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A word about foundations

Key point: we don’t want to see foundations

But the proof assistant needs foundations

Standard lie: maths is founded on 1st order logic + ZFC set theory
In such foundations, everything is a set: ℕ, exp,
a group structure on a set is a set...

Let’s define the set ℕ: 0 ∶= ∅, 1 ∶= 0 ∪ {0} = {∅},
2 ∶= 1 ∪ {1} = {∅, {∅}}, 3 ∶= 2 ∪ {2} = {∅, {∅}, {∅, {∅}}}.

Exercise: 3 is a topology on 2. Note also how 2 ∩ 3 = 2 and 2 ∈ 3.

Avoiding those non-sensical statements rely on a gentleman
agreement.
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Type theory

Every meaningful piece of math has a type:

• 2 ∶ ℕ,
• exp ∶ ℝ → ℝ,

• 𝑥 ↦ 𝑥 exp(𝑥) ∶ ℝ → ℝ
• 1 + 1 = 2 ∶ Prop

Things like 2∩ 3 or 2 ∈ 3 do not “type-check” (they have no type).

Pieces of math are called terms.
You can ask Lean about the type of a term using #check.

𝑥 ↦ 𝑥 exp(𝑥) ∶ ℝ → ℝ is written as 𝜆 𝑥, 𝑥 exp(𝑥) ∶ ℝ → ℝ

Typing rules are things like: given 𝑓 ∶ 𝑋 → 𝑌 and 𝑥 ∶ 𝑋, deduce
𝑓 𝑥 ∶ 𝑌 .
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Meta-theory vs theory

The assertion 𝑥 ∶ 𝑡 that a term 𝑥 has type 𝑡, and typing rules,
are not something you can prove or disprove inside the theory.
They live one level up, in the meta-theoretical world, just as you
don’t prove the properties of logical operators while working inside
ZFC.

computer scientists and logicians use the prefix “meta”
whenever something is unusual. It can be used three times in the
same sentence with three different meanings.
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Conversion rules

At the meta-theory level also live the “conversion rules” that assert
some term are so-called definitionaly equal.
For instance:

• 𝜆𝑥 ∶ ℕ, 𝑥 + 2 ≡ 𝜆𝑦 ∶ ℕ, 𝑦 + 2 by the 𝛼-conversion rule.

• (𝜆𝑥 ∶ ℕ, 𝑥 + 2) 3 ≡ 3 + 2 by the 𝛽-conversion rule.
• By repeated 𝛿-conversion:

3 + 2 ≡ 𝑆(𝑆(𝑆(0))) + 𝑆(𝑆(0))
≡ 𝑆(𝑆(𝑆(𝑆(0))) + 𝑆(0))
≡ 𝑆(𝑆(𝑆(𝑆(𝑆(0))) + 0)
≡ 𝑆(𝑆(𝑆(𝑆(𝑆(0))))
≡ 5
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Proofs in type theory

Given 𝑃 ∶ Prop, a term ℎ ∶ 𝑃 is a proof of 𝑃 .

The statement 𝑃 ⟹ 𝑄 is the function type 𝑃 → 𝑄 ∶ 𝑃𝑟𝑜𝑝.
By the function typing rule, if ℎ ∶ 𝑃 → 𝑄 and ℎ𝑃 ∶ 𝑃 then
ℎ ℎ𝑃 ∶ 𝑄.

Given 𝑃 ∶ 𝑋 → Prop, we get ∀𝑥, 𝑃 𝑥 ∶ Prop.

Given ℎ ∶ ∀𝑥, 𝑃 𝑥 and 𝑥0 ∶ 𝑋, we get ℎ 𝑥0 ∶ 𝑃 𝑥0.

So ℎ behaves like a kind of function, but its target type depends
on the value of its input. We have a dependent function type.

Verifying a proof is a special case of type-checking a term.
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Inductive types

inductive nat
| zero : nat
| succ (n : nat) : nat

inductive or (a b : Prop) : Prop
| inl (h : a) : or
| inr (h : b) : or

inductive Exists {α : Sort u} (p : α → Prop) : Prop
| intro (w : α) (h : p w) : Exists
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Elaboration

theorem infinitude_of_primes : ∀ N, ∃ p ≥ N, nat.prime p

Lean needs the types of 𝑁 and 𝑝 and an order relation.

It goes from left to right, inserting holes (meta-variables) when
needed.

• 𝑁 ∶ ?𝑚1
• 𝑝 ∶ ?𝑚2
• see 𝑝 ≥ 𝑁 , deduce ?𝑚1 = ?𝑚2, take note we’ll need an order

relation on ?𝑚1
• see nat.prime p which makes sense only if 𝑝 ∶ ℕ
• look up a database of order relation to get one for ℕ
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Coercion

During elaboration, when cornered, Lean will try to find a coercion.

For instance, in ∀ x : ℝ, ∀ ε > 0, ∃ n : ℕ, x ≤ n*ε

One can encourage Lean to insert coercion by writing type
ascriptions, as in 1/(n+1 : ℝ)
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