HIGHER HIDA THEORY FOR SIEGEL MODULAR FORMS

GEORGE BOXER AND VINCENT PILLONI

ABSTRACT. We develop a version of Hida theory for higher coherent cohomology on Siegel

Shimura varieties.
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1. INTRODUCTION

1.1. The coherent cohomology of Siegel Shimura varieties. Let us first introduce the Siegel
Shimura varieties and the coherent cohomology of automorphic vector bundles. A standard ref-
erence is [Har90]. Let (G = GSpy,, Hy) be the Siegel Shimura datum. Let {Sk}xca,) be
the tower of Shimura varieties, defined over the reflex field Q. It parametrizes polarized abelian
schemes of dimension g with level structure. It carries an action of G(Af). We let S5 be a
toroidal compactification of Sk and we denote by Dk » the boundary divisor. We let P, be the
Siegel parabolic of G associated to yu. We let M), be the unipotent radical of P,.

Let us fix a maximal torus and a Borel 7' C B C P, C G. Let Rep(MN) be the category of
finite dimensional algebraic representations of M. Irreducible representations are labeled by M-
dominant weights k € X*(T)Mw+. The tower of Shimura varieties carries a natural M,,-torsor,
equivariant for the G(Ay)-action, and this torsor provides a functor for each level K and choice of
cone decomposition X to the category of locally free sheaves over S}?TE (see [Har90]):

Rep(M,) — VB(SE%)
nGX*(T)M‘“Jr = Ww"

We consider colim g RT'(S's;, w™) as well as the cuspidal counterpart colim g RI' (S, w*(=Dx 5))-
These are independent of the choice of ¥. They are complexes of smooth admissible G(Ay)-
representations, and if we tensor with C, these cohomologies can be computed by automorphic
forms by [Sul§].

1.2. Hida theory. Let p be a prime number. In classical Hida theory one defines p-adic modular
forms as the space of functions over the ordinary Igusa variety. Here are some of the important
properties of this space (see the book [Hid04] and the references given there):
(1) This is a flat and p-adically complete Z,-algebra. It carries an action of Hecke operators
and of the weight torus T'(Z,).
(2) There is an injective map from classical modular forms HO(S}?TE,W"“) to p-adic modular
forms which is a restriction map from the Shimura variety to its ordinary locus.
(3) The control theorem shows that in regular and cohomological weight, the ordinary part of
p-adic modular forms identifies with ordinary classical modular forms.
(4) The interpolation theorem shows that the ordinary part of cuspidal p-adic modular forms
can be organized into a finite projective module over the Iwasawa algebra Z,[[T(Z,)]].

The goal of the current paper is to set up a theory (that we call higher Hida theory) that works
for higher cohomological degrees (not only for modular forms). Results in this direction have
already appeared in [Pi120], [BCGP21], [LPSZ19], [BP20] for g = 1 and g = 2. The rational theory
(that we called higher Coleman theory) has been developed in [BP21].

The various Hida theories are parametrized by a certain set of Kostant representatives in the
Weyl group. Each such element of the Weyl group determines certain support conditions on the
ordinary Igusa variety and we construct higher Hida theory as the ordinary part of cohomology
with support condition on the Igusa variety.

Remark 1.2.1. We found the definition of the support conditions rather subtle. In particular, unless
we are in the case of the degree 0 or top degree Hida theories, there doesn’t seem to be a canonical
choice of support condition. We found that there exists lots of suitable support conditions, but
that they all give the same ordinary cohomology. For this reason we don’t define a space of higher
p-adic modular forms, but only its ordinary part.

1.3. The set M. In order to describe the theory, we need to introduce the set MW . Let W be
the Weyl group of G and Wy, be the Weyl group of M

Definition 1.3.1. We let MW be the set of minimal length representatives of the quotient Wy \W.

We give several interpretations and constructions involving this set.



1.3.2. Combinatorial description. We have X*(T)Mut = U, crpwX*(T)T. Let k € X*(T)Murt,
We define C (k) = {w € MW, —w = wo pr(k +p) € X*(T)*T}. We let v+ p = —w two s (k + p) for
any w € C(k). This is the dominant representative of the Hodge-Tate cocharacter of automorphic
forms contributing to the coherent cohomology in weight x. If v + p is regular, then the set C(k)
contains a unique element.

1.3.3. The ordinary part of classical cohomology. Let us recall how the ordinary part of coherent
cohomology is defined from a representation theoretic perspective. If 7 is a smooth admissible
representation of G(Q)) defined over Q,, we let Jg(m) be its Jacquet module (see [Cas]). This is
a smooth admissible T(Q),)-representation. We now introduce the ordinary part of the Jacquet
module. Given a character x : T(Q,) — Q) composing with the valuation v : Q)¢ — R, we obtain
amap v(x) : T(Qp)/T(Z,) — R. We can think of v(x) as an element of X*(T)g.

Definition 1.3.4. We say that a character x : T(Q,) — @; is ordinary in weight k € X*(T)M+
if v(x) = wlwom(k +p) +p=—v.

We let J%Td(colimKRF(S}?fz,w“)) be the sum of the generalized eigenspaces for ordinary char-
acters in weight # in the Jacquet module Jp(colimg RT(Si’s;, w"™)).

Remark 1.3.5. There is a partial order relation on X*(T')g, where A > X if A — X is a linear
combination of positive roots with non-negative coefficients. The Katz-Mazur inequality postulates
that v(x) > —v (see [BP21], conjecture 5.10.7, thm. 5.10.12 and thm. 6.10.1). Our ordinarity
condition is therefore precisely the matching of the Newton and Hodge polygon.

There is another definition of the ordinary part, using the Hecke algebra action. If K, C G(Q))
is a compact open subgroup admitting an Iwahori decomposition: K, = Uk, x Tk, x Uk, there
is an algebra morphism Z[T*(Q,)/Tk,] = CY(K\G(Qyp)/Kp, Z), t — [KptK,).

We let RT'(Si w")°r? be the direct factor of RT (S5, w") where T (Q,) acts via invertible
operators and the associated characters of T'(Q,,) are ordinary in weight . There is a natural quasi-
isomorphism

RT(Si ., ,w™)" = Jg*(colimg RT(S's;, ")) T ™<r

of complexes of smooth T'(Q,)-representations.

1.3.6. Archimedean representation theory and limits of discrete series. We recall how the set MW
occurs in the parametrization of limits of discrete series.

Theorem 1.3.7 ([Har90], thm. 3.4). Let k € X*(T)Mw* and w € C(k). There ezists a unique
non degenerate limit of discrete series representation moo(k,w) of G(R), with the property that
Too (K, w) ® Vi, has (p, Koo )-cohomology in degree £(w).

Let ™ = 7o (#, w) @7; be an automorphic representation. Then 7, < colim g H* ") (SEhs,w™)®
C. When w = Id, (K, Id) is a holomorphic limit of discrete series and the representation 7 is
generated by holomorphic modular forms.

1.3.8. p-adic geometry. We explain how the set W appears naturally in the p-adic geometry of
the Shimura variety. We consider the perfectoid Shimura variety and its Hodge-Tate period map
(ISchl1s]):

THT SK;D — FL = PH\G

The set MW is the fixed point set for the action of T(Q,) on FL. Each fiber m-({w}) is a
perfectoid Igusa variety (J[CS17]) which admits a very nice integral structure. There is a perfec-
toid p-adic formal scheme J® g» which parametrizes ordinary abelian varieties A together with
an isomorphism A[p™] ~ pfe @ (Q,/Zy)?, a polarization, and a KP level structure. The fiber
Thr({w}) identifies with I gr Xspa(z, z,) SPa(QY, ZV). Let Jonq be the group of polarized
self quasi-isogenies of pfe @® (Qp/Zy)9 over Zy-algebras where p is nilpotent. It acts naturally on
JBkr. Let P'(Q,) be the subgroup of J,.q of self quasi-isogenies which lift to characteristic 0. We
see that P’(Q,) is a locally profinite group scheme over Spa(Q,, Z,) which is a form of the constant



group scheme P(Q,). For any compact open subgroup K, p C P'(Q,), we have a smooth formal
scheme J& krf, , which is the quotient of 38 » by K, p, and we get a tower:

{36krk, rtK, rcP(@,)

where the transition maps are finite flat. The action of T(Q,) on 75 (w) results in a map T(Q,) —
P’(Q,). In summary, we can attach to w the data:

{{36krk, YK, pcP@y), T(Qp) = P'(Qp)}.

In particular, we get some privileged Hecke correspondences for t € TH(Q,):

I krK, prik, pt-1

/

Ik, 3G krk,

1.4. Higher Hida complexes. We can attach to each w a cohomology theory RT,, (K7, cusp/0) €
D(Z,[T(Q,)] ® T**") by considering the ordinary part of the cohomology with certain support
condition depending on w of toroidal compactifications of these Igusa varieties. Here, we assume
that K7 =[], 4p K, and T*P" is the abstract Hecke algebra equal to the restricted tensor product
of the spherical Hecke algebras at all primes ¢ for which K, = G(Z;) is hyperspecial. The support
conditions are chosen according to the Hecke correspondences parametrized by ¢t € T (Q,) =
P’(Q,). We now describe the main properties of these cohomology.

Let T'(Z,) be the pro-p subgroup of T(Z,). We let C°(T'(Z,),Z,) be the T'(Z,)-module of
continuous functions on T'(Z,), with value in Z,. Its Z,-dual is the algebra of measure on T"(Z,),
equal to the completed group algebra A" = Z,[[T"(Z,)]].

Definition 1.4.1. We say that a complex in D(Z,[T"(Z,)]) is admissible if it can be represented
by a bounded complex of T'(Z,)-modules M*® where M is isomorphic to CO(T"(Z,),Z,)" . We say
that an admissible complex has amplitude [a, b] if it can be represented by a complex M*® as before
concentrated in the range [a,b].

Remark 1.4.2. If a complex is admissible, then its dual is a perfect complex over the Iwasawa
algebra A’. If it has amplitude [a, b], then its dual has amplitude [—b, —a] over A’.

Theorem 1.4.3. The cohomologies RT,(KP?, cusp/0) enjoy the following properties:

(1) (admissibility) RT,, (KP?, cusp/0) is admissible

(2) (Integral cohomological vanishing) If g = 1 or g = 2, RI',(KP, cusp) has amplitude
[0,¢(w)], and R, (KP) has amplitude [¢(w), W}.

(3) (Rational cohomological vanishing) RT'y, (K?, cusp)®z,Qp has amplitude [0, £(w)], R['y, (K?)®z,
Q, has amplitude [¢(w), %]

(4) (Classicality in regular weight) Let v € X*(T)T. Let k = —wo prw(v+p) —p € X*(T)M+.
Let Ky = Uk, x Tk, X UK,, be a compact open subgroup of G(Q,) admitting an Iwahori
decomposition. Let n € Z>qo be such that {t € T(Z,),t =1 mod p"} C Tx,. Then there
is a T(Qp)-equivariant quasi-isomorphism

RHomy, (v, RTw(K?)) @z, Qp(Gon)(—v) = RI(Si k., , ™) ®q, Qp(¢pn)

and similarly for cuspidal cohomology.

(5) (Cousin spectral sequence) Let k € X*(T)M+. Let v = —w ™ two p(k + p) — p for any
w e C(k). Let K, = Uk, x Tk, x UKP be a compact open subgroup of G(Q,) admitting an
Twahori decomposition. Let n € Z>q be such that {t € T(Z,),t =1 mod p"} C Tk, .

There is a T(Qp)-equivariant spectral sequence:

Bwec(x)o(w)=pRHomz, (v, RTw(K?)) @z, Qy(¢pn)(—v) = HPFU(SE ke w®)" @g, Qp(Gpn)-

Remark 1.4.4. We conjecture that the integral vanishing theorem 2) above holds for any g and any
w. It holds if w = Id or w = w} is the longest element of MV .



Remark 1.4.5. The point 4) is a special case of 5). Indeed, when the weight is regular the spectral
sequence trivially degenerates as #C(k) = 1.

Remark 1.4.6. In point 4) and 5) we need to extend scalars to Q,({,~) because the definition of
the level structure on the Shimura variety and the Igusa variety differ slightly.

There is another way to organize the information contained in the cohomology RI'y,(K?, cusp/()
by using the Iwasawa algebra A = Z,[[T(Z,)]]. We can construct perfect complexes of A-modules:

M;) = RHOHIT(ZP)(]., RPU;(KP) ®Zp A)
M2 = RHompz,)(1,RLW (K?, cusp) ®z, A).

w,cusp

The ordinary Hecke algebra T, and Ty, cysp are the finite A-algebras equal to the image of Tsph
in End(My,) and End (M, .,s,)-
The following interpolation property follows easily from theorem [1.4.3

Proposition 1.4.7. For any v = vagx : T(Zy) — Zp(pn )™, with vay € X*(T)T and x a finite
order character, and for & = —wo pw(v + p) — p, we have:

My, @2, Qp(Gpr) = RT(SEE k., w") " ®q, Qp(Gp) Y]

where K = Uk, X Tk, x UK,, is a compact open subgroup of G(Q,) admitting an Iwahori decom-
position, Tx, C Kerx and [x] means the x-isotypic part for the action of diamond operators in
T(Zyp)/Txk,. A similar statement holds for cuspidal cohomology.

We can now state the duality theorem, using the modules M?. There is an involution of YW,
w = Wo, M WWo-

Theorem 1.4.8 (Serre duality). There is a perfect pairing My @x My, | wwo.cusp — Al—d], for
which the adjoint of t € T(Qp) is wot~' and the adjoint of [KegK,) is [Keg K] for some prime
¢ # p such that K; = G(Z¢). This pairing is compatible with the classical Serre duality when
specializing to locally algebraic dominant weights.

In [BP21], we developed higher Coleman theory which is the theory of overconvergent modular
forms in higher cohomological degree. We prove the natural compatibility between higher Coleman
and higher Hida theory, which we state informally as follows:

Theorem 1.4.9. The slope 0 part of higher Coleman theory canonically identifies with the rational
part of higher Hida theory.

We can also use the present paper to produce lattices in overconvergent cohomology and deduce
lower bounds on slopes of overconvergent cohomology.

Theorem 1.4.10. The lower bounds on slopes conjectures 5.9.2 and 6.8.1 in [BP21] hold true.

As a consequence, one can replace the strongly small slope condition in [BP21] (in the Siegel
case) by the small slope condition.

1.5. An application to the cohomology of arithmetic groups. Let N be an integer divisible
by p. Let us consider the arithmetic group I' = {y € Spy,(Z),y =1 mod N}. Let H*(I',Z) be
the cohomology of T" acting on Z. This is a finite Z-module, acted on by the Hecke algebra T
generated by the double classes I'tI" for t € SpQQ(Q) in the usual way:

[T HY T, Z) S H*(¢t7'Tt N T, Z) 5 H* (Tt~ N T, Z) “%° °H¥(T, Z).

For 0 <i < g, let t; = diag(p,--- ,p,1,---,1,p~L,--+ ,p~1) be the diagonal matrix with 2i many

1I’s. The double classes {I't;I"}o<i<, generate a commutative subalgebra of Ty .

We now consider H*(T', Z) ®z Z,, = H*(T', Z,,) and its rational part H*(I', Z) ®z Q, = H*(T', Q,).
Let us define H*(T,Z,)°"® C H*(I',Z,) to be the direct factors where the operators T't;" act
invertibly and H*(T', Q,)?"? = H*(T', Z,)°"¢ ®z, Q,.

Theorem 1.5.1. We have H (T',Q,)°"? = 0 for 0 <i < %.



Remark 1.5.2. This theorem is to be compared with the general belief that the tempered part
of H*(I', Q) should be concentrated in degrees > @ (see [VenlT], section 4.2 for example).
Temperedness is a condition on the archimedean size of Hecke eigenvalues, while ordinarity is a
condition on the p-adic size.

We also remark that in theorem 5.12.11 of [BP2I] we proved a variant of theorem with
coefficients in an algebraic representation of slightly regular weight. However the proof in the case

of trivial coefficients depends on the methods of this paper.

1.6. Organization of the paper. In the section [2| we develop abstractly the formalism of coho-
mology with partial support and of correspondences acting on these cohomology. We show that
there is at most one reasonable way to attach to a scheme and a correspondence over this scheme
an ordinary cohomology theory (the ordinary part of a cohomology with partial support). In the
section [3] we review the theory of Siegel modular varieties and their integral models. At a deep
level, there are plenty of (very singular) integral models for the Shimura variety. However, there
is a very good integral theory for the ordinary Igusa varieties. We show that the various finite
level ordinary Igusa varieties can be organized into a tower of smooth formal schemes very simi-
larly to the tower of Shimura varieties over Q. In section [ we focus on the Shimura variety of
deep Iwahori level and we work in fixed weight. We manage to produce integral models for the
classical cohomology of the Shimura variety which carry and action of the Hecke operators at p.
We construct a Cousin spectral sequence which computes the ordinary part of the cohomology of
these integral models in terms of local cohomologies which turn out to be the various higher Hida
theories in a given weight. In section [o] we prove that the higher Hida theories interpolate over
the weight space, just like in classical Hida theory. In section [0} we compare higher Hida theory
and higher Coleman theory by studying overconvergent versions of higher Hida theory.

Acknowledgements: We thank A. Caraiani and J. Newton for their careful reading and detailed
comments on a draft of this paper. We thank Hung Chiang, Najmuddin Fakhruddin and Toby Gee
for their comments. This work was supported by the ERC-2018-COG-818856-HiCoShiVa. Part of
this work was completed while the first author was a Royal Society University Research Fellow.

2. COHOMOLOGY WITH SUPPORT

2.1. Compactification. Let S be a noetherian affine scheme. We work in the category of S-
schemes.

2.1.1. Compactification of a scheme. Let X be a separated, finite type S-scheme.

Definition 2.1.2. A compactification of X (over S) is a proper S-scheme X together with an open
immersion jx : X — X.

Compactifications of X form in a natural way a category, with maps § : (jx : X — X) — (%
X < X’) being given by maps of S-scheme ¢ : X — X', extending the identity of X. Moreover,
the category is cofiltered.

Remark 2.1.3. By a theorem of Nagata, compactifications exist. See [Sta22], thm TAG 0F41.

Lemma 2.1.4. Let & : (jx : X — X) — (j% : X < X') be a map of compactifications. Then
&X =X.

Proof. The map £ : £*X — X is a separated map. It has a section s : X — £*X. The section is a
closed immersion. Since s(X) is open dense in £*X we deduce that £&*X = s(X). O

We recall that a closed subscheme D of X is called an effective Cartier divisor if D = V(%)
where .# is an invertible ideal in O'%.

Lemma 2.1.5. Compactifications jx : X < X with the property that X \ X admits the structure
of an effective Cartier divisor in X are cofinal among compactifications.

Proof. Let D be the closed complement of X endowed with the reduced scheme structure. We
have D = V(.#). We let X’ be the blow-up of X at the ideal .#. Then by [Sta22], Lemma Tag
0208, X — X’ is a compactification mapping to X — X. O



Lemma 2.1.6. Let ¥ be a locally free sheaf of finite rank over X. The set of compactifications
(jx : X — X) with the property that F extends to a locally free sheaf over X is cofinal among
compactifications.

Proof. Let X be a compactification. We can take an arbitrary extension of ¢ to X by [Sta22],
TAG 01 PE, then perform a suitable blow-up X’ and take the strict transform to find an extension
4" of 4 to X' which is locally free ([RG71], thm. 5.2.2). O

2.1.7. Compactification of a correspondence. We adopt the following definition of correspondence:

Definition 2.1.8. A correspondence is a quadruple (C, X, p1,p2), where X and C are separated,
finite type schemes over S, coming with two projections p1,p2 : C = X and such that p1 X pa :
C — X x X is a proper map.

Definition 2.1.9. A compactification (denoted (C,X,p1,D2)) of a correspondence (C, X, p1,p2) is

a diagram:
C
]'CT
D2 C D1
AN

X Jx X Jjx X

where jo and jx are open immersions, X and C are proper, and C = C X g, 5 X x X.
Remark 2.1.10. In particular (C, X, py, p2) is a correspondence.
Lemma 2.1.11. Compactifications of a correspondence exist.

Proof. Let (C, X,p1,p2) be a correspondence. Let X and C’ be compactifications of X and C. Let
C be the schematic closure of C'in C' x X x X. We have a map C' — C x ¢, ¢ X x X which is a
dense open immersion of proper schemes over X x X. Therefore this is also a proper map, hence
an isomorphism. O

A map between compactifications
(cv XaﬁlapQ) - (é/a X/aﬁllaﬁé)
is the data of maps C — €’ and X — X' inducing the identity on C' and X and making all the
obvious diagrams commute.

Lemma 2.1.12. Let (C, X, p1,p2) be a compactification of (C, X,p1,p2). Let (X <—>7)_(i) = (X =
X) be a map of compactifications of X. There exists a map (C', X', p},p5) — (C,X,p1,p2) of
compactifications of (C, X,p1,p2), compatible with the given map (X — X') = (X — X).

Proof. We take C' = C x g, g X' x X'. O
Lemma 2.1.13. The category of compactifications of (C, X, p1,p2) is cofiltered: if (C, X, p1,p2)

and (C_”,’ )_(’Lﬁ’l,ﬁé) are two compactifications, there exists a compactification (C", X" pl,py) with
maps (C", X", pY, py) = (C, X, p1,p2) and (C", X", py, py) — (C', X', py, p).

Proof. We can take X" = X x X’ and C" = C x C". O
2.1.14. Closed subschemes. Let X be a scheme. Let D be a closed subscheme of X. We recall that
D is called locally principal if D = V(.#) and there exists an invertible sheaf .Z over X and a map
¥ — Ox whose image is .#. We will often denote .Z by 05 (—D), even if the choice of £ is not
unique. In the case that .# itself is an invertible sheaf, D is called Cartier. In this case .# is also
denoted by @5 (—D) in the literature.

Definition 2.1.15. Let D =V (.%) and D' = V(') be closed subschemes of X .
(1) We write D C D' when D is a subset of D'. In other words, .9' C /.7



(2) Let s € Qso. We write D < sD" if we can write s = 2 with p,q € Z>o and (J')? C (S)*.

Remark 2.1.16. We warn the reader that D < _D' implies that D C D’ as subsets of X but not
that we have a map D — D’ as subschemes of X.

Lemma 2.1.17. (1) If D and D’ are Cartier divisors, then D < D’ implies that there exists

no € Z>o such that we have a canonical injective map: Ox(—noD’) — Ox(—noD).

(2) If X is normal and D and D' are Cartier divisors, then D < D' implies that we have a
canonical injective map: O (—D') — Ox(—D).

(3) If X is quasi-compact, D = V(%) and D' = V(.9") are locally principal closed subschemes
and D < sD' for 0 < s < 1, then for any s < s’ < 1, for any choice of maps Ox(—D) — .
and Ox(—D') — F', there exists p' and ¢’ such that s’ = % and such that we have a
canonical diagram:

Ox(—p'D") —— Ox(—4'D)

| l

(S (ST

Proof. We consider a local situation first. Let X = Spec A and D = V(f), D' = V(f'). In the
first case, by definition, (f')"° A < (f)™ A. In the second case, we use the normality assumption
to deduce that (%)”U € A implies % € A. Therefore (f')A < (f)A. In the last case we suppose
5= g and (f')? = af? where a is unique up to an element of f9-torsion. For any k we deduce that

(f)kP = aF faf(=14 where a” f9 depends only of f' and f. We therefore get a canonical diagram
(which only depends on choices of generators of (f)A and (f")A):

4
—_

J(f’)’“? Jf““)q

(f)fr4— (f)*D1

We put s’ = Z—:. We have kp = p’kﬁ and (k—1)q = q’kﬁ%%. We find that 5%% > 1 for
k large enough. We therefore get a canonical map for a large enough k:

A——A

J(f’)’“‘“’ Jf
()P A—— () A
We now change p’ to kp’ and q to kq'. Doing this on a finite affine open covering of X (and possibly
increasing p’ and ¢’ by a multiple), gives a canonical map: Ox(—p'D’) — Ox(—q¢'D). O
2.1.18. Ezxpanded and contracted subschemes. Let (C_',)_(,ﬁl,ﬁg) be a correspondence.

Definition 2.1.19. (1) We say that a closed subscheme D C X is expanded by the correspon-
dence if p5D C p1D.
We say that a closed subscheme D is strictly expanded if p5D < sp7D for some 0 < s < 1.

)
3) We say that a closed subscheme D is compactly expanded if p5 D CpyD .

4) We say that a closed subscheme D C X is contracted by the correspondence if p7D C p5D.
5) We say that a closed subscheme D is strictly contracted if ptD < sp5D for some 0 < s < 1.

[e]
6) We say that a closed subscheme D is compactly contracted if pyD Cp3D.

Remark 2.1.20. The notion of expanded/contracted is set theoretical. The notion of compactly
expanded/contracted is topological. The notion of strictly expanded/contracted is schematic.

o
IFor a subset T of a topological space V' we let T be the interior of T in V'



Ezample 2.1.21. Let S = Spec F,,. We consider the Frobenius correspondence. Namely, C =X,
and we let po = F : X — X be the Frobenius map and p; : X — X be the identity. Then for any
closed subscheme D, we have p5.D = ppj D, so D is strictly contracted.

Remark 2.1.22. If D is compactly expanded, we see that the closure of C\p;D in C is contained in
C'\ p5D. We chose the adjective compactly to indicate that there is a connection with the theory
of compact operators. See section [2.10

2.1.23. Dynamic correspondences. We introduce certain key definitions.

Definition 2.1.24. (1) A dynamic correspondence is a data (C,X,p1,p2, Dy, D_), where
(C,X,p1,p2) is a correspondence, p1 and Py are proper maps, D_ and D, are closed
subschemes of X, such that D is expanded by C' and D_ is contracted by C.

(2) A strict dynamic correspondence (C, X, p1,pa, Dy, D_) is a dynamic correspondence where
D, is strictly expanded and D_ is strictly contracted.

(3) A compact dynamic correspondence (C, X ,p1,p2, D1, D_) is a dynamic correspondence
with the property that D4 is compactly expanded, and D_ is compactly contracted.

2.1.25. Dynamic compactifications of a correspondence. Let (C, X, p1,p2) be a correspondence.

Definition 2.1.26. A dynamic compactification of (C,X,p1,p2) is a dynamic correspondence
(C, X, p1,p2, Dy, D_), where (C, X, p1,p2) is a compactification of the correspondence (C, X, p1, p2)
and X\ X = D_UD, . A strict dynamic compactification is a dynamic compactification which is a
strict dynamic correspondence. A compact dynamic compactification is a dynamic compactification
which is a compact dynamic correspondence.

Remark 2.1.27. (1) We are asking that the support of D_ U Dy is X \ X.
(2) We are not imposing that D_ and D are disjoint.
(3) A given compactification (C, X, p1,p2) can often be enriched in different ways into a dy-
namic compactification.
(4) We don’t know if a correspondence always admits a dynamic compactification.

A (non-strict) map between dynamic compactifications
(C_'a Xaﬁlaﬁ% DJra D*) — (é/a X/7ﬁ/1aﬁl2a Dzra DL)

is a map of compactifications with the property that for the map & : C — C’, we have D D £*D’,
and D_ D £*D’_. We say that the map is strict if Dy = £*D/, and D’ = &£*D".

Lemma 2.1.28. Let (C, X, py1,p2, D1, D_) be a dynamic (resp. strict dynamic, resp. compact dy-
namic) compactification of (C, X, p1,p2). Let (C', X', p},Ph) be a compactification of (C, X,p1,p2)
andlet & : (C', X', p),pb) — (C, X, p1,P2) be a map of compactifications. Then (C', X', p}, ph, * Dy, D)
is a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.

Proof. By lemma[2.1.4] ¢*(D; UD_) = X'\ X. The rest follows easily. O

Lemma 2.1.29. LetC = (C, X, p1, p2, Dy, D_) be a dynamic (resp. strict dynamic, resp. compact
dynamic) compactification. There exists a dynamic (resp. strict dynamic, resp. compact dynamic)
compactification C' = (C', X', py,py, D', D”) and a strict map C' — C with the property that D',

and D' are Cartier divisors on X' and p;D',, prD" fori=1,2 are Cartier Divisors in C'.

Proof. We let Dy = V() and D_ = V(_#). We let X’ be the blow-up of X at D, UD’ =
V(& 7). Let D! and D’ be the pull backs of D, and D_. They are Cartier divisors by
[Sta22], TAG 020N. We let C” be C x g, g X' x X’. We now let C’ be the blow-up of C" at
piD, UpsD! UptD” UpsD’ . O
Lemma 2.1.30. Let (C, X,p1,p2) be a compactification and let
(éaXaﬁlaanD+ = V(j)an = V(/)) and (67)?7?172527D/+ = V(j/)7DL = V(j/))

be two enrichments as a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.
Then (C, X, p1,p2, D),UDL =V(£9"), D" UD_=V( ¢ 7)) is a dynamic (resp. strict dynamic,
resp. compact dynamic) compactification.
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Proof. Obvious. O

Lemma 2.1.31. The category of dynamic (resp. strict dynamic, resp. compact dynamic) compact-
ifications of (C, X,p1,p2,) where maps are non strict maps is cofiltered: if (C', X, p1,p2, Dy, D)
and (C", X', py, 05, D'y, D") are two dynamic (resp. strict dynamic, resp. compact dynamic) com-
pactiﬁgatio_ns, there exists a dynamic (resp. strict dynamic, resp. compact dynamic) compactifica-
tion (C", X", p,py, D, D") with maps
(C//7X/Ia]§/117p12/7D/J£7DZ) — (Cvavplvﬁ?vDJmD*)
(C//aX”aﬁlllvﬁ/Q/aDi(ﬂD/—/) - (C/aX/aZ_)/laﬁ/QaDi{nD,—)'

Proof. 1t follows from lemma|2.1.13|that we can find a compactification: c", X" pl, Py ) with maps
of compactification & : (C”, X", pf, py) — (C, X, p1,p2) and &' = (C", X", p, py) — (C", X', 1, D3).
Now we take D} = &¢*D, U({')*D!, and D” = ¢*D_U(¢')*D".. This works by lemma 2.1.30, O

2.1.32. Permanence property. We consider a commutative diagram of correspondences (C, X, p1, p2)
and (C', X', p}, ph):

Lemma 2.1.33. We assume that in the above diagram the maps C' — C and X' — X are proper
and that (C, X, p1,p2) admits a dynamic (resp. strict dynamic, resp. compact dynamic) compacti-
fication (C, X, p1,p2, Dy, D_). Then (C', X', py,pb) admits a dynamic (resp. strict dynamic, resp.
compact dynamic) compactification.

Proof. We let X” and C” be compactifications of X’ and C’. We let X’ be the closure of X’ in

X" x X and C" be the closure of C’ in C"" x C'. We claim that X’ x ¢ X = X’. Indeed, the natural

map X’ — X’ x ¢ X is both an open immersion and a proper map (since X’ — X is assumed to

be proper). Similarly, we see that C’ x» C = C’. We thus deduce that C' = C’' X g/, ¢ X' x X'.
We have a diagram:

We now let D/, = r*Dy and D’ = r*D_. It is easy to check that this compactification has the
desired properties. For example, let us assume that (C, X, py,Pa, Dy, D_) is strict dynamic. The
identity p5 Dy < spi D, implies t*p5 D, < st*py D and thus (ph)* D', < s(p})*D’,. One proceeds
similarly with D’ . We thus see that (C', X', p}, P, D'\, D" ) is a strict dynamic compactification
of (C', X', pl,ph)-

O

Let (C, X,p1,p2) be a correspondence and (C, X, py, p2) be a compactification.
Lemma 2.1.34. Assume that (C™?, X7¢4, pied, pred) which is a compactification of (CT4, XTed, pred, pred)
admits a dynamic (resp. strict dynamic, resp. compact dynamic) compactification (C™¢%, X" by, pa, Dfd, Dredy,

Then (C’,X,ﬁl,;ﬁg,Dfd,D’fd) is a dynamic (resp. strict dynamic, resp. compact dynamic) com-
pactification.
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Proof. The cases of a dynamic or compact dynamic are obvious as these notions are set theoretical
or topological. We do the case of a strict dynamic compactifications. We assume that there exists
0 < s < 1 such that (p°?)* D7 < s(pte?)* D7°. We prove that a similar inequality holds over C.
We can check it locally. Let U;, Us be open affines of X and let V' C C' be an open affine of C
such that p;(V) C U;. Let s1,---,s4 be generators the ideal of Dfd over UfEd and let &1, -, 34
be lifts of them to Ox(Uy). The ideal of D¢ over U is generated by {31, ,84,v0p, } where
V0yp, is the nilradical of &y,

Similarly, we find generators {1, ,ts, 0y, } of D7 over Us. By assumption, for s = % we
have

(ﬁ{(sh : 7'§d7\fOU1))pg (ﬁg(flv 7£d'))q+\fOV'

Let 7 be such that (v/0y)" = (0). We see that for all [ > 0,

(Bt Lg )T+ Vo) C (p5(Ey, -+ Ea )T
We deduce that
(ﬁf(§1, -, 84, \/6U1))Pl - (ﬁg(tly vt \/6U2))ql_7',

For I large enough, pl < ql—r. The case of D"? is similar. We conclude as C' is quasi-compact. [

2.2. Formalism of cohomology with support. We use the material from [CSb]. We assume
that all schemes are of finite type over Z. For any such scheme X, we have a triangulated category
of solid Ox-modules, denoted D(Ox m), and there is a six functor formalism. There is a fully
faithful functor D(0x) — D(Ox m) where D(Ox) is the usual derived category of quasi-coherent
Ox-modules. The objects of D(0x) are by definition the discrete objects of D(Ox m).

2.2.1. Base change maps. Let X be an S-scheme. Consider a cartesian diagram where jx and jc
are open immersions:

Jjc
—

< Q

o

|

X

Lemma 2.2.2. Let & be an object of D(Ox m).

(1) We have a natural map p*(jx )«F (jc)*p

(2) We have a natural isomorphism p*(j )u = )up*J
(3) We have a natural map (jo)p'F — p' (]X)uﬂ

(4) We have a natural isomorphism: (jo)«p'F — P (jx)«F

Proof. For the first point we just follow the adjunctions. We have:
Hom(p"(jx)«7, (jo)«p*-F) = Hom((jo) D" (jx)«F p"F)

= Hom(p*jX (jx)«%,p*F)
= Hom(p*Z,p* F)

/\

The map is given by the identity of p*#. The second point is the proper base change theorem
(note that C' and X are tor-independent !), see [CSb], Lecture XI. The other points are similar. [

2.2.3. Cohomology with partial support. Let X be an S scheme. Let D, , D_ be two closed sub-
schemes of X. We let D = D+ UD_ and we let X=X \ D.

Consider X &5 X \ D+ 2 X as well as X <5 X \D_ < X. Let .7 be an object of D(Ox m).

Definition 2.2.4. We define RI'p, p_ (X, Z) == RI(X, (j4)«(j-)F) and RT'p_ p, (X, .F) =
RI(X, (i )i(i4)+F).

Remark 2.2.5. If we have an intermediate open subscheme X i> X'« X and 7 is an object of
D(Ox m), then we abuse notation and write RI'p_ p, (X, %) (respectively RT'p, p_(X,.%)) for
RIp_.p, (X,j*F) (respectively RI'p, p_ (X, j*F)).
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Lemma 2.2.6. Let X be an S-scheme. Let Dy, D_ and D'\, D" be closed subschemes of X. We
assume that D" C D_ and Dy C D. We also let F € D(Ox\(p' up,}m)- We have natural
maps

RFD+7D7(X79) — RFD;,DL(Xaﬁ)
RFD_7D+(X,<?\) — RFDL,D;(X”Q\)
Proof. We only treat the first case. We can also assume that either D', = D or D’ = D_. Let

us first assume that D’ = D_ and D, 2 D, . Consider the following diagram:
X\{D,uD_ Y X\D, T x
d 127
X\{DQFUD_}LX\D;
Let .Z be a sheaf on X \ {Dy U D_}. We need to produce a canonical map
Jasd—pF = JL g )T
Using that j, = j; o4, it suffices to produce a canonical map
JonF =gl ()7
By adjunction, this amounts to a map:
F = gl (@) F

We can use the flat base change map j*i, = ¢, (j)* and the adjunction (jL)*jL,! = Id to deduce
that this boils down to the natural map given by adjunction:

F =il () F.
We now treat the case that D', = D, and D’ C D_. Consider the following diagram:

J+=dl

X\{D,UD }——X\D; 5 X

1 =

X\{D,uD_}
Let .Z be a sheaf on X \ {Dy U D" }. We need to produce a canonical map
Jad— 0 F = § G T
This map is easily seen to be induced by the adjunction map #,s* — Id. O

Lemma 2.2.7. Let p : C — X be a morphism. Let Dy, D_ C X be two closed subschemes.
Let X = X\ {D, UD_}. Let p*Dy,p*D_ be the corresponding two closed subschemes of C'. Let
C =C\p*{D+UD_} and letp: C — X be the induced projection. Let F be an object of D(Ox m).
Then we have canonical pull back maps:

RIp, p (X,#) — RIpp,p_ (C,p"F)

RFD_7D+(X,9\) — RFﬁ*D_J,*D_'_(C',p* )

)

If p is proper, we also have canonical trace maps:
RFﬁ*D+,ﬁ*D- (C7ply) — RFD+,D- (X’ )
a7

oz
Rlyp 0, (C.p'F) — RIp p. (X,7)
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Proof. We give the proof only for the first and third maps. We consider the diagram:

c—5c\pp s

lp J Jp
- J+ >
X——X\Dy——X
By lemma we have the following maps:
Pivsd-1F = Gy alwF
w0 T = P F
and the maps of the lemma are easily deduced. 0

Lemma 2.2.8. In the situation of the last lemma, assume that p is an isomorphism and that p is
proper. Then all the maps are quasi-isomorphism.

Proof. We only prove that RI'p, p_ (X, 7) — RI"I;*D%I;*Df(C_ﬂp*f) is an isomorphism. The

remaining points are left to the reader. We consider the diagram:

X —5Se\pp, s c

JP Jp’ J'ﬁ
- % J+ >
X —x\p, X
Since p’ is proper, p, = p;. We deduce that
Pedl o JnF = Jualid (T = G st F
O

2.2.9. Cohomology and dynamic correspondences. Let C = (C, X, p1,p2, Dy, D_) be a dynamic
correspondence. Let .# € D(Ox m). Let T : p5.F — p|.Z be a map in D(Oc m).

Proposition 2.2.10. The map T induces endomorphisms Te of RU'p_ p. (X,.Z) and RI'p, p_ (X,.7)
as follows:
D_

Rlp, p (X,7) Rlp, p (X,7)

Rrﬁg D ,p% ( _71759\) — RFﬁ;DJr,ﬁ;D, (C,p3F) —— RF;;{DJF pyD_ (C7p39) - RFﬁID+,ﬁID, (C7p!1ﬁ)

RTps0_ p50, (C,p5F) —— RUpip_ p5p, (C,p5F) —— RUpin_ p50, (C,p1.F) —— RUpip_ 5o, (C,p1.F)

T |

R[p_ p, (X, 7) R[p_ p, (X,7)
Proof. We only do the first case. The maps
Rlp, p (X,F) — RUpp, psp (C,p5F)
Rl:p, pip_(C,p1.F) — RIp, p (X, 7)
are given by lemma [2:2.7] The maps
RFﬁEDﬂﬁEDJCva; ) — RFﬁID,7ﬁ§D+(Cap§ )
RIpsp_ p5D, (C.pF) — RFﬁ;D,,p;DJr(C_'aP;y)
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are given by lemma The middle map Ry p_ 550, (C,p5F) = Rlpip_ psp, (C,pyF) is
produced by T as we now explain. We consider the chain of open immersmns
% C\piD, 'S C
We deduce from T a map:
(o )lio s F = (o) lo ) F
which induces the middle map RT'y:p_ ssp, (C,p5.F) = RTprp_ psp. (C, i F).
O

Let (C, X,p1,p2) be a correspondence. Let C = (C, X, p1, P2, D1, D_) be a dynamic compact-
ification. The proposition below states that the endomorphism T¢ only depends on the C up to
strict morphism.

Proposition 2.2.11. Let C = (C, X, p1,p2, D4, D_) — C' = (C', X', p}, Py, D', ,D") be a strict
map. The canonical quasi-isomorphisms given by lemma[2.2.8:

RI‘D_'_,D_(X,?) = R].—‘D/JHDL(X/,Q)
Rlp p,(X,7) = RFDl_yp;(X’,ﬂ)
are equivariant for the actions of Ty and Ter.

Proof. We only give the proof in the first case. This follows from the existence of the following
commutative diagrams:

RTp, p (X', F) ——RL () 01, o) 0 (C' (92)*F) —— RT3 01, oty 00 (C7, (o) F) ——

T

Rlp,.p_(X,7) —— Rl () n, ) 0 (C, (92)"F) —— R (py) 0 (o) . (C, (2)* F) ——

el
e

—— RT g,y 01, ()0 (C', (01)'F) —— RL ()1, (5y)+ 00 (C7s (1) F) —— Ry pr (X',.F)

|

—— R )-p, o) 0 (C, (71)'F) ——RL)p, p1)-p_(C. (7)) F) —— Rlp, p (X, F)

2.3. Computations of the cohomology. In this section, we give explicit formulas that allows
us to compute the cohomology with support as limits and colimits of classical cohomologies.

2.3.1. Computing the cohomology with support. We consider an open immersion j : X — X. Let
X\ X = D. Assume that there exists an invertible sheaf &' (—D) and a morphism Og(—D) — Ox
whose image is an ideal .# which defines D (in other words, D is a locally principal subscheme). Let
Z be in D(Ox m). We choose an object .F € D(Ox g) such that j*# = .#. We let 7 (—nD) =
F Q¢ Ox(—D)®™. This notation may be slightly non standard when D is not a Cartier divisor.
We have maps .Z (—(n + 1)D) — .% (—nD) forming an inverse system. We recall that

li7rln?(—nD) = Cone(H F(—nD) — H?(—nD))[l]

where the map sends (my,), to (my, — Mpt1)n-

Proposition 2.3.2. Assume that .F is pseudo-coherent. In D(Ox m), we have a canonical iso-
morphism

HF =lim Z(—nD).
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Proof. We first construct a canonical map: ji.# — lim,, % (—nD). By adjunction, this amounts to
a map: . — j*lim, .#(—nD). Since j* commutes with limits, and since lim,, j*%(-nD) = .Z,
the canonical map is induced by the identity of .%.

We now reduce to some local computations. We may assume that X = Spec A and that
X = Spec A[1/f].

We have a map Spec A[1/f] = A[X]/(Xf —1) < Spec A[X] — Spec A. Let M be a pseudo-
coherent object of D((A[1/f], A[1/f])m) and let M be a pseudo-coherent object in D((A, A)m) such
that M @4 4)g (A[L/f], A[1/f])m = M. By definition ([CSB], Lecture VIII) jiM = M ®(a[x],4)g
A((X71))/A[X]. Moreover, it is true that

M =M @4 1) AIX]/ (X[ = 1) ®arx),0)a A(X 1)) /ALX].
Since M is pseudo-coherent, we find that

M ® 4,49 AU(X))/AIX] = M ®4,4)q A[X X = H MX™"=M[X X"

Therefore,

aM

M @4 A(X™H)/AIX] @ax) AIX]/(Xf = 1)
= cone(M[[X xS WX X[
O

Remark 2.3.3. If .Z is a coherent sheaf over X, then it admits an extension .# to a coherent sheaf
over X, and .# is pseudo-coherent (see [Sta22], TAG 0G41). Thus, the proposition applies in this
setting.

Corollary 2.3.4. Under the assumptions ofproposition we have RI'(X, 51.%) = lim,, R[(X, ?@ﬁ)—(
Ox(—nD)).
Proof. We have:

RI(X, j1.7)

RI'(X,lim.Z ®¢, Ox(—nD))
= lmRI(X,Z ®¢, Ox(—nD))
O

Proposition 2.3.5. Assume that S = Spec A with A an artinian ring. Assume that F is a
coherent sheaf and assume that X is proper. We let .9 be the ideal of D. Then H(X, j.F) =
lim,, H (X, #".%).

Remark 2.3.6. This is Hartshorne’s definition of cohomology with support ([Har72]).

Proof. We first claim that the natural map lim,, #(—nD) — lim, #".Z is a quasi-isomorphism.
This is a local question so we can assume .# is generated by an element f € 05 = A and that %
corresponds to a finite type A-module M. The map between inverse systems writes:

M—L st s m
]
72M M M

The cone is given by (lim,, M[f"])[1] where M[f™"] is the submodule of M of elements annihilated
by f™ and the transition maps are given by multiplication by f. As colim, M[f"] is a finite type
A-module (being a submodule of M), we deduce that M[f"] = M[f"T!] for all n big enough. This
implies that {M[f™]}, is an essentially zero inverse system and so its limit is zero. We deduce that
RI(X,/1.#) = RI(X,lim, #".%). Moreover, the system {H (X, #".%)}, satisfies the Mittag-
Leffler property (since it is a system of finite A-modules), hence H(X, j,.%) = lim,, HY(X, #".%).

O
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2.3.7. Computing direct images. We now proceed to compute direct images. We consider an open
immersion j : X — X. Let X \ X = D. We assume that D is a locally principal subscheme,
whose ideal is the image of a map O (—D) — Ox for an invertible sheaf &g (—D). Let & be in
D(Ox m). We choose an object . € D(Ox g) such that j*F = .7.

Proposition 2.3.8. Assume that .7 is discrete. In D(Ox m), we have a canonical isomorphism

joF = colim,.Z (nD).
Proof. We first construct a map colim,,.Z (nD) — j,.%#. By adjunction this boils down to a map
j*colim,.Z (nD) — .Z. Since j* commutes with colimits, and j*.7 (nD) = .%, this map is simply
induced by the identity of .%. We reduce to compute that this map is an isomorphism in the local
case. For a (discrete) module M over a ring A and f € A, we have M ®4 A[l/f] = colimy ¢ M.
We use that if M is discrete the (usual) tensor product M ®4 A[1/f] is solid in D(A[1/f]m). O

Corollary 2.3.9. We have RI'(X, j,.#) = colim, RT'(X, .Z (nD)).
Proof. As X is quasi-separated, this is a consequence of [Sta22], TAG 01FF. O

2.3.10. Computing the cohomology with partial support. We consider an open immersion X — X
of finite type schemes over Spec Z. We assume that X \ X = D is the union D = D, U D_ of two
locally principal subschemes. Let % be a coherent sheaf on X with restriction .% to X.

Corollary 2.3.11. We have:

RTp_ p,(X,#) = colim,, > lirgoRF(X,§(n+D+—n,D,))
RIp, p (X,#) = limocolimn+20RF(X,?(n+D+ —n_D_))

Proof. Consider the chain of open immersions X Y X\Dy 75 X. Then J4 it F = colim,, F(nyDy)
and therefore jy ,j_ 1. = lim, >¢colim,, >0.% (ny Dy —n_D_). Consider the chain of open im-

mersions X = X \ D_ 5 X. Then (iy),.7 = colim,,, #(nyDy). Since (i_); commutes with
colimit, we deduce that i_ iy % = colim,  >olim,_>¢ F(nyDy —n_D_). We then take coho-
mology and use that cohomology commutes with projective and inductive limits for quasi-compact
and quasi-separated schemes. O

2.3.12. Action of a correspondence. We consider a dynamic compactification C = (C, X, py, p2, D4, D_)
of a correspondence (C, X, p1,pa). We continue to assume that X\ X = D is the union D = D, UD_

of two locally principal subschemes. We also assume that we have a cohomological correspondence

T : p5.F — p|.F where .Z is a coherent sheaf over X. We let . be an extension to a coherent
sheaf on X.

Proposition 2.3.13. There exists n > 0 and a map in D(O¢ m)

T: 55 F (-nD_) - P F(nDy)
which induces the map T : p5.F — p\.F after restricting to C.
Proof. Let jo : C — C be the open immersion, with complement Do = ptD, + psD_. Since
Jeps = phi% and jEp) = pij% (recall that j% = jy and j& = ji), the map T is equivalently a
map:

T:jensF = jen 7

or a map colim,>op5-Z (nD¢c) — colim,>op}Z (nD¢) (using that p5.# and py.% are discrete).
We deduce a map p5.% — colimnzoﬁ!lﬁ(nDc). Since p5.# is pseudo coherent, this map factors

through a map p3.# — p4.Z (nD¢) for n large enough. Now, since nD¢ = npfDy + npsD_, if we
tensor by Os(—npsD_) and use the projection formula, we deduce the claim. O

The following corollary expresses a certain continuity property of the map T¢ constructed in

proposition 2:2.10]
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Corollary 2.3.14. Assume that we have maps p5O0x(Dy) — ptOx(Dy) and p5Ox(—D-) —
pyO%x(—D_). For all ki, k_ >0 and n as in proposition the cohomological correspondence
T induces maps:

RF(X,?(—HD_ — k_D_ + k+D+)) — RF(X,?(TLD_'_ — k_D_ + k+D+))

which induce, after passing to the limit and colimit as in corollary|2.3.11), the map Te of proposition
2210

Proof. We have maps p50x (kD — k_-D_) — pjOx(k+Dy — k_-D_). We simply twist the
cohomological correspondence of proposition 2.3.13] to obtain the desired map in cohomology. [

2.4. Ordinary part. We give an abstract definition of the ordinary part of a complex acted on
by endomorphisms, and apply this to cohomology with partial support.

2.4.1. Ordinary part of a complex. Let M € D(Am). Let T be an operator acting on M so that
we can view M as an object of D((A[T], A)m).

Definition 2.4.2. The ordinary part M € D(A[T, T~ '\m) of M is defined by the formula
Mord = M ®(A[T],A) A[T, Tﬁl].,

Let us explain that M°"? is the correct object in the cases of interest.

Lemma 2.4.3. Assume that A is an artinian local ring and that M is a bounded complex of finite

A-modules equipped with an action of an operator T. There is a unique direct sum decomposition
M = M° 4 @ Mo where M is an A[[T]]-module.

Proof. We consider the algebra B generated by T in End(M). This is a finite A-algebra. It splits
into a product of local A-algebras, B = [[, B;. We have idempotents e; attached to each B; and
we let M; = e; M. We now distinguish two cases:

(1) If T € mp,, then there exist n such that 7™ = 0. It follows that M; is in D((A[[T]], A)m)-
Since A[[T]] @7y, 4)g AT, T~ ']m = 0, we deduce that M = 0.

(2) If T ¢ mp,, then M, is an object of the classical derived category D(A[T,T~1]) and we
can view it as a discrete object of D(A[T, T~ '|m), so M™¢ = M.

O

We now discuss certain situations where M is a colimit or a limit of objects.

Lemma 2.4.4. Assume that M = colim;crlimje s M; ; in D(Am) where I is a filtered category
and J is a cofiltered category. We assume that an endomorphism T acts on M and that the action
is induced by actions on each M, ;.
(1) We have M°™* = colime limje y M5
(2) Assume that I and J are the natural numbers Zso. Assume that there are maps T’ :
M; ; — M;_1 41 so that the following diagrams commute:

T/
My jo1 —— M; ;1 M; ji1 ——— M1
TT/ TT/ l l
T/
M j ——— Mit1, M, j ¢——— Miy1j1

and moreover such that T is the composition
Mi,j — Mi+1,j — Mi,j+1 — Mz,j
Then M°T4 = M{’;d for any i, j.
(3) Assume that each M; ; is a bounded complex of finite A-modules and that A is artinian.
Then M = M°"4 @ M™" 4 where M"™°"¢ is an A[[T]]-module.
Proof. We have that M = colim;e; limjey M; ; in D((A[T], A)m). Since — ®@(air), 4 AT T |m
commutes with colim and lim, we deduce that M°"? = colim;e rlimjey Mi‘”;d. Under the fac-

torization assumption, we see that the maps in the formula M°™¢ = colim;e rlimje s M{j}d are
quasi-isomorphism. The last point follows from lemma [2.4.3 O
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Definition 2.4.5. Let M, N € D(Am). A map T : M — N is said to have finite rank if it has a
factorization M — C' — N where C' is a complex whose cohomology groups are finite A-modules.

Lemma 2.4.6. Let T : M — M be a finite rank endomorphism. Assume that A is an Artinian
local ring. Then M°"® ¢ D(Am) is a complex whose cohomology groups are finite A-modules.

Proof. Let M — C — M be a factorization of T, where C' is a complex with finite cohomology.
We can also think of 7" as an endomorphism of C' by composing the arrows of the factorization of
T. Tt is clear that the induced map M™% — C°"? is a quasi-isomorphism. But H?(C°") is a direct
factor of H(C') by the above discussion. O

2.5. Ordinary part of cohomology. We let (C, X, p1,p2) be a correspondence. We recall that
all schemes are over S = Spec A. We let .# be a coherent sheaf over X. We let T : p§.% — p|.#
be a cohomological correspondence. We assume that there exists a strict dynamic compactification
C= (07X7ﬁ17§27D+3D—)'
Theorem 2.5.1. (1) The cohomology groups RI'p, p_ (X,.Z)°rd and Rl'p_ p, (X,.Z)°rd are
canonically quasi-isomorphic.
(2) If A is artinian, they are represented by bounded complexes of finite A-modules.
(3) If C" = (C", X', p},p5, D!, D) — C is a map of strict dynamic compactifications, there
are canonical quasi-isomorphisms:
Rlp, p (X, Z)"" = Rlp, p (X',.7)"
and - -
Rlp_p, (X, )" = Rlp p (X', 7).

The theorem implies that the ordinary cohomology depends only on the data (C, X, p1, p2) (recall
that the category of strict dynamic compactifications is cofiltered by lemma [2.1.31), the sheaf .7
and the cohomological correspondence T. We simply denote it by RT'(X,.%)“ 0",

2.5.2. Proof of the first two points. We first improve on the results of section[2.3.12] By proposition
2.2.11) and lemma [2.1.29] we can assume that D, and D_ are locally principal subschemes.

Lemma 2.5.3. After changing Dy and D_ by a common multiple nDy and nD_ with n € Z~y,
there is an integer m such for all ky > m and k_ > m, the map T : p5.F — p'\.F extends to a
map:

T:p5F(kyDy —k_D_)—= 5. Z(k Dy —k_D_)

which moreover factors as:

557 (ks + 1)Dy —k_D_)

pF(kyDy — (k- +1)D_)

Proof. By proposition there exists n > 0 such that the cohomological correspondence T
factors into a map
T :psF(—nD_) — p\.Z (nDy).

By lemma[2.1.17] there exists 0 < p < ¢ € Z and maps: p50x (¢D4) — piOx(pDy), p5Ox(—pD_) —
pTOx(¢D_) we can twist the cohomological correspondence to obtain maps

T:psF (k1qDy — (n+pk_)D_) = piZ ((pky +n)Dy — qk_D_)
There exists kg € Z>g such that n+ (k+ 1)p < kq for all k > ko. For all k4, k_ > ko, we thus get
maps:

T:psF ((ky +1)gDy —k_gD_) = p1.F (kyqDy — (k- +1)gD-)
We can now replace Dy and D_ by gD; and gD_. ([l
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Proposition 2.5.4. We have
Rlp, p (X, Z)" ~RI'p_p (X,7)" ~RI(X,Z(kyDy — k_D_))"

forany ky > m and k_ > m. In particular, if A is artinian the ordinary cohomology is represented
by a bounded complex of finite A-modules.

Remark 2.5.5. This proposition can be viewed as giving a control theorem, identifying the ordinary
cohomology with the cohomology of a sheaf over X with bounded zeros and poles. See section
for more statements in this direction.

Proof. We have a commutative diagram:

RINX,Z(kyDy —k_D_)) ——RI'(X, Z((ky +1)Dy —k_D_))

]

RIX, Z (ks Dy — (k- +1)D_)) —— RI'(X, Z ((ky + 1)D4 — (k_ +1)D_))

where horizontal and vertical maps are induced by allowing more poles along Dy or imposing
less zeros along D_. The diagonal map (called by abuse of notation T') is the map given by the
factorization of T' as given by lemma [2.5.3] The endomorphism 7' of each of the complexes is
given by going around the diagram once. On the ordinary part, each of the endomorphism 7" of
the complex is a quasi-isomorphism, implying that all vertical and horizontal maps are also quasi-
isomorphisms. The final statement follows from the property that RT'(X,.Z (k; Dy —k_D_)) is a
bounded complex of finite A-modules and that RT'(X, Z (ky Dy —k_D_))°"? is a direct factor by
lemma 2441 O

2.5.6. Independence on the choice of a dynamic compactification. We assume that we have two
strict dynamic compactifications C = (C, X,p1,p2, D1+, D_) and C' = (C', X', p}, Ph, D',,D").
By proposition 2:2.11] we are free to replace C by another strict dynamic correspondence D,
admitting a strict map D — C, and similarly for C’. By lemma we can therefore assume that
(C,X,p1,p2) = (C', X', py,Ph). We can therefore consider three strict dynamic correspondences
(C, X,p1,p2) with divisors (D, D_), (D!y,D"), (D, uUD,,D" UD_). This reduces us to consider
the case that D', O Dy and D’ D D_. We can first treat the case that D', © Dy and D’ = D_
and then the case D, = D, and D’ C D_. We therefore concentrate on the case D', O D, and
D’ = D_ as the other is similar. We can also assume all divisors are Cartier by lemma and
proposition There exists a,b > 0 such that D’ < aD, +bD_. Proposition applies for
some m that works simultaneously for C = (C, X, p1,p2, D4+, D_) and C' = (C, X, p1,p2, D'y, D_)
(we also allow ourselves to replace D_, D, and D', be a multiple).
We have maps

RI(X, Z(k Dy —k_D_)) = RI(X, Z(k D', —k_D_))

— RINX, Z(aky Dy — (k- —bky)D_)) — RF(X',?(al@_DQr — (k- —bky)D_))
Taking k1 > m and k— > m + bk, and applying the ordinary projector, all the above map
become quasi-isomorphisms.

2.6. Base change and perfect complexes. In this section, we consider base change formulas
for the ordinary cohomology and use it to investigate its structure.

2.6.1. First base change formula. Let (C, X, p1,p2) be a correspondence admitting a strict dynam-
ical compactification. Let .# be a coherent sheaf over X. Let T : p5.% — p|.% be a cohomological
correspondence.

We suppose that S = Spec A. Let M be an A-module of finite type. Let p : X — S.
We assume that .Z is A-flat. We get a map T ®@ 1 : p5(F @4 M) — pi(F ®a M), using that
p5(F)RL M = p5(F ®a M) and that we have a map p} (F)R4 M — p|(F @4 M) by the projection
formula. Indeed, by adjunction such a map is equivalent to a map (py )i(p}(F) R4 M) — (F @4 M)
and we can use the projection formula to see that (p1)i1(p} (%) ®@% M) = ((p1)p}F) @5 M and we
have a map given by adjunction (p;)ip}.# — .Z.
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Proposition 2.6.2. Under the assumptions above, we have the following base change formula:
RI(X,.7)¢~"d @k M = RI(X,.7 @4 M)C~o"4,

Remark 2.6.3. Our assumption that % is A-flat is only used to make sure that . % ® 4 M is again a
coherent sheaf (and in particular is bounded below) so that RI'(X,.%# ®4 M)¢ "% is a well defined
notion. The assumption that M is a discrete A-module is crucial.

Proof. We take a strict dynamic compactification (C, X, p1, p2, D4, D_). We can even assume that
D, and D_ are locally principal subschemes. We will first prove that

Rlp, p (X, 7)®5 M =RIp, p (X, F @4 M).

The proposition follows by applying ordinary projectors. We have a sequence of map X 5 X \

D, 5% We let p: X — S be the projection. By the projection formula: p,((j4)+(j_)1%) @4
M = p,((j4)«(J=)1(F) @6, p*M). We now need to see that

()G (F) ®og "M = (1) ((G)(F) oy, 550" M).

This is a consequence of lemma[2.6.4] below, noting that the map j is affine. We then use one more
time the projection formula to deduce that (j1).((j-)i1(F) ®6x\p, M) = (1)« ((-)1(F ®oy
p*M). O

Lemma 2.6.4. Let A — B be a morphism of finite type Z-algebras. Let M € D(A) be a complex
of discrete A-modules and let N € D(Bm). Then N ®ﬁ. M=N ®é. (Bm @5 M).

Proof. We have to see that N ®ﬁ. M is already B-solid. In principle this is only a complex of B-
modules which is A-solid. We can write M as a colimit of bounded above complexes. This reduces
us to the case that M is bounded above. We can resolve M by a complex of free A-modules. We
thus reduce to the case that IV is a solid B-module and M = A% is a free A-module. The claim
now follows from the fact that if N is a solid B-module then N¥7 is a solid B-module (the category
of solid B-modules is stable under colimits inside condensed B-modules). O

2.6.5. Construction of perfect compleres. We now show that under certain assumptions, the ordi-
nary cohomology can actually be represented by a perfect complex.

Lemma 2.6.6. Let A be a local ring. Let M° Ly VR V2 complex of finite free A-modules.
Assume that M® @4 Ajma — M' @4 A/ma — M? @4 A/my is exact. Then M° — M*' — M? is
exact, moreover ker(dy) is a direct factor of M°, Im(dy) is a direct factor of My and Im(d;) is a
direct factor of M?.

Proof. We take elements 1, - - - , z,, in M with the property that do(x1), - - , do(z,) reduce modulo
my to a basis of ker(dy ® A/my4). We get a commutative diagram:

d d
MO 2 pt Ly M2

7

An
where the i-th vector e; of the canonical basis of A™ is mapped to x;. Since we can find ele-
ments yi, -+, ypr of M with the property that do(z1),- -+ ,do(xy), Y1, ,yn reduce to a basis of

M*'/m4. We consider the map A" @& A" — M*, sending the i-the canonical basis vector of A to
do(z;) and the j-th canonical basis vector of A" to ;. This map induces an isomorphism modulo
my4. By applying Nakayama’s lemma, we deduce that the map is an isomorphism. It follows that
A™ injects in M! and is a direct factor. The map M!/A™ — M? induces an injective map modulo
m4. By repeating the same argument as before, we deduce that M?!/A™ injects as a direct factor
in M2. If follows that A™ = ker(d;). Since A" C Im(dp), we deduce that Im(dg) = ker(d;). The
map M — Im(dp) has a splitting given by A" ~ Im(dy) — M, so ker(dp) is a direct factor of
MO, O
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Lemma 2.6.7. Let A be a local ring. Let M® be a pseudo-coherent object of the usual derived
category D(A). We assume that M® @% A/my is a perfect complex of amplitude [a,b]. Then M*
is a perfect complex of amplitude [a,b].

Proof. We can represent M*® by a complex in C~(A) of finite free A-modules. We consider the
truncation M2, ;. The lemma shows that this is a perfect complex, quasi-isomorphic to
Me*. - O

Let (C, X, p1,p2) be a correspondence admitting a strict dynamical compactification. Let .% be
a coherent sheaf over X. Let T : p5.# — p|.Z be a cohomological correspondence. We suppose
that S = Spec A is an artinian local ring. We assume that .% is A-flat.

Theorem 2.6.8. Under the above assumptions, the ordinary cohomology RI'(X,.7)C~°" is rep-
resented by a perfect complex of (discrete) A-modules.

Proof. By lemma [2.6.7 it suffices to prove that RI'(X,. %)~ @& A/m, is a bounded complex.
This follows from the base change formula proposition [2.6.2] and theorem [2.5.1] O

2.6.9. Group action and base change. Let (C, X, p1,p2) be a correspondence admitting a strict
dynamic compactification. Let .# be a coherent sheaf over X. Let T : p5.% — p|.Z be a cohomo-
logical correspondence.

Let G be a finite abelian group acting linearly on .%. We assume that the cohomological
correspondence T : p5.% — p!lf commutes with the G-action (in other words, this is a map
in D(Oc[G)m). We suppose that S = Spec A and that .# is flat as an A[G]-module. We let
I C A[G] be the augmentation ideal (the kernel of the augmentation map A[G] — A). We let
F|lg = F @a16) A- We deduce a map T : p5.% /I — pF/lg.

Under all these assumptions, we prove:

Theorem 2.6.10. The ordinary cohomology is an object of D(A[G]), and we have the special-
ization formula RI'(X,.%)¢—ord ®ﬁ[G] A = RINX,.Z/Ig)¢~°"%. If A is an artinian ring, then
RI(X, #)¢~°r js a perfect complex of A[G]-modules.

Proof. By proposition we have that R['(X,.#)¢—ord ®ﬁ[G] A = RINX, 7 /1g)¢~ 9. The
final claim follows from theorem as then A[G] is a product of local rings. O

We discuss briefly the projectivity assumption that the sheaf % is A[G]-flat.

Lemma 2.6.11. Letr:Y — X be a finite étale cover with group G, then r,.Oy is a finite locally
projective sheaf of Ox|G)-module. If furthermore X — Spec A is flat, then r, Oy if A|G]-flat.

Proof. We can suppose X = Spec B and Y = Spec C are affine. We have an isomorphism
CopC =C[G], c®cd — (g(c))gec (this isomorphism is G-equivariant for the action of G on
the first factor). We note that C[G] is a projective B[G]-module since C' is a projective B-module.
There is a G-equivariant inclusion C — C ®p C, ¢ — c¢® 1. Conversely, we can choose an element
¢o in C such that Tr(cp) = 1 since C' is finite étale over B. The G-equivariant map C ®p C — C,
(c® ) cTr(dep) is a section to C — C ® C. O

2.6.12. Second base change formula. We assume that (C, X, p1,p2) is a correspondence admitting
a strict dynamic compactification. We let S = Spec A’ — S = Spec A be a finite morphism.
We let X/ = X xg S’ and similarly for all spaces and morphisms. We deduce that (C, X', p, p5)
admits a strict dynamic compactification (take the base change via S’ — S of a strict dynamic
compactification of (C, X, p1,p2)). Let .Z be a coherent sheaf over X, and T : p5.# — p|.Z% be
a cohomological correspondence. We assume that X and S’ are tor independent and that % is
A-flat. We have a cohomological correspondence: T" : (ph)*F' — (p})'.F' deduced by base change
(we use here [CSb], prop. 11.4 and the tor-independence of X and S”).

Proposition 2.6.13. Under the above assumptions we have the base change formula:

RF(X7L¢)C—OTd ®ﬁ Al — RF(X/7 9/)0/_07“61
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Proof. We prove that

Rlp, p (X, #) @5 A" =RTp, p (X', 7).
The proposition follows by applying ordinary projectors. As in the proof of proposition 2.6.2} we
have that Rl'p, p_ (X, F)hk A = RI'p, p_ (X, ZF®% A’). So we need to see that F @4 A’ = 7'
Note that ¥’ = F# ®é>x Ox and Oxr = Ox @4 A’ (this last tensor product is not derived by
definition of X’ as the underived fiber product). By tor independence Ox: = Ox @4 A’ and so we
deduce that # @4 A’ = 7' O

2.7. Duality. Let p : X — S be a separated morphism of finite type schemes over Z. We let
Ds = RHom(—, 0s) and Dy = RHom(—, p'Os). The following is a restatement of the adjunction
property between p' and p.

Theorem 2.7.1 ([CSb], Lecture XI). Let .# € D(Ox m). We have p,Dx(F) = Dg(p.F).

Consider an open immersion X — X. We let X \ X = D; U Dy where Dy, Dy are closed
subschemes.

Proposition 2.7.2. Let .7 be a locally free sheaf over X. Assume that X — S is smooth and that
Z extends to a locally free sheaf F over X . Assume also that Dy and Do are Cartier divisors.
Finally, assume that S = Spec A and that X is proper. Then

RHOm(RFD1,77D2Y+ (X, 9),14) = R’FDIHer?,f(X’ Dx(ﬁ))

Proof. We consider the inclusions: X B x \ Dy 54X By theorem , we have to prove that

Dx((G1)1(2)«F) = (j1)«(j2)1 Dx (F). First of all, by theorem we have D ((j1)i(j2)+F) =
(J1)+Dx\p, ((J2)«F). We therefore reduce to the case that D; = (). We let jo = j : X — X and

we need to prove that Dy (j,.%) = iDx(.%#). We assume that X \ X is V(.#) for an invertible
sheaf .#. We have j,.# = colim.# ~".%. We deduce that

Dx(j.#) = RHom(j..Z,p Os)
= lim .#"RHom(Z, i Os)
= limlim #"RHom(Z, (5 Os).,.,,)

In the last equation, (p'Cs),._,, is the stupid truncation ([Sta22], TAG 0018). Since RHom(.Z, (5'Os),.,,)
is pseudo-coherent, by proposition 2.3.2|, we have lim,, .#"RHom(.Z, (p' 0s)o.,,) = jiRHom(.7, (p' 05)ocr)
Since p is smooth, (p!ﬁS)USm = p'Og for m large enough.

O

We now assume that we have a correspondence (C, X, p1,p2) where C' and X are smooth over
S and that .Z is a locally free sheaf of finite rank. We let T : p5.#% — p|.Z be a cohomological
correspondence.

Proposition 2.7.3. Applying Do to T we obtain a transpose of the cohomological correspondence:
T": piDx(F) = pyDx (7).
Proof. We first check that D¢ (p5.%) = phDx (F). We have:
Dc(ps#) = RHom(psZ,pyp'Os)
= php'Os @ (p5F)"
= mp'ose7Y)
= pyDx(F)
We next check that Dc(p}.%) = piDx(F). It follows from the assumption that C' and X are
smooth over S that p} 0y is an invertible object.
Do(py.#) = RHom(p\.Z,p\p'Os)
= RHom(p\0x ® piF,pOx @ pip' Os)
= RHom(p}.#,pip'Os)
= piDx(¥)



23

We let C* be the transpose of C.

Theorem 2.7.4. Let (C,X,p1,p2) be a correspondence with C' and X smooth over S = Spec A.
We assume that it admits a strict dynamical compactiﬁcation and that A is artinian. Let F be a
locally free sheaf of finite rank and T : p5.F — p|.F be a cohomological correspondence. Then we
have a perfect pairing:

RI(X, #)°~ x RI(X, Dx (Z))¢ % - A
This precisely means that
RI(X,.7)° "¢ = RHom(RT'(X, Dx (Z))¢ ~°"%, A)

and
RI'(X, Dx(#))¢ ~°"¢ = RHom(RI'(X,.%)° =", A).

Proof. We can first assume that (C, X, p1, p2) admits a dynamical compactification (C,X,p1,p2, Dy, D_)
with the property that .# extends to a locally free sheaf .% and such that D, and D_ are Cartier di-

visors (by lemmau 2.1.6] lemma[2.1.12|and lemma/|2.1.29)). We first apply proposmlonu 2.7.2] to obtain
RHom(RI'p_ p, (X, 7),A) =RIp: pr (X, DX( )) where DY, = D_ and D' = D,. By proposi-

tion u 3l this isomorphism is equlvarlant for the action of C' and C* (we call T the corresponding
endomorphism). By lemma the complexes R['p_ p, (X, %) and RI'pt pr (X, Dx (%)) have
a decomposition into an orinary and a non-ordinary part. Moreover, the non-ordinary part is an
A[[T]]-module. Since A[T,T~'|m ®@apr) A[[T]] = 0 it follows easily that passing to the ordinary
part gives
RI(X,.7)° "¢ = RHom(RT (X, Dx (Z))¢ ~°"%, A).
O

2.8. Iterating the correspondence. We let (C, X, p1,p2) be a correspondence. In this sec-
tion we will consider iteration of the correspondence and prove that the ordinary part of co-
homology can actually be realized in the cohomology of the iterated correspondence. We let

ch =, pgl) = p; and C® = X. By induction, we define (C("),C("*l),p(ln),pgn)). We let
cn = g1 X (=1 o) pnD) Cc(n=1_ We let pg") be the projection on the first factor and

1 s sP2
p&") be the projection on the second factor.
Lemma 2.8.1. Assume that (C, X, p1,p2) admits a dynamic (resp. strict dynamic, resp. compact
dynamic) compactification. Then

(™, 0= M piv)

admits a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.

Proof. We let (C, X, p1, P2, Dy, D_) be a dynamic compactification. We define inductively

cm = gn=1 X,(n—l) [Cn=2) p(n =D cn=1,

We assume that (C(, (=1 D(" D D" V) is a (strict) dynamic compactification and we prove
that (C(+1), C("),D ) (n)) is a dynamic compactification. We define D(n) (p g ))*D(f Y and
D™ = (pén))*D(fnfl) We see that (p (")) Df D¢ (P (n))*D(" Y implies that

) @5y oY < () () i

(,(n+1)>*(,(n))*D(n—1) _ (ﬁgﬂrl)) (f(")) DS:L . we deduce that (pén+1))*D(n) C (n+1))*D(n).

(P ("+1))*D(”) c (p én+1))*D£n).

Since
We proceed similarly to prove that One checks easily that if
(C, X, p1,p2, Dy, D_) is strict dynamic or compact dynamic, the same procedure yields a strict
dynamic or compact dynamic compactification of (C, (=1 pgn)7 pén)). O
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Let T : p5Ox — p|Ox be a cohomological correspondence. We assume that p; and p, are
flat morphisms. For any n there is a natural way to construct a cohomological correspondence
T, : (pgn)) Ocin-1) — (p1 ) Ocn-1y. Indeed, consider a diagram:

C(n+1)
péy Y‘l)
cm) cm)
y w‘ V p(ln)
C(n—l) C(n—l) C(n—l)

We assume that we have constructed T, : (pgn))*ﬁc( -y = (p1 ) Ocn-1) and we proceed to con-

struct Ty, 1. We can take Tj,11 = (pgnﬂ))*Tn : (pénﬂ)) (102 ) Cpn-1) — (pgn+1)) (pl ) Opin-1y.

We have (pém_l)) (p ("))*ﬁc<n ) = (pgnﬂ))*ﬁcm). Moreover, by flat base change ([CSb], Prop.
11.4) (pgnﬂ)) (p (n)) Octn-1 = (pgnﬂ))!ﬁ’c(n). Therefore, by theorem it makes sense to con-
sider RD(C'™ | O pm) )C(Hl)*‘”d. To simplify notation, let us put R[(C™ | Opm) )C("H)*‘"d = RI,.

Proposition 2.8.2. We have a commutative diagram:

e
le

where all maps are quasi-isomorphisms, so that for any n > 0,

N
e

/s\
\/

RF(C(TL), ﬁc(n))C(nJrl)ford ~ RF(X, ﬁX)C’ford.

Proof. Let us denote by RI"), = RFDSF”),D(_") (C™) | Oaeny). We will prove that the following diagram
is commutative:

RI", e
w!

\/

. RIY
. RIY,
Y
RI, RIY,
The map T, is by definition obtained by going right up via (ﬁénﬂ))* : RI', — RI", ., and after
_(n+l))

tracing right down via (p; RI', ., — RI,. Thus, if we can prove the commutativity, we
conclude. The commutativity of the diagram b01ls down to the property that the following squares
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commutes:
(2.8.A) Ry, R
J(p““)' J@&“”)z
R P Ry

This commutativity will be a consequence of the proper base change identity

@S ) = )8

(n) (n)
Here are some details. We consider the open immersions C'(") =el() \DSZ‘) ", &), We have
maps:

B @Y G N O —— G G @) 08 O

@Y NG N Oy —— GG (™)1 O o

By construction, the following square commutes (where the second horizontal maps are adjunc-
tion):

n n T”' n n
@SN O — TN 0T O ——— O

B (POt —— (B (BN () O pin1) —— i

We therefore deduce that the following diagram commutes:

RT 0 i (C, (o1 (05" )* O

L (C, (SN (™) O )

RI, RI,

RT o)

and this is equivalent to the commutative of diagram O

2.9. The spectral sequence associated to a filtration. In this section, we explain how we can
associate to a filtration on a space a spectral sequence, called the Cousin spectral sequence. This
is a variation of [Har66], IV, p. 227.

2.9.1. Generalities on localization sequences. We apply here [CSal, lecture V, to our particular
setting. Let X = Spec R be an affine scheme. Let I be an ideal. Let U = X \ V(I). Let
j:U —=> X. Weleti:Z — X be the closed complement of U. The closed subset Z can be
viewed as a closed subscheme of X with underlying algebra of function R/J for the choice of some
ideal J satisfying v/J = v/I. The closed subset Z can also be viewed as a closed subset of the
locale of D(Rm), which means that the algebra of functions on Z is the idempotent Rg-algebra
R! = lim,, R/I™ (see lemma [2.9.2 below). When we think of Z as a closed subset of the locale,
equipped with the idempotent algebra RI we denote it Z.

Lemma 2.9.2. The solid R-algebra RT = lim,, R/I™ is an idempotent algebra in D(Rpm).
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Proof. In this proof, all tensor products are derived and are in D(Rm). We first assume that
I is generated by one element f. We have an exact sequence: 0 — R[[X]] = R[[X]] —
R' — 0. Since R[[X]] ®r R[[X']] = R[X,X']], we deduce that R ®r R[[X]] = R'[X]].
We finally deduce that Rl @r RT = R!. We now suppose that I = (f1,---,f). It suf-
fices to show that RU1fr) = ®f:1Rfl as the later is idempotent. We argue by induction
on r. Assume that RU1 - fr-1) = ®Z;11]:2f'i. This implies that RUrfra1) g g compact ob-
ject in D(Rm), represented by a bounded complex, whose terms are of the form RY. We de-
duce that RUv»fr-1) @p R[[X]] = RUv/r-)[[X]]. This implies that R /-1 @p R+ =

[R(fl,“wfw-—l)[[X]] X— f7 R(f1, ’fr—l)[[XH:I — R(fl,"wf'r‘). O
We let i : Z — X be the “closed immersion” of the locale. This means that we have a functor

i,i* : D(Rm) — D(Rm), M — M ®p R', whose essential image we denote by D((R!, R)m). For a
module M € D(Rn), we get two localization sequences:

GiM — M — i, M5
iaM = M — M5
The functors 7j,,j', j* are part of our six functor formalism for the open immersion of schemes
U — X and have already been used a lot in this paper.
This globalizes. If i : Z < X is a closed subscheme of X, defined by a sheaf of ideals .#, and if

j : U — X is the open complement, then we have a closed subset of the locale of X 7 < X.
For any object .# € D(Ox m), we have two localization sequences:

T — F — i F +—>1
T = F g F S

Lemma 2.9.3. If .7 is pseudo-coherent, i,i*.F = lim,(F Q¢ Ox/I™) and RT(X,i,0*F) =
lim,, RF( ®(jx ﬁx/ﬂn)

Proof. By deﬁnition, 11" F = Flim,(Ox /.#™). We check that the natural map .Z ®lim,,(Ox /") —

lim, (Z Qg Ox/F™) is an isomorphism. We can reduce to the affine case. So X = Spec R and
#(X) = I and .F corresponds to a pseudo-coherent object M € D(Rpg). On the other hand, R!
is a compact object of D(Rm). For M = R’ for a set J, we deduce that R/ @z R! = (R!)”. Since
M can be represented by a bounded above complex, all whose terms are finite sums of objects of
the form R, the claim follows. O
Remark 2.9.4. This lemma compares to proposition Indeed, the triangle jij*% — F —
ivi *F T writes lim, " ® % —- % — lim, . @ Ox /9" H
2.9.5. The spectral sequence. We now let X be a scheme and we let Z_1 =0 C Zy C Z; C Zy C

- C X = Z; be a filtration by closed subschemes. We let ¢, : Z; — X. Let Uy = X \ Z; and

: Uy < X. We let RI(Z;,.7) be RT(X, (i1)42}.%). We have exact triangles: RT.(U;, #) —
RF(X,% — RI(Z;, F) 5 . We let RTo(Zi\ Zi1,Z) = RO(X, (o1 )1 (Gi—1)* (i) (i) *.5).
Lemma 2.9.6. We have that RFC(Zl\Zl_l,/) RI(X ( . ( ) G (Ji—1)*-F). We have the
following exact triangles:

RI'. (Zl \ Zl 1, F) = RF(Z[, F)— RF(
RI.(U;, Z) = RT.(Ui_1,.Z) — RT.(Z \Z LB

1) (-

Proof. We need to see that (j;—1)1(ji—1)* (i)« (22)* = (i1)+( 1)1(Ji—1)*. We consider the fol-
lowing Cartesian diagram:

+1
LF) =
+

UiNZ —— Uy

szll ljz1

7 —1 X



27

Since (i), = (), we have by proper base change, (i-1)* (). = (f_)* (). The identity
follows. The first triangle comes from the triangle (j;—1)1(ji—1)*(i)«(0)*F — (01)(i)*F —
(i)x(0)*F — (i1-1)s(i1-1)*F 3. The second triangle comes from the triangle : (j;)i(j;)*# —
G- (G- = (i) @) G (1) *F 5. 0

Theorem 2.9.7. Assume that F € D~ (Oxm). We have a spectral sequence: EP? = HET(Z, \
Zy 1, F) = HPH(X F).

Proof. Each of the cohomologies RI'¢(U;,.#) can be represented by a complex A? in D™ (Am)
of projective modules. This uses that X is qcgs. We have maps Aj |, — A , — --- — A%,
representing the maps R (Uy—1, F) — Rl (Ug—2, ¥) — --- = RI(X, F). By applying [Sta22],
TAG 014M, we deduce that we can replace A} by homotopic, bounded above complexes with the
property that A} — A?_, is a termwise split injection. This means that the complex A°® ; is filtered.
The spectral sequence we look for is just the spectral sequence of a filtered complex ([Sta22], TAG
014M). O

2.9.8. Action of a correspondence on the spectral sequence. Let (C, X, p1,p2) be a correspondence.
Let T : p5.# — p}.Z be a cohomological correspondence. Let Z | =0 C Zy C Z; C Zy C --- C
X = Z, be a filtration by closed subschemes on X.

Proposition 2.9.9. Assume that pi(Z;) C p5(Z;) for all 0 <1 < d (set theoretically). Then we
have an action of T on RT(Z;,.7), RT.(Uy, F)and RT, (Zl\Zl 1,.F) for all i, compatible with the
natural morphisms. The spectral sequence of theorem is T-equivariant.

Proof. We need to explain how we can attach to T" a map of triangles:

p5 ()it F p5F 5 ()« ()" F ——
| & |
PG T T (1) (i) (01)* F ——

We have that p3(U;) C pi(Ui). Let us write Cy, 1 = pi(U1) and Cu, 2 = p5(U1). Let joy, , -
Cu,x = X be the open immersions for k = 1,2. We have a chain of maps:

(jCUla)!jE'Ul,ngy - (jCUl,Q)!jéUl’gplly - (jCUlJ)!jE'Ul,lp!ly
We observe that thanks to the base change theorem we have: <jCUL»2)Ij6UZ ,05F = p5(Jihji#. On
the other hand, we claim that we have a map (joy, , )gjéUl)lp!lﬂ = (p1)' (1)« (j1)*Z. By adjunction

this map is equivalent to a map (pl)!(jCUl,l)!jéUb]p!ly = (J1)«(1)* & . Since (Pl)!(jcul,l)!jéwpif =
@)y (1) F for p) : Cy,.1 — Uy, this map is just given e co-unit of the adjunction

(P (P1)' (1) F for pi : Cuy,x — Ul this map is just given by th it of the adjuncti

(P)(p)) — Id. 0

2.10. Compact dynamic correspondences and finite rank operators. In this section we
investigate the case of compact dynamic correspondences.

Before we move on, let us briefly recall the definition of the cohomology with support in a closed
subset. If Y — Spec A is a scheme, i : Z — Y is a closed subscheme of Y, and if & € D(Oym),
we let R[z(Y,.Z) = RI(Z,i".%). We let i : Z — Y be the closed subset of the locale. We let
R, (Y, Z) =RI(Z,1'7)

Lemma 2.10.1. (1) We have a natural map RT'z(Y,.7) — R, (Y, 7).

(2) IfZCY' <y Y with Y open in'Y, then RI'z(Y,#) =RI'z(Y',j*%) and RI',(Y, F) =
RL (Y, j*7).

(3) Let ju : U = Y and jy : U — Y be open subsets. We assume that U C Z C U’
Y. Then we have natural maps: RI'(Y,(ju)j;#) — RIz(Y,#) — RIL(Y,.7)
RU(Y, (jur )it F).-

(4) If Z is proper and if F has coherent cohomology groups, RI'z(Y, %) has finite cohomology
groups.

-
%
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Proof For the first point, we have a factorization i : Z — Z 5SY. We deduce that there is a map
u i F = F (by adjunction this is glven by the identity i'.Z — u'i'.% ). The second point follows
immediately from the fact that j* = j'. For the third point, we just use the standard adjunctions
For the last point, we observe that if .%# has coherent cohomology groups, the same holds for i*.7
and one uses the finiteness of the cohomology of proper schemes. O

Lemma 2.10.2. Let X be a scheme and let Dy, D_, D', D" be closed subschemes. Assume that:

(1) D: CD,C D,
(2) D" CD_C D_.
Let F € D(Ox m). We have natural maps:

7 Y / ;o 7
RI'p, p (X, F)— RFX\(DZUDO_)(X\ D\, 7) = Rl'p, p (X, F)

a , (X F
RTp_p, (X, #) 2 RL o 5 (X ¥\ D, #) = Rl 0, (X,.F)

Proof. For the first line, we consider the composition of the following natural maps. The map
RI'p, p_ (X,Z) = RIyp_ (X\ D/, %) deduced from the map X\ D, — X, by applying lemma

2.2.71 The map Ry p_(X\ D/ "LF) = RFX\(DO s )()_(\ D', ,.7) obtained by applying lemma

2.10.1} The map RT'_ o . (X\ D’ . 7) = Rly pr (X\ D+, F) obtained by applying lemma
X\(D.uD_)

2.10.1} The map Rly pr (X\ D'\, F) =Ry p (X, F) — RFD;,DL (X,.7) obtained by applying

lemma [2.2.6/to the map X \ D/, — X\ D/,.
For the second line, we consider the composite of the following natural maps. The map

Rlp p, (X, %)= RI‘D 0(X\ D', ,.7) deduced by applying lemma/2.2.7|to the map X\ D/, — X.

The map RI'p_ (X\ D ZF) — RT X\(DO’ u5 )()_(\ D' ,.7) obtained by applying lemma [2.10.1

The map RI'_ o o (X\ D F) — Rlpr ¢(X\ D!, F) obtained by applying lemma [2.10.1
X\(D.uD_) 0

The natural map RIp (X Dﬁr,ﬁ) = RI'p (X,7) = RI'p py (X,.Z) obtained by lemma
2.2.6l O

Let (C, X,p1,p2) be a correspondence. Let T : p5.# — p}.% be a map in D(Ocm).

Proposition 2.10.3. Let C = (C, X, p1,p2, D4, D_) be a compact dynamic compactification. As-
sume that % has coherent cohomology groups, and that the map T extends to a map over a neigh-

borhood of C'\ ((ptD*) U (p5D_)) in C. Then the endomorphism T of proposition |2.2.10] has
finite rank (see definition .
Proof. We only consider the case of RT'p_ p, (X,.%). It suffices to show that the map RT's;p_ 520, (C,p5F) —

RIy:p_ prp, (C,pi.F) has finite rank.
By lemma [2.10.2] we deduce that we have the following factorization of this map:

RTpsp_ psp, (C,p5F) ————— RTp;p_ pip, (C,p1F)

J T

R . . (C\piD*,p5#Z)——RT_ . o C\pYD+,p1 7)

C\p3D_Up; D+ C\p3D_Up}; D+

By lemma [2.10.1} the complex RT"_ o (C\ ptD™*,p5.7) has finite cohomology. O
C\ps D_uUp; D+
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Proposition 2.10.4. Let (C, X, p1,p2, Dy, D_) and (C, X, py, P2, D', ,D") be two dynamic corre-

spondences. We assume that D, CD' C D', and D_ CD' C D' . Assume also that pyDy D p5D’,
and that p5D_ 2 py D’ . Then the following holds:

(1) The correspondences (C, X, p1,p2, Dy, D_), (C,X,p1,p2, D4, D), (C,X,p1,p2, D'y, D_),
(C,X,pl,pg,D+, D" are compact dynamic,

(2) Let C =C\piDyUpPsD_. Let T : p5.F — p\.F be a map. Then there are canonical maps
T:Rlp, p (X,#) = RIp, p (X,#) and T :Rl'p_ p (X,F) = Rlp p, (X, 7).

(3) We have the following diagrams:

RFD+7D (X,ﬁ)(*RFDJﬂDL(X,y)

i
RFDL,DJr(X,g) (;RFDli’D;(X,y)

where the horizontal maps and vertical maps are the maps given by lemma and go-
ing around in this diagram yields the map T of proposition |2.2.10 acting on the various
cohomology with support.

(4) After taking the ordinary part in the above diagrams, all maps become quasi-isomorphisms.

(5) We have canonical quasi-isomorphisms between RU'p, p_ (X, 7)°7°rd gnd RT'p_ Dy (X, F)C—ord,
RFDLHD— (X, ﬁ)cford and RFD_’D; (X, ﬁ)ciord, e

Proof. The first point is clear, for example p5D, C p5 D/, C pyD,. For the second point, we
consider the following composition:

T:RI'p, p_ (X,#)—=RI p3 D', ,p3 D (C,p5F) — RT *D+,p;DL(C_'7P!13?) —RIp, p (X, 7).
One proceeds similarly with RI'p: | D/, (X,.Z). The third and fourth point are clear. Let us prove
the last point. By lemma [2.10.2| we have a commutative diagram :

Rlp p, (X, 7) RTp_ pr, (X,.7)
X\D’ uD’ (X \D

_— \,

Rlp, p (X, F) Rlp, p (X, 7)

It follows that we can define an action of T on these 5 complexes using (2). On the ordinary part,
all spaces are quasi-isomorphic. O

2.11. Control theorems and change of support. In this section we want to investigate a
situation where we have both a strict dynamic and a compact dynamic correspondence and we
want to compare the ordinary cohomologies. The setting is the following. We consider three
dynamic correspondences (C, X, py, p2, Dy, D_), (C, X ,D1,D2, D!y, D) and (C_’,X,;ﬁl,ﬁ%Dl,D’l)
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. We assume that
D €D,C D, €D.C D.
D’ CD' D CD.CD.
Welet X = X\D,UD_ and X' = X\D,UD” and X" = X\ D/ UD”. Welet C = C\pyD, U
psD_, C' = C\piD, UpsD" and C" = C\ p1D" UpsD”. We call p; and pj the restrictions
of p; to C’ and C” respectively. We assume that over C”, we have that s(p])*D; > (p4)* Dy

and s(py)*D_ > (pf)*D_ for some 0 < s < 1. We also assume that pyD’, C p5D’[ and that
psD. C prD”.
Remark 2.11.1. In the case that D] = D” = (), then (C,X,p1,p2, Dy, D_) is simply a strict dy-
namic correspondence. Here, we consider a situation where the compactification (C, X, p1, p2, D4, D_)
is dynamic and “becomes strict dynamic” if we further restrict to C”.
Remark 2.11.2. The compactifications (C, X, py, p2, Dy, D) and (C, X, p1, P2, D', D") are com-
pact dynamic by proposition [2.10.4
Remark 2.11.3. We see that the closure of X in X’ and the closure of C' in C’ are proper.

We assume that Dy, D_, D/, D" are locally principal subschemes. We furthermore assume

that we have a coherent sheaf %" over X", and a cohomological correspondence T : (p§)* F" —
(p})'F". We let .F be the restriction of .#” to X.

Theorem 2.11.4. (1) The operator T acts on the canonical diagrams:

Rlpy p_ (X, F") ——Rlp, p_(X,7)

| |

RTpy pr (X, #") ——Rlp, pr (X, 7")

RI'p_ . py (X,#")——RIp_p, (X, %)

| |

Rlpr py (X, 7") —— RTpr p, (X, 7")

(2) The correspondence (C, X, p1, p2) admits a strict dynamic compactification and RU'p, p_ (X, 7)rd =
RI'p_p, (X, F)? =RI(X,F)C°r.
(3) Assume that the map T factors into a map:

(p2)* 7" (D)

|

w5 w) 7"

T

W) 7" (-D")

and that we have maps (py)*Ox» (D) — (p)*Ox(Dy) and (p§)*Ox»(—D_) — (p{)*Ox»(—D_).
Then in the ordinary part of the diagram in (1), all maps become quasi-isomorphisms, and
we obtain a canonical quasi-isomorphism:

Rl pr pr (X, F")erd = RI'pr pry (X, #")°rd - RI(X,.Z)¢ 1,
(4) In general, after replacing Dy and D_ by a multiple nD4 and nD_ for n € Z~g, there
exists m > 0 such that we have a quasi-isomorphism:

RCpy pr (X, F"(mDy —mD_))"" = RCpr py (X, F"(mDy—mD_))"? = Rlp, p (X, 7).
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Proof. For the first point, the maps are given lemma [2.2.6] The operator T acts equivariently by
construction. For the second point, we let X be the closure of X in X. We see that X C X”. We let
C be the closure of C in C. We observe that C C C”. It follows that (C, X, p,, P, D+ NX,D_NX)
is a strict dynamic compactification. Moreover, themap RI'p, p_(X,.#) = RI'p, % p % (X, F)
is a quasi-isomorphism by lemmam This map induces a quasi-isomorphism RI'p, p_ (X, .F)erd
RI(X,.#)~°r. Considering RI'p_ p, (X, %), one also gets a quasi-isomorphism RI'p_ p, (X, F)°"? —
RI(X, . Z7)C—ord,

For the next point, we will first prove that RFD17D7 (X, F"erd = RFD,,DQ; (X,.Z")°rd, The
proof is similar to the proof of proposition We claim that we have a commutative diagram

X, 7 R p, o (X, 7)
\ /

T.(X\ {D, UD_}, ")

Rlp_ p, (X, 7")

RIpy.p_ (

RFD,7D”

together with maps (abusively denoted) T : RI'p, .p_ (X, F") — RI'py.p_ (X, F") as well as T :
RFD_,D; (X, F") — RFD_,DQ (X, Z#") inducing the endomorphism 7' when you go around the di-
agram. Passing to the ordinary part we deduce that RI'py p_ (X, Fmerd = RI'p_ py (X, Fmerd,

Now we observe by corollarymthat the maps RI'pr p_ (X, F") — RI'py pr (X, Z"(—mD_))
induce an isomorphism RI'pr p (X, F") — lim,, RFD// pr (X, Z"(—=mD_)). But by assumption,
the map 7' on the limit factors as maps RI'py, pr (X ﬁ”( D_)) = Rl'py pr (X, F"(—(m +
1)D_)) for any m > 0. We deduce that RFDl,Df(X,ﬁ”)O’”d =RIpy pr (X,.F)erd

We similarly observe by corollarythat the maps RI'p_ py (X, #"(mD,)) = Rlp_p, (X, F)
induce an isomorphism colimy,>oRI'p_ pv (X, #"(mD)) — RI'p_ p, (X, F). But by assump-
tion, the map T on the colimit factors as maps RI'p_ py (X, Z#"(mDy)) — RI'p_ py (X, Z"((m—
1)Dy)) for any m > 0. It follows that the colimit is constant on the ordinary part.

Regarding the last point, by lemma and lemma after replacing D, and D_
by a multiple nDy and nD_ for n € Zsg, there exists m > 0 such that the twisted map
T : (py)*Z"(mDy —mD_) — (p!)F"(mDy — mD_) satisfies the factorization of (2) and such
that we have maps (p§)* Gx»(Dy) — (p)*Ox»(Ds) and (p)*Oxn(—D_) — (p)* Oxxn(~D_).
The last point is now a direct consequence of (2).

g

3. THE SIEGEL SHIMURA VARIETIES

3.1. The group G. We let G = GSp,, be the symplectic group realized as the group of symplec-
tic similitudes of the 2g-dimensional free module Z29 = V with canonical basis ey, - - - , €24, and
equipped with the symplectic form with matrix

(55 0)

with S the antidiagonal matrix with 1 on the antidiagonal. We have (e;,e;) =01if i +j # 29+ 1,
(€i,e2g41—i) =1 for 1 <i<g.
We let hg : Resc/aGum — Gr be the morphism z = (z + iy) — Smy and we let X be

x
—Sy
the G(R) conjugacy class of hg. This is a Hermitian symmetric domain. The pair (G, X) is the
Siegel Shimura datum. We have (Resc/rGm)c = (Gm)c X (Gm)c, via z +— (2,2). For any h € X,
there is an associated cocharacter uy : (Gp,)c — Ge given by the rule p(z) = h(z,1). To fix ideas,
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we choose the following representative in the conjugacy class of up: p(z) = diag(Idy, zId,). We let
P#Std = P*! be the stabilizer of (e1, - ,e,). We let P, = P be the opposite parabolic, M, = M
be the Levi and Up be the unipotent radical. We let T' = {diag(t1,- - - ,tag), titag+1—; = ¢} be the
diagonal torus. The maximal torus of the derived group is 7" = {diag(t1,--- ,tg, tg_l, e ,tfl).
The center Z consists of scalar diagonal elements. We identify the group of characters of T';, X*(T'),
with tuples £ = (k1,- -+ ,kg; k) € Z9 x Z satisfying Y .7_, k; =k mod 2, by

9
r(diag(zty, -+, 2tg, 2t ", 2ty 1Y) = 2 Ht?i'
i=1

We let B C P be the Borel which is upper triangular on the diagonal g x g blocks. We let
® be the set of roots. The positive roots for B are denoted by ®+. We have a decomposition
®F = &}, [[®T™M where @}, accounts for the positive roots in m = Lie(M) and &+ for the
positive roots in up = Lie(Up). Welet p =23 cos @ Prc = 5 D peqtnr O

The dominant cone X *(T)“‘ is given by the condition 0 > k; > --- > k,. The dominant cone
for the Levi M, denoted by X*(T)** is given by the condition ky > --- > k,.

We let X, (T') be the group of cocharacters of T. We define a map v : T(Q,,) — X, (T') as follows:
T(Qp) = Qy ® X«(T), and we compose with the valuation Q, — Z (normalized by v(p) = 1).
The map v has a section X, (T') — T(Q,), sending A to A(p), so that T(Q,) = X.(T) x T(Z,). We
write T7(Q,) (resp. TT1(Q,)) for the set of those ¢t € T(Q,) for which v(¢) is dominant (resp.
dominant regular).

We let W be the Weyl group, and Wy, be the Weyl group of the Levi. We let W be the set of
minimal length representatives of the quotient Wy \W. The set ¥ W is defined by the condition
w.X*(T)* C X*(T)"M, or equivalently by the condition w='®}, C ®*. We have a concrete
realization of these groups: W identifies with the subgroup of permutations w of {1,---,2g} such
that w(i) + w(2g + 1 — i) = 2g + 1, via the formula:

w(dla’g(th T 7t29)) = diag(twfl(l)a T 7tw*1(2g))

Also, Wy C W is the subgroup of permutation w such that w({1,---,g}) ={1,---,g}.

There is a partial order on W and thus a partial order on MW, as well as a length function
0: MW — |0, %]. The set MW, the order and length function have a geometric interpretation
that we now recall. Let F'L = P\G be the partial flag variety (viewed as a scheme for the moment).
There is a G-action on F'L by translation, and the stratification by B-orbits is F'L = [[,,cmyy Cuw
where C,, = P\PwB is a Bruhat cell. We have ¢(w) = dim Cy, and v’ < w if and only if
Cw C Cyp. Tow € MW, we can attach the following set w™{g +1,---,2¢}N{g+1,---,2¢g}
(this set actually determines w) and a sequence of numbers (w1, --- ,w,) given by w; — w;—1 =0
ifg+idw {g+1,---,29}, wy —w;_y =1ifg+icw {g+1,---,29} (with the convention
wo = 0). The sequence (w1, --- ,wy) has the following geometric interpretation: for any « € P\G,
we let x7' Pz be the corresponding parabolic, equal to the stabilizer of m_l(egﬂ, o egq). If
z € Cy, then w; = dim(z™egq1, - ,e29) N (€g1, " €gti))-

3.2. Shimura varieties. For any neat compact open subgroup K C G(Ay) we have the Shimura
variety Sk g — Spec Q. At the level of complex points, we have Sk o(C) = G(Q)\(X xG(Ay)/K).

For any connected affine Q-scheme Spec R, we have that Sk o(Spec R) consists of the following
list of data (A, A,n), up to isomorphism:

(1) A — Spec R is an abelian scheme of dimension g,
(2) A: A — AP is a quasi-polarization,
(3) n:V®zAr - Hi(A) ®z Q is a K-orbit of symplectic isomorphism (up to a similitude
factor) of pro-étale sheaves.
An isomorphism £ : (4, \,n) — (4’, N, ) is a quasi-isogeny & : A — A’ for which ' = H;(£)on
and ¢PAE = r) for some r € Q.
We let S}?f@,z be a toroidal compactification, depending on a suitable choice ¥ of K-admissible
polyhedral cone decompositions ([FC90], [Lan13]).
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3.3. Hodge-Tate period map. We now fix a prime p and a neat compact open subgroup K? C
G(A’;). We also fix a compact open subgroup K, C G(Q,). We fix a cone decomposition ¥ which
is KPK,-admissible. We let St/ k,,x be the adic space over Spa(Qy, Z,) attached to the scheme
Sk, s Let S 5 = limg ck, 5}%1{;,2 be the perfectoid Siegel moduli space [Schif], [PS16] (the
same cone decomposition is used at each stage of the tower). We let Si» be the open complement
of the boundary in S} v. We have a G(Q,)-equivariant map g7 : Sk» — FL = P\G which can
be extended to a Kj-equivariant map 7gr : S 57 — FL (since only K, acts on SiZJ ). Let us
briefly recall how this map is constructed on a (C, O¢)-point corresponding to an abelian scheme A
together with an isomorphism ¥ : @12,9 — Tp(A) ®z, Qp. We have the Hodge-Tate exact sequence

0 — Lieg — TP(A) ®ZP C — waqt — 0.

There exists an element g(¥) € G(C) such that ¥((g(¥)(eg+1), - ,9(¥)(ezq))) = Liea. We let
mar((A,¥)) = g(¥)~.

Remark 3.3.1. The map mgr is indeed G(Qp)-equivariant: for f € G(Q,), we have f.(A4,¥) =
(A, Wo f)and g(Wo f) = f~lg(¥), so mur((A, Vo f)) =7mur((A,¥))f.

3.4. Igusa towers. We consider the ordinary Igusa tower. We first recall the definition given
in [CS17], section 4 (notably def. 4.3.1) of the perfectoid Igusa tower. Then we explain that this
perfectoid Igusa tower is actually an inverse limit of finite level Igusa tower which are more classical
objects. Finally, we give the relation with the Siegel Shimura variety.

3.4.1. Definition of Igusa towers. We consider the p-divisible group over Z,: X,pq = (ftp=)? &
(Qp/Z,)9, equipped with its canonical polarization Acay, : Xora — X2 = (Q,/Zp)? & (= )? given
by

( 0 SId(Qp/Zp)g)
_SId(Mpoo)g O

where S is the antidiagonal matrix with 1 on the antidiagonal. The Frobenius of the Dieudonné
module of X,,.4|r, corresponds to the element b,.q = diag(pilldg, Idy) e G (@p). We now consider
the Igusa variety corresponding to this element b,.q. We let Nilp/Z, be the category of Z,-algebras
on which p is nilpotent. We let J& g» be the p-adic formal scheme over Z,, representing the functor
sending R € Nilp/Z, to the set of isomorphism classes of (A4, A\, n?, j) consisting of:

(1) An abelian variety of dimension g, A — Spec R, equipped with a prime-to-p polarization
A, and a KP-level structure n?,

(2) An isomorphism j : X,.q — A[p™] such that there exists ¢ € Z) and a commutative
diagram:

Xord *J> A[poo]

l(:)\ca,n l)\

ord

An isomorphism (A, A\, 0P, j) — (A’, N, nP’,j) is a prime-to-p quasi-isogeny & : A — A’ matching
A and ) up to an element in Z(Xp) - o> and matching 7 with n?” and j with j".
There is another equivalent formulation of the moduli problem, up to quasi-isogeny. The formal

scheme J® g» parametrizes isomorphism classes of quadruples (A, A, n?, j) consisting of:

(1)’ An abelian variety of dimension g, A — Spec R, equipped with a quasi-polarization A, and
a KP-level structure 7P,
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(2)” A quasi-isogeny j : X,pq — A[p™] such that there exists ¢ € Q) and a commutative
diagram:

Xord 4J> A[poo]

Jc)\c(m l)\

X2 ¢ Alp)”
An isomorphism (A, 7P, A\, j) — (A", n?", N, ') is a quasi-isogeny £ : A — A’ matching A and X up
to an element in Qso, and matching P with 7?’ and j with j'.
3.4.2. The group Jorq. We define a functor in groups Jy,,, := Jora on Nilp/Z, by the rule: for
any R € Nilp/Z,, Jora(R) = Qisogsymp(Xord XSpec 7, Spec R) is the group of self quasi-isogenies
of Xorq respecting the polarization up to a similitude factor in Q.

Let Xopg = limy, X,,q be the universal cover of X,,q ([SW13], sect. 3.1). Then we recall that
QiSOgsymp(XOTd XSpec Ly SpeC R) = AUtsymp(Xord XSpec Ly Spec R)

We give a description of J,.q. We recall that M = M, is the Levi of P, = P.

Lemma 3.4.3. The group Jorq 5 a representable group scheme over Spf Z,. We have Jorq =
M, (Q,)x Uy, ., where M(Qy) is a locally profinite group viewed as a locally constant group scheme
over Spf Zy, and Uyj, = fip=~ ®q, Symz(@g, where [ipe is the universal cover of uy~. The action
of M(Qp) on Uy, is given by the usual action of M(Q,) on SmeQg ~ Up(Qy).

Proof. We first compute the group of all automorphisms of Xora. Since Xoppg = Xordm @ Xord,et 18
a direct sum of its multiplicative and étale part, Aut(X,,q) has the shape:

Aut(Xordﬂn) Hom(Xow’ijet; Xord,m)
0 Aut(Xord,et)

We have that Aut(XOTd,m) ~ Aut(Xordyet) ~ GL4(Qp) and Hom(de’eh Xm,dym) = [lpoo @Mgx4(Qp).
Taking the polarization into account yields the promised description. O

From the second formulation of the moduli problem, it is clear thet J,.q acts on the right on
J& k». Namely, we have (A, \,n?,5)g = (A, \,nP,j o g) for any element g € Jopq.
We let Jora Xspf 7, Spa(Qp,Z,) =: J¥, be the adic generic fiber of J,.4. We have an exact
sequence
0 — Tp(ppoo) = fipes — fpoo — 0.

We denote as usual T)(pp=) % Spa(Qp,Zy) = Zy(1) (this is a profinite étale group scheme over

Spa(Qp, Zp)). We let @; = tp X Spa(Qp,Z,) be the open unit ball with its multiplicative group
structure. We deduce that fip x Spa(Qyp,Z,) fits in an exact sequence:

0 = Zp(1) = figee x Spa(Qp, Zp) — Gy — 0.

It follows that JS7, is the semi-direct product of the locally profinite group M (Q,,) by a unipotent

or
group Uy,,, % Spa(Q,,Z,) which fits in an exact sequence:

0 — Sym®Z4(1) = Uy,,, x Spa(Qp, Zp) = Gy, ©7, Sym?ZY — 0.

Since multiplication by p is an isomorphism in fi, x Spa(Qyp,Z,), we deduce an embedding
Qp(1) = fipee x Spa(Qp,Zy). We can define a locally profinite sub-group scheme P’(Q,) < J&%,

generated by the Levi M(Q,) and the unipotent radical Up(Q,)(1) ~ Q,(1) ®z, SmeZg. Over
Spa(Qg¥e!, Zev<!), the choice of an isomorphism Z,(1) = Z, identifies P(Q,) and P'(Q,).

Remark 3.4.4. We note that J37, is W—dimensional. In that sense it is much bigger than P'(Q,)
which is zero dimensional.
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3.4.5. Finite level Igusa varieties. We now want to consider finite level Igusa varieties and we will
see that they can be organized in a tower which enjoys very good properties, similar to the tower
of Shimura varieties over Q.

The finite level Igusa varieties will be parametrized by compact open subgroups K, p of P'(Q,),
or which is the same thing, compact open subgroups of P(Q),) which are stable under the Galois
action on P(Q,) where Galois acts on the unipotent radical via multiplication by the cyclotomic
character.

Remark 3.4.6. We give a motivation for considering these compact open subgroups. The canonical
choice of compact open subgroup we want to consider is Ji" := Autgym,(Xora) and its generic
fiber Ji" x Spa(Qy, Z,) =: P'(Z,), the semi direct product of M(Z,) by Up(Z,)(1). We also want
to allow any finite index subgroup of P’(Z,) as well as any conjugate by M(Q,). Since P'(Q,)
is generated by P’(Z,) and M(Q,), we are exactly led to consider P’'(Q,) and its compact open

subgroups.

cycl
We write Uk, , = Kp,p NUp(Q,)(1) and My, , = KppnM(Qy) = Ky 5 7 /%) When p > 2

we in fact have K, p = Mk, , X Uk, . Indeed given g = m-u € K, p and 0 € Gal(@;yd/Qp)
with Xeyel(0) — 1 € Z), we see that 0(g9)"'g = (1 — Xeyar(0))u € K, p and hence u € K, p.

Remark 3.4.7. We remark therefore that when p > 2 we have a bijection between compact open
subgroup of P(Q,) which are a semi-direct products Mg, , X Uk, , and compact open subgroup

of P'(Q,).
For any compact open subgroup K, p of P'(Q,), we let K, p be the schematic closure in Jord

p, P

Lemma 3.4.8. The group scheme K, p is a profinite flat group scheme over Spec Z,. Its generic
fiber is K, p.

Proof. We first assume that K, p = P'(Z,). Then K, p = J. We then consider the general
case. It is easy to see that a general K, p can always be conjugated by an element x € M(Q,) to a
finite index subgroup of P'(Z,). Indeed, we first consider the Levi quotient K, s, and use that any
maximal compact subgroup of GL4(Q),) is conjugated to GLy(Z,). We can then further conjugate
by the element diag(l,---,1,p,---,p) in the center of M(Q,) to have K, y, C Up(Z,)(1). We

thus reduce to the case that K, p C P'(Z;) is of finite index. We see that K, p = lim, K, p,,
where K, p, is the schematic closure of K}, p in M(Z/p"Z) X jipn @z, Symng. By [Ray74], section

2, each K, p, is a finite flat group scheme over Spec Z,. O

Taking the schematic closure of the exact sequence 1 — Uk, , — K, p — Mk, , — 1 yields an

exact sequence 1 — Ug, , — K, p — Mk, , — 1 where M, , is a profinite étale group scheme.
We also let TKp,P = fipee ® SymZZg/UKpYP. This is a formal torus, isogenous to G, ® SymZZIg).

Proposition 3.4.9. (1) For any compact open subgroup K, p, the fpgc quotient of I® k» by
K, p exists as a p-adic formal scheme and is denoted by I kv, -

(2) The map I&k» — IBkrk, ,» is a K, p-torsor in the fpgc-topology.
3) The formal scheme IS krg . is smooth of finite type over Z,.
p,P P
4) For any compact open subgroup K, p, the fpgc quotient of J&k» by Uk, . exists as a
Y ¢ P, Y p. P
p-adic formal scheme and is denoted by JQSKPUKP o

(5) The map jﬁKpUprp — 38Kk, p 15 a profinite étale map with group M, ..

(6) The action of Jorq on IS kw induces an action of the formal torus TKp,p on jﬁKpUKnP
qnd the formal completions at closed points are homogeneous spaces under the formal torus
Tk, p-

(7) Let K, p C K, p be another compact. The map :@K"UK;P — jQSKpUprP is finite flat.
This map is equivariant with respect to the action OfTK{,,p on the source, the action ofTKp,P

on the target, and the natural isogeny TK;,p — TKp,P' The map j@;@[(;y — I8 krK, p
is also finite flat.

2This means that K, p is defined by the sheaf of ideals in &5, of sections vanishing on K, p
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Remark 3.4.10. The point (6), implies that the completed local rings at a closed point x of
ﬁj@K”UKp,P’w is isomorphic to ﬁTKp,P ®z, W(k(x)). By (5), for any closed point x € I&krk, ,

and any ' € 76 KrUx, above z, we have an isomorphism:

ﬁj@KpKPYP@QA@W(;@(I))W(k(x’)) ~ ﬁj@KpUKP ez

Remark 3.4.11. In the situation of (7), assume that Uk, , = [[,cqp+.m Kp o admits a decomposition
as a product for all the roots in ®7™ and that UK;)_P = [loco+m D" Kpo. Let 2’ be a closed point
in 3651(”%13 mapping to a closed point x € J&k»k, , Then the induced map between completions
at ' and x is isomorphic to:

H @m,W(k(r’)) - H @m,W(k(m))

acdt M aedtM

(@) — (28")

Proof. We first consider the case where K, p = P'(Z,). Let us take as an alternative definition of
J6 kv pr(z,) the ordinary locus in the formal scheme corresponding to the level K PG(Z,)-Shimura
variety. This is a smooth formal scheme by the deformation theory of abelian varieties. We
have a natural map J6x» — T&k»k, .. Let us prove that this map has a section fpqc-locally
by giving another construction of J&x». Over J8krk, ,,, the p-divisible group is an extension
0 — A[p®)™ — A[p>] — A[p>®]® — 0. We first define a pro-étale covering I kv Up(z,)(1) —
I8 krpi(z,) as the space of isomorphisms x : pje — A[p®|™, y : (Qp/Zy)? — A[p™]® and
¢ € Zy, such that (2P yP) o Xo (z,y) = c)\canﬂ We have a lift of the Frobenius map F' :
j@Kpp/(Zp) — 3Q5Kpp/(zp) and F : jﬁKPUp(Zp)(l) — jQiKpUP(Zp)(l)‘ We now define J&x» =
limy r IS vy, (z,)(1). This parametrizes splittings of the sequence 0 — A[p™]™ — A[p>] —
Ap™]® = 0 over TG ko, (z,)(1), thus we indeed recover our original space J& k». Since I8 grpr(z,)
is smooth, the map F is finite flat and thus

IBkr — j@KPP/(Zp)

is a profinite flat map. The case where K, p = P'(Z,), is the principal level congruence subgroup
of elements of P’(Z,) reducing to 1-mod p™ can be treated similarly. A general K, p can always be
conjugated by an element x € M(Q,) to a finite index subgroup of P’(Z,). We thus reduce to the
case P'(Zy)n C Kp p € P'(Z,). Now we need to consider the fpgc quotient of 3&g»p(z,), by the

finite flat group scheme K, p/P(Zp),. We can invoke [Ray67]. This finishes the proof of (1) and
(2). The proof of (4) follows along similar lines: we already treated the case K, p = P'(Zy). The
case K, p = P'(Z,), follows similarly. We then treat the general case using [Ray67]. We deduce
point (5). By Serre-Tate theory ([Kat81]), the action of Tp/(Zp) on the formal completions of the
local rings of J& k»y,(z,)(1) at any closed point z is simply transitive, so we have isomorphisms

x

TP/(ZP) Xspf z, SPf W (k(z)) = I8 krup(z,)(1)

which intertwines the Frobenius map on both sides for any closed point x. We deduce that there
are isomorphisms:

Tn

Tpi(z,), %spt 2, SPE W (k(z0)) = 3B ko,(2,)(1).,
for any n and any closed point z,, of I8 kry,(z,)(1),- We finally deduce point (6) by passing to

the quotient by Uk, ,,/Up(Zy)(1), for n large enough. This implies (3). Indeed, by (4) the formal
schemes J&krk, , are formally smooth, and they are also of finite type (as we noticed earlier
during the proof of (1) and (2)). The remaining points follow easily.

O

3In this formula, A stands for the map A[p>®]™ @ A[p>®]e — A![p=]™ @ At[p>°]** deduced from the map
A A— AL
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3.4.12. Variant over Zgyd. When comparing with Shimura varieties, it is useful to work over Zgycz
as well. 'We let 36, ;cvet = TG k» Xspr 7, Spf Z£¥e!. For any compact open subgroup K p of
P(Qp), we let jQiKpr
of P/(Qp), then j@KpKPYP’ZIc)ycL = jQSKpr,P XSpf Z, Spf ch)ycl_

. zever be the quotient of 3& ., /eyt by K p. If K, p arises from a subgroup
1y Hp »=p

3.4.13. Hecke correspondences. For any g € M(Q,) and any compact open subgroup K, p, gK, pg~'N
K, p is again a compact open subgroup, and we define a Hecke correspondence:

jﬁKp.ng,pg_lﬂKp,p
/ \
j@Kp,prP jﬁKpr,P
where p; is induced by the inclusion ng,pg*1 NKpp C K, p, and py is given by the action

map [g] : I kv gk, pg-1nK, p — IOKr.K, png-1K, pg> t0llowed by the projection induced by the
inclusion g'K, pg N K, p C K, p. The projection maps are finite flat by proposition m

Remark 3.4.14. We can also work over Zgyd, in which case we can consider any element g € P(Q,).

3.4.15. Partial toroidal compactifications. We construct partial toroidal compactification of our
Igusa variety. This is a special case of [CS19], sect. 3.2. Let ¥ be a K?G(Z,)-admissible cone
decomposition. We construct J 63?272, a toroidal (partial) compactification of & k» as follows. We
first let J&%2; pr(z,),s be the ordinary locus in the toroidal compactification of the Shimura variety
of level KPG(Z,). We next construct the pro-étale torsor: j@’}?ZUP(ZP)(l)’E — JéﬁtlgzP(Zp)’z as the
space of isomorphisms ugoc — Alp>®|™, c € Z, . This is justified because the connected part of the
p-divisible group extends over the toroidal compactification.
We have a lifting of the Frobenius map F' : jQﬁtI?ZP,(Zp)’E — Jéﬁigzp/(zp)’z and F' : 3@5'}?2&3(%)(1)72 —

jﬁtKOZUP(Zp)(l)’E. We let I&Z} 5 = limp J@@?ZUP(ZP)(D,E. By construction, we have an open im-

mersion IS gp — 3@5’}?272.

Proposition 3.4.16. The space 3@5?22’2 carries an action of P'(Z,), extending the action on
I&k». For any K, p C P'(Z,), the categorical quotient of 3@55?272 by K, p exists and is denoted
~ost

by 38Kk, o5

Proof. The map 3(’5'}?;2 — J&L p(z,),z 18 profinite flat. Moreover, by normality the action of
P'(Z,) extends to 3@5’}?};(]},(21))(1)72 and then to limp 3’@5'}2;(,}3(2?)(1)72. Since the map 36'}?;72 —
595?();13/(21,),2 is affine, we can cover 3(’5'&}‘();72 by open affine U;Spf A;, stable under the action of
P'(Zy). For each 1, AZKP‘P is finite over Af (Z2) " We deduce that the Spf Af(”’P glue to give the
desired space. O

We have by construction an open immersion J& gr g, , — 363?’;[(%};72. We say that jQﬁ?ZK%P’E
is a partial toroidal compactification of I xrx, -

By blowing up at the boundary as in [LanI7], we can obtain more toroidal compactifications
for more general cone decompositions. In the sequel, we ignore the dependence on the cone de-
composition and simply denote by 36'}?2 Kpp @ partial toroidal compactification for a suitable cone

decomposition. The coherent cohomology doesn’t depend on the choice of the cone decomposition.

3.4.17. Relation to Shimura varieties. We work over Z&¥* and fix an isomorphism Z,(1) = Z,.
Let IQKP’ZgyCz = 3®K,,)Zgycz X Spa((@g@/d7 Zgyd)_ We have a P(Q,)-equivariant map IQK,,)ZEW —
Skr x Spa(Qeve!, Z¢¥') which sends A equipped with the isomorphism (Qp/Zp)? ® pie — A[p™]
to the level structure Z9 & Z9(1) = Z29 — T,(A) (using our fixed isomorphism Z,(1) = Z,).
We deduce that we have an injective, G(Q,)-equivariant map Ing,z;ycl xP (@) G(Q,) = Sk» x
Spa(Qgve!, Zeve!). Let x € G(Qp), and let K, be a compact open subgroup of G(Q,). Let K, p =
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P(Q,) NzK,z~'. The map ZGx» x" @) G(Q,) — Sk» x Spa(Q;ycl7Z;ycl) induces an open
immersion:
gKPKp,P,Z;‘,”“’ 5 SKPKP X Spa(@;yCl’Z;yCl)_

Remark 3.4.18. In general this map doesn’t descend to a map: IgKPKp’P 5 SKpr because
the level structure on both sides are formulated in a different way. One uses isomorphisms with
e @ (Qp/Zyp)9 on the left, and isomorphisms with (Qp,/Z,)?? on the right. For certain level
structure, it does however descend. See the section [£.1] below.

3.4.19. Integral model of Shimura varieties. We review the standard method to obtain integral
models of the Shimura variety of deep level by normalization (following for example [Lanl6] and
IMP19]). We first consider Shimura varieties with level given by maximal compact open subgroups.
In that case, we have a natural moduli theoretic definition of the integral structure. For a general
level, we consider maps towards Shimura varieties whose level is a maximal compact open subgroup,
and we take a normalization.

We let A, 4 — Spec Z be the moduli stack of abelian varieties of dimension g, with a degree d?
polarization (see [dJ93]). For any 6 = (41, ,8y) € Z%, with (61 | 62 | --- | &,) and [[7_, 6; = d,
we let Ms € GLa,(Q) be the matrix with diagonal coefficients (01, -+ ,84,1,---,1). We let K5 =
M;sGLy, (Z)Mgl NG(Af). Welet A; 5 — Ay q be the locally closed substack where the kernel of
the polarization is isomorphic, locally in the étale topology, to []{_, Z/&Z x ps,. By definition,
we have Ay 50 = Sk;,0. We also see easily that we have the decomposition

Agag =[] Sks e
o

We let 2, 4 be the p-adic formal completion of A, ¢ and we let QIZT(? be the ordinary locus. We
let 2, s be the p-adic formal completion of A, s and we let QLZZ? be the ordinary locus. We have
2] = 11,24
Lemma 3.4.20. We have 47§ = 36, . where K5 p = K§ (K5, N P(Qy)).

Proof. Clear from the definition. O

Let us fix K = K,KP?. We now give the construction of certain integral models for the Shimura
variety of level K, depending on some auxiliary data. Let dy,--- ,d, be positive integers and let
d1,--- , 0, be sequences (8;,1,---,0;,4) as above with H?Zl 0;; = d;. We also fix maps K — Kj,
induced by conjugation by elements of G(Ay) followed by inclusion. They induce finite maps
Skrk,0 = [1i_1 Ag.d;,0- We let Skrg, — Spec Z,, be the normalization of [];_; Ag 4, X Spec Z,
in Sg» Kp,Qp-

Remark 3.4.21. The space Sk»k, — Spec Z, will in general depend on the choice of the auxiliary
spaces Ag 4,.
One can perform a similar construction over Z;yd. We let Sy, yeve — Spec Zgyd be the
P *p

. . r cycl :
normalization of [[;_; Ay 4, % Spec Zg¥* in SKPKP’szcl.

Remark 3.4.22. In general, the natural map SKpryz;ycz — SKpr XSpec 7, Spec Zgy“‘l is not an
isomorphism.

3.4.23. Toroidal compactifications. We obtain integral models of toroidal compactifications in the
same way. We consider a finite map S o — [io; Ay, o- We let SR — Spec Z, be
the normalization of H::l A;i’gi x Spec Z, in S K,,Q,° A similar variant holds over Zgyd. The

following lemma shows that despite the fact that the integral model depends on choices, the
ordinary locus is independent on the choices.

Lemma 3.4.24. The map of section[3.].17
€T
IgKPKp,p,Zzyd — SKPKP,Z;yCl
comes from an open immersion of formal schemes:

JQSKPKP,P,Z;C)ML — GKPKP,ZIC,W‘Z
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9,64,

BZa O

., 3 . . . L ~axtor tor
The above map extends to maps between toroidal compactifications J& KK, p2svel — & Kr K, 750

~ -d . . L.
Proof. The maps J& ., Kpp 250 [12ter gevet are finite and the source is normal by proposition

for suitable choices of cone decomposition.

Remark 3.4.25. In general, the map does not descend to a map j@l}ng{w — GT}?ZKP.

4. HIGHER HIDA THEORY IN FIXED WEIGHT AND THE COUSIN COMPLEX

4.1. The Siegel variety of Iwahori level. Let n € Z>o. Let K, , C G(Q,) be the Iwahori
subgroup of matrices in G(Z,), reducing modulo p" to B(Z/p"Z).

4.1.1. Definition and integral models. Let S?erp Oy be a toroidal compactification of the Siegel
moduli space of level K, , K? over Spec Q. Awéy from the boundary, we have a self-dual chain
of isogenies:

A=A = Ay = = Ayg 2 A1 = - = Ay = A
For 0 < i < g, the group Ker(A4, — Ag4,) is a totally isotropic subgroup of A[p™], locally isomorphic
to (Z/p"Z)*. The total map A — A is multiplication by p™.

We now construct an integral model St Ky Spec Z,. We observe that A,4; is equipped

with a polarization of degree p?"9=2" = d; for 1 < i < g. We also let dy = 1.
We therefore get a map Skrr, .0 — [Ty Ag.q,- We define SkrK,., — Spec Z, by normalizing

[T7—o Ag,a; x Spec Zy in Skrk, ,.,0,- We construct similarly S, . See section [3.4.19
By [FC90], I, prop. 2.7, we have a chain of isogenies of semi-abelian schemes

A=A, =2 Ag1 = = Ayg 2 A1 = 2 A;=A
where the total map A — A is multiplication by p”.

Remark 4.1.2. When n = 1, S};’L’Kp . is the usual integral model of Iwahori level.

We let 0 C Hyyy € Hyyp C -+ C Hyy = Hy, C Hy C Hy C -+ C Alp"] = Hy be the full flag of
subgroups of A[p"], given by the kernel of the maps A — A4, and we let Gr; = H;/H;_1. They are
finite flat group scheme of order p™ over the interior of the Shimura variety and Grog—;11 = GriD .

4.1.3. Special fiber. We let S, o be the special fiber. For each w € MW, we let Si7
be the locus where Gr,,-1(;) is a multiplicative group scheme for i =g +1,---,2g.

ponsFp,w

Remark 4.1.4. Clearly, St Ko Fpyw is included in the ordinary locus. However, unless n = 1, the

ordinary locus is bigger than UU,GMWS?;KP wiFpw*

4.1.5. Formal schemes and adic spaces. Let Gt}‘(”;Kpm be the formal completion of Sﬁgng,n~ We

also define &%, , to be the open formal scheme corresponding to S & .-

We let S Kpn be the associated adic space over Spa(Qp,Z,). We have a set theoretical map
THT, Ky |S§(O§Kp_n | = |FL|/Kpn, obtained by passing the Hodge-Tate period map to the quotient
(see section 4.5 of [BP21]). Let S%O;Kp,n,w be the adic space associated to &4, ;-

pyn,W’

-1 — Qtor tor
Lemma 4.1.6. We have mpyp o (w- Kpn) =S8y o, (the closure of Sy, )-

Proof. We know that 7'(';[%,171% (FLQy)) = Sk is the closure of the ordinary locus. On

pyn,0rd?
T (w) we have that Lie(A) = (ew-13i), 9+ 1 <1< 2g),sothat e,-1(;), g+ 1 <14 < 2g span the
multiplicative part of the Tate module. Passing to K, ,, orbits, we have that Hy,1;, for 1 <i < g
corresponds to (egt1,...,€g+;) mod p", from which we deduce that Gryq, is multiplicative if
g+icw H{g+1,...,2g} and étale otherwise. O

Lemma 4.1.7. We have &%, = IS pew for Ky pw = wK, ,uw™t N P(Q,).

p,P,w

Proof. This follows from lemma[3.4.24] Note that here the embedding is defined over Z,, not only
chcl- O
P



40

4.1.8. Cartier divisors. For all 1 <14 < 2g, we let £g,, be the co-Lie complex of Gr; ([FarlQ], sect.
2). We let §; = det({ay,). We have a canonical section Ogror — §;. Tt follows that V(5; ")

b,n

defines an effective Cartier divisor D; on S42; Kpon? supported on the special fiber. The complement
of D; is the locus where Gr; is étale. 7

We have a canonical isomorphism of Cartier divisors §;02g+1—; = p~" Ogtor so we get the impor-
tant identity: D; + Dagrq1—; = (p™) for all 1 <4 < g.

tor
Lemma 4.1.9. We have SKPKp,nJFp,w
tor g
S8k, ik, \ 2oiz1 Di N Dagi1—i

p,ny

= S;g;:[( ]FP\Zgzl Dw—l(i). We have UweMWS%);K

P ponsFp,w

Proof. S?;Kp.me,w is given by the condition that Gry,-1(444) is multiplicative for 1 < ¢ < g,
equivalently by the condition that Gry,-1(g41_; is étale for 1 <i < g. 0

4.1.10. Interlude: blow-ups and Cartier divisors. Let X be a scheme and let D, Dy be effective
Cartier divisors.

Proposition-construction 4.1.11. There exists a blow-up p : X = X and effective Cartier
divisors DY, Dy on X with disjoint support and with the property that p* Dy + D} = p* Do + Dj.

Proof. We let )?Nbe the blow-up of X along the ideal generated by g (—D1) and O (—D3). We

now check that X has the claimed properties. The question is local on X, so we may assume that
X = Spec A is affine and that Dy = V(x1), Dy = V(x2) for x1,29 € A. Then we let I = (z1,x2)

and X = Proj(p, I"). We have maps z} : @, I"~' = @, I", which define sections of &' (1)
and Cartier Divisors Dj. We also have maps z; : @, I" S @,, I" which correspond to p*D;. We
have the relation 2)xy = xbz1. Finally V (2], x}) = Proj(®,1"/(z1,22) 1" 1) = 0. O

4.1.12. A certain blow-up. We will now perform a suitable blow-up of our space. We let Z; =
22:1 Dy .

Proposition 4.1.13. There ezists a blow-up S?;Kp_n — S}?,ﬁKp_n satisfying the following proper-
ties: ' '
(1) for all0 < i < g and all 0 < j < i we have effective Cartier divisors Z; »; and Z; ; on
Stor with disjoint support, and Z; ~; — Zi<; = Zi — V(p™).

(2) For any increasing sequence j1 < «-+ < ji, we can consider the open subset
Stor , e N e VA
KPKpn,=j1,,=Jk ' i=174,>4; ,<js

of S?L’KM’. This open subset is empty unless j; — ji—1 € {0,1} (where jo = 0 by con-

vention). The map S?;Kpm=j1,~~~7=jk — S}?;Kpm is an open immersion, and the image
of S?;Kp,m:jlw-,:jk identifies with the open sub-scheme where Grg4; is multiplicative if
ji — jifl = 1, and ¢étale Zf_]l —ji,1 =0.

(3) Owver Sﬁgng,n,:jl,m —j» we have Zyy1 5j, = Doy and Zyia <jov1 = Dy = V(p™) —
Dg+k+1'

Proof. We construct 5’}?5 Kpon inductively. For each 1 < k < g, we construct a tower of blow-

Qtor Qtor tor Qtor : :
ups SKPK,,,,L,k — SK,)KP,”’,C?l — s = SKPKWL where SKPKPW,c satisfies the properties of the
proposition for all indices i < k. We first consider & = 1. We observe that Z; o = Dgq1
and Zi,<1 = Dg. Therefore, we can take Sip, = S ;. We assume that we have

tor

constructed S KrKy ke We apply proposition-construction [4.1.11|to the divisors Zx,1 and V (p™)

for 0 < j5 < k + 1 to obtain a blow-up S?L“prmk_‘_l — S%thp,n,k with divisors with disjoint
support Zy41,>; and Zyi1,«; with the property that Zy 1> — Zit1,<5 = Ze1 — V(p™). We

see that if we restrict to glf:?;jl,---,:jk then Z, = V(p™*) so that Zyy1 — V(p™*) = Dgigp1 =
Zii1,5js Zhpr = V(") = =Dy 1 = =Zpy1 <o and Zypa sy = SiL, _ for § < j,
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or

Zii1<j = St ., for j > ji + 1. Tt follows that the map gﬁg;Kp,n,k-s-l — S’?;Kp,n,k induces

: k=1, =
an isomorphism
GQtor ~ Qtor Qtor
KPRy bt XSer, k=i =ik SKr Ky k=1, =i
O
Recall that to each w € MW we have attached a sequence (wy, - , wy) of integers at the bottom
of section B.11
Corollary 4.1.14. Let w € MW . The map S}?}ZKP ymwr e =y Stor is an open immersion and
Qtor ; ; ; tor
SEE Ky =1 oo —w, X ODEC Fy identifies with Sy g o

Form now on, we simplify our notation and let S*" denote 5% .
9 Kp Kp‘n

Remark 4.1.15. We are about to define some integral cohomology over S*°", and prove a control
theorem relating the ordinary cohomology with the ordinary cohomology of the ordinary locus in
theorem We want to insist that we could perform any further blow-up of S*", whose center
is is disjoint from UwaéZTw- We would still be able to prove a version of theorem for this other

model.
4.1.16. A filtration. Let w € MW. We let Zsy—1 = N_ Z; sap;—1

Lemma 4.1.17. (1) We have Z; »; < Zj s if j' <j and Z; «; < Zj <jv if j' > j.
(2) We have Zsy—1 C Zsr—1 if w < w'.

Proof. We have Z; — V(p™) < Z; — V(p™'). Passing to effective divisors gives the first item. For
the second point, we observe that w’ < w implies that w] > w; for all i. O

We construct a filtration by closed subsets: F_; =0 C Fy C -+ C Fy+y = S]ﬁ‘;r, by letting
2
F; = UwEMW,E(w)SiZ>w—1-

Lemma 4.1.18. We have that F; \ F;_1 =]] N_1(Zisw;—1 N Zf )

w,l(w)=1

Proof. This follows easily from the definitions. O
We note that Si e o C N1 (Ziswi—1 N Z5,,)-

4.2. The Hecke correspondences. Let C.(K,,\G(Qp)/Kp n,Z) be the Hecke algebra of level
K, .. By [Cas], lemma 4.1.5, we have an algebra map Z[T+(Q,)/T(Z,)] = Ce(Kp »n\G(Qy) /Ky n, Z)
mapping ¢t € TT(Q,) to the characteristic function of [K, ,tK,,]. We now attach to each
[Kp ntK, ] a Hecke correspondence and an integral model.

4.2.1. Definition and integral model. Let ¢ € TT(Q,). Let C{g = Sf%pvnt,lpr’nKp’@p’z/
suitable choice of X'). Let p; x ps : C’fo?p — Sf@‘:: X S@‘;’” be the Hecke correspondence (which is

(for a

finite for good choices of cone decompositions). We let Cf°" be the normalization of S*" x S*" in
15,

Lemma 4.2.2. The universal quasi-isogeny py A — p5A over C’ff@p ertends uniquely to a quasi-

isogeny pfA — p5A over CloT.

Proof. This is [FC90], I, prop. 2.7. O

4.2.3. Restricting the Hecke correspondence. We let €1°" be the p-adic formal completion of Cf°".

We let €{on = p; '&lom nipy 'Sk

Proposition 4.2.4. We have an isomorphism of correspondences:

tor . tor
Ciw 2 IS (1)K, pww(t) ' NKy puwKP

over GI" ~ 3G, kr (see lemma .
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Proof. We let C[;, be the generic fiber of €%, . This space is a union of components in the ordinary
locus of Cf°". We also see that Igig(it)Kp,p,ww(t)—10Kp,p,wKP % Cf°r is a union of component of the
ordinary locus by lemma|3.4.24] Tt suffices to prove that they agree (since then the formal schemes
are identified by lemma3.4.24). We have P(Q,)wK),, = [1,c; P(Qp)wa(tKp nt~*NK, ) for some

finite set I of elements of K, ,. We see that p{SL" = ungﬁg(@p)QM(KP,NKW,1)(w),lm where

t we . ¢
LGB (@, nwn(Ky Kyt (wa)~1 kv — €7+ For a component TG glg, )oua (i, nntky,ut=1)(we) 1 K7
the condition that pa(ZG (g, )rwe (K, ek, ni-1)(we) -1 xr) S St translates into the condition that
wzt € P(Qp)wkK, ,,. We have a unique decomposition

P(@p)WKp,n = P(@P)w H Uan H Ua0
acw1d—Mngpt acw1d—Mng—
where U, is the root group corresponding to « and U, is the subgroup of elements reducing
to 1 modulo p". Let us take z € HaEw*hD*-rMﬂqﬁ* Uan Haew*I@*’Mmqﬁ* 0,0- We have wzt =
wtw ™ twt™txt. We deduce that wat € P(Q,)wK, , if and only if

t~lat € 11 Usin 11 Uao-

acw=1®—Mngt acw=1d—MnNg—

This is equivalent to € tK, ,,t~*. Thus, we deduce that ps(Z: %{Qp)nwz(Kp,nthp,nt—l)(wl.)—lkp) c
Stor implies that x =1 mod tK, .t~ N K, . Therefore,

—1 =t —1 .t t W At
pr 6y Npy 67 =1 Jéj(er)mw(Kp,thp,"t—l)(w)—lm = G

We finally remark that P(Q,) Nw(Kp, NtK, ,t71)(w)™ = K, pw Nw(t) Ky puww(t) L O

4.2.5. Carrying the level structure over the generic fiber of C{°". We now describe how the Iwahori
level structure is taken from piA to p5A over the generic fiber. If ¢ = diag(p™,---,p™9) with
n; < 0, then the quasi-isogeny is an isogeny with kernel L. Then we consider the filtration
L[p] € L[p?] C --- C L[p¥] = L. We can factor this isogeny as a composition of isogenies with
p-torsion kernel, say piA = Gg — Gy -+ — Gy = p5A where ker(G; — G;41) = L[p**t]/L[p"].

Remark 4.2.6. We have t € Tt (Q,) if and only if the ranks of the groups L[p'™!]/L[p’] take all
the values p, p?, ---, p?9— L.

The Iwahori level structure is a flag of subgroups pT Hg1 C pTHgyo - -+ on Go[p"], and we define
a flag inductively on G1[p"], Ga[p"™], ... , p5A[p™] by the procedure we now describe. Let G, G’ be
Barsotti-Tate group schemes of height 2g over a scheme of characteristic 0. Let ¢ : G — G’ be an
isogeny, whose kernel L C G[p] has rank p®. Let Hyi; C G[p"] be a finite flat group scheme of
rank p®. We assume that locally in the étale topology, Hyp~(Z/ p"Z)t. We assume that Hyyy
and L are in generic position. This means that H,4; N L is a group scheme of rank poup{0its—2g}

We define H ; +i © G’ as follows:

(1) Ifi+s<2g,welet H ,, = ¢(Hgyi).
(2) Ifi+s>2g, welet Hy,, = ¢(p~ " Hyri Np~"L).
We now exhibit an isomorphism: Grgi; — G?“;H_i. If i + s < 2g, this map is induced by the
isomorphism Hy; — H, ;. If i +s > 2g, we give a construction.
The multiplication by p gives a map p_ngJri Np "L — Hgi;. We let H;’_H» be its image. The
map Hy'; — Hg; induces an isomorphism H,,,/(H ;N Hyyi1) = Grgy.
The map ¢ : pingﬂ- Np~ "L — H,(/;+i — GT,Iq-H factors over multiplication by p and induces
a map: HJ., — Grj,, factorizing into an isomorphism H;,,/(H; ;N Hyyi 1) — Gry,;. In
summary, we have a diagram:

Hg/]/+i/(Hg/]/+i NHgyio1) — Grgy,

|

/
Gry,
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where both maps are isomorphisms.

4.2.7. Dynamics: preliminaries. Let V be a complete valuation ring for a rank 1 valuation v
extending the p-adic valuation (we normalize v by v(p) = 1). We let K be its fraction field. Let
H be a finite flat group scheme over Spec V. We recall the definition of deg H, following [Farl0],
section 2. We let 6y = det(¢y), with £y the co-Lie complex of H. We have a canonical section
V — 0. Since gy ~ V, the canonical section is given by an element x € V', well defined up to an
element in V*. We let deg H = v(x).

Let G,G’ be Barsotti-Tate group schemes of height h over Spec V. Let ¢ : G — G’ be an
isogeny, whose kernel L C GJp| has rank p°. Let H C G[p"] be a finite flat group scheme of rank
p™™. We assume that locally in the étale topology, Hx ~ (Z/p"Z)". We assume that H and L are
in generic position. This means that Hx N Lx is a group scheme of rank p*uP10:i+5=h} We define
H' C G’ as follows:

(1) If i + s < h, we let H' be the schematic closure of ¢(Hp).
(2) If i + s > h, we let H' be the schematic closure of ¢(p~*Hy Np~"L).

Proposition 4.2.8. We have deg H' > deg H. If i +s = h and deg H = deg H', then L is a BT}
and H is a BT,,.

Proof. If i+ s < h, then H — H’ is a generic isomorphism, so deg H' > deg H by [Farl0], section
3, corollaire 3. Assume that i + s = h, and deg H' = degH, so that H ~ H’'. Let H + L
be the subgroup of G equal to the schematic closure of Hx + Lx. We have an exact sequence
0 — Lxk - (H+ L)k — Hj — 0. We deduce that deg(H + L) < degL + deg H' by [Far10],
section 3, corollaire 3. We also have a generic isomorphism H x L — H + L. We deduce that
deg H + L > deg L + deg H. It follows that H x L — H + L is an isomorphism. We deduce that
Hlp] N L = {0}, and therefore H[p] ® L = GJp|. It follows that H[p] is a BT;. By induction on
I, we deduce that H[p'|/H[p'~'] x L = (G/H[p'~*])[p]. So it follows that H[p!]/H[p'~!] is a BT}
of degree deg H[p] = dim G — deg L. We deduce that H is a BT,. Assume that ¢ + s > h. Let
p~ H N p~"L be the schematic closure of p~'Hx Np~" L. We have an exact sequence

0— p_lHK Np "Lxg — p_lHK X p "Lg — G@n+1]K — 0.
We deduce that degp~ ' H+degp™ "Ly < degp ' HNp~"L+deg G[p"*1]. We have exact sequences:
0— Hlp] > p'H - H — 0, as well as 0 — G[p"] — p™"L — L — 0, so that degp 'H =

deg H + deg G[p], degp™"L = deg L + deg G[p"]. We finally deduce that deg H' = degp~1H N
p "L —degL >degH. O

4.2.9. Dynamic of Hecke correspondences. We recall that Z; = 2221 Dgyir.

Corollary 4.2.10. Over C°", we have: p5Z; > piZ; for all1 < i < g. Moreover, if t € THH(Qyp),
the support of p5Z; — piZ; contains pf Ni_o (Zi<j U Zi>;) and p3 M_o (Zi<j U Zixj).

Proof. By normality, it suffices to check this in codimension 1. Let V' = Og¢tor , where z is a
generic point of the special fiber (indeed, both divisors are supported on the special fiber). The
isogeny pj A — p5A can be written as a composition of isogenies whose kernel is a finite flat group
scheme killed by p (see section . We may therefore apply proposition and deduce that
deg(psHyyi ) > deg(ptHgti ). Moreover, in case t € TT1(Q,) and we have equality, the groups
piHgyiw and piHgy; . are BT,’s and their degree is a multiple of n. O

Lemma 4.2.11. We have piZ; ~; < p5Z;~; and p5Z; «; < D1 Zi <j-

Proof. We have pi >3, <j<; Dgik € P5 Y1 <pei Dgri and piV(p™) = p5V(p™). We deduce that

PI Z1gk§iDg+k — V(") C p; Z1gk§iDg+k — V(p™). Since Z1§k§i Dgyy — V(p") = Zi>j —
Z; «; and they have disjoint support (see proposition [4.1.13). Taking effective divisors on both
sides yields the promised inequalities. O

Lemma 4.2.12. For any w € W, we let I,1 ={1,--- , g} Nw{l,--- ,g} and I,2 ={1,--- ,g} N
w{g+1,---,29}. We have:

PY Y. Du-iy+05 D>, Du-ry 205 Y, Du-1(y +07 Y Du-rgy)

€1y 1 1€1y 2 €1y 1 €1y 2
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Proof. Granting that D; + Dagr1—; = (p™), this is just another way of writing the identity
k k
P52 ic1 Dg+i 2 01 >0y Dgi- O

Lemma 4.2.13. We have that €%, = "\ 32, piDw-1) + Xier,, , P3Duw-1()-

Proof. By definition, €% = €\ 327 | pfDy-1(;) + >_7_; pP5Dyy-1(;)- We can use the last lemma.
[l

The following proposition illustrates that the correspondence is extremely well behaved over
U EMWQ:t w:*

Proposition 4.2.14. (1) The open formal scheme equal to the complement of Y ¢_, ptD; N
P5Dagi1-i is Uperw &2

(2) Over Uyemw €% we have p5Z; = piZ; for all1 <i < g.

(3) Over UweMWQI“’T there are natural isomorphisms pt1Gr; — p5Gr; for all 1 <1 < 2g.
Proof. By lemma we see that UweMWG?QZ is included in the complement of > 7_, ptD; N
p5Dag+1—;. Let us denote by U the complement of 27 piD; NpsDagy1—;. Let x € U. We
first see that either « ¢ p{Dy or « ¢ p5Dy41. In the first case, pfHy11 is multiplicative, in the
second case p3Hy11 is étale. We consider a discrete valuation ring V' of mixed characteristic and
a map & : Spec V — U mapping the special point of Spec V' to x. We have n > degpsHyy1,. >
degpiHgi1,, > 0. If p5Hyyq . is étale then degpiHyiq, = degpiHgy1, = 0 and all groups
are étale. If pyHyyq . is multiplicative then degp3H,y1 . = degpiHyi1,. = n and all groups are
multiplicative. Proceeding by induction in the same way, we prove that p5Gryy; . and pT1Grgyi .
are either both étale or both multiplicative. It remains to see that we have a natural isomorphism
between both groups. In order to see this we go back to the construction of section 4.2.5| and one
sees that all the construction give integral isomorphisms since the groups involved are extensions

of étale and multiplicative groups.
O

The following proposition shows in particular that if ¢ € T7+(Q,), then the correspondence is
well behaved exactly over Uy,eny €%

Proposition 4.2.15. Lett € TTT(Q,) and let 1 <k < g.

(1) The complement of p Zle Z; — py Zle Z; is the locus where pTGrgq; and p3Grgi; are
multiplicative or étale BT’s of the same type for all 1 <i < k.

(2) On the complement of p} Zle Z;—p} Zle Z;, we have a natural isomorphism pTGrg4; —
P3Grgyi-

(3) The support of p} Zle Zi—pi Zle Z; is equal to the support of Zle PIDg—it1Np3Dgy.

Proof. On the locus where p1Gry4,; and p5Grg; are multiplicative or étale BT’s of the same type
for all 1 <¢ < k we have p5Dg4y; = pjDy4i. Conversely, let us consider the open subscheme where
o ZZ 1(k+1—4)Dyy; = p} Ef 1(k+1—1)Dg4;, or what amounts to the same: p3 Zf/ 1 Dgti =
DY Zl 1 Dg4i for all k' < k. We consider a valuation ring V' of mixed characteristic and a map
x : Spec V — C°" mapping to this open subscheme. We therefore assume that for all g+1 < k' < k,
deg(p5Hy ) = deg(py Hi ). We deduce from proposition “ 4.2.8| that py Hy , is a BT,,. Since this
is true for all £/, we deduce that piGry . ~ p5Gry , is a multiplicative or an étale BT, for all
k'. This proves the first point. The second point follows from the construction of section m
Regarding the last point, we check that if pyGry4; and p5Grg,,; are multiplicative or étale BT’s of
the same type for all 1 <14 < k' then p{Grg4r and p5Gryyp are not multiplicative or étale BT’s
of the same type if and only if pfGryyps is not multiplicative and p5Grg4k is not étale. g

4.3. The cohomological correspondence.
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4.3.1. Automorphic sheaves. Over S™°", we can attach to the semi-abelian scheme A a M-torsor
Myr. We consider the relative logarithmic de Rham homology H; 4r(A), and its filtration 0 —
war — Hy gr(A) — Lie(4) — 0. The torsor Myr — S parametrizes triples (1,2, c), where
1 0 Oror — Liea, 9o+ 0%, — w(AY), ¢ € OF,,, is such that ¢y = c(yt)~t. Let Rep(M) be
the category of representations of M over Z,-modules. We therefore get a functor Rep(M) —
Coh(S®T). Let us try to make this functor explicit.

Let k € X*(T)M+. We can attach to x the following representation Vj, of M over Z,, which is
a model of the highest weight x representation. We let V; be the space of functions f : M — A!
such that f(mb) = wo pk(b™1)f(m), V(m,b) € M x BN M, equipped with the action m’.f(m) =
Fm=tm’).

To the representation V,;, we attach the sheaf w™ = 7, Opy, . [—wo rrk], where 7 : Myr — S*" is
the projection and [—wo, a ] stands for the isotypic part for the action of BN M.

Remark 4.3.2. The torsor Myr depends on our choice of A. By definition of the moduli problem,
we could have considered another isogenous semi-abelian scheme (any A; for example). We would
have obtained another natural torsor, identified with Myr over Q,. The sheaf w" depends on the
choice of A, and also on the choice of the model V.

Remark 4.3.3. We normalize the construction in such a way that the standard representation of
M, which has highest weight ((0,---,0,—1);1), corresponds to Lie(A). Therefore, w4 corresponds
to k= ((1,0,---,0); —1).

We have an isomorphism p3w”[1/p] — piw”[1/p] over C;q, induced by the isomorphism of
torsors pf Myr = p3Mag over Cy g, .

Lemma 4.3.4. Over €% the map pjw"[1/p] — piw”[1/p] has the property that p5w"™ C (wo pmk, w(t))piw™.

t,aw?

Proof. We have a natural isomorphism pi7,(A4) ®z, Qp — p3T,(A) ® Q,, induced by the isogeny
ptA — p5A. We let z1 be a local section of pi(T,(A)™ & T,(A)*") (compatible with the K, p -
level structure), then zo = 1 o w(t) is a local section of p3(T,(A)™ @ T,(A)¢") by proposition
4.2.4] Both z; and x; induce sections of Myg, via the Hodge-Tate map, T),(A)"™ — Lie(A) and
T,(A)®" — wae. There is an isomorphism piw®[1/p] — pjw”[1/p] mapping a function f(xs o m)
to the function f(z1w(t) o m) = w(t)~1f(z1 o m). The lattice pjw” is given by sections g(xy o m)
taking integral values. The lattice pjw” is given by sections g(x; o m) taking integral values.
We deduce that w(t)~!f(z; o m) takes integral values. As the eigenvalue with greater p-adic
valuation of w(t)~! acting on the representation Vj; is (—wo arr, w(t)), we deduce that f(z10m) €
(10,5, w(E)) L O

4.3.5. Nebentypus. Let K, 1, C K, be the subgroup of elements congruent to U(Z,) modulo p".
We have an isomorphism K, ,,/Kp 1, = T(Z/p™Z). We now work over Z,((,»). We have a map
S;?ng_ylmde(Cpn) — S}?;K%m@p@pn). We define an integral model S?;K;ﬁ,l,nvzp(qp”) — SZT(<pn) by
normalization.

.- . qt ¢ t g _
Lemma 4.3.6. The restriction of the map 7 : SI?;Kp,l,naZp(Cp") — Szf,r(cpn) to SZ‘;T(Cpn) \>7 DN
Dogy1-i is a finite étale map with Galois group T(Z/p"Z). Moreover,

~astor

tor _ ~agstor
SKr Ky 120 (Gn) X850 IOK, bk 2y (o) = IOK, b1 0K 2, ()

where Ky p1w = wKy1,w N P(Qy).

Proof. We first argue that the group schemes Gr; extend to finite flat group schemes over Z’E Cpn)\
ijl D; N Dagi1—;. Indeed, over SZT(Cpn) \ Z?Zl D103y, the groups {Gry,-1(441) }1<1<g are mul-
tiplicative, thus finite flat. Since Gr,-1(;) = Gr£,1(29+17l) for 1 <1 < g, it is also finite flat. We
recall that integral closure commutes with étale localization ([Sta22], TAG 03GE). We take an étale
map U — Sior ) \Zle D,,-1(;y such that Gr,,-1)|v is isomorphic to Z/p"Z and Gr,,-1(g4y) is

Zp(Cpn
isomorphic to p,». It is clear that

Sﬁ?ng»Lm@p(Cp") Xsgon UQP = T(Z/an) X UQp'

Zp (Cpn)
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We deduce that

t —
SI?ng,l,n7ZP(Cp") XS%;?cpn) U - T(Z/an) XSpec Zp(Cpn) U'

Let x : T(Z/p"Z) — Zp(Cpn )™ be a character. We let &(x) be the subsheaf of

T, Ogtor
* Slgz)Kp,l,nvZP(CP”)

of sections s which satisfy ts = x(t)s for any t € T(Z/p"Z). This is a coherent sheaf and an
invertible sheaf over SZT(CP”) \ Z?Zl D; N Dagi1—i. We let w”(x) =w" ® O(x).

4.3.7. Model of the Hecke correspondence. Let w € MW. Let t € TT(Q,). Consider the corre-
spondence:

tor
Qt,w

7N

&tor Slor
Lemma 4.3.8. The map Try, : (p1)+Ogtor — Ogtor factors through (w™lwo,prp + pit) Ogtor.

Proof. We apply proposition as in remark [3.4.11] The unipotent part of w(t) K, p,w(t)~! N
Kpﬁp’w is
H psup{O,a(w(v(t)))}Kpa,
acd+ M
It is a simple exercise to see that w™lwg pp + p = Zag(w*quﬁju)ﬂq)* « so that the trace map
factors through (w=twg arp + p, t)Ostor. O

Let k € X*(T)M:+,

‘ ‘ for: by : phw" — plw”
which is (—w ™ wo (K + p) — p, YAV where 1YY s the rational map obtained as the tensor
product of psw"[1/p] — piw"[1/p] and the fundamental class: p;Csior — pllﬁggnr given by the

trace of py.

Proposition 4.3.9. We have a natural cohomological correspondence over €

Proof. This follows from lemma and lemma [£.3.§ O

Remark 4.3.10. The normalization of the map depends on t € T%(Q,) and not just on its class
modulo T(Z,).

We let C(k) = {w € MW, w™ wo nm(k+p) € X*(T)g}- As X*(T')q is a fundamental domain for
the action of W on X*(T)qg, C (k) is nonempty and w~twq ps(k + p) is independent of w € C(k).

Proposition 4.3.11. We have a cohomological correspondence t : piw® — plw® over CT \

S piD; Np3Dagy1—; which is p~ (W won () =pityynaive for gy € C(k), where t"*V¢ is the
rational map obtained as the tensor product of psw™[1/p] — piw®[1/p] and the fundamental class
given by the map (induced from the trace):

50 1%
D2Ustor\s™9_ D;NDagy;i 1 7 P1Ustor\3°9_ | DiNDoyii1-

Proof. We first observe that py : Cfo"\>7_, ptD;NpsDogi1—; — S\ Y7_ DiNDagi;—1 is an lci

i=1
map, as both the source and target are smooth over Spec Z,,. We deduce that P ﬁsm\zg:l DiNDagii1

is an invertible sheaf and we have a fundamental class p3 ﬁSt”‘\ZL_l DinDagiior — ) ﬁ’sm\zle DiNDsg iy
(see [EFP21], prop. 2.6). We therefore get a rational map ¢"**¢ of locally free sheaves t"**V¢ :

phw" ——» plw”. We claim that ¢ is a true map. It suffices to prove this at each generic point of the
special fiber, and this follows from proposition a
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Remark 4.3.12. The restriction of ¢ to €} is t,, for all w € C(x). More generally, for all w’ € MW,
it restricts to p™w't,s, where n, = (W) (wo,m(k + p) + p,t) — (W Hwo,m(k + p) + p,t). If
t € TTH(Qp), ny > 0 for v’ & C(k).

Proposition 4.3.13. Assume thatt € TT*(Q,). There exists k € Z> (dependmg on k) such that

t can be extended to a cohomological correspondence t : piw™(—k > _, Z;) — plw™(=k > 7_, Z;)
over C'r.

Proof. Let us denote by .# the ideal corresponding to the effective Cartier divisor p} 12i —
1 Zz:l Z;. By proposition 4.3.11] we have a map p5w® — colim.# ~*p{w”. Since pjw" is pseudo—
coherent, there exists & such that this map factors through a map pjw® — . Fphw". O

From now on, we fix t € T7+(Q,) and we let @ = w*(—k'>.7_, Z;) for k' > k, where k is
given by proposition [4.3.13[ and &’ is taken to be large enough (how large we need to take k' will
be explained in the proof of proposition [4.5.8]).

Lemma 4.3.14. We have a factorization:

g g
£:p3@™ = Ocuor (K = k) (D p3Zi — Y i Z:)) @ ps™ — pia".

i=1 i=1
Proof. We consider the sequence of maps
g g g g
Ocror (K = k) psZi =Y piZ:)) @ psas™ — psw™(=k Y Zi) @ piOseor (k= K) D> Zi) —
= = i=1 i=1
g g
P (—k Y Zi) @ piOgror (k= K)> " Z;) —
i=1 i=1

4.3.15. Nebentypus. It is also possible to consider a Nebentypus. Let x : T(Z/p™Z) — Zp(Cpn )™

Lemma 4.3.16. Over C’f"zr ¢ \Z?Zl p1DiNp3Dogy1—; we have canonical isomorphisms p1Gr; =
p5Gr;, inducing an zsomorphzsm P30 (x) = p1O(X).

Proof. This follows from proposition [4.2.14] O

Proposition 4.3.17. Over € Z,(Cyn) WE have a natural cohomological correspondence t,,
T P . .

psw(x) — piw”(x) which is (—w ™ (wo (K + p) — p, E)TYYE where N js the rational map

obtained as the tensor product ’of psw[1/p] = pfw™[1/p], of p5C(x) — p1O(x), and the funda-

mental class: pQﬁ@;m — Py Ogtor given by the trace of p1.
1Zp (Cpn) w,Zp (Cpn)

Proof. This is analogue to proposition [4.3.9 d
We define a cohomological correspondence: ¢ : pjw”(x) — piw™(x) over Cf,ozi,(cpn) \>7 ,piD;N
p3Dagi1—; which is (—w ™ wg ar(k + p) — p, £)t"4¢ for any w € C(k), where $"%?¢ is the rational

map obtained as the tensor product of p5w”(x)[1/p] = piw™(x)[1/p], the isomorphism p3&(x) —
pyO(x) and the fundamental class given by the map (induced from the trace):

*
pQﬁSQ;Qp")\ZL DiNDsgtio1 7 pl ﬁs“’?c wy\2fy DiNDagyio1-

Proposition 4.3.18. Assume that t € TT1(Q,). There exists k € Z>o (depending on k and x)
such that t can be extended to a cohomological correspondence over C’f"ZTp(C W)’
) P

g g
£:p3w(X)(=k Y Zi) = P ()(=k D Z).
i=1 i=1
Proof. This is analogue to proposition O

For simplicity, we let @"(x) = w™(x)(—k">.7_, Z;) for some k¥’ > k where k is given by the
proposition.



48

Remark 4.3.19. We remark that the existence of normalized cohomological correspondences in
propositions|4.3.13|and 4.3.18/ imply that the normalized Hecke operators for t € T+ (Q,) preserve
a lattice in rational coherent cohomology, and so the eigenvalues are p-adically integral. This proves
conjecture 5.10.7 of [BP21] in the Siegel case.

4.4. Higher Hida cohomology groups in weight . Let w € M. We construct higher Hida
cohomology groups labeled by w.

4.4.1. A strict dynamical correspondence. Lett € TT7(Q,). We study the correspondence (€%, SLoT).

t,aw?

We let SF"T(w Lwt1) = = MiZi,<w;+1 N Ziswi+1- We Dy =UZ; sqp, and Dy, 4 = U Z; <, -
or *1 or 1 or
Lemma 4.4.2. Let C}% (1 i1) =P1 S (wt041) VP2 S5 (wotwi1)- Then

(Cf?FTp,(w 1,w+1)s S]Fp,(w 1,w+1)» p17p27Dw +7Dw7)

is a strict dynamic compactification of (Ctt‘]’{ w0 St"r w)-

Proof. We first work on C;. By lemma [£.2.T1} we see that p5Z; sw, > piZi>w, and piZ; <w, >
P1Zi,<w,. By corollary 1.2.10} we find that the support of p3(Z; >w, — Zi,<w,) = P1(Zi,>w, — Zi,<w,)
contains pi Nj_q (Zi<j U Zi>;) and p5 N;_o (Zi<j U Zi»;). We now consider this property in
Cf%;(w_l’wl). We deduce that the support of p3(Z; sw, — Zi <w;) — D1 (Zi>w; — Zi,<w,;) contains
D1 Zi>w; and p5Z; <. In particular, the support of p1Z; «w, — P5Z; <w; + P52 >w,; contains

Taking local generators fy and f_ of Z; <., and Z; ~.,, we deduce that there exists an identity:
Py f+p5f— = hps fy where h vanishes (at least) on piZ; <w,. Since Z; s, and Z; <,,; have disjoint
support, we deduce that there exists an identity afy + bf_ = 1. It follows that:

pif+ = pif+(safs +p3bf-)
= (pif+p3a+ hp3b)psfy
The function pj fipa + hpib vanishes on p7Z; «.,. We deduce that there exists 0 < s < 1 such

that sp1Z; <w, > P5Zi,<w,- One argues similarly with Z; »,,, and then sum over all i.
O

We record the following corollary for future use:

Corollary 4.4.3. Let i € {1,2}. There exists m € Zxo (depending on w and i) such that the
canonical map Octor — Octor (M(p5 S Zi—pi Y91 Z;)) can be factored over pi_lS]fTZT(wfl wt1)
through maps:

0,1 g10r =0 1 gion (Pi D+ 405 Dus,4) = Ot gior (m(ps Y Zi—p} > Zi))-

Pi PFp,(w—1,w+1) Pi OF,, (w—1,w+1) Fp,(w—1,w+1)

Proof. We construct the dual maps

0,1 gtor m(p} ZZ —pt ZZ = Oprrgeor o (PIDus=pEDus) = Oporgron

po(w— 1w+1) Fp,(w— 1w+l).
i=1 i=1 v

We first do some local computations. Let {U }; be a ﬁmte affine open cover of p; 151507“( w—T1,w41)

which trivialices 0, g (<0 % 9T Z0) and Oy CpiDus
D5 D 4 ). AgeneratorX of 0 P +1)( Py D, +—p5Dy +)(U;) maps to g; € O pTlSETL y +1)(Ui)
w1, w1,
and a generator Y; of ﬁpi—lsﬂ‘t‘m(/ ) +1)( (P35> Zi—pt >°7_, Z;)) mapsto f; € O DTS s i (U).
o 1w (w1,

Over pf%«‘jf(wﬂ,wﬂ)? P> 7 Zi—py > Z; and pf Dy + +p3 D,y + have the same support. In-
deed, the complement of py D, + + p3D,, + is Ctt"]’{pyw. On the other hand, the complement of

P51 Zi =PI Zi in CHF is Uw CHE e and (U CFF, ) NP SE 4wty = CEF,

We deduce that there exists n such that f/' = h;g; for some h; € O Pyl s, )(Ui) and for
Fp,(w—1,w+

all i. Let Ui; = Ui NU;. There exists units a;; and b;; € G- gor (U;,;)* such that

Fp,(w—1,w+1)

Xi; = b;;X; and ;" = a;;Y". We deduce that fi = ai;f; and g; = b; jg;. It follows that
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g(hj —bija; hi)=0in € brtster, )(Ui,j). We deduce that f?" = (h2g;)g;. We observe that
w—1,w+1

gih3 — b, ,Ja”h 9i = gihi — b a wthQJ = gj(h; — b; ,jawlh )(hj + bija; 'h;) = 0. We now set

m = 2n. It follows that the map defined locally by sending Y™ to gthX glues to give a map

ﬁpflsﬁﬁor(wfl w+1) (_2m(p§ Z?:l ZZ B p‘f f 1 Z )) - ﬁ 7IStOT(w71 w+1) (_p){Dw+ - png’+) ' D

Proposition 4.4.4. For all s > 0, the correspondence (St Z/pr,Cf_ouf Z/pSZ) admits a strict dy-
namical compactification.

Proof. We let SZJ,TZ/pSZ be the the closure of S ey in SZ/pSZ and C’th/psZ be p} wOZ/pSZ N

pg.gziTZ Jpez- When s =1, lemma proves that this is a strict dynamical compactification. The
general case is deduced by lemma O

Using the cohomological correspondence of proposition m tw @ Phw® — piw”, proposition
theorem and proposition [2.6.13| we can define (recall that the support condition is
hidden in the notation):

RLy(KPKypp,k) = HmRU(SY) ., we)Cepamord
RI(KP Ky p,p, k,cusp) = limRF(S%J/;sZw, ”(—D))C:?ZT/PSKOM

We can also allow a Nebentypus x and define (over Z,({pn)):

RLw(KP Ky ppy i, X) = EMRI(SE ) e s () CoErezr
RTw (KP Ko p,p, K, X, cusp) = limRF(SZ%m/ps,w,w”(x)(*D))CIZ/PGZ ord

Proposition 4.4.5. The cohomologies RT',(KP K., ,, p, k), RT'w(KP Ky p p, &, cusp), RT (KP Ky P, K, X)
and RT,(KP K.y p p, K, X, cusp) are independent of a specific choice of elementt € TT*(Q,). They

are perfect complezes of Z,-modules and carry an action of T(Q)). Moreover, the action of T'(Q,)

is locally algebraic, with algebraic part given by v = —w ™ wo pr(k + p) — p.

Remark 4.4.6. On RT (K, Ky p,p, k), RTWw(KP Ky, p, K, cusp), the action of T'(Z,) is given by v.
On RT(Kp Ko p, Py K, X), RTW(KPKy p.p, K, X, cusp), the action of T(Z,) is given by vy.

Proof. We only consider RI',,(K? Ky, p p, £). The other cases are similar. In proposition the
construction of a compactification St 2/ of Stor e with boundary D = D, UD_ is mdependent

of the choice of t € TT(Q,). We deduce that T+((@p) acts on RI'p, p_ (S 7 pezsw")- Let t and ¥/

be two elements in 7+ (Q,,). We see that RI‘(S%‘Z) W )Cf 2oz and RF(S%‘”/p " w“)cttf:;/pSZ’ord
are direct factors of the cohomology with support R['p, p_ (Sfu,Z Iz W ). Since there exists n and
u,u’ € TT(Q,) such that " = t'u/ and (¢/)™ = tu it is easy to deduce that these direct factors are
quasi-isomorphic. If follows from theorem that RT W (KPKy p p, k) is a perfect complex. The
property that T(Z,) acts via v follows from the construction (and the normalization of the Hecke

correspondences in proposition 4.3.9)). O

4.5. The Cousin complex. In this section we construct a spectral sequence from higher Hida
cohomology to classical cohomology.

4.5.1. The Cousin spectral sequence. Let t € TT+(Q,). Let @* and @" be as in proposition [4.3.13
and [4.3.18

Theorem 4.5.2. There are spectral sequences:
(1) @’UJGC(I{), l(w):pHﬁ)—i_q(KpKw,p,P? ’%) = Hp-l—q(Stor’a)r@)t—ord
(2) Buwecn), t(w)=pHh (KP Ky p,p, £, cusp) = HPTI(S'r & (—D)) ~or
More generally, let x : T(Z/p"Z) — Zp(Cpn)*. We have spectml sequences:
(1) Sucote), B UK Koy py e, x) = HEFISET | G(30)or
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(2) @MGC(K), K(w):pHﬁj_q(KpKw,p,Pv Ry X, cusp) = Hp+q(S%oGC”) @H(_D))t_ord

Remark 4.5.3. The differentials and the abutment in the spectral sequence of theorem depend
in principle on the choice of the integral models S*" and @"*. The higher Hida complexes are
however canonical.

Corollary 4.5.4. Let k € X*(T)" be such that C(rk) = {w}. There is a canonical isomorphism:
RIy(KP Ky p.p, ) ~ RT(S™7, %) 70

and similarly for cuspidal cohomology. Let x : T(Z/p"Z) — Zyp((pn )™ be a character. There is a
canonical isomorphism:

REy (KP Ky p,py s X) = RU(SE Ly, @ (x))
and similarly for cuspidal cohomology.

Corollary 4.5.5. Let k € X*(T)" be such that C(k) = {w}. Let v = —w two p(k + p) — p.
There is a canonical isomorphism:

RTw(KP Ky p.p, k) @ Qy(—v) ~ RI(SE, w") "

of T(Qp)-modules, and similarly for cuspidal cohomology. Let x : T(Z/p"Z) — Zp(Gpn)™ be a
character. There is an isomorphism of T(Q,)-modules:

Ry (KP Ko p, P, £y X) ® Qp(Cpn ) (—v) = RF(SHZ(CPW)a (X))

4.5.6. proof of the main result. We recall the filtration by closed subsets defined in section
F,=0CF C-C Fygty = SfFZ’“, where F; = Uy g(w)<iZ>w—1. Let us also recall the
EICESH] <

definitions of D_ ., = >°7 | Z; sup, and Dy = > 01 Z; <ap;-
Lemma 4.5.7. We have that F; \ F;_; = Hw7£(w):i(Z>w_1 \D_ ).
Proof. This follows from lemma O
By theorem we have a spectral sequence:
Hp+q(F \Fp 1,@0") = HPT(Stor oF).
We see by lemma |2 and lemma [£.5.7] that
RFC(FP \ Fp_l,oD )= @w’z(w):pRF(St‘”,lzgl 1i71111@“(—mD_7w)/J§)>w_1).

We have an action of t € TT1(Q,) on the spectral sequence by proposition and corollary
E210

The key proposition which implies theorem is the following (given that the ordinary part
of the right hand side is RT",,(K, Ky, p,p, &) by corollary :

Proposition 4.5.8. The map
RI(S™", im im &"(—mD_ ,)/ I3 < _1) — RL(S™", lim colim, im &"(—=mD_ ., + 1Dy 1) /p"™)
m n ’ n m
induces a quasi-isomorphism on the ordinary part.

Proof. We consider the cohomological correspondence:
s lim 1im (@ (—=mD_w)/ I 7 1) = P lim lim (& (—=mD—_ )/ % 1)

We tensor with p3.77 o /TG w1 = plfg cw_1/77 ~w—1, We see that the cohomological
correspondence induces a map:

p; thl (@K(_mD—,w) ® J;,;iu—l/jgpw—l) — pll h};n (‘:}R(_mD—,w) Y jg,;tu—l/ﬂg,xy—l)

We claim that it factors into a map:
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3 limp, (@%(=mD_ .+ Dy ) @ IFN /I8 0 1)

T

P51y, (& (=mD—w) ® IG 20 1/ I sp1) ——> Pilime, (G(=mD ) @ I7 2 /T )

This follows from the property that the original cohomological correspondence factors into

g g
Py = Ocpor (K — k)Y 32 =Y piZ:i) @ ps”™ — pia"
i=1 =1

by lemma [4.3.14) and an application of corollary (at this place we choose &k’ large enough).
An application of lemma implies that the map:

R (5", 1i7£n li;no?"(—mD,,w) ® j;,;iufl/jg,>wfl) -

RI(S*", lim colim, Nm &" (—mD_ , + 7D ) ® I35 1/ IF < 1)
n m ’ ’
is a quasi-isomorphism on the ordinary part. This implies that

RL(S™" limlim &" (—mD_ )/ 7% < 1) — RL(S*", lim colim, im &" (—mD_ 41D )/ I < p_1)

is a quasi-isomorphism on the ordinary part. Finally we can pass to the limit over n and observe
that the inclusion (p) C #z ~,—1 is an equality over &7,
O

5. HIGHER HIDA THEORY IN p-ADIC FAMILIES

5.1. Strict dynamic compactifications of Hecke correspondences. Let w € M. We let
B, = wBw™! and let T\, = wTw™' =T and N,, = wNw™! be its maximal torus and unipotent
radical. Let K, p C P’(Q,) be a compact open subgroup. We say that a compact K, p is
decomposable with respect to w if:

(1) We have K, p = Mg, , X Uk, ,, (this condition is automatic if p > 2, see remark [3.4.7).
(2) K, p has an Iwahori decomposition with respect to B,,:

Kpp=Nuk, p XTwk,p X Nk, p-

(3) Mk, , is a subgroup of the Iwahori subgroup of M(Q,) (with respect to BNM = B,,N M)
and admits an Iwahori decomposition IV My, X Tw, K, p X N M, -

Remark 5.1.1. These compact open subgroups are cofinal among all compact open subgroups. We
could probably use more general compacts, but it simplifies some arguments to restrict to these
compact open subgroups.

Remark 5.1.2. Let ty = diag(1l,,pl,). Let K, p be a decomposable compact. For n large enough,
to " K, ptl € P'(Zp).

Remark 5.1.3. Note that K, p also has an Iwahori decomposition with respect to B:
Kyp =Nk, » XTwr,» X Nk, »
with NKp,p = NMKp,p’ Nk, p = NMKp,P x Uk, p-
Elements ¢ € T, (Qp)™" = wT(Q,)"Tw™! define Hecke correspondences 3Q5§?ZthyPt71pr=P

over J&427 Kpp- Given a formal scheme X over Spf Z,, we let X7z,,n7 be the corresponding scheme
over Spec Z/p"Z.

Theorem 5.1.4. For any decomposable compact open subgroup K, p C P'(Qy), for any n € Z>o,
and any t € T,,(Qp) ™, the correspondence ((IC’%;(th,ptflﬁKp.p))Z/P"% (IG%k, o )z/pnzs D1, D2)
admits a strict dynamic compactification.
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Proof. We first let K} C G(Q,) be the Iwahori level subgroup and let K], p = wK,w™" N P(Qy).
In this case, the theorem follows from proposition [4.4.4/Now the theorem holds for any compact
open subgroup satistying K, p C K, ! _p by lemma @ Also, if the theorem is satisfied by a
compact open subgroup K, p, it is satlsﬁed by any conjugate by to = diag(1,4, ply) and for r large
enough, t," K pt C K, p. O

5.2. Definition of higher Hida complexes. We define higher Hida complexes by taking a
suitable limit of cohomology of Igusa varieties with coefficients in the structural sheaf.

5.2.1. Working at finite level. We first generalize the definition given in section [£.4] to the case of
an arbitrary decomposable compact open subgroup, in weight 0.

Lemma 5.2.2. Lett € T,,(Qp)" and consider the correspondence (j@i?:(thypt—lpryP)7 j@t[?ngyp,pl,pQ).
We have a cohomological correspondence p3 ﬁgngprp - P ﬁj@KPKP’P, given by (—wo pp —
wp, t)Tr,, .

Proof. Analogue to lemma [4.3.8 g

We let
Rrw (KpKP,P) = Rr(qut[?;,Kp,Pa ﬁj@KP,KP,P)OTd = hin RF((IG?{);,KP,P)Z/PSZa ﬁ(IGKp,Kp’p)Z/pSZ)OTd.

The ordinary part is taken for the action of any ¢ € T,/ " (Q,) (the ordinary part does not depend
on such choice). It is legitimate to take the ordinary part because of theorem (of course,
taking the ordinary part hides a support condition). Also, note that we have transition maps in
the limit by proposition We have a similar definition for cuspidal cohomology:

R, (KPK,,p, cusp) = RT(IB% 1 ., Oreis (=D))"* =M RI((IGK K, )2/p2: O1Gicn e, p(~D))ypen)

Proposition 5.2.3. RI',(K?K, p) and RT',,(KP K, p, cusp) belong to D(Z,[T(Q,)]) and are per-
fect complexes of Zp|Tw(Zy)/Tw, i, »|-modules.

Proof. This is a consequence of theorem [2.6.10 d

5.2.4. Independence of the compact. The ordinary cohomology of a decomposable compact open
subgroup only depends on the torus part of the compact. This generalizes a standard result in the
theory of Jacquet modules (see [Cas], sect. 4.1, the canonical lifting).

Proposition 5.2.5. If K, p and K’ p are two decomposable compact open subgroups and if
Twr,r = Tw K then there is a natuml quasi-isomorphism RI'y(KPKp p) = RI'w(KP K, p)

and similarly for cuspidal cohomology.
Proof. Let Kp p = Nu i, » X Tk, p X Nu i, » and K], p = Ny K, p

claim that there exists Ny . C Nu,k, » Ny, i, ,, such that K/ p = N

’UJKP

/
XTpr,PXNU)K P

We first

XTw,Kp,p XNw,Kp,p
and K]’D”’ = Nl’é’ Ky X Tw. K, p X Z\_f;’ K,.p r€ decomposable compact open subgroups. Indeed, by
conjugating by to, we may assume that K, p C P'(Z,) and K], p C P'(Zp). One can take K] p
(resp. K,'p) to be the intersection of K, p (resp. K, p) with {M € P'(Z,), M mod p"Z, €

B(z/ p"Z)} for n large enough. We will show that the theorem holds for K, p and K] p, K], p and
K'p and finally K p and K"p. Let us denote by Ky, ,, = Kp.t_mKnptm Nt"K, pt~™. We can

con51der the followmg 1nﬁn1te dlagram

tor tor tor
"TL’SKoz j@K1,1 361(20
tor tor
7(’5K0 1 JQSKI o
jﬁtor
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This induces a diagram on cohomology where all maps are quasi-isomorphisms by proposition
2.8.2

RI'w (Ko,2) RIw(K1,1) RIw (K2,0)
RT (Ko,1) RTw (K1,0)
RIw (Ko0,0)

If we let Ky, = KPt ™K pt™ Nt"K pt™" we see that there exists n,m,l,r such that
Ko € Kpno C Kll,/o C K. If we consider the trace maps RT', (K}, o) — RIw(Kmo) —
Rl (K]')) — RIW(K,p), then we deduce that all maps are quasi-isomorphisms. Therefore
RFw(Kpr,p) = RTw(KPK, p). We prove similarly that RI',(K?K], p) = Rl (KPK]"p). The
proof that RI', (KP K/ p) = RI',,(KPK,p) is similar, using pull back maps instead of traces. [

5.2.6. Passing to the limit. Let K, p be a decomposable compact open subgroup. We assume
K, p C P'(Z,) for simplicity. We now let (K, p), ={M € K, p, M mod p™ € N(Z/p™)}. We let
RI', (K?) = lim,, colim, RT",,(K?(Kp p)n) ® Z/p™Z. We define similarly RI",,(K?, cusp).

Proposition 5.2.7. The complezes R, (KP) and RT,, (KP, cusp) are admissible complexes (see
definition and their construction is independent of the choice of Kp p.

Proof. The independence on the compact follows as in proposition (one checks easily that the
quasi-isomorphism is functorial in n). We let T7(Z,/p"Z,) be the p-subgroup of T(Z,/p"Z,).
For n large enough, the complex RI',(K?(K, p)n) is a perfect complex of Z,[T"(Z,/p"Z,)]-
modules by proposition We can let M be a minimal representative of this complex (see
[KT17], sect. 2.2). This means that M} = Z,[T"(Z,/p"Zy)])*¢ and the differentials in this
complex are zero modulo the maximal ideal of Z,[T"(Z,/p"Z,)]. We have quasi-isomorphisms
My — (M;ﬂ)Tw,(Kp,p)n. By minimality, we deduce that k,; = kj+1,; and the map M} — M},
identifies with the canonical injection Z,[T"(Z,/p"Z,) ki — Z,[T"(Z,/p" T Z,)]k»+1¢ (we think
of Z,[T'(Z,/p"Z,)] as functions on T"(Z,/p"Z,)). The proposition boils down to the fact that
lim,,, colim, Z/p™Z[T" (Z,/p"Zy)] = CO(T"(Zy), Zy). O

The complexes RI',, (K?) and RI'y, (K?, cusp) belong to D(Z,[T(Q,)]). We now twist the action
of T(Q,) by w. This twist is motivated by section the relevant Igusa variety is embedded
via w inside the global Shimura variety. Also, note that we have dropped any reference to the
compact K, p in the notation.

5.3. Control theorem. We now study the specialization of these complexes in locally algebraic
weights.

5.3.1. Higher Hida complezes in fized weight. We revisit the construction of section for more
general compact open subgroups. Let K, p be a decomposable compact open subgroup. After
conjugation, we can assume that K, p C P’(Z,) (this assumption is not really crucial but we keep

it for simplicity). There is a map 3(’57}(02 Kpp Agor providing a natural semi-abelian scheme A

and therefore there is a natural M-torsor Myr over 3053?2&) - For any k € X*(T)M:+ we have
a corresponding sheaf w” over 36@?2&) - We let RI'W(KPK, p,k) = RF(j@t[?ZKp Lywt)erd =
lim,, RF(IG’}?ZKP,P’Z/an,w“)OM (where the ordinary part is taken for the action of some t €
T+(Qp)). We define similarly RI',,(KPK), p, K, cusp). If k is the trivial character, we simply
recover the cohomology groups considered in section These are T'(Qp)-modules. The action
of T(Qp) is locally algebraic with weight v = —w ™ wq ar(k + p) — p. We now explain how we can
recover these cohomologies from RI',, (K?) and R, (K?, cusp).
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5.3.2. Reduction of the torsor. We have an exact sequence 1 — Uk, p = Kpp— Mg, , — 1and
there is a Mk, ,-torsor jQﬁ?ZUKp,p — 3@5%’2}{%}3.

Proposition 5.3.3. There is a map of torsors, equivariant for the map My, , — M,:

¢
jﬁI?ZUKp,P E— MdR
\ l
t
I8k, »
Proof. If A is the semi-abelian scheme over J&f ., we have a Hodge-Tate map T, (A[p™]) —
wae (of pro-étale sheaves over 38, ), inducing an isomorphism: T,,(A[p>]*) ®z, Ose,,  —
: 0P
WAt @O, ,. - This provides an equivariant map jquKp » Myg. O
- p,P s

5.3.4. Control. Recall that K p has an Iwahori decomposition with respect to B : Nk, , X

Tw K, p X NKp,P‘ We let Tk, , = w‘lTw,Kp,Pw. Recall that we have twisted the action of
T(Q,) by w on RI',, (KP?).

Theorem 5.3.5. We have a canonical isomorphism.:
RHomr, (v, Rl (K?)) = RI'W(KPK, p, k)
and similarly for cuspidal cohomology.
Proof. We let (K, p)ir ={M € K, p, M € B(Z/p™) mod p™}. We have
RT(KPKp p,k) = RO(IG, 0"
= RF(B@E?Z(KP’P)ww“)Wd by a version of proposition [5.2.5
= RF(JQS’}?Z,BKP N w™)°r by passing to the limit over n.
We have by definition: |
RT,, (KP) RF(J@?@;NKPYP , Osgstor yerd

KPN
Kp,p

_ (3 tor or ord tor Jestor i ffine.
R (JQiKpBKp’PJr*ﬁ’j@thNKP P) because jQﬁK”NKp,p — J®Kp3Kp,p s affine

By proposition we have a map Oy, — ﬁgg_:,UK . It induces a surjective map which is
p

P
thought as the projection to the lowest weight vector: w" — (m, O3y, @ wO’NI/Q)T“’*Kp,P.
p.P

Let K be the kernel of this map. One checks that RT'(3®% 5, N K)’Ord =0 as in [Pil20], sect.
10.7 for example. It follows that 7

¢ d ot Ty d
Rr(jﬁlngKp,P7wﬁ)0T — RF(J@I?’:BKP,F’ (W*ﬁstKpU(Zp) ®w07M,L;) vKP’P)OT‘ .
We then check that

RHomyp,  (v,RT,(K?)) = RI(O6% 5. (1036, @ w™ two k) Krp)ord
», P Kp.p Kp P ’
= REO8R g, o (M Oa0 v, ® wo_rrk) T o Yord

In the first equality we exchange sheaf cohomology and group cohomology. In this process, v =
—w wo, (K + p) — p becomes —w ™ wp pr (k) since the factor —w ™ wg ar(p) — p is absorbed by
the normalization of the trace map. O

Let us fix some definitions. Let v = vagx : T(Zp) — Zp(Cpn )™, with v4y € X*(T') and x a finite
order character. Let k = —wo prw(v + p) — p. We let RT', (K?, k, x) = RHomp(z,) (v, RI', (K?) ®
Z,(Cpn)) and we define similarly the cuspidal part. If x is trivial, we also simply use RI',, (K, k)
for R, (K?, k,0).

We can compare with section We have RT',,(KP K,y . p, k) = RT' (KP, k) and R (KP Ky p p, K, X) =
RI,(K?, kK, x). It is justified to drop K, p p from the notation since the ordinary cohomology is
independent of the choice of the compact K, p as explained in theorem
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5.4. Ordinary Hecke algebras. Let A = Z,[[T(Z,)]]. Welet M3 = RHomqp(z, (1, R[', (KP)@A)

and M} .., = RHomypz (1, Ry, (KP, cusp) ® A)
Lemma 5.4.1. The complexes My, and My, ., are perfect complezes of A-modules.

Proof. Let T'(Z,) be the pro-p subgroup of T'(Z,). We observe that RHomy(z,)(1,CO(T"(Zy), Z,)®A) =
A[0]. We deduce from proposition that RHomg(z ) (1, R, (KP) @ A) is a perfect complex
of A-modules. Since T(Z,)/T"(Z,) = T(F,) is a group of order prime to p, we deduce that
RHomzp(z,)(1, R, (K?) @ A) is a direct factor of RHomyv(z,)(1, R, (K?) ® A) and also a perfect
complex. O

We clarify the relation between both complexes.

Lemma 5.4.2. We have
RI'y(K?) = RHomgz, (RHomy (M, A), Z,)

and similarly for cuspidal cohomology.

Proof. There is an anti-equivalence of categories from admissible complexes to perfect complexes
of A-modules, given by i : M + Homg,(M,Z,). This uses that A is the algebra of measures
on T(Zy,). Let i~! be a quasi-inverse given by Homg (—,Z,). We have a second functor given
by j: M +— (M ® AT We claim that j o i~! is simply the duality functor Hom(—, A)
on perfect complexes of A-modules. It suffices to check this on A[0]. We have a natural map
Homyg, (A, Z,) @z, A — Homg, (A, A), which induces an isomorphism (Homg, (A, Z,) ®7, A)T%») —
Hompy (A, A). We deduce that one can construct RI',,(K?) form M, by applying Homa (—, A) and
the Homg, (—,Z,). O

Remark 5.4.3. Let K, p be a decomposable compact with T, g, , = T(Z,). We have the formula:
Mz) = RI‘(’J@];?QBK%P s (W*ﬁjéiglr’NKp . (%) A)Tw(zp))o’r‘d.
Let v : T(Z,) — A* be the universal character. Let k*" be defined by the formula x“"" =
—wo pqw (V™ + p) — p. In this last formula, T}, (Z,) acts on Te O5etor since Ty, (Zy) is the
K, p

diagonal torus of By, ,. It acts on A = Z,[[T(Z,)]] via the character @07Mn“”i“ (this is the

- lwo univ

,1 w
composition of T\, (Z,) = T(Z,) e AX).
For any v = vagx : T(Zp) — Zp((pn )™, with v4, € X*(T) and x a finite order character, and
for k = —wo, mw (v + p) — p, we have:
M3, @6~ Zp(Gpn) = RUw (KP, K, X).

We let T,, be the image of the Hecke algebra in End(M?). This is a finite A-algebra. We let
E,, = Spec T,, — Spec A. This is the ordinary Hecke eigenvariety. We define similarly T cusp-

5.5. Duality.
Theorem 5.5.1. We have a duality, for which the adjoint of t € T(Q,) is wot™ € T(Q,).
RT,, (Kp7 Ky X) ® RFwO,Mwwo (K;D7 —Wo,MK — 2pne, wOX_l) - Z:D(Cpn)[_d]

Proof. We take the compact K, p = {M =1 mod p"}. By theorem the duality is a perfect
pairing

RL(I6% k., . w") " @RISR i, ., 20me) ™" = Zy (G ) [d]
where on RF(S@’}?ZK%P, wr2Pne)=0rd the ordinary part is taken with respect to the map T~ (Q,) —
T(Q,) = M(Q,). The adjoint of ¢ is t~!. Now we can consider the following diagram:

T=(Qp) —— M(Qp)

on J/U)O,M

0, M WWo

THQ,) 5 M(Qy)
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We deduce that conjugation by wo as induces an isomorphism
RL(3G 7, o w20me) 7 = RO(IB e w20 )7
O

Theorem 5.5.2. We have a perfect pairing Mg & M

wosrwwocusp — M—d], for which the adjoint
of t is wot 1.

Proof. This follows as in the previous theorem. O

5.6. The case of GSp,. In this subsection we state a conjecture and prove an optimal vanishing
results for our cohomology in the case of the group GSp,.

Conjecture 5.6.1. The cohomology RT'y,(KP?) is an admissible complex of amplitude [¢(w), %]
and RT, (KP, cusp) is an admissible complex of amplitude [0, ¢(w)].

Remark 5.6.2. The conjecture is equivalent to the conjecture that Mp is a perfect complex of

A-modules of amplitude [¢(w), £ (g2+ 1)] and My, ., is a perfect complex of amplitude [0, /(w)] (see

lemma [5.4.2)). The conjecture is compatible with duality between the cuspidal and non-cuspidal
part.

Proposition 5.6.3. The conjecture holds when g =1 and g = 2.

Proof. The case g = 1 is easy and was treated in [BP20]. Actually in that case the stronger
assertion holds that the cuspidal and non-cuspidal theories for w = Id are in degree 0 and dually,
the cuspidal and non-cuspidal theories for w = w}! are in degree 1. We now consider the case
that g = 2. It suffices to prove that My, ®a F, and My, ., ®a F), have the correct amplitude as
IF,-vector spaces for all the maps A — F,, corresponding to all the residual characters x. We now
use the notations from section Let K, C G(Q,) be the Iwahori subgroup. We want to prove
that

M? @A Fp =RIW(KP Ky p,p, k, cusp) @ Z/pZ = RT,,(K?, k, cusp) @ Z/pZ

w,cusp
has amplitude [0, /(w)]. We let (Igk, K., , »)z/pz De the corresponding component of the ordinary
locus. When w = Id, RT',,(K? K., , p, k, cusp) ® Z/pZ is a direct summand of

RIN(I9k, K. .0 )2z, W™ (—cusp))

(in that case the support condition has D_ = (, so we consider usual cohomology) which is concen-
trated in degree 0 since the image of (Igk, k., , »)z/pz in the minimal compactification is affine and
the relative cohomology to the minimal compactification vanishes ([Lanl7], thm. 8.6). When w is
the length one element, we consider Sﬁf(w_lyw“) which is a compactification of (Igk, k., , p)z/pz-
Concretely, SfZLLwH) = Za,<2N Z1,59. We have locally principal subschemes D,, = Z; 1 and

Dy, — = Z3 1. By lemma , we know that (Ctt,(l)F:,(wfl,erl)’Sl%‘if(wfl,w+1)’p1’p2?Dw7+’Dw7—)

is a strict dynamic compactification of ((1gx w(t)K., pw(t)~1NKw.p.p)2/p2s LIK K p p)2/pZs P1,D2)-
We deduce that the cohomology R, (KP K., ,, p, K, cusp)®Z/pZ is a direct summand of RF(S@[LwH)\
Dy, +,w"(—cusp)). We observe that S(tZ;T—l,w-s-l) \ Dy, + is contained in the p-rank at least one lo-
cus, which has cohomological dimension 1 in the minimal compactification (being covered by two
affines). When w is the length two element, it is easier to prove the dual statement for the non-
cuspidal cohomology, namely that the cohomology of the length one element is in the range [1, 3].
This is clear as there is no non-zero section with non-trivial support.

O

Remark 5.6.4. The same kind argument would apply to prove the expected vanishing of RT',, (K?)
or R, (K?, cusp) for certain particular w and all values of g, but we were not able to find a general
argument.

6. HIGHER COLEMAN THEORY AND HIGHER HIDA THEORY

6.1. Overconvergent cohomology with support.



57

6.1.1. Cohomology with support. We first recall some definitions of cohomology with support as
considered in [BP21].

Let X be a quasi-compact rigid space. Let p1,ps : C — X be a correspondence over X with p;
and po finite flat maps.

Remark 6.1.2. If X is a toroidal compactification of a Shimura variety, we can rarely impose
simultaneously that p; and po are finite flat (for the same choice of cone decomposition). However,
all the support conditions we will consider behave nicely at the boundary and typically make sense
for any choice of cone decomposition. We therefore keep this assumption for simplicity.

We let T'= pop; ' (—) and T* = pi1p; ' (—).

Definition 6.1.3. A open/closed support condition, for the correspondence C is a pair (U, Z2)
where U is a finite union of quasi-Stein open subspaces and Z is a closed with complement a finite

union of quasi-Stein open subspaces such that T(U) CU and T'(Z) Q%. The open/closed support
condition is called a quasi-compact open/closed support condition if U is a quasi-compact open
subset and Z is the complement of a quasi-compact open subset.

Let Uy, = T™(U) and Z, = (TH)"(Z). Let .F be a coherent sheaf (or even a Banach sheaf
[BP21], def. 2.5.2) defined in a neighborhood of & N Z in X, equipped with a cohomological
correspondence T : p5.# — p}.# which is assumed to be compact if .Z is a Banach sheaf ([BP21],
def. 2.5.3). This is automatic if .# is coherent.

We can consider the cohomology with support RI'y, ,, := Rl nz, (Um,-F). We have natural
maps RI'y, , = Rlyq1,n and Ry, 1 — Rl .

In the quasi-compact case, these cohomologies are represented by complexes of Banach modules.
In general they are represented by projective systems of complexes of Banach modules ([BP21],
lem. 2.5.20).

Proposition 6.1.4 ([BP21], thm 5.3.7). The operator T acts on the cohomology RTy, ,, and is
potent compact (T? is compact). Moreover, the finite slope part RF,J;S’n are quasi-isomorphic for
varying m and n.

One can actually always reduce to working with quasi-compact support conditions by the fol-
lowing lemma:

Lemma 6.1.5. Let (U, Z) be an open/closed support condition. Then there exists a quasi-compact
open/closed support condition (U', Z') such that TU) CU' CU and TH(Z) C Z2' C Z.

Prgof. Observe that T(U) C U. We can write U as a union U;lY; of quasi-compact opens. Since
T(U) is closed, hence compact in the constructible topology, we deduce that there exists a quasi-
compact open U’ such that T'(U) C U’ CU. We similarly find a Z’. O

Corollary 6.1.6. In the setting of lemmal[6.1.8], the finite slope part of RUynz (U, F) and RTyrnz (U, F)
are quasi-isomorphic.

Proof. We claim that the finite slope part of cohomology for each of the following support conditions
are quasi-isomorphic: U, Z), U', Z), (U, Z"), (U, Z"). Let us compare (U, Z) and (U', Z) and leave
the remaining cases to the reader. We have restriction maps: Rl'ynz(U, F) = RTynz(U', F) —
RI'7@ynz(T(U),.F). The correspondence provides amap T : RU'pupynz(T'(U), F) — RlynzU, F).
Composing the map 7" with the restriction maps yields an endomorphism of the various cohomolo-
gies. It is obvious that on the finite slope part, the restriction map induce quasi-isomorphisms. [

Proposition 6.1.7. Let (U, Z) and (U, Z") be two open/closed support conditions. Assume that
N T U) N (TH™(Z) = N T U) N (TH™(27). Then RUynz (U, F)'$ and RUyrnz (U, F)I*
are canonically quasi-isomorphic.

Proof. We can assume that the support conditions are quasi-compact by lemma If (U, Z)
and (U', Z') are two support conditions, then (U UU', Z U 2’) is also a support condition. We
therefore reduce to the situation that Y C U’ and Z C Z’. Let us assume that Y C U’ and Z = Z'.
One treats similarly the case that & =’ and Z C Z'.
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We see that there exists m,n such that U], NZ,, C U. Indeed, we know that N, U, NZ, U =
(). But all these sets are compact in the constructible topology. Therefore there must exist m,n
such that U/, N Z,, CU.

We may further replace Z by Z,. We thus reduce to the case that U/ N Z C U. We now
consider the following commutative diagram:

RFu/mz(ul,y) e RFumg(U,f)

L — |

Rl nz U, F) —— Rly,,nz(Un, F)

We know that on the finite slope part, the two vertical arrows are quasi-isomorphisms. This
implies that all maps in this diagram are quasi-isomorphisms. O

6.1.8. Application to Siegel varieties. We now apply this to our Shimura variety S'°" of level
K, ., viewed as an adic space over Spa(Q,,Z,). We consider two kinds of support conditions.
We let w € MW. Let e € Q. We let Usy—. = {x € S, Vi,deg Hyri(x) > n(w; — €)} and
U<yie = {z € 8", Vi,deg Hyyi(x) < n(w; + €)}. These are quasi-compact open subsets. We let
Zowte = U<t and 25— = UosUs>yy—er. These are closed subsets with quasi-compact
complement. Let ¢ € Tt (Q,). We write T for the correspondence C{°".

Proposition 6.1.9. (1) For any e €]0,1[NQ, there exists € < € such that T(Usw—c) C
uZw—e’ .
(2) For any € €]0,1[NQ, there exists € < € such that T*(U<yte) C U<y
(3) For any 0 < € < e <1, there exists n such that T"(Usw—e) C U>y—e -
(4) For any 0 < € < e <1, there exists n such that (T")"U<wte) C U<wter-

Proof. Tt follows from proposition|4.2.15|that for a point x € C{°", deg Hy4;(p1(x)) < deg Hyyi(p2(z))
and if equality holds they are multiples of n. Points (1) and (2) follow from this and quasi-
compactness. Points (3) and (4) are proved as in [Pill1], prop. 2.5. See also [Pill1], thm. 3.1. O

Proposition 6.1.10. For any € €]0,1[NQ, the pair Usy—c, Z<wte) 1S a quasi-compact open/closed
support condition. Moreover, Ny, n T Usw—c) N (T (Z<wte) = SEoT.

Proof. This follows from proposition [6.1.9 0

We now give another kind of support conditions which are defined using the Hodge-Tate period
map. These are the support conditions used in [BP21]. Let w € MW. Let FL = P\G — Spec Z,
be the flag variety viewed as a scheme. We let Cy, = P\PwB be the Bruhat cell in P\G. We let
Xy =Cyp = Uw <wCh be the Schubert cell. We let X* be the opposite Schubert cell, equal to the
closure of P\ PwB®P where B is the opposite Borel. We let Y,, = Uy >4, Cy. We have a natural
inclusion X" < Y,,. We recall that there is a continuous map mgr i, , : S| — |FL|/Kpn.
Therefore, we can pull back any K, ,-stable subset of FL to S*".

p,n

Proposition 6.1.11. The pair (WﬁlTpr n]Xw,Fp[v”I;rlT,Kp NYuwr,[) is an open/closed support con-
dition. Moreover

NI (7, Xwr, ) N () (Tt i, Yo, D) = SET

Proof. We first consider the closed analytic spaces X, — FL and X" — FL. We see that
Xy =] Xwr,[ and X =Y, r [ ([BP21], lemma 3.1.2). We let B, (resp. BJP) be the subgroups
of the Borel (resp. the opposite Borel) of elements reducing modulo p™ to the identity. We let
Xon = XByP and XY = XB,,. These are open subsets of the flag variety equal to the tubular

neighborhood of width p” of &, and X". We see easily that Xy, C]Xur,[ and XY Q]XfF‘;[,
and that X, C Xyn_1, ¥ C X% ,. We claim that [ Xwr, [t" C Xy and |[Yyp, [t7" C
X (see [BP21], lemma 3.4.1 and its proof). We deduce that | Xy, [KpntKpn C | Xy, [ and

o

1Yo r, [Kpnt ' Kpn ClYuw F, [=]Ywr,[. This implies that we have an open/closed support condition.
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We now compute Tm(ﬂ';{;’[{p Xwr, DN (Tt)n(ﬂﬁé“,Kp_,L]Yw,Fp [). By [BP21], lem. 3.5.10.5 this set
is contained in |Cy r, [, 5KpnN|Cuwr,l075pn (see [BP2I], sect. 3.3.6 for the definition of these
sets). Consider the Iwahori decomposition K, ,, = B, ,, X U;’(i . We deduce easily that

}szFp [m,ﬁprnm]Cwpr [07HKP7TL = ((]Cwyle [m,aBKp,n) N (] Cw;]Fp [O:EUIO(I;,n ))van'

Now, by [BP21], coro. 3.3.14, (|CuF,[,n 58x,..) =|CuwF,ln5 and (|Cu F, [O,HUIO(’; ) =ICuF,lom so
that ﬁnally ]Cw’[[?p [m,ﬁKp,nm]Cw,IFp [O’HKp’n :]Cw,]Fp [m’ﬁKp’n. O

6.2. Integral overconvergent cohomology and comparison with higher Hida theory.
Recall that we have fixed w € MW and t € TTH(Q,).

6.2.1. Some integral models and blow-ups of the Shimura variety. Let € €]0,1[NQ. Let € €]0,€[NQ
such that T(Usy—c) C Usy—e and T (U<y+e) C U<yrer. We first revisit section 4.1.12

Proposition 6.2.2. There exists a blow-up 7 : ST — ST satisfying the following properties:

1) for all0 < i < g we have effective divisors Z; s, and Zi <y, on S with disjoint support,
) J ’ J
and Zi,>wj — Zi,<w]~ = Zz — V(pnwf)
(2) for all 0 < i < g and all n € {¢,—¢,€', €'}, we have effective divisors Z; >,y and
Zi<w;+n ON St‘” with disjoint support, and Z; s,y — Zi,<w;+nq = Zi — V(p"(wi+")).
(3) The map 7 : S*" — S induces an isomorphism m~1Str — Stor.
sl p s p

Proof. This is identical to the proof of proposition O

We change our notation and let S*" be S*". We let Dy = . Zicw;, Do = 301 Zi s,
D+,e = Zz Zi,<wj—ea D—,e = Zz Zi,>'wj+e D—i—,e’ = Zz Zi,<wj—e’a D—,e’ = Zz Zi,>wj+e’~
Proposition 6.2.3. The following holds:

(1) Wehawwe Dy > Dy o >Dy.and D_>D_ o >D_ .

(2) We have piDy > p3Dy, piDy e =2 p5Dy o

(3) We have pgD— > pID_, pgD—,e > pYD—,e’-

(4) Over C{" \ ptDy . UpsD_ ., there exists s €]0,1[NQ such that we have spDy > p5D,
and sp3D_ > piD_.

Proof. The first point is obvious. The second and third point follow from proposition [6.1.9] and
lemma The last point follows as in lemma [£.4.2] O

6.2.4. Integral model for the Hecke correspondence.

Proposition 6.2.5. There is a fundamental class p3 ﬁcttor\pID+Up§D7 — (w1

given by the trace map.

wo,MpP + P, t>P!1 ﬁcf”\p;pr;D—

Proof. We observe that S*°"\ DyUD_ and C{°"\p} D, UpsD_ are smooth. Therefore p} Octor\pt D, Ups D
. . . . . !
is an invertible sheaf. The trace map gives a rational map p3 Octor\prp, UpsD_ — P1OCtor\pr D, UpsD_ -

One checks that it induces a true map p} ﬁcfor\pID+Up5D_ — (w1

by lemma [£.3.8

Proposition 6.2.6. Let k € X*(T)Mwt and x : T(Z,) — Zp((pn)* be a finite order character.
We have a cohomological correspondence t : p5w®(x) — piw”(x) over Ci" \ pf Dy U psD_ which

wo,nrp + Py 1)Py Octor\pt D, Ups D
O

is p~ (W won (kbp)=pit)ynaive pore ¢naive s the rational map obtained as the tensor product of
psw(X)[1/p] = piw"(x)[1/p] and the fundamental class given by the map of proposition [6.2.5

Proof. This follows as in proposition [4.3.11 d

Proposition 6.2.7. There is an integral model @"(x) = w"(x)(m(Dy+ — D_)) for some m >

0, such that the map t extends to a cohomological correspondence T : p5&"(x) — pi@®(x) over
Clom\piD, UpsD_ .. Moreover, we have the following factorization: p5@™(x) — p5@~(x)(D4+) —

P&"(xX)(=D-) = pia" (x)-
Proof. This is analogue to proposition and lemma a
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6.2.8. Integral overconvergent cohomology. Let Z e = NZ; <oy, +c. We view P Z<w+6 — ST as
a closed subset of the locale of D(Ogtor m). Welet Usyy— = S*"\ Dy . < S™7. We let ' Zcwpen

Usy—e = Usy—_.. For any s, we consider the cohomology RF2<w+emU>w4 7/p57(U2w—e,Z/psZ» @ (x)) =

RI(Usw—e,z/p°7 7' (1)'@"(x)). This cohomology fits in an exact triangle:

~K ~K ~K +1
R’FZA<w+Er‘|U2w7€’Z/pSZ(Uwae,Z/pslvw (X)) — RF(Uwae,Z/pSZaw (X)) — RF(Uwae,Z/pSZ\Z<w+eaw (X)) —
Let RFZ<’W+EOMZU)76 (u2w+67 wn(x))mt = hms RFZ<'w+eﬂUZ1u—e,Z/pSZ<U2w+€’Z/pSZ’ @R(X))
Theorem 6.2.9. (1) The cohomology RT z_,, .ctts . Usw—c,w™(x))"™ carries an action of
t

(2) The ordinary part identifies with higher Hida theory Ry, (K?, K, X).
(3) We ha'Ue er<w+emu2w76(uzw_€7wn(x))lnt ®Zy Qp = RFZ<1A/+emuZw7£(uZw_5’wn(x)) and

th@ ima'ge Of RFZ<w+enu2w—e(uzw_€7wﬁ(x))int ZTL RFZ<1U+EQUZU,_€(uzw—€7wH(X))fs ?:5 a
Z,-lattice.

Proof. By lemma [2.10.1] we have changing the support maps:
RTD, 0 o (Sz]pez, @™ (X)) = RT;

ZewsitWUsuonpmor Uzw-e2/p2:@" (X)) = R, ,.D_  (Sg]pez, @" (X))

By proposition(2.10.4} we have amap : R[p, , p_ . (S57.5.@"(x)) = Rlp, .o, (S35, @" (X))
such that when we compose with the above changing the support maps we get endomorphisms of all
the cohomologies. Moreover, they are all quasi-isomorphic when taking the ordinary part. By theo-
rem the ordinary part of these cohomologies further identifies with RT'y, (K7, x, x)®z, Z/p°Z.
The quasi-isomorphism RCz_ . rurs . Usw—c, W™ (X)) ®2,Qp = RTz_, . .ttsy. Usw—c,; W™ (X))
is clear. Using the triangle

Rl +1

(Uwae,Z/pSZvd}K(X)) — RF(UZ'u)fe,Z/pSZNDR(X)) — RF<U2w76,Z/pSZ\Z<w+ea(Z)R(X» —

ZcwteNU>w—ez/p5z

and the analogous one for Rl'z_, ., .~ . (Usw—c, w" (X)) we are left to observe that:

hgn RF(Uwae,Z/pSZN:}K(X)) ®Zp Qp = RF(Z/{zw_E,wK(X))
hzn RF(Uzw—e,Z/pSZ \ Z<w+eywn(X)) ®Zp Qp = RF(uZw—e \ Z<w+ea WH(X))'
That this gives a lattice in the finite slope part of cohomology is a consequence of [BP21] lemma
5.9.10 (which explains how to construct lattices). O

In [BP21] we conjectured a lower bound on slopes of overconvergent modular forms of a given
weight.

Corollary 6.2.10. Conjecture 5.9.2 of [BP21] holds in the Siegel case.

Proof. The conjecture is the statement that elements ¢ € T%(Q,) acting on the finite slope co-
homology have bounded below slope by a precise bound. This slope bound is equivalent to the
property that the normalized action of t stabilizes a lattice. It is also enough to check this for all
t € TT+(Q,) as they generate T'(Q,) as a group. This follows from theorem O

We remark that as a consequence, several of the results from [BP21] can be improved in the Siegel
case. In particular we can replace the “strongly small slope” conditions with the weaker “small slope”
conditions in the following theorems of [BP21]: the classicality theorem 5.12.3 and the vanishing
theorems 5.12.5 and 5.12.11 for rational coherent and Betti cohomology. As a consequence we
obtain theorem [[.5.1] of the introduction.

6.2.11. Big sheaves. We finally prove a version of the theorem [6.2.9| above in p-adic families. Let
us briefly indicate the strategy. Higher Hida theory is computed as the ordinary cohomology of
a certain “topological induction” sheaf over some finite level Igusa variety. We show that one can
replace the “topological induction” sheaf by a “locally analytic induction” sheaf. The advantage is
that this “locally analytic induction” sheaf can be defined over some formal model of a strict neigh-
borhood of the Igusa variety and provides an integral model for the locally analytic overconvergent
cohomology considered in section 6 of [BP21].
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Recall that A = Z,[[T(Zy)]]. Let W = Spa(A, A) Xspa(z,.z,) SPa(Qp, Zp) be the analytic weight
space over Spa(Qp,Z,). Let Spa(A[l/p], A) be a qua51—compact open subset of W. Let vy :
T(Z,) — A* be the restriction of the universal character.

Let 7, — Spa(Qp,Z,) be the group defined by 7,(C,C*) = {z € T(C"),z modp™ €
T(Z/pnZ) — T(CT/p"CT)}. This is an affinoid group scheme. We let T,, = Spf €F . This
is a formal group scheme. For n large enough, the character v4 extends to a character ¥, —
®,, x Spf A. We let k4 = —wo pw(va + p) — p. We also let K, p = wK, ,w™ N P(Q,). We let
IW, — Spa(Qy, Zy) be the group defined by ZW,(C,C") = {z € M(CT),z mod p" € Mg, ,}.
This is an affinoid group scheme. We let J320,, = Spf ﬁ;wn. We let BT, be its “Borel” subgroup,
with torus %,,.

The Mk, ,-torsor  : 3@5UKP . I8k, p = (‘5"‘” can be pushed to a 320,,-torsor 7’ : I&y,. XMKP n
W, — I8k, . We let '

§ = (mebaey, | ©A) =00,

We let

Fram = (Wiﬁj@ ®A)§BJQB7L:_'WO,AMHA.

M
x " Kp,n 391,

We have a canonical restriction map §¥4'" — F“4.
We let .7, and .4 be the sheaves obtained by reduction modulo p".

Proposition 6.2.12. For any r > 0, we have cohomological correspondences:
t:psFram —)p!lﬂ,ﬁ”‘“"
t:psFrA —— py Fra

Proof. We only need to define maps

*x VAN * ZVAM
p2 r pl r

|

* GTVA 3 * VA
P2y b1y

The cohomological correspondences are simply obtained by tensoring with the normalized funda-

mental class of proposition See for example section 6.3.10 of [BP21]. O
Proposition 6.2.13. The map RI'p, p_ (Sfu%/prz,ﬁ”“’ ) = RIp, p_ (Si)mi/prz,ﬁ”f‘) induces
a quasi-isomorphism on the ordinary part. Moreover, RI'p, p_ (Swo%/p’"z’ Frayord = e @ A/p"

Proof. For the first point, one needs to study the cohomology of the kernel of the map .# 4" —
FrA. It is easy to see that the Hecke operator is nilpotent on this kernel. Compare with [P1120}
sect. 10.7. The property that RCp, p_ (S 2T Frayerd = M@ A/p" follows from the definition.
See remark [5.4.3] 0

Proposition 6.2.14. For ¢ sufficiently small, the sheaf V4" extends to a sheaf Foam over
il[w c,wte] Where ilw cwte — Yw—ewte 8 a further blow-up away from &torand moreover for

!
Z LA which furthermore factor as

PEFL S PN (D) = PFLA (=D = B F

all r > 0 we have cohomological correspondences p5.% fVA’ —p1F

Proof. The blow-up g[w—e,w—i—e] and the sheaf 4" over ﬂ[w—e,w-{-e] are constructed as in the proof
of lem. 6.6.2 of [BP21]. We remind the reader that the purpose of making this blow-up is to have
an integral model for the Hodge-Tate period map which is used to produce an extension a good
extension of the J,,-torsor on &!2". Maps p5F 4" [1/p] — piF 4 "[1/p] are constructed in lem.
6.3.10 of [BP21], and it follows from the local description given there that they extend to a map
pE8AT = pIgta.

We now tensor with the fundamental class to get a map p5.Z74"(—mD_) — p; L Framn (mDy)
for some m > 0. We emphasize that m is independent of r as p3F“4" — piF 4" is regular and
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the poles only come from the fundamental class. We may now let /4™ = §A"(m/(D, — D_))
for m' large enough and use the dynamical property to deduce that we have a cohomological
correspondence p5.Zr4™ — p}.#¥4™ which moreover has the expected factorization. U

Let RUz_, .. rvte . Usw—c, §¥4™) = lim, RE, v oo Usweezprn, Z04). We also
want to consider locally analytic overconvergent cohomology in a fixed p-adic weight, so let v :
T(Zy) — OF be a continuous character inducing a map v : A — Oc¢. We let F*" = 4" @4, Oc.

Theorem 6.2.15. (1) The operatort acts on RI‘Z<W+€QM>W£(L{Zw,e,ﬁl’f"”)mt and the ordi-
nary part identifies with higher Hida theory M2 @a A.
(2) We have RCz_, | .ruts . Usw—e, §°")"™ ®0. C=RTz_,,.tts_. Usw—e, " [1/p]) and
the image of RFz<w+€nuZw_€(Z/{2w_E,@”’")mt m RFZ<w+emuZw_€(Z/{Zw_E,@”’")fs s a lat-
tice.

Proof. This is similar to the proof of theorem [6.2.9] O

In conjecture 6.8.1 of [BP21], we conjectured that the slopes of t € TH(Q,) are nonnegative
on finite slope locally analytic overconvergent cohomologies, or equivalently that these operators
preserve a lattice.

Corollary 6.2.16. Conjecture 6.8.1 of [BP21] holds in the Siegel case.
Proof. Tt suffices to check this for ¢ € T7*(Q,) which then follows from [6.2.15( (2). O

We remark that again this implies that results from [BP21] can be improved in the Siegel case.
In particular we can replace the “strongly small slope” conditions with the weaker “small slope”
conditions in corollary 6.8.4 and theorem 6.9.3 (2) of [BP21].

Finally we can use the vanishing results of [BP21] to deduce cohomological vanishing in higher
Hida theory after inverting p:

Corollary 6.2.17. The complezes of A ® Q,-modules M3 @ Q, have amplitude [¢(w), %] and
the complexes M?$ ® Q, have amplitude [0, {(w)].

w,cusp

Proof. This follows from [6.2.15| combined with [BP21], thm. 6.7.3. O
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