3)-equivariantly rational, which allows us to deduce
the rationality of P(p) in favourable circumstances, and hence the unirationality
of B(p). In particular, this allows us to construct infinitely many rational points
on B(p) which correspond to abelian surfaces A with Endc(A) = Z, as in the
following theorem.

Theorem 10.2.1. Fizp : Gr — GSp,(F3) with similitude character e~*. Then B(p)
is unirational over F', and there exist infinitely many principally polarized abelian
surfaces AJF up to twist with Endc(A) = Z and such that 13 : A[3] ~ V(p)V.
Moreover, we may additionally assume that these A are Jacobians of curves which
have a rational Weierstrass point, and may thus be written in the form y* = f(z)
where f(x) is a quintic polynomial. Suppose, in addition, that for all v|3, the rep-
resentation plg,, arises as the 3-torsion of an abelian surface over I, with good
ordinary reduction. Then we may additionally assume that these A also all have
good ordinary reduction for all v|3.

Note that, as with of [SBT97, Thm. 1.2], we do not need to impose any fur-
ther local hypotheses at any primes after we impose the global condition on the
similitude character. (In particular, if K is a local field of characteristic zero, then
by using a globalization argument as in [Call2, Thm. 3.1], this implies that the
only requirement on a mod 3-representation p : Gxg — GSp,(F3) to arise from a
principally polarized abelian surface over K is that the similitude character is e71.)

The remainder of this section is devoted to the proof of Theorem[I0.2.1] We start
by defining the non-Galois degree 6 cover P of B and recalling its basic properties.

Definition 10.2.2. Let B(2) := A3(6) — A2(3) = B denote the cover of B
corresponding to a choice of full level-2 structure. It is a Galois cover with Ga-
lois group Sg ~ PSp,(F3), where we fix this identification up to conjugacy by
identifying Sg generically with the Galois group of the Weierstrass points on C
with Jac(C') = A. (This identification can be made explicit using the map 7 be-
low.) Then P denotes the intermediate cover over B corresponding to the conjugacy
class of subgroups S5 C S¢ = PSp,(F2) which fix a point.

A more natural definition of P is given in terms of theta characteristics. Namely,
P may be identified with the moduli space A2(3)~ of principally polarized abelian
surfaces with a symmetric odd theta structure of level 3 (see [DLOS, §2.3]). Recall
that there is a natural Torelli map 7 : M2(3) — A3(3) which is a bijection away
from the Humbert surface consisting of principally polarized abelian surfaces which
split as the product of two elliptic curves. A rational point on P in the image
of 7 corresponds to A = Jac(C), together with a symplectic isomorphism from A[3]
to (13)? @ (Z/3Z)? and the data of a rational Weierstrass point on C, which (after
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moving this point to infinity) means that C' can be written in the form y? = f(z)
for a quintic polynomial f(z).

The level 3-structure on B pulled back to P gives an action over Q(v/—3) of
the group PSp,(F3). If one gives PSp,(F3) the structure of an étale group scheme
over Q by viewing it as the group G of symplectic automorphisms of u3 x (Z/3Z)?
modulo (—1, —1), then this action descends to Q. Equivalently, the twisting of any
automorphism in PSp,(F3) by the action of o0 € Gq is accounted for by the Galois
action on u3 x (Z/3Z)? (as in the formula for o6 below).

Proposition 10.2.3. The variety P is rational over Q. Moreover, there exists a
birational map P — P> over Q which is equivariant with respect to the action of G
for some action of G on P3.

Proof. The G-equivariant map P — P?(’Q is the odd theta map denoted Th™ in §2.4

of [DLOS§|. The fact that Th™ is a birational isomorphism is [Bol07, Theorem 0.0.1].
(I

We now turn to the proof of Theorem From Proposition [10.2.3] it follows
that the rationality of P(p) over F is equivalent to the rationality of P3(p) over F,
where P3(p) is the twist of P? arising from the projective representation associated
to p. The action of Sp,(F3) on pu3 x (Z/3Z)? over Q({3) induces a homomorphism 6
from Sp,(F3) to Aut(P) and hence to Aut(P?3). This map satisfies

gle) 0 0 O e (o) 0 0 0
B 0 el0) 0 0 0 elo) 00
0le)=01 o o 1 oY o 0 10
0 0 01 0 0 0 1
Since p has similitude factor 71, we can associate to p a cocycle
e (o) 0 0 0
_v 0 e (o) 0 0
c—0]p"(0) 0 0 10 ,
0 0 0 1

in H1(F,PGL4(Q)), and P3(p) is the twist of P3 by this cocycle.

Lemma 10.2.4. If p : Gr — GSp,(F3) has similitude factor e=1, then P(p) is
rational.

Proof. The proof is very similar to the proof of [SBT97, Lem. 1.1]. We need to
show that the cocycle in H'(F,PGL4(Q)) corresponding to p vanishes, so it is
enough to show that it comes from H'(F,GL4(Q)). It is therefore enough (follow-
ing the argument in [SBT97|) to show that we can lift the induced homomor-
phism 6 : PSp,(F3) — PGL4(Q) to a unique homomorphism 6 : Sp,(Fs3) —
GL4(Q). Since PSp,(F3) is perfect (indeed simple) it has a unique Schur cover
(Darstellungsgruppe). Since the Schur multiplier of PSp,(F3) has order 2 (JCCNT85|),
the Darstellungsgruppe of PSp,(F3) may be identified with Sp,(F3), and in partic-
ular the projective representation 6 lifts to a genuine homomorphism 0 : Sps(F3) —
GL4(Q). It remains to show this lift is unique.

We claim this follows from the fact that Sp,(F3) is perfect. Indeed, because
the group is perfect, every element of Sp,(F3) can be written as a product of

commutators [g,h]. Hence it suffices to show that 6([g, h]) is uniquely defined.
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But 6([g,h]) = [5(g),§(h)}, and the commutator of any two elements of GL,(Q)
depends only on their images in PGL,(Q), as required. We note (although we
do not use this fact) that PSp,(F3) has no faithful 4-dimensional representations

(again by |CCNT85|) and so the representation 6 of Sp,(F3) is faithful. O

Remark 10.2.5. Note that the corresponding facts (that PSLo(F5) is simple with
Darstellungsgruppe SLa(F5)) lead to a proof of [SBT97, Lem. 1.1]. This differs
slightly from the original proof in [SBT97|] as follows: Instead of using the fact
that PSLo(F5) has Schur multiplier Z/2Z and deducing that any irreducible pro-

jective representation 6 lifts to a representation 6 : SLa(F5) — GL2(Q), the authors

use the fact that the kernel of SLy(Q) — PSL2(Q) has order 2, and so 6 automati-
cally lifts to a representation of a degree 2 central extension of PSLs(F5) to SL2(Q),
and then argue that the image (and hence source) is SLa(F5) (because the split cen-

tral extension would give a faithful 2-dimensional representation of PSLa(F5)).

We have now proved under the given hypothesis on p that P(p) is rational, and
hence B(p) is unirational. Moreover, twisting P by p leaves the level structure at the
odd theta characteristic unchanged, so that all the corresponding abelian varieties
in the image of the Torelli map are Jacobians of curves C' of the form y? = f(z)
where f(z) is a quintic (after moving the rational Weierstrass point to infinity).

Proof of Theorem[10.2.1, We need to show that infinitely many of the correspond-
ing points of P(p) do not admit any extra endomorphisms over C. We show that we
may find infinitely many A such that the Galois representation associated to A[5]
has image containing Sp,(F5). If A/F did admit extra endomorphisms over F,
then, from the classification of the possible Galois types of endomorphism struc-
tures on A recalled at the beginning of §9.2] the Galois representation associated to
the 5-adic Tate module of A would become reducible after making an extension of
degree at most 2. But the action of Sp,(F5) on F2 remains absolutely irreducible
after restriction to any index two subgroup, which forces Endg(A) = Z. (In this
argument, 5 could have been replaced by any prime p independent of the level
structure.)

We will now arrange this condition by an application of Hilbert irreducibility
as in the proof of [SBT97, Theorem 1.2]. Let R(p) — P(p) be the fibre product
of P(p) with Ay(5) — Ay. This is a Galois cover with Galois group PSp,(F5).
Recall that P(p) is rational. By Hilbert irreducibility ([Ser89, §9.2, 9.6]), we may
find infinitely many points = € P(p)(F’) so that the Galois group of the splitting field
of any preimage y € R(p) of x contains PSp,(F5), and moreover, we may restrict x
to any non-trivial open subset of P(p)(F,) for all v in some finite set of primes S.
If A denotes the corresponding abelian surface, it follows that the projective Galois
representation associated to p, 5 contains PSp,(Fs), and thus the image of 74 5
itself contains Sp,(Fs). If we now use the assumption that P(p)(F,) has points
corresponding to abelian surfaces with good ordinary reduction at all v|3, then
(since the ordinary condition is open) we can choose our « € P(p)(F) so that A/F
has good ordinary reduction for all v|3. O

We obtain the following corollary:

Theorem 10.2.6. Let F' be a totally real field in which 3 splits completely. Then
there exist infinitely many abelian surfaces AJ/F up to twist with Endc(A4) = Z
which are modular, and which do not come from any proper subfield of F (in the
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sense that, for each p, there is no twist of the corresponding Galois representa-
tion pa,p which extends to the absolute Galois group of a proper subfield of F').

Proof. Let H/F be a quadratic extension in which every prime v|3 is inert, and let o
be the non-trivial element of Gal(H/F'). Let E/H be an elliptic curve with good
ordinary reduction for all v|3, such that pg 3 : Gg — GL2(F3) is surjective, and
such that the projective images of pp; 5 and pg 5 are totally disjoint. Since X (1) has
genus zero, this can be achieved by choosing a global point which lies over a suitable
choice of smooth point in X (1) (k) (with &k, = Og/w) for suitably chosen primes w
which split over F, for example ensuring that pp 5(Frob,,) and pg 5(Frob,.) give
distinct elements of PGLo(F3). Similarly, by making choices above primes of Q
which split completely in H, we may ensure that p = Indgg Pp,3 does not descend
after twisting to any proper subfield of F.

By Lemma p is vast and tidy. The fact that each prime v|3 in H/F
is inert implies that p is 3-distinguished and finite flat, and hence 3-distinguished
weight 2 ordinary. It follows from Proposition [[0.1.3] that p is ordinarily modular.
The representation p at each v|3 arises locally from an abelian variety over F, with
good ordinary reduction, because it does so globally — namely, the restriction of
scalars of E from H, to F,. It follows from Theorem [I0.2.1] that there are infinitely
many abelian surfaces A with up to twist with good ordinary reduction at each
place v|3 and satisfying A[3] = p. The choice of p ensures that any such A does not
descend (even after twist) to any subfield of F. Finally, every such A is modular

by Proposition [10.1.1 O

10.3. The Paramodular Conjecture. We end this section with a discussion of
the relationship between our results and the “paramodular conjecture” of [BK14]
(cf. also the remarks in [Yos80, §8, p.243|). Recall that this conjecture states that
there should be a bijection (determined by the compatibility of Frobenius eigenval-
ues and Hecke eigenvalues at unramified places) between isogeny classes of abelian
surfaces A/Q of conductor N with Endg A = Z, and holomorphic cuspidal Siegel
newforms of weight 2 and paramodular level N which are “non-lifts” and have ra-
tional Hecke eigenvalues, considered up to scalar multiplication. Here “non-lifts”
means that they are orthogonal to the space of Gritsenko lifts. We explain in
this section why the paramodular conjecture as originally formulated in [BK14] is
not true. The issue is that Siegel newforms of weight 2 and paramodular level N
with rational eigenvalues will not always correspond to abelian surfaces. In light
of the observations of this paper, Brumer and Kramer have modified their con-
jecture in [BK19|] along the lines suggested by the analysis presented here — we
reproduce their updated conjecture in this paper as Conjecture below. In
order to distinguish between the two versions of this conjecture, we refer to the
original formulation (given above) as the original paramodular conjecture, and the
modified version (Conjecture as the paramodular conjecture. Both of these
conjectures posit an injective map from isogeny classes of abelian surfaces 4/Q
of conductor N with Endg A = Z to Siegel newforms of weight 2 and paramodu-
lar level N, which are “non-lifts” and have rational Hecke eigenvalues, and hence,
when talking about the implication in this direction, we do not distinguish between
different versions of the conjecture.
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We firstly show that all of our examples of modular abelian varieties verify the
paramodular conjecture, before giving a more general explanation of the relation-
ship between the paramodular conjecture and the Langlands program, and then
explaining some counterexamples to the original paramodular conjecture.

Lemma 10.3.1. Any abelian variety A/Q satisfying the hypotheses of Proposi-
tion [10.1.1] satisfies the paramodular conjecture; that is, there is a corresponding
holomorphic cuspidal Siegel newform of weight (2,2) and paramodular level equal
to the conductor of A, which is a non-lift, has rational Hecke eigenvalues, and is
unique up to scalars.

Proof. By Proposition (or more precisely by Theorem as applied in
the proof of Proposition there is an L-packet of cuspidal automorphic repre-
sentations 7 of weight 2 and general type corresponding to A, whose L-parameters
coincide with those determined by A. The claim that there is a unique correspond-
ing newform of level equal to the conductor of A is now a consequence of the theory
of newforms due to Roberts and Schmidt [RS07b] (which assumes that we are work-
ing with representations of trivial central character, but this is harmless, as we can
reduce to this case by twisting 7 by | - |). This newform is certainly a non-lift,
as 7 is of general type (see the discussion following this lemma for a more precise
description of the non-lifts), and it has rational Hecke eigenvalues by local-global
compatibility.

More precisely, by [Sch18 Thm. 1.1], for each prime v of Q, there is a unique
paramodular representation in the L-packet at v, namely the unique generic rep-
resentation. Since representations of general type are stable, this gives rise to a
unique 7 of weight 2 which has a paramodular vector at each finite place. Further-
more, for each v the space of paramodular vectors at minimal paramodular level is
one-dimensional by [RS07b, Thm. 7.5.1], and this minimal paramodular level co-
incides with the conductor of the corresponding L-parameter (and thus with that
of A) by [RSO7D, Thm. 7.5.4(iii)] and the main theorem of [GT11a]. O

We now discuss the paramodular conjecture more broadly. Firstly, we discuss
the automorphic side of the conjecture. As explained in [Schi8], the space of Siegel
modular forms of weight 2 and fixed level can be written as an orthogonal sum of
spaces spanned by eigenforms in automorphic representations of the various types
in Arthur’s classification. The Gritsenko lifts are precisely those of Saito—-Kurokawa
type, while those of one-dimensional type do not contribute to the cuspidal spec-
trum. Since abelian surfaces with Endg A = Z should correspond to automorphic
representations of general type (as their corresponding Galois representations are ir-
reducible), we see that it is implicit in the statement of the conjecture that there are
no paramodular eigenforms (at least with rational Hecke eigenvalues) of Yoshida,
Soudry, or Howe—Piatetski-Shapiro type.

This is indeed the case, as is proved in [Sch18| [Sch20]. The case of Yoshida type
is [Sch18, Lem. 2.5]; in this case, the parameters are unstable, and the corresponding
packet of representations does not satisfy the required sign condition. Indeed, at
each finite place, the condition that the representation admits a paramodular vector
forces the sign to be trivial, whereas the condition of being the holomorphic limit of
discrete series at infinity gives a non-trivial sign. Note that the analogous argument
would fail for totally real fields of even degree.
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The cases of Soudry and Howe-Piatetski-Shapiro type are [Sch20, Prop. 5.1]. In
these cases the obstructions to the existence of paramodular vectors are at finite
places; it turns out that at the places where these representations are ramified, there
are no paramodular vectors. In these cases the representations are parameterized
by certain Hecke characters, and the fact that the representations are ramified at
some finite place comes from the fact that any Hecke character must be ramified.
Accordingly, the analogous argument could fail for totally real fields of class number
greater than 1.

It follows from this discussion that the original paramodular conjecture is equiv-
alent to the claim that there is a bijection between isogeny classes of abelian
surfaces A/Q with Endg A = Z, and cuspidal automorphic representations II
of GL4(Aq) of symplectic type with multiplier | - |2, whose infinity type is the
one corresponding to the L-parameter ¢2.1,0, and whose Hecke eigenvalues are all
rational. In one direction, given A, the existence of II is certainly predicted by
the Fontaine-Mazur—Langlands conjecture, the rationality of its Hecke eigenvalues
following from strong multiplicity one. We now explore the converse direction.

Lemma 10.3.2. Let F' be a totally real field. Assume the Fontaine—Mazur Con-
jecture, the Standard Conjectures, the Hodge Conjecture, and that the Galois repre-
sentations associated to any cuspidal automorphic representation II for GLy(A )
whose infinity type for each v|oo corresponds to the L-parameter ¢o.10 form an
irreducible weakly compatible system. Let I1 be such a representation with the prop-
erties that its Hecke eigenvalues are rational, and that 11 is of symplectic type with
multiplier | - |2. Then, associated to I, there exists a corresponding motive A/F
such that either:

(1) A/F is an abelian surface.
(2) A/F is an abelian fourfold with endomorphisms over F by an order in a
quaternion algebra D/Q.
Moreover, if AJ/F is an abelian fourfold with Endp(A) @ Q = Endc(4) ® Q an
indefinite quaternion algebra D/Q, and one assumes only standard automorphy
conjectures, then there exists a corresponding I1 of symplectic type with rational
eigenvalues and multiplier | - |2.

One might reasonably (following Serre [DR73], §0.7, p. DeRa-13]) call an abelian
fourfold A with endomorphisms by an order in a quaternion algebra D/Q a fake
(or false) abelian surface (fausse surface abélienne).

Sketch of proof. (For a more detailed proof of a closely related result, see [PVZ16),
Thm. 3.1].) One first obtains from II a rank 4 symplectic weakly compatible irre-
ducible family of p-adic Galois representations

R = (Q7 S, {QU(X)}7 {Tp}7 {HT})
with H, = (0,0,1,1) for all 7|oo, and such that

Tp: GF — GSp4(Qp)
has inverse cyclotomic similitude character. The Fontaine-Mazur conjecture implies
that R arises from a pure irreducible motive M over F with coefficients in Q (we
also now assume the standard conjectures [Kle94]). Concretely, this means that
M is irreducible and that for each prime p, the p-adic étale realization of M,
H},(M,Qp) ®q, Q, contains r,,. By the Brauer-Nesbitt theorem, all the twists of
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rp by automorphisms of the coefficient field Qp are isomorphic to r,. Therefore,

if we assume the Tate conjecture, we deduce that H’,(M, Q,) ®q, Qp is a sum of
copies of 7,. The rank of M is therefore 4d for some d. Let Endq(M) ® Q = D.
Since M is simple, D is a division algebra. The centre of D is a number field E. We
claim that £ = Q. It suffices to show that, for all p, the centre of D®Q6p is Qp. By
the Tate conjecture, however, we can determine D ® Qp from the endomorphisms
of the p-adic étale realization of M, which is isomorphic to a direct sum of d copies
of rp,. It follows that Endap[GF](rg) is a matrix algebra over Qp, and thus has

centre Qp. Hence F = Q.

Let us fix an embedding F — C. The Hodge realization of M is a polarized
Hodge structure of weight one, which gives a polarized torus, and thus (by Riemann)
an abelian variety B over C. Since M is defined over F, we deduce that, for any
automorphism ¢ of C over F', B? is isogenous to B. Let 2d be the dimension of
B and r be the degree of its polarization. Let Asg, be the coarse moduli space
of abelian varieties of dimension 2d with a degree r polarization. This is a scheme
of finite type over Q. We base change it to F. Let [B] be the point on Ayqg,
associated to B. The set of points on Ayg,, isogenous to [B] is countable. On the
other hand, if the residue field of [B] in Ayg,, is transcendental over F, we deduce
that its orbit under Aut(C/F) is uncountable because there are uncountably many
ways to embed a transcendental field of finite type over F' into C. It follows that
[B] is defined over a finite algebraic extension L of F' and that B is defined over
a finite algebraic extension L’ of L. Moreover, M|r, = h'(B). We now consider
C = Res//pB, an abelian scheme over F'. Looking at the p-adic étale realization
Cp of C for a prime p, we find that C}, = M, ® Ind;/,p1 where M, stands for
the p-adic realization of M. We now let A be the simple factor of C' whose p-adic
étale realization contains r,. Then R arises from h'(A). It follows from the Tate
conjecture that h*(A) and the motive M we started with are in fact isomorphic.

Now taking into account that the centre of D is Q, we deduce from the Albert
classification (see [MumO8, Thm. 2, p. 201]) that A is one of the following three

types:

(1) Type I: A/F is an abelian surface with Endg(4) = Z.

(2) Type II: A/F is an abelian fourfold with Endg(A4) ® Q = D, an indefinite
quaternion algebra over Q.

(3) Type III: A/F is an abelian fourfold with Endg(A4) ® Q = D, a definite
quaternion algebra over Q.

(Note that Type IV of the Albert classification cannot occur, because the centre F' =
Q of D is not a totally imaginary CM field.)

Suppose that A/Q is an abelian fourfold with Endg(4)®Q = Endc(4)®Q = D
for some indefinite quaternion algebra D/Q (and thus of Type II above). We
now construct a suitable compatible system R, which (by standard automorphy
conjectures) will give rise to a suitable II. The Mumford—Tate conjecture is known
for the varieties of type II [Chi92, [Chi90], and the semisimple part § of the Lie
algebra of the Mumford—Tate group of A is (for almost all p) sp,. Let p be any prime
which splits D. Then H'(A4, Q,) has an action of D®Q,, = M2(Q,). In particular,
it decomposes as V}, ® V,, for an irreducible 4-dimensional representation V,, whose
monodromy group is contained in GSp,(Q,).
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If Q,(T) denotes the degree 8 polynomial in Z[T'] coming from the characteristic
polynomial of Frobenius at v, then every root of @, (T) has even multiplicity, and
thus Q,(T) = P,(T)? for a degree 4 polynomial P,(T) € Z[T], which will be the
characteristic polynomial of Frobenius at v on V. By the Weil conjectures, the
roots of Q,(T') obey the usual symmetry associated to a weight one motive, and
so the same is true for P,(T). This implies that V" ~ V,, ® e~'. Since the Galois
representation has big image in V},, any isomorphism V,, ~ V,, ® x forces x to be
trivial, and thus from the identification va ~ V, ® e~ ! above we deduce that the
similitude character is inverse cyclotomic. In particular, by standard automorphy
conjectures, V will be associated with a II as in the theorem. By strong multiplicity
one [IS81], the rationality of Hecke eigenvalues at almost all primes (in particular
primes of good reduction) forces rationality at all primes. (I

10.4. Examples and counterexamples. In this section, we give some examples
of abelian fourfolds A/F with Endp(A) ® Q = D for a quaternion algebra D/Q.
In Lemma we prove the existence of such A which also satisfy Endc(A4) ®
Q = D for some indefinite D/Q. But first, we construct abelian fourfolds 4/Q
with Endr(A4) ® Q = D, and such that (under standard conjectures, and even
unconditionally in some cases), they correspond to a II as above which comes from
a paramodular eigenform with rational Hecke eigenvalues, and thus contradict the
original paramodular conjecture.

10.4.1. Abelian fourfolds of type III. We expect that case considered in the
proof of Lemma [10.3.2] cannot occur. While we do not show that here, we instead
discuss a minor subtlety which occurs when trying to construct examples of this
kind.

Let E/Q be an elliptic curve (say without complex multiplication). Let F/Q be
(say) a totally real field with Gal(F/Q) = @, the quaternion group of order 8. The
group @ has an irreducible representation W/Q of dimension 4, which contains a
stable integral lattice A C W. Note that, for any prime p, there is a decomposi-
tion W ® Qp =V @V for an irreducible 2-dimensional faithful representation V'
of Q. Now let us define:

A=FE*=FE ®z A.
We find that A is simple over Q, and Endg(A4) ® Q = Endg(W) = D, where D/Q
is the Hamilton quaternions. The corresponding compatible system R arises from
Galois representations

pp i =TEp @V :Gq — GL4(Q,).
For p # 2, the image of this Galois representation lies in GL4(Q,). On the other
hand, the possible symplectic forms associated to p, are the one dimensional sum-
mands of
Np = (Sym?® ppp ® det(V)) @ (det(pp,p) @ Sym* (V).

Since detpg, = £7', we obtain symplectic representations with inverse cyclo-
tomic similitude character if and only if Sym?(V) contains the trivial represen-
tation. But det(V') = 1 for the faithful complex 2-dimensional representation of @,
SO Symz(V) is the direct sum of the three non-trivial quadratic characters of @,
and these compatible families do not have the required form.

More generally, suppose that A/Q is an abelian fourfold with Endg(A4)®Q = D
for some definite quaternion algebra D. The corresponding Shimura curves Xp
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parametrizing such objects lie in the exceptional class of Shimura varieties with the
property that there is a strict containment D C Endg(A) for all complex points A
of Xp (see [BLO4, §9.9]). Since D/Q is definite, the semisimple part § of the Lie
algebra of the Mumford—Tate group should (for almost all p) be contained in soy, =
sly X slp rather than sp, (by [MZ95| §6.1]). This forces the representations V,, to
decompose (as Qp—representations) as the tensor product of a representation coming
from a modular form with an Artin representation. We expect it should be possible
to make a careful case by case analysis to rule out this case occurring, but we have
not attempted to do this.

10.4.2. Abelian fourfolds of type II. One can produce examples of abelian fourfolds
with endomorphisms by an order in an indefinite quaternion algebra D/Q by taking
the tensor product of a 2-dimensional representation with an Artin representation.
Let B/Q be an abelian surface of GL(2)-type with endomorphisms by an order in a
quaternion algebra D which are defined over a quadratic extension K/Q, and then
take L C V to be a lattice in a 2-dimensional dihedral representation V over Q
which is induced from a quadratic character y of K which does not extend to Q
(so the action of Gg on V is through a dihedral group of order 8). Then one can
take A = B ®z L, which may be identified with the restriction of scalars of the
quadratic twist B ® x of B from K to Q.

The action of an order of D on B and B ® x over K extends to an action of this
order of D on A. We obtain a compatible system R of Galois representations

pp=1Bp @V :Gq— GL4(Q,).

Because V is induced from G, it follows that the characteristic polynomials of
Frobenius of this representation all have coefficients in Q. It now suffices to show
that p, preserves a symplectic form with inverse cyclotomic similitude character.
The argument proceeds exactly as in §10.4.1] except now we have the isomor-
phism A2V ~ y K/qQ- In particular, the trivial character is a summand of Sym?V,
and thus p, preserves a symplectic form with similitude character e~!. The repre-
sentations p, do not arise from abelian surfaces over Q, since that would contradict
the Tate conjecture for abelian varieties [Fal83]. Moreover, they are easily seen
to be modular. Hence these give counterexamples to the original paramodular
conjecture.

For an explicit example, one could take B to be the modular abelian surface
which is a quotient of Jy(243) with coefficient field Q(v/6) (see [Cre92, Table 3]),
which is geometrically simple and obtains quaternionic multiplication over Q(y/—3).
Then take any non-Galois invariant quadratic character x of Q(v/—3), and let A =

In light of Lemma Brumer and Kramer have formulated the following
natural modification of the original paramodular conjecture (see [BK19)):

Conjecture 10.4.3 (Paramodular Conjecture of Brumer-Kramer). Let Ay denote
the set of isogeny classes of abelian surfaces A/Q with Endq A = Z and conduc-
tor N, and By the set of isogeny classes of fake abelian surfaces (QM abelian
fourfolds) B/Q of conductor N? with Endq B an order in a non-split quaternion
algebra D/Q. Let Py denote the set of holomorphic weight 2 paramodular forms f
of level N up to nonzero scaling which have rational Hecke eigenvalues and lie in
the orthogonal complement to the space of Gritsenko lifts. Then there is a bijection
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between the set Ay U By and Py such that
L(C,s) = L(f,s,spin) if C € Ay and L(C,s) = L(f, s,spin)? if C € By.

We conclude with some remarks on the possible existence of abelian fourfolds
which satisfy case of Lemma [10.3.2| and additionally have no further endomor-
phisms over C (such varieties will necessarily be geometrically simple).

Expected Lemma 10.4.4. There exists a totally real field F', an indefinite quater-
nion algebra D, and an abelian fourfold A/F with Endr(A)®@Q = Endc(A4)®@Q =
D.

~1,3

Sketch. Let D = ( ) be the unique quaternion algebra over Q ramified at

(exactly) 2 and 3. Let Op denote the maximal order in D. In the standard way,
one may also write down an involution 1 obtained by conjugating the standard
involution so that trp /Q(x:rf) is positive definite, and write down a non-degenerate
alternating form ¢ on (0%) ® Q which satisfies various compatibilities with .
Associated to Op in the usual way is a Shimura stack (of level one) X parametrizing
tuples (A, A, ¢) where A is an S-abelian fourfold over S, A is a principal polarization
over S, and ¢ : Op — End(A4) is an injective homomorphism such that the Rosati
involution induced by A restricts to § and such that i is compatible with the
polarization on homology as an Op-module. X is a smooth Deligne-Mumford stack
over Q with a single geometric component (cf. [KR99]). The complex points X (C)
are uniformized by the Siegel upper half space of dimension 3, and the generic point
of X over C has endomorphisms precisely by Op (see §9.9 of [BL04]).

By [Mil79], there exists an abelian surface B/C with Ende(B)®Q = D, that the
Rosati involution on End B is z — 2, and such that the restriction of scalars of B
from C to R gives a point in X(R). (Another way to view this is to consider X as
a GSpin Shimura variety associated to a 5 dimensional quadratic space as in [KR99],
and then signature (1,2) subspaces will give Shimura curve subvarieties.)

This is not quite sufficient, however, to guarantee a point over X (F) for a totally
real field F' with the correct endomorphisms, nor even a point over X (Q), since
one has to remove from X (C) a countable union of proper Shimura subvarieties,
which might a priori exhaust the Q-points of X. Moreover, due to the stackiness
of X, there are issues comparing fields of definition versus fields of moduli. We
therefore employ a trick already used in the proof of Theorem Namely,
impose level structure by choosing a large prime p > 3 and fixing a surjective
representation p : Gq — GSp,(F,) with inverse cyclotomic similitude character.
(Such representations are abundant — one source are the duals of the p-torsion of
abelian surfaces over Q.) Then X admits a geometrically connected cover X (p)
defined over Q with level structure corresponding to A[p]¥ = p @ p, with a suitable
choice of polarization and compatible action of (Op ® Z,)/p = (M2(Z,))/p =
My (Fy).

The variety X (p) is a fine moduli space which is now a smooth variety over Q with
real points, since the point Resc/r(B) considered above has the appropriate level
structure over R. Employing the theorem of Moret-Bailly [MB&9], we may deduce
the existence of a totally real field F and a corresponding abelian variety A/F
such that F is disjoint from the splitting field of p. Because X (p) is a fine moduli
space, the variety A has endomorphisms by Op over F. It now suffices to show
that it has no further endomorphisms over C. The dual of the Tate module of A
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decomposes as a Galois representation as p & p where p : Gp — GSpy(Z,) is a
lift of p. Since p > 5, the assumption that p has surjective image implies that p
also has surjective image. However, if A admitted extra endomorphisms over any
extension of F', then the image of p restricted to some open subgroup would lie
inside a proper algebraic subgroup of GSp,(Q,), contradicting the fact that image
contains an open subgroup of GSp,(Z,). d

It would be interesting to know whether (for suitable choices) these varieties
have points over Q which correspond to A/Q with Endc(A) ® Q = D, but this is
not so easy to determine by pure thought. However, the specific X chosen above
(ramified at only 2 and 3) is possibly the most likely choice to be rational, since
it corresponds to the indefinite quaternion algebra D/Q of smallest discriminant.
The construction of Nori in §9.4.4] suggests that, for this D, the moduli space is at
least geometrically rational. Note, however, that there will be field of moduli issues
when one works at level one, so even the rationality of this space over Q does not
imply the existence of such A.

10.4.5. Cremona’s Question. We finally consider two 2-dimensional irreducible com-
patible systems S of representations of Gk for some quadratic extension K/Q, with
inverse cyclotomic determinant, Hodge-Tate weights (0, 1), and coefficients in Q.
Note that, for such a family S, there is a corresponding family R = Indgi S of 4-
dimensional symplectic representations with inverse cyclotomic similitude charac-
ter. An argument very similar to (but easier than) Lemma shows that (as-
suming all conjectures) either S comes from an elliptic curve, or it arises from a so-
called fake elliptic curve, namely, an abelian surface B/K with Endg(B)®@ Q = D
for some indefinite quaternion algebra D. The latter can exist only when K is
an imaginary quadratic field. Conjecturally, such compatible systems are in bijec-
tion with cuspidal cohomological 7 for GL(2)/K with trivial central character and
Hecke eigenvalues in Q.

One source of such B/K is to take abelian surfaces over Q of GL(2)-type which
acquire quaternionic multiplication over K/Q. Assuming the Hodge conjecture and
the standard conjectures, it follows that [Cre92l Question 1] (cf. [Cre84, Conjec-
ture, p.278]) is equivalent to asking that all fake elliptic curves B over K descend
to Q after twisting by some quadratic character (equivalently, B is isogenous to
a twist of B? for the non-trivial element o € Gal(K/Q)). We call such B non-
autochthonous because it implies that the corresponding conjectural 7 arises via
functoriality from a smaller rank group (cf. footnote 2 of [AGM20]). In this sec-
tion, we show that the answer to this question is false, namely, we construct au-
tochthonous fake elliptic curves B/K. If one takes the restriction of scalars A =
Resg/q(B) of such surfaces, then the fourfolds A give rise to further examples in
opposition to the original paramodular conjecture.

We continue to let D be the quaternion algebra ramified at precisely 2 and 3.
The Shimura curve giving rise to fake elliptic curves with endomorphisms by a
maximal order in Op has genus zero, and is well-known (see for example [BGOS,
Thm. 11]) to be isomorphic over Q to:

X24+Y%24322=0.

Moreover, more usefully for our purposes, Baba and Granath in [BG08| give explicit
models for genus two curves with endomorphisms by Op. For a certain parameter j,
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they write down a model ([BG0O8, Thm. 15]) of a genus two curve C over Q(1/—67)
such that its endomorphisms are all defined (by [BGOS, Prop. 19]) over K :=

Q(v/=63,7,/—27(j + 16)). With a view to choosing K = Q(v/—6), we let

Z =34, X =/—(27j + 16), Y =4,
and look for solutions to the equation above with X, Z € Q(y/—6). One such solu-
tion is given by j = —32/27, but the corresponding surface is not autochthonous.

Thus, we parametrize the conic and choose a random such point. Without making
too much effort to optimize the height of j, one finds that

(10.4.5) j= 4(1%27\/?6)

is a suitable point.
Lemma 10.4.6. Let C be the following genus two curve:
y2 =ap+a1r + a2x2 + a3x3 + a41:4 + a5x5 + aﬁxG,

where a; are given by the following table, where n =1 — \/—6:

1| a;
0]29.90.(v/-6—4)
1 210.776_3

2|27 n- (9v/=6 + 24)
3 728.,’74

41 2* 9% (-9v/—6 + 60)
5(2%.-n-3

6| —2-v/—6

The sextic has discriminant 2%0-3%-(1—/=6)30-(2—/=6)°. Let B = Jac(C)/Q(v/—6),
and let A = Resq(/=5)/q(B). Then Endq(A) ® Q = D and Endc(4) ® Q =
Ms(D), where D/Q is the quaternion algebra ramified at precisely 2 and 3. Then B
is autochthonous, and B gives rise to an irreducible 2-dimensional compatible sys-
tem of Galois representations S of Gq with Hodge—Tate weights (0,1) and inverse
cyclotomic determinant, and A gives rise to a 4-dimensional compatible system R
of 4-dimensional p-adic Galois representations of Gq with coefficients in Q unram-
ified outside of {2,3,5,7,p}, each of which is absolutely irreducible and symplectic
with inverse cyclotomic multiplier.

Proof. Let K = Q(+/—6). The curve C' is the specialization of the curve in [BGOS|,
Thm. 15] to the parameter j as in equation [10.4.5, and

—2=6+4
3 )

s=+/—6j = t = —2(27j + 16) = —16v/—6 — 40.

By [BGOS8| Prop. 19], we deduce that the endomorphisms of C are defined over
the field K(v/j,1/—(27j416)) = K. We now show that B is autochthonous.
Let p = (11,4/=6 — 4) and q = (11,/—6 + 4). Then the curves X; = C(Ok/p)
and Xs = C(Ok/q) over Fq; are given explicitly as follows:

X1 y? = 32% + 325 + 22% + 102 + 822 + 9z,

Xy y? =828 + 2% 4+ 102 + 62 + 322 + 4z + 4.
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We compute the zeta functions using magma (see [BCGP2I]) to be as follows:

B (1_2p—s +p1—2s)2 ) — (1_p—s +p1—2s)2
N e T M (e [

If B were autochthonous, then in particular the zeta functions of X;, Xs would
differ by a twist by a finite order character, but this is impossible since 2 # +1.
If p > 3, then p splits in D, so there are Galois representations

Tp ! GK — GLQ(QP)

with V,(B)Y & r, ®r,. For all p, there also exist corresponding representations 7, :
Grx — GLs (Qp) such that, for p > 3, the representation 7, is the representation
obtained from r, by extending scalars. We now prove that Endc(B) ® Q = D.
If this were not true, then B would geometrically have to be isogenous to E x
E for some elliptic curve E with complex multiplication. This implies that B
itself has complex multiplication over C, which implies that the representations r,
are potentially reducible. But as the representations r, have distinct Hodge-Tate
weights, if they become reducible they do so over a quadratic extension. This
quadratic extension L/K must be ramified only at primes of bad reduction of B,
and for p which are inert in L/K, one must have a, = 0. But this can be ruled out
by computation (the only prime p of norm less than 1000 with a, = 0 has norm 97).

Hence Endg(B) ® Q = D and Endg(A) ® Q = D, where A = Resgq(B). It
also follows that the representations r, and 7, have inverse cyclotomic determinant
(as otherwise they would be isomorphic to their twists by a finite order character,

and thus potentially reducible). Moreover, with p, := Ind% rp, one has

1

Npp=As(Tp) @ ®e ' nk/q, Sym? Indgi Pp = Indgi Sym? 7,

and thus p, is absolutely irreducible and can be chosen to have image in GSp,(Q,,)
with inverse cyclotomic similitude character. Finally, the characteristic polynomials
of Frobenius will, by construction, be degree 4 polynomials with coefficients in Q.

O

Since one expects the compatible system S to be modular (it is certainly poten-
tially modular, by [ACC™18§]), it follows that Cremona’s question [Cre92, Question
1]) is incompatible with standard modularity conjectures. (Similarly, the modu-
larity of R = Indgi S is incompatible with the original paramodular conjecture,
although we have already shown the latter to be false.) Of course, from the dis-
cussion above, there are natural modifications that one could make to Cremona’s
question (along the lines of Conjecture — namely, to include all fake elliptic
curves over K, autochthonous or otherwise.

One can presumably show that the 2-dimensional G g-representations 7, over
the field K = Q(v/—6) arising from B = Jac(C') are modular for GL(2)/K. As in
the proof of Lemma we would then obtain a cuspidal cohomological auto-
morphic representation 7 for GL(2)/K with trivial central character and rational
eigenvalues. Since 7 does not arise (up to twist) from base change, this would
answer in the negative [Cre92, Question 1’], because the existence of a correspond-
ing elliptic curve E/K would be incompatible with the existence of B by Faltings’
isogeny theorem [Fal83)].

The modularity of the representations 7, can in principle be established using the
Faltings—Serre method (cf. [BDPcS15]). Possibly some computational advantage
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would be gained by replacing C' with a curve obtained from a more careful choice
of generic point on the Shimura curve (in order to work at a manageable level).
As it turns out, Ciaran Schembri [Sch19] has independently found examples of
autochthonous fake elliptic curves which he has verified are modular.
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