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1. Introduction

In this paper we investigate the theory of p-adic families of automorphic forms for the
group GSp4/Q whose component at infinity has singular Harish-Chandra parameter and
is a non-degenerate limit of discrete series. The automorphic forms we consider can be
realized in the coherent cohomology of an appropriate automorphic vector bundle over a
Siegel threefold ([28]). The Siegel threefolds are finite unions of arithmetic quotients of the
three dimensional Siegel upper half space. They have a modular interpretation as moduli
spaces of abelian surfaces with polarization and level structure and they have canonical
models over number fields. Using this coherent realization one can prove that the Hecke
parameters of these automorphic forms are defined over number fields and construct, using
congruences, compatible systems of 4-dimensional Galois representations ([76], [63]).

For the group GL2(R) there is (up to twist by a character) one non-degenerate limit
of discrete series. Automorphic forms with this component at infinity realize in the weight
1 coherent cohomology of the modular curves and correspond to weight 1 modular forms
in the classical terminology. We recall certain special features of weight 1 modular forms
compared to modular forms of weight k ≥ 2 : they do not occur in the étale cohomology
of a local system of the modular curve; there is no dimension formula for the space of
weight 1 modular forms; they occur in degree 0 and degree 1 coherent cohomology of the
same weight 1 automorphic locally free sheaf; the Galois representations attached to an
eigenform has finite image (and has irregular Hodge-Tate weights (0, 0))...

For the group GSp4(R) there are lots of non degenerate limits of discrete series (even
modulo twist by a character). Their Harish-Chandra parameters lie on certain walls
of the character space of a maximal torus of the derived group Sp4, and these walls
are 1-dimensional ! If π is an automorphic form on GSp4 with component at infinity
one of these non degenerate limits of discrete series, the associated compatible system
of Galois representations has (conjectural) Hodge-Tate weights of the form (k + 1, k +
1, 0, 0) or (k + 1, 0, 0,−k − 1) for k ∈ Z≥0, up to twist. In this paper we will only
consider Harish-Chandra parameters which yield Hodge-Tate weights of the form (k +
1, k+1, 0, 0). The corresponding automorphic forms realize in the degree 0 and the degree

1 coherent cohomology of a vector bundle that we denote by Ω(k,2) (and is attached to the
representation SymkSt⊗det2St of the group GL2 which is the Levi of the Siegel parabolic
of Sp4).

We construct p-adic families of (cuspidal) cohomology classes for the sheaves

{Ω(k,2)}k≥0 in degree 0 and 1. To state precisely the theorems, we need some more
terminology. We denote by XK → Spec Zp a toroidal compactification of the Siegel
threefold of level given by an compact open subgroup K =

∏
`K` ⊂ GSp4(Af ) such

that Kp = GSp4(Zp). Attached to the Klingen parahoric subgroup Kli(p) ⊂ Kp, we
get a covering XKli(p)K → XK which parametrizes a subgroup of order p of the semi-
abelian scheme (at least when the semi-abelian scheme is abelian). We denote by D
the relative Cartier divisor of the boundary in XK or XKli(p)K (no confusion should
arise). In the paper we define an Hecke operator U at p associated to the double coset
Kli(p)diag(p2, p, p, 1)Kli(p) which acts on the cohomology of XKli(p)K . There is also a
corresponding Hecke operator T at p associated to the double coset Kpdiag(p2, p, p, 1)Kp

which acts on the cohomology of XK . Let Λ = Zp[[Z×p ]] be the one-dimensional Iwasawa

algebra. For each integer k, there is a map k : Λ→ Zp extending the character z 7→ zk of
Z×p .

Our main theorem is :

Theorem 1.1. — There is a perfect complex M of Λ-modules of amplitude [0, 1] such
that:
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1. For all k ∈ Z≥0 we have a canonical quasi-isomorphism :

M ⊗LΛ,k Qp = RΓ(XKli(p)K ,Ω
(k,2)(−D)⊗Zp Qp)

U−ord,

where the exponent U − ord means the ordinary part for the action of U .

2. For all k ∈ Z, k > p+ 1, we have a canonical isomorphism :

H0(M ⊗LΛ,k Qp/Zp) = H0(XK ,Ω
(k,2)(−D)⊗Qp/Zp)T−ord,

where the exponent T − ord means the ordinary part for the action of T .

3. The perfect complex M carries an action of the Hecke algebra of level prime-to-p,
and the isomorphisms above are equivariant for this action.

Remark 1.1. — There is a natural compatibility between the first and second point
of the theorem : for any k ∈ Z, k > p + 1, the natural map (a p-stabilization map)

H0(XK ,Ω
(k,2)(−D)⊗Qp)

T−ord → H0(XKli(p)K ,Ω
(k,2)(−D)⊗Qp)

U−ord is an isomorphism.

Remark 1.2. — We also develop a theory of finite slope families in the third part of this
work.

Remark 1.3. — In [33], Hida initiated the study of ordinary Betti cohomology on locally
symmetric spaces associated to GLn over arbitrary number fields F . When n ≥ 3 (or n ≥ 2
and F is not totally real), the non-Eisenstein cohomology is concentrated in more than one
degree. To some extent, what we present here is the beginning of a coherent analogue of
this theory. The analogy is that in both situations the interesting cohomology is naturally
supported in several consecutive degrees. See the introduction of [11].

Let N be the product of primes ` such that K` 6= GSp4(Z`). The perfect complex M
carries an action of the prime-to-pN Hecke algebra. For a maximal ideal m of this Hecke
algebra, we can consider the direct factor Mm of M obtained by localization at m. We
say that m is a non-Eisenstein maximal ideal if it has an associated 4-dimensional repre-
sentation of the group Gal(Q/Q) (unramified away from pN and satisfying the familiar
local-global compatibility conditions at the primes not dividing pN), and this representa-
tion is absolutely irreducible. Our second theorem is :

Theorem 1.2. — Let m be a non-Eisenstein maximal ideal of the prime-to-pN Hecke
algebra. The complex Mm has trivial Euler characteristic.

Remark 1.4. — We in fact believe that if m is associated to a Galois representation
which is absolutely irreducible and stays absolutely irreducible after restriction to Galois
groups of real quadratic fields, then the cohomology groups Hi(Mm) are torsion Λ-modules.

The perfect complex M is obtained as the U -ordinary part of the cohomology of
a huge sheaf of Λ-modules Fκ ⊗ Ω(0,2)(−D). This sheaf is defined on the open formal

subscheme X≥1
Kli(p)K of the p-adic formal scheme XKli(p)K attached to XKli(p)K where

the p-rank of the semi-abelian scheme is at least 1 (and the universal rank p group scheme
is multiplicative). This formal scheme contains strictly the ordinary locus which is the
locus where the p-rank is 2. Its image in the minimal compactification is covered by two
affines, and this explains why the complex M is supported in two degrees. The sheaf
Fκ(−D) “interpolates” the sheaves {Ω(k,0)(−D)}k∈Z≥0

in the sense that for all k ∈ Z≥0,
we have a canonical map :

Ω(k,0)(−D)→ Fκ(−D)⊗Λ,k Zp.
The interpolation property rests on the special shape of the universal p-divisible

group over X≥1
Kli(p)K which contains at least a one-dimensional multiplicative p-divisible



4 Higher coherent cohomology and p-adic modular forms of singular weights

group. More precisely, we can define a pro-étale tower : X≥1
Kli(p

∞)K → X≥1
Kli(p)K which

parametrizes the one-dimensional multiplicative p-divisible groups H∞ inside the universal
p-divisible group. The fibers of this last map are isomorphic to 1 + pZp ⊂ P1(Zp) over the
ordinary locus, while the map is an isomorphism over the rank one locus. Denote by ωH∞
the dual of the Lie algebra of H∞, this is a line bundle. Over the space X≥1

Kli(p
∞)K we

have a canonical surjective map Ω(k,0) → ω⊗kH∞ which is an analogue of the projection to
the highest weight vectors in representation theory. The sheaf Fκ is obtained by p-adically
interpolating the powers of ωH∞ . This can be done because the Gm-torsor ωH∞ possesses
a Z×p -reduction, given by the Hodge-Tate period map :

HT : Tp(H
D
∞)→ ωH∞ .

Before taking the ordinary part, the cohomology is enormous. The U -ordinary part
cuts the perfect complex inside this enormous cohomology. There is a heuristic explanation
for this. We explain it at a spherical level, using the T -operator instead (for technical

reasons we sometimes prefer to work at spherical level). Over the complement of X≥1
K (the

supersingular locus), one can prove that the T -operator acts topologically nilpotently on

the sheaf Ω(k,2), when k is large enough. This comes form the following observation. Let
λ : A→ A′ be an isogeny of “type” T between two abelian surfaces defined over a discrete
valuation ring OK . If A and A′ have supersingular reduction, one shows that the isogeny
on the reduction factors through the Frobenius map of A. As a result, the differential of
the isogeny dλ : ωA′ → ωA has to vanish modulo the maximal mK of OK . This property
is special to the supersingular locus.

Making this heuristic argument work requires some efforts. One of the difficulties is
to make sense of the Hecke operators U and T on the integral cohomology. We first need
to define the correspondence underlying the U and T operator integrally. The formulation
of the moduli problem is difficult because it involves the p2 torsion of the universal abelian
variety (the cocharacter of the torus of GSp4 underlying the double coset is not minuscule).
Our approach is to use the factorization diag(p2, p, p, 1) = diag(p, p, p, 1).diag(p, 1, 1, 1) and
factor accordingly the correspondence into two correspondences U1 and U2 and T1 and T2.
The moduli problems underlying U1 and U2 or T1 and T2 can be defined integrally, and the
moduli spaces can even be described locally using the local model theory. There is another
difficulty. The correspondences are not finite flat over the Siegel threefold. Defining the
necessary trace maps in cohomology requires some results from Grothendieck-Serre duality
in coherent cohomology. There is also a subtle normalization issue. But luckily, all this
can be resolved.

Having defined the Hecke operator T , we are able to prove an integral control theorem
for k � 0 :

H0(M ⊗LΛ,k Zp) = H0(XK ,Ω
(k,2)(−D))T−ord

and to show that M is a perfect complex.
It seems very hard to obtain an integral control theorem for all k ≥ 0. We will

nevertheless be able to obtain a control theorem after inverting p by an indirect method.
Over Qp, we can construct an overconvergent version M † of M , obtained by taking the

ordinary part for U of some overconvergent cohomology of the analytic fiber X≥1
Kli(p)K

of X≥1
Kli(p)K with value in a huge Banach sheaf. We observe that U is compact on this

cohomology and we actually develop a theory of finite slope families.
By construction, there is a map M † →M ⊗LZp Qp which is easily seen to be injective

on H0 and surjective on H1. This is a “degeneration” of the classical statement that all
ordinary p-adic modular forms are overconvergent.
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With finite slope overconvergent cohomology classes, we can adapt the argument of
analytic continuation and gluing of [38] and prove that small slope cohomology classes are
classical. In the ordinary case, we obtain that for all k ≥ 0 :

M † ⊗LΛ,k Qp = RΓ(XKli(p)K ,Ω
(k,2)(−D)⊗LZp Qp)

U−ord.

Combining everything, we deduces that the map M † → M ⊗LZp Qp is a quasi-

isomorphism at weights k � 0 and then at all weight k ≥ 0 by some elementary dimension
argument.

The cohomology M ⊗LΛ,k Zp is thus an “integral” structure of the cohomology

RΓ(XKli(p)K ,Ω
(k,2)(−D) ⊗LZp Qp)

U−ord. A very important feature is that M ⊗LΛ,k Zp is

concentrated in degree 0 and 1.

In [34] and [3] a theory of p-adic modular forms in coherent cohomology is developed
for all weights. This means that we consider all possible automorphic vector bundles
Ω(k,r)(−D) for (k, r) ∈ Z≥0 × Z coming from the representations SymkSt ⊗ detrSt of the
group GL2. In this theory, only the degree 0 cohomology is interpolated. Let Λ2 be the two
dimensional Iwasawa algebra. For each pair (k, r) ∈ Z≥0×Z we can define a specialization
morphism (k, r) : Λ2 → Zp. The main theorem of [34] for the group GSp4 (using also the
results of [62]), states that there exists a finite free Λ2-module M ′ such that :

1. for all (k, r) ∈ Z≥0 × Z we have M ′ ⊗Λ2,(k,r) Zp = H0(X≥2
Kli(p)K ,Ω

(k,r)(−D))ord
′
,

2. for all (k, r) ∈ Z≥0×Z≥4, H0(X≥2
Kli(p)K ,Ω

(k,r)(−D))ord
′

is a subspace of the space
of classical modular forms of Iwahori level at p.

In this theorem, X≥2
Kli(p)K is the ordinary locus in X≥1

Kli(p)K and ord′ means
the ordinary part for the usual ordinary idempotent attached to the diagonal matrix
diag(p3, p2, p, 1) ∈ GSp4(Qp). The control theorem holds for weights (k, r) with r ≥ 4.
One can sometimes (after making some localization) improve the control theorem to r ≥ 3
which is exactly the condition under which the corresponding automorphic forms are
discrete series at infinity.

When we specialize M ′ at singular weights we cannot expect to have a good classicity
theorem : we can attach p-adic Galois representations to eigenforms in M ′⊗Λ2,(k,2) Zp but
these Galois representations may not be de Rham at p. It should be true that classical
eigenforms in M ′ ⊗Λ2,(k,2) Zp are exactly those with de Rham associated Galois represen-
tation but unfortunately we do not know how to establish this directly.

On the other hand, eigenforms in H0(M ⊗LΛ,k Zp) correspond to classical automorphic

forms and one often knows that their associated Galois representation is de Rham ([54],
prop. 4.16). There is a natural injective map H0(M ⊗LΛ,k Zp)→M ′⊗Λ2,(k,2) Zp. It should

actually be true that the subspace of M ′⊗Λ2,(k,2)Zp spanned by eigenforms with de Rham

associated Galois representations is “generated” by the image of H0(M ⊗LΛ,k Zp).

It is conjectured that for every simple abelian surface A over Q, there should ex-
ist a cuspidal automorphic form π on GSp4/Q such that the spin L-function of π and
the L-function of H1(A) coincide. When End(A) 6= Z this is known ([85], [42]). See
[8] for a precise conjecture in the case End(A) = Z. These automorphic forms are of
the type we have considered so far as their component at infinity should be a limit of
discrete series and they should realize in the cuspidal coherent cohomology of the sheaf
Ω(0,2). In [61] we were able to prove a modular lifting theorem saying, under many tech-
nical assumptions, that an abelian surface whose associated p-adic Galois representation
is residually modular arises from a p-adic modular form. In that paper, our Taylor-Wiles
system was constructed by letting Galois deformation rings act on the module of ordinary
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p-adic modular forms H0(X≥2
Kli(p)K ,Ω

(0,2)(−D))ord
′
. Congruences are unobstructed for or-

dinary p-adic modular forms, while they are for classical modular forms in weight (0, 2)
because of the non vanishing of H1. The classical Taylor-Wiles method requires unob-
structed congruences. The draw back is that we do not know how to characterize classical
modular forms among ordinary p-adic modular forms in weight (0, 2). In [11] and [12],
Calegari-Geraghty explained how to modify the Taylor-Wiles method in order to apply it
in obstructed situations. They could prove a better (but conditional) modular lifting the-
orem saying, under technical conditions, that an abelian surface whose associated p-adic
Galois representation is residually modular arises from a weight (0, 2) modular form by let-

ting the Galois deformation ring act on some localization of H0(XK ,Ω
(0,2)(−D)⊗Qp/Zp)

provided one could show that the localized cohomology vanishes in degree greater or equal
than 2. Unfortunately, nobody has been able to establish this vanishing for the moment.
As a replacement of H0(XK ,Ω

(0,2)(−D) ⊗ Qp/Zp), we suggest to use H0(M ⊗LΛ,2 Qp/Zp)
where M is the complex provided by theorem 1.1. The point is that p-divisible classes
in H0(M ⊗LΛ,2 Qp/Zp) do come from cohomology classes in H0(XKli(p)K ,Ω

(0,2)(−D)) and
thus from classical automorphic forms. This strategy will be employed in a future joint
work with G. Boxer, F. Calegari and T. Gee.

This paper is organized in four parts. The first part is preliminary. Readers are
suggested to skip it on first reading, and come back to it when necessary. We study the
existence of projectors on complexes of modules. This will be used to define ordinary
projector on cohomology. We present certain technical results on the cohomology of the
sheaf OX+ on an adic space. These are only used in section 14. We also develop a formalism
of cohomological correspondences that is adapted to our situation. Finally we recall some
results concerning automorphic forms and Siegel threefolds over C.

The second part of the work is dedicated to the construction of the perfect complex M
in theorem 1.1. The definition of the complex itself is not so difficult, but establishing that
it is a perfect complex involves a delicate study of the correspondences in characteristic p.

The third part is dedicated to complete the proof of theorem 1.1 and establishing
the control theorem in weight k ≥ 0. The argument is indirect as we have to use over-
convergent cohomology. Most of this part is dedicated to develop a theory of finite slope
overconvergent cohomology. In some sense this is easier than the integral slope zero theory:
we can prove that U is compact and the finiteness of the finite slope cohomology follows
easily. There is nevertheless the delicate problem of proving that the cuspidal cohomology
is concentrated in degree 0 and 1. Finally we show that small slope cohomology classes
are classical. We use the method of [38], but need to rephrase it at the sheaf level (one
cannot glue higher cohomology classes).

In the fourth part we prove that the Euler characteristic of a non-Eisenstein localiza-
tion of our perfect complex is zero by using results of Arthur on the theory of automorphic
forms.

I thank G. Boxer for suggesting that there should exist a theory of p-adic modular
forms for singular weights. The author attended a workshop in McGill Bellairs Research
Institute in 2014 where F.Calegari and D. Geraghty explained their modified Taylor-Wiles
method (now available in [12]). This was a motivation for developing a theory of p-
adic modular forms on higher cohomology. We are pleased to thank the organizers and
speakers of this workshop. I thank N. Fakhruddin for inviting me to the Tata institute and
for helping me to define Hecke operators. In a forthcoming joint work, we will study the
problem of defining Hecke operators on the integral coherent cohomology of more general
PEL Shimura varieties. I thank G. Chenevier for his help with section 15.2.4. I thank G.
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Boxer, F. Calegari, T. Gee, B. Stroh, A. Weiss and L. Xiao for interesting discussions and
feedback. I thank J. Tilouine who introduced me to the modularity conjecture of abelian
surfaces. Finally, I express my gratitude to the referees for their very detailed and helpful
comments. This research is supported by the ANR-14-CE25-0002-01.

PART I

PRELIMINARIES

2. Ordinary projectors on complexes

In this section, R is a complete local noetherian ring with maximal ideal mR. We
assume moreover that R/mR is a finite field. We develop a theory of ordinary (or Hida)
projectors for certain complexes of R-modules.

2.1. Locally finite endomorphisms. — Let Mod(R) be the abelian category of R-
modules. Let Modcomp(R) be the category of mR-adically separated and complete R-
modules. This is a full subcategory of Mod(R). The category Modcomp(R) is not abelian
in general. Nevertheless, there is a notion of exact sequence in Modcomp(R) (a complex
of objects in Modcomp(R) is exact if its image in Mod(R) is). Also, one sees easily that
any arrow M → N in Modcomp(R) has a kernel in Modcomp(R) (its kernel in Mod(R),
which is an object of Modcomp(R)) .

Definition 2.1.1. — Let M be an object of Modcomp(R). Let T ∈ EndR(M). The
action of T on M is locally finite if for all n ∈ N and all v ∈ M/mn

R, the elements

{T kv}k∈N generate a finite R/mn
R submodule of M/mn

R.

Thus, the action of T on M is locally finite if for all n ∈ N, M/mn
R can be written as

an inductive limit of finite and T -stable R-modules.

Lemma 2.1.1. — Let 0→ M1 → M2 → M3 → 0 be an exact sequence in Modcomp(R).
Let T be a R-linear homomorphism acting equivariantly on M1, M2 and M3.

1. If the action of T is locally finite on M3 and M1, it is locally finite on M2.

2. If the action of T is locally finite on M2, it is locally finite on M3.

3. If there exists n ∈ N such that mn
R.M2 = 0 and if T is locally finite on M2, then it

is locally finite on M1.

Proof. Point 2 and 3 are obvious. We check point 1. For all n ∈ N, we have an exact
sequence:

M1/m
n
R →M2/m

n
R →M3/m

n
R → 0.

Let M be the image of M1/m
n
R in M2/m

n
R. The action of T on M is locally finite by 2.

Let v ∈ M2. Since T is locally finite on M3, there is N ∈ N, w ∈ M , a0, · · · , aN−1 ∈ R
such that TNv = w +

∑N−1
i=0 aiT

iv. Since T is locally finite on M , there is N ′ ∈ N,

b0, · · · , bN ′−1 ∈ R such that TN
′
w =

∑N ′−1
j=0 bjT

jw. The submodule of M2/m
n
R generated

by {T iv, T jw, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N ′ − 1} is stable under the action of T .

Remark 2.1.1. — The assumption that mn
R.M2 = 0 in lemma 2.1.1, 3. is necessary: take

R = Zp, M2 =
∏
i∈Z≥0

Zp, M3 =
∏
i∈Z≥0

Z/p
i(i+1)

2 Z, M1 '
∏
i∈Z≥0

Zp the kernel of the

natural map M2 → M3, and T the endomorphism of M2 which maps (ai)i∈Z≥0
∈ M2 to
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(0, pa0, p
2a1, · · · , piai−1, · · · ). One checks that T is locally finite on M2, that T (M1) ⊂M1,

and that T is not locally finite on M1.

Lemma 2.1.2. — Let M be an object of Modcomp(R) and let T be an endomorphism of
M . The action of T on M is locally finite if and only if it is on M/mR.

Proof. We prove it by induction on n. Consider the exact sequence :

mn−1
R /mn

R ⊗RM →M/mn
R →M/mn−1

R → 0

By assumption, the action is locally finite on M/mn−1
R and on mn−1

R /mn
R ⊗RM . It is also

on mn−1
R M/mn

R and finally on M/mn
R by the above lemma.

Lemma 2.1.3. — Assume that T acts locally finitely on an object M of Modcomp(R).
Then there is a unique ordinary projector e ∈ EndR(M) such that :

1. For all v ∈ M , ev = limN→∞ T
N !v where the limit is computed for the mR-adic

topology.

2. e and T commute, we have a T -stable decomposition M = eM ⊕ (1− e)M where
T is bijective on eM and topologically nilpotent on (1− e)M .

Proof. We reduce to the situation where M is a finite R/mn
R-module for some n. Then

M is a finite set and we claim that the sequence {TN !v} is constant for N large enough.
Indeed, the decreasing sequence of modules TN !M is stationnary for N ≥ N0. On TN0!M ,
T acts bijectively, hence has finite order. As a result the projector e is well defined and
all the properties are easily deduced.

Lemma 2.1.4. — Let f : M1 →M2 be a morphism in Modcomp(R). Let T be a R-linear
homomorphism acting equivariantly on M1 and M2. Assume that the induced action of T
is locally finite on M1 and M2 and denote by e the ordinary projector associated to T on
M1 and M2.

1. We have f(eM1) ⊂ eM2 and f((1− e)M1) ⊂ (1− e)M2.

2. Assume that M3 = cokerf ∈Modcomp(R). Then coker(eM1 → eM2) = eM3.

3. Let M0 = kerf . Assume that T is locally finite on M0. Then ker(eM1 → eM2) =
eM0.

Proof. Since f commutes with T , it also commutes with the projector e given by the
formula of lemma 2.1.3. We deduce point 1 which means that f decomposes as the direct
sum of the maps ef and (1− e)f . Using point 1, we deduce easily point 2 and point 3.

2.2. Perfect complexes. — Let D(R) be the derived category of Mod(R). Let
Ccomp(R) be the category of bounded complexes of mR-adically complete and separated
R-modules with morphisms the morphisms of complexes of degree 0. Let Cflat(R) be the
full subcategory of Ccomp(R) whose objects are bounded complexes of mR-adically com-
plete and separated, flat R-modules. Let Dcomp(R) and Dflat(R) be the full subcategories
of D(R) generated by the objects of Ccomp(R) and Cflat(R). We denote by Cperf (R)
the full subcategory of Cflat(R) of complexes of finite free R-modules (also called perfect
complexes), and by Kperf (R) the homotopy category. Its objects are the same as Cperf (R)
but morphisms are homotopy classes of morphisms in Cperf (R). Let Dperf (R) be the full
subcategory of D(R) generated by Cperf (R). The functor Kperf (R) → Dperf (R) is an
equivalence of category ([83], coro. 10.4.7).

The following proposition gives a characterization of Dperf (R) inside Dflat(R).
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Proposition 2.2.1. — Let M• be an object of Cflat(R), concentrated in degree [a, b].
Assume that M•⊗RR/mR has finite cohomology groups. Then M• is quasi-isomorphic to
a perfect complex concentrated in degree [a, b].

Proof. It suffices to show that Hn(M•) is a finite R-module. By [55], lem. 1, p. 44,
we would then deduce that M• is quasi-isomorphic to a perfect complex concentrated in
degree [a, b].

We have short exact sequences of complexes

0→ mn
R/m

n−1
R ⊗RM• →M•/mn

R →M•/mn−1
R → 0

and by induction, we deduce easily that the cohomology groups Hi(M•/mn
R) are finite

R/mn
R-modules. As a result, the system {Hi(M•/mn

R)} satisfies the Mittag-Leffler condi-
tion. By [EGA], III, chap. 0, prop. 13.2.3, we deduce that Hi(M•) = limn Hi(M•/mn

R).
It follows that Hi(M•) is complete and separated. The map Hi(M•)→ limn Hi(M•)/mn

R

is an isomorphism. Therefore, Hi(M•) is a finite R-module if and only if Hi(M•)/mR is a
finite R-module by topological Nakayama’s lemma. Recall ([83], thm. 5.6.4) that there is
a spectral sequence

Ep,q2 = TorR−p(H
q(M•), R/mR)⇒ Hp+q(M• ⊗R R/mR)

with d2 : Ep,q2 → Ep+2,q−1
2 . We prove by descending induction on i that Hi(M•) is a

finite R-module. Assume this holds for i ≥ n + 1 and let us prove it for i = n. The map
Hn(M•)/mR → Hn(M•/mR) has a kernel which admits a surjective map from subquotients
of the modules Torr+1(Hn+r(M•), R/mR) for r ≥ 1. There are only finitely many values
of r for which these modules are non-zero and all are finite dimensional by the induction
hypothesis. It follows that the kernel is finite dimensional and thus Hn(M•)/mR is also
finite dimensional and Hn(M•) is a finite R-module by Nakayama’s lemma.

The following is a version of Nakayama’s lemma for complexes.

Proposition 2.2.2. — Let f : M• → N• be a map in Cflat(R). We assume that f ⊗ 1 :
M• ⊗R R/mR → N• ⊗R R/mR is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. Consider the cone C(f) of the map f . We need to prove that C(f) is acyclic. C(f)
is an object of Cflat(R) and C(f)⊗R R/mR is the cone of f ⊗ 1 and is acyclic. It follows
from the previous proposition that C(f) is quasi-isomorphic to a perfect complex and
thus, the groups Hi(C(f)) are finite R-modules. We now prove by descending induction
on i that Hi(C(f)) = 0. Assume this holds for i ≥ n + 1. Using the spectral sequence
Ep,q2 = TorR−p(H

q(M•), R/mR) ⇒ Hp+q(M• ⊗R R/mR) we see that Hn(C(f))/mR ↪→
Hn(C(f)/mR) = 0. By Nakayama’s lemma, we deduce that Hn(C(f)) = 0.

2.3. Projectors. — We now consider projectors on complexes.

Definition 2.3.1. — Let M• ∈ Cflat(R). Let T ∈ EndCflat(R)(M
•). We say that T is

locally finite on M• if T acts locally finitely on each M i.

By lemma 2.1.3, we can attach to T a projector e ∈ EndCflat(R)(M
•).

Definition 2.3.2. — Let M• ∈ Dflat(R). Let T ∈ EndDflat(R)(M
•). We say that T is

locally finite if there exist M•0 ∈ Cflat(R) a representative of M• and T0 ∈ EndCflat(R)(M
•
0 )

a representative of T which is locally finite.

The following is a characterization of locally finite morphisms.
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Proposition 2.3.1. — Let M• ∈ Dflat(R). Let T ∈ EndDflat(R)(M
•). The following

are equivalent :

1. T is locally finite,

2. T is locally finite on the cohomology groups Hi(M• ⊗LR R/mR) and there exist

representatives M•0 ∈ Cflat(R) of M• and T0 ∈ EndCflat(R)(M
•
0 ) of T .

Proof. The implication 1. ⇒ 2. follows from lemma 2.1.1. We do the other implication.
Let M•0 and T0 be representatives of M• and T . We claim that M•0 has a subcomplex
N• ∈ Cflat(R) which has the properties:

1. all the differentials d : N i → N i+1 are 0 modulo mR,

2. the inclusion map i : N• →M•0 has a section s : M•0 → N•,

3. the maps i and s are quasi-isomorphisms.

It follows that N• and s ◦ T0 ◦ i are representatives of M• and T , and moreover s ◦ T0 ◦ i
acts like T on Hi(M• ⊗LR R/mR) = N i/mR and is therefore locally finite.

It remains to prove the claim. Fix some index i. By lemma 2.3.1, we can find
decompositions M i

0 = J i ⊕ Ki and M i+1
0 = J i+1 ⊕ Ki+1 such that d : M i

0 → M i+1
0

preserves these decompositions and induces isomorphisms J i → J i+1 and the zero map
Ki/mR → Ki+1/mR. It is easy to check that we get a subcomplex S• of M•0 by setting

Sj = M j
0 if j 6= i, i + 1 and Sj = Kj if j ∈ {i, i + 1}. This subcomplex is a direct factor

of M•0 and the differential d : Si → Si+1 vanishes modulo mR. Repeating the process for
all indices will produce a complex N• with the expected property.

Lemma 2.3.1. — Let f : M → N be a map in Modcomp(R). Assume that M and N
are flat. There is a decomposition M = M1⊕M2 and N = N1⊕N2 such that f(Mi) ⊂ Ni

for i ∈ {1, 2}, f |M1 : M1 → N1 is an isomorphism and f |M2 : M2 → N2 is zero modulo
mR.

Proof. Let M be a flat object of Modcomp(R). Let {ei}i∈I be a basis of M/mR as an

R/mR-module. Let {ei}i∈I ∈M I be a lift of {ei}i∈I . Denote by R̂I the mR-adic completion

of RI . The map RI → M corresponding to {ei}i∈I induces an isomorphism R̂I → M by
Nakayama’s lemma and the flatness assumption on M . We refer below to {ei}i∈I as a
topological basis of M . Let f : M → N be a map as in the lemma. Let {ei}i∈I be a
topological basis of M and let {ei}i∈I be its reduction modulo mR. We can assume that
I = I ′

∐
I ′′ and that {ei}i∈I′′ is a basis of ker(M/mR → N/mR). We may now take a

topological basis for N , denoted by {hj}j∈J with the property that J = J ′
∐
J ′′, J ′ = I ′

and hj = f(ej) for j ∈ J ′. In these basis, f is represented by an upper triangular matrix :(
1I′×I′ C

0 B

)
,

where 1I′×I′ is the identity matrix of size I ′ × I ′, C = (ci,j)(i,j)∈I′×I′′ ∈ MI′×I′′(R) and
B ∈MI′′,J ′′(mR). These matrices have the property that all their columns tend to 0 in R
(for the filter of the complements of the finite subsets). For each l ∈ I ′′, we can replace
el by el −

∑
i∈I′ ci,lei (one checks that the sum converges). In this new basis, f has the

correct shape : (
1I′×I′ 0

0 B

)
.

Let M• ∈ Dflat(R) and T ∈ EndDflat(R)(M
•) be a locally finite endomorphism. For

each locally finite representative M•0 ∈ Cflat(R) of M•, and T0 ∈ EndCflat(R)(M
•
0 ) of T ,
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we get a projector e0 ∈ EndCflat(R)(M
•
0 ) and a direct factor e0M

•
0 of M•0 . We can consider

ē0 the image of e0 in EndDcomp(R)(M
•) and the associated direct factor ē0M

• of M• in
Dcomp(R), which is represented with e0M

•
0 . We now discuss the independence on the lift

(M•0 , T0).

Lemma 2.3.2. — Let (M•0 , T0) and (M•1 , T1) be two locally finite representatives of
(M•, T ). We denote by e0 and e1 the projectors associated to T0 and T1, and by ē0 and
ē1 their images in EndDcomp(R)(M

•). Assume that ē0M
• is an object of Dperf (R). Then

the canonical map ē0M
• → ē1M

• is a quasi-isomorphism.

Proof. On Hi(M•/mR) we have T0 = T1 and T0 and T1 are locally finite by lemma 2.1.1.
Moreover, the projector e′ on Hi(M•/mR) associated to T0 = T1 acting on Hi(M•/mR)
is also equal to the projector induced by ē0 or ē1 by lemma 2.1.4. It follows that the
map ē0Hi(M•/mR) → ē1Hi(M•/mR) is an isomorphism. By proposition 2.2.1, ē1M

• is a
perfect complex. It follows that the natural map ē0M

• → ē1M
• can be represented by a

map in Cperf (R). By proposition 2.2.2, this map will be a quasi-isomorphism.

In the sequel of the paper, and under the assumptions of lemma 2.3.2, we will some-
times speak of the projector associated to a locally finite endomorphism, but one should
keep in mind that this projector could depend on the choice of a particular representative,
although two representatives give canonically isomorphic direct factors.

Remark 2.3.1. — In [41], lem. 2.12, there is a definition of the ordinary projector
attached to an element T ∈ EndDcomp(R)(M

•) in the case where M• is an object of

Dperf (R). In this setting, the condition of being locally finite is automatically satisfied.
Our definition in a more general setting is compatible with the definition of op. cit.. It is
proven in op. cit. that the projector is unique. This rests on the property that the algebra
EndDcomp(R)(M

•) is finite over R when M• is a perfect complex.

3. Cohomological preliminaries

This section contains a number of technical results concerning the cohomology of adic
spaces. These results are only used in part III of this work.

3.1. Cohomology of O+
X . — Let k be a complete non-archimedean field with ring of

integers Ok and maximal ideal mOk . In this section, we will only consider adic spaces
X over Spa(k,Ok) which are of finite type (in particular quasi-compact), and separated.
The structural sheaf of X is denoted by OX . There are a subsheaves O+

X and O++
X of OX

defined by

O+
X (U) = {f ∈ OX (U), ∀x ∈ U |f |x ≤ 1} and O++

X (U) = {f ∈ OX (U), ∀x ∈ U |f |x < 1}

for all open subsets U of X . If U = Spa(A,A+) for a complete Tate algebra topologically of
finite type, and A0 denotes the subring of A of power bounded elements, and A00 the ideal
of A0 of topologically nilpotent elements, then O+

X (U) = A+ = A0 and O++
X (U) = A00

([35], lem. 4.4).

Proposition 3.1.1. — Let X be a separated adic space of finite type. The natural maps

Ȟi(X ,O+
X )→ Hi(X ,O+

X )

and

Ȟi(X ,O++
X )→ Hi(X ,O++

X )

from Čech cohomology to cohomology are isomorphisms.
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Proof. There is an isomorphism in the category of locally ringed spaces (X ,O+
X ) =

limX(X,OX) where X runs over all formal models of X (see [69], thm. 2.22). By [19],
prop. 3.1.10, we deduce that Hi(X ,O+

X ) = limX Hi(X,OX). Since X is quasi-compact, one

can compute Čech cohomology using only finite coverings (see [26], p. 224). It follows that
Ȟi(X ,O+

X ) = limX Ȟi(X,OX). Since X is separated, the formal models X are separated

([7], prop. 4.7) and Hi(X,OX) = Ȟi(X,OX).
We prove the second isomorphism. Let X be a formal scheme which is topologically

of finite type over Spf Ok. Let X̄ be its special fiber over Spec Ok/mOk and X̄red the
reduced special fiber. There is a surjective map of coherent sheaves over X : OX → OX̄red

and we denote by IX its kernel. Under the isomorphism of locally ringed spaces (X ,O+
X ) =

limX(X,OX) where X runs over all formal models of X , we have O++
X = colimXIX. The

second isomorphism can be proved by repeating the proof of the first isomorphism.

We now recall a result of Bartenwerfer.

Theorem 3.1.1 ([2]). — Let X be a smooth affinoid adic space of finite type. For all
i > 0, Hi(X ,O+

X ) is annihilated by a non-zero element c(X ) ∈ Ok. If X admits a smooth

affine formal model, then Hi(X ,O++
X ) = 0 for all i > 0.

Remark 3.1.1. — We do not known whether Hi(X ,O+
X ) = 0 for affinoids which admit

a smooth affine formal models. For some results in dimension 1, see [82] sect. 3.

Corollary 3.1.1. — Let X be an admissible smooth and separated formal scheme. Let X
be its generic fiber. Then the canonical map Hi(X,mOkOX)→ Hi(X ,O++

X ) is an isomor-
phism.

Proof. Take an affine covering U of X. The cohomology of mOkOX is computed by Čech

cohomology with respect to this covering : Hi(X,mOkOX) = Ȟi
U(X,mOkOX). Let U be

the generic fiber of U. Let V be an open in X with generic fiber V. Since X is smooth,
mOkOX(V) = O++

X (V). We deduce that Ȟi
U(X,mOkOX) = Ȟi

U (X ,O++
X ). By [26] corollaire

on page 213 and theorem 3.1.1, we have Ȟi
U (X ,O++

X ) = Hi(X ,O++
X ).

3.2. Cohomology of projective limits of sheaves. — We denote by p a topologically
nilpotent unit in k.

Lemma 3.2.1. — Let X be a smooth affinoid adic space. The map Hi(X ,OX ) →
limn Hi(X ,OX /pnO+

X ) is an isomorphism.

Proof. First assume that i > 0. We need to prove that limn Hi(X ,OX /pnO+
X ) = 0. Using

the exact sequence 0 → pnO+
X → OX → OX /p

nO+
X → 0 and theorem 3.1.1, we deduce

that Hi(X ,OX /pnO+
X ) is annihilated by some constant c ∈ Ok \ {0} for all i, n > 0. It

follows that limn Hi(X ,OX /pnO+
X ) is annihilated by c. On the other hand, this group is p-

divisible. It follows that it vanishes. The cokernel of the map H0(X ,OX )/pnH0(X ,O+
X )→

H0(X ,OX /pnO+
X ) is killed by c. It follows that the map limn H0(X ,OX )/pnH0(X ,O+

X )→
limn H0(X ,OX /pnO+

X ) is surjective : its cokernel is killed by c and both sides are p-
divisible. On the other hand, H0(X ,OX ) is a Banach space and, since X is reduced,
H0(X ,O+

X ) is bounded inside this Banach space. It follows that ∩npnH0(X ,O+
X ) = {0}.

Let F be a locally free sheaf of OX -modules. We assume that there exists F+ ⊂ F
a locally free sheaf of O+

X -modules such that F = F+ ⊗O+
X

OX .
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Lemma 3.2.2. — Assume that X is a smooth and separated adic space. Let U be a finite
affinoid covering of X , such that F+|U is trivial. There is a non-zero element c ∈ Ok
depending on U such that :

— for all n ∈ N, the map Ȟi
U (X ,F/pnF+)→ Hi(X ,F/pnF+) from Čech cohomol-

ogy relative to U to cohomology has kernel and cokernel annihilated by c,
— the map Ȟi

U (X ,F+)→ Hi(X ,F+) has kernel and cokernel killed by c,

— the map limn Ȟi
U (X ,F/pnF+)→ limn Hi(X ,F/pnF+) has kernel killed by c and

is surjective.

Proof. Considering the spectral sequence associated to the covering
∐
Ui∈U Ui → X , we

deduce that the kernel and cokernel of the maps Ȟi
U (X ,F/pnF+) → Hi(X ,F/pnF+)

are subquotients of Hk(UJ ,F/pnF+) for k > 0 and UJ some intersection of the affinoids
in U . By theorem 3.1.1, both the kernel and cokernel are killed by some non-zero constant
c (which does not depend on n). The same applies to the map Ȟi

U (X ,F+)→ Hi(X ,F+).

It follows that the map limn Ȟi
U (X ,F/pnF+) → limn Hi(X ,F/pnF+) has kernel killed

by c. Let us prove that the cokernel is killed by c2. Since both modules are p-divisible,
this will show the surjectivity. Let (fn) ∈ limn Hi(X ,F/pnF+). Then for all n, there
exists gn in Ȟi

U (X ,F/pnF+) such that the image of gn is cfn. One sees that (cgn) ∈
limn Ȟi

U (X ,F/pnF+) has image (c2fn).

Proposition 3.2.1. — Let X be a smooth and separated adic space. The map

Hi(X ,F )→ lim
n

Hi(X ,F/pnF+)

is surjective. If X is proper, the map is an isomorphism.

Proof. Let U be a finite affinoid covering of X , such that F+|U is trivial. The map
limn Hi

U (X ,F/pnF+)→ limn Hi(X ,F/pnF+) is surjective. To prove the surjectivity of

the map of the proposition, it suffices to show that the map Hi(X ,F ) = Ȟi
U (X ,F ) →

limn Hi
U (X ,F/pnF+) is surjective. Since all groups are p-divisible it is enough to prove

that the cokernel is killed by some non-zero element c ∈ OK . This follows from the lemma
below where K• is the Čech complex which computes Ȟi

U (X ,F ) and K•α is the complex

that computes Ȟi
U (X ,F/pαF+). The fact that K• is the limit of the K•α is a consequence

of lemma 3.2.1.
We now prove injectivity in case X is proper. The kernel of the map of the proposition

is
∩pnIm(H i(X ,F+)→ Hi(X ,F )).

Since Hi(X ,F ) is a finite dimensional k-vector space, we need to show that

Im(Hi(X ,F+)→ Hi(X ,F ))

is a lattice. This will follow if we can show that that H i(X ,F+) is the sum of a finite type
Ok-module and a torsion group. This can be proved as follows. Take a normal proper
formal model X of X such that the sheaf F+ comes from a locally free sheaf F on X. We
can obtain such a model as follows. By Raynaud’s theory, we can find a model X′ of X
which admits an affinoid covering U′ whose generic fiber refines U . We can replace X′ by
its normalisation X in X . This is still a formal model. The sheaf F+ comes from a locally
free sheaf F on X′. By [52], lemma 2.6, this model is automatically proper. Let V be an
affine covering of X and V be its generic fiber. We have a map from Čech cohomology to
cohomology Ȟi

V(X ,F+)→ Hi(X ,F+) whose kernel and cokernel are killed by a non-zero

constant c by lemma 3.2.2. The cohomology Ȟi
V(X ,F+) is identified with the cohomology

Hi(X,F) and it is a finite Ok-module since X is proper.
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Lemma 3.2.3. — Let (K•α)α∈N be a projective system of complexes of Ok-modules. Let
K• = limαK

•
α. Assume that there is an element c ∈ Ok such that the cokernel of the

map Kn → Kn
α is killed by c for all n and α. Then the cokernel of the map Hi(K•) →

limα Hi(K•α) is killed by c.

Proof. For all i we have exact sequences :

0→ Bi(K•α)→ Zi(K•α)→ Hi(K•α)→ 0

Clearly Zi(K•) = limα Z
i(K•α) ↪→ Ki. Let (xα) ∈ limα Hi(K•α). Let zα ∈ Zi(K•α) be a

lift of xα. Let Imα(zα+1) be the image of zα+1 in Zi(K•α). Then Imα(zα+1)−zα = d(wα) ∈
Bi(K•α). Let tα ∈ Ki−1 be a lift of cwα. The sequence cz0, cz1 + d(t0), cz2 + d(t0 + t1), · · ·
converges in Zi(K•) to a lift of c(xα).

3.3. Base change. — Let f : X → Y be a quasi-compact map of finite type adic spaces
over Spa(k,Ok). Let i : Z → Y be a map of adic spaces over Spa(k,Ok) inducing an
homeomorphism from Z to i(Z) and for all z ∈ Z a bijective map (k(i(z)), k(i(z))+) →
(k(z), k(z)+). We can form the following cartesian diagram :

XZ
i′ //

f ′

��

X

f
��

Z i // Y

Lemma 3.3.1. — For all n ∈ N, the canonical map (i′)−1O++
X /pn → O++

XZ /p
n is an

isomorphism.

Proof. The stalk of these sheaves at a point x ∈ XZ is k(x)00/pn (compare with [69],
prop. 2.25).

Proposition 3.3.1. — For all n ∈ N, we have the base change formula :

i−1Rf?O
++
X /pn = Rf ′?O

++
XZ /p

n.

Proof. The sheaf Rkf?O
++
X /pn is sheaf associated to the presheaf U 7→ Hk(f−1(U),O++

X /pn).

Thus, i−1Rkf?O
++
X /pn is the sheaf associated to the presheaf V 7→ colimV⊂UHk(f−1(U),O++

X /pn)
where U runs over the neighborhoods of V in Y. Using the lemma above, we de-
duce that Rkf ′?O

++
XZ /p

n = Rkf ′?i
′−1O++

X /pn is the sheaf associated to the presheaf

V 7→ colimXV ⊂WHk(W,O++
X /pn) where W runs along the neighborhoods of XV in X .

Since the map f is quasi-compact, we deduce that for V a quasi-compact open in Z,
the set of neighborhoods of XV of the form f−1(U) for U a neighborhood of V in Y is
cofinal in the set of all neighborhoods of XV in X .

3.4. Cohomology of torus embeddings. — Let T be a split torus over Spec Z. We
will denote by T the formal torus over Spf Zp obtained by taking the completion of T
along its special fiber T × Spec Fp. We denote by T an → Spa(Qp,Zp) the analytification
of T × Spec Qp ( in other words, T an = Spa(Qp,Zp) ×Spec Q T , see [35], prop. 3.8). We
denote by T rig ⊂ T an the generic fiber of T (see [35], prop. 4.2). Let X?(T ) denote the
group of cocharacters of T . Let Σ be a rational polyhedral cone in X?(T ). Let T → TΣ

be the associated toric embedding defined over Spec Z ([40]). We define obviously T anΣ ,
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T rigΣ and TΣ. Let Σ′ be a refinement of Σ. We can similarly define T anΣ′ , T
rig
Σ′ and TΣ′ . We

say that Σ′ is smooth if TΣ′ is smooth.

Proposition 3.4.1. — With the notations as above, let f : T anΣ′ → T anΣ be the natural
morphism. Assume that Σ′ is smooth. Then we have a quasi-isomorphism :

O++
TanΣ
→ Rf?O

++
Tan

Σ′
.

Proof. We first observe that the result holds true after inverting p by classical results on
toroidal embeddings (see [40], coro. 1 on page 44) and the comparison theorem stated
in [70], thm. 9.1. It follows easily that O++

TanΣ
' f?O

++
Tan

Σ′
and we are left to prove that

Rif?O
++
Tan

Σ′
= 0 for all i > 0. It suffices to show that Rif?O

++
Tan

Σ′
/p = 0 for all i > 0 since this

will imply that multiplication by p is surjective on Rif?O
++
Tan

Σ′
for all i > 0 and we know

that this sheaf is torsion.
Let x ∈ T anΣ . Let σ ∈ Σ be the minimal cone such that x ∈ T anσ . This means that

x belong to the closed stratum in T anσ . Let σR ⊂ X?(T )R be the R-span of σ. Define
X?(T2) = X?(T ) ∩ σR. This is a saturated submodule of X?(T ). It follows that X?(T2)
is a free Z-module and a direct factor. We choose a direct factor X?(T1). We have
X?(T ) = X?(T1)⊕X?(T2). Let T = T1 × T2 be the associated decomposition of T .

Then we have T anσ ' T an1 ×T an2,σ. Moreover, since σ spans X?(T2), we deduce that the
closed stratum of T an2,σ for the action of T an2 is reduced to a point which we call 0. Then

x = (x′, 0) ∈ T an1 × T an2,σ. Moreover, f−1(T anσ ) ' T an1 × T an2,Σ′′ where Σ′′ is the polyhedral

decomposition (σ ∩Σ′)∩X?(T2). Let f2 : T an2,Σ′′ → T an2,σ be the natural projection deduced

from f . Let f ′2 : x′ × T an2,Σ′′ → x′ × T an2,σ be the map obtained from f2 by base change.
By proposition 3.3.1, we have

Rif?O
++
Tan

Σ′
/p|(x′,0) = Ri(f ′2)?O

++
x′×Tan

2,Σ′′
/p|(x′,0).

First assume that x is a maximal point corresponding to a rank 1 valuation on k(x).

Set U0 = x′× T rig2,σ . Fix an isomorphism T2 ' Gs
m for some integer s. Let p = (p, · · · , p) ∈

T an2 (Qp). Then the {Un = pnU0}n∈N form a fundamental system of neighborhoods of x in

x′×T an2,σ. It is enough to prove that Hi(f−1(Un),O++
x′×Tan

2,Σ′′
) = 0 for all i > 0 and all n ≥ 0.

Using the action of p we are reduced to the case of U0. There,

Hi(f−1(U0),O++
x′×Tan

2,Σ′′
) = Hi(x′ × T rig2,Σ′′ ,O

++

x′×T rig
2,Σ′′

) = Hi(T2,Σ′′ , k(x)00⊗̂ZpOT2,Σ′′ )

by corollary 3.1.1 applied over the non-archimedean field (k(x), k(x)+). By clas-
sical results on toroidal embeddings (see [40], coro. 1 on page 44) we find that
Hi(T2,Σ′′ , k(x)00⊗̂OT2,Σ′′ ) = Hi(T2,σ, k(x)00⊗̂OT2,σ). But Hi(T2,σ, k(x)00⊗̂OT2,σ) = 0 for

i > 0 since T2,σ is affine.
If x is not a maximal point, let x̃ be the maximal generisation of x. Then

Rif?O
++
Tan

Σ′
/p|x = Rif?O

++
Tan

Σ′
/p|x̃ = 0

by [82], prop. 1.4.10 and example 1.5.2.

4. Correspondences and coherent cohomology

In this section we develop a formalism of cohomological correspondences in coherent
cohomology and prove a few results that will allow us to consider Hecke operators on the
coherent cohomology of Shimura varieties.
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4.1. Preliminaries on residue and duality. — We start by recalling some results of
the duality theory for coherent cohomology. Standard references are [32] and [15]. For
a scheme X we let Dqcoh(OX) be the subcategory of the derived category D(OX) of OX -

modules whose objects have quasi-coherent cohomology sheaves. We let D+
qcoh(OX) (resp.

D−qcoh(OX)) be the full subcategory of Dqcoh(OX) whose objects have trivial cohomology

sheaves in sufficiently negative (resp. positive) degree. We let Db
qcoh(OX) be the full

subcategory of Dqcoh(OX) whose objects have trivial cohomology sheaves for all but finitely

many degrees. We remark that if X is locally noetherian D+
qcoh(OX) is also the derived

category of the category of bounded below complexes of quasi-coherent sheaves on X ([32],
coro. 7.19). We let Db

qcoh(OX)fTd be the full subcategory of Db
qcoh(OX) whose objects are

quasi-isomorphic to bounded complexes of flat sheaves of OX -modules (see [32], def. 4.3
on p. 97). Let us fix for the rest of this section a noetherian affine scheme S.

4.1.1. Embeddable morphisms. — Let X, Y be two S-schemes and f : X → Y be a
morphism of S-schemes. The mophisme f is embeddable if there exists a smooth S-
scheme P and a finite map i : X → P ×S Y such that f is the composition of i and the
second projection (see [32], p. 189). A morphism f is projectively embeddable if it is
embeddable and P can be taken to be a projective space over S (see [32], p. 206).

4.1.2. The functor f !. — Let f : X → Y be a morphism of S-schemes. There is a functor
Rf? : Dqcoh(OX) → Dqcoh(OY ). By [32], thm. 8.7, if f is embeddable, we can define a

functor f ! : D+
qcoh(OY )→ D+

qcoh(OX). If f is projectively embeddable, by [32] thm. 10.5,

there is a natural transformation (trace map) Rf?f
! ⇒ Id of endofunctors of D+

qcoh(OY ).

Moreover, by [32], thm. 11. 1, this natural transformation induces a duality isomorphism:

HomDqcoh(OX)(F , f !G )
∼→ HomDqcoh(OY )(Rf?F ,G )

for F ∈ D−qcoh(OX) and G ∈ D+
qcoh(OY ).

The functor f ! for embeddable morphisms enjoys many good properties. Let us record
one that will be crucially used.

Proposition 4.1.2.1 ([32], prop. 8.8). — If F ∈ D+
qcoh(OY ) and G ∈ Db

qcoh(OY )fTd ,

we have a functorial isomorphism f !F ⊗L Lf?G = f !(F ⊗L G ).

4.1.3. Dualizing sheaf and cotangent complex. — A morphism f : X → S is called a local

complete intersection (abbreviated lci) if locally on X we have a factorization f : X
i→

Z → S where i is a regular immersion (see [EGA] IV, def. 16.9.2) and Z is a smooth
S-scheme. If f is lci, we can define the cotangent complex of f denoted by LX/S (see [37],
prop. 3.2.9). This is a perfect complex concentrated in degree −1 and 0. Its determinant
in the sense of [43] is denoted by ωX/S .

Proposition 4.1.3.1. — If h : X → S is an embeddable morphism and a local com-
plete intersection of pure relative dimension n, then f !OX = ωX/S [n] where ωX/S is the
determinant of the cotangent complex LX/S.

Proof. This follows from the very definition of f ! given in thm 8.7 of [32].

Corollary 4.1.3.1. — Let h : X → S, g : Y → S be embeddable morphisms of S-
schemes which are lci of pure dimension n. Let f : X → Y be an embeddable morphism
of S-schemes. Then f !OY = ωX/S ⊗ f?ω−1

Y/S is an invertible sheaf.
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Proof. We have h!OS = ωX/S [n]. On the other hand,

h!OS = f !(g!OS)

= f !(ωY/S [n])

= f !(OY ⊗ ωY/S [n])

= f !(OY )⊗ f?ωY/S [n].

4.2. Fundamental class. — Let X,Y be two embeddable S-schemes and let f : X → Y
be an embeddable morphism. Under certain assumptions, we can construct a natural map

Θ : f?OY → f !OY

which we call the “fundamental class”. Our construction of the fundamental class is com-
pletely ad hoc and rather elementary. The interest of this fundamental class is that if f is
projectively embeddable, applying Rf? and taking the trace we get a map :

Tr : Rf?f
?OY → OY .

4.2.1. Construction 1. — Assume that X and Y are local complete intersections over S
of the same pure relative dimension. Assume that X is normal and that there is an open
V ⊂ X which is smooth over S, whose complement is of codimension 2 in X and an open
U ⊂ Y which is smooth and such that f(V ) ⊂ U . In this case, it is enough to specify the
fundamental class over V because, by normality, it will extend to X. Then over V , we
define the fundamental class to be the determinant of the map df : f?Ω1

U/S → Ω1
V/S .

4.2.2. Construction 2. — Here is another important example. Assume simply that f :
X → Y is a finite flat map. In this situation, f !OY = Hom(f?OX ,OY ). We have a trace
morphism trf : f?OX → OY and the fundamental class is defined by Θ(1) = trf .

4.2.3. Comparison. — We check that the two constructions coincide in the situation
where X,Y are smooth over S and the map X → Y is finite flat. In this situation,
X → Y is lci (1) and it makes sense to compare our two constructions of the fundamental
class.

Lemma 4.2.3.1. — The cotangent complex LX/Y is represented by the complex

[Ω1
Y/S ⊗OY OX

df→ Ω1
X/S ]. The determinant det(df) ∈ ωX/Y = f !OY is the trace

map trf .

Proof. We can first assume that S, Y and X are affine because the question is local on
X. We have a closed embedding (in fact a regular immersion) i : X ↪→ X ×S Y of X into
the smooth Y -scheme X ×S Y . We have an exact sequence :

0→ IY → OY×SY → OY → 0

which gives after tensoring with OX above OY

0→ IX → OX×SY → OX → 0

where IX is the ideal sheaf of the immersion i. It follows that IX/I2
X = IY /I2

Y ⊗OY OX =
Ω1
Y/S ⊗OY OX .

On the other hand, i?Ω1
X×SY/Y = Ω1

X/S . The cotangent complex is represented by

[IX/I2
X → i?Ω1

X×SY/Y ] which is the same as [Ω1
Y/S ⊗OY OX → Ω1

X/S ].

1. Observe that X ↪→ X ×S Y is a regular immersion of X in the smooth Y -scheme X ×S Y .
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The morphism f? detLX/Y = Hom(f?OX ,OY )→ OY is the residue map which asso-

ciates to ω ∈ f?Ω1
X/S and to (t1, · · · , tn) local generators of the ideal IX over Y the function

Res[ω, t1, ..., tn]. It follows from [32], property (R6) on page 198 that the determinant of
[Ω1
Y/S ⊗OY OX → Ω1

X/S ] maps to the usual trace map.

4.2.4. Fundamental class and divisors. — Let DX ↪→ X and DY ↪→ Y be two effective,
reduced Cartier divisors relative to S. We assume that f : X → Y restricts to a map
f |DX : DX → DY . We moreover assume that the induced map DX → f−1(DY ) is
an isomorphism of topological spaces. We assume that the fundamental class Θ of f is
defined, so that we are either in the situation of construction 1 or construction 2.

Lemma 4.2.4.1. — 1. In the setting of construction 1, assume moreover that over
the smooth locus Xsm of X, DX ∩ Xsm is a normal crossing divisor and that
over the smooth locus Y sm of Y , DY ∩ Y sm is a normal crossing divisor. Then
the fundamental class Θ : OX → f !OY restricts to a morphism : OX(−DX) →
f !OY (−DY ).

2. In the setting of construction 2, the fundamental class Θ : OX → f !OY restricts
to a morphism : OX(−DX)→ f !OY (−DY ).

Proof. We first assume thatX and Y are smooth, DX and DY are relative normal crossing
divisors. In that case, we have a well-defined differential map df : f?Ω1

Y/S(logDY ) →
Ω1
X/S(logDX). Taking the determinant yields det df : f? det Ω1

Y/S(DY ) → det Ω1
X/S(DX)

or equivalently det df : OX(−DX)→ f !OY (−DY ). We work in the setting of construction
1. Let V be an open subset of X. Let s ∈ OX(−DX)(V ) be a section. We deduce that
Θ(s) ∈ f !OY (V ) actually belongs to f !OY (−DY )(V ∩ U) where U is a smooth open in X
whose complement is of codimension 2. But then f !OY (−DY )(V ) = f !OY (−DY )(V ∩ U)
and the lemma is proven. We now work in the setting of construction 2. The lemma is
then equivalent to the obvious assertion that the trace of a section which vanishes along
DX will vanish along DY (since DY is reduced).

4.2.5. Base change. — Assume that we are in the situation of construction 1 or 2. Let
Θ : f?OY → f !OY be the fundamental class. Consider a cartesian diagram :

X ′
j //

f ′

��

X

f
��

Y ′
i // Y

Proposition 4.2.5.1. — Assume that i is an open immersion or that f is a finite flat
morphism. Then there is a natural isomorphism of sheaves j?f !OY = (f ′)!OY ′

(2). More-
over, if we denote by Θ : OX → f !OY the fundamental class of f , then j?Θ : OX′ →
(f ′)!OY ′ is the the fundamental class of f ′.

Proof. If i is an open immersion, the formula j?f !OY = (f ′)!OY ′ follows from [32], thm.
8.7, 5. If f is finite flat, the formula j?f !OY = (f ′)!OY ′ is obvious from the definitions:
one reduces to the case that Y = Spec A, X = Spec B, Y ′ = Spec A′, X ′ = Spec B′.
We may even assume that B is a free A-module after further localization on Y . Then the
claim reduces to the following isomorphism : A′ ⊗A HomA(B,A)

∼→ HomA′(B
′, A′). The

compatibility of the fundamental class with base change is obvious from its definition (in

2. In this formula, j? is not taken in the derived sense
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construction 1 this follows from functorial properties of differentials, in construction 2 this
follows from functorial properties of the trace morphism).

4.3. Cohomological correspondences. — Let X, Y be two S-schemes. We adopt
the following definition:

Definition 4.3.1. — 1. A correspondence C over X and Y is a diagram of S-
morphisms :

C
p1

  

p2

~~
X Y

2. Let F be a coherent sheaf over X and G a coherent sheaf over Y . A cohomological
correspondence from F to G is a map T : R(p1)?p

?
2F → G .

Associated with T , we have a map on cohomology which is still denoted by T :

RΓ(X,F )
p?2→ RΓ(C, p?2F ) = RΓ(Y,R(p1)?p

?
2F )

T→ RΓ(Y,G ).

Remark 4.3.1. — In practice X, Y and C will have the same pure relative dimension
over S and the morphisms p1 and p2 will be surjective and generically finite.

Remark 4.3.2. — If we assume that p1 is projectively embeddable the map T can be
seen, by adjunction, as a map p?2F → p!

1G .

4.3.1. Construction of cohomological correspondences. — We now explain how we can
construct cohomological correspondences in practice. Let C be a correspondence over X
and Y as before, we assume that p1 is projectively embeddable. Let F and G be locally
free sheaves of finite rank over X and Y respectively. We assume that we are given a
morphism p?2F → p?1G . We also assume that we have a map p?1OY → p!

1OY (typically a
fundamental class). Tensoring by G the map p?1OY → p!

1OY and using prop. 4.1.2.1, we
obtain a morphism p?1G → p!

1G and composing we obtain a cohomological correspondence
T : p?2F → p!

1G .

Remark 4.3.3. — In certain cases, one wants to renormalize this morphism. Let O be
a discrete valuation ring with uniformizer $. We assume that S = Spec O, that X, Y ,
C are flat over S. We further assume that the map T : p?2F → p!

1G factors through
T : p?2F → $kp!

1G → p!
1G for some non-negative integer k. Then we can normalize the

map T into a map $−kT : p?2F → p!
1G . We will see many situations where this occurs in

the sequel.

5. Automorphic forms, Galois representations and Shimura varieties

This section collects a number of classical results concerning automorphic forms,
Galois representations and Shimura varieties for the group GSp4.

5.1. The group GSp4. — Let V = Z4 with canonical basis (e1, · · · , e4). Let J =(
0 A
−A 0

)
where A is the anti-diagonal matrix with coefficients equal to 1 on the anti-

diagonal. This is the matrix of a symplectic form <,> on V . We let GSp4 → Spec Z be
the group scheme GSp(V,<,>). The similitude character is denoted by ν : GSp4 → Gm,
and its kernel is the derived subgroup Sp4 of GSp4.
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5.1.1. The dual group of GSp4. — Let Tder = {diag(t1, t2, t
−1
2 , t−1

1 ), t1, t2 ∈ Gm} be the
diagonal (maximal) torus of Sp4 and Z = {diag(s, s, s, s), s ∈ Gm} the center of GSp4.
Let T be the diagonal torus of GSp4. We have a surjective map (of fppf abelian sheaves)
Tder × Z→ T with kernel the group µ2. The character group X?(T) is identified with

{(a1, a2; c), c = a1 + a2 mod 2} ⊂ Z3,

where (a1, a2; c).diag(st1, st2, st
−1
2 , st−1

1 ) = scta1
1 t

a2
2 . We pick the following basis of X?(T):

e1 = (1, 0; 1), e2 = (0, 1; 1) and e3 = (0, 0; 2).

Note that e3 is the similitude character ν.
We make the following choice of positive roots {e1−e2,−2e1+e3,−e1−e2+e3,−2e2+

e3}. Set α1 = e1 − e2 and α2 = −2e2 + e3. The simple positive roots are ∆ = {α1, α2}.
The compact root is α1. We let ρ = (−1,−2; 0) be half the sum of the positive roots. This
choice of positive roots is related to the Shimura datum (see remark 5.2.1.1).

The cocharacter group X?(T) is the dual of X?(T). We identify it with

{(b1, b2; d) ∈ 1

2
Z3, b1 + d ∈ Z, b2 + d ∈ Z}

via (b1, b2; d).t = diag(tb1+d, tb2+d, t−b2+d, t−b1+d). The following basis of X?(T) is dual to
e1, e2 and e3 :

f1 = (1, 0; 0), f2 = (0, 1; 0), and f3 = (−1

2
,−1

2
;
1

2
).

The coroot of α1 is α∨1 = f1 − f2 and the coroot of α2 is α∨2 = f2. We let ∆∨ = {α∨1 , α∨2 }.
We let (X?(T),∆, X?(T),∆∨) be the based root datum of GSp4 corresponding to our

choices of maximal torus T and positive roots.
By [65], lemma 2.3.1 there is an isomorphism of roots datum between

(X?(T),∆, X?(T),∆∨) and (X?(T),∆∨, X?(T),∆).

It is given by a map i : X?(T)→ X?(T) whose matrix in the basis e1, e2, e3 and f1, f2, f3

is 1 1 1
1 0 1
1 1 2


This isomorphism induces an identification of the dual group ĜSp4 with GSp4(C).

5.1.2. Parabolic subgroups. — If W ⊂ V is a totally isotropic direct factor, we let PW
be the parabolic subgroup of GSp4 which stabilizes PW . We denote by UW its unipotent
radical and by MW its Levi quotient. The group MW decomposes as the product MW,l ×
MW,h where MW,l is the linear group of automorphisms of W and MW,h is the group of

symplectic similitudes of W⊥/W (with the convention that when W = W⊥, this group is
Gm.)

When W = 〈e1〉, then PW is denoted by PKli and called the Klingen parabolic. Its
Levi quotient is MKli ' MKli,l × MKli,h ' Gm × GL2. If W = 〈e1, e2〉, then PW is
denoted by PSi and called the Siegel parabolic. Its Levi quotient is MSi 'MSi,l×MSi,h '
GL2 ×Gm.

Remark 5.1.2.1. — Let gC, pSi and mSi be the Lie algebras of GSp4/C, PSi and MSi.
Our positive roots lie in mSi (the compact roots), and gC/pSi (the non-compact roots).
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5.1.3. Spherical Hecke algebra. — Let ` be a prime number. The group GSp4(Z`) ⊂
GSp4(Q`) is a maximal compact subgroup (3). We let H` be the spherical Hecke algebra

C0
c (GSp4(Q`)//GSp4(Z`),Z).

This is a commutative algebra isomorphic to Z[T`,0, T
−1
`,0 , T`,1, T`,2], generated by the

characteristic functions of the double cosets :

T`,2 = GSp4(Z`)diag(`, `, 1, 1)GSp4(Z`), T`,1 = GSp4(Z`)diag(`2, `, `, 1)GSp4(Z`),

T`,0 = `GSp4(Z`).
The Hecke polynomial is by definition Q`(X) = 1 − T`,2X + `(T`,1 + (`2 + 1)T`,0)X2 −
`3T`,2T`,0X

3 + `6T 2
`,0X

4.

Consider the twisted Satake isomorphism H`⊗C→ C[X?(T)]W where W is the Weyl
group of GSp4 acting naturally on X?(T) (see [25], p. 193, see also remark 5.1.5.1). To any

homomorphism Θ` : H` → C we can associate (using the identification ĜSp4 ' GSp4(C)
and the twisted Satake isomorphism) a semi-simple conjugacy class cΘ` ∈ GSp4(C). More-
over, Θ`(Q`(X)) = det(1−XcΘ`) ([25], rem. 3 on page 196).

5.1.4. A parahoric Hecke algebras. — We denote by Kli(`) ⊂ GSp4(Z`) the Klingen
parahoric of elements which belong to PKli(F`) modulo `.

We denote by H+
Kli(`) the subalgebra of C0

c (GSp4(Q`)//Kli(`),Z) generated by the

double cosets :

UKli(`),2 = Kli(`)diag(`, `, 1, 1)Kli(`), UKli(`),1 = Kli(`)diag(`2, `, `, 1)Kli(`)

UKli(`),0 = `Kli(`).

This is a polynomial algebra in these variables.

5.1.5. Some local representation theory. — We let ` be a prime and let π` be an irreducible
complex smooth admissible representation of GSp4(Q`). Assume that π` is spherical :

π
GSp4(Z`)
` 6= 0 (and necessarily one-dimensional). We let θπ` : H` → C be the corresponding

character. We denote by (α, β, γ, δ) the roots of the reciprocal of Θπ`(Q`(X)), ordered in
such a way that αδ = βγ, so that diag(α, β, γ, δ) represents the semi-simple conjugacy
class cΘπ`

. The Weyl group W acts on the quadruple (α, β, γ, δ) and the Weyl group orbit

exhausts all diagonal representatives of the conjugacy class cΘπ`
. We call (the W -orbit of)

(α, β, γ, δ) the Hecke parameters of π`.

Remark 5.1.5.1. — The conjugacy class cΘπ`
is the one attached to π` ⊗ |ν|−

3
2 by the

usual Satake isomorphism (as opposed to the twisted Satake map that we use).

Lemma 5.1.5.1. — The eigenvalues for T`,0, T`,1 and T`,2 acting of π
GSp4(Z`)
` are respec-

tively :
`−3αδ, `−1(αβ + αγ + αδ + βδ + γδ)− `−3αδ, α+ β + γ + δ.

Proof. This is a straightforward computation.

Let π` be an irreducible complex smooth admissible representation of GSp4(Q`) which
is spherical. We say that π` is generic if π` is an irreducible (unramified) principal series
representation. Let (α, β, γ, δ) be the Hecke parameters of π`. This is equivalent to ask
that for all ξ, ξ′ ∈ {α, β, γ, δ}, we have ξ−1ξ′ 6= ` ([24], prop. 3.2.3).

3. There are two conjugacy classes of maximal compact subgroups in GSp4(Q`). The group GSp4(Z`)
is a representative of the standard class and is hyperspecial. The other class is represented by the paramod-
ular group which is not hyperspecial.
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Proposition 5.1.5.1. — Let π` be a generic spherical representation with associ-

ated Hecke parameters (α, β, γ, δ). Then π
Kli(`)
` is 4 dimensional, and the eigenvalues of

UKli(`),0, UKli(`),1 and UKli(`),2 acting on π
Kli(`)
` are the Weyl orbit of `−3αδ, `−1αβ, α+β.

Proof. This is [24], coro. 3.2.2.

Let π` be an irreducible complex smooth admissible representation of GSp4(Q`) and

assume that π
Kli(`)
` 6= 0. Then there is a quadruple (α, β, γ, δ) ∈ C4 satisfying αβ = γδ

such that π
Kli(`)
` 6= 0 contains an eigenvector for UKli(`),0, UKli(`),1 and UKli(`),2 with

eigenvalues `−3αδ, `−1αβ, α+β. The W -orbit of (α, β, γ, δ) ∈ C4 is still called the Hecke
parameters of π`.

Proposition 5.1.5.2. — Let π` be an irreducible complex smooth admissible represen-

tation of GSp4(Q`) and assume that π
Kli(`)
` 6= 0 and has Hecke parameters (α, β, γ, δ).

Assume that for all ξ, ξ′ ∈ {α, β, γ, δ}, we have ξ−1ξ′ 6= `. Then π` is a generic spherical
representation with Hecke parameters (α, β, γ, δ).

Proof. This is again [24], prop. 3.2.3.

Let π` be a generic spherical representation with Hecke parameters (α, β, γ, δ). Let

us denote by
(
π
Kli(`)
`

)
αβ

the `−1αβ eigenspace in π
Kli(`)
` for UKli(`),1. Let us denote by

παβ : π
Kli(`)
` →

(
π
Kli(`)
`

)
αβ

the projection orthogonal to the other eigenspaces.

Lemma 5.1.5.2. — Assume that the set {αβ, βδ, αγ, γδ} has 4 distinct elements. The

map π
GSp4(Z`)
` ↪→ π

Kli(`)
`

παβ→
(
π
Kli(`)
`

)
αβ

is an isomorphism.

Proof. It is enough to prove that the map is injective. This follows from corollary 3.2.2
of [24].

5.1.6. Discrete series. — Given λ = (λ1, λ2; c) ∈ X?(T) + (−1,−2; 0) ⊂ X?(T)C which
satisfies −λ1 ≥ λ2 ≥ λ1 and a Weyl chamber C positive for λ we have a (limit of) discrete
series π(λ,C) (see [28], 3.3).

Let Z be the center of the enveloping algebra U(g). By Harish-Chandra isomorphism
(recalled in [18], p. 229 for instance), Z ' C[X?(T)]W where W is the Weyl group. The
infinitesimal character of π(λ,C) is the Weyl group orbit of λ.

If λ2 6= 0 and λ2 6= −λ1, λ determines uniquely C and π(λ,C) is a discrete series. It
is natural to normalize the central character c by c = −λ1 − λ2 + 3.

If 0 ≥ λ2 > λ1 and C is the dominant chamber corresponding to our choice of positive
roots, then π(λ,C) is called a holomorphic (limit of) discrete series.

5.1.7. Galois representations attached to automorphic forms. — The following theorem
is obtained in [77], [47], [84] and [80]. A different proof (for the general type, see below)
is given in [73], completed by [54] using a lift to GL4 and [13].

Theorem 5.1.7.1. — Let π = π∞ ⊗ πf be a cuspidal automorphic form for the group
GSp4 such that π∞ = π(λ,C) is in the discrete series and λ = (λ1, λ2;−λ1 − λ2 + 3). Let
N be the product of primes ` such that π` is not spherical. We let HN = ⊗′`-NH` be the

restricted tensor product of the spherical Hecke algebras H` for all prime numbers ` - N .

Let Θπ : HN → C be the homomorphism giving the action of HN on ⊗`-Nπ
GSp4(Z`)
` .

1. The image of Θπ generates a number field E.
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2. For all finite places λ of E, there is a semi-simple, continuous Galois representa-
tion:

ρπ,λ : GQ → GSp4(Eλ),

which is unramified away from N and the prime p below λ and such that for all
` - Np, we have

det(1−Xρπ,λ(Frob`)) = Θπ(Q`(X)).

3. The representation ρπ,λ is de Rham at p with Hodge-Tate weights (0,−λ2,−λ1,−λ1−
λ2).

4. If p - N , then ρπ,λ is crystalline at p and det(1−Xφ|Dcrys(ρπ,λ)) = Θπ(Qp(X)).

5. ρπ,λ ' ρ∨π,λ⊗χ−λ1−λ2
p ωπ,λ for some finite character ωπ,λ and the cyclotomic char-

acter χp.

Remark 5.1.7.1. — We use geometric Frobenii, the Artin reciprocity law is normalized
by sending p to the geometric Frobenius at p, and the Hodge-Tate weight of the cyclotomic
character is −1. The Galois representation ρπ,λ is the Galois representation attached to the

L-algebraic automorphic form π⊗|ν|−
3
2 as predicted in conjecture 3.2.2 of [10]. The twist

by |ν|−
3
2 corresponds to the twisted Satake isomorphism that we use. The Hodge-Tate

weights are given by the infinitesimal character of π∞ ⊗ |ν|−
3
2 which is (λ1, λ2;−λ1 − λ2).

The Hodge cocharacter is given by t 7→ diag(1, t−λ1 , t−λ2 , t−λ1−λ2). The central character

of π⊗|ν|−
3
2 is |.|−λ1−λ2⊗ωπ for some finite character ωπ. The character ωπ,λ is the λ-adic

character of the Galois group GQ associated to ωπ by class field theory.

According to Arthur’s classification [1], the representation π in the theorem can fall

into six categories. If π is not of general type (4) then ρπ,λ is reducible. Indeed, it follows
from an examination of Arthur’s classification that the representation ρπ,λ can be either
the sum of Galois representations attached to algebraic automorphic forms on GL1 (case
e) and f)), the sum of Galois representation attached to algebraic automorphic forms on
GL1 and regular algebraic automorphic forms on GL2 (case c) and d)), the sum of Galois
representations attached to regular algebraic automorphic forms on GL2 (case b)). On the
contrary, if π is of general type then it is expected that ρπ,λ is irreducible.

5.2. Complex Siegel threefolds. —

5.2.1. Siegel datum. — We let h : ResC/RGm → GSp4/R be the map given by h(a+ ib) =
a12 + bJ . We let K∞ ⊂ GSp4(R) be the centralizer of the image of h. The quotient
H = GSp4(R)/K∞ is the Siegel space.

Remark 5.2.1.1. — We have a Hodge structure on gR induced by ad(h). We let gC =

g(0,0)⊕g(−1,1)⊕g(1,−1) be the corresponding Hodge decomposition and we let ph = g(0,0)⊕
g(1,−1). The parabolic ph is conjugated to pSi by some element g ∈ gC, and our positive
roots are in ad(g).(g(0,0) ⊕ g(−1,1)).

Let K ⊂ GSp4(Af ) be a neat compact open subgroup. We let SK = GSp4(Q)\H ×
GSp4(Af )/K. This is the complex analytic Siegel threefold of levelK. It can be interpreted
as a moduli space of abelian surfaces with additional structures. See [47], sect. 3 for
example.

4. π is of general type if it has a base change to a cuspidal automorphic representation on GL4.
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5.2.2. Minimal compactification. — Let S?K be the minimal compactification of SK (see
[64], sect. 3 for example). There is a stratification of S?K :

SK
∐

S
(1)
K

∐
S

(0)
K .

Let H(1) = C \ R and H(0) = {1,−1}.

S
(1)
K = PKli(Q)\H(1) ×G(Af )/K

is a union of modular curves and

S
(0)
K = PSi(Q)\H(0) ×G(Af )/K

is the union of cusps of these modular curves. The parabolics PKli(Q) and PSi(Q) act
diagonally. They act on H1 and H0 through their quotients MKli,h(Q) and MSi,h(Q). We

let S
(1),?
K = S

(1)
K

∐
S

(0)
K . This is a union of compactified modular curves.

5.2.3. Toroidal compactification. — Depending on a certain auxiliary choice of polyhedral
cone decomposition Σ, one can also construct toroidal compactifications StorK,Σ of SK . There

is a semi-abelian surface G→ StorK,Σ. See [29], sect. 2.

5.3. Coherent cohomology and Galois representations. — Over StorK,Σ, we have

a semi-abelian surface G. We let ωG → StorK,Σ be the conormal sheaf of G at the unit

section. This is a locally free sheaf of rank 2. For all pairs of integers (k, r) ∈ Z≥0 × Z,

we define an automorphic vector bundle Ω(k,r) = SymkωG ⊗ detr ωG on StorK,Σ. We let

DK,Σ = StorK,Σ \ SK,Σ. This is a Cartier divisor. We can consider the cuspidal subsheaf

Ω(k,r)(−DK,Σ) (or simply Ω(k,r)(−D) if no confusion will arise) of Ω(k,r).

We will be interested in the coherent cohomology groups Hi(StorK,Σ,Ω
(k,r)(−D)). These

cohomology groups are independent of the choice of Σ ([30], prop. 2.4). Our main focus
will be on the case r = 2, i ∈ {0, 1}.

If π = π∞ ⊗ πf and π∞ = π(λ,C) is a holomorphic (limit of) discrete series with
λ = (λ1, λ2;−λ1 − λ2 + 3) (and hence 0 ≥ λ2 > λ1), then there is a natural embedding

πKf ↪→ H0(StorK,Σ,Ω
(λ2−λ1−1,2−λ2)(−D)).

It follows from the description of representations having a “lowest weight” given in
[67], p. 12 diagram (44) that for all r ≥ 2 :

H0(StorK,Σ,Ω
(k,r)(−D)) = ⊕πfπ

K
f ,

where πf runs through the set of admissible representations of GSp4(Af ) such that
π(λ,C) ⊗ πf is cuspidal automorphic for λ = (1 − k + r, 2 − r; k + 2r) and π(λ,C) the
holomorphic (limit) of discrete series.

We let N be the product of primes ` such that K` 6= GSp4(Z`). We let HN = ⊗′`-NH
`

be the restricted tensor product of all the spherical Hecke algebras.
The Hecke algebra HN acts on Hi(StorK,Σ,Ω

(k,r)) and Hi(StorK,Σ,Ω
(k,r)(−D)) (see [30],

prop. 2.6). Let us briefly recall how the action is defined (and which normalization factors
are involved). For certain choices of polyhedral cone decompositions Σ,Σ′ and Σ′′, we can
define Hecke correspondences attached to the double coset T`,i (see [18], p. 253) :
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StorK(`,i),Σ′′

p2

zz

p1

$$
StorK,Σ′ StorK,Σ

where K(`, i) = K ∩ d−1
`,iKd`,i (for d`,i is the diagonal matrix whose associated double

coset gives T`,i). Attached to this data is an isogeny p?1G → p?2G, whose differential

provides a natural map p?2Ω(k,r) → p?1Ω(k,r). On the other hand, the map p1 carries a
fundamental class p?1OStorK,Σ

→ p!
1OStorK,Σ

(see section 4.2.1). Taking the tensor product we

get a cohomological correspondence T ′`,i : p?2Ω(k,r) → p!
1OStorK,Σ

. We now set T`,2 = `−3T ′`,2
and T`,i = `−6T ′`,i for i ∈ {0, 1} and denote in the same way the operators on cohomology.

Remark 5.3.1. — The explanation for the powers of ` in the formula defining the Hecke
operators is the following. The sheaf Ω(k,r) is attached to the representation of K∞ of high-
est weight (k+r, r;−k−2r) by the vector bundle dictionary and therefore the automorphic
forms contributing to the cohomology have infinitesimal character (1−k− r, 2− r; k+2r).
We introduce a twist to fix the infinitesimal character to be (1− k − r, 2− r; k + 2r − 3)
because when r is greater than 2, this twist optimizes the integral properties of the op-
erator T`,2 (it makes it integral on q-expansions) and normalizes the greater Hodge-Tate
weight to be 0. Consult also [18], p. 258 (the paragraph starting by “what is happening
?”) for further explanations.

Let Θ : HN → C be a system of eigenvalues for the action of HN on the coherent
cohomology Hi(StorK,Σ,Ω

(k,r)) and Hi(StorK,Σ,Ω
(k,r)(−D)). The following theorem is deduced

from theorem 5.1.7.1 in [76] and [63], using p-adic interpolation :

Theorem 5.3.1. — The image of Θ generates a number field E. For all finite place λ of
E there is a semi-simple, continuous Galois representation :

ρΘ,λ : GQ → GL4(Eλ),

which is unramified away from N and the prime p below λ and such that for all ` - Np,
we have

det(1−XρΘ,λ(Frob`)) = Θ(Q`(X)).

Proof. If k ≥ 0 and r ≥ 3, then

H0(StorK,Σ,Ω
(k,r)(−D)) = ⊕πKf

where πf runs through the set of admissible representations of GSp4(Af ) such that
π(λ,C) ⊗ πf is cuspidal automorphic with λ = (1 − k − r, 2 − r; k + 2r). Thus, when
k ≥ 0, r ≥ 3, we can use theorem 5.1.7.1. The general case follows from the main result
of [63] (but see already [76] for degree 0 cuspidal cohomology) by p-adic interpolation
techniques.

Remark 5.3.2. — One believes that the representations constructed in the theorem are
de Rham with Hodge-Tate weights (0, r − 2, r + k − 1, k + 2r − 3) and crystalline at p if

(N, p) = 1. Such a statement seems accessible if the weight is cohomological (5) although
we do not know a reference. In particular, if (N, p) = 1 one believes that if (α, β, γ, δ) are

5. The cohomological condition is that r 6= 2, k+r 6= 1 and k+2r 6= 3, so that the Hodge-Tate weights
are all distinct. It ensures that the coherent cohomology group appears in the Hodge decomposition of the
cohomology of an automorphic local system over the Shimura variety.
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the Hecke parameters attached to a local representation πp contributing to the cohomology

Hi(StorK,Σ,Ω
(k,r)) or Hi(StorK,Σ,Ω

(k,r)(−D)), the Newton polygon associated to (α, β, γ, δ) is
above the Hodge polygon with the same initial and ending point. This is last statement
is a consequence of the main theorem of [45] if the weight is cohomological.

PART II

HIGHER HIDA THEORY

6. Siegel threefolds over Zp
6.1. Schemes. — We fix a prime p. We introduce several Siegel threefolds defined over
Spec Zp and study their p-adic geometry.

6.1.1. The smooth Siegel threefold. — Let K ⊂ GSp4(Af ) be a neat compact open sub-
group. We assume that K = KpKp and that Kp = GSp4(Zp). We let YK,Z(p)

→ Spec Z(p)

be the moduli space representing the functor which associates to each locally noetherian
scheme S over Spec Z(p) the set of isomorphism classes of triples (G,λ, ψ) where :

1. G is an abelian surface,

2. λ : G → Gt is a Z×(p)-multiple of a polarization of degree prime-to-p where Gt

stands for the dual abelian scheme of G,

3. ψ is a Kp-level structure : if S is connected and s is a geometric point of S, ψ is a
Kp-orbit of symplectic similitudes H1(Gs,Apf ) ' V ⊗Z Apf that is invariant under

the action of π1(S, s) (6) (V is defined in section 5.1).

The triples (G,λ, ψ) are taken up to prime-to-p quasi-isogenies. See [44]. There is an
isomorphism (YK,Z(p)

× Spec C)an ' SK . We shall denote by YK = YK,Z(p)
×Spec Z(p)

Spec Zp.
6.1.2. Klingen level. — We denote by p1 : YKli(p)K → YK the moduli space which
parametrizes subgroups of order p, H ⊂ G[p]. Over YKli(p)K we have a chain of iso-
genies of abelian surfaces G → G/H → G/H⊥ → G. Here H⊥ is the orthogonal of H
for the Weil pairing on G[p] (obtained by the polarization). The total map G → G is
multiplication by p.

6.1.3. Paramodular level. — We also introduce Ypar,K → Spec Zp, the moduli space of

isomorphism classes of triples (G′, λ′, ψ) where λ′ : G′ → (G′)t is a Z×(p)-multiple of a

polarization of degree p2 and ψ is a Kp-level structure. We have a natural map p2 :
YKli(p)K → Ypar,K which sends (G,λ,H, ψ) to (G/H⊥, λ′, ψ′) where λ′ is the polarization

on G/H⊥ obtained by descending the polarization p2λ from G to G/H⊥ and ψ′ is induced
by the isomorphism G[N ] = G/H⊥[N ] for every integer N prime-to-p.

6.1.4. Local properties. — We now investigate the local geometry of these schemes.

Proposition 6.1.4.1. — The scheme YK is smooth over Spec Zp. The schemes Ypar,K

and YKli(p)K are regular schemes. They are flat, local complete intersections over Spec Zp.
The non smooth locus of Ypar,K consists of a finite set of characteristic p points.

6. This definition does not depend on s. When S is not connected, one chooses geometric points on
each connected component.
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Proof. The smoothness of YK over Zp results from the deformation theory of abelian
varieties with a polarization of degree prime-to-p. For YKli(p)K , the local model theory
computation is worked out in [79], sect. 2.2, thm. 3. For Ypar,K we can again use local

model theory (see [17]). Let V1 = pe1Z⊕
⊕4

i=2 eiZ ⊂ V (V is defined in section 5.1). The
local model for Ypar,K is the moduli space of totally isotropic direct factors L ⊂ V1 of rank
2. The only singularity occurs at L0 = 〈pe1, e4〉 ⊂ V1 ⊗ Fp. The formal deformation ring
at this point has equation Zp[[X,Y,W,Z]]/(XY −WZ+p) and the universal deformation
of L0 is the module 〈pe1 +Xe2 +We3, Ze2 + Y e3 + e4〉 (see also [86], theorem 4.4).

6.1.5. Integral arithmetic compactifications. — We recall results of Faltings-Chai [18],
Lan [48], [49], [50] and Stroh [74].

6.1.5.1. Arithmetic groups. — Let Γ = GSp4(Z(p))
+ be the group of automorphisms of

(V ⊗Z(p), < . >) up to a positive similitude factor. Let V1 = pe1Z⊕
⊕4

i=2 eiZ ⊂ V . We let

GSp′4 → Spec Z be the group scheme GSp(V1, < . >). This is the paramodular group. Let
Γpar = GSp′4(Z(p))

+ be the subgroup of GSp′4(Z(p)) of elements with positive similitude
factor. Let ΓKli(p) be the automorphisms group of (V1 ⊗ Z(p) → V ⊗ Z(p), < . >) up
to a positive similitude factor. Thus, ΓKli(p) is a subgroup of both Γ and Γpar. All are
subgroups of GSp4(Q).

6.1.5.2. Local charts. — Let C be the set of totally isotropic direct factors W ⊂ V .
For all W ∈ C, let C(V/W⊥) be the cone of positive symmetric bilinear forms V/W⊥ ×
V/W⊥ → R with radical defined over Q. Let C be the conical complex which is the quotient
of
∐
W∈CC(V/W⊥) by the equivalence relation induced by the inclusions C(V/W⊥) ⊂

C(V/Z⊥) for W ⊂ Z. This set carries an action of GSp4(Q).
Let W ∈ C. Recall from section 5.1.2 that PW is the parabolic subgroup which is

the stabilizer of W , that MW = MW,l ×MW,h is its Levi quotient. There is a projection
PW →MW and we let PW,h be the inverse image of MW,h ∈ PW . Let γ ∈ GSp4(Apf )/Kp.

We can attach to W and γ moduli spaces of 1-motives (see [74], sect. 1 and [48], sect.
6.2) which only depend on the class of γ in GSp4(Apf )/Kp :

MW,γ

��

MW,γ,Kli(p)

��

MW,γ,par

��
BW,γ

��

BW,γ,Kli(p)

��

BW,γ,par

��
YW,γ YW,γ,Kli(p) YW,γ,par

The scheme MW,γ is a moduli space of polarized 1-motives (for a polarization of

degree prime-to-p), rigidified by V/W⊥ ([74], def. 1.4.3) with a Kp-level structure.
The schemeMW,γ admits the following description : it is a torsor under a torus TW,γ

isogenous to Sym2(V/W⊥) ⊗ Gm over BW,γ . The scheme BW,γ is an abelian scheme over
YW,γ which is a moduli space of abelian schemes of dimension rankZW with a polarization
of degree prime-to-p and a level structure away from p.

The scheme MW,γ,Kli(p) is a moduli space of polarized 1-motives (for a polarization

of degree prime-to-p), rigidified by V/W⊥ with a Kp-level structure and a Klingen level
structure.

The schemeMW,γ,Kli(p) admits the following description : it is a torsor under a torus

TW,γ,Kli(p) isogenous to Sym2(V/W⊥) ⊗ Gm over BW,γ,Kli(p). The scheme BW,γ,Kli(p) is
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an abelian scheme over YW,γ,Kli(p) which is a moduli space of abelian schemes of genus
rankZW with a polarization of degree prime-to-p a level structure away from p and possibly
a Klingen level structure at p (7).

The scheme MW,γ,par is a moduli space of 1-motives with a polarization of degree
Np2 (with (N, p) = 1, the integer N depends on the tame level Kp). The character group
of the toric part is isomorphic to V1/W

⊥. It carries a Kp-level structure.
The scheme MW,γ,par admits the following description : it is a torsor under a torus

TW,γ,par isogenous to Sym2(V/W⊥)⊗Gm over BW,γ,par. The scheme BW,γ,par is an abelian
scheme over YW,γ which is a moduli space of either abelian schemes of genus rankZW with
a polarization of degree prime-to-p, a level structure away from p or a moduli space of
abelian schemes of genus rankZW with a polarization of degree a prime-to-p multiple of
p2 and a level structure away from p.

Let σ ⊂ C(V/W⊥) be a cone. Associated to this cone we have affine toroidal em-
bedding TW,γ → TW,γ,σ, TW,γ,Kli(p) → TW,γ,Kli(p),σ and TW,γ,par → TW,γ,par,σ. We can

define MW,γ,σ =MW,γ ×TW,γ TW,γ,σ, MW,γ,Kli(p),σ =MW,γ,Kli(p) ×TW,γ,Kli(p) TW,γ,Kli(p),σ,

MW,γ,par,σ = MW,γ,par ×TW,γ,par TW,γ,par,σ, and we denote by ZW,γ,σ, ZW,γ,Kli(p),σ and
ZW,γ,par,σ the closed subschemes that correspond to the closed strata of these respective
affine toroidal embeddings.

6.1.5.3. Polyhedral decompositions. — We consider the set C ×GSp4(Apf )/Kp. This set

carries a diagonal action of GSp4(Q) and a left action of GSp4(Apf ) (by translation on the

second factor).
A non-degenerate rational polyhedral cone of C ×GSp4(Apf )/Kp is a subset contained

in C(V/W⊥)×{γ} for some (W,γ) which is of the form ⊕ki=1R>0si for symmetric pairings
si : V/W⊥ × V/W⊥ → Q.

Let us fix a Z-lattice LW ⊂ Sym2(V/W⊥)⊗ZQ. Then the cone is called smooth with
respect to LW if the si’s can be taken to be part of a Z-basis of Hom(LW ,Z).

A rational polyhedral cone decomposition Σ of C ×GSp4(Apf )/Kp is a partition

C ×GSp4(Apf )/Kp =
∐
σ∈Σ σ by non-degenerate rational polyhedral cones σ such that :

1. the closure of each cone is a union of cones,

2. for any σ ∈ Σ, σ ⊂ C(V/W⊥)× {γ}, we have that pσ ∈ Σ for all p ∈ PW,h(Apf ).

For any subgroup H ⊂ GSp4(Q) a rational polyhedral cone decomposition Σ is H-
equivariant if for all h ∈ H and σ ∈ Σ, h.σ ∈ Σ. It is H-admissible if H\Σ is finite. It is
projective if there exists a polarization function (see [50], def. 2.4).

For all (W,γ) ∈ C×GSp4(Apf )/Kp we have integral structures X?(TW,γ), X?(TW,γ,par)

and X?(TW,γ,Kli(p)) ⊂ Sym2(V/W⊥)⊗ZQ. We say that a rational polyhedral cone decom-
position Σ is smooth with respect to one of these integral structures if each cone σ ∈ Σ is
smooth.

Let H be either Γ, Γpar or ΓKli(p). The H-admissible rational polyhedral cone decom-
positions exist and are naturally ordered by inclusion ([18], p. 97). Any two H-admissible
rational polyhedral cone decompositions can be refined by a third one.

The H-admissible rational polyhedral cone decompositions which satisfy the following
extra properties form a cofinal subset of the set of all H-admissible rational polyhedral
cone decompositions (see [18], p. 97) :

1. The decomposition is projective.

7. This depends on the relative position of W with respect to V1 ⊂ V .
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2. For all cone σ, let W ∈ C be minimal such that σ ⊂ C(V/W⊥). If h ∈ H ∩ PW
satisfies hpσ ∩ σ 6= ∅ for some p ∈ PW,h(Apf ), then h acts trivially on C(V/W⊥).

3. If H is Γ (resp. Γpar, resp. ΓKli(p))-admissible, the decomposition is smooth with
respect to the integral structure given by X?(TW,γ), (resp. X?(TW,γ,par), resp.
X?(TW,γ,Kli(p))).

In the sequel of the paper we will consider mostly H-admissible rational polyhedral
cone decompositions which satisfy these extra properties unless explicitly stated. We will
call them H-admissible good polyhedral cone decompositions or simply good polyhedral
cone decompositions.

6.1.5.4. Main theorem on compactification. — The following theorem is a special case of
[50], thm. 6.1.

Theorem 6.1.5.1. — 1. Let Σ be a good polyhedral cone decomposition which is
Γ (resp. ΓKli(p), resp. Γpar)-admissible. There is a toroidal compactification
XK,Σ of YK (resp. XKli(p)K,Σ of YKli(p)K , resp. Xpar,K,Σ of Ypar,K). It has a
stratification indexed by Γ\Σ (resp. ΓKli(p)\Σ, resp. Γpar\Σ). For each (σ, γ) ∈
Σ, the (σ, γ)-stratum is isomorphic to ZW,γ,σ (resp. ZW,γ,par,σ, resp. ZW,γ,Kli(p),σ).
The completion of XK,Σ (resp. XKli(p)K,Σ, resp. Xpar,K,Σ) along ZW,γ,σ (resp.

ZW,γ,Kli(p),σ, resp. ZW,γ,par,σ) is isomorphic to the completion of MW,γ,σ along

ZW,γ,σ (resp. MW,γ,Kli(p),σ along ZW,γ,Kli(p),σ, resp. MW,γ,par,σ along ZW,γ,par,σ.)
The boundary is the reduced complement of YK in XK,Σ (resp. of YKli(p)K in
XKli(p)K,Σ, resp. of Ypar,K in Xpar,K,Σ). This is a relative Cartier divisor.

2. If Σ′ ⊂ Σ is a refinement, then there are projective maps πΣ′,Σ : XK,Σ′ → XK,Σ

and (RπΣ′,Σ)?OXK,Σ′ = OXK,Σ. Let IXK,Σ and IXK,Σ′ be the invertible sheaves

of the boundary in XK,Σ and XK,Σ′. Then π?Σ′,ΣIXK,Σ = IXK,Σ′ . Similar results

hold for Xpar,K,Σ and XKli(p),K,Σ.

3. If Σ is Γ-admissible and Σ′ is a refinement which is ΓKli(p)-admissible, then the
map p1 : YKli(p)K → YK extends to a map XKli(p)K,Σ′ → XK,Σ. If Σ is Γpar-
admissible and Σ′ is a refinement which is ΓKli(p)-admissible, then the map p2 :
YKli(p)K → Ypar,K extends to a map XKli(p)K,Σ′ → Xpar,K,Σ.

4. If Σ is Γ (resp. ΓKli(p), resp. Γpar)-admissible, then the toroidal compactification
XK,Σ of YK (resp. XKli(p)K,Σ of YKli(p)K , resp. Xpar,K,Σ of Ypar,K) is normal
and a local complete intersection over Spec Zp.

Proof. All points follow from [50], thm. 6.1 and prop. 7.5, except for the last point which
follows from the description of the local charts, proposition 6.1.4.1 and our knowledge
of modular curves. Let us recall that in the case of YK , the toroidal compactification
is constructed in the book [18]. In the case of Ypar,K , the method of [49] and [50] is
to embed Ypar,K in a Siegel moduli space of principally polarized abelian varieties of
genus 16 (Zarhin’s trick). The latter can be compactified by the methods of [18]. The
compactification of Ypar,K is obtained by normalization. The toroidal compactification of
YKli(p)K is constructed in [74]. It is also constructed in [49], [50] by first embedding
YKli(p)K in the product Ypar,K×YK , then considering the toroidal compactification of the
product and then normalizing.

Notation : We often drop the subscript K or Σ and simply write X, Xpar and
XKli(p) for XK,Σ, XKli(p)K,Σ and Xpar,K,Σ.

6.2. Sheaves. — We recall the definition of the classical automorphic sheaves as well
as the vanishing theorem for the projection to the minimal compactification.
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6.2.1. Definition. — We now define several sheaves of modular forms. Over X we have
a rank 2 locally free sheaf ωG := e?Ω1

G/X . For all pairs (k, r) ∈ Z≥0 × Z we set Ω(k,r) =

SymkωG⊗detr ωG. For simplicity, we sometimes write ωr instead of Ω(0,r) and Ωk instead
of Ω(k,0). Similarly, over Xpar we have a rank 2 locally free sheaf e?Ω1

G′/Xpar
. If no confusion

arises, we still denote this sheaf by Ω1. We define similarly Ω(k,r). The sheaves Ω(k,r) satisfy
the expected functorialities with respect to change of polyhedral cone decomposition and
level structure away from p. It follows from theorem 6.1.5.1, point 2 (and an application
of the projection formula) that the cohomology of these sheaves does not depend on the
choice of a particular polyhedral cone decomposition.

6.2.2. Vanishing theorems. — According to [18], [49] and [50], we can construct minimal
compactifications X? and X?

par for YK and Ypar,K . They are defined as the Proj of the

graded algebras ⊕k≥0H0(X,ωk) and ⊕k≥0H0(Xpar, ω
k). The sheaves ω descend to ample

sheaves on X? and X?
par. We have canonical morphisms π : X → X? and πpar : Xpar →

X?
par.

Theorem 6.2.2.1 ([50], thm. 8.6). — For all (k, r) ∈ Z≥0 × Z and i > 0, we have

Riπ?Ω
(k,r)(−DX) = 0

and
Ri(πpar)?Ω

(k,r)(−DXpar) = 0.

6.3. Hasse invariants. — In this section, let S be a scheme over Spec Fp. If H → S is
a group scheme, we denote by ωH the conormal sheaf of H along the unit section.

6.3.1. The classical Hasse invariant. — Let G → S be a truncated Barsotti-Tate group
of level 1 (BT1 for short). We have a Verschiebung map V : G(p) → G with differential

V ? : ωG → ω
(p)
G also called the Hasse-Witt operator. The Hasse invariant is Ha(G) :=

detV ? ∈ H0(S, (detωG)p−1). We let GD be the Cartier dual of G. We recall the following
result of Fargues.

Proposition 6.3.1.1 ([21], 2.2.3, prop. 2). — There is a canonical and functorial iso-

morphism LF : (detωG)p−1 ' (detωGD)(p−1) such that LF (Ha(G)) = Ha(GD).

Suppose that we have a quasi-polarization λ : G
∼→ GD. By definition, this is an

isomorphism that satisfies the extra condition λD = −λ.

Lemma 6.3.1.1. — The composite (detωGD)p−1 λ∗→ (detωG)p−1 LF→ (detωGD)p−1 is the
identity map.

Proof. We first assume that G is ordinary. Thus Ha(G)OS ' (detωG)p−1 and similarly,
Ha(GD)OS ' (detωGD)p−1. By functoriality, λ?Ha(GD) = Ha(G). Since LF (Ha(G)) =
Ha(GD) we deduce the claim. The algebraic stack of quasi-polarized truncated Barsotti-
Tate group schemes of level 1 is smooth with dense ordinary locus by [36]. We can thus
deduce the lemma in general.

6.3.2. Another Hasse invariant. — We assume that S is reduced, that G is a BT1 of height
4 and dimension 2, and that the étale rank and multiplicative rank of G are constant, both
equal to 1. In this setting, the classical Hasse invariant vanishes identically on S. We recall
the construction of an other Hasse invariant in this situation (this is a very special case
of more general constructions of Boxer [5] and Goldring-Koskivirta [27]). We have a
multiplicative-connected filtration over S :

Gm ⊂ Go ⊂ G.



31 Higher coherent cohomology and p-adic modular forms of singular weights

We set Goo = Go/Gm. This is a BT1 of height 2 and dimension 1. Let E =
Ext1cris(G

oo,OS/SpecFp)S . It carries the Hodge filtration:

0→ ωGoo → E → ω−1
(Goo)D

→ 0.

There is a map V ? : E → E(p). The map V ?|ωGoo : ωGoo → ωpGoo is zero (because it

is zero pointwise and S is reduced). The map V ?|ω−1
(Goo)D

: ω−1
(Goo)D

→ ω−p
(Goo)D

is also

zero (this map is the differential of Frobenius on the Lie algebra of (Goo)D). Passing to
the quotient, we get an isomorphism V ? : ω−1

(Goo)D
→ ωpGoo . We set Ha′(Goo) = (V ?)p−1 ∈

H0(S, ω
p(p−1)
Goo ⊗ωp−1

(Goo)D
) ' H0(S, ωp

2−1
Goo ). We are using here the isomorphism LF to identify

ωp−1
(Goo)D

and ωp−1
Goo .

We define the following invertible section (which we call the second Hasse invariant):

Ha′(G) = Ha(Gm)p+1 ⊗Ha′(Goo) ∈ H0(S, (detωG)p
2−1).

Let GD be the Cartier dual of G. It satisfies the same assumptions as G and we can define

Ha′(GD). We have a map LF⊗(p+1) : (detωG)p
2−1 ' (detωGD)p

2−1.

Lemma 6.3.2.1. — The following identity holds : LF⊗(p+1)(Ha′(G)) = Ha′(GD).

Proof. Since S is reduced, we need only to check the equality on points. Thus, we can
reduce to the case where S is the spectrum of an algebraically closed field. In this case,
there exists a quasi-polarization λ : G→ GD. The composite

(detωGD)p
2−1 λ?→ (detωG)p

2−1 LF⊗(p+1)

−→ (detωG)p
2−1.

is the identity map by lemma 6.3.1.1. On the other hand, λ?(Ha′(GD)) = Ha′(G) by

functoriality. It follows that LF⊗(p+1)(Ha′(G)) = Ha′(GD).

6.3.3. Extension of the second Hasse invariant. — We are going to prove that the second
Hasse invariant can be extended under some hypothesis. This is again a very special case
of extensions considered by Boxer [5] and Goldring-Koskivirta [27]. We now assume that
S is a normal reduced scheme and that G is a BT1 of height 4, dimension 2 over S. We
suppose that the generic étale rank and multiplicative rank of G over S are equal to one.
We let S′ be the dense open subscheme of S where G has étale rank and multiplicative

rank one. We moreover assume that over S, the Hasse-Witt map V ? : ωG → ω
(p)
G has rank

1 : this means that Ker V ? is an invertible sheaf and locally a direct factor of ωG. The
next lemma shows that GD satisfies the same hypothesis as G.

Lemma 6.3.3.1. — The map V ? : ωGD → ω
(p)

GD
has rank one.

Proof. Let E = Ext1cris(G,OS/Fp)S . As in [21], p. 915, one proves that there is a short
exact sequence of perfect complexes (the complexes are the horizontal ones) :

ωG
V ? //

��

ω
(p)
G

��

(ω∨
GD

)(p) F ? //

��

E V ? //

��

ω
(p)
G

(ω∨
GD

)(p) F ? // ω∨
GD



32 Higher coherent cohomology and p-adic modular forms of singular weights

The map F ? : (ω∨
GD

)(p) → ω∨
GD

is the dual of the map V ? : ωGD → ω
(p)

GD
. Taking the long

exact sequence in cohomology shows that this last map has rank one.

Over S′, we have a multiplicative subgroup H = Gm ⊂ G[F ] := Ker F .

Lemma 6.3.3.2. — The group H extends to a finite flat group scheme H ⊂ G[F ] over
S.

Proof. Consider the map V : G[F ](p) → G[F ]. We prove that the kernel K of this map
is a finite flat rank p group scheme (locally isomorphic to αp). Note that K is also the

kernel of F : G(p)[V ] → G(p2)[V ]. The Hodge-Tate map provides a long exact sequence
(see [21], sect. 2.1.2) :

0→ KerF → G
HT→ ωGD

F−V ?→ ω
(p)

GD
.

In this last equation, ωGD and ω
(p)

GD
are taken as vectorial group schemes (so they are

twisted forms of G2
a), we use F to denote the Frobenius on G and ωGD , and V ? is the

Hasse-Witt map of GD.

Moreover, G/KerF ' G(p)[V ]. It follows that K ' Ker(ωGD [F ]
V ?→ ω

(p)

GD
[F ]) (where

ωGD [F ] is a twisted form of α2
p) is a rank p group. We now set H = G[F ](p)/K ↪→ G[F ].

This is the extension we are looking for.

Remark 6.3.3.1. — The referee suggests another proof of the lemma : because S is
reduced, it is enough to check that K = Ker(V : G[F ](p) → G[F ]) is of rank p on geometric
points, and this boils down to an elementary computation with Dieudonné modules.

Applying the lemma to GD, we also get a subgroup L ⊂ GD[F ]. We now consider the

chain of maps G
F→ G(p) V→ G. Applying the functor Ext1cris(−,OS/Fp)S and setting E =

Ext1cris(G,OS/Fp)S yields the following diagram (whose columns are short exact sequences
giving the Hodge filtration):

ω
(p)
G

��

0 // ωG //

��

ω
(p)
G

��
E(p) F ? //

��

E V ? //

��

E(p)

��
(ω∨
GD

)(p) // ω∨
GD

0 // (ω∨
GD

)(p)

(6.3.A)

The map V ? : ωG → ω
(p)
G fits in the diagram (whose columns are short exact se-

quences):
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ωG[F ]/H
0 //

��

ω
(p)
G[F ]/H

��

ωG
V ? //

��

ω
(p)
G

��

ωH
V ?H // ω

(p)
H

(6.3.B)

We retain from this diagram the two maps : V ?
H : ωH → ω

(p)
H and W : ω

(p)
G[F ]/H →

ω
(p)
G /V ?(ωG).

Lemma 6.3.3.3. — The maps V ?
H and W vanish on the complement of S′. Moreover,

they have the same order of vanishing.

Proof. Let x be a generic point of one component of S \ S′. We work over the discrete

valuation ring OS,x. We take a basis e1, e2 for ωG,x and f1, f2 for ω
(p)
G,x such that e1

generates ωG[F ]/H and f1 generates ω
(p)
G[F ]/H . The matrix of V ? in this basis has the form(

0 a
0 b

)
where b ∈ mS,x and a ∈ O×S,x since V ?

H vanishes at x and V ? has rank one. The claim is
now obvious.

The map V ? of diagram 6.3.A induces, after passing to the quotient, a map

Z : ω∨GD/F
?(ω∨GD)(p) → ω

(p)
G /V ?ωG.

Lemma 6.3.3.4. — There is a canonical isomorphism ω∨
GD
/F ?(ω∨

GD
)(p) = (ωGD[F ]/L)∨.

Proof. The map F ? : (ω∨
GD

)(p) → ω∨
GD

is dual to V ? : ωGD → ω
(p)

GD
and the kernel of V ?

is ωGD[F ]/L by the analogue of diagram 6.3.B for GD.

We can define a rational section (V ?
H)p+1⊗(W−1◦Z)p−1 of the sheaf ωp

2−1
H ⊗ωp(p−1)

G[F ]/H⊗
ωp−1
GD[F ]/L

.

Lemma 6.3.3.5. — This section is regular and vanishes precisely over S \ S′.

Proof. This follows from lemma 6.3.3.3 since p+ 1 > p− 1.

We can finally prove :

Proposition 6.3.3.1. — The Hasse invariant Ha′(G) ∈ H0(S′, ωp
2−1
G ) extends to S.

Moreover, it vanishes precisely on S \ S′.

Proof. It is enough to prove the claim for (Ha′(G))2 = Ha′(G) ⊗ Ha′(GD) (see lemma
6.3.2.1) because S is normal. Call A = (V ?

H)p+1 ⊗ (W−1 ◦ Z)p−1 the section of the sheaf

ωp
2−1
H ⊗ ωp(p−1)

G[F ]/H ⊗ ω
p−1
GD[F ]/L

we just constructed. Exchanging the roles of G and GD, we

obtain a section B of ωp
2−1
L ⊗ωp(p−1)

GD[F ]/L
⊗ωp−1

G[F ]/H . By definition, the product A⊗B extends

(Ha′(G))2.
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6.3.4. Functoriality. — Let S be a scheme over Spec Fp. Let G,G′ → Spec S be Barsotti-
Tate groups. We recall that if λ : G → G′ is an étale isogeny, then λ? : ωG′ → ωG is an
isomorphism and moreover λ?Ha(G′) = Ha(G). If we are in a situation where the second
Hasse invariant is defined, we also have λ?Ha′(G′) = Ha′(G). We want to obtain similar
results in the case of non-étale isogeny.

Lemma 6.3.4.1. — Assume that G and G′ are Barsotti-Tate groups of multiplicative
type. Let λ : G→ G′ be an isogeny. Then we can define a canonical isomorphism :

λ̃? : detωG′ → detωG.

Moreover, λ̃?Ha(G′) = Ha(G).

Proof. Let pr be the degree of λ. We have G = T ⊗Zp µp∞ and G′ = T ′ ⊗Zp µp∞ for
two smooth pro-étale sheaves T and T ′. The map λ provides a map λ0 : T → T ′ which
induces an isomorphism p−r detλ0 : detT → detT ′. Since detωG = detT ⊗ ωµp∞ and

detωG′ = detT ′ ⊗ ωµp∞ we get a canonical isomorphism λ̃? between these two. There

are canonical trivialisations Fp ' (detT/pT )p−1 and Fp ' (detT ′/pT ′)p−1. In these
trivalisations we have Ha(G) = 1⊗Ha(µp∞) and Ha(G′) = 1⊗Ha(µp∞) which are identified

via the map λ̃?.

Lemma 6.3.4.2. — Let G and G′ be Barsotti-Tate groups. We assume that they have
constant multiplicative rank over S. Let λ : G → G′ be an isogeny with kernel L ⊂ G[p].
Assume that for all geometric points x→ S, there exists a multiplicative group Hx ⊂ Gx[p]
such that Hx ⊕ Lx = Gx[p]. Then there is a canonical isomorphism

λ̃? : detωG′ → detωG.

Moreover, λ̃?Ha(G′) = Ha(G). If the second Hasse invariant is defined, we also have

λ̃?Ha′(G′) = Ha′(G).

Proof. We have filtrations by multiplicative Barsotti-Tate subgroups Gm ⊂ G and
(G′)m ⊂ G′ (see for example corollary II.1.2 of [31]). Let Lm = L ∩ Gm. Then we
have a commutative diagram :

Gm //

λm

��

G //

λ
��

G/Gm

pµ

��
(G′)m // G′ // G′/(G′)m

where the left vertical map has kernel Lm. The isogenyG/Gm → G′/(G′)m can be uniquely
written in the form pµ where µ is an isomorphism. Indeed, L/Lm ↪→ G/Gm[p] is a finite
flat group scheme whose rank is equal to the rank of G/Gm[p] by our assumptions, so we

deduce that L/Lm = G/Gm[p]. The map µ induces µ? : detωG′/(G′)m
∼→ detωG/Gm . The

above lemma provides an isomorphism (λ̃m)? : detω(G′)m → detωGm . The tensor product
of these two maps is the isomorphism we are looking for. The other properties are obvious.

6.4. Stratification of the special fiber. — We will now stratify the special fibers of
the Siegel threefolds. We denote by G the semi-abelian scheme over X and by G′ the
semi-abelian scheme over Xpar. For all n ∈ Z≥1, we let Xn → Spec Z/pnZ be the mod pn

reduction of X and Xpar,n the reduction modulo pn of Xpar.
For r ∈ {0, 1, 2}, we set :
— X=r

n the locally closed subset of Xn where the multiplicative rank of G is exactly
r,
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— X≤rn the closed subset of Xn where the multiplicative rank of G is less than r,
— X≥rn , the open subscheme of Xn where the multiplicative rank of G is greater than

r.
We define similarly X=r

par,n, X≤rpar,n and X≥rpar,n. We recall that X=r
n is dense open in

X≤rn , that X=r
par,n is dense open in X≤rpar,n and they are of dimension 3− r (see [57]).

We now specify the schematic structure. We let ω denote the invertible sheaf det ωG
over X1 or detωG′ over Xpar,1 (no confusion should arise). We have two Hasse invariants
Ha(G) ∈ H0(X1, ω

p−1) and Ha(G′) ∈ H0(Xpar,1, ω
p−1). Their definition was recalled in

section 6.3.1 in the context of abelian schemes. The same definition works for semi-abelian
schemes (take the determinant of the differential of Verschiebung). Alternatively, we can

use Koecher’s principle. We let X≤1
1 be the vanishing locus of Ha(G) and X≤1

par,1 be the

vanishing locus of Ha(G′).

Lemma 6.4.1. — The schemes X≤1
1 and X≤1

par,1 carry the reduced schematic structure.

Proof. The scheme X1 is smooth, hence normal. The scheme Xpar,1 is smooth up to a
dimension 0 set and is Cohen-Macaulay by proposition 6.1.4.1. By Serre’s criterion, it is
also normal. It follows that it suffices to prove that Ha(G) and Ha(G′) vanish at order
one at each generic point of the non-ordinary locus. Let k be an algebraically closed field
of characteristic p and let x : Spec k → X=1

1 or x : Spec k → X=1
par,1. Let H → Spec k

be the p-divisible group associated to x. The contravariant Dieudonné module D of H is
isomorphic to the 4-dimensional free W (k)-module with canonical basis (e1, e2, e3, e4) and
with Frobenius matrix given by : 

p 0 0 0
0 0 1 0
0 p 0 0
0 0 0 1


It is the sum of three direct factors W (k)e1

⊕
(W (k)e2 ⊕W (k)e3)

⊕
W (k)e4, corre-

sponding to the multiplicative-biconnected-étale decomposition. We find that the Hodge
filtration is given by Ker(F ) = 〈ē1, ē2〉 ⊂ D/pD.

By [36], the universal first order deformation of H is represented by

R = k[X,Y,W,Z]/(X,Y, Z,W )2

where the universal Hodge filtration Fil inside D⊗W (k) R is generated by the columns of
the matrix: 

1 0
0 1
X Y
W Z

 .

The Hasse-invariant of the universal deformation is the determinant of F : D ⊗R/Fil →
D ⊗R/Fil. The matrix of F in the basis ē3, ē4 of D ⊗R/Fil is:(

−Y 0
−Z 1

)
.

In order to find the universal deformation of x we need to incorporate the polarization. We
will show in all cases that the tangent space is not contained in Y = 0. This will prove that
the Hasse invariant defines a non-zero linear form. There is a unique principal polarization
on D, induced by the symplectic form of matrix J (see section 5.1). In the principally
polarized case, the tangent space at x is given by the subspace where the filtration is
isotropic with respect to this polarization. This condition writes X = Z. The principal
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polarization identifies D with Dt and Fil(Dt) = Fil⊥ is generated by the columns of the
matrix: 

1 0
0 1
Z Y
W X

 .

In the paramodular case, the polarization λ : D → Dt identifies with diag(1, p, p, 1)
or diag(p, 1, 1, p). The condition defining the tangent space are λ(Fil) ⊂ Fil⊥ and
λ∨(Fil⊥) ⊂ Fil. In the first case we find that Z = 0, in the second case that X = 0.

In section 6.3.2 we have defined a second Hasse invariant. The construction applies
to the open subscheme of X=1

1 and X=1
par,1 where the semi-abelian scheme is an abelian

scheme. We check that the second Hasse invariant extends to the boundary. Indeed, we can
consider the connected component of the identity in G[p] and G′[p], that we denote by G[p]o

and G′[p]o. These are truncated BT of level 1, height 3, dimension 2 and multiplicative
rank 1 to which we can apply the construction of section 6.3.2. As a result, we have two

Hasse invariants Ha′(G) ∈ H0(X=1
1 , ωp

2−1) and Ha′(G′) ∈ H0(X=1
par,1, ω

p2−1).

Lemma 6.4.2. — The second Hasse invariants Ha′(G) ∈ H0(X=1
1 , ωp

2−1) and Ha′(G′) ∈
H0(X=1

par,1, ω
p2−1) extend to X≤1

1 and X≤1
par,1. Moreover, they vanish on X≤0

1 and X≤0
par,1.

Proof. Recall that an abelian surface is called superspecial if it is isomorphic to the
product of two supersingular elliptic curves. There are only finitely many superspecial
points on Xpar,1 and X1 by [56]. Call this finite set SS. Since X≤1

par,1 and X≤1
1 are Cohen-

Macaulay, it suffices to construct the extension over the complement of SS. Moreover,
since we removed the superspecial points, the Hasse-Witt matrix has rank 1. We now prove
the smoothness for X≤1

1 \ SS. Over X≤1
1 \ SS, we have a canonical filtration H ⊂ KerF

where the group H is constructed in lemma 6.3.3.2 . As a result, X≤1
1 \ SS embeds in

the moduli space of abelian surfaces with a polarization of degree prime-to-p and with
Iwahori level. The local model is computed in detail in [62], page 186 to 189. We find

that X≤1
1 \SS is exactly the union of the strata denoted Xm,e

0 and Xsg,F
0 in that reference.

We see that this union of strata is smooth. We compute that the closure of Xm,e
0 is locally

isomorphic to

Spec Fp[x, y, a, b, c]/(xy, ax+ by + abc, a, y, x+ bc) ' Fp[b, c]

where Xm,e
0 is corresponds to the stratum bc 6= 0 and Xsg,F

0 corresponds to the stratum

c = 0, b 6= 0. The extension of Ha′(G) over X≤1
1 \ SS follows from proposition 6.3.3.1.

We now prove that X≤1
par,1 \SS is locally isomorphic to Spec Fp[a, b, c]/(ab) with a 6= 0

or b 6= 0 corresponding to X=1
par,1. By proposition 6.3.3.1 we deduce that Ha′(G′) extends

on each irreducible components of X≤1
par,1\SS. Moreover, to check that it glues to a section

over X≤1
par,1 \ SS we need to prove that the values of Ha′(G′) agree on the intersections

of the irreducible components. Since this value is zero, this is true. Over X≤1
par,1 \ SS we

have a chain G′ → G→ (G′)t → G′′ → G′ → G. This chain is constructed as follows. Let
K(λ) be the kernel of the polarization G′ → (G′)t and K(λt) the kernel of the polarization
λt : (G′)t → G. Set H = K(λ) ∩Ker F and set H ′ = K(λt) ∩Ker F . These are groups of
order p because K(λ) and K(λt) are BT1 of height 2 and dimension 1. We set G = G′/H

and G′′ = (G′)t/H ′. This chain provides an embedding of X≤1
par,1 \ SS in the moduli of

space of abelian surfaces with a polarization of degree prime-to-p and Iwahori level. More
precisely, it identifies X≤1

par,1 \ SS with an open subscheme of the union of the closure of
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the stratum denoted by Xo,m
0 and Xet,o

0 in [62]. We compute that the closure of Xo,m
0

corresponds on the local model to the ring quotient

Fp[x, y, a, b, c]/(xy, ax+ by + abc) 7→ Fp[b, c]

given x = y = a = 0. The closure of Xet,o
0 corresponds on the local model to the ring

quotient
Fp[x, y, a, b, c]/(xy, ax+ by + abc) 7→ Fp[a, c]

given x = b = 0 and y 7→ −ac. Both rings are quotients of

Fp[x, y, a, b, c]/(xy, ax+ by + abc, y + ac, x) ' Fp[a, b, c]
given by the respective equations a = 0 and b = 0. Finally, the open stratum corresponding
to X=1

par,1 is given by a 6= 0 or b 6= 0.

We define the scheme X≤0
1 as the vanishing locus of Ha′(G) and the scheme X≤0

par,1 as

the vanishing locus of Ha′(G′).

Remark 6.4.1. — It is possible, using lemma 6.3.3.5, to check that the Siegel modular
form Ha′(G) vanishes at order 2 along the rank 0 locus. When p ≥ 3, the modular form

Ha′(G) has a square root (a modular form of weight p2−1
2 ) which vanishes at order 1.

When p = 2, it does not have a square root.

7. The T -operator

The goal of this section is to introduce and study the action of an Hecke operator T
on the cohomology of automorphic vector bundles RΓ(X,Ω(k,r)) and RΓ(X,Ω(k,r)(−D))
with r ≥ 2. The Hecke operator T is related to the classical Hecke operator Tp,1 =
GSp4(Zp)diag(1, p, p, p2)GSp4(Zp). The naive attempt to directly define Tp,1 on the in-
tegral cohomology of vector bundles does not seem to work because we are unable to
properly define and study an integral moduli space associated with Tp,1 : the cocharacter
t 7→ diag(t2, t, t, 1) is not minuscule. We proceed differently, making use of a factorization
in GL4(Qp) : diag(p2, p, p, 1) = diag(p, p, p, 1) × diag(p, 1, 1, 1). This suggests to replace
Tp,1 by a composition (denoted T ) of two double cosets :

GSp4(Zp)diag(p, p, p, 1)GSp′4(Zp) ?GSp′4(Zp)diag(p, 1, 1, 1)GSp4(Zp)
where GSp′4 is the paramodular group. The point is that each double coset

GSp4(Zp)diag(p, p, p, 1)GSp′4(Zp) and GSp′4(Zp)diag(p, 1, 1, 1)GSp4(Zp)
has a clear moduli interpretation in terms of parahoric level structure.

It is instructive to compare T and Tp,1. At the level of double cosets, an elementary

computation reveals that T = Tp,1 + (1 + p+ p2 + p3)Tp,0 where Tp,0 = pGSp4(Zp) (8).
Assume that πp is a spherical irreducible smooth representation of GSp4(Qp) which

contributes to the cohomology RΓ(X,Ω(k,r)) ⊗L Qp or RΓ(X,Ω(k,r)(−D)) ⊗L Qp . Let

Θπp be the corresponding character of the spherical Hecke algebra (valued in Qp). Let us
denote by (αp, βp, γp, δp) the Hecke parameters of πp which are the roots of the reciprocal
Hecke polynomial evaluated at Θπp , ordered to have non-decreasing p-adic valuation and

8. The double coset T parametrizes chains G→ G/H1 → (G/H1)/H2 where H1 ⊂ G[p] is an order p3

group and H2 ⊂ (G/H1)[p] is an order p group contained in the kernel of the polarization of G/H1. The
component Tp,1 of T corresponds to any choice of H1 and the choice of H2 6= G[p]/H1. The component Tp,0
of T corresponds to any choice of H1 and the choice of H2 = G[p]/H1. It has multiplicity p3 + p2 + p+ 1 =
]GSp4(Zp)/Kli(p).
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such that αpδp = βpγp. The Newton polygon associated to the Hecke parameters is (at
least conjecturally, see remark 5.3.2) above the Hodge polygon with slopes 0, r−2, k+ r−
1, k+ 2r−3, with the same initial and ending point. We assume that this inequality holds
in the following discussion. By definition of the Hecke polynomial (see lemma 5.1.5.1), we
find that Θπp(Tp,1) = p−1(αpβp+αpγp+αpδp+βpδp+γpδp)−p−3αpδp, and that Θπp(Tp,0) =

p−3αpδp. The Hecke operator T that we use acts like p3−r(Tp,1 + (1 + p + p2 + p3)Tp,0)
(the normalization factor by p3−r optimizes integrality) and we find that:

Θπp(T ) = p2−r(αpβp + αpγp + αpδp + βpδp + γpδp) + p1−r(1 + p+ p2)αpδp.

In this work, we mainly focus on the case that r = 2, and we observe that in this case,
the expression Θπp(T ) is p-integral for all k ≥ 0. Moreover, we find that T and pTp,1 are
congruent modulo p for k ≥ 2. Recall that our goal is to construct ordinary families when
r = 2 and k varies. The Hecke parameter (αp, βp, γp, δp) is called ordinary if the Newton
and Hodge polygon agree. This condition translates into (when r = 2) : αpβp is a p-adic
unit. We see that when k ≥ 1, it further translates into : Θπp(T ) is a p-adic unit.

7.1. Definition of the T -operator. — Consider the schemes X, XKli(p) and Xpar

for choices of good polyhedral decompositions Σ, Σ′ and Σ′′ (see section 6.1). We also
assume that Σ′ refines both Σ and Σ′′. As a result we have maps p1 : XKli(p) → X and
p2 : XKli(p)→ Xpar. We recall that G denotes the semi-abelian scheme over X and G′ the
semi-abelian scheme over Xpar. Over XKli(p) we have the chain of isogenies G→ G′ → G
where the first isogeny G → G′ has degree p3, the second isogeny G′ → G has degree p
and the composite is multiplication by p. The map p1 forgets G′, the map p2 forgets G.
By theorem 6.1.5.1, the schemes X, XKli(p) and Xpar are normal and lci over Spec Zp.
Their non-smooth locus is included in the non-ordinary locus of the special fiber. As a
result, it is of codimension 2.

We will apply the formalism developed in section 4 to construct cohomological corre-
spondences. We note that the morphisms p1 and p2 are not finite flat, because they are not
quasi-finite over the rank 0 loci X=0

1 and X=0
par

(9). This is a consequence of the fact that
p-rank 0 abelian sufaces may have infinitely many subgroups of order p. This explains
why we will need advanced results on coherent duality to construct the cohomological
correspondences.

Let (k, r) ∈ Z2
≥0. The differential of the isogeny G → G′ provides a map p?2Ω(k,r) →

p?1Ω(k,r). Moreover, we have by construction 1 (see section 4.2.1), a fundamental class
p?1OX → p!

1OX and p!
1OX is an invertible sheaf. We thus obtain by tensor product with

Ω(k,r) and proposition 4.1.2.1 a map p?1Ω(k,r) → p!
1Ω(k,r). Finally, if we compose with the

map p?2Ω(k,r) → p?1Ω(k,r), we obtain a cohomological correspondence

T ′1 : p?2Ω(k,r) → p?1Ω(k,r) → p!
1Ω(k,r)

that we need to normalize.

Lemma 7.1.1. — The map T ′1 factors through p2+rp!
1Ω(k,r) if k + 2r ≥ 2 + r.

Proof. It is enough to prove the divisibility over the complement of the non-ordinary
locus. This is sufficient because XKli(p) is normal and the closed subscheme “non-ordinary
locus” is of codimension 2. We are thus left to prove the divisibility over the localization
of XKli(p) at each generic point of the ordinary locus. There are two types of components
in the ordinary locus. We first consider the components where G→ G′ has kernel a group
of étale rank two. Over these components, the map p?2ω

r → p?1ω
r factors through prp?1ω

r

9. The maps p1 and p2 are also not finite flat over the boundary, but this is not a serious issue.
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because the multiplicative rank of the kernel of the isogenyG→ G′ is exactly 1. As a result,
the map p?2Ω(k,r) → p?1Ω(k,r) factors through prp?1Ω(k,r). On the other hand, we claim that

the map p?1Ω(k,r) → p!
1Ω(k,r) factors through p2p!

1Ω(k,r). Let k be an algebraically closed
field of characteristic p and x : Spec k → X be an ordinary point corresponding to an
abelian scheme G. Let T be the Tate module of G. We fix an isomorphism T ' Z2

p. The

formal deformation space of this point is Hom(Sym2T, Ĝm) by Serre-Tate theory ([39]).
This space has underlying ring W (k)[[X,Y, Z]] where the Serre-Tate parameter is the map

Z2
p → Z2

p ⊗ Ĝm given by the symmetric matrix

(
X Z
Z Y

)
. The components of the fiber of

this deformation space under p1 where G→ G′ has kernel a group of étale rank two are a
disjoint union (parametrized by ker(G→ G′) ∩G[p]m) of spaces with associated rings

W (k)[[X,Y, Z,X ′, Y ′, Z ′]]/((1 +X ′)p − 1−X, (1 + Z ′)p − 1− Z, Y ′ − Y ),

which parametrize the following diagram of Serre-Tate parameters :

Z2
p

(
X Z
Z Y

)
//(

p 0
0 p

)
��

Z2
p ⊗ Ĝm(

1 0
0 p

)
��

Z2
p

(
X ′ p.Z ′

Z ′ Y ′

)
// Z2
p ⊗ Ĝm

The trace

W (k)[[X,Y, Z,X ′, Y ′, Z ′]]/((1 +X ′)p−1−X, (1 +Z ′)p−1−Z, Y ′−Y )→W (k)[[X,Y, Z]]

factors through p2W (k)[[X,Y, Z]] which implies that the map p?1OX → p!
1OX factors

through p2p!
1OX .

On the components where G → G′ has kernel a group of p-rank two, the map
p?2Ω(k,r) → p?1Ω(k,r) factors through p(k+2r)p?1Ω(k,r) and the map p?1Ω(k,r) → p!

1Ω(k,r) is
an isomorphism.

Under the assumption k + 2r ≥ 2 + r (which holds if r ≥ 2), we denote by T1 =

p−2−rT ′1 : p?2Ω(k,r) → p!
1Ω(k,r) the normalized map or the map on cohomology :

T1 : RΓ(Xpar,Ω
(k,r))→ RΓ(X,Ω(k,r)).

We now define a second cohomological correspondence in the other direction (we
exchange the roles of p1 and p2). We have maps :

T ′2 : p?1Ω(k,r) → p?2Ω(k,r) → p!
2Ω(k,r),

where the first map arises from the differential of the isogeny G′ → G and the second map
from the fundamental class.

Lemma 7.1.2. — The map T ′2 factors through pp!
2Ω(k,r) if r ≥ 1.

Proof. We compute over the localization at generic points in the ordinary locus as in
the proof of lemma 7.1.1. There are two types of generic points : the points where the
kernel of G′ → G is an étale group scheme and the points where the kernel of G′ → G
is a multiplicative group scheme. Over the “étale” points, the map p?1Ω(k,r) → p?2Ω(k,r) is

an isomorphism and we claim that the map p?2Ω(k,r) → p!
2Ω(k,r) factors through pp!

2Ω(k,r).
This can be checked in the complete local ring, using Serre-Tate parameters. Namely,
let k be an algebraically closed field of characteristic p and x : Spec k → Xpar be an
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ordinary point corresponding to an abelian scheme G′. The formal deformation space
at x has underlying ring isomorphic to W (k)[[X,Y, Z]] and parametrizes the Serre-Tate

parameter: Z2
p → Z2

p ⊗ Ĝm given by the matrix

(
X pZ
Z Y

)
. The components of the fiber

of this deformation space under p2 where G′ → G is étale has associated ring

W (k)[[X,Y, Z, Y ′]]/((1 + Y ′)p − 1− Y )

which parametrizes the following diagram of Serre-Tate parameters :

Z2
p

(
X pZ
Z Y

)
//(

1 0
0 p

)
��

Z2
p ⊗ Ĝm(

1 0
0 1

)
��

Z2
p

(
X Z
Z Y ′

)
// Z2
p ⊗ Ĝm

The trace

W (k)[[X,Y, Z, Y ′]]/((1 + Y ′)p − 1− Y )→W (k)[[X,Y, Z]]

factors through pW (k)[[X,Y, Z]] which implies that the map p?2OXpar → p!
1OXpar factors

through pp!
2OXpar at these points.

At the points where the kernel of G′ → G is a multiplicative group scheme, the
map p?1Ω(k,r) → p?2Ω(k,r) factors through prp?2Ω(k,r) and the map p?2Ω(k,r) → p!

2Ω(k,r) is an
isomorphism.

Under the assumption r ≥ 1, we denote by T2 the associated normalized map p−1T ′2 :

p?1Ω(k,r) → p!
2Ω(k,r) or the map on cohomology :

T2 : RΓ(X,Ω(k,r))→ RΓ(Xpar,Ω
(k,r)).

We let T = T1 ◦ T2. The operator T corresponds to the (normalized) operator
attached to the composition of Hecke operators GSp4(Zp)diag(p, p, p, 1)GSp′4(Zp) ?
GSp′4(Zp)diag(p, 1, 1, 1)GSp4(Zp) as explained in the beginning of this section.

7.2. Independence on the choice of the toroidal compactification. — We justify
that the action of our Hecke operators T1 and T2 does not depend on special choices of
polyhedral cone decompositions. We assume that r ≥ 1 and k + 2r ≥ r + 2 throughout
this section. Suppose we have a commutative diagram for choices Σ,Σ′,Σ′′ and Λ,Λ′,Λ′′

of good polyhedral cone decompositions :

Xpar,Λ′′

r

��

XKli(p)Λ′
l1 //l2oo

s

��

XΛ

t

��
Xpar,Σ′′ XKli(p)Σ′

p2oo p1 // XΣ

By theorem 6.1.5.1, we have isomorphisms :

t? : RΓ(XΣ,Ω
(k,r))→ RΓ(XΛ, t

?Ω(k,r)),

r? : RΓ(Xpar,Σ′′ ,Ω
(k,r))→ RΓ(Xpar,Λ′′ , r

?Ω(k,r)),

s? : RΓ(XKli(p)Σ′ ,Ω
(k,r))→ RΓ(XKli(p)Λ′ , s

?Ω(k,r)),

where in this last isomorphisms Ω(k,r) stands for either p?1Ω(k,r) or p?2Ω(k,r).
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Proposition 7.2.1. — The diagrams :

RΓ(Xpar,Λ′′ ,Ω
(k,r))

T1,Λ // RΓ(XΛ,Ω
(k,r))

RΓ(Xpar,Σ′′ ,Ω
(k,r))

r?

OO

T1,Σ // RΓ(XΣ,Ω
(k,r))

t?

OO

and

RΓ(XΛ,Ω
(k,r))

T2,Λ// RΓ(Xpar,Λ′′ ,Ω
(k,r))

RΓ(XΣ,Ω
(k,r))

t?

OO

T2,Σ// RΓ(Xpar,Σ′′ ,Ω
(k,r))

r?

OO

are commutative.

Proof. We only prove the commutativity of the first diagram. The commutativity of the
second diagram follows along similar lines. The bottom horizontal map is induced by the
cohomological correspondence T1,Σ : p?2Ω(k,r) → p!

1Ω(k,r) which by adjunction is a map :

R(p1)?p
?
2Ω(k,r) → Ω(k,r). Since Rs?s

?p?2Ω(k,r) ' p?2Ω(k,r), this map is equivalently a map :

T ′1,Σ : R(p1)?Rs?s
?p?2Ω(k,r) = Rt?R(l1)?l

?
2r
?Ω(k,r) → Ω(k,r).

We can obtain another map. We have a second cohomological correspondence
T1,Λ : R(l1)?l

?
2r
?Ω(k,r) → t?Ω(k,r). Using the adjunction property and the isomorphism

Rt?t
?Ω(k,r) ' Ω(k,r) we obtain a map that we denote by

T ′1,Λ : Rt?R(l1)?l
?
2r
?Ω(k,r) → Ω(k,r).

The commutativity of the diagram is equivalent to the equality T ′1,Σ = T ′1,Λ. By adjunction,

both can be seen as maps of locally free shaves l?2r
?Ω(k,r) → l!1t

!Ω(k,r). Both maps coincide
over the complement of the boundary. Thus, they coincide everywhere.

7.3. The operator on cuspidal cohomology. — The boundary of the toroidal com-
pactification X, Xpar or XKli(p) is denoted by DX , DXpar or DXKli(p). If no confusion will
arise, it is simply denoted by D.

Lemma 7.3.1. — 1. If k + 2r ≥ r + 2, the cohomological correspondences T1 :
p?2Ω(k,r) → p!

1Ω(k,r) induces a cohomological correspondence T1 : p?2Ω(k,r)(−DXpar) →
p!

1Ω(k,r)(−DX).

2. If r ≥ 1, the cohomological correspondences T2 : p?1Ω(k,r) → p!
2Ω(k,r) induces a

cohomological correspondence T2 : p?1Ω(k,r)(−DX) → p!
2Ω(k,r)(−DXpar).

3. These cohomological correspondences are functorial with respect to the change of
polyhedral cone decomposition, in the sense that the analogue of proposition 7.2.1
holds for cuspidal automorphic sheaves.

Proof. We only prove point 1 because point 2 is similar and point 3 is proved exactly in the
same way as is proposition 7.2.1. We have a map p?2Ω(k,r)(−DXpar)→ p?2Ω(k,r)(−DXKli(p)).

Twisting the map p?2Ω(k,r) → p?1Ω(k,r) we get a map p?2Ω(k,r)(−DXKli(p))→ p?1Ω(k,r)(−DXKli(p)).
By lemma 4.2.4.1, the fundamental class induces a map OXKli(p)(−DXKli(p)) →
p!

1OX(−DX). Tensoring with Ω(k,r) and composing everything gives a non-normalized
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map p?2Ω(k,r)(−DXpar) → p!
1Ω(k,r)(−DX). This map factors through pr+2p!

1Ω(k,r) ∩
p!

1Ω(k,r)(−DX) = pr+2p!
1Ω(k,r)(−DX).

7.4. Restriction of the correspondence. — In this section, we work over Spec Fp.
Let p1 : XKli(p)1 → X1 and p2 : XKli(p)1 → Xpar,1 be the reduction modulo p of the maps
p1 and p2. We keep the notation p1 and p2 for the two projections. We will also make use
of the following notation : if we have a scheme S, a locally closed subscheme i : T ↪→ S,
and a coherent sheaf F on S, we often write F|T for i?F .

We have (by reduction modulo p and proposition 4.1.2.1), two normalized cohomo-

logical correspondences T1 : p?2(Ω(k,r)|Xpar,1) → p!
1(Ω(k,r)|X1) and T2 : p?1(Ω(k,r)|X1) →

p!
2(Ω(k,r)|Xpar,1). Again, we keep the notations T1, T2 for the reduction of the cohomological

correspondences. We deduce maps on cohomology T1 ∈ Hom(RΓ(Xpar,1,Ω
(k,r)),RΓ(X1,Ω

(k,r)))

and T2 ∈ Hom(RΓ(X1,Ω
(k,r)),RΓ(Xpar,1,Ω

(k,r))). We keep writting T = T1 ◦ T2.

7.4.1. Restriction to the non-ordinary locus. — We now study the restriction of the cor-
respondence to the non-ordinary locus.

Proposition 7.4.1.1. — For r ≥ 2 and k + r > 2, the following diagrams commute :

p?2Ω(k,r) T1 //

p?2Ha
��

p!
1Ω(k,r)

p?1Ha
��

p?2Ω(k,r+(p−1)) T1 // p!
1Ω(k,r+(p−1))

p?1Ω(k,r) T2 //

p?1Ha
��

p!
2Ω(k,r)

p?2Ha
��

p?1Ω(k,r+(p−1)) T2 // p!
2Ω(k,r+(p−1))

Proof. It is enough to prove the commutativity over some dense open subscheme since
XKli(p)1 is Cohen-Macaulay. We can thus work over the intersection of the ordinary locus
and the complement of the boundary. We consider the first diagram. There are two types
of ordinary components. First, the components where the kernel of the isogeny G→ G′ is
of étale rank 2. Over these components, the diagram can be rewritten as the composition
of two diagrams :

p?2Ω(k,r) //

p?2Ha
��

p?1Ω(k,r)

p?1Ha
��

// p!
1Ω(k,r)

p?1Ha
��

p?2Ω(k,r+(p−1)) // p?1Ω(k,r+(p−1)) // p!
1Ω(k,r+(p−1))

The map p?2Ω(k,r) → p?1Ω(k,r) is obtained as the tensor product of the natural map

p?2Ω(k,0) → p?1Ω(k,0) and a normalized map p?2Ω(0,r) → p?1Ω(0,r). By lemma 6.3.4.1 (observe
that the normalization used in that lemma is the same as the normalization used in the
definition of the cohomological correspondence), the left square is commutative. The right
square diagram is obtained by tensoring a normalized fundamental class p?1OX1 → p!

1OX1

with the morphism Ω(k,r) p?1Ha
→ Ω(k,r+(p−1)) and is obviously commutative. We next deal

with the components where the kernel of the isogeny G→ G′ is of étale rank 1 and thus of
multiplicative rank 2. Going back to the definition (see lemma 7.1.1), we deduce that the
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map p?2Ω(k,r) → p!
1Ω(k,r) vanishes as soon as k+2r > r+2. As a result, the commutativity

is obvious on these components.
We now deal with the commutativity of the second diagram. First, we consider the

components where the isogeny G′ → G has étale kernel. On those components, we can
again split the diagram as

p?1Ω(k,r) //

p?1Ha
��

p?2Ω(k,r)

p?2Ha
��

// p!
2Ω(k,r)

p?2Ha
��

p?1Ω(k,r+(p−1)) // p?2Ω(k,r+(p−1)) // p!
2Ω(k,r+(p−1))

The left square is commutative because the Hasse invariant commutes with étale iso-
genies. The right square is commutative because it is obtained by tensoring the normalized
fundamental class p?2OX1 → p!

2OX1 with the morphism Ω(k,r) → Ω(k,r+(p−1)).
Finally, we consider components where the kernel of the map G′ → G is multiplicative.

Then, as soon as r > 1, the map p?1Ω(k,r) → p!
2Ω(k,r) vanishes and commutativity is obvious.

We recall that X≤1
par,1 and X≤1

1 are the vanishing locus of the Hasse invariant in Xpar,1

and X1.

Lemma 7.4.1.1. — The sections p?2Ha and p?1Ha are not zero divisors in XKli(p)1.

Proof. The scheme XKli(p)1 is Cohen-Macaulay and the non-ordinary locus has codi-
mension 1.

By proposition 7.4.1.1 and proposition 4.1.2.1, for all r ≥ 2+p−1 and k+r > 2+p−1,
we have cohomological correspondences :

T1 : p?2(Ω(k,r)|
X≤1

par,1
)→ p!

1(Ω(k,r)|
X≤1

1
)

and

T2 : p?1(Ω(k,r)|
X≤1

1
)→ p!

2(Ω(k,r)|
X≤1

par,1
).

They induce a map T1 ∈ Hom(RΓ(X≤1
par,1,Ω

(k,r)),RΓ(X≤1
1 ,Ω(k,r))) and a map T2 ∈

Hom(RΓ(X≤1
1 ,Ω(k,r)),RΓ(X≤1

par,1,Ω
(k,r))). We let T = T1 ◦ T2. We obtain maps of exact

triangles for all r ≥ 2 and k + r > 2 :

R(p1)?p
?
2Ω(k,r) //

p?2Ha
��

Ω(k,r)

p?1Ha
��

R(p1)?p
?
2Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(p1)?(p2)?Ω(k,r+(p−1))|

X≤1
par,1

//

+1

��

Ω(k,r+(p−1))|
X≤1

1

+1

��

and
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R(p2)?p
?
1Ω(k,r) //

p?1Ha
��

Ω(k,r)

p?2Ha
��

R(p2)?p
?
1Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(p2)?(p1)?Ω(k,r+(p−1))|

X≤1
1

//

+1

��

Ω(k,r+(p−1))|
X≤1

par,1

+1

��

For r ≥ 2 and k + r > 2, we deduce that there is a long exact sequence on which T
acts equivariantly:

H?(X1,Ω
(k,r))

×Ha→ H?(X1,Ω
(k,r+(p−1)))→ H?(X≤1

1 ,Ω(k,r+(p−1)))→ .

7.4.2. Restriction to the rank zero locus. — For r ≥ 2 + p− 1 and k + r > 2 + p− 1, we
have cohomological correspondences :

T1 : p?2Ω(k,r)|
X≤1

par,1
→ p!

1Ω(k,r)|
X≤1

1
, and T2 : p?1Ω(k,r)|

X≤1
1
→ p!

2Ω(k,r)|
X≤1

par,1

We are going to decompose these correspondences into pieces.

Lemma 7.4.2.1. — Let N ∈ Z≥1 and let S be a scheme of characteristic p and G be
a truncated Barsotti-Tate group of level N over S. Assume that the étale rank and the
multiplicative rank of G is constant over S. Let H ⊂ G be a subgroup scheme of order p.
Then S is the union of three types of open and closed subschemes S = Set

∐
Sm
∐
Soo such

that over each geometric point of Set, Sm and Soo, the group H is respectively isomorphic
to Z/pZ, µp, αp.

Proof. We can assume that S is perfect because a scheme and its perfection have the
same underlying topological space and the same geometric points. We have a decomposi-
tion: G = Gm ⊕Goo ⊕Get into multiplicative, biconnected and étale groups because the
usual multiplicative-connected-étale filtration splits over a perfect scheme (one can use the
Verschiebung on G and GD to produce the splitting, see [59], prop. 1.3 for example). The
condition that H is of étale, multiplicative or biconnected type is then obviously closed.
The condition that H is étale or multiplicative is open. Thus we have open and closed
components Set and Sm. Their complement is Soo.

We will now make use of the following notation : if we have a map of schemes S → T
and Z ↪→ T a locally closed subscheme, we will often write S|Z for S ×T Z.

Using this lemma we can decompose certain schemes. Consider the chain of isogenies
G→ G′ → G over XKli(p).

Lemma 7.4.2.2. — The scheme XKli(p)|X=1
par,1

is the disjoint union of three open and

closed subschemes. The étale component (XKli(p)|X=1
par,1

)et where the isogeny G′ → G

has multiplicative kernel, the multiplicative component (XKli(p)|X=1
par,1

)m where the isogeny

G′ → G is étale and the bi-infinitesimal component (XKli(p)|X=1
par,1

)oo where the isogeny

G′ → G has bi-connected kernel.
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Proof. We first establish the decomposition on YKli(p)|X=1
par,1

, the locus where G is an

abelian scheme. We can consider the universal order p subgroup H of G[p] and apply the
above lemma. This decomposition extends to XKli(p)|X=1

par,1
by the description of the local

charts.

We deduce that the scheme XKli(p)|X=1
1

(which has the same topological space

as XKli(p)|X=1
par,1

) is also the union of three types of components : (XKli(p)|X=1
1

)et,

(XKli(p)|X=1
1

)m and (XKli(p)|X=1
1

)oo.

Lemma 7.4.2.3. — The scheme X=1
par,1 is the union of two types of components. The

components X=1,oo
par,1 where the kernel of the quasi-polarization G′[p∞] → (G′)t[p∞] is iso-

morphic to a biconnected group and the components X=1,m−et
par,1 where the kernel of the

polarization contains a multiplicative group.

Proof. Over X=1,oo
par,1 we consider K(λ) the kernel of the quasi-polarization G′[p∞] →

(G′)t[p∞]. If G′ is an abelian scheme, this group is either a connected BT1 of height 2 and
dimension 1 or an extension of an étale by a multiplicative group. We consider the group
KerF : K(λ) → K(λ)(p). This is a rank p group either of multiplicative type or locally
isomorphic to αp. We can apply lemma 7.4.2.1.

Lemma 7.4.2.4. — We have :

p2((XKli(p)|X=1
par,1

)oo) ⊂ X=1,oo
par,1

and

p2((XKli(p)|X=1
par,1

)m ∪ (XKli(p)|X=1
par,1

)et) ⊂ X=1,m−et
par,1 .

Proof. The group Ker(G′ → G) is a closed subgroup of K(λ) and therefore it determines
its type : it is étale or multiplicative if K(λ) contains a mutliplicative group, and it is
biconnected if K(λ) is.

The cohomological correspondence T1 : p?2Ω(k,r)|X=1
par,1
→ p!

1Ω(k,r)|X=1
1

is naturally the

sum Tm1 + T et1 + T oo1 of three cohomological correspondences where we denote by Tm1 ,
T et1 and T oo1 the projection of the cohomological correspondence T1 respectively on the
multiplicative, étale and bi-infinitesimal components.

Similarly, the cohomological correspondence T2 : p?1Ω(k,r)|X=1
1
→ p!

2Ω(k,r)|X=1
par,1

de-

composes into T2 = Tm2 + T et2 + T oo2 , where we denote by Tm2 , T et2 and T oo2 the projection
of the cohomological correspondence T2 respectively on the étale, multiplicative and bi-
infinitesimal components (note that the roles of étale and multiplicative components are
switched between T1 and T2).

We have maps on cohomology :

H?(X=1
1 ,Ω(k,r)(−D))

(T oo2 ,Tm2 +T et2 )
−→

H?(X=1,oo
par,1 ,Ω

(k,r)(−D))⊕H?(X=1,m−et
par,1 ,Ω(k,r)(−D))

(T oo1 ,T et1 +Tm1 )
−→ H?(X=1

1 ,Ω(k,r)(−D)).

The first important result of this section is :

Proposition 7.4.2.1. — For r ≥ 2+(p−1) and k+r > 2(p+1), the following diagrams
are commutative :
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p?2Ω(k,r)|
X≤1

par,1

T1 //

p?2Ha′

��

p!
1Ω(k,r)|

X≤1
1

p?1Ha′

��

p?2Ω(k,r+(p2−1))|
X≤1

par,1

T1 // p!
1Ω(k,r+(p2−1))|

X≤1
1

p?1Ω(k,r)|X=1
1

T et2 //

p?1Ha′

��

p!
2Ω(k,r)|X=1

par,1

p?2Ha′

��

p?1Ω(k,r+(p2−1))|X=1
1

T et2 // p!
2Ω(k,r+(p2−1))|X=1

par,1

Moreover, Tm1 = T oo1 = 0 and Tm2 = 0. Finally, if r ≥ p+2, T oo2 = 0 and the diagram:

p?1Ω(k,r)|
X≤1

1

T2 //

p?1Ha′

��

p!
2Ω(k,r)|

X≤1
par,1

p?2Ha′

��

p?1Ω(k,r+(p2−1))|
X≤1

1

T2 // p!
2Ω(k,r+(p2−1))|

X≤1
par,1

is commutative.

Proof. We first deal with the operator T1. We notice that it is enough to prove
the claim over XKli(p)|X=1

1
which is dense in the support of the Cohen-Macaulay sheaf

p!
1Ω(k,r+(p2−1))|

X≤1
1

. We will actually work over the interior of the moduli space YKli(p)|X=1
1

which is dense. We can treat separately the different connected components. We first deal
with the components of étale type. We take some simplifying notations. Let A = Y =1

par,1

and Â be the completion of Ypar,1 along this locally closed subscheme. Let B = Y =1
1 and

B̂ be the completion of Y1 along B. The ideal of definition of Â and B̂ are (p,Ha.ω(1−p)).

Finally, consider Ĉ, the completion of XKli(p) along (XKli(p)|Y =1
par,1

)et = (p−1
2 (A))et (or the

completion along (p−1
1 (B))et, it makes no difference). We consider the following restriction

of the correspondence (we keep using the same notations for the projections):

Ĉ
p1

��

p2

��
Â B̂

We observe that the map p1 is finite flat because B̂ is regular, p1 is finite (because

we removed the p-rank 0 locus) and dominant, and Ĉ is Cohen-Macaulay.
We are now going to give a description of the cohomological correspondence T1 re-

stricted to Ĉ (10). Consider the following commutative diagram over Ĉ :

10. Since the map p1 is finite flat away from the p-rank 0 locus and the boundary, it makes sense to
base change the cohomological correspondence to an arbitrary (formal) scheme by section 4.2.5. Also,

the reader who wishes to avoid using formal schemes could replace Ĉ by some open dense affine formal
subscheme Spf V and then replace Spf V by Spec V .
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G[p∞]m //

��

G[p∞] //

��

G[p∞]/G[p∞]m

��
G′[p∞]m // G′[p∞] // G′[p∞]/G′[p∞]m

The middle vertical map is the universal isogeny. The exponent m means the multi-
plicative part of the BT . The left vertical map is an isomorphism and the right vertical
map is multiplication by p composed with an isomorphism. The non-normalized map
p?2ω → p?1ω can be normalized by p−1 to give an isomorphism. The non-normalized map

p?2Ω(k,r) → p?1Ω(k,r) can be normalized by p−r. Under the isomorphism p?2ω
(p−1) ' p?1ω(p−1)

we have p?1Ha = p?2Ha by lemma 6.3.4.2 (applied on the formal scheme Ĉ which we view
as the inductive limit of the schemes defined by the zero locus of increasing powers of
the ideal of definition (p, p?1Ha.p?1ω

(1−p))). We now define C = V (p, p?1Ha.p?1ω
1−p) ↪→ Ĉ

(we could have used instead p?2Ha.p?2ω
1−p). The fundamental class p?1OB̂ → p!

1OB̂ is di-

visible by p2 as we can check over the ordinary locus as in lemma 7.1.1. We can thus
write the cohomological correspondence T1 over Ĉ as the composition of a normalized
map p?2Ω(k,r)|Ĉ → p?1Ω(k,r)|Ĉ and the map which is the tensor product with p?1Ω(k,r) of a
normalized fundamental class. We are using here 4.2.5 to check the compatibility of the
fundamental class with base change via the morphism B̂ → X.

After this analysis, we can prove the commutativity of the diagram of the proposition
over C. We can write the diagram as the composition of two diagrams

p?2Ω(k,r)|A //

p?2Ha′

��

p?1Ω(k,r)|B

p?1Ha′

��

// p!
1Ω(k,r)|B

p?1Ha′

��

p?2Ω(k,r+(p2−1))|A // p?1Ω(k,r+(p2−1))|B // p!
1Ω(k,r+(p2−1))|B

The commutativity of the left square follows from lemma 6.3.4.2 and the commuta-
tivity of the right square is obvious.

We now deal with the components of XKli(p)|X=1
par,1

of multiplicative and bi-

infinitesimal type. We have denoted by T oo1 and Tm1 the restriction of the cohomological
correspondence to bi-infinitesimal and multiplicative components. Over these compo-
nents, we will actually prove that the cohomological correspondences T oo1 and Tm1 are
zero. The commutativity is thus obvious.

Let Spec l → X=1
1 be a point corresponding to a p-rank 1 principally polarized

abelian surface A over an algebraically closed field l of characteristic p. Consider the lift
Ã → Spec W (l) with associated Barsotti-Tate group µp∞ ⊕ E[p∞] ⊕ Qp/Zp with E[p∞]
the Barsotti-Tate group of a supersingular elliptic curve over W (l). Consider the following
commutative diagram :

H0(XKli(p)×X,p1 Spec W (l), p?2Ω(k,r))

��

T oo1 // H0(Spec W (l),Ω(k,r))

��
H0(XKli(p)1 ×X1,p1 Spec l, p?2Ω(k,r))

T oo1 // H0(Spec l,Ω(k,r))
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All vertical maps are surjective because all schemes are affine. Let f ∈ H0(XKli(p)×X,p1

Spec W (l), p?2Ω(k,r)). Then by definition and section 4.2.5,

T 00
1 f(Ã, µ) =

1

p2+r

∑
L⊂Ã[p], L⊥biconnected

f(Ã/L, µ′)

In this formula, µ : W (l)2 ' e?Ω1
Ã

is an isomorphism. Let C be the completion of an

algebraic closure of W (l)[1/p]. Then

µ′ : C2 ψ⊗1→ e?Ω1
Ã
⊗ C dξ−1

→ e?Ω1
Ã/L
⊗ C

where ξ : Ã → Ã/L is the isogeny. We have a non-canonical decomposition over OC:
L = Lm ⊕ L0 ⊕ Let where each of these groups is multiplicative/bi-connected/étale of
order p. Moreover, it is easy to see that L0 has degree 1

p+1 in the sense of [20] (see [62],

example A.2.2). As a result, the map : e?Ω1
Ã/L
→ e?Ω1

Ã
has elementary divisors (p,$)

with the p-adic valuation of $ (normalized by v(p) = 1) equal to 1
p+1 . If r + k > 2(p+ 1)

then 1
p2+r f(Ã/L, µ′) ∈ mOC and as a result, T oo1 f(Ã, µ) mod p = 0. The proof of the

vanishing of Tm1 is similar (actually one sees that Tm1 is zero as soon as k + 2r > r + 2 as
in the proof of proposition 7.4.1.1.

The commutativity of the second diagram follows easily from the observation that the
isogeny G′ → G is étale. The proof of the vanishing of Tm2 or T oo2 (if r ≥ p+ 2) is similar
to the proof of the vanishing of T oo1 . The commutativity of the last diagram follows.

Remark 7.4.2.1. — 1. For r = p + 1, one can prove that the correspondence T oo2

does not commute with Ha′ and does not vanish and therefore the operator T2

does not commute with Ha′.

2. Our vanishing condition for T oo1 is not optimal because we have not used estimates
on the fundamental class. It will nevertheless be sufficient for our purpose.

Corollary 7.4.2.1. — We have T = T1 ◦ T2 = T et1 ◦ T et2 as endomorphisms of

H?(X=1
1 , ω(k,r)) when r ≥ p+ 1 and k + r > 2(p+ 1).

Proof. This follows from the vanishing Tm1 = T oo1 = Tm2 = 0.

Lemma 7.4.2.5. — The section p?1Ha′ is not a zero divisor in XKli(p)1 ×X1 X
≤1
1 .

Proof. The scheme XKli(p)1 ×X1 X
≤1
1 is Cohen-Macaulay and the p-rank 0 locus has

codimension 1 (11).

By proposition 7.4.2.1 and proposition 4.1.2.1, we have for r ≥ p2+p = 2+p−1+p2−1
and k + r > 2(p+ 1) + p2 − 1 a cohomological correspondence :

T1 : p?2Ω(k,r)|X=0
par,1
→ p!

1Ω(k,r)|X=0
1
.

Moreover, we have for all r ≥ 2 + p− 1 and k + r > 2(p+ 1) + p2 − 1 a commutative
diagram of long exact sequences :

11. The p-rank 0 locus X=0
1 is of dimension 1 and the map p1 is bijective over the dense open subscheme

of X=0
1 parametrizing abelian surfaces which are not isomorphic to a product of supersingular elliptic

curves. On the other hand, the map p1 is a P1-fibration over the finite set of superspecial points SS of
X=0

1 parametrizing abelian surfaces isomorphic to a product of supersingular elliptic curves.
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H?(X≤1
1 ,Ω(k,r))

Ha′ // H?(X≤1
1 ,Ω(k,r+(p2−1))) // H?(X≤0

1 ,Ω(k,r+(p2−1))) //

H?(X≤1
par,1,Ω

(k,r))

T1

OO

Ha′// H?(X≤1
par,1,Ω

(k,r+(p2−1)))

T1

OO

// H?(X≤0
par,1,Ω

(k,r+(p2−1)))

T1

OO

//

The following proposition is absolutely crucial to the argument of the paper.

Proposition 7.4.2.2. — There is a constant C which does not depend on the prime-to-p
level Kp such that for all k ≥ C and all r ≥ p2 + p, the cohomological correspondence
T1 : p?2Ω(k,r)|X=0

par,1
→ p!

1Ω(k,r)|X=0
1

is zero.

Proof. Let I ⊂ OX be the ideal of the closed subscheme X=0
1 . In a local trivialization

of the sheaf ω, the ideal is generated by p and lifts of Ha and Ha′. Since X=0
1 is a

local complete intersection in X, we deduce that OX=0
1

has finite tor dimension as an

OX -module.
The cohomological correspondence T1 : p?2Ω(k,r) → p!

1Ω(k,r) induces a cohomological
correspondence

p?2Ω(k,r) → p!
1(Ω(k,r) ⊗ OX=0

1
)

thanks to proposition 4.1.2.1. Moreover, thanks to proposition 7.4.2.1, this cohomolog-
ical correspondence factors through the map T1 : p?2Ω(k,r)|X=0

par,1
→ p!

1Ω(k,r)|X=0
1

of the

proposition. Thus, in order to prove the proposition it is enough to show that there is
a constant C such that for all k ≥ C, the map T1 : p?2Ω(k,r) → p!

1Ω(k,r) factors through

T1 : p?2Ω(k,r) → Ip!
1Ω(k,r).

We now need to analyze one more time the construction of T1. Let Ψ : G → G′ be
the universal isogeny. Its differential is a map dΨ : p?2Ω1 → p?1Ω1. Call Ψk,r : p?2Ω(k,r) →
p?1Ω(k,r) the map obtained by applying the functor Symk ⊗ detr. The determinant Ψ0,1 :
p?2ω

1 → p?1ω
1 factors through pp?1ω

1 (check this over the tube of the ordinary locus).
Secondly, we have a non-normalized fundamental class Θ : p?1OX → p!

1OX . Tensoring

with Ω(k,r) gives a non-normalized map

Θk,r : p?1Ω(k,r) → p!
1Ω(k,r).

We have established in lemma 7.1.1 that the composite Θk,r ◦Ψk,r is divisible by p2+r

when r ≥ 1, and the cohomological correspondence T1 is p−2−rΘk,r ◦Ψk,r.
To prove the proposition, it is enough to show that there is a constant C such that

Θk,r ◦Ψk,r(p
?
2Ω(k,r)) ⊂ p2+rIp!

1Ω(k,r)

for k ≥ C.
The problem is local. Let Spec A be an open in XKli(p) and I = p?1I(Spec A). Set

M2 = p?2Ω1(Spec A), M3 = p?1Ω1(Spec A), M1 = p!
1Ω1(Spec A).

Let p1, · · · , pr be the minimal prime ideals in Spec A/I. One sees that for each i,
dΨ(M2) ⊂ piM3 as the differential dΨ : Ω1

G′ → Ω1
G is 0 modulo pi because the isogeny

Ψ : G→ G′ factors through the Frobenius map at pi by lemma 7.4.2.6 below.
We deduce that

Θk,r ◦Ψk,r(M2) ⊂ p2+rM1

⋂
(∩iprpki )M1.

By Artin-Rees lemma, there exists C(A) ≥ 0 such that p2A
⋂
∩ipC(A)

i ⊂ p2I. It follows
that for all k ≥ C(A), Θk,r ◦Ψk,r(M2) ⊂ p2+rIM1. Since XKli(p) is quasi-compact, it can
be covered by finitely many affines as above.
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We finally justify that the constant C does not depend on Kp. Say we have Kp
1 ⊂ K

p
2

two open compact subgroups of GSp4(Apf ) and we denote by K1 = Kp
1GSp4(Zp) and K2 =

Kp
2GSp4(Zp). Let C1 and C2 be constants that fulfill the conclusion of our proposition

for the levels K1 and K2. We claim that the constant C = inf{C1, C2} works as well for
both level. Indeed, there is a map XK1 → XK2 which correspond to the change of level
away from p and which is finite étale away from the boundary (and we have similar maps
for the other level structures at p). All our constructions at level K1 are obtained by base
change from level K2 (they clearly do not depend on the level structure away from p). In
particular the map of the lemma for the level K1 is obtained by base change from the same
map at level K2 under the map XKli(p)K1

→ XKli(p)K2
which is finite étale away from the

boundary. The map of the lemma is supported on the p-rank 0 locus which does not meet
the boundary and therefore C works at level K1 and K2.

Lemma 7.4.2.6. — Let A → Spec l be an abelian surface of p-rank 0 over a field l of
characteristic p. Let L ⊂ A[p] be a group scheme of order p3. Then Ker F ⊂ L.

Proof. We have a perfect pairing A[p]×A[p]D → µp. The orthogonal of Ker F ⊂ A[p] is

Ker F ⊂ A[p]D. The group L⊥ ⊂ A[p]D is a group of rank p and is necessarily killed by F ,
since A has p-rank 0. It follows that L⊥ ⊂ Ker (F : A[p]D → A[p]D) and that Ker F ⊂ L.

Remark 7.4.2.2. — Finding an explicit bound for the constant C appearing in proposi-
tion 7.4.2.2 would be a first important step towards proving an integral classicity theorem
for all cohomological degrees improving on theorem 1.1, point 2. This would require new
ideas and a deeper analysis of the correspondence.

8. Finiteness of the ordinary cohomology

The purpose of this section is to study the T -ordinary part of the cohomology of
automorphic vector bundles over various subsets of the Shimura variety. The results of
section 7 provide the necessary background material.

8.1. Finiteness of the ordinary cohomology on X=1
1 . — We begin with the follow-

ing lemma.

Lemma 8.1.1. — For all r ≥ 2 + (p − 1) and all k > p + 1, the action of T on

H0(X=1
1 ,Ω(k,r)(−D)) is locally finite.

Proof. We let Ha′ ∈ H0(X≤1
1 , ωp

2−1) be the second Hasse invariant. Since H0(X=1
1 ,Ω(k,r)(−D)) =

colimnH0(X≤1
1 ,Ω(k,r+n(p2−1))(−D)) where the inductive limit is over multiplication by

Ha′ and Ha′T = THa′ by proposition 7.4.2.1 and corollary 7.4.2.1, the lemma follows.

Using the result of section 2.3, we can define an ordinary projector e associated to T
on H0(X=1

1 ,Ω(k,r)(−D)) for k > p+ 1, r ≥ p+ 1.

Lemma 8.1.2. — 1. If r ≥ 2 + (p − 1) and k > p + 1, we have an equality of

morphisms Ha′T = THa′ : H0(X≤1
1 ,Ω(k,r)(−D))→ H0(X≤1

1 ,Ω(k,r+(p2−1))(−D)).

2. If r > 2 + (p− 1) and k > p+ 1, we have an equality of morphisms Ha′T = THa′ :

Hi(X≤1
1 ,Ω(k,r)(−D))→ Hi(X≤1

1 ,Ω(k,r+(p2−1))(−D)) for all i.
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Proof. The first point follows from the fact that we have a T -equivariant embedding
H0(X≤1

1 ,Ω(k,r)(−D)) ↪→ H0(X=1
1 ,Ω(k,r)(−D)) for r ≥ 2 + (p − 1) and k > p + 1 and

that the identity holds for the map H0(X=1
1 ,Ω(k,r)(−D)) → H0(X=1

1 ,Ω(k,r+(p2−1))(−D))
by corollary 7.4.2.1. Point 2 follows from proposition 7.4.2.1.

Remark 8.1.1. — We have not been able to establish that THa′ = Ha′T as morphisms :

Hi(X≤1
1 ,Ω(k,p+1)(−D))→ Hi(X≤1

1 ,Ω(k,p2+p))(−D)) for k large enough and i ≥ 1, although

we believe this should be true. (12)

Proposition 8.1.1. — There is a constant C (see prop. 7.4.2.2) which is independent
of the level Kp such that for k ≥ C and r ≥ p+ 1 we have isomorphisms :

eH0(X≤1
1 ,Ω(k,r)(−D)) = eH0(X=1

1 ,Ω(k,r)(−D)).

If r ≥ p + 2, we moreover have eHi(X≤1
1 ,Ω(k,r)(−D)) = eHi(X=1

1 ,Ω(k,r)(−D)) = 0
for i = 1, 2.

Proof. Consider the following exact sequence of sheaves over X≤1
1 or X≤1

par,1 :

0→ Ω(k,r)(−D)→ Ω(k,r+(p2−1))(−D)→ Ω(k,r+(p2−1))(−D)/(Ha′)→ 0

Applying the functor global sections, we get a commutative diagram of long exact
sequences :

H?(X≤1
1 ,Ω(k,r)(−D))

Ha′ // H?(X≤1
1 ,Ω(k,r+(p2−1))(−D)) // H?(X≤0

1 ,Ω(k,r+(p2−1))(−D)) //

H?(X≤1
par,1,Ω

(k,r)(−D))

T1

OO

Ha′// H?(X≤1
par,1,Ω

(k,r+(p2−1))(−D))

T1

OO

// H?(X≤0
par,1,Ω

(k,r+(p2−1))(−D))

T1

OO

//

Ideally, we would like to apply the ordinary projectors for T and T2 ◦ T1 to the top
and bottom vertical lines of this diagram, but all the maps may not be equivariant by
lemma 8.1.2, so some care is necessary.

The map

T1 : H?(X=0
par,1,Ω

(k,r+(p2−1))(−D))→ H?(X=0
1 ,Ω(k,r+(p2−1))(−D))

is the zero map by proposition 7.4.2.2. If f ∈ eH?(X≤1
1 ,Ω(k,r+(p2−1))(−D)), we deduce

that there exists f ′ ∈ H?(X≤1
1 ,Ω(k,r)(−D)) mapping to f . It follows from lemma 8.1.2

that on degree 0 cohomology we have THa′ = Ha′T so that the injective map

H0(X≤1
1 ,Ω(k,r)(−D)) ↪→ H0(X≤1

1 ,Ω(k,r+(p2−1))(−D))

commutes with the projector e. We deduce that the map

eH0(X≤1
1 ,Ω(k,r)(−D))→ eH0(X≤1

1 ,Ω(k,r+(p2−1))(−D))

is an isomorphism (it is obviously injective, and surjective because ef ′ maps to f).

Passing to the limit over multiplication by (Ha′)n we get that eH0(X≤1
1 ,Ω(k,r)(−D)) =

eH0(X=1
1 ,Ω(k,r)(−D)).

When r ≥ p + 2, we can apply the ordinary projector associated to T =

T1 ◦ T2 on H?(X≤1
1 ,Ω(k,r)(−D)) and H?(X≤1

1 ,Ω(k,r+(p2−1))(−D)) and to T2 ◦ T1 on

12. In some sense, we are paying here the price for our indirect definition of the operator T as a
composition of two operators.
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H?(X≤1
par,1,Ω

(k,r)(−D)) and H?(X≤1
par,1,Ω

(k,r+(p2−1))(−D)), because all maps are equivari-

ant by lemma 8.1.2 point 2 (and a slight generalization of it for T2 ◦T1 instead of T ). The
map T1 is an isomorphism between the ordinary parts. On the other hand,

T1 : H?(X=0
par,1,Ω

(k,r+(p2−1))(−D))→ H?(X=0
1 ,Ω(k,r+(p2−1))(−D))

is the zero map by proposition 7.4.2.2. It follows that

eH?(X≤1
1 ,Ωk,r(−D)) = eH?(X≤1

1 ,Ω(k,r+(p2−1))(−D)).

Passing to the limit over multiplication by (Ha′)n we get that eH?(X≤1
1 ,Ω(k,r)(−D)) =

eH?(X=1
1 ,Ω(k,r)(−D)). Finally, for all r, the sheaf Ω(k,r)(−D) is acyclic relatively to the

minimal compactification by thm 6.2.2.1. Moreover, the rank 1 locus X=1
1 has affine image

in the minimal compactification. As a result Hi(X=1
1 ,Ω(k,r)(−D)) = 0 for i > 0.

Remark 8.1.2. — If we had been able to establish that THa′ = Ha′T as morphisms

Hi(X≤1
1 ,Ω(k,p+1)(−D)) → Hi(X≤1

1 ,Ω(k,p2+p))(−D)) for all i, we would have deduce that

eHi(X≤1
1 ,Ω(k,p+1)(−D)) = eHi(X=1

1 ,Ω(k,p+1)(−D)) for all i.

8.2. Finiteness of the cohomology on X≥1
1 . — We now turn to understand the

cohomology of X≥1
1 = X1 \X=0

1 .

Lemma 8.2.1. — The action of T on RΓ(X≥1
1 ,Ω(k,r)(−D)) is locally finite for k > p+1

and r ≥ 2.

Proof. Consider the following resolution over X≥1
1 of the sheaf Ω(k,r)(−D) :

0→ Ω(k,r)(−D)→ colimn,×HaΩ(k,r+(p−1)n)(−D)→ colimnΩ(k,r+(p−1)n)(−D)/(Ha)n → 0.

All sheaves are acyclic relatively to the minimal compactification by thm 6.2.2.1.

Moreover, the support of colimn,×HaΩ(k,r+(p2−1)n)(−D) is the rank 2 locus which is affine

in the minimal compactification. The support of colimnΩ(k,r+(p2−1)n)(−D)/(Ha)n is the
rank 1 locus which is also affine in the minimal compactification. It follows that the above
sequence is an acyclic resolution of the sheaf Ω(k,r)(−D) over X≥1

1 .

The cohomology RΓ(X≥1
1 ,Ω(k,r)(−D)) is thus represented by the following complex :

H0(X=2
1 ,Ω(k,r)(−D))→ colimnH0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n)

We will see that the action of T is locally finite on both terms. Since

H0(X=2
1 ,Ω(k,r)(−D)) = colimnH0(X1,Ω

(k,r+n(p−1))(−D))

where the transition maps are given by multiplication by Ha and T commutes with mul-
tiplication by Ha by proposition 7.4.1.1, the action of T is locally finite on the first term.
We now prove that it is locally finite on the second term. It is enough to see that it is
locally finite on H0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n). For n = 1, this follows from lemma
8.1.1. For general n, we use induction, lemma 8.1.1, lemma 2.1.1 and the following exact
sequence :

0→ H0(X≥1
1 ,Ω(k,r+(p−1)(n−1))(−D)/Han−1)→ H0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/Han)

→ H0(X≥1
1 ,Ω(k,r+(p−1)n)(−D)/Ha).
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We can now prove the following proposition, which is one of the main technical results
of the paper :

Proposition 8.2.1. — For all r ≥ 2 and k ≥ C (see prop 7.4.2.2), eRΓ(X≥1
1 ,Ω(k,r)(−D))

is a perfect complex of amplitude [0, 1] of Fp-vector spaces.

For all r ≥ 3 and k ≥ C, the map eRΓ(X1,Ω
(k,r)(−D)) → eRΓ(X≥1

1 ,Ω(k,r)(−D)) is
a quasi-isomorphism.

For all k ≥ C, eH0(X≥1
1 ,Ω(k,2)(−D)) = eH0(X1,Ω

(k,2)(−D)) and the map

eH1(X1,Ω
(k,2)(−D))→ eH1(X≥1

1 ,Ω(k,2)(−D)) is injective.

Proof. Since X=0
1 is of codimension 2 in X1, and X1 is smooth, we have unconditionally

H0(X≥1
1 ,Ω(k,r)(−D)) = H0(X1,Ω

(k,r)(−D)) and in particular eH0(X≥1
1 ,Ω(k,r)(−D)) =

eH0(X1,Ω
(k,r)(−D)).

We consider the following exact sequence over X1 :

0→ Ω(k,r)(−D)→ colimn,×HaΩ(k,r+(p−1)n)(−D)→ colimnΩ(k,r+(p−1)n)(−D)/(Ha)n → 0

From the above short exact sequence of sheaves we obtain the following long exact
sequences :

0 // H0(X≥1
1 ,Ω(k,r)(−D)) // H0(Xord

1 ,Ω(k,r)(−D)) //

0 // H0(X1,Ω
(k,r)(−D)) //

OO

H0(Xord
1 ,Ω(k,r)(−D)) //

OO

colimH0(X≥1
1 ,Ω(k,r+n(p−1))(−D)/Han)) // H1(X≥1

1 ,Ω(k,r)(−D)) // 0

colimH0(X1,Ω
(k,r+n(p−1))(−D)/Han)) //

OO

H1(X1,Ω
(k,r)(−D)) //

OO

0

and the isomorphisms : colimHi(X1,Ω
(k,r+n(p−1))(−D)/Han)) ' Hi+1(X1,Ω

(k,r)(−D))
for i = 1, 2.

The first two vertical maps in the diagram are isomorphisms. We now check that
eHi(X1,Ω

(k,r+n(p−1))(−D)/Han)) = 0 for all n ≥ 1, k ≥ C, r ≥ 3 and i ∈ {1, 2}. The
case n = 1 follows from proposition 8.1.1. For the general case, we take the long exact
sequence of cohomology associated to the short exact sequence of sheaves :

0→ Ω(k,r+n(p−1))(−D)/Han
Ha→ Ω(k,r+(n+1)(p−1))(−D)/Han+1 →

Ω(k,r+(n+1)(p−1))(−D)/Ha→ 0.

We now check that eH0(X1,Ω
(k,r+n(p−1))(−D)/Han))→ eH0(X≥1

1 ,Ω(k,r+n(p−1))(−D)/Han))
is bijective for all n ≥ 1, k ≥ C and r ≥ 3. We prove this by induction on n. The case
n = 1 follows from proposition 8.1.1. The general case follows by taking one more time
the long exact sequence of cohomology associated to the following short exact sequence of
sheaves (when r ≥ 3, there is no eH1 as we just checked) :

0→ Ω(k,r+n(p−1))(−D)/Han
Ha→ Ω(k,r+(n+1)(p−1))(−D)/Han+1 →

Ω(k,r+(n+1)(p−1))(−D)/Ha→ 0.
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We finally prove that eH1(X1,Ω
(k,2)(−D))→ eH1(X≥1

1 ,Ω(k,2)(−D)) is an injection of
finite dimensional vector spaces when k ≥ C. We use the long exact sequence associated
to

0→ Ω(k,2)(−D)
Ha→ Ω(k,p+1)(−D)→ Ω(k,p+1)(−D)/Ha→ 0

and the claim follows from the isomorphism

eH1(X1,Ω
(k,p+1)(−D))→ eH1(X≥1

1 ,Ω(k,p+1)(−D))

that we just established and the isomorphism of proposition 8.1.1 :

eH0(X≤1
1 ,Ω(k,p+1)(−D))→ eH0(X=1

1 ,Ω(k,p+1)(−D)).

Remark 8.2.1. — If we had been able to establish the claims of remark 8.1.2, we
could improve the above proposition and show that for all r ≥ 2 and k ≥ C, the map
eRΓ(X1,Ω

(k,r)(−D))→ eRΓ(X≥1
1 ,Ω(k,r)(−D)) is a quasi-isomorphism.

9. Families of sheaves

In this section we give the construction of certain p-adic sheaves, defined over the
p-rank at least one locus, which interpolate the classical automorphic sheaves in a one-
dimensional direction of the weight space.

9.1. Deep Klingen level structure and Igusa tower. — We introduce certain level
structure that will allow us to define p-adic sheaves.

9.1.1. Deep Klingen level structure. — We let X≥1
Kli(p

m)n → X≥1
n be the moduli space

of subgroups Hm ⊂ G[pm] where Hm is étale locally isomorphic to µpm . We denote by

Xord
Kli(p

m)n or X=2
Kli(p

m)n the ordinary locus of X≥1
Kli(p

m)n.

Remark 9.1.1.1. — We have previously considered the space XKli(p) (a toroidal com-
pactification of the Shimura variety with Klingen level at p, let us further assume in this
remark that the polyhedral cone decomposition is the same for X and XKli(p)). We warn

the reader that X≥1
Kli(p)1 is a strict open subscheme of XKli(p)1×X1 X

≥1
1 . This is the open

subscheme where the universal subgroup H1 (defined as the orthogonal of the kernel of
the degree p3 isogeny G→ G′, or as the kernel of G→ (G′)t) is a multiplicative subgroup
of order p.

Lemma 9.1.1.1. — The map X≥1
Kli(p

m)n → X≥1
Kli(p

m−1)n is étale and affine.

Proof. We first prove that the map is étale. It suffices to show that the map f :
X≥1
Kli(p

m)n → X≥1
n is étale. We can prove this over the spectrum S of a completed local

ring in X≥1
n . Over S, there is a finite flat subgroup scheme G̃[pm] ⊂ G[pm] such that the

connected component of G[pm] is contained in G̃[pm] (13). Let g : T → X≥1
Kli(p

m)n×X≥1
n
S.

Let T ↪→ T ′ be an infinitesimal thickening of T . We suppose that h = f ◦ g ex-
tends to h′ : T ′ → S and we want to prove that h′ can be lifted to a unique map
g′ : T ′ → X≥1

Kli(p
m)n ×X≥1

n
S such that f ◦ g′ = h′. To the map g is associated a sur-

jective map ψT : G̃D[pm]|T → HD
m |T over T where HD

m |T is an étale group scheme, locally
isomorphic to Z/pmZ. The group scheme HD

m |T deforms uniquely to an étale group scheme

13. Away from the boundary, we can of course take G̃[pm] = G[pm]. At the boundary we find it easier

to work with a finite flat group scheme and we can replace G[pm] (which is only quasi-finite) by G̃[pm]

where G̃ is the semi-abelian scheme with constant toric rank that occurs in Mumford’s construction (see
[18], chap. III).
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HD
m |T ′ over T ′ and the data of h′ provides a deformation G̃[pm]T ′ to T ′ of G̃D[pn]|T . By

Illusie’s deformation theory ([37], thm VII, 4.2.5) , the map ψT admits a unique extension

ψT ′ : G̃D[pm]|T ′ → HD
m |T ′ .

We are left to prove that the map is affine. It will be enough to prove this for
n = 1. Let us denote by Z → X≥1

Kli(p
m−1)1 the Grassmannian of subgroups of order

pm inside G[Fm] (the kernel of Fm : G → G(pm)). We note that G[Fm] is a finite flat
group scheme. As a result Z is proper and moreover, it is easy to see that Z is quasi-
finite. As a result, Z is finite. We denote by C the universal subgroup. Let us denote
by Z ′ the closed subscheme of Z where C[pm−1] = Hm−1. The group scheme C/Hm−1

is connected of order p over Z ′. Its co-normal sheaf is L, an invertible sheaf over Z ′

and the differential of the Verschiebung map V : (C/Hm−1)(p) → C/Hm−1 provides a

section s ∈ H0(Z ′,L(p−1)). The non vanishing locus of this section is the open subscheme

(Z ′)m of Z where C/Hm−1 is of multiplicative type. The map (Z ′)m → X≥1
Kli(p

m−1)1

is affine as the composite of the affine open immersion (Z ′)m ↪→ Z ′ and the finite map

Z ′ → X≥1
Kli(p

m−1)1. Finally, X≥1
Kli(p

m)1 is the open and closed subscheme of (Z ′)m where
C is locally for the étale topology isomorphic to µpm . We have thus proved that the map

X≥1
Kli(p

m)1 → X≥1
Kli(p

m−1)1 is affine.

Remark 9.1.1.2. — The map X≥1
Kli(p

m)n → X≥1
Kli(p

m−1)n is not finite because it induces
an isomorphism over the p-rank 1 locus, and is of rank p (resp. p + 1) over the p-rank 2
locus if m ≥ 2 (resp. if m = 1).

9.1.2. Igusa tower. — We let IG(pm)n = Isom
X≥1
Kli(p

m)n
(µpm , Hm). This is a (Z/pmZ)×-

torsor over X≥1
Kli(p

m)n. There is an obvious commutative diagram :

X≥1
Kli(p

m)n−1
//

��

X≥1
Kli(p

m)n

��

X≥1
Kli(p

m−1)n−1
// X≥1

Kli(p
m−1)n

The horizontal maps are closed immersions and the vertical maps are étale and affine
maps.

Above the last diagram, there is a commutative diagram :

IG(pm)n−1
//

��

IG(pm)n

��
IG(pm−1)n−1

// IG(pm−1)n

9.2. Formal schemes. — In this section we pass to the limit over n, and we are thus
led to consider formal schemes. Let X→ Spf Zp be the p-adic completion of X and we let
X≥1 ↪→ X be the open formal subscheme where the multiplicative rank of G is at least 1.

Let X≥1
Kli(p

m) → X be the moduli of Hm ↪→ G[pm] where Hm is locally for the étale

topology isomorphic to µpm . The map X≥1
Kli(p

m) → X is étale and affine (but not finite

!). We let X≥1
Kli(p

∞) be the formal scheme equal to the inverse limit of X≥1
Kli(p

m) as m
varies. It exists because the transition maps are affine. Let H∞ ↪→ G[p∞] be the universal

multiplicative Barsotti-Tate group. Above X≥1
Kli(p

m), we set IG(pm) = Isom(µpm , Hm).
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This is a (Z/pmZ)×-torsor. Above X≥1
Kli(p

∞), we set IG(p∞) = Isom(µp∞ , H∞). This is a
Z×p -torsor.

9.3. p-adic sheaves. — We now define sheaves of p-adic modular forms. Let π :
IG(p∞)→ X≥1

Kli(p) be the projection. Let Λ = Zp[[Z×p ]] and κ : Z×p → Λ× is the universal

character. We can define the sheaf Fκ = (π?OIG(p∞)⊗̂ZpΛ)Z
×
p where Z×p acts diagonally,

through its natural action on π?OIG(p∞) and via the universal character κ : Z×p → Λ× on

Λ. This is an invertible sheaf of O
X≥1
Kli(p

∞)
⊗̂ZpΛ-modules over X≥1

Kli(p).

Remark 9.3.1. — We have decided to define our p-adic sheaves over X≥1
Kli(p), although

we could also have defined them over X≥1
Kli(p

∞). The base X≥1
Kli(p) is more directly related

to the classical Shimura variety, and since the map X≥1
Kli(p

∞)→ X≥1
Kli(p) is affine, this does

not make any difference on the cohomology.

For any adic complete Zp-algebra R and any continuous character χ : Z×p → R× we

let Fχ := Fκ⊗̂Λ,χR.
For some arguments, it is useful to consider certain truncated versions of the sheaf

Fκ. Let Λn = Z/pnZ[(Z/pnZ)×]. Let πm,n : IG(pm)n → X≥1
Kli(p)n be the projection. For

m ≥ n, we let κm,n : (Z/pmZ)× → Λ×n be the obvious character that factorizes through
(Z/pnZ)×. We let F κ

m,n = (πm,n)?(OIG(pm)n ⊗Zp Λn)[κm,n]. The sheaf F κ
m,n is a sheaf of

O
X≥1
Kli(p

m)n
⊗Λn-modules. If χ : (Z/pnZ)× → R× is any character with R a Z/pnZ-algebra,

we denote by Fχ
m,n the sheaf obtained by base change.

We have the following maps of sheaves (with a slight abuse we think of them as

sheaves over X≥1
Kli(p

m)n) :

F κ
m,n

// F κ
m,n−1

F κ
m−1,n

//

OO

F κ
m−1,n−1

OO

where the vertical maps are inclusions and the horizontal maps are induced by reduction
modulo the kernel of Λn → Λn−1. We can set F κ

∞,n = colimmF κ
m,n. Then we have

surjective maps F κ
∞,n → F κ

∞,n−1 and Fκ = limn F κ
∞,n.

9.4. Comparison map. — Let fn : X≥1
Kli(p

n)n → X≥1
Kli(p)n. Over X≥1

Kli(p
n)n, we have

a universal multiplicative subgroup Hn ↪→ G. Passing to the conormal sheaves we get a
surjective map :

ωG → ωHn
where ωG is a locally free sheaf of rank 2 and ωHn is a locally free sheaf of rank 1. Moreover,
the Hodge-Tate map provides an isomorphism :

HT : HD
n ⊗Zp O

X≥1
Kli(p

n)n
→ ωHn

and it induces an isomorphism F k
n,n → (ωHn)k.

As a consequence, there is a surjective map Ω(k,0) → (ωHn)k ' F k
n,n of locally free

sheaves on X≥1
Kli(p

n)n. We denote by KΩ(k,0) the kernel of this map and we set KΩ(k,r) =

KΩ(k,0) ⊗ ωr.

Remark 9.4.1. — One can think of the map Ω(k,r) → F k
n,n⊗ωr as the projection to the

highest weight vector on the representation SymkSt⊗ detr of the group GL2.
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9.5. Variant. — All the constructions can be performed over Xpar instead of X, because

the polarization has never been used. We have defined classical sheaves Ω(k,r) over Xpar

obtained by using the conormal sheaf of G′ → Xpar.
We let X≥1

par,n be the open subscheme of Xpar,n where the p-rank is at least one. We

let X≥1
par,Kli(p

m)n → X≥1
par,n the moduli space of subgroups H ′m ⊂ G′ which are locally

isomorphic to µpm in the étale topology.

Lemma 9.5.1. — The map X≥1
par,Kli(p

m)n → X≥1
par,Kli(p

m−1)n is étale and affine.

Proof. Similar to the proof of lemma 9.1.1.1.

We let X≥1
par,Kli(p

m) be the formal scheme equal to the limit indexed by n of the

schemes X≥1
par,Kli(p

m)n and we let X≥1
par,Kli(p

∞) be the formal scheme equal to the in-

verse limit over m of the formal schemes X≥1
par,Kli(p

m). We can define a sheaf Fκ of

O
X≥1

par,Kli(p
∞)
⊗̂ZpΛ-modules over X≥1

par,Kli(p). Similarly, we can define sheaves F κ
m,n of

O
X≥1

par,Kli(p
m)n
⊗ Λn-modules.

10. The U-operator

In this section we introduce the U -operator, which is an operator at Klingen level and
is strongly related to the T -operator of section 7 defined at spherical level. This operator
U corresponds to the operator p3−rUKli(p),1 of section 5.1.4 on the cohomology in weight
(k, r).

10.1. Definition of the correspondence. — The operator U is associated to the
matrix diag(p2, p, p, 1) inside GSp4(Q). We start by giving the definition of the moduli

space associated to this operator. Let Y≥1
Kli(p

m) ↪→ X≥1
Kli(p

m) be the open subscheme where

the semi-abelian scheme is an abelian scheme. Let CY(pm) be the moduli over Y≥1
Kli(p

m) of
triples (G,Hm, L) where L ⊂ G[p2] is totally isotropic, L[p] is of rank p3 and L∩Hm = {0}.
We recall that H1 = Hm[p]. In the following lemma the orthogonal is taken for the Weil
pairing inside G[p].

Lemma 10.1.1. — We have exact sequences : 0 → L ∩ H⊥1 → L → L/(L ∩ H⊥1 ) → 0
where L∩H⊥1 is a truncated Barsotti-Tate group of level 1, height 2 and dimension 1 (the
(p, p) part of the correspondence) and L/(H⊥1 ∩ L) is étale locally isomorphic to Z/p2Z
(the p2-part of the correspondence).

Proof. We start by recalling the following classical fact (14). Let S be a scheme over which
p is nilpotent, and let M → S be a finite flat group scheme. Then M → S is a truncated
Barsotti-Tate group scheme of level n if and only if M is killed by pn and for all s ∈ S,
Ms → s is a truncated Barsotti-Tate group scheme of level n. We give the argument when
n = 1 (a similar argument works for arbitrary n). By definition, we can suppose that S is
a scheme over Spec Fp. By assumption, G is killed by p and it follows that the Frobenius

map F : G → G(p) factors into a map G → Ker(V : G(p) → G). We have to prove that

the morphism G → Ker(V : G(p) → G) is faithfully flat. By assumption, it is surjective.
By the criterion for flatness by fiber it is flat.

It follows that we can check all the assertions of the lemma on geometric points. We
now work over a geometric point (we recall that the category of finite flat group schemes

14. We learnt this from Fargues, but we could not find a reference.
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over a field is abelian). The assumptions imply that L[p] ⊕ H1 = G[p], from which it
follows that L[p] is an extension 1 → H⊥1 ∩ L[p] → L[p] → L[p]/H⊥1 ∩ L[p] → 1 where
H⊥1 ∩ L[p] is a Barsotti-Tate group of dimension 1 and height 2 (actually isomorphic to
H⊥1 /H1) and L[p]/(H⊥1 ∩ L[p]) is a rank p étale group scheme. The map L/L[p] → pL
is an isomorphism for rank reasons. Moreover, because L is totally isotropic, pL = L[p]⊥

maps isomorphically to L[p]/(H⊥1 ∩ L[p]) which is étale. The lemma is proven.

We have two projections t1 and t2 from CY(pm) to Y≥1
Kli(p

m). They are defined by
t1 : (G,Hm, L) 7→ (G,Hm) and t2 : (G,Hm, L) 7→ (G/L,Hm + L/L).

10.2. Compactification of the correspondence. — As we want to define an action
of the correspondence on cohomology groups it is necessary to consider toroidal compacti-
fications. We will actually factor the correspondence as a product of two correspondences
and we will compactify both. The advantage of this approach is that it will be easy to
compare U and the other correspondence T studied in section 7.

We fix toroidal compactificationsXΣ, XKli(p)Σ′ andXpar,Σ′′ (for good polyhedral cone
decompositions such that Σ′ refines both Σ and Σ′′). We have maps p1 : XKli(p)Σ′ → XΣ

and p2 : XKli(p)Σ′ → Xpar,Σ′′ . We call as usual G the semi-abelian scheme over XΣ, G′

the semi-abelian scheme over Xpar,Σ′′ . Over XKli(p)Σ′ we have the chain G → G′ → G
where the first isogeny has degree p3 and the total isogeny is multiplication by p. We drop
Σ, Σ′ and Σ′′ from the notations if no confusion will arise.

Let Xpar be the formal completion of Xpar. Let us define Xm−etpar as the open sub-

scheme of Xpar where the kernel of the polarization λ′ : G′ → (G′)t contains a multiplica-
tive group. When G′ is an abelian scheme, this group is an extension of an étale by a
multiplicative group. We observe that Xm−etpar is contained in the p-rank at least 1 locus.

Let Xm−etpar,Kli(p
m)→ Xm−etpar be the moduli space of subgroups H ′m ⊂ G′ locally isomorphic

in the étale topology to µpm (where G′ is the semi-abelian scheme over Xpar).

We let C1(pm) be the formal subscheme of XKli(p)×X X≥1
Kli(p

m) where the universal
triple (G→ G′, Hm) satisfies Ker(G→ G′) ∩Hm = {0}.

Lemma 10.2.1. — The formal subscheme C1(pm) of XKli(p) ×X X≥1
Kli(p

m) is open and
closed.

Proof. We first check that it is open. Let J ⊂ OHm be the ideal defining Ker(G →
G′) ∩ Hm ⊂ Hm. Let Ie ⊂ OHm be the augmentation ideal. The locus where Ker(G →
G′)∩Hm = {0} is the complement of the support of the Ie/J (viewed has a coherent sheaf

over XKli(p) ×X X≥1
Kli(p

m)). It is closed by the rigidity property of multiplicative groups.

We let q1 : C1(pm)→ X≥1
Kli(p

m) be the tautological projection sending (G→ G′, Hm)
to (G,Hm). We have another projection C1(pm) → Xpar induced from the map p2. It

factors through Xm−etpar and can moreover be lifted to a map q2 : C1(pm) → Xm−etpar,Kli(p
m).

Indeed, under the isogeny of semi-abelian schemes G → G′ the subgroup Hm ⊂ G maps
isomorphically to its image H ′m ⊂ G′ which provides the required lift. In conclusion, we
have q2(G→ G′, Hm) = (G′, H ′m).

As a result we have defined a correspondence (observe that the maps q2 and q1 are
proper as they can be written by construction as a composition of proper maps):
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C1(pm)

q2

xx

q1

%%

Xm−etpar,Kli(p
m) X≥1

Kli(p
m)

We let C2(pm) be the open and closed formal subscheme of XKli(p)×Xpar X
m−et
par,Kli(p

m)

where the universal triple (G′ → G,H ′m ⊂ G′) satisfies Ker(G′ → G) is not a multiplicative
group. By definition Ker(G′ → G) is a subgroup of the kernel K(λ′) of the polarization λ′ :
G′ → (G′)t which contains a unique multiplicative subgroup of order p, K(λ′)m. Therefore
the condition defining C2(pm) is that Ker(G′ → G)∩K(λ)m = {0}. One checks as in lemma
10.2.1 that this condition is closed and open. Observe that over the interior of the moduli
space, Ker(G′ → G) is an étale group scheme. We let r1 : C2(pm) → Xm−etpar,Kli(p

m) be the

tautological projection given by r1(G′ → G,H ′m ⊂ G′) = (G′, H ′m).
There is a second projection C2(pm) → X induced by the projection p1. It factors

through X≥1
Kli(p) and moreover it can be lifted to a map r2 : C2(pm)→ X≥1

Kli(p
m). Indeed,

under the isogeny G′ → G the group H ′m is mapped isomorphically to its image Hm ⊂ G.
In conclusion, r2(G′ → G,H ′m ⊂ G′) = (G,Hm).

As a result we have a second correspondence (observe that the maps r2 and r1 are
proper as they can be written by construction as a composition of proper maps) :

C2(pm)

r2

yy

r1

&&
X≥1
Kli(p

m) Xm−etpar,Kli(p
m)

Lemma 10.2.2. — The structural morphisms Ci(pm) → Spf Zp for i ∈ {1, 2} are local

complete intersection morphisms (15).

Proof. The morphism XKli(p) → Spf Zp is a local complete intersection morphism.
There are étale morphisms Ci(pm)→ XKli(p) by construction. So the proposition follows.

We let C(pm) be the composite of these correspondences. Namely, we set

C(pm) = C2(pm)×r1,Xm−etpar,Kli(p
m),q2

C1(pm)

and we obtain the following commutative diagram with cartesian center :

15. We say that a morphism of formal schemes S→ Spf Zp is a local complete intersection morphism
if it is locally topologically of finite type, flat, and its special fiber S = S×Spf Zp Spec Fp → Spec Fp is a
local complete intersection morphism (in the schematic sense, see section 4.1.3).
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C(pm)
q′2

xx

r′1

&&
C2(pm)

r2

yy

r1

&&

C1(pm)

q2

xx

q1

%%

X≥1
Kli(p

m) Xm−etpar,Kli(p
m) X≥1

Kli(p
m)

There are two projections t1 = q1 ◦ r′1, t2 = r2 ◦ q′2 : C(pm)→ X≥1
Kli(p

m). The notation
t1, t2 for these maps is justified by the following proposition :

Proposition 10.2.1. — The restriction of C(pm) to Y≥1
Kli(p

m) is the correspondence
CY(pm).

Proof. Let (G,Hm, L) be a point of CY(pm). The isogeny G → G/L factors into G →
G/(L[p])→ G/L where L[p] is a subgroup of G[p] of order p3 such that L[p] ∩Hm = {0},
G/(L[p]) carries a polarization whose degree is a prime-to-p multiple of p2 (it comes from
the p2-multiple of the polarization on G) whose kernel is an extension of an étale by a
multiplicative group. The kernel of G/(L[p])→ G/L is an étale subgroup of order p in the
kernel of the polarization on G/(L[p]). This gives a map CY(pm)→ C(pm) which identifies
CY(pm) with the locus of C(pm) where the semi-abelian schemes are abelian.

10.3. Trace maps. — We now construct trace maps (or fundamental classes) which
will be used later to define the action on the cohomology. We start with the interior of
the moduli space.

Lemma 10.3.1. — The map t1 : CY(pm)→ Y≥1
Kli(p

m) is finite flat.

Proof. The map is proper. The quasi-finiteness follows from the fact that an abelian
surface over a field of characteristic p and of p-rank at least 1 has only finitely many
subgroups of order p. Therefore the map is finite. We prove the flatness. The formal
scheme Y≥1

Kli(p
m) is regular and CY(pm) is Cohen-Macaulay by lemma 10.2.2. Flatness

follows from [53], chap. 23, thm. 2.3.1.

Lemma 10.3.2. — There is a normalized trace map 1
p3 Trt1 : (t1)?OCY(pm) → O

Y≥1
Kli(p

m)
.

Proof. We have a usual trace map for finite flat morphism 1
p3 Trt1 : (t1)?OCY(pm)[1/p] →

O
Y≥1
Kli(p

m)
[1/p] and we need to check that lattices match. It is enough to check this over the

ordinary locus and away from the boundary. Let (G,Hm) ∈ X=2
Kli(p

m)(Fp) be an ordinary
point with G an abelian scheme. Let T be the Tate module of this point. Then T ' Z2

p.

The deformation space of this point is Hom(Sym2T, Ĝm) with ring W (Fp)[[X,Y, Z]] where

the Serre-Tate parameter is the map Z2
p → Z2

p ⊗ Ĝm given by the symmetric matrix(
X Z
Z Y

)
. The fiber of this deformation space under t1 is a disjoint union (16) of spaces

with ring

W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1 +X ′)p − 1−X, (1 + Z ′)p
2 − 1− Z, Y ′ − Y )

16. The disjoint union parametrizes the position of Lm ⊂ T∨ ⊗ µp∞ and Let ⊂ T ⊗ Qp/Zp for the
universal rank p4 subgroup L and Lm, Let its multiplicative subgroup and étale quotient respectively.
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which parametrize the following diagram of Serre-Tate parameters :

Z2
p

(
X Z
Z Y

)
//(

p2 0
0 p

)
��

Z2
p ⊗ Ĝm(

1 0
0 p

)
��

Z2
p

(
X ′ Z ′

Z ′ Y ′

)
// Z2
p ⊗ Ĝm

It is now clear that division by p3 preserves the integrality of the Trace map.

We now extend this normalized trace to the compactification. The next two lemmas
are the analogues of lemmas 7.1.1 and 7.1.2. We have to be a little bit careful since we
are now dealing with formal schemes.

Lemma 10.3.3. — There is a normalized Trace map 1
p2 Trq1 : R(q1)?OC1(pm) →

O
X≥1
Kli(p

m)
.

Proof. By reduction modulo pn we have a map of schemes over Spec Z/pnZ :

q1 : C1(pm)n → X≥1
Kli(p

m)n.

By construction, C1(pm)n and X≥1
Kli(p

m)n are local complete intersections over

Spec Z/pnZ and the morphism q1 is projective. The dualizing complex q!
1OX≥1

Kli(p
m)n

is

an invertible sheaf and we have canonical isomorphisms q!
1OX≥1

Kli(p
m)n
⊗Zp Z/pn−1Z =

q!
1OX≥1

Kli(p
m)n−1

. We define q!
1OX≥1

Kli(p
m)

= limn q
!
1OX≥1

Kli(p
m)n

. Here is an alternative defi-

nition (suggested by the referee). The morphism q1 : C1(pm) → X≥1
Kli(p

m) is projective,

therefore over each open affine Spf A ↪→ X≥1
Kli(p

m), the fiber C1(pm) ×
X≥1
Kli(p

m)
Spf A can

be algebraized to a projective scheme over Spec A. The definition of q!
1OX≥1

Kli(p
m)

being

local on the base, we can reduce that way to the algebraic situation. We want to produce
a fundamental class :

Θ : q?1OX≥1
Kli(p

m)
→ q!

1OX≥1
Kli(p

m)
.

Away from the boundary, this map is provided by the trace map of the finite flat morphism
q1 : C1(pm)|

Y≥1
Kli(p

m)
→ Y≥1

Kli(p
m) (see section 4.2.2). We need to check that the map Θ is

well defined at the boundary. Actually, it is enough to see that it is well defined over the
entire ordinary locus since the intersection of the boundary and the non-ordinary locus
is of codimension 1 in the special fiber and the boundary is flat over Spf Zp (in other
words, in the spectrum of the local rings Spec OC1(pm),x at closed points x of C1(pm), the
intersection of the boundary and the non-ordinary locus is of codimension at least 2).

The formal schemes X=2
Kli(p

m) and C1(pm)|X=2
Kli(p

m) are smooth. The smoothness of

X=2
Kli(p

m) follows from the smoothness of X. The smoothness of C1(pm)|X=2
Kli(p

m) away

from the boundary follows from the proof of lemma 7.1.1 where we established that the
completed local rings are isomorphic to W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1+X ′)p−1−X, (1+
Z ′)p−1−Z, Y ′−Y ) using Serre-Tate theory. The smoothness at the boundary follows from
the description of the local charts. The main point being the smoothness of the modular
curves of level Γ0(p) over the ordinary locus. As a consequence, the fundamental class
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extends over the ordinary locus : it is given by the determinant of the map on differentials

Ω1
X=2
Kli(p

m)/Zp → Ω1
C1(pm)|

X=2
Kli

(pm)
/Zp .

Moreover, this fundamental class is divisible by p2 since it is over the complement of
the boundary by a variant of lemma 7.1.1. Therefore we get a map 1

p2 Θ : q?1OX≥1
Kli(p

m)
→

q!
1OX≥1

Kli(p
m)
, and by adjunction (to prove the adjunction we can reduce to the algebraic

situation) a map R(q1)?OC1(pm) → O
X≥1
Kli(p

m)
.

Remark 10.3.1. — It is possible to prove that Ri(q1)?OC1(pm) = 0 if i > 0.

The proof of the next lemma is left to the reader. It is completely analogous to the
proof of the previous lemma.

Lemma 10.3.4. — There is a normalized trace map 1
pTrr1 : R(r1)?OC2(pm) →

OXm−etpar,Kli(p
m).

10.4. Action on modular forms. — Over C1(pm) we have a universal isogeny G→ G′

whose differential is a map Ω1
G′/C1(pm) → Ω1

G/C1(pm).

Assume for a second we work over C1(p∞) (the projective limit of all C1(pm)) or over
C1(pm)n (the reduction modulo pn of C1(pm)) with m ≥ n. Then there is a commutative
diagram of group schemes :

Hm

��

// H ′m

��
G // G′

which induces a commutative diagram of conormal sheaves :

ωG′ //

��

ωH′m
//

��

0

ωG // ωHm // 0

Moreover, there is a Zariski covering of C1(p∞) by affine opens Spf R (resp. of
C1(pm)n by Spec R) such that the above diagram becomes isomorphic over Spf R (resp.
Spec R) to

R⊕R

(
0
1

)
//(

p 0
0 1

)
��

R //

1R
��

0

R⊕R

(
0
1

)
// R // 0

(10.4.A)

We drop the hypothesis that m ≥ n. It follows from the above discussion that we can
define a normalized morphism :

q?2Ω(k,r) → q?1Ω(k,r)

as the tensor product of the natural map q?2Ωk → q?1Ωk and a normalized map 1
pr q

?
2ω

r →
q?1ω

r.
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By composing with the trace map of lemma 10.3.3, we get a map R(q1)?q
?
2Ω(k,r) →

Ω(k,r) which gives an operator :

U1 ∈ Hom
(
RΓ(Xm−etpar,Kli(p

m),Ω(k,r)),RΓ(X≥1
Kli(p

m),Ω(k,r))
)
.

We check as usual that the definition of U1 is independent of the choices of good
polyhedral decompositions.

We can proceed in a similar way with the correspondence C2(pm). The main sim-
plification is that the tautological isogeny G′ → G over C2(pm) is étale, and induces an
isomorphism on differentials. Thus, we obtain a canonical isomorphism

r?2Ω(k,r) → r?1Ω(k,r)

with no need to take a normalization. Applying the trace map of lemma 10.3.4 produces
a cohomological correspondence R(r1)?r

?
2Ω(k,r) → Ω(k,r) and as a result an operator

U2 ∈ Hom
(
RΓ(X≥1

Kli(p
m),Ω(k,r)),RΓ(Xm−etpar,Kli(p

m),Ω(k,r))
)
.

We denote by U = U1 ◦ U2.

10.5. Action on mod-p forms. — In this section we analyze the action of the U
operator in caracteristic p.

10.5.1. reduction modulo p. — By taking m = 1 and reducing modulo p, we obtain the
following diagram (we still use the same letters to denote the various projections) :

C(p)1

q′2

xx

r′1

&&
C2(p)1

r2

zz

r1

&&

C1(p)1

q2

xx

q1

%%

X≥1
Kli(p)1 Xm−et

par,Kli(p)1 X≥1
Kli(p)1

By reduction modulo p (and proposition 4.1.2.1), we obtain the following two

cohomological correspondences q?2Ω(k,r)|Xm−et
par,Kli(p)1

→ q!
1Ω(k,r)|

X≥1
Kli(p)1

on C1(p)1 and

r?2Ω(k,r)|
X≥1
Kli(p)1

→ r!
1Ω(k,r)|Xm−et

par,Kli(p)1
on C2(p)1.

They induce operators (we keep using the same notations as in the previous para-
graph)

U1 ∈ Hom(RΓ(Xm−et
par,Kli(p)1,Ω

(k,r)),RΓ(X≥1
Kli(p)1,Ω

(k,r)))

and

U2 ∈ Hom(RΓ(X≥1
Kli(p)1,Ω

(k,r)),RΓ(Xm−et
par,Kli(p)1,Ω

(k,r))).

We set U = U1 ◦ U2.

10.5.2. The non-ordinary locus. — We now study the restriction to the non-ordinary
locus. The following lemma is the analogue of proposition 7.4.1.1. Notice that everything
is simpler in this setting and that there are no restrictions on the weight.

Lemma 10.5.2.1. — 1. Under the isomorphism q?2ω
p−1 = q?1ω

p−1, we have q?2Ha =
q?1Ha.

2. Under the isomorphism r?2ω
p−1 = r?1ω

p−1, we have r?2Ha = r?1Ha.
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3. The following diagrams are commutative :

q?2Ω(k,r) U1 //

Ha
��

q!
1Ω(k,r)

Ha
��

q?2Ω(k,r+(p−1)) U1 // q!
1Ω(k,r+(p−1))

r?2Ω(k,r) U2 //

Ha
��

r!
1Ω(k,r)

Ha
��

r?2Ω(k,r+(p−1)) U2 // r!
1Ω(k,r+(p−1))

Proof. The correspondence C1(p)1 and C2(p)1 are Cohen-Macaulay. It is enough to
prove the statements over the interior of the moduli space and the ordinary locus. Then
1 follows from lemma 6.3.4.2. Remark that the way the isomorphism q?2ω

(p−1) ' q?1ω(p−1)

is constructed is precisely the canonical map of the lemma.
The point 2 is easier since the isogeny G′ → G over C2(p)1 is étale and the formation

of the Hasse invariant commutes with étale isogeny.
We now prove the commutativity of the diagrams. We can rewrite the first diagram

as the composition of two diagrams

q?2Ω(k,r) //

Ha
��

q?1Ω(k,r)

Ha
��

// q!
1Ω(k,r)

Ha
��

q?2Ω(k,r+(p−1)) // q?1Ω(k,r+(p−1)) // q!
1Ω(k,r+(p−1))

The first left square commutes by 1. The second square is the tensor product of the
normalized fundamental class q?1OX1 → q!

1OX1 and the map Ha : q?1Ω(k,r) → q?1Ω(k,r+(p−1)).
It is also commutative. One proves the commutativity of the second diagram along similar
lines.

Remark 10.5.2.1. — We can speak of the Hasse invariant on C1(p)1 and C2(p)1 without
having to worry about which semi-abelian scheme is used to define it.

Lemma 10.5.2.2. — The Hasse invariant is not a zero divisor in C1(p)1 and C2(p)1.

Proof. Both schemes are Cohen-Macaulay of dimension 3. Since an abelian surface with
p-rank at least one has only finitely many subgroups of order p, we deduce that the non-
ordinary locus in C1(p)1 or C2(p)1 has dimension 2. As a result, the Hasse invariant
cannot be a zero divisor.

We let X=1
Kli(p)1 ⊂ X≥1

Kli(p)1 be the vanishing locus of Ha. This scheme is canonically
isomorphic to X=1

1 under the projection p1. Taking the non-ordinary locus at all places,
we obtain a diagram:
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C=1(p)1

ww ''
C2,=1(p)1

r2

zz

r1

''

C1,=1(p)1

q2

ww

q1

$$
X=1

1 Xm−et,=1
par,Kli (p)1 X=1

1

Using lemma 10.5.2.1, 3. and proposition 4.1.2.1, we obtain cohomological correspon-
dences:

R(q1)?(q2)?Ω(k,r)|
Xm−et,=1

par,Kli (p)1
→ Ω(k,r)|X=1

1
and R(r1)?(r2)?Ω(k,r)|X=1

1
→ Ω(k,r)|

Xm−et,=1
par,Kli (p)1

.

They induce operators (that we still denote by the same way as in the previous paragraph):

U1 ∈ Hom
(
RΓ(Xm−et,=1

par,Kli (p)1,Ω
(k,r)),RΓ(X=1

1 ,Ω(k,r))
)

and

U2 ∈ Hom
(
RΓ(X=1

1 ,Ω(k,r)),RΓ(Xm−et,=1
par,Kli (p),Ω(k,r))

)
.

We set U = U1 ◦ U2. By lemma 10.5.2.2, we have a map of triangles:

R(q1)?q
?
2Ω(k,r) //

Ha
��

Ω(k,r)

Ha
��

R(q1)?q
?
2Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(q1)?(q2)?Ω(k,r+(p−1))|

Xm−et,=1
par,Kli (p)1

//

+1

��

Ω(k,r+(p−1))|X=1
1

+1

��

A similar result holds for the other correspondence. It follows that the U -operator
acts equivariantly on the long exact sequence

H?(X≥1
Kli(p)1,Ω

(k,r))
Ha→ H?(X≥1

Kli(p)1,Ω
(k,r+(p−1)))→ H?(X=1

Kli(p)1,Ω
(k,r+(p−1)))→

10.5.3. Invariance under multiplication by Ha′. — The following lemma is the analogue
of proposition 7.4.2.1.

Lemma 10.5.3.1. — 1. Under the isomorphism (q2)?ωp
2−1 = (q1)?ωp

2−1, we have
(q2)?Ha′ = (q1)?Ha′.

2. Under the isomorphism (r2)?ωp
2−1 = (r1)?ωp

2−1, we have (r2)?Ha′ = (r1)?Ha′.

3. The following diagram is commutative :

H0(X=1
1 ,Ω(k,r))

U //

Ha′

��

H0(X=1
1 ,Ω(k,r))

Ha′

��

H0(X=1
1 ,Ω(k,r+p2−1))

U // H0(X=1
1 ,Ω(k,r+p2−1))
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Proof. Point 1 follows from lemma 6.3.4.2. Point 2 is easy (the isogeny is étale). Point 3
is an immediate consequence of 1 and 2.

10.6. Action on p-adic modular forms. — The universal isogeny over C1(p∞) or
C1(pm)n induces an isomorphism q?2Hm → q?1Hm and thus a map q?2F

κ
m,n → q?1F

κ
m,n for

m ≥ n and q?2F
κ → q?1F

κ. As a result we can define the U1 operator. The definition of

U2 is highly similar and we let U = U1 ◦ U2. It acts on RΓ(X≥1
Kli(p

m)n,F κ
m,n ⊗ ωr) and

RΓ(X≥1
Kli(p

∞),Fκ ⊗ ωr).

10.7. Comparison map and the U correspondence. — By section 9.4, for all
(k, r) ∈ Z≥0 × Z we have an exact sequence of sheaves over X≥1

Kli(p
n)n :

0→ KΩ(k,r) → Ω(k,r) → F k
n,n ⊗ ωr → 0.

Lemma 10.7.1. — U ∈ pEnd
(
RΓ(X≥1

Kli(p
n)n,KΩ(k,r))

)
.

Proof. This is obvious on the diagram 10.4.A.

11. Perfect complexes of p-adic modular forms

In this section we finally consider the cohomology of our interpolation sheaf and apply
the ordinary projector U to produce a perfect complex.

11.1. Finiteness of the cohomology on X≥1
Kli(p)1. — In this section, we will deduce

the finiteness of the ordinary cohomology (with respect to U) over X≥1
Kli(p)1 from the

finiteness of the ordinary cohomology (with respect to T ) on X≥1
1 established in section

8. In order to do so, we need to analyze carefully the relation between U and T .

11.1.1. The operators U and T over the ordinary locus. — In this subsection, we will
work over the ordinary locus. Since we are only interested in degree 0 cohomology groups,
we can work over the complement of the boundary by Koecher’s principle. The various
Hecke operators we will introduce respect cuspidality. That way, we do not need to worry
about compactifications (although taking care of what happens with compactifications
would have been possible).

First of all, we claim that we can decompose the Hecke operators T1 : H0(X=2
par,1,Ω

(k,r)(−D))→
H0(X=2

1 ,Ω(k,r)(−D)) and T2 : H0(X=2
1 ,Ω(k,r)(−D)) → H0(X=2

par,1,Ω
(k,r)(−D)) into

T1 = T et1 + Tm1 and T2 = T et2 + Tm2 . The operator T et1 accounts for all isogenies G → G′

with kernel a group of étale rank 2 and multiplicative rank one. The operator Tm1 accounts
for all isogenies G → G′ with kernel a group of multiplicative rank 2 and étale rank one.
Similarly, the operator T et2 accounts for all isogenies G′ → G with kernel an étale group.
The operator Tm2 accounts for all isogenies G′ → G with kernel a multiplicative group.

Lemma 11.1.1.1. — For all r ≥ 2 and k ≥ 1, the operators

Tm2 : H0(Xord
1 ,Ω(k,r)(−D))→ H0(Xord

par,1,Ω
(k,r)(−D)) and

Tm1 : H0(Xord
par,1,Ω

(k,r)(−D))→ H0(Xord
1 ,Ω(k,r)(−D))

are 0.

Proof. This follows from the proof of proposition 7.4.1.1 (see also lemma 7.1.1 and lemma
7.1.2).

We recall that Y ⊂ X is the open formal subscheme where G is an abelian scheme.
The ordinary locus of Y is denoted by Yord. We now introduce a Hecke correspondence D
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over Yord. It parametrizes pairs (G,L) where L ⊂ G[p2] is a totally isotropic group scheme
which is an extension of an étale group scheme locally isomorphic to Z/pZ⊕ Z/p2Z by a
multiplicative group scheme locally isomorphic to µp. We have two finite flat projections
g1, g2 : D → Yord given by g1((G,L)) = G and g2((G,L)) = G/L. We can associate
to this correspondence an Hecke operator T ′ (normalized by p−3−r) and it is clear that

T ′ acting on H0(Xord
1 ,Ω(k,r)(−D)) is the operator T et1 ◦ T et2 which is also equal to T by

the lemma above if r ≥ 2 and k ≥ 1. The second projection g2 : D → Yord actually
lifts to g2 : D → Yord

Kli(p) by mapping (G,L) to (G/L,G[p]/L). If follows that the map

T ′ ∈ End
(
H0(Xord

1 ,Ω(k,r)(−D))
)

factors through a map

H0(Xord
1 ,Ω(k,r)(−D))

i→ H0(Xord
Kli(p)1,Ω

(k,r)(−D))→ H0(Xord
1 ,Ω(k,r)(−D))

where the first map is the canonical inclusion i. We call T ′′ : H0(Xord
Kli(p)1,Ω

(k,r)(−D))→
H0(Xord

1 ,Ω(k,r)(−D)) the second map. We can compose it again with the natural inclu-

sion i and we obtain that way T ′′′ an endomorphism of H0(Xord
Kli(p)1,Ω

(k,r)(−D)). The
correspondence underlying the operator T ′′′ parametrizes triples (G,H,L) (with H ⊂ G[p]
multiplicative of order p, L as above, we do not require that L ∩ H = {0}). The first
projection is (G,H,L) 7→ (G,H) and the second (G,H,L) 7→ (G/L,G[p]/L). It is key to
observe that the definition of L is independent of H. As a consequence, for r ≥ 2 and
k ≥ 1, there is a commutative diagram where all vertical maps are the obvious inclusions:

H0(Xord
Kli(p)1,Ω

(k,r)(−D))
T ′′′ //

T ′′

**

H0(Xord
Kli(p)1,Ω

(k,r)(−D))

H0(Xord
1 ,Ω(k,r)(−D))

i

OO

T=T ′ // H0(Xord
1 ,Ω(k,r)(−D))

i

OO

Lemma 11.1.1.2. — The action of T ′′′ is locally finite on H0(Xord
Kli(p)1,Ω

(k,r)(−D)) if
r ≥ 2 and k ≥ 1.

Proof. The action of T is locally finite on H0(Xord
1 ,Ω(k,r)(−D)) by proposition 7.4.1.1

and we have that 〈(T ′′′)nf, n ∈ Z≥0〉 = i〈(T )nT ′′f, n ∈ Z≥0〉+ Fpf .

Lemma 11.1.1.3. — On H0(Xord
Kli(p)1,Ω

(k,r)(−D)) we have U ◦ T ′′′ = U ◦ U for r ≥ 2
and k ≥ 1.

Proof. Over Y ord
Kli (p)1, we can decompose T ′′′ = U +F where F accounts for all isogenies

G → G/L where L is such that L ∩H 6= {0}. We are left to prove that U ◦ F = 0. Let
H → Yord

Kli(p) be the moduli space of (G,H,L, L′) where (G,H) ∈ Y ord
Kli (p)1, L ⊂ G[p2] is

of type (1, p, p, p2) (that is, an extension of an étale group scheme locally isomorphic to
Z/pZ⊕Z/p2Z by a multiplicative group scheme locally isomorphic to µp) and L∩H = {0},
L′ ⊂ (G/L)[p2] is of type (1, p, p, p2) and L′ ∩ (G[p]/(L ∩ G[p])) 6= {0}. We have two
projections s1(G,H,L, L′) = (G,H), s2(G,H,L, L′) = ((G/L)/L′, (G/L[p])/L′). This
correspondence is associated to the operator U ◦ F . We observe that G[p]/L ⊂ L′. As a

result, the map s?2Ω(1,0) → s?1Ω(1,0) factors through ps?1Ω(1,0). It then follows easily that

the non normalized cohomological correspondence Θ : s?2Ω(k,r) → s!
1Ω(k,r) factors through

p6+2r+kp!
1Ω(k,r). The factor p2r+k arises from the map on differential and the factor p6

from the fundamental class (we get p3 from U and p3 from F which is a “direct factor” of
T ′′′). The operator U ◦F arises from the normalized cohomological correspondence 1

p6+2rΘ

(we get p3+r from both F and U). When k ≥ 1, this map reduces to 0 modulo p.
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Corollary 11.1.1.1. — The action of U on H0(Xord
Kli(p)1,Ω

(k,r)(−D)) is locally finite for
all r ≥ 2 and k ≥ 1.

Proof. Let f ∈ H0(Xord
Kli(p)1,Ω

(k,r)(−D)). Then

〈Unf, n ∈ Z≥0〉 = U(〈(T ′′′)nf, n ∈ Z≥0〉) + Fpf

and local finiteness follows from lemma 11.1.1.2.

We denote by f the ordinary projector associated to U on H0(Xord
Kli(p)1,Ω

(k,r)(−D)).

The morphism XordKli(p)→ Xord is finite ´́etale of rank p+1. We let Tr : H0(XordKli(p),Ω
(k,r))→

H0(Xord,Ω(k,r)) be the trace map.

Lemma 11.1.1.4. — For all n ≥ 0, we have Tr ◦ Un ◦ i = pTn mod pk as endomor-
phisms of H0(Xord,Ω(k,r)).

Proof. By definition, the Hecke correspondence associated to Tr◦Un◦i parametrizes over
Yord triples (G,H,Ln) where H ⊂ G[p] is a group of order p and multiplicative type, and
Ln ⊂ G[p2n] is a totally isotropic subgroup which is an extension of an étale group locally
isomorphic to Z/pnZ ⊕ Z/p2nZ by a multiplicative group which is locally isomorphic to
µpn , and such that H ∩ Ln = {0}. The projections are given by (G,H,Ln) 7→ G and
(G,H,Ln) 7→ (G/Ln). We can decompose the operator Tn as Tn,et + Tn,m, where Tn,et

accounts for all isogenies G → G/Ln where Ln is a totally isotropic subgroup which is
an extension of an étale group locally isomorphic to Z/pnZ⊕ Z/p2nZ by a multiplicative
group which is locally isomorphic to µpn , and Tn,m accounts for all the other isogenies
(we have T 1,et = T ′). We now observe that any isogeny G → G/L occuring in Tn,m will
factor through multiplication by p on G. So we deduce, reasoning as in the proof of lemma
11.1.1.3, that Tn,et = Tn mod pk. It is clear that Tr ◦ Un ◦ i = pTn,et and the factor
p arises from the fact that given Ln, we can find p different subgroups H of order p and
multiplicative type such that H ∩ Ln = {0}.

Corollary 11.1.1.2. — Assume that r ≥ 2 and k ≥ 2. Then the canonical map f ◦ i :
eH0

(
Xord

1 ,Ω(k,r)(−D)
)
→ fH0

(
Xord
Kli(p)1,Ω

(k,r)(−D)
)

is bijective, where e is the ordinary
projector for T and f is the ordinary projector for U .

Proof. We first prove the surjectivity of the map. Let

G ∈ fH0
(
Xord
Kli(p)1,Ω

(k,r)(−D)
)
.

Then T ′′U−1G ∈ H0
(
Xord

1 ,Ω(k,r)(−D)
)

and eT ′′U−1G ∈ eH0
(
Xord

1 ,Ω(k,r)(−D)
)
. By

lemma 11.1.1.3, fi(eT ′′U−1G) = fT ′′′U−1G = fUU−1G = G. We now prove injectiv-

ity. We consider the map f ◦ i : eH0
(
Xord,Ω(k,r)(−D)

)
→ fH0

(
XordKli(p),Ω

(k,r)(−D)
)
. This

is a map of complete flat Zp-modules. The reduction of this map modulo p is the map of
the corollary (by a cohomological vanishing which ensures the surjectivity of the reduction
map), and it suffices to prove the injectivity of this new map. This map is surjective by

Nakayama’s lemma and the first part of the proof. Let F ∈ eH0
(
Xord,Ω(k,r)(−D)

)
. We

assume that f ◦ i(F ) = 0. Applying lemma 11.1.1.4 for n large enough, we find that

Tr(f ◦ (i))(F ) = pF = 0 mod pk. We deduce that F ∈ peH0
(
Xord,Ω(k,r)(−D)

)
. By

induction, one proves easily that F ∈
⋂
n p

neH0
(
Xord,Ω(k,r)(−D)

)
= {0}.

11.1.2. The operators T and U on X=1
1 . — In section 7.4.1, we have constructed two

cohomological correspondences (for k + r > 2 + p− 1 and r ≥ 2 + p− 1):

T1 : p?2Ω(k,r)|
X≤1

par,1
→ p!

1Ω(k,r)|
X≤1

1
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and
T2 : p?1Ω(k,r)|

X≤1
1
→ p!

2Ω(k,r)|
X≤1

par,1

which we can restrict to the p-rank one locus to get two cohomological correspondences
(still denoted in the same way) :

T1 : p?2Ω(k,r)|X=1
par,1
→ p!

1Ω(k,r)|X=1
1

and
T2 : p?1Ω(k,r)|X=1

1
→ p!

2Ω(k,r)|X=1
par,1

and we obtain operators T1 : H0(X=1
par,1,Ω

(k,r)(−D)) → H0(X=1
1 ,Ω(k,r)(−D)) and T2 :

H0(X=1
1 ,Ω(k,r)(−D)) → H0(X=1

par,1,Ω
(k,r)(−D)). We let T = T1 ◦ T2. The operators T1

and T2 can be decomposed in this setting into T1 = Tm1 +T et1 +T oo1 and T2 = Tm2 +T et2 +T oo2

(see section 7.4.2).

Lemma 11.1.2.1. — U = T on H0(X=1
1 ,Ω(k,r)(−D)) if k+r > 2(p+ 1), r ≥ 2+(p−1).

Proof. By definition, U = T et1 ◦T et2 . It is enough to prove that T oo1 = 0 and Tm1 = Tm2 = 0
and this follows from corollary 7.4.2.1.

11.1.3. Finiteness. — We are now ready to prove the finiteness of the ordinary cohomol-
ogy on X≥1

Kli(p)1.

Corollary 11.1.3.1. — 1. For all r ≥ 2 and k > p+ 1, the action of U on

RΓ(X≥1
Kli(p)1,Ω

(k,r)(−D))

is locally finite. We denote by f the corresponding projector.

2. For all r ≥ 2 and k > p+ 1, the natural map induced by pull back:

eRΓ(X≥1
1 ,Ω(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is a quasi-isomorphism.

3. There is a constant C which does not depend on the prime-to-p level Kp such that
for all k ≥ C and r ≥ 3, the map

eRΓ(X1,Ω
(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is a quasi-isomorphism.

4. The map

eHi(X1,Ω
(k,2)(−D))→ fHi(X≥1

Kli(p)1,Ω
(k,2)(−D))

is bijective for k ≥ C and i = 0 and injective for k ≥ C and i = 1.

5. For r ≥ 2 and k ≥ C, fRΓ(X≥1
Kli(p)1,Ω

(k,r)(−D)) is a perfect complex of Fp-vector
spaces of amplitude [0, 1].

Proof. The cohomology RΓ(X≥1
Kli(p)1,Ω

(k,r)(−D)) is computed by the complex :

H0(X=2
Kli(p)1,Ω

(k,r)(−D))→ colimnH0(X≥1
Kli(p)1,Ω

(k,r+(p−1)n)(−D)/(Ha)n).

By corollary 11.1.1.1, the action is locally finite on the first term when r ≥ 2 and k ≥ 1. It
is enough to prove that it is locally finite on each H0(X≥1

Kli(p)1,Ω
(k,r+(p−1)n)(−D)/(Ha)n)

for r ≥ 2 and k > p+ 1. The case n = 1 follows from lemma 11.1.2.1 and lemma 8.1.1. In
general, one argues by induction.

The map

eRΓ(X≥1
1 ,Ω(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))
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is represented by the following map of complexes :

H0(X=2
Kli(p)1,Ω

(k,r)(−D)) // colimnH0(X≥1
Kli(p)1,Ω

(k,r+(p−1)n)(−D)/(Ha)n)

H0(X=2
1 ,Ω(k,r)(−D)) //

OO

colimnH0(X≥1
1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n)

OO

We need to prove that the vertical maps become isomorphisms after apply-
ing f on the top and e on the bottom. For the left vertical map, this is corollary
11.1.1.2. We will see that for each n, the map eH0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n) →
fH0(X≥1

Kli(p)1,Ω
(k,r+(p−1)n)(−D)/(Ha)n) is an isomorphism. For n = 1, this follows from

lemma 11.1.2.1. The general case follows easily by induction. Points 3, 4 and 5 follow
from proposition 8.2.1.

11.2. Finiteness of the ordinary cohomology over X≥1 and X≥1
Kli(p). — In the

following theorem we establish relations between the ordinary cohomology over X≥1 and
classical cohomology in weight (k, r) if k is large enough.

Theorem 11.2.1. — For k > p+ 1 and r ≥ 2 :

1. The Hecke operator U acts locally finitely on RΓ(X≥1
Kli(p),Ω

(k,r)(−D)).

2. The Hecke operator T acts locally finitely on RΓ(X≥1,Ω(k,r)(−D)).

3. The complexes RΓ(X≥1,Ω(k,r)(−D)) and RΓ(X≥1
Kli(p),Ω

(k,r)(−D)) only have co-
homology in degree 0, 1.

4. Let us denote by f the ordinary projector associated to U and by e the ordinary
projector associated to T . Then the natural map :

eRΓ(X≥1,Ω(k,r)(−D))→ fRΓ(X≥1
Kli(p),Ω

(k,r)(−D))

is a quasi-isomorphism.

5. There is a constant C which does not depend on the level Kp such that for k ≥ C
and r ≥ 3, the map

eRΓ(X,Ω(k,r)(−D))→ eRΓ(X≥1,Ω(k,r)(−D))

is a quasi-isomorphism.

6. For all k ≥ C,

eHi(X,Ω(k,2)(−D))→ eHi(X≥1,Ω(k,r)(−D))

is bijective for i = 0 and injective if i = 1.

7. For all k ≥ C and r ≥ 2, fRΓ(X≥1
Kli(p),Ω

(k,r)(−D)) is a perfect complex of Zp-
modules of amplitude [0, 1].

Proof. Over X≥1
Kli(p)n or X≥1

n , we have the following exact sequence of sheaves :

0→ Ω(k,r)(−D)→ colimlΩ
(k,r+lpn−1(p−1))(−D)→ colimlΩ

(k,r+lpn−1(p−1))(−D)/Halp
n−1 → 0

where the limit in the middle is over multiplication by powers of Hap
n−1

which lifts to

a section of H0(Xn, ω
pn−1(p−1)). The middle sheaf is also the restriction of Ω(k,r)(−D)

to the ordinary locus. This is an acyclic resolution of Ω(k,r)(−D) by flat Z/pnZ-sheaves.
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Indeed, all sheaves are acyclic relatively to the minimal compactification and the middle
and right sheaves are supported over affine subschemes of the minimal compactification.
Passing to the limit over n we obtain an acyclic resolution of Ω(k,r)(−D) over X≥1

Kli(p) or

X≥1 by flat, p-adically complete and separated sheaves of Zp-modules. Let us denote by
M• and N• the complexes concentrated in degree [0, 1] that compute the cohomologies

RΓ(X≥1,Ω(k,r)(−D)) and RΓ(X≥1
Kli(p),Ω

(k,r)(−D)) using these resolutions. They are ob-

jects of Cflat(Zp) by construction. By lemma 8.2.1, corollary 11.1.3.1 and lemma 2.1.2,
we deduce that the actions of T and U are locally finite on M• and N•. The points 4
and 5 follow from corollary 11.1.3.1 using proposition 2.2.2. The point 6 also follows by
induction on n from corollary 11.1.3.1. Finally, we deduce 7 by another application of
proposition 2.2.2.

Corollary 11.2.1. — For k > p+ 1, the natural map

eH0(X,Ω(k,2)(−D)⊗Qp/Zp)→ fH0(X≥1
Kli(p),Ω

(k,2)(−D)⊗Qp/Zp)

is a quasi-isomorphism.

Proof. The map

eH0(X,Ω(k,2)(−D)⊗Qp/Zp)→ eH0(X≥1,Ω(k,2)(−D)⊗Qp/Zp)

is an isomorphism since the complement of X≥1 in X is of codimension 2. The claim follows
from theorem 11.2.1, point 4.

11.3. The perfect complex. — We can finally construct a perfect complex over Λ and
obtain an Hida theory for higher cohomology. We specialize to r = 2 as this is the case of
interest.

Theorem 11.3.1. — Consider the complex RΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)).

1. The action of U is locally finite. Call f the associated projector.

2. The complex fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)) is a perfect complex of Λ-modules con-
centrated in degree [0, 1].

3. For all k ≥ 0, U is locally finite on RΓ(X≥1
Kli(p),Ω

(k,2)(−D)) and there is a quasi-
isomorphism :

fRΓ(X≥1
Kli(p),Ω

(k,2)(−D))→ fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))⊗LΛ,k Zp.

4. There is a constant C which does not depend of the level Kp such that for all
k ≥ C, the canonical map

eHi(X,Ω(k,2)(−D))→ Hi
(
fRΓ(X≥1

Kli(p),F
κ ⊗ ω2(−D))⊗LΛ,k Zp

)
is bijective for i = 0 and injective for i = 1.

Proof. For all m ≥ n, we have the following acyclic resolution of the sheaf F κ
m,n⊗ω2(−D)

over X≥1
Kli(p)n :

0→ F κ
m,n ⊗ ω2(−D)→ colimlF

κ
m,n(−D)⊗ ω2+lpn−1(p−1)(−D)

→ colimlF
κ
m,n(−D)⊗ ω2+lpn−1(p−1)(−D)/Halp

n−1 → 0.
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Indeed, all theses sheaves are acyclic relatively to the minimal compactification by [50],
thm. 8.6 and the middle and right sheaves have affine support in the minimal com-
pactification. For all k ∈ Z≥0, we have an exact sequence of sheaves over X≥1

Kli(p)1 :

0 → KΩ(k,2)(−D) → Ω(k,2)(−D) → F k
1,1(−D) → 0 (see section 9.4). Using a resolution

as above for all sheaves in this exact sequence, we get a commutative diagram :

0 0

H0(X=2
Kli(p)1,F k

1,1 ⊗ ω2(−D)) //

OO

H0(XKli(p)
≥1
1 , colimF k

1,1 ⊗ ω2+l(p−1)(−D)/Hal)

OO

H0(X=2
Kli(p)1,Ω

(k,2)(−D)) //

OO

H0(X≥1
Kli(p)1, colimΩ(k,2+l(p−1))(−D)/Hal)

OO

H0(X=2
Kli(p)1,KΩ(k,2)(−D)) //

OO

H0(X≥1
Kli(p)1, colimKΩ(k,2+l(p−1))(−D)/Hal)

OO

0

OO

0

OO

Assume that k > p+ 1. Since U is locally finite on H0(X=2
Kli(p)1,Ω

(k,2)(−D)) and on

H0(X≥1
Kli(p)1, colimΩ(k,2+n(p−1))(−D)/Han),

by corollary 11.1.1.1 and corollary 11.1.3.1, it is locally finite on all the modules in the
above diagram by lemma 2.1.1. Moreover, by lemma 10.7.1, U acts by zero on the bottom
horizontal complex. Applying the projector, we obtain a quasi-isomorphism:

fRΓ(X≥1
Kli(p)1,Ω

(k,r)(−D))→ fRΓ(X≥1
Kli(p)1,F

k
1,1 ⊗ ω2(−D)).

For all m, the operator Um arises from the correspondence Cm which parametrizes
triples (G,H1, Gm) with (G,H1) ∈ X≥1

Kli(p)1 and G → Gm is an isogeny whose ker-
nel is a group Lm satisfying Lm ∩ H1 = {0} and moreover, if G is abelian Lm is
an extension of an étale group scheme locally isomorphic to Z/p2mZ by a truncated
Barsotti-Tate group of level m, height 2 and dimension 1. We have two projections
z1 : Cm → X≥1

Kli(p)1 defined by z1(G,H1, Gm) = (G,H1) and z2 : C → X≥1
Kli(p)1 defined

by z2(G,H1, Gm) = (Gm, Im(H1)). Actually, z2 lifts to a map z2 : Cm → X≥1
Kli(p

m)1

defined by z2(G,H1, Gm) = (Gm, H
′
m) where H ′m is the image of G[pm] in Gm.

As a result we have a factorization (Um)′ of Um in the following diagram :

RΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D))
Um //

(Um)′

++

RΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D))

RΓ(X≥1
Kli(p)1,F k

1,1 ⊗ ω2(−D))
Um //

OO

RΓ(X≥1
Kli(p)1,F κ

1,1 ⊗ ω2(−D))

OO

It follows that U is locally finite on colimmRΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D)) and that
we have an isomorphism :

fcolimmRΓ(X≥1
Kli(p)1,F

k
m,1 ⊗ ω2(−D)) = fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D)).

We deduce from lemma 2.1.2 that U is locally finite on RΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)).
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We now remove the assumption that k > p + 1, so we take k ∈ Z≥0. Specializing in

weight k we deduce that U is locally finite on RΓ(X≥1
Kli(p),F

k⊗ω2(−D)). Using one more

time the exact sequence 0 → KΩ(k,2)(−D) → Ω(k,2)(−D) → F k
1,1(−D) → 0 we may now

deduce that U is locally finite on RΓ(X≥1
Kli(p)1,Ω

(k,r)(−D)). Reasoning as before we find
that

fcolimmRΓ(X≥1
Kli(p)1,F

k
m,1 ⊗ ω2(−D)) = fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is a quasi-isomorphism (for all k ≥ 0). Moreover, proposition 2.2.2 and theorem 11.2.1
imply directly the points 3 and 4 of the theorem.

In order to complete the proof of theorem 1.1 of the introduction, we still have to
obtain a control theorem for characteristic 0 classes of weight k ≥ 0. This will be obtained
at the end of the next part of this work in theorem 14.8.1.

PART III

HIGHER COLEMAN THEORY

12. Overconvergent cohomology

The goal of this section is to construct an overconvergent version of the cohomologies
considered in part II of this work. We first consider analytic Siegel threefolds of deep Klin-
gen level and neighborhoods of the locus where the universal subgroup is multiplicative.
We then construct certain Banach sheaves which interpolate the classical automorphic
sheaves and we take their cohomology. The most delicate result of this section is a coho-
mological vanishing for these overconvergent cohomologies (proposition 12.9.1).

12.1. Notation. — We introduce certain notations that are specific to this part of the
work. In this section, the base ring for our constructions is O the ring of integers of Cp
rather than Zp. The p-adic valuation is normalized by v(p) = 1. For any rational number
w, we let pw ∈ O be an element of valuation w. If M is an O-module, we denote by
Mw = M/pwM . We let Adm be the category of admissible O-algebras. We recall that
an admissible O-algebra is a flat O-algebra which is the quotient of a convergent power
series ring O〈X1, · · · , Xs〉 by a finitely generated ideal. We let NAdm be the category of
normal admissible O-algebras.

12.2. Formal Siegel threefold and the Hodge-Tate period map. —

12.2.1. The Hodge-Tate period map. — We start by introducing several formal and ana-
lytic Siegel threefolds as in section 1.2 of [63]. Let Σ be a polyhedral decomposition which
is Γ-admissible and let X → Spec O be a toroidal compactification of the Siegel threefold
with spherical level at p and tame level Kp.

Let X be the associated analytic adic space over Spa(Cp,O). Let X be the formal
p-adic completion of X. We let X (pn)→ X be the adic Siegel threefold with full pn level
structure at p. Let X(pn) be the normalization of X in X (pn).

We denote by Y the complement of the boundary in X and by Y(pn) the complement
of the boundary in X(pn). Over Y(pn) we have a universal map (Z/pnZ)4 → G[pn] of
group schemes which is a symplectic isomorphism up to a similitude factor on the analytic
generic fiber. We also have a Hodge-Tate period map G[pn] → ωG/p

nωG (we are using
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the polarization to identify ωG and ωGt). We denote by HT : (Z/pnZ)4 → ωG/p
nωG the

composite of the two maps.
In [63], prop. 1.2 we show that the Hodge-Tate period map can be extended over

X(pn) to a morphism

HT : (Z/pnZ)4 → ωG/p
n.

Following [63], prop. 1.10, there is a formal scheme X(pn)mod → X(pn) which is the
normalization of a blow up and which carries a rank 2-locally-free modification ωmodG ↪→ ωG
such that

1. p
1
p−1ωG ⊂ ωmodG ⊂ ωG,

2. the Hodge-Tate map factors through ωmodG /pnωG and induces a surjective homo-
morphism :

(Z/pnZ)4 ⊗Z OX(pn)mod → ωmodG /p
n− 1

p−1ωmodG .

12.2.2. The canonical filtration. — We equip (Z/pnZ)4 with the canonical basis
(e1, e2, e3, e4) and the standard symplectic form given by the matrix J (see section
5.1). For all ε ∈ [0, n− 1

p−1 ] ∩Q, we let X(pn, ε)→ X(pn)mod be the formal scheme where

HT(e1) = 0 in ωmodG /pεωmodG . This is an open subscheme of an admissible blow up of

X(pn)mod.
Over X(pn, ε) we denote by Filcanε ⊂ (ωmodG )ε = ωmodG /pεωmodG the coherent subsheaf

generated by HT(e2) and HT(e3).

Lemma 12.2.2.1. — The sheaf Filcanε is a locally free sheaf of rank one of OX(pn,ε)/p
ε-

modules and locally a direct summand in (ωmodG )ε.

Proof. We work locally over some open affine Spf R of X(pn, ε). So we can assume that
we have (ωmodG )ε(Spf R) ' R2

ε and the matrix of HT is given by(
0 a c e
0 b d f

)
in the canonical basis of (Z/pnZ)4. By symplecticity (the kernel of the map HT ⊗ 1 :
R4
ε → R2

ε is a Lagrangian subspace) we get ad − bc = 0. The map HT ⊗ 1 is surjective
and therefore there is (locally on R) a 2× 2 minor which is invertible. Let us assume that
cf−de is a unit in Rε. Localizing further on R, we can assume that c, f or d, e are units in
Rε. Let us assume that c, f are units for example. We deduce that HT(e2) = a

cHT(e3) and
that Filcanε is generated by HT(e2), a direct factor is provided by the submodule generated
by HT(e4).

The formal scheme X(pn, ε) is covered by the open formal subschemes X(pn, ε, e2) and
X(pn, ε, e3) which are respectively defined by the conditions HT(e2) generates Filcanε and
HT(e3) generates Filcanε .

12.2.3. The canonical quotient. — We denote by

Grcanε = coker(Filcanε → (ωmodG )ε).

Passing to the quotient we get a canonical map

HT4 : (Z/pnZ)4/〈e1, e2, e3〉 ' Z/pnZ→ Grcanε

inducing an isomorphism

HT4 ⊗ 1 : Z/pnZ⊗ (OX(pn,ε))ε → Grcanε .
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12.3. Flag varieties. — We let FLn → X(pn)mod be the flag variety parametrizing
locally free direct summands of rank one FilωmodG ⊂ ωmodG . This is a P1-bundle.

For all rational numbers 0 ≤ w ≤ ε, we denote by FLn,ε,w → FLn×X(pn)modX(pn, ε)→
X(pn, ε) the admissible formal scheme parametrizing invertible sheaves FilωmodG ⊂ ωmodG
satisfying

(FilωmodG )w = Filcanw .

For all positive rational numbers w′ ≤ w, we also denote by FL+
n,ε,w,w′ → FLn,ε,w the

normal admissible formal scheme which parametrizes basis ρ : OFL+
n,ε,w,w′

' ωmodG /FilωmodG

such that ρw′ = HT4 ⊗ 1 mod pw
′
.

12.4. Group action. — Denote by GSp4 the formal p-adic completion of GSp4. Let
Kli ⊂ GSp4 be the Klingen parabolic of upper triangular matrices with blocks of size 1×1,
2 × 2 and 1 × 1. There is a well-defined action of GSp4(Z/pnZ) on X (pn), trivial over
X and it extends to an action on X(pn) by normality and on X(pn)mod (since X(pn)mod is
obtained by blowing up along ideals which are invariant under the group action and by
normalization). It is clear that there is an induced action of Kli(Z/pnZ) on X(pn, ε). We
denote by XKli(p

n, ε) the quotient of X(pn, ε) by the finite group Kli(Z/pnZ).
For all rational numbers w′ ≥ 0, we let Tw′ be the formal group scheme defined by

Tw′(R) = Z×p (1 + pw
′
R) for all R in Adm. We let T0

w′ be the connected component of the

identity in Tw′ . For all R in Adm, T0
w′(R) = 1 + pw

′
R. The group T0

w′ acts on FL+
n,ε,w,w′

(it acts on ρ) and the map FL+
n,ε,w,w′ → FLn,ε,w is a T0

w′-torsor.

For all integers n ≥ w′ we let Tw′,n be the fiber product Tw′ ×Tw′/T
0
w′

Kli(Z/pnZ)

where the map Kli(Z/pnZ)→ Tw′/T
0
w′ is the composite of Kli(Z/pnZ)→ (Z/pnZ)× (given

by the last diagonal entry) and the natural projection (Z/pnZ)× → Tw′/T
0
w′ (recall that

w′ ≤ n).
Observe that T0

w′ is naturally a subgroup of Tw′,n. The action of T0
w′ on FL+

n,ε,w,w′ can

be extended to an action of Tw′,n on FL+
n,ε,w,w′ , which induces the action of Kli(Z/pnZ)

on X(pn, ε).

12.5. Local description. — Let Spf R ↪→ X(pn, ε) be a Zariski open subset such that
we have ωmodG |Spf R = Rω1 ⊕Rω2 where ω1 lifts a basis of Filcan and ω2 lifts HT(e4).

Over Spf R, FL+
n,ε,w,w′ is identified with the set(

1 0
pwB(0, 1)R 1

)
× (1 + pw

′
B(0, 1)R)

with B(0, 1)R = Spf R〈X〉. We associate to the universal matrix(
1 0

pwX 1

)
× (1 + pw

′
X ′)

the flag FilωmodG = ω1 + pwXω2 and the trivialization ρ of the quotient GrωmodG given by

ρ(1) = (1 + pw
′
X ′).ω2.

12.6. Banach sheaves. — We construct in this section formal Banach sheaves of locally
analytic and overconvergent modular forms.
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12.6.1. Formal Banach sheaves. — We recall some definitions taken from [3], def. A.1.1.1.
We let S be an admissible formal scheme. A formal Banach sheaf over S is a family
(Fn)n≥0 of quasi-coherent sheaves such that :

1. Fn is a sheaf of OS/p
n-modules,

2. Fn is flat over O/pn,

3. For all 0 ≤ m ≤ n, we have compatible isomorphisms Fn ⊗O O/pm ' Fm.

We can associate to (Fn)n a sheaf F over S equal to the inverse limit limn Fn (the
maps in the inverse limit are those provided by 3) above). The sheaf F clearly determines
the (Fn) and we identify F and the family (Fn) in the sequel. We say that a Banach sheaf
is flat if Fn is a flat OS/p

n-module for all n.

12.6.2. Formal Banach sheaf of overconvergent modular forms. — Let ε ∈]0, n− 1
p−1 ]∩Q

and 0 < w′ ≤ w ≤ ε be rational numbers. Let A be an object of Nadm. We assume that
we are given a continuous character κA : Z×p → A× which is w′-analytic in the sense that
it extends to a pairing κA : Tw′ × Spf A→ Gm.

We have a series of affine maps

π : FL+
n,ε,w,w′ → FLn,ε,w → X(pn, ε).

Let π1 : FL+
n,ε,w,w′ → FLn,ε,w. This map is a torsor under T0

w′ . We define an invertible

sheaf

LκA =
(
(π1)?OFL+

n,ε,w,w′
⊗̂OA

)T0
w′

over FLn,ε,w × Spf A. The invariants are taken with respect to the diagonal action of T0
w′ .

Remark 12.6.2.1. — The sheaf LκA does not depend on w′ for if we choose w′′ ∈ [w′, w],
we can view κA as a character of T0

w′′ and perform a similar construction as above with
FLn,ε,w,w′′ . This will give an invertible sheaf canonically isomorphic to LκA . The isomor-

phism is deduced from the natural map FL+
n,ε,w,w′′ → FL+

n,ε,w,w′ , equivariant for the map

T0
w′′ → T0

w′ .

Let π2 : FLn,ε,w → X(pn, ε). We define a formal Banach sheaf

GκA,w = (π2)?L
κA

over X(pn, ε)× SpfA.

Lemma 12.6.2.1. — The formal Banach sheaf GκA,w is flat.

Proof. Using a covering as in section 12.5, FL+
n,ε,w,w′ |Spf R is identified with the set of

matrices (
1 0

pwB(0, 1)R 1

)
× (1 + pw

′
B(0, 1)R).

The action of T0
w is on the right term. It follows that GκA,w(Spf R× Spf A) ' R⊗̂A〈X〉.

Lemma 12.6.2.2. — For i ∈ {2, 3}, the restriction of the quasi-coherent sheaf GκA,w/pw

to X(pn, ε, ei) is an inductive limit of coherent sheaves which are extensions of the sheaf
OX(pn,ε,ei)/p

w.
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Proof. Over X(pn, ε, ei), the vectors HT(ei), HT(e4) are a basis of (ωmodG )ε. We are
therefore in a situation similar to [3], main construction, section 4.5. The claim follows
from corollary 8.1.5.4 and corollary 8.1.6.4 of [3].

We let π3 : X(pn, ε) → XKli(p
n, ε) be the finite projection. The sheaf (π3)?G

κA,w is
Tw,n-equivariant. We define a Banach sheaf

FκA,w =
(
(π3)?G

κA,w
)Tw,n = (π?OFL+

n,ε,w,w′
⊗̂A)Tw,n

over XKli(p
n, ε)× Spf A.

12.7. Analytic geometry. — The aim of this section is to translate some of our con-
structions in the setting of analytic adic spaces. One of the improvements in the analytic
setting is that the constructions can be performed for Klingen type level structure rather
than full level structure. It will be natural to work with Klingen level structure when we
consider Hecke operators.

12.7.1. Siegel analytic spaces. — We have an action of GSp4(Z/pnZ) on X (pn). We
denote by XKli(pn) the quotient of this space by the group Kli(Z/pnZ) ⊂ GSp4(Z/pnZ) of
matrices which are upper triangular with blocks of size 1× 1, 2× 2 and 1× 1.

Let Kli(Z/pnZ)+ be the subgroup of elements whose lower diagonal entry is trivial.
This is a normal subgroup of Kli(Z/pnZ) and the quotient Kli(Z/pnZ)/Kli(Z/pnZ)+ is
isomorphic to (Z/pnZ)×. We let XKli(pn)+ be the quotient of X (pn) by this group.

For all ε ∈ [0, n − 1
p−1 ] ∩ Q, we denote by X (pn, ε) the analytic space associated

to X(pn, ε). This is an open subset of X (pn) stabilized by the action of the Klingen
parabolic Kli(Z/pnZ) ⊂ GSp4(Z/pnZ) on this space. We denote by XKli(pn, ε) ⊂ XKli(pn)
the quotient of X (pn, ε) by Kli(Z/pn) and by XKli(pn, ε)+ ⊂ XKli(pn)+ the quotient of
X (pn, ε) by Kli(Z/pn)+. We therefore have diagrams for all n ∈ Z≥1 :

XKli(pn, ε) //

��

XKli(pn)

��
XKli(pn−1, ε) // XKli(pn−1)

and

XKli(pn, ε)+ //

��

XKli(pn)+

��
XKli(pn−1, ε)+ // XKli(pn−1)+

Over X we define a sheaf ωmod,+G of O+
X -modules for the étale topology. This is the

subsheaf of the sheaf ω+
G of integral differential forms at the origin of G, generated by the

image of the Hodge-Tate period map (compare with section 12.2.1).

Remark 12.7.1.1. — The sheaf ωmod,+G is really a sheaf on the étale site and does not
come from the analytic site. Nevertheless, its pullback to X (pn) for n ≥ 1 (or n ≥ 2 for
p = 2) comes from a sheaf on the Zariski site.

The space XKli(pn, ε) has the following simple modular interpretation. It parametrizes
pairs (x,Hn) where x is a point of X and Hn ⊂ Gx[pn] is a finite flat group scheme locally
isomorphic to Z/pnZ, which is locally for the étale topology generated by an element e1

which satisfies HT(e1) = 0 in ωmod,+Gx
/pεωmod,+Gx

.
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We can define sheaves for the étale topology

Filcanε = Im(HT⊗ 1 : H⊥n ⊗ O+
XKli(pn,ε) → (ωmod,+G )ε)

and
Grcanε = coker(HT⊗ 1 : H⊥n ⊗ O+

XKli(pn,ε) → (ωmod,+G )ε).

These are locally free sheaves of O+
XKli(pn,ε)/p

ε-modules (compare with section 12.2.2

and section 12.2.3).
The space XKli(pn, ε)+ → XKli(pn, ε) is the torsor of trivializations of HD

n . We let
ψ : Z/pnZ→ HD

n be the universal trivialization.
Over XKli(pn, ε)+ we have a canonical isomorphism

HT4 ⊗ 1 : Z/pnZ⊗ (O+
XKli(pn,ε))ε → Grcanε

obtained via the map ψ and the Hodge-Tate map for G[pn] (compare with section 12.2.3).

Remark 12.7.1.2. — We have obtained the analogue of paragraphs 12.2.2 and 12.2.3
in the analytic setting. We observe that in the analytic setting we are able to work
at the level of XKli(pn, ε) rather than X (pn, ε). The main reason being that the map
X (pn, ε) → XKli(pn, ε) is finite flat and étale away from the boundary while this fails for
the map X(pn, ε) → XKli(p

n, ε). It will turn out to be more natural later when we want
to define the action of the Hecke operator U to work at “Klingen” level.

12.7.2. Analytic flag varieties. — We let FL+
n,ε,w,w′ → FLn,ε,w → X (pn, ε) be the analytic

spaces associated to FLn,ε,w and FL+
n,ε,w,w′ .

Lemma 12.7.2.1. — The space FLn,ε,w descends to an open-subspace of the flag variety

FL → XKli(pn, ε) of ωG
(17) that we denote by FLKli,n,ε,w. This is the space of flags

FilωG ⊂ ωG such that locally for the étale topology (FilωG ∩ ωmod,+G )w = Filcanw .

Proof. Consider the map of analytic spaces : X (pn, ε)×XKli(pn,ε) FL → FL. This map is
finite flat. Moreover, FLn,ε,w ↪→ X (pn, ε)×XKli(pn,ε) FL is an admissible open subset. We
can therefore apply the descent of admissible opens of [16], lem. 4.2.4.

Let us denote by FL+ → XKli(pn, e1)+ the moduli space of flags (a locally direct
summand of rank 1 in this case) FilωG of ωG together with a trivialization ρ ∈ GrωG =

ωG/FilωG
(18).

Lemma 12.7.2.2. — The space FL+
n,ε,w,w′ descends to an open-subspace of FL+ →

XKli(pn, e1)+ that we denote by FL+
Kli,n,ε,w,w′. This is the space of flags FilωG ⊂ ωG

and trivialization ρ ∈ GrωG which satisfy the following conditions :

— (FilωG ∩ ωmod,+G )w = Filcanw ,

— The trivialization ρ belongs to ωmod,+G /(FilωG∩ωmod,+G ) and reduces to the element
HT4(1) of Grcanw′ .

Proof. This is another application of [16], lem. 4.2.4.

Let us denote by Tw′ , T 0
w′ , Tw′,n the analytic fibers of Tw′ and T0

w′ and Tw′,n. We
denote by L κA the invertible sheaf over FLn,ε,w × Spa(A[1/p], A) associated to LκA . We
denote by G κA,w the Banach sheaf generic fiber of GκA,w over X (pn, ε) × Spa(A[1/p], A)
(see [3], def. A.2.1.2 and prop. A.2.2.3). We finally denote by F κA,w the Banach sheaf

17. This flag variety is simply a P1-bundle.
18. ρ is a nowhere vanishing section of the line bundle Gr(ωG).
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associated to FκA,w over XKli(pn, ε) × Spa(A[1/p], A). A more direct definition of F κA,w

is the following

F κA,w = (π?OFL+
Kli,n,ε,w,w′

⊗̂A)Tw′,n

where π : FL+
Kli,n,ε,w,w′ → XKli(p

n, ε) is the projection.

12.8. Overconvergent cohomology. — We are now ready to define overconvergent,
locally analytic cohomology.

12.8.1. Definitions. — The (n, ε)-overconvergent, w-analytic cohomology of weight
(κA, r) is the cohomology :

C(n, ε, w, κA, r) := RΓ(XKli(pn, ε),F κA,w ⊗ ωr).
There is also a cuspidal version :

Ccusp(n, ε, w, κA, r) := RΓ(XKli(pn, ε),F κA,w ⊗ ωr(−D)).

There are obvious maps C(n, ε, w, κ, r) → C(n1, ε1, w1, κ, r) for n1 ≥ n, ε1 ≥ ε,
w1 ≥ w (and w ≤ ε, w1 ≤ ε1, ε ≤ n− 1

p−1 , ε1 ≤ n1 − 1
p−1).

We may define the overconvergent, locally analytic degree i cohomology of weight
(κA, r) to be

Hi(†, κA, r) = colimn,ε,w→∞Hi(XKli(pn, ε),F κA,w ⊗ ωr)
and similarly for the cuspidal version :

Hi
cusp(†, κA, r) = colimn,ε,w→∞Hi(XKli(pn, ε),F κA,w ⊗ ωr(−D)).

12.8.2. Another interpretation. — Here is another way to think about these cohomology
groups in terms of coherent cohomology. Thanks to section 12.5, we observe that FLn,ε,w
is locally affine over X (pn, ε) : this means that there is a covering of X (pn, ε) by affinoid

spaces such that the fiber of FLn,ε,w over each such affinoid is affinoid (19). The sheaf
G κA,w comes from the line bundle L κA over FLn,ε,w by pushforward via the map π2 :
FLn,ε,w → X (pn, ε). Since Ri(π2)?L κA = 0 for i > 0, we obtain that

RΓ(X (pn, ε),G κA,w ⊗ ωr) = RΓ(FLn,ε,w,L κA ⊗ ωr)

and

RΓ(XKli(pn, ε),F κA,w ⊗ ωr) = RΓ(Kli(Z/pnZ),RΓ(FLn,ε,w,L κA ⊗ ωr)).

Similar statements hold for cuspidal cohomology.

Proposition 12.8.2.1. — The cohomology complexes C(n, ε, w, κA, r) and Ccusp(n, ε, w, κA, r)
are represented by bounded complexes of projective Banach A[1/p]-modules.

Proof. We only treat the non-cuspidal version. We take a covering U of FLn,ε,w by
affinoids such that the sheaf L κA is isomorphic to A⊗̂OOU over each U ∈ U . Refin-
ing U by adding all the Kli(Z/pnZ)-translates of each opens, we can assume that U is
Kli(Z/pnZ)-stable. The U-Čech complex of the sheaf L κA ⊗ ωr is a bounded complex
of projective Banach A[1/p]-modules which computes RΓ(XKli(pn, ε),G κA,w ⊗ ωr). The
group Kli(Z/pnZ) acts on this complex and the direct factor of invariants computes the
cohomology RΓ(XKli(pn, ε),F κA,w ⊗ ωr).

19. This does not imply that the fiber of any affinoid is an affinoid, unlike in the case of schemes.
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12.9. Cohomological vanishing. — The main result of this section is a cohomological
vanishing.

Proposition 12.9.1. — The cuspidal overconvergent locally analytic cohomology
Hi
cusp(†, κA, r) vanishes for i > 1.

The proof of this proposition follows [3] section 8 closely. The strategy is to compute
this cohomology on the minimal compactification. The cohomological vanishing results
from two facts :

1. that the relative cuspidal cohomology between toroidal and minimal compactifi-
cation vanishes in higher degree,

2. that the pushforward of our overconvergent sheaves to the minimal compactifica-
tion are supported on open subsets that can be covered by two affines.

12.9.1. The minimal compactification. — We let X? be the minimal compactification of
Y. There is a natural map X(pn)→ X? and we define X(pn)? to be the Stein factorization
of this map. In [63], we proved that the determinant of the Hodge-Tate map :

Λ2HT : Λ2((Z/pnZ)4)→ detωG/p
n

descends from X(pn) to X(pn)?.
In [63] section 1.8 we have introduced a formal scheme X(pn)?−mod → X(pn)?. This

space is the normalization of a blow up and it carries a locally free modification detωmodG ⊂
detωG such that :

1. p
2
p−1 detωG ⊂ detωmodG ⊂ detωG,

2. The Hodge-Tate map induces a surjective map :

Λ2HT : Λ2((Z/pnZ)4)⊗ OX(pn)?−mod → detωmodG /p
n− 2

p−1 .

By the universal property of blow-up and normalization, there is a map X(pn)mod →
X(pn)?−mod such that the pull back of detωmodG is det of ωmodG and the pull back of the

map Λ2HT : Λ2((Z/pnZ)4) → detωmodG /p
n− 2

p−1 agrees with Λ2 applied to the map HT :

(Z/pnZ)4 → ωmodG /p
n− 2

p−1 .

Let ε ∈ [0, n− 2
p−1 ]∩Q. We let X(pn, ε)? be the formal scheme where HT(e1)∧HT(e2) =

HT(e1) ∧HT(e3) = HT(e1) ∧HT(e4) = 0 mod pε.

Lemma 12.9.1.1. — There is a cartesian diagram :

X(pn, ε) //

��

X(pn)mod

��
X(pn, ε)? // X(pn)?−mod

Proof. It suffices to prove that the condition HT(e1) ∧ HT(e2) = HT(e1) ∧ HT(e3) =
HT(e1) ∧ HT(e4) = 0 mod pε is equivalent to the condition HT(e1) = 0 mod pε. The
reverse implication is obvious so let us prove the direct implication. Under the natural
perfect pairing (ωmodG )ε × (ωmodG )ε → (detωmodG )ε, we have by assumption that HT(e1) is

orthogonal to the entire (ωmodG )ε (which is generated by HT(ei), 1 ≤ i ≤ 4) so HT(e1) = 0
mod pε.
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We denote X(pn, ε, e2)? and X(pn, ε, e3)? the open formal subschemes of X(pn, ε)?

where the sheaf (detωmodG )ε is generated by HT(e4)∧HT(e2) and HT(e4)∧HT(e3) respec-
tively.

Lemma 12.9.1.2. — We have cartesian diagrams :

X(pn, ε, ei) //

��

X(pn)mod

��
X(pn, ε, ei)

? // X(pn)?−mod

for i ∈ {2, 3}.

Proof. This follows from the fact that (ωmodG )ε is generated by HT(ei) and HT(e4) if and

only if HT(e4) ∧HT(ei) generates det(ωmodG )ε.

By [71], p. 72 (see also [63], thm. 1.16), there is an integer N such that for all n ≥ N
there is a formal scheme X(pn)?−HT and a projective map X(pn)?−mod → X(pn)?−HT such
that :

1. X(pn)?−HT is a normal admissible formal scheme with generic analytic adic fiber
X (pn)?,

2. The invertible sheaf detωmodG descends to an ample invertible sheaf detωmodG over
X(pn)?−HT ,

3. For all ε > 0, there is n(ε) ≥ N such that for all n ≥ n(ε) we have sections
si,j ∈ H0(X(pn)?−HT , detωmodG ) for 1 ≤ i, j ≤ 4 such that si,j = HT(ei)∧HT(ej) ∈
detωmodG /pε.

Let ε > 0 and let n ≥ n(ε). Let us define X(pn, ε, ei)
?−HT → X(pn)?−HT by the

conditions :
— si,4 6= 0,

— s1,j ∈ pε detωmodG , ∀1 ≤ j ≤ 4.

Lemma 12.9.1.3. — The formal scheme X(pn, ε, ei)
?−HT is affine and the map

X(pn, ε, ei)
?−mod → X(pn, ε, ei)

?−HT

is a projective map and is an isomorphism on the generic fiber.

Proof. The open formal subscheme of X(pn)?−HT defined by si,4 6= 0 is affine since

detωmodG is ample. Let us denote by A its ring of functions. Observe that detωmodG is trivial

over Spf A, generated by si,4. The formal scheme defined by the equation s1,j ∈ pε detωmodG
is

Spf A〈 s1,j

si,4pε
, 1 ≤ j ≤ 4〉

and is again affine. The final claim follows from the obvious equality

X(pn, ε, ei)
?−mod = X(pn)?−mod ×X(pn)?−HT X(pn, ε, ei)

?−HT .
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12.9.2. Vanishing. — A formal Banach sheaf F over an admissible formal scheme S is
small if F1 can be written has an inductive limit of coherent sheaves colimj∈NF1,j with
injective transition maps, and there exists a coherent sheaf G over S such that the quo-
tients F1,j+1/F1,j are direct summands of G . We now recall a vanishing result of [3], thm.
A.1.2.2 :

Theorem 12.9.2.1. — Let S be an admissible formal scheme. Assume that S admits a
projective map S→ S′ to an affine admissible formal scheme which is an isomorphism of
the associated analytic adic spaces over Spa(Cp,O). Let F be a small Banach sheaf over

S. Let U be an affine cover of S. Then the Čech complex

Čech(U,F)⊗O Cp
is acyclic in positive degree.

We denote by π : X(pn, ε) → X(pn, ε)? the projection. The following proposition is
the analogue of [3], proposition 8.2.2.4 (see also [51]) :

Proposition 12.9.2.1. — We have the vanishing Riπ?OX(pn,ε)(−D) for all i ≥ 1.

Proof. The formal scheme X(pn, ε) carries a stratification indexed by a subset of the set
of all Lagrangian locally direct factors W of V = Z4. We are going to describe briefly this
stratification, based on the analogous description of the stratification of X(pn)mod given in
proposition 4.9 of [63]. The case W = {0} corresponds to the open and dense stratum with
complement the boundary D. This stratum maps isomorphically to its image in X(pn, ε)?.
We now deal with the case W is one-dimensional. First of all there is a one-dimensional
affine formal scheme XW (pn, ε) constructed as follows. We start with the formal affine
modular curve XW of some prime-to-p level determined by W and the tame level Kp.
Then we can construct a normal formal scheme XW (pn) and a finite map XW (pn)→ XW
by adding a full level structure of level pn. We then perform a blow up and a normalization
to define XW (pn)mod which carries a locally free modification of the conormal sheaf of the
universal elliptic curve. We finally consider a formal scheme XW (pn, ε) → XW (pn)mod

which is an open subscheme of a blow up defined by a condition on the Hodge-Tate period
map.

Over XW (pn, ε) we have an elliptic curve BW (pn, ε) → XW (pn, ε), isogenous to the
universal elliptic curve. There is a Gm-torsor MW (pn, ε) → BW (pn, ε) isogenous to the
torsor of trivializations of OBW (pn,ε)(−2O) (where O is the identity section of the elliptic

curve) and a relative toroidal embedding MW (pn, ε) ↪→MW (pn, ε) (obtained by adjoining
to the Gm-torsor the 0 element). The complement of MW (pn, ε) ↪→ MW (pn, ε) maps
isomorphically to BW (pn, ε). The W -stratum in X(pn, ε) is BW (pn, ε) and the completion
of X(pn, ε) along BW (pn, ε) is isomorphic to the completion of MW (pn, ε) along BW (pn, ε).

The morphism π restricts to a morphism BW (pn, ε)→ X(pn, ε)? and factors through
BW (pn, ε) → XW (pn, ε) → X(pn, ε)? where XW (pn, ε) → X(pn, ε)? is finite (compare with
[63], lem. 4.4 and thm. 4.7).

In the case W is two dimensional, the boundary component is included in the or-
dinary locus and the maps X(pn, ε) → X(pn)mod → X(pn) restrict on the ordinary locus
respectively to an open immersion and an isomorphism. The description of the boundary
component is given in [63], thm 4.1. We recall that there is a formal torus TW isogenous
to the p-adic completion of Hom(Sym2V/W⊥,Gm), a TW -torsor MW (pn, ε), a relative
toroidal embedding MW (pn, ε) ↪→ MW (pn, ε), a closed codimension 1 formal subscheme
ZW (pn, ε) ↪→MW (pn, ε) in the complement of MW (pn, ε) and an arithmetic subgroup ΓW
of GL(W ) such that the closed W -stratum is isomorphic to ZW (pn, ε)/ΓW and the com-
pletion of X(pn, ε) along ZW (pn, ε)/ΓW is isomorphic to the completion of MW (pn, ε)/ΓW
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along ZW (pn, ε)/ΓW . Lastly, the image of ZW (pn, ε)/ΓW in X(pn, ε)? is a closed formal
subscheme, finite over Spf O.

By the theorem on formal functions, the vanishing theorem is equivalent to :

1. Hi(MW (pn, ε)/ΓW ,OMW (pn,ε)/ΓW
(−ZW (pn, ε)/ΓW )) = 0 for all i > 0 and W two

dimensional,

2. Hi( ̂MW (pn, ε)
x

,OMW (pn,ε)(−BW (pn, ε)) for all i > 0, W one-dimensional, x ∈

XW (pn, ε) a closed point. We have denoted by ̂MW (pn, ε)
x

the completion of
̂MW (pn, ε)

x

along the fiber of the map BW (pn, ε)→ XW (pn, ε) at x.

We are therefore in a similar situation to [3], proposition 8.2.2.4, or to [51], sect. 4.
One can conclude by repeating the arguments of these papers.

Lemma 12.9.2.1. — Let ε > 0. There exists n(ε) such that for all n ≥ n(ε),
RΓ(X (pn, ε),G κA,w ⊗ ωr(−D)) is concentrated in degree 0 and 1.

Proof. We let π : X(pn, ε) → X(pn, ε)? denote the usual projection. By lemma 12.6.2.2,
proposition 12.9.2.1 and proposition A.1.3.1 of [3], π?G

κA,w ⊗ ωr(−D) is a small formal
Banach sheaf over X(pn, ε)? and Riπ?G

κA,w ⊗ ωr(−D) = 0 for all i > 0.
Let us take an affine covering Vi of X(pn, ε, ei)

? and an affine covering Ui of
FLn,ε,w|X(pn,ε,ei)? which refines the inverse image of Vi in FLn,ε,w|X(pn,ε,ei)? for i ∈ {2, 3}.

Since Riπ?G
κA,w ⊗ ωr(−D) = 0 for all i > 0 we deduce that the map

Čech(Vi, π?G
κA,w ⊗ ωr(−D))→ Čech(Ui,L

κA ⊗ ωr(−D))

is a quasi-isomorphism.
We deduce from thm 12.9.2.1 that Čech(Ui,L

κA⊗ωr(−D))[1/p] is concentrated in de-
gree 0. We now consider the Čech complex associated to the covering U = U2∪U3 of FLn,ε,w
for the sheaf LκA(−D)). Then Čech(U,LκA⊗ωr(−D))[1/p] computes RΓ(FLn,ε,w,L κA⊗
ωr(−D)). But this Čech complex is quasi-isomorphic to the complex:

H0(X (pn, ε, e2)?, π?G
κA ⊗ ωr(−D))⊕H0(X (pn, ε, e3)?, π?G

κA ⊗ ωr(−D))

−→ H0(X (pn, ε, e2)? ∩ X (pn, ε, e3)?, π?G
κA ⊗ ωr(−D))

and has therefore cohomology in degree 0 and 1.

Corollary 12.9.2.1. — Let ε > 0. There exists n(ε) such that for all n ≥ n(ε),
RΓ(XKli(pn, ε),F κA,w ⊗ ωr(−D)) is concentrated in degree 0 and 1.

Proof. This follows from the formula

Hi(XKli(pn, ε),F κA,w ⊗ ωr(−D)) = H0(Kli(Z/pn),Hi(X (pn, ε),G κA,w ⊗ ωr(−D))).

13. Finite slope families

In this section we will apply Coleman’s spectral theory to our overconvergent coho-
mology in order to construct finite slope families.

13.1. Review of spectral theory. — We quickly review the notion of slope decompo-
sition and the construction of spectral varieties.
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13.1.1. Slope decomposition. — The valuation on Qp is normalized by v(p) = 1 as usual.
Let k be a complete non-archimedean field extension of Qp for a valuation extending the
p-adic valuation. Let M be a vector space over k and let U be an endomorphism of the
vector space M . Let h ∈ Q. A h-slope decomposition of M with respect to U is a direct
sum decomposition of k-vector spaces M = M≤h ⊕M>h such that:

1. M≤h and M>h are stable under the action of U .

2. M≤h is finite dimensional over k.

3. All the eigenvalues (in an algebraic closure of k) of U acting on M≤h are of
valuation less or equal to h.

4. For any polynomialQ with roots of valuation strictly greater than h, the restriction
of Q?(U) to M>h is an invertible endomorphism. Here Q? is the reciprocal of Q.

By [81], coro. 2.3.3, if such a slope decomposition exists, it is unique. If M has h-slope
decomposition for all h ∈ Q, we simply say that M has slope decomposition. In this
situation we can obviously define submodules M=h and M<h of M for all h ∈ Q.

13.1.2. Spectral varieties. — Let A be a Tate algebra over k. We let Ban(A) be the
category of Banach modules over A. A Banach module is called projective if it is a direct
factor of an orthonormalizable Banach module. We let Kproj(A) be the category whose
objects are bounded complexes of projective Banach modules over A and morphisms are
homotopy classes of morphisms of complexes. Let M• ∈ Kproj(A). An element U ∈
EndKproj(A)(M

•) is compact if it has a representative Ũ ∈ EndA(M•) whose restriction to

each Mk is compact.
Given a compact representative Ũ , we can define by [14], Part A, (or [9]) the charac-

teristic series P̃ (X) = det(1−XŨ |M•) =
∏
k det(1−XŨ |Mk). This characteristic series

is entire: it defines a function on A1 × Spa(A,A+). We denote by Z̃ ↪→ A1 × Spa(A,A+)

the spectral variety which is the closed subspace defined by P̃ (X). It depends on Ũ . Over

Z̃ we have a complex of coherent sheavesM•. It is the universal eigenspace of M• for the
action of Ũ . There is a covering of Z̃ by opens U which are finite over their image V in
Spa(A,A+) and such that M•|U is a perfect complex of OV -module.

The cohomology groups H•(M•) are coherent sheaves over Z̃. Let I ⊂ OZ̃ be

the annihilator of this graded module. We let Z = V (I ) ⊂ Z̃ be the spectral variety

associated to U and M•. It does not depend on the choice of Ũ . It comes equipped with
a graded coherent sheaf H•(M•).
13.1.3. Euler characteristic. — Let M• be a complex of Banach modules and U be a
compact operator as above. If x : Spa(K,OK) → Spa(A,A+) is a rank one point, it
follows from [72] that the space H i(M•x) has a slope decomposition (the valuation vx
corresponding to x is normalized by vx(p) = 1). We have :

Proposition 13.1.3.1. — For all h ∈ Q, the Euler-characteristic function

x 7→
∑
i

(−1)i dimH i(M•x)=h

is a locally constant function of the rank one points of Spa(A,A+) (20).

20. This means that for any rank one point x, there exists a neighborhood Ux of x in Spa(A,A+), such
that for all rank one point y ∈ Ux, we have

∑
i(−1)i dimHi(M•x )=h =

∑
i(−1)i dimHi(M•y )=h. Be careful

that {Ux}x∈Spa(A,A+), rk(x)=1 is not a covering Spa(A,A+) in general.
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Proof. This follows from the equality∑
i

(−1)i dimH i(M•x)=h =
∑
i

(−1)i dim(M i
x)=h

and the local constancy of dim(M i
x)=h (see [14], Part A).

13.2. The U-operator on overconvergent cohomology. — We construct the U -
operator in the setting of overconvergent cohomology. The construction is parallel to
section 10.

13.2.1. The cohomological correspondence C. — Let YKli(pn) be the open subspace of
XKli(pn) where the semi-abelian scheme is an abelian scheme. There is a Hecke corre-
spondence t1 : C|YKli(pn) → YKli(pn) where C|YKli(pn) is the moduli space of (G,Hn, L)

where (G,Hn) is a point of YKli(pn) and L ⊂ G[p2] is a totally isotropic subgroup which
is locally for the étale topology isomorphic to (Z/pZ)2 ⊕ Z/p2Z and L ∩Hn = {0}. The
map t1 sends (G,Hn, L) to (G,H). There is a map t2 : Cn|YKli(pn) → YKli(pn+1) defined

by mapping (G,Hn, L) to (G/L, p−1Hn + L/L).
By the theory of toroidal compactification (see [48] for instance), there exist a polyhe-

dral cone decompositions Σ′ and toroidal compactifications of C|YKli(pn) which we denote

by CΣ′ or simply C and maps t1 : CΣ′ → XKli(pn)Σ and t2 : CΣ′ → XKli(pn+1)Σ which
extend the maps t1 and t2 previously defined. We drop Σ and Σ′ from the notations if not
necessary. We also recall that the map (t1)?OC → R(t1)?OC is a quasi-isomorphism.

Lemma 13.2.1.1. — Let Cε = C ×t1,XKli(pn) XKli(pn, ε). Then Cε factorizes to a corre-
spondence

Cε
t2

xx

t1

$$
XKli(pn+1, ε+ 1) XKli(pn, ε)

Proof. All adic spaces are topologically of finite type, so it is enough to check that the
map t2 has the expected factorization for rank one points. Let (K,OK) be a rank one

point of Cn corresponding to an isogeny ξ : G → G1. Let ˆ̄K be the completion of an
algebraic closure of K. Over O ˆ̄K

, we have a commutative diagram (where Tp is the Tate

module and HT is the Hodge-Tate map) :

Tp(G)
ξ //

HT
��

Tp(G1)

HT
��

ωmod,+G

ξD // ωmod,+G1

In case G and G1 are semi-abelian scheme, one can interpret Tp(G) and Tp(G1) as
the Tate modules of the corresponding 1-motives. We take a basis of Tp(G) ' Z4

p and

Tp(G1) ' Z4
p lifting the basis of G[pn] and G1[pn] provided by the moduli problems. For

suitable basis of ωG and ωG1 respecting the canonical filtration, this diagram is isomorphic
to
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Z4
p

[1,p,p,p2]//

p1

��

Z4
p

p2

��
O2

ˆ̄K

[p,p2] // O2
ˆ̄K

where [1, p, p, p2] and [p, p2] represent diagonal matrices. Moreover, by definition p1(e1) ∈
pεO2

ˆ̄K
. We deduce at once that the group generated by the image [1, p, p, p2](e1) in G1[pn+1]

is independent of choices and that p2([1, p, p, p2](e1)) ∈ pεpO2
ˆ̄K
. Therefore, at the level of

points, we have proved that t2(Cε) factors through XKli(pn+1, ε+ 1).

13.2.2. Action on the sheaf. — In this section we prove that for all positive rational w ≤ ε
we can define over the correspondence Cε a natural map:

t?2F
κA,w+1 → t?1F

κA,w.

Over the correspondence Cε we consider the universal isogeny ξ : G → G1 and its dif-
ferential ξ? : ωG1 → ωG. Therefore we get a map t?1FL → t?2FL obtained by FilωG 7→
(ξ?)−1FilωG.

Lemma 13.2.2.1. — The map t?1FL → t?2FL restricts to a map

t?1FLKli,n,ε,ω → t?2FLKli,n+1,ε+1,ω+1.

Proof. It is enough to check this on rank one points. Let (K,OK) be a rank one point of
Cε corresponding to an isogeny ξ : G→ G1. As in the proof of lemma 13.2.1.1, we obtain
over O ˆ̄K

a commutative diagram :

Tp(G)
ξ //

HT
��

Tp(G1)

HT
��

ωmod,+G

ξD // ωmod,+G1

isomorphic to

Z4
p

[1,p,p,p2]//

p1

��

Z4
p

p2

��
O2

ˆ̄K

[p,p2] // O2
ˆ̄K

Let FilωmodG be a flag. We may assume that it is generated by a vector HT(e2)+αpwHT(e4)
with α ∈ O ˆ̄K

(up to changing e2 and e3). Its image via ξD is the line generated by

pHT(e2) + αpwp2HT(e4) or equivalently HT(e2) + αpw+1HT(e4).

Corollary 13.2.2.1. — We have a map ξ? : t?2F
κA,w+1 → t?1F

κA,w.

Proof. Let Spa(R,R+) → Cε be a point. Let ξ : G → G1 be the associated
isogeny. To (FilωG, ρG : R ' Gr(ωG) = ωG/FilωG) ∈ FL+

Kli,n,ε,w,w′ we asso-

ciate (ξ?)−1FilωG and a trivialization (ξ?)−1ρG : R ' Gr(ωG) ' Gr(ωG1). This
defines a point on FL+

Kli,n+1,ε+1,w+1,w′ . Given a section s ∈ t?2F
κA,w+1, we set

ξ?s(FilωG, ρG) = s((ξ?)−1FilωG, (ξ
?)−1ρG).
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13.2.3. The action of U on overconvergent cohomology. — We now get an operator U as
the composite

RΓ(XKli(pn, ε),F κA,w⊗ωr)→ RΓ(XKli(pn+1, ε+1),F κA,w+1⊗ωr)→ RΓ(Cε, t
?
2F

κA,w+1⊗ωr)
1
pr
ξ?

→ RΓ(Cε, t
?
1F

κA,w⊗ωr)→ RΓ(XKli(pn, ε), (t1)?t
?
1F

κA,w⊗ωr)
1
p3

Tr

→ RΓ(XKli(pn, ε),F κA,w⊗ωr)
and similarly on cuspidal cohomology. The map ξ? is the tensor product of the map of
corollary 13.2.2.1 and the obvious map t?2ω

r → t?1ω
r.

Remark 13.2.3.1. — Note the normalization of the map ξ? and of the Trace map.

13.2.4. Compactness. — We prove the compactness of the operator U .

Lemma 13.2.4.1. — The natural map

RΓ(XKli(pn, ε),F κA,w ⊗ ωr)→ RΓ(XKli(pn+1, ε+ 1),F κA,w+1 ⊗ ωr)
is compact. A similar statement holds for cuspidal cohomology.

Proof. We have an obvious injective map FLn+1,ε+1,w+1 → X (pn+1)×X (pn) FLn,ε,w. All
these spaces are open subspaces of the the proper analytic spaces FL which parametrizes
flags in ωG over X (pn+1). It follows from the definitions that the closure of FLn+1,ε+1,w+1

is contained in X (pn+1)×X (pn) FLn,ε,w.
Let U = {Ui}i∈I be an affinoid covering of FLn+1,ε+1,w+1. We may assume that this

covering is stable under the action of Kli(Z/pn+1Z). By [52], thm. 5.1, for each Ui ∈ U we
can find an affinoid open U ′i ⊂ XKli(pn+1) ×XKli(pn) FLn,ε,w such that Ui ⊂ U ′i . We may

refine {U ′i} by adding all translates under the action of Kli(Z/pn+1Z) so we can suppose
that U ′ = {U ′i} is stable under the action of Kli(Z/pnZ). We let T = ∪iU ′i.

The cohomology RΓ(T ,L κA⊗ωr) is represented by the Čech complex Čech(U ′,L κA⊗
ωr). Similarly, the cohomology RΓ(FLn+1,ε+1,w+1,L κA ⊗ ωr) is represented by the Čech

complex Čech(U ,L κA ⊗ ωr). The map Čech(U ′,L κA ⊗ ωr) → Čech(U ,L κA ⊗ ωr) is
compact. It follows that the map of the proposition is compact as it can be factored into :

RΓ(XKli(pn, ε),F κA,w ⊗ ωr)→
(
Čech(U ′,L κA ⊗ ωr)

)Kli(Z/pn+1Z)

→
(
Čech(U ,L κA ⊗ ωr)

)Kli(Z/pn+1Z)

= RΓ(XKli(pn+1, ε+ 1),F κA,w+1 ⊗ ωr).

Corollary 13.2.4.1. — The operator U is compact.

Proof. It is the composition of several continuous maps and one of the maps is compact.

Corollary 13.2.4.2. — The restriction maps C(n, ε, w, κA, r) → C(n′, ε′, w′, κA, r) for
n′ ≥ n, ε′ ≥ ε, w′ ≥ w induces an isomorphism on the finite slope part for U . A similar
statement holds for cuspidal cohomology.

Proof. Without loss of generality, we can assume that n′ ≤ n+ 1, w′ ≤ w+ 1, ε′ ≤ ε+ 1.
The map U : Hi(C(n′, ε′, w′, κA, r))→ Hi(C(n′, ε′, w′, κA, r)) factors canonically into

Hi(C(n′, ε′, w′, κA, r))
Ũ→ Hi(C(n, ε, w, κA, r))

res→ Hi(C(n′, ε′, w′, κA, r)),

where the second map is the obvious restriction map. Given a finite slope class
f ∈ Hi(C(n′, ε′, w′, κA, r)), there is by definition (locally on A) a non-zero polynomial
P (X) ∈ A[X] with P (0) = 0 such that f = P (U)f . We define the extension of f to

Hi(C(n, ε, w, κA, r)) to be P (Ũ)f . This provides a map ext : Hi(C(n′, ε′, w′, κA, r))
fs →
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Hi(C(n, ε, w, κA, r)) on finite slope classes. It is clear that ext◦res = Id and res◦ext = Id
on finite slope classes.

Remark 13.2.4.1. — This corollary allows us to identify finite slope cohomology classes
in Hi(†, κA, r) with classes of prescribed radius of convergence and analyticity.

Remark 13.2.4.2. — One proves in a similar way that U acts compactly on RΓ(XKli(pn, ε),Ω(k,r))

and RΓ(XKli(pn, ε),Ω(k,r)(−D)).

13.3. Classicity at the level of the sheaf. — Let (k, r) ∈ Z≥0 × Z≥0. There is a
natural map going from (n, ε)-overconvergent cohomology of the classical sheaf to (n, ε)-
overconvergent, w-analytic cohomology :

RΓ(XKli(pn, ε),Ω(k,r))→ RΓ(XKli(pn, ε),F (k,w) ⊗ ωr),

and similarly for cuspidal cohomology. The goal of this section is to prove that on the
small slope part, this map is a quasi-isomorphism.

13.3.1. Slopes. — The aim of this paragraph is to bound the possible slopes for U on
overconvergent cohomology.

Proposition 13.3.1.1. — Let κ : Z×p → O× be a w-analytic character. The operator U

has slopes ≥ −3 on Hi(†, κ, r) or Hi
cusp(†, κ, r) for all i. Moreover, on degree 0 cohomology,

it has slopes ≥ 0.

Proof. The Banach sheaf F κ,w is a subsheaf of the structural sheaf OFLKli,n,ε,w,w′ and we

let F κ,w,++ be the sheaf F κ,w ∩ O++
FLKli,n,ε,w,w′

(we recall that the superscript ++ stands

for topologically nilpotent sections).
The map

t?2F
κ,w+1 → t?1F

κ,w

arises from a map of spaces

t?1FLKli,n,ε,w → t?2FLKli,n+1,ε+1,w+1

therefore, it respects the integral structure and induces a map :

t?2F
κ,w+1,++ → t?1F

κ,w,++.

Next, the differential of the universal isogeny induces ξ? : t?2ω
r → t?1ω

r and factors

through ξ? : t?2(ω++)r → prt?1(ω++)r by lemma 14.3.1, 2 (21). By proposition 14.4.1.1 (22)

we have that Ri(t1)?O
++
Cε

= (t1)?O
++
Cε

= 0 for all i > 0. Finally, the trace map Tr :

(t1)?OCε → OXKli(pn,ε) restricts to Tr : (t1)?O
++
Cε
→ O++

XKli(pn,ε) Therefore there is a map

p3U : RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r) → RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r) fitting
in the commutative diagram :

RΓ(XKli(pn, ε),F κ,w ⊗ ωr)
p3U // RΓ(XKli(pn, ε),F κ,w ⊗ ωr)

RΓ(XKli(pn, ε),F κ,w,++ ⊗ (ω++)r)
p3U //

OO

RΓ(XKli(pn, ε),F κ,w,++ ⊗ (ω++)r)

OO

21. We use a result that is only proved in the next section. The reader can check that the proof of
lemma 14.3.1 is completely self-contained and independent of any other result of this paper.

22. We again use a result that is only proved in the next section, the proof of this proposition depends
only on results obtained in section 3.4, so there is no circularity in our arguments.
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We now consider an affinoid covering U of XKli(pn, ε) (chosen such that for all U ∈ U , one
has FLKli,n,ε,w is affinoid). The Čech complex C• associated to U of the sheaf F κ,w ⊗ ωr
computes the cohomology RΓ(XKli(pn, ε),F κ,w ⊗ ωr). This is a bounded complex of

Banach spaces and we can lift the U operator to a compact endomorphism Ũ of C• by
lemma 13.2.4.1. Let a be rational number and let (C•)=a be the associated direct factor
of C• computing the slope a cohomology. This is a perfect complex of Cp vector spaces

and the projection C• → (C•)=a is continuous. We now consider the Čech complex C•,++

of the sheaf F κ,w,++⊗ (ω++)r for the covering U . This is a subcomplex of C• of open and
bounded O-modules. Its image (C•,++)=a under the continuous projection C• → (C•)=a

is again open and bounded. Therefore, the image of Hi(C•,++) in Hi(C•)=a is bounded.
We consider the compositions of maps :

Hi(C•,++)→ Hi(XKli(pn, ε),F κ,w,++ ⊗ (ω++)r)→ Hi(C•)→ Hi(C•)=a,

where the first map is the map from Čech cohomology with respect to the covering U to
cohomology, the second map is the functorial map between cohomology groups associated
to the map of sheaves F κ,w,++⊗ (ω++)r → F κ,w⊗ωr, and the last map is the continuous
projection to the slope a cohomology.

We now deduce from lemma 3.2.2 that the map

Hi(C•,++)→ Hi(XKli(pn, ε),F κ,w,++ ⊗ (ω++)r)

has kernel and co-kernel of bounded p-torsion. It follows that the image of

Hi(XKli(pn, ε),F κ,w,++ ⊗ (ω++)r)

in Hi(C•)=a is open and bounded. It follows that in Hi(C•)=a, the operator p3U stabilizes
an open and bounded submodule. Therefore, we deduce that a+ 3 ≥ 0.

On degree 0 cohomology we can argue a bit differently and improve on the result.
It follows from the construction that the cohomology H0(†, κ, r) embeds in the module of
p-adic modular forms of weight (κ, r) tensored with C (see definition 4.3 in [60]). The
claim follows from the fact that our U -operator stabilizes the integral structure on p-adic
modular forms. In more down to earth terms, we have a q-expansion map for p-adic
modular forms, and the U -operator preserves integrality on q-expansions (see [34]).

Remark 13.3.1.1. — Although we believe only non-negative slopes can occur in all co-
homological degree, it is difficult to improve the above argument. The reason is that the
trace map is normalized by a factor p−3. This normalization does not preserve integrality
in general.

13.3.2. Classicity for the sheaf. — For all (k, r) ∈ Z≥0×Z we have a classical sheaf Ω(k,r).

Lemma 13.3.2.1. — There is a canonical map of sheaves over XKli(pn, ε) :

Ω(k,r) → F k,w ⊗ ωr.

Proof. Remark that Ω(k,r) = Ω(k,0) ⊗ ωr. It suffices to construct the map for r = 0.
Let FL → XKli(pn, ε) be the analytic flag variety parametrizing flags FilωG ⊂ ωG. Let
FL+ → FL be the Gm-torsor parametrizing trivializations of Gr(ωG). We denote by

f : FL+ → XKli(pn, ε) the structural map. Then by definition Ω(k,0) = f?OFL+ [−k]
where [−k] means the subsheaf of f?OFL+ where Gm acts via the character −k. There
is an obvious map i : FL+

n,ε,w,w′ → FL
+, equivariant for the action of Tw′,n on the left

and Gm on the right (under the map Tw′,n → Gm). Taking the −k invariants part of
i? : OFL+ → OFL+

Kli,n,ε,w,w′
provides a map

Ω(k,0) ↪→ F k,w.
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For the next proposition, we shall denote F k,w− the inductive limit colimw′<wF k,w′ .

Proposition 13.3.2.1. — Let (k, r) be an algebraic weight. Then we have an exact se-
quence over XKli(pn, ε) :

0→ Ω(k,r) d0→ F k,w− ⊗ ωr d1→ F−2−k,w− ⊗ ωk+r+1 → 0

Proof. See [3], prop. 7.2.1. This is a relative version of the locally analytic BGG
resolution. We note that in [3] there is the minor error that the proposition is given for a
fixed w, without taking the colimit colimw′<w. The colimit is necessary because integration
changes the radius of convergence.

We let C(n, ε, w−, k, r) = colimw′<wC(n, ε, w, k, r).

Corollary 13.3.2.1. — There is an exact triangle :

RΓ(XKli(p
n, ε),Ω(k,r))→ C(n, ε, w−, k, r)→ C(n, ε, w−,−2− k, k + r + 1)

+1→
A similar statement holds for cuspidal cohomology.

13.3.3. Equivariance of the BGG resolution. — We will now prove that certain (n, ε)-
overconvergent and w-analytic cohomology classes are in fact (n, ε)-overconvergent coho-
mology classes of a classical sheaf.

Proposition 13.3.3.1. — The following diagram is commutative:

RΓ(XKli(pn, ε),F k,w− ⊗ ωr) U //

d1
��

RΓ(XKli(pn, ε),F k,w− ⊗ ωr)

d1
��

RΓ(XKli(pn, ε),F−2−k,w− ⊗ ωk+r+1)
p−k−1U// RΓ(XKli(pn, ε),F−2−k,w− ⊗ ωk+r+1)

Proof. See [3], prop. 7.2.3.

Corollary 13.3.3.1. — 1. The maps

Hi(XKli(pn, ε),Ω(k,r))<k−2 → Hi(XKli(pn, ε),F k,w ⊗ ωr)<k−2

and

Hi(XKli(pn, ε),Ω(k,r)(−D))<k−2 → Hi(XKli(pn, ε),F k,w ⊗ ωr(−D))<k−2

are isomorphisms.

2. The maps

H0(XKli(pn, ε),Ω(k,r))<k+1 → H0(XKli(pn, ε),F k,w ⊗ ωr)<k+1

and

H0(XKli(pn, ε),Ω(k,r)(−D))<k+1 → H0(XKli(pn, ε),F k,w ⊗ ωr(−D))<k+1

are isomorphisms.

3. The maps

H1(XKli(pn, ε),Ω(k,r))<k+1 → H1(XKli(pn, ε),F k,w ⊗ ωr)<k+1

and

H1(XKli(pn, ε),Ω(k,r)(−D))<k+1 → H1(XKli(pn, ε),F k,w ⊗ ωr(−D))<k+1

are injective.
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Proof. This follows from proposition 13.3.1.1, proposition 13.3.3.1, and corollary 13.3.2.1.

13.4. The spectral variety. — LetW = Spa(Λ,Λ)×Spa(Cp,O) be the analytic weight
space in characteristic zero where we recall that Λ = Zp[[Z×p ]] is the one-dimensional
Iwasawa algebra. We can write W as an increasing union of affinoids Spa(Al[1/p], Al).
We let κAl : Z×p → A×l be the universal character. We can apply the formalism of section
13.1.2 to the cohomology Ccusp(n, ε, w, κAl , 2) (for, n, ε, w large enough) and the compact
U -operator acting on it. We obtain a complex Ccusp(Al) over Spa(Al[1/p], Al) × Gm of
finite slope cuspidal overconvergent cohomology of weight (κAl , 2) which is concentrated
in degree 0 and 1. We observe that Ccusp(Al) is independant of n, ε, w as the operator
U improves convergence and analyticity (see corollary 13.2.4.2 and the remark below the
proof).

Moreover, for all κ : Spa(Cp,O)→ Spa(Al[1/p], Al) and α−1 ∈ C×p providing a point

(κ, α−1) : Spa(Cp,O)→ Spa(Al[1/p], Al)×Gm , we have isomorphisms :

Hi((κ, α−1)?Ccusp(Al)) = Hi
cusp(κ, r)[U = α].

The annihilator of H•(Ccusp(Al)) is a coherent ideal Il ⊂ OSpa(Al[1/p],Al)×Gm and the
associated closed subspace is the spectral variety Zl. The map Zl → Spa(Al[1/p], Al) is
quasi-finite and locally finite.

For all l, the spectral varieties Zl glue to Z → W and there is a universal graded
coherent module H•(Ccusp) over Z supported in degree 0 and 1.

We deduce the following proposition:

Proposition 13.4.1. — The function defined on Z≥0 ↪→W (23):

k 7→ dimC H1
cusp(†, k, 2)=0 − dimC H0

cusp(†, k, 2)=0

is locally constant.

Proof. This is a corollary of the discussion above and proposition 13.1.3.1.

14. Small slope cohomology classes are classical

The goal of this section is to prove a generalization of Coleman’s classicity crite-
rion that small slope overconvergent modular forms are classical. We shall here work
mainly with a classical sheaf of coefficients Ω(k,r) or Ω(k,r)(−D) and prove that restriction
from small slope cohomology classes on XKli(p) to small slope overconvergent cohomology

classes over X≥1
Kli(p) is an isomorphism. That way, we will be able to complete the proof

of theorem 1.1.

14.1. Neighborhoods of the ordinary locus in XKli(p). — We recall that XKli(p)
is the analytic Siegel threefold of Klingen level at p. There is a universal chain of isogenies
G→ G′ → G where G→ G′ is a degree p3 isogeny and the composition of the two isogenies
is multiplication by p. We let H be the group scheme Ker(G → G′)⊥ (the orthogonal is
for the Weil pairing). When G is an abelian scheme, H is a finite flat group scheme of
order p. We let G′′ = G/H = (G′)t. We denote by ω+

G the invertible sheaf of O+
XKli(p)

modules of integral differential form at the unit section on G (a similar notation applies
to G′′). Let δH ∈ det ω+

G ⊗ det−1 ω+
G′′ be the determinant of the map ω+

G′′ → ω+
G induced

23. The set Z≥0 carries the subspace topology, which is the p-adic topology on each of the residue
classes modulo p− 1 (or modulo 2 if p = 2).
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by the isogeny G → G′′. We recall that for all rank 1 point x : Spa(K,OK) → XKli(p)
with associated valuation vx normalized by vx(p) = 1, we have vx(δH) = degHx ∈ [0, 1]
in the sense of [20] whenever Hx is a finite flat group scheme whose schematic closure is
a finite flat subgroup scheme of G over Spf OK (this holds when G has good reduction at
x for example).

We let XKli(p)ε ⊂ XKli(p) be the locus where |δH | ≤ |pε|. This is another way to
measure the distance to the p-rank one locus that is more adapted to the arguments of this
part of the work. Before proceeding, we make a comparison with the spaces XKli(pn, ε)
introduced in section 12.7.1.

Lemma 14.1.1. — The natural map XKli(pn, ε)→ XKli(p) factorizes through

XKli(p)max{0,1− 2
n

(n−ε+ 1
p−1

)}.

Proof. It is enough to do the proof for all rank 1 points Spa(K,OK) → XKli(pn, ε). Let
G → Spec OK be the corresponding semi-abelian surface. Let Hn ⊂ G[pn] be the group
generated by e1. There is a commutative diagram :

0 // Hn

HTHn

��

// G[pn]

HT
��

0 // ωHD
n

// ωG/p
nωG

The group ωHD
n

is generated by two elements as an OK-module (because HD
n can

be embedded in a two dimensional p-divisible group) and the cokernel of HTHn ⊗ 1 :

Hn ⊗OK → ωHD
n

is killed by p
1
p−1 by [20], thm. 7. Since the map HT : Hn → ωmodG /pε is

zero by assumption, we deduce that HTHn(Hn) is killed by pn−ε so that ωHD
n

is killed by

p
1
p−1

+n−ε
. Since ωHD

n
is generated by 2 elements, we deduce that degHD

n ≤ 2(n− ε+ 1
p−1).

The group Hn has degree at least n − 2(n − ε + 1
p−1). Morover the maps pk−1 :

Hn[pk]/Hn[pk−1]→ Hn[pn−1] = H1 are morphisms which are isomorphisms on the generic
fiber. Therefore, using [20], coro. 3 on p. 13, we deduce that degH1 ≥ 1

n degHn ≥
1− 2

n(n− ε+ 1
p−1).

Remark 14.1.1. — So in particular, if ε = n− 1
p−1 and n→ +∞, 1− 2

n(n−ε+ 1
p−1)→ 1.

Lemma 14.1.2. — We have XKli(p)ε ⊂ XKli(p, 1− 1
p−1) for all ε ≥ 1− 1

p .

Proof. This is an easy computation using Oort-Tate theory [58].

14.2. The correspondences Cn. — Let YKli(p) be the open subspace of XKli(p) where
the semi-abelian scheme is an abelian scheme. For all n ∈ N, there is a Hecke correspon-
dence tn,1, tn,2 : Cn|YKli(p) → YKli(p) where Cn|YKli(p) is the moduli space of (G,H,Ln)
where (G,H) ∈ YKli(p) and Ln ⊂ G[pn] is a totally isotropic subgroup which is locally
for the étale topology isomorphic to (Z/pnZ)2⊕Z/p2nZ and Ln ∩H = {0}. The map tn,1
sends (G,H,Ln) to (G,H). The map tn,2 sends (G,H,Ln) to (G/Ln, H+Ln/Ln). We re-
mark that Cn|YKli(p) is simply obtained by iterating n times the correspondence C1|YKli(p)
(which is the correspondence C|YKli(p) considered in section 13.2.1).

There exist smooth polyhedral cone decompositions Σ and Σ′ and toroidal com-
pactifications of Cn|YKli(p) which we denote by Cn,Σ′ or simply Cn, of YKli(p) which
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we denote by XKli(p)Σ or simply by XKli(p), and maps tn,1 : Cn,Σ′ → XKli(p)Σ and
tn,2 : Cn,Σ′ → XKli(p)Σ which extend the maps tn,1 and tn,2 previously defined.

14.3. Variation of the degree. — Over Cn we have an isogenyG→ Gn with kernel Ln.
The differential of this isogeny provides a map (Ω1

Gn/Cn
)+ → (Ω1

G/Cn
)+ where (Ω1

Gn/Cn
)+ ⊂

Ω1
Gn/Cn

is the locally free O+
Cn

module of integral differentials. Taking the determinant

yields a section δLn ∈ det(Ω1
G/Cn

)+ ⊗ det−1(Ω1
Gn/Cn

)+.

When we have a rank one point x : Spa(K,OK)→ Cn, with associated valuation vx
normalized by vx(p) = 1, we can define the degree degLn|x = vx(δLn) where vx(δLn) means
the valuation of δLn(x) computed in any local trivialization of the sheaf det(Ω1

G/Cn
)+ ⊗

det−1(Ω1
Gn/Cn

)+. When G|x is an abelian scheme and extends to an abelian scheme G over

Spf OK , this is also the degree of the schematic closure of Ln|x in G defined in [20]. In
general, G|x can be uniformized as the quotient of a semi-abelian scheme G0 by a lattice.
The semi-abelian scheme G0 extends to a semi-abelian scheme G0 over Spf OK . In this
case, degLn|x = degLn|x ∩G0.

Lemma 14.3.1. — Let x : Spa(K,OK)→ C1 be a rank 1 point corresponding to a triple
(G,H,L = L1). Then we have :

1. degH + degL[p] ≤ 2,

2. degL[p]/pL = 1,

3. degL/L[p] ≤ deg pL,

4. deg(G[p] + L)/L = 1− degL/L[p],

5. deg(G[p] + L)/L ≥ degH. In case of equality, H is either of multiplicative or
étale type.

Proof. It is enough to prove all the points when G is an abelian scheme, by Zariski density.
The first point follows from the fact that there is a morphism which is an isomorphism on
the generic fiber : H × L[p]→ G[p] and properties of the degree [20], coro. 3 on p. 13.

Using the lemma below the proof, we deduce that the perfect Weil pairing on G[p]
induces a perfect pairing between L[p] and G[p]/pL which restricts to a perfect pairing on
L[p]/pL. As a result L[p]/pL ' (L[p]/pL)D. We deduce from [20], lem. 4 on p. 12 that
we have degL[p]/pL+ degL[p]/pL = 2 and it follows that degL[p]/pL = 1.

The map given by multiplication by p : L/L[p] → pL is a generic isomorphism. It
follows from [20], coro. 3 on p. 13 that degL/L[p] ≤ deg pL.

As before, the perfect Weil pairing on G[p2] induces a pairing between L and G[p2]/L
which restricts to a pairing between (G[p] + L)/L and L/L[p]. It follows that deg(G[p] +
L)/L+ degL/L[p] = 1.

The map H → (G[p]+L)/L is a generic isomorphism. As a result, degH ≤ deg(G[p]+
L)/L. In case of equality, we deduce that H → (G[p] + L)/L is an isomorphism, that
H → G[p]/L[p] is also an isomorphism (because we have a factorization H → G[p]/L[p]→
(G[p] +L)/L), and therefore that the map H⊕L[p]→ G[p] is an isomorphism. The group
H is a direct factor of a truncated Barsotti-Tate group of level 1, therefore it is a truncated
Barsotti-Tate group of level 1. Since it is of order p, we deduce that H is either of étale
or multiplicative type.

In the course of the proof of the above lemma, we have used the following easy lemma
whose proof is left to the reader :
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Lemma 14.3.2. — Let J be a finite flat group scheme over OK . Let MK ⊂ JK be a
subgroup and let M be the schematic closure of MK . Let M⊥K be the orthogonal of MK in

JDK . Let M⊥ be the schematic closure of M⊥K . Then JD/M⊥ = MD.

Corollary 14.3.1. — Let n ≥ 1. Let x : Spa(K,OK) → Cn be a rank 1 point corre-
sponding to a triple (G,H,Ln), let ε ∈ R and assume that degLn ≤ n(3 − 2ε). Then
deg(G[p] + Ln)/Ln ≥ ε.

Proof. We first give the proof for n = 1 and write L = L1. Note that degL = deg pL +
degL[p]/pL + degL/L[p], so that degL ≥ 1 + 2 degL/L[p] (by lemma 14.3.1, point 2
and 3). We deduce that degL/L[p] ≤ 1 − ε and the claim follows from the formula
deg(G[p] + L)/L = 1− degL/L[p] (lemma 14.3.1, point 4).

We now give the proof for a general n. There is a filtration L1 ⊂ L2 ⊂ · · · ⊂ Ln with
Li locally isomorphic to Z/p2i ⊕ (Z/pi)2 and totally isotropic in G[p2i]. By elementary
properties of the degree map, there is an index i such that deg(Li/Li−1) ≤ 3 − 2ε. Since
(G[p]+Li)/Li = ((G/Li−1)[p]+Li/Li−1)/Li/Li−1 we deduce by application of the corollary
for n = 1 that deg(G[p] + Li)/Li ≥ ε. Since the map (G[p] + Li)/Li → (G[p] + Ln)/Ln is
an isomorphism over K, the corollary follows.

We can deduce the following result on the dynamic of the Hecke correspondence C1.

Corollary 14.3.2. — Let [a, b] ⊂]0, 1[. There exists r(a, b) > 0 such that for all ε ∈ [a, b]
we have t1,2(t−1

1,1(XKli(p)ε)) ⊂ XKli(p)ε+r(a,b).

Proof. See [62], prop. 2.3.6. For the reader’s convenience, let us mention that this is an
application of lemma 14.3.1, point 5., together with the maximal principle applied over
suitable quasi-compact subsets of C1.

14.4. Cohomological correspondences in the analytic setting. —

14.4.1. Basic vanishing. — In this section we establish a vanishing result for coherent
cohomology with respect to the change of polyhedral cone decomposition and also a van-
ishing result for higher direct images of the correspondence. These results will allow us to
consider safely the action of Hecke operators on cohomology.

Proposition 14.4.1.1. — 1. Let Σ and Σ′ be smooth polyhedral cone decom-
positions. Consider the map πΣ′,Σ : XKli(p)Σ′ → XKli(p)Σ. We have

R(πΣ′,Σ)?OXKli(p)Σ′
= OXKli(p)Σ

and R(πΣ′,Σ)?O
++
XKli(p)Σ′

= O++
XKli(p)Σ

.

2. Let tn,1 : Cn → XKli(p). Then we have R(tn,1)?OCn = (tn,1)?OCn and
R(tn,1)?O

++
Cn

= (tn,1)?O
++
Cn

.

Proof. The points 1 and 2 for the structural sheaves (not the ++ version) follow from
standard computations and the comparison theorem stated in [69], thm. 9.1. We now
proceed to deduce 1 and 2 for the “++” sheaves. Let σ ⊂ Σ be a cone. Then, σ ∩ Σ′ is
a refinement of σ. Associated to σ is a boundary component Zσ ↪→ XKli(p)Σ. Its inverse
image in XKli(p)Σ′ is a union of boundary stratum Zσ∩Σ′ .

We have local charts

Mσ∩Σ′
π //Mσ

Zσ∩Σ′
//

OO

Zσ

OO

and there is an isomorphism :
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M̂σ∩Σ′
Zσ∩Σ′ π // M̂σ

Zσ

̂XKli(p)Σ′
Zσ∩Σ′

OO

πΣ′,Σ // ̂XKli(p)Σ

Zσ

OO

There is a Kuga-Sato variety B, a split torus T and a natural mapMσ → B such that
Mσ∩Σ →Mσ is locally isomorphic over B to TΣ′ ×B → Tσ ×B. By proposition 3.4.1, we
deduce that Rπ?O

++
Mσ∩Σ

= O++
Mσ

.

By proposition 3.3.1, this implies that Rπ?O
++
Zσ∩Σ

/pn = O++
Zσ /p

n. This implies in turn
that

R(πΣ′,Σ)?O
++
XKli(p)Σ

/pn = O++
XKli(p)Σ′

/pn.

We have a long exact sequence :

· · · → Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

p→ Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

→ Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

/p→ · · ·

We look at the sequence for i = 0. Since (πΣ′,Σ)?O
++
XKli(p)Σ′

/p = O++
XKli(p)Σ

/p

and O++
XKli(p)Σ

↪→ (πΣ′,Σ)?O
++
XKli(p)Σ′

, we deduce that the map (πΣ′,Σ)?O
++
XKli(p)Σ′

→
(πΣ′,Σ)?O

++
XKli(p)Σ′

/p is surjective.

This implies that for all i > 0, multiplication by p is an isomorphism on
Ri(πΣ′,Σ)?O

++
XKli(p)Σ′

. As a result, Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

= Ri(πΣ′,Σ)?OXKli(p)Σ′
. The

latter vanishes. We also deduce easily that (πΣ′,Σ)?O
++
XKli(p)Σ′

= O++
XKli(p)Σ

.

We next deal with point 2. We have Cn = Cn,Σ′ and XKli(p) = XKli(p)Σ for two
smooth polyhedral decompositions Σ and Σ′ (for different integral structures). Actually
we can use Σ to produce a toroidal compactification Cn,Σ which is not going to be smooth
(because of the change of integral structure). We then have a factorization of tn,1 into

Cn,Σ′
f→ Cn,Σ

g→ XKli(p)Σ. As in point 1, we show that Rf?O
++
Cn,Σ′

= O++
Cn,Σ

(notice that

the smoothness of Σ was not used in the proof of 1). On the other hand, the morphism g
is finite and has no higher cohomology.

14.4.2. Cohomological correspondences for classical sheaves. — Let F be any of Ω(k,r)

or Ω(k,r)(−D). We can define an unnormalized analytic cohomological correspondence
(tn,1)?t

?
n,2F → F by taking (for instance) the analytification of the algebraic cohomo-

logical correspondence. We normalize this map by dividing by the factor pn(3+r) and call
it Un. This normalization is consistent with section 10.4. Restricting this map to F++

provides a map Un : (tn,1)?t
?
n,2F

++ → p−3n F++. The reason the map lands in p−3nF++

instead of p−3n−nrF++ is that the kernel Ln of the isogeny G → Gn has degree at least
one by lemma 14.3.1, 2.

Remark 14.4.2.1. — When we work on the analytic space, we cannot expect the co-
homological correspondence to have a better integral property than the integral property
stated above. The cohomological correspondence has a better integral property on the
formal scheme ordinary locus (see sect. 10.4).

We denote by Un : RΓ(XKli(p),F )→ RΓ(XKli(p),F ) and Un : RΓ(XKli(p),F++)→
RΓ(XKli(p), p−3nF++) the corresponding maps on cohomology. Obviously, Un is the
n-th iterate of U = U1.
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14.5. Analytic continuation. — Let ε′ and ε be such that tn,2t
−1
n,1(XKli(p)ε′) ⊂

XKli(p)ε. Then we get a map :

Unε,ε′ : RΓ(XKli(p)ε,F )→ RΓ(XKli(p)ε′ ,F ).

On the other hand, if ε′ ≥ ε, we have a restriction map

resε,ε′ : RΓ(XKli(p)ε,F )→ RΓ(XKli(p)ε′ ,F )

induced by the inclusions XKli(p)ε ↪→ XKli(p)ε′ . When it makes sense, we have Unε,ε′ ◦
resε′′,ε = Unε′′,ε′ and resε′,ε′′ ◦ Unε,ε′ = Unε,ε′′ . We often write Un instead of Unε,ε′ and res
instead of resε,ε′ if the context is clear.

Proposition 14.5.1. — Let f ∈ Hi(XKli(p)ε,F ) with ε < 1. We assume that Uf = af
with a 6= 0. Then for all ε > ε′ > 0, there is a unique section g ∈ Hi(XKli(p)ε′ ,F ) such
that Ug = ag and resε′,εg = f

Proof. Let [c, d] ⊂]0, 1[ such that ε, ε′ ∈ [c, d] and choose n such that nr(c, d) + ε′ ≥ ε (see
coro 14.3.2). We consider the operator a−nUn : Hi(XKli(p)ε,F ) → Hi(XKli(p)ε′ ,F ) and
we set g = a−nUnf .

The following diagram commutes:

Hi(XKli(p)ε,F )
Un //

��

Hi(XKli(p)ε′ ,F )
U // Hi(XKli(p)ε′ ,F )

��
Hi(XKli(p)ε,F )

U // Hi(XKli(p)ε,F )
Un // Hi(XKli(p)ε′ ,F )

and we deduce that Ug = ag. Moreover, since we can factor a−nUn : Hi(XKli(p)ε′ ,F )→
Hi(XKli(p)ε′ ,F ) into

Hi(XKli(p)ε′ ,F )
res→ Hi(XKli(p)ε,F )

a−nUn→ Hi(XKli(p)ε′ ,F )

we deduce that g is unique.

We can slightly improve the last proposition, in the spirit of [38].

Proposition 14.5.2. — Let f ∈ Hi(XKli(p)ε,F ) with ε < 1. Let P = Xm+am−1X
m−1+

· · · + a0 ∈ O[X] be a polynomial of degree m with a0 6= 0. We assume that P (U)f = 0.
Then for all ε > ε′ > 0, there is a unique section g ∈ Hi(XKli(p)ε′ ,F ) such that P (U)g = 0
and resε′,εg = f .

Proof. Let Q = −a−1
0 (Xm+am−1X

m−1 + · · ·+a1X). Then Q(U)f = f and g = Q(U)nf
for n large enough.

Remark 14.5.1. — Using lemmas 14.1.1, 14.1.2, corollary 13.2.4.2 and the above propo-
sition we deduce that we can think of finite slope sections on Hi(XKli(pn, ε),F ) for any
ε > 0 and n as sections of Hi(XKli(p)ε′ ,F ) for any ε′ > 0 and similarly for cuspidal
cohomology.
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14.6. More analytic continuation. — We show that we can improve the last proposi-
tion if we work with torsion coefficients. Let j : XKli(p)ε ↪→ XKli(p) be the open inclusion.
For any sheaf G over XKli(p) we will abusively write in this paragraph G |XKli(p)ε for j?j

?G
in order to simplify the notations.

Proposition 14.6.1. — Let 0 < ε < ε′. There is a map Unε,0 fitting in the following
commutative diagram of normalized cohomological correspondences :

(tn,1)?(tn,2)?(F++|XKli(p)ε)
Unε,ε//

Unε,0

++

F/pn(2r+k−3−2ε′(r+k))F++|XKli(p)ε

(tn,1)?(tn,2)?(F++)
Un //

OO

F/pn(2r+k−3−2ε′(r+k))F++

OO

Before giving the proof we need the following lemma.

Lemma 14.6.1. — Let x : Spa(K,OK)→ Cn be a point. Assume that |δLn |x ≤ |p3n−α|x.
The map Ω+

G/Ln
|x → Ω+

G|x factorizes through pn−αΩ+
G|x. The map

SymkΩ+
G/Ln

⊗ detrΩ+
G/Ln

|x → SymkΩ+
G ⊗ detrΩ+

G|x
factorizes through pk(n−α)+r(3n−α)SymkΩ+

G ⊗ detrΩ+
G|x.

Proof. We fix an isomorphism between Ω+
G/Ln

|x → Ω+
G|x and O2

K
M→ O2

K with M a

diagonal matrix with coefficients m1,m2. We have |m1m2|x ≤ |p3n−α|x. But on the other
hand, |mi|x ≥ |p2n|x since Ln ⊂ G[p2n]. We deduce that |mi|x ≤ |pn−α|x.

Proof.[Proof of proposition 14.6.1] Let x ∈ XKli(p). We have to find a neighborhood U
of x in XKli(p) and to construct a canonical map :

t?n,2F
++|XKli(p)ε(t

−1
n,1U)→ F/pn(2r+k−3−2ε′(r+k))F++(U).

Pick ε′′ ∈]ε, ε′[ such that for all y = (G,H,Ln) ∈ t−1
n,1(x) we have |δLn |y 6= |pn(3−2ε′′)|y.

This is possible since the fiber of tn,1 is finite away from the boundary. At the boundary,
it is easy to see that there are only finitely many possibilities for |δLn |y.

It follows that there exists a neighborhood U of x and a disjoint decomposition of
t−1
n,1(U) = V

∐
W where for all (G,H,Ln) ∈ W , we have |δLn | > |pn(3−2ε′′)| and for all

(G,H,Ln) ∈ V , we have |δLn | < |pn(3−2ε′′)|.
We have a map Un : t?n,2F

++(V )⊕t?n,2F++(W )→ F (U). The image of t?n,2F
++(V )

in F (U) lands in pn(2r+k−3−2ε′′(r+k))F++(U) by the above lemma 14.6.1. We deduce a
factorization

Un : (tn,1)?t
?
n,2F

++(U)→ t?n,2F
++(W )→ F (U)/pn(2r+k−3−2ε′′(r+k))F++(U).

Moreover tn,2(W ) ⊂ XKli(p)ε by corollary 14.3.1, so that t?n,2F
++(W ) = t?n,2F

++|XKli(p)ε(W ).
We can construct the expected map as the composition :

t?n,2F
++|XKli(p)ε(t

−1
n,1U)→ t?n,2F

++(W )→ F/pn(2r+k−3−2ε′(r+k))F++(U).

It clearly does not depend on the choice of ε′′.

Corollary 14.6.1. — Let ε > 0. Let f ∈ Hi(XKli(p)ε,F ) be a form satisfying Uf = af .
Assume v(a) < 2r + k − 3. There is a projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnF++)
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which satisfies U(fn) = a(fn) and such that res0,ε(fn) is the image of f in

lim
n

Hi(XKli(p)ε,F/pnF++).

Remark 14.6.1. — The U operator induces maps

Hi(XKli(p),F/pnF++)→ Hi(XKli(p),F/pn−3F++).

It follows that it acts on limn Hi(XKli(p),F/pnF++).

Proof. Let ε′ > 0 be such that α = 2r+k−3−2ε′(r+k)−v(a) > 0. We can assume that
0 < ε < ε′ and that f ∈ Hi(XKli(p)ε,F ) satisfies Uf = af by proposition 14.5.1. The map
XKli(p)ε ↪→ XKli(p) is affine (there is a covering of XKli(p) by affinoids, such that the fiber
over these affinoids is affinoid). It follows that Hi(XKli(p)ε,F ) = Hi(XKli(p),F |XKli(p)ε).

After rescaling f we may assume that f comes from a section (still denoted f)
in Hi(XKli(p),F++|XKli(p)ε) and that Uf ∈ Hi(XKli(p), p−3F++|XKli(p)ε) is the im-

age of af in Hi(XKli(p), p−3F++|XKli(p)ε). We define the sections fn = a−nUnε,0f ∈
Hi(XKli(p),F/pnαF++).

Consider the following commutative diagram :

Hi(XKli(p),F++|XKli(p)ε)
a−nUnε,0 //

a−1U
��

Hi(XKli(p),F/pnαF++)

��
Hi(XKli(p)ε, p−3−v(a)F++|XKli(p)ε)

a−n−1Un−1
ε,0 // Hi(XKli(p),F/p(n−1)α−3−v(a)F++)

Hi(XKli(p),F++|XKli(p)ε)
a−n−1Un−1

ε,0 //

OO

Hi(XKli(p),F/p(n−1)αF++)

OO

where the vertical maps going from the bottom to the middle line are the obvious ones.
Since the image of f ∈ Hi(XKli(p),F++|XKli(p)ε) is the same via any of the two left

vertical maps, we deduce that fn = fn−1 in Hi(XKli(p),F/p(n−1)α−3−v(a)F++). Consider
the following commutative diagram :

Hi(XKli(p),F/pnαF++)

U

++
Hi(XKli(p),F++|XKli(p)ε)

a−nUn
33

U

++

Hi(XKli(p),F/pnα−3F++)

Hi(XKli(p), p−3F++|XKli(p)ε)

a−nUn
33

It follows that Ufn = afn in Hi(XKli(p),F/pnα−3F++). As a conclusion, we obtain a
projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnα−3−v(a)F++) = lim
n

Hi(XKli(p),F/pnF++)

which satisfies U(fn) = a(fn). By construction, res0,ε(fn) is the image of f in
limn Hi(XKli(p)ε,F/pnF++).

We can again slightly improve the above corollary :
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Corollary 14.6.2. — Let f ∈ Hi(XKli(p)ε,F ). Let P = Xm + am−1X
m−1 + · · ·+ a0 ∈

O[X] be a polynomial of degree m. We assume that P (U)f = 0 and that for all the roots
a of P in C, we have v(a) < 2r + k − 3. There is a projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnF++)

which satisfies P (U)(fn) = 0 and such that res0,ε(fn) is the image of f in

lim
n

Hi(XKli(p)ε,F/pnF++).

Proof. We let Q = −a−1
0 (Xm + am−1X

m−1 + · · · + X). Then Q(U)f = f and we let
fn = Q(U)nf as in the proof of corollary 14.6.1.

14.7. Classicity of overconvergent cohomology. — We are now ready to state our
main result on the classicity of small slope cohomology classes.

Lemma 14.7.1. — For any finite slope h ∈ Q, the map Hi(XKli(p)ε,F )≤h →
limn Hi(XKli(p)ε,F/pnF+) is injective.

Proof. Denote by V the image of Hi(XKli(p)ε,F+) in Hi(XKli(p)ε,F ). We have to
prove that Hi(XKli(p)ε,F )≤h ∩ V is bounded. Let I be a finite set and U = {Ui}i∈I and

U ′ = {U ′i}i∈I be two finite affinoid coverings of XKli(p). We assume that U ′i ⊂ Ui. Such a
covering exists because XKli(p) is proper. Let Uε = {Ui,ε} be the finite affinoid covering
U ∩ XKli(p)ε. Let ε < ε′ be such that U(XKli(p)ε′) ⊂ XKli(p)ε. Let Uε′ = {Ui,ε′} be the

covering U ′ ∩XKli(p)ε′ . For all i ∈ I, we have Ui,ε′ ⊂ Ui,ε.The U operator is defined as the
composite

RΓ(XKli(p)ε,F )
res→ RΓ(XKli(p)ε′ ,F )

Uε,ε′→ RΓ(XKli(p)ε,F ).

We can represent RΓ(XKli(p)ε,F ) by the Čech complex M• = Čech(Uε,F ) and
RΓ(XKli(p)ε′ ,F ) by N• = Čech(Uε′ ,F ). The map U can be represented by

Ũ : M•
res→ N•

Ũε′,ε→ M•

which is compact. We have a direct summand (M•)≤h which is a complex of finite
dimensional vector spaces and Hi(XKli(p)ε,F )≤h = Hi((M•)≤h). Since the natural
map Ȟi

Uε(XKli(p)ε,F
+) → Hi(XKli(p)ε,F+) has cokernel of bounded torsion by lemma

3.2.2, we can replace V by V ′ the image of Ȟi
Uε(XKli(p)ε,F

+) in Hi(XKli(p)ε,F ). Let

Z i((M•)≤h) ⊂M i be the cocycles of slope less than h. This is a finite dimensional vector

space. We denote by M+• the Čech complex Čech(Uε,F+). Then M+i is bounded in

M i. It follows that M+i ∩ Zi((M•)≤h) is bounded and thus a lattice. As a result, its
image in Hi(XKli(p)ε,F )≤h (which is Hi(XKli(p)ε,F )≤h ∩ V ′) is bounded.

Theorem 14.7.1. — For any ε ∈ [0, 1[∩Q, the restriction map

Hi(XKli(p),Ω(k,r))<k+2r−3 → Hi(XKli(p)ε,Ω(k,r))<k+2r−3

is bijective. A similar statement holds for cuspidal cohomology

Proof. Denote by res the map of the corollary. We first exhibit a map ext :
Hi(XKli(p)ε,Ω(k,r))<k+2r−3 → Hi(XKli(p)ε,Ω(k,r))<k+2r−3 in the other direction. Given

f ∈ Hi(XKli(p)ε,Ω(k,r))<k+2r−3, we obtain (fn) ∈ limn Hi(XKli(p),Ω(k,r)/pn(Ω(k,r))+) by
corollary 14.6.2. Since

lim
n

Hi(XKli(p),Ω(k,r)/pn(Ω(k,r))+) = Hi(XKli(p),Ω(k,r))
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by proposition 3.2.1, this defines the map ext. Using lemma 14.7.1, we deduce that
res ◦ ext = id. Unravelling the construction of ext, we deduce that ext ◦ res = id.

Corollary 14.7.1. — 1. The map

Hi(XKli(p),Ω(k,r))<min{k+2r−3,k−2} → Hi(†, k, r)<min{k+2r−3,k−2}

is an isomorphism. A similar statement holds for cuspidal cohomology.

2. The map

H0(XKli(p),Ω(k,r))<min{k+2r−3,k+1} → H0(†, k, r)<min{k+2r−3,k+1}

is an isomorphism and a similar statement holds for cuspidal cohomology.

3. The map

H1(XKli(p),Ω(k,r))<min{k+2r−3,k+1} → H1(†, k, r)<min{k+2r−3,k+1}

is injective and a similar statement holds for cuspidal cohomology.

Proof. This is a combination of theorem 14.7.1 and corollary 13.3.3.1 (see also remark
14.5.1).

14.8. Application to ordinary cohomology. — We are now able to deduce a classic-
ity theorem for ordinary classes in ordinary cohomology. We recall that f is the ordinary
projector attached to U .

Theorem 14.8.1. — The map

fRΓ(XKli(p),Ω
(k,2)(−D))⊗LZp Qp → fRΓ(X≥1

Kli(p),Ω
(k,2)(−D))⊗LZp Qp

is an isomorphism for all k ≥ 0.

The proof of this theorem will be split into several lemmas. We denote by X≥1
Kli(p)

the adic space over Spa(C,O) attached to X≥1
Kli(p). By definition X≥1

Kli(p) = XKli(p)1, but

we prefer to use the notation X≥1
Kli(p) for this space.

Lemma 14.8.1. — We have quasi-isomorphisms :

1. fRΓ(XKli(p),Ω
(k,2)(−D))⊗LZp C ' fRΓ(XKli(p),Ω(k,2)(−D)),

2. fRΓ(X≥1
Kli(p),Ω

(k,2)(−D))⊗LZp C ' fRΓ(X≥1
Kli(p),Ω

(k,2)(−D)).

Proof. The first point follows from the GAGA theorem stated in [69], thm. 9.1. The

second point follows classically from the fact that X≥1
Kli(p) is the adic space over Spa(C,O)

attached to X≥1
Kli(p).

Remark 14.8.1. — The C-vector space Hi(X≥1
Kli(p),Ω

(k,2)(−D)) admits a 0-slope decom-

position in the sense of section 13.1.1 : fHi(X≥1
Kli(p),Ω

(k,2)(−D)) = Hi(X≥1
Kli(p),Ω

(k,2)(−D))=0

is the slope 0 part and (1− f)Hi(X≥1
Kli(p),Ω

(k,2)(−D)) = Hi(X≥1
Kli(p),Ω

(k,2)(−D))>0 is the
slope strictly greater than 0 part.

To prove the theorem, it suffices to show that the restriction map

fRΓ(XKli(p)ε,Ω(k,2)(−D))→ fRΓ(X≥1
Kli(p),Ω

(k,2)(−D))

is a quasi-isomorphism for k ≥ 0 and any ε ∈ [0, 1[, by theorem 14.7.1.
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Lemma 14.8.2. — For any k ≥ 0, and any ε ∈]0, 1[∩Q, the cohomology complexes

fRΓ(XKli(p)ε,Ω(k,2)(−D)) and fRΓ(X≥1
Kli(p),Ω

(k,2)(−D)) are concentrated in degree 0 and

1. Moreover, the map fHi(XKli(p)ε,Ω(k,2)(−D)) → fHi(X≥1
Kli(p),Ω

(k,2)(−D)) is injective
if i = 0 and surjective if i = 1.

Proof. We prove that these cohomology complexes are concentrated in degree 0 and 1
by exhibiting a special covering computing the cohomology that will be useful to establish
the other claims of the lemma (24). Let us denote by X? → Spec Zp the minimal com-
pactification of the Siegel threefold with spherical level at p, and by X?

Kli(p) the minimal
compactification with Klingen level at p. We denote by X? and X?Kli(p) the associated
formal schemes. The p-rank at least one locus X?,≥1 ↪→ X? is covered by two affines :
sufficiently high powers Ha(G)n(p+1) and Ha′(G)n of the first and second Hasse invariant
(defined respectively on V (p) and V (p,Ha(G))) lift (non-canonically) to sections s1 and

s2 of the ample sheaf (detωG)n(p2−1) over X?, and their non-zero locus is X?,≥1. Therefore
X?,≥1 = D(s1) ∪D(s2) is covered by two affines.

The map X?Kli(p)×X? X
?,≥1 → X?,≥1 is proper and quasi-finite, therefore it is affine.

We deduce that X?Kli(p) ×X? X
?,≥1 is also covered by two affines. Over the toroidal com-

pactification XKli(p) we have the canonical chain of isogenies G→ G′ → G. The non-zero

locus of the map on differentials detωG → detωG′ is by definition X≥1
Kli(p) ↪→ XKli(p). The

map detωG → detωG′ descends to a map of invertible sheaves over X?Kli(p) and its non-

zero locus defines the open formal subscheme X?,≥1
Kli (p) ↪→ X?Kli(p), whose inverse image in

XKli(p) is X≥1
Kli(p). The map X?,≥1

Kli (p) ↪→ X?Kli(p) is affine, and moreover it factors through

X?Kli(p)×X? X
?,≥1 ↪→ X?Kli(p). We deduce that X?,≥1

Kli (p) is covered by two affines, say V1

and V2. Let X ?Kli(p) be the analytic adic space over Spa(C,O) attached to X?Kli(p), let V1

and V2 denote the inverse images of V1 and V2 in X ?Kli(p) and set X ?,≥1
Kli (p) = V1∪V2. Let

π : XKli(p) → X ?Kli(p) be the projection. Then Rπ?Ω
(k,2)(−D) = π?Ω

(k,2)(−D) (by [50],

thm. 8.9). Moreover, the image by π of X≥1
Kli(p) is X ?,≥1

Kli (p). Let Ui = π−1Vi for i ∈ {1, 2}.
We deduce that RΓ(X≥1

Kli(p),Ω
(k,2)(−D)) is represented by the complex :

H0(U1,Ω
(k,2)(−D))⊕H0(U2,Ω

(k,2)(−D))→ H0(U1 ∩ U2,Ω
(k,2)(−D))

and thus that fRΓ(X≥1
Kli(p),Ω

(k,2)(−D)) is concentrated in degree 0 and 1. This complex
contains a subcomplex of overconvergent sections :

H0(U1,Ω
(k,2),†(−D))⊕H0(U2,Ω

(k,2),†(−D))→ H0(U1 ∩ U2,Ω
(k,2),†(−D)).

whose i-th cohomology group computes colimε<1Hi(XKli(p)ε,Ω(k,2)(−D)). Since

fHi(XKli(p)ε,Ω(k,2)(−D)) = fHi(XKli(p)ε′ ,Ω(k,2)(−D)) for any ε, ε′ ∈]0, 1[∩Q by propo-

sition 14.5.2, we deduce that fRΓ(XKli(p)ε,Ω(k,2)(−D)) is concentrated in degree 0 and
1.

It is clear that restriction induces an injection colimε<1H0(XKli(p)ε,Ω(k,2)(−D)) →
H0(X≥1

Kli(p),Ω
(k,2)(−D)).

The cohomology group H1(X≥1
Kli(p),Ω

(k,2)(−D)) carries the natural quotient topology

from the surjection H0(U1∩U2,Ω
(k,2)(−D))→ H1(X≥1

Kli(p),Ω
(k,2)(−D)) (25) and we deduce

24. That these cohomologies are concentrated in degree 0 and 1 has already been established by slightly
different methods, see theorem 11.3.1, point 2 and proposition 12.9.1.

25. We can describe the topology on the C-vector space Hi(X≥1
Kli(p),Ω

(k,2)(−D)) in a more intrinsic
way as follows : an open and bounded submodule is given by the image of

Hi(X≥1
Kli(p),Ω

(k,2)(−D)⊗̂ZpO),
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that the map colimε→1H1(XKli(p)ε,Ω(k,2)(−D))→ H1(X≥1
Kli(p),Ω

(k,2)(−D)) has dense im-
age. If we apply the ordinary projector on both sides (the ordinary projector is compatible
because 0-slope decomposition is functorial), we get a surjection since the ordinary part
is finite dimensional.

Let us denote by

di(k) = dimC fHi(X≥1
Kli(p),Ω

(k,2)(−D))

and by

d†i (k) = dimC fHi(XKli(p)ε,Ω(k,2)(−D))

for any ε ∈ [0, 1[∩Q.

Lemma 14.8.3. — For all k ≥ 0, we have d0(k) ≥ d†0(k) and d†1(k) ≥ d1(k). If k is large

enough, we have di(k) = d†i (k).

Proof. We have d0(k) ≥ d†0(k) and d†1(k) ≥ d1(k) by lemma 14.8.2. Moreover, if k is large

enough, we have an isomorphism eH0(X ,Ω(k,2)(−D)) → fH0(X≥1
Kli(p),Ω

(k,2)(−D)) and

an injection eH1(X ,Ω(k,2)(−D)) → fH1(X≥1
Kli(p),Ω

(k,2)(−D)) (by theorem 11.3.1). The

lemma follows from the claim that the maps : eHi(X ,Ω(k,2)(−D))→ fHi(XKli(p),Ω(k,2)(−D))
are isomorphisms for i ∈ {0, 1}. The Hecke parameters (α, β, γ, δ) of an irreducible smooth

admissible representation πp of GSp4(Qp) contributing to either eHi(X ,Ω(k,2)(−D)) or

fHi(XKli(p),Ω(k,2)(−D)) have p-adic valuations (in a suitable order) 0, 0, k + 1, k + 1 by
corollary 14.9.1. The claim follows from proposition 5.1.5.2 and lemma 5.1.5.2.

Lemma 14.8.4. — For all k ≥ 0, we have di(k) = d†i (k).

Proof. Let us denote by d†,
′

i (k) = dimC Hi
cusp(†, k, 2). We have d†,

′

0 (k) = d†0(k) for all k ≥
0, and d†,

′

1 (k) ≥ d†1(k) for all k ≥ 0, with equality if k ≥ 3 by corollary 13.3.3.1. The Euler

characteristics d1(k)− d0(k) and d†,
′

1 (k)− d†,
′

0 (k) are locally constant functions of k ∈ Z≥0

by theorem 11.3.1 and proposition 13.4.1. We deduce that d1(k)−d0(k) = d†,
′

1 (k)−d†,
′

0 (k)

for all k ≥ 0 by lemma 14.8.3. It follows that for all k ≥ 0, d1(k)−d†,
′

1 (k) = d0(k)−d†,
′

0 (k),
but since the first difference is non-positive and the second difference is non-negative by

lemma 14.8.3, we deduce that d†,
′

i (k) = di(k) for all k ≥ 0. Since d†,
′

0 (k) = d†0(k) and

d†,
′

1 (k) ≥ d†1(k) ≥ d1(k) for all k ≥ 0, the lemma and the theorem are proven.

14.9. Estimates on Satake parameters. — We have Hecke operators Tp,2 and

UKli(p),2 acting on Hi(X,Ω(k,2)(−D)) ⊗Zp Qp and Hi(XKli(p),Ω
(k,2)(−D)) ⊗Zp Qp. The

goal of this section is to establish the following result :

Proposition 14.9.1. — For all k ≥ 0, the Hecke operators Tp,2 and UKli(p),2 acting on

Hi(X,Ω(k,2)(−D))⊗Zp C and Hi(XKli(p),Ω
(k,2)(−D))⊗Zp C respectively only have eigen-

values of positive p-adic valuation.

We deduce the following corollary :

Corollary 14.9.1. — Assume that k ≥ 1. The Hecke parameters (α, β, γ, δ) of an
irreducible smooth admissible representation πp of GSp4(Qp) contributing to either

eHi(X,Ω(k,2)(−D)) ⊗ C or fHi(XKli(p),Ω
(k,2)(−D)) ⊗ C have p-adic valuations (in a

suitable order) (0, 0, k + 1, k + 1).

endowed with the p-adic topology. Be careful that this last space is complete for the p-adic topology, but
not necessarily separated.
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Proof. This is an elementary Newton polygon computation in the spherical case and
obvious in the Klingen case (in which case the corollary holds for k ≥ 0).

Over XKli(p), we consider the chain G→ G′ → G. We have the differential detωG →
detωG′ of the second isogeny and we denote by I = detωG⊗detω−1

G′ . This is an invertible
sheaf of ideals in OXKli(p). It defines a Cartier divisor supported in the special fiber of

XKli(p), whose complement in the special fiber is X≥1
Kli(p)1. We denote as usual X≥1 the

open of p-rank at least one of the formal completion of X. We also let (XKli(p))
≥1 be

the open of p-rank at least one of the formal completion of XKli(p) (it contains strictly

X≥1
Kli(p) which is the locus where the universal rank p group scheme is multiplicative). Our

key lemma is:

Lemma 14.9.1. — The Hecke operator Tp,2 acts on RΓ(X≥1,Ω(k,2)(−D)) and the Hecke

operator UKli(p),2 acts on RΓ((XKli(p))
≥1,Ω(k,2)(−D)⊗ I−3).

Remark 14.9.1. — Using the techniques developed in section 4, we could easily con-
struct an action of Tp,2 on RΓ(X,Ω(k,2)(−D)).

Remark 14.9.2. — The sheaf Ω(k,2)(−D)⊗I−3 is an integral structure on Ω(k,2)(−D)⊗Zp
⊗Qp. The reason for which we need to modify the obvious integral structure Ω(k,2)(−D)
will become clear during the proof.

14.9.1. proof of proposition 14.9.1 assuming lemma 14.9.1. — We will only give a full
proof of the proposition for classes at Klingen level. The spherical case is identical. We
start by the following lemma:

Lemma 14.9.2. — For any n ∈ Z≥0 ∪ {∞} (26), the maps

Hi(X,Ω(k,2)(−D)/pn)→ Hi(X≥1,Ω(k,2)(−D)/pn)

and

Hi(XKli(p),Ω
(k,2)(−D)⊗ I−3/pn)→ Hi((XKli(p))

≥1,Ω(k,2)(−D)⊗ I−3/pn)

are isomorphisms for i = 0 and injective for i = 1.

Proof. This follows from [SGA], exposé III, section 3. The point is that X and XKli(p)
are Cohen-Macaulay and X≥1 and (XKli(p))

≥1 are opens of codimension 2.

Let i ∈ {0, 1}. Let f ∈ Hi(XKli(p),Ω
(k,2)(−D)) ⊗ C be an eigenclass. We assume

that UKli(p),2f = αf with v(α) < 0, so that α−1UKli(p),2f = f . We want to deduce that
f = 0. We have a commutative diagram where the horizontal maps are injective :

Hi(XKli(p),Ω
(k,2)(−D))⊗ C // Hi((XKli(p))

≥1,Ω(k,2)(−D))⊗ C

Hi(XKli(p),Ω
(k,2)(−D)⊗ I−3)⊗O //

OO

Hi((XKli(p))
≥1,Ω(k,2)(−D)⊗ I−3)⊗O

OO

After rescaling f , we may assume that f comes from a class g ∈ Hi(XKli(p),Ω
(k,2)(−D)⊗

I−3)⊗O. Moreover, the image g′ of g in Hi((XKli(p))
≥1,Ω(k,2)(−D)⊗ I−3)⊗O satisfies

α−1UKli(p),2g
′ = g′+h where h ∈ Hi((XKli(p))

≥1,Ω(k,2)(−D)⊗I−3)⊗O is a torsion class.
Rescaling g further, we may assume that h = 0. For any n ≥ 0, there exists n′ such that
pn ∈ α−n′O and we deduce that g′ = α−nUnKli(p),2g

′ is zero in Hi((XKli(p))
≥1,Ω(k,2)(−D)⊗

26. With the convention that p∞ = 0.
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I−3/pn)⊗O, and therefore g maps to zero in Hi(XKli(p),Ω
(k,2)(−D)⊗I−3/pn)⊗O. Since

limn Hi(XKli(p),Ω
(k,2)(−D)⊗I−3/pn) = Hi(XKli(p),Ω

(k,2)(−D)⊗I−3), we conclude that
g = 0 and that f = 0.

14.9.2. proof of lemma 14.9.1. — We can define a Hecke correspondences attached to the
double coset Tp,2 (see [18], p. 253) for suitable choices of polyhedral cone decompositions
Σ,Σ′ and Σ′′:

Cp,2,Σ′′
p2

{{

p1

##
XΣ′ XΣ

It will convenient for us to take Σ = Σ′′. We drop the subscript corresponding to
the choices of polyhedral cone decompositions. Recall that Cp,2 parametrizes isogenies
p?1G → p?2G whose kernel is (away from the boundary) an isotropic rank p2 subgroup of
p?1G[p].

Denote by Cp,2 the formal completion of Cp,2 and by (Cp,2)≥1 its restriction to the
p-rank at least one locus. The map p1 : (Cp,2)≥1 → X≥1 is finite, generically étale.
Therefore, we have a trace morphism Trp1 : (p1)?O(Cp,2)≥1 → OX≥1 (since X≥1 is smooth,

hence normal). We also have a morphism p?2Ω(k,2) → p?1Ω(k,2) coming from the differential

of the isogeny. Using these, we get a map T ′p,2 : (p1)?p
?
2Ω(k,2)(−D)→ Ω(k,2)(−D) and we let

Tp,2 = p−3T ′p,2. We claim that T ′p,2 : (p1)?p
?
2Ω(k,2)(−D) → p3Ω(k,2)(−D) so that the map

Tp,2 is well-defined. It is enough to check the claim over the ordinary locus by normality.
Over the formal neighborhood of an ordinary point x ∈ X≥1, the correspondence (Cp,2)≥1

splits into several components : the locus where the isogeny p?1G→ p?2G has multiplicative
kernel, has kernel an extension of an étale by a multiplicative group, and has kernel an
étale group. In the first case, the map p?2Ω(k,2) → p?1Ω(k,2) factors through pk+4p?1Ω(k,2),

in the second case it factors through p2p?1Ω(k,2) and in the last case it is an isomorphism.
On the other hand, the restriction of the trace map Trp1 is an isomorphism in the first
case, factors through pOX≥1 in the second case, and through p3OX≥1 in the last case
(computations using Serre-Tate). The lemma is thus proven over X≥1.

We now consider the situation over (XKli(p))
≥1. Our first task is to produce a model

for the correspondence attached to UKli(p),2. We first consider (Dp,2)≥1 = (Cp,2)≥1×X≥1,p1

(XKli(p))
≥1 and we denote by (Dp,2)≥1 the associated analytic space over Spa(Qp,Zp).

This is not quiet the correspondence corresponding to UKli(p),2 : we need to select certain

irreducible components. Over (Dp,2)≥1, we have an isogeny p?1G → p?2G has well as the
universal chain G → (G′)t → G′ → G (where the first map has degree p, the second p2,
the third p and the total map is multiplication by p). We let H = Ker(G→ (G′)t). We let
(Ep,2)≥1 be the union of components of (Dp,2)≥1 where the kernel of the universal isogeny
p?1G → p?2G has generically (that is away from the boundary) a trivial intersection with
the universal subgroup H. We let (Ep,2)≥1 → (Dp,2)≥1 be the normalization of the closure
of (Ep,2)≥1 in (Dp,2)≥1. The map p2 : (Ep,2)≥1 → X≥1 lifts on the generic fiber to a map
(Ep,2)≥1 → (XKli(p))≥1 (we equip p?2G with the image of H via p?1G→ p?2G), and thus by
normality it extends to a map of formal schemes p2 : (Ep,2)≥1 → (XKli(p))

≥1. We have
thus produced a model for the correspondence.

We have a trace morphism Trp1 : (p1)?O(Ep,2)≥1 → O(XKli(p))≥1 (because p1 is finite,

generically finite étale and (XKli(p))
≥1 is normal). We have also have morphism p?2Ω(k,2) →

p?1Ω(k,2).
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Lemma 14.9.2.1. — There is a natural morphism p?2I−1 → p?1I−1.

Proof. The isogeny induces a generic isomorphism p?1H → p?2H and by Cartier duality a
map : p?2H

D → p?1H
D. We thus have a map p?1OHD → p?2OHD of finite flat, generically

étale OEp,2-algebras (27). We deduce that there is a map

p?2DO
HD

/O
(XKli(p))

≥1
→ p?1DO

HD
/O

(XKli(p))
≥1

between the inverse different of both algebras. By [20], section 1.3, 1.4 and definition 3,
the tensor product

DO
HD

/O
(XKli(p))

≥1
⊗O

HD
,e O(XKli(p))≥1

for the unit section e : OHD → O(XKli(p))≥1 is canonically isomorphic to I−1.

Remark 14.9.3. — If we take an ordinary point x ∈ (Ep,2)≥1, there are three possibilities
for the map p?1H → p?2H at x :

1. p?1H and p?2H are multiplicative groups and the map is an isomorphism. In that
case, the map p?2I−1 → p?1I−1 is an isomorphism at x.

2. p?1H and p?2H are étale groups and the map is an isomorphism. In that case, the
map p?2I−1 → p?1I−1 is an isomorphism at x.

3. p?1H is an étale group and p?2H is a multiplicative group, and the map is zero at
the point x. In that case, the map p?2I−1 → p?1I−1 factors through pp?1I−1 over
the local ring at x (see [20], prop. 2 on page 11).

All together, we can use this to produce a map U ′Kli(p),2 : (p1)?p
?
2Ω(k,2)(−D)⊗I−3 →

Ω(k,2)(−D)⊗ I−3. We claim that this map factors through p3Ω(k,2)(−D)⊗ I−3. We take
an ordinary point x ∈ (XKli(p))

≥1 and work in the formal neighborhood of this point. We
first consider the case where H is a multiplicative group at x. The correspondence splits
into several components over the formal neighborhood of x : the locus where the isogeny
p?1G→ p?2G has kernel an extension of an étale by a multiplicative group which intersects
trivially with H, and the locus where it has kernel an étale group. In the first case, the map
p?2Ω(k,2) → p?1Ω(k,2) factors through p2p?1Ω(k,2) and in the last case it is an isomorphism.
On the other hand, the restriction of the trace map Trp1 factors through pOX≥1 in the
first case, and through p3OX≥1 in the second case. Finally, the map p?2I−1 → p?1I−1 is an
isomorphism. We now consider the case where H is étale. The correspondence splits into
several components over x again :

1. the locus where the isogeny p?1G→ p?2G has a multiplicative kernel,

2. the locus where the isogeny p?1G → p?2G has kernel an extension of an étale by a
multiplicative group which intersects trivially (at x) with H,

3. the locus where the isogeny p?1G → p?2G has kernel an extension of an étale by a
multiplicative group which intersects non-trivially (at x) with H, so that p?2H is
multiplicative on this component,

4. the locus where p?1G → p?2G, has kernel an étale group, so that p?2H is again
multiplicative on this component.

We now list the divisibility we get in each of these cases :

1. In the first case, the map p?2Ω(k,2) → p?1Ω(k,2) factors through p4+kp?1Ω(k,2),

2. In the second case, the map p?2Ω(k,2) → p?1Ω(k,2) factors through p2p?1Ω(k,2), and
the trace map Trp1 factors through pO(XKli(p))≥1 ,

27. By [75], lem. 2.4.3, the group H can be extended to a finite flat group scheme at the boundary.
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3. In the third case, the map p?2Ω(k,2) → p?1Ω(k,2) factors through p2p?1Ω(k,2), and the
map p?2I−1 → p?1I−1 factors through pp?1I−1,

4. In the fourth case, the map p?2I−1 → p?1I−1 factors through pp?1I−1.

This finishes the proof of lemma 14.9.1.

PART IV

EULER CHARACTERISTIC

15. Vanishing of Euler characteristic

In this last section, we use automorphic methods to compute the Euler characteristic
of a non-Eisenstein localization of the complex of theorem 1.1 and prove theorem 1.2.

15.1. Action of the Hecke algebra. — We construct an action of the prime-to-p Hecke
algebra on the cohomology of our p-adic sheaves. This is a routine construction. Let ` be
a prime. We have introduced the spherical Hecke algebra H` = Z[T`,0, T

−1
`,0 , T`,1, T`,2] in

section 5.1.3. Let K =
∏
`K` ⊂ GSp4(Af ) be a compact open subgroup. We assume as

usual that Kp = GSp4(Zp).

Proposition 15.1.1. — Let ` 6= p be a prime such that K` = GSp4(Z`). We have an

action of H` on RΓ(XKli(p)
≥1
K ,Fκ ⊗ ω2(−D)).

Proof. We suppress the subscript K from the notations in this proof. For certain choices
of polyhedral cone decompositions that we suppress from the notation, we can define Hecke
correspondences attached to the double coset T`,i (see [18], p. 253) :

C`,i
p2

}}

p1

!!
X X

Denote by C`,i the formal completion of C`,i. We can form the fiber product D`,i =

C`,i ×p1,X X≥1
Kli(p). The second projection p2 : D`,i → X can be lifted naturally to p2 :

D`,i → X≥1
Kli(p). Since the universal isogeny associated to the double coset T`,i is étale, we

have a canonical isomorphism :

p?2F
κ ⊗ ω2(−D)→ p?1F

κ ⊗ ω2(−D).

The formal schemes X≥1
Kli(p) and D`,1 are smooth, and as a result there is a fundamental

class p?1OX≥1
Kli(p)

→ p!
1OX≥1

Kli(p)
. We can thus form an unnormalized cohomological corre-

spondence T ′`,i : p?2F
κ ⊗ ω2(−D) → p!

1F
κ ⊗ ω2(−D). We shall set T`,2 = `−3T ′`,2 and

T`,i = `−6T ′`,i for i = 0, 1 (28).

28. see remark 5.3.1 for a justification of this normalization.
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15.2. Euler characteristic. — Let K =
∏
`K` ⊂ GSp4(Af ) be a compact open sub-

group. We assume that Kp = GSp4(Zp). Let N be the product of primes ` such that

K` 6= GSp4(Z`). Let ρ : GQ → GSp4(Fp) be a Galois representation, unramified away
from the primes ` dividing pN . We assume that ρ is absolutely irreducible. We let m
be the associated maximal ideal of the abstract Hecke algebra HNp and Θm : HNp → Fp
the corresponding morphism. The map Θm is thus defined by the rule Θm(Q`(X)) =
det
(
1−Xρ(Fob`)

)
.

The algebra HNp acts on the perfect complex fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)). The Λ-

subalgebra of End
(
fRΓ(X≥1

Kli(p),F
κ ⊗ ω2(−D))

)
generated by HNp is a finite Λ-algebra.

In particular it is semi-local. We can define a direct factor (which may be trivial if ρ̄ does

not occur in our cohomology) of fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)) associated to the maximal
ideal m (see [41], lemma 2.12) :

fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))m.

Theorem 15.2.1. — The Euler characteristic of the perfect complex

fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))m

is equal to 0.

Remark 15.2.1. — We conjecture that the support over Λ of ⊕1
i=0fHi(X≥1

Kli(p),F
κ ⊗

ω2(−D))m has Krull dimension less or equal to 1 if the representation ρ̄ is not induced
from a real quadratic extension of Q (in that case, one should be able to construct positive
dimensional families using inductions of families of Hilbert modular forms). Compare with
conjecture 7.2 in [41].

The proof of this theorem will be given in section 15.2.5 below. Before giving the
proof we need to collect a certain number of results concerning automorphic forms.

15.2.1. Limits of discrete series. — Given λ = (λ1, λ2; c) ∈ X?(T) + (2, 1; 0) ⊂ X?(T)C
which satisfies −λ1 ≥ λ2 > −λ1 and a Weyl chamber C positive for λ we have a (limit of)
discrete series π(λ,C) (see [28], 3.3).

Let Z be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism,
Z ' C[X?(T)]W where W is the Weyl group. The infinitesimal character of π(λ,C) is the
Weyl group orbit of λ.

Si λ2 6= 0 and λ2 6= −λ1, λ determines uniquely C and π(λ,C) is a discrete series.
The case of interest to us is λ2 = 0 and 0 > λ1. We now make these hypothesis. Under
these assumptions, there are two choices for C. The natural choice (C is the chamber
corresponding to our choice of positive roots) provides a limit of discrete series that we
denote by π(λ)h (it contains the holomorphic and anti-holomorphic limits of discrete series
of the derived group). The other choice of C provides another limit of discrete series that
we denote by π(λ)g.

15.2.2. Cohomology of limits of discrete series. — For λ = (λ1, λ2; c) with λ2 = 0, 0 > λ1,
consider the character (−λ1 + 1, 2;−c) ∈ X?(T). This character is dominant for the Levi
MSi ' GL2 × Gm of the Siegel parabolic PSi ⊂ GSp4 which stabilizes the space 〈e1, e2〉.
Associated to this character is a complex irreducible representation of PSi of highest weight
(−λ1 + 1, 2;−c) that we denote by V(λ1+1,2;−c).

Recall that we have a map h : ResC/R → GSp4|R given by h(a + ib) = a12 + bJ and
that K∞ ⊂ GSp4(R) is the centralizer of the image of h. We let g be the complex Lie
algebra of GSp4. We have the Cartan decomposition g = k⊕p. Since k is also the complex
lie algebra of MSi, the representation V(−λ1+1,2;c) can also be viewed as a representation
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of k and K∞. Let W be a (g,K∞)-module. Then one can define the (p,K∞)-cohomology
of W , denoted by H•(p,K∞;W ) (see [30], sect. 4.1.1).

Theorem 15.2.2.1 ([4], thm. 3.2.1, sect. 4.2). — 1. We have :
— Hi(p,K∞;π(λ)h ⊗ V(−λ1+1,2;−c)) = C if i = 0 and Hi(p,K∞;π(λ)h ⊗

V(−λ1+1,2;−c)) = 0 otherwise,

— Hi(p,K∞;π(λ)g ⊗ V(−λ1+1,2;−c)) = C if i = 1 and Hi(p,K∞;π(λ)g ⊗
V(−λ1+1,2;−c)) = 0 otherwise.

2. There is a constant R such that if λ1 ≥ R and π∞ in an irreducible, essentially
unitary representation of GSp4(R) and :
— if H0(p,K∞;π∞ ⊗ V(−λ1+1,2;−c)) 6= 0 then π∞ ' π(λ)h,

— if H1(p,K∞;π∞ ⊗ V(−λ1+1,2;−c)) 6= 0 then π∞ ' π(λ)g.

15.2.3. Representing cohomology classes by automorphic forms. — We let SK be the
Siegel threefold of level K over C. We fix a toroidal compactification StorK,Σ of SK . Recall

that λ = (λ1, 0; c) ∈ X?(T) + (2, 1; 0). We set k = −λ1 − 1. We also fix the central char-

acter c to be −λ1 + 3. This the “correct” normalization. We denote by H
i
(StorK,Σ,Ω

(k,2))

the image of Hi(StorK,Σ,Ω
(k,2)(−D)) in Hi(StorK,Σ,Ω

(k,2)), this is called the interior coherent
cohomology.

Theorem 15.2.3.1 ([30], coro. 5.3.2). — For every integer k ≥ R − 1 (see thm.
15.2.2.1, 2.), we have

H
0
(StorK,Σ,Ω

(k,2)) = ⊕πf (πKf )m
h(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that

πf ⊗ π(λ)h is cuspidal automorphic and mh(πf ) is the multiplicity of πf ⊗ π(λ)h.
Similarly,

H
1
(StorK,Σ,Ω

(k,2)) = ⊕πf (πKf )m
g(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that
πf ⊗ π(λ)g is cuspidal automorphic and mg(πf ) is the multiplicity of πf ⊗ π(λ)g.

We fix an isomorphism Qp ' C. Thanks to this isomorphism, we can make sense of

the localized cohomology groups Hi(StorK,Σ,Ω
(k,2)(−D))m.

Corollary 15.2.3.1. — For k ≥ R− 1, we have

H0(StorK,Σ,Ω
(k,2)(−D))m = ⊕πf (πKf )m

h(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)h is cuspidal automorphic and mh(πf ) is the multiplicity of πf ⊗ π(λ)h and the char-

acter Θπf : HNp → C is congruent to Θm.
Similarly,

H1(StorK,Σ,Ω
(k,2)(−D)) = ⊕πf (πKf )m

g(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)g is cuspidal automorphic and mg(πf ) is the multiplicity of πf ⊗ π(λ)g and the char-

acter Θπf : HNp → C is congruent to Θm.

Proof. In order to deduce the corollary from theorem 15.2.3.1, we need to prove that
the natural map H1(StorK,Σ,Ω

(k,2)(−D))m → H1(StorK,Σ,Ω
(k,2)) is injective. We have a short

exact sequence :

H0(StorK,Σ,Ω
(k,2))→ H0(StorK,Σ,Ω

(k,2) ⊗ OD)→ H1(StorK ,Ω(k,2)(−D)).
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We shall prove that the cohomology group H0(StorK,Σ,Ω
(k,2) ⊗OD)m is zero. Let S?K be the

minimal compactification. Recall that there is a stratification

S?K = SK
∐

S
(1)
K

∐
S

(0)
K .

where S
(1),?
K = S

(1)
K

∐
S

(0)
K is a union of compactified modular curves. Let π : StorK,Σ →

S?K be the projection. There is an induced projection D → S
(1),?
K . One computes that

π?Ω
(k,2)|D = ωk+2(−cusp) if k 6= 0 and ω2 when k = 0, where ωk+2 is the usual sheaf of

modular forms of weight k + 2 on the modular curve.
Let ` be a prime that is prime to the level K. We let T`,2 be the corresponding

Hecke operator. We let T` be the usual Hecke operator on modular forms for the group

GL2/Q. On H0(StorK,Σ,Ω
(k,2) ⊗ OD) ' H0(S

(1),?
K , ωk+2(−cusp)) (resp. ' H0(S

(1),?
K , ω2) if

k = 2), we have the formula T`,2 = 2T` by [22], IV, satz 4.4. Let f be an eigenform

in H0(S
(1),?
K , ωk+2), with associated Galois representation ρf : GQ → GL2(Qp). Then,

associated to the character Θf : HNp → Qp, we have the reducible 4-dimensional Galois
representation ρf ⊕ ρf which is not congruent to ρ.

15.2.4. An application of Arthur’s results. — We use here Arthur’s classification for GSp4

as announced in [1].

Proposition 15.2.4.1. — Let πf be an admissible irreducible representation of G(Af )

which is unramified at primes ` not dividing Np. Let Θπf : HNp → Qp be the associated
character of the Hecke algebra. Assume that Θπf is congruent to Θm. Let λ = (λ1, 0; c) ∈
X?(T) + (2, 1; 0) with λ1 > 0.

Then πf⊗π(λ)h is automorphic if and only if πf⊗π(λ)g is automorphic and moreover,

mh(πf ) = mg(πf ) = 1.

Proof. Assume that πf ⊗ π(λ)h is automorphic (the argument would be the same if we
assumed that πf ⊗ π(λ)g is automorphic). Let Π be the associated global A-packet. We
claim that Π is of generic type in the sense of [1], classification theorem on p. 78. Hence
Π is stable and tempered. It follows that Π∞ is an L-packet, and this is {π(λ)g, π(λ)h}
(see [4], prop. 5.3.7). The conclusion follows. In order to see that Π is of generic type,
we first observe that since π(λ)h is a limit of discrete series, Π can either be of generic,
Yoshida or Saito-Kurokawa type (compare [68], sect. 1.1 and 1.2 with the description
of the parameters attached to π(λ)h in [67], p.11). In the last two cases, the associated
Galois representation is reducible, while ρ is irreducible.

15.2.5. Proof of theorem 15.2.1. — In order to prove the theorem, we can spe-
cialize at a very large weight k. Then fRΓ(X≥1

Kli(p),F
κ ⊗ ω2(−D))m ⊗Λ,k Qp =

fRΓ(XKli(p),Ω
(k,2)(−D))m by theorem 11.3.1. The cohomology is concentrated in degree

0 and 1. Extending the scalars to Qp we can express the cohomology in automorphic
terms using corollary 15.2.3.1 and proposition prop 15.2.4.1 :

fH0(XKli(p),Ω
(k,2)(−D))m ⊗Qp = ⊕πf f(π

KpKli(p)
f ) = fH1(XKli(p),Ω

(k,2)(−D))m ⊗Qp

where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)h is cuspidal automorphic, the character Θπf : HNp → C is congruent to Θm. The

projector f acts on π
Kli(p)
p .
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[63] V. Pilloni and B. Stroh, Cohomologie cohérente et représentations galoisiennes, Annales
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