Lean basics

PATRICK MASSOT

Université Paris-Saclay at Orsay

July 14, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Key point: we don't want to see foundations

Key point: we don't want to see foundations

But the proof assistant needs foundations

Key point: we don't want to see foundations

But the proof assistant needs foundations

Standard lie: maths is founded on 1st order logic + ZFC set theory In such foundations, *everything* is a set: \mathbb{N} , exp, a group structure on a set is a set...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Key point: we don't want to see foundations

But the proof assistant needs foundations

Standard lie: maths is founded on 1st order logic + ZFC set theory In such foundations, *everything* is a set: \mathbb{N} , exp, a group structure on a set is a set...

Let's define the set $\mathbb{N}: 0 := \emptyset, 1 := 0 \cup \{0\} = \{\emptyset\}, 2 := 1 \cup \{1\} = \{\emptyset, \{\emptyset\}\}, 3 := 2 \cup \{2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.$

Key point: we don't want to see foundations

But the proof assistant needs foundations

Standard lie: maths is founded on 1st order logic + ZFC set theory In such foundations, *everything* is a set: \mathbb{N} , exp, a group structure on a set is a set...

Let's define the set $\mathbb{N}: 0 := \emptyset, 1 := 0 \cup \{0\} = \{\emptyset\},$ $2 := 1 \cup \{1\} = \{\emptyset, \{\emptyset\}\}, 3 := 2 \cup \{2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.$

Exercise: 3 is a topology on 2. Note also how $2 \cap 3 = 2$ and $2 \in 3$.

Avoiding those non-sensical statements rely on a gentleman agreement.

Every meaningful piece of math has a type:

•
$$2: \mathbb{N},$$
 • $x \mapsto x \exp(x) : \mathbb{R} \to \mathbb{R}$

•
$$\exp: \mathbb{R} \to \mathbb{R}$$
, • $1+1=2: \operatorname{Prop}$

Things like $2 \cap 3$ or $2 \in 3$ do *not* "type-check" (they have no type).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Every meaningful piece of math has a type:

•
$$2: \mathbb{N},$$

• $\exp: \mathbb{R} \to \mathbb{R},$
• $x \mapsto x \exp(x): \mathbb{R} \to \mathbb{R}$
• $1+1=2: \operatorname{Prop}$

Things like $2 \cap 3$ or $2 \in 3$ do *not* "type-check" (they have no type).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pieces of math are called *terms*. You can ask Lean about the type of a term using **#check**.

Every meaningful piece of math has a type:

•
$$2: \mathbb{N},$$

• $\exp: \mathbb{R} \to \mathbb{R},$
• $x \mapsto x \exp(x): \mathbb{R} \to \mathbb{R}$
• $1+1=2: \operatorname{Prop}$

Things like $2 \cap 3$ or $2 \in 3$ do *not* "type-check" (they have no type).

Pieces of math are called *terms*. You can ask Lean about the type of a term using **#check**.

 $x \mapsto x \exp(x) : \mathbb{R} \to \mathbb{R}$ is written as $\lambda x, x \exp(x) : \mathbb{R} \to \mathbb{R}$

Every meaningful piece of math has a type:

•
$$2: \mathbb{N},$$

• $x \mapsto x \exp(x) : \mathbb{R} \to \mathbb{R}$
• $x \mapsto 1 + 1 = 2: \operatorname{Prop}$

Things like $2 \cap 3$ or $2 \in 3$ do *not* "type-check" (they have no type).

Pieces of math are called *terms*. You can ask Lean about the type of a term using **#check**.

 $x \mapsto x \exp(x) : \mathbb{R} \to \mathbb{R}$ is written as $\lambda x, x \exp(x) : \mathbb{R} \to \mathbb{R}$

Typing rules are things like: given $f: X \to Y$ and x: X, deduce f x: Y.

Meta-theory vs theory

Z The assertion x : t that a term x has type t, and typing rules, are *not* something you can prove or disprove inside the theory. They live one level up, in the meta-theoretical world, just as you don't prove the properties of logical operators while working inside ZFC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Meta-theory vs theory

Z The assertion x : t that a term x has type t, and typing rules, are *not* something you can prove or disprove inside the theory. They live one level up, in the meta-theoretical world, just as you don't prove the properties of logical operators while working inside ZFC.

Z computer scientists and logicians use the prefix "meta" whenever something is unusual. It can be used three times in the same sentence with three different meanings.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conversion rules

At the meta-theory level also live the "conversion rules" that assert some term are so-called *definitionaly* equal. For instance:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\lambda x : \mathbb{N}, x + 2 \equiv \lambda y : \mathbb{N}, y + 2$ by the α -conversion rule.

Conversion rules

At the meta-theory level also live the "conversion rules" that assert some term are so-called *definitionaly* equal. For instance:

- $\lambda x : \mathbb{N}, x + 2 \equiv \lambda y : \mathbb{N}, y + 2$ by the α -conversion rule.
- $(\lambda x:\mathbb{N},x+2)$ $3\equiv 3+2$ by the β -conversion rule.

Conversion rules

At the meta-theory level also live the "conversion rules" that assert some term are so-called *definitionaly* equal. For instance:

- $\lambda x : \mathbb{N}, x + 2 \equiv \lambda y : \mathbb{N}, y + 2$ by the α -conversion rule.
- $(\lambda x:\mathbb{N},x+2)$ $3\equiv 3+2$ by the β -conversion rule.
- By repeated δ-conversion:

$$3 + 2 \equiv S(S(S(0))) + S(S(0))$$
$$\equiv S(S(S(S(0))) + S(0))$$
$$\equiv S(S(S(S(S(0))) + 0)$$
$$\equiv S(S(S(S(S(0))))$$
$$\equiv 5$$

Given P: Prop, a term h : P is a *proof* of P.

Given P: Prop, a term h : P is a *proof* of P.

The statement $P \implies Q$ is the function type $P \rightarrow Q : Prop$. By the function typing rule, if $h : P \rightarrow Q$ and $h_P : P$ then $h \ h_P : Q$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given P: Prop, a term h : P is a *proof* of P.

The statement $P \implies Q$ is the function type $P \rightarrow Q : Prop$. By the function typing rule, if $h : P \rightarrow Q$ and $h_P : P$ then $h \ h_P : Q$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given $P: X \to \text{Prop}$, we get $\forall x, P x : \text{Prop}$.

Given P : Prop, a term h : P is a proof of P.

The statement $P \implies Q$ is the function type $P \rightarrow Q : Prop$. By the function typing rule, if $h : P \rightarrow Q$ and $h_P : P$ then $h \ h_P : Q$.

Given $P: X \to \text{Prop}$, we get $\forall x, P x : \text{Prop}$.

```
Given h : \forall x, P x and x_0 : X, we get h x_0 : P x_0.
```

So h behaves like a kind of function, but its target type depends on the value of its input. We have a *dependent function type*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given P : Prop, a term h : P is a proof of P.

The statement $P \implies Q$ is the function type $P \rightarrow Q : Prop$. By the function typing rule, if $h : P \rightarrow Q$ and $h_P : P$ then $h \ h_P : Q$.

Given $P: X \to \text{Prop}$, we get $\forall x, P x : \text{Prop}$.

Given $h: \forall x, P x$ and $x_0: X$, we get $h x_0: P x_0$.

So h behaves like a kind of function, but its target type depends on the value of its input. We have a *dependent function type*.

Verifying a proof is a special case of type-checking a term.

Inductive types

```
inductive nat
| zero : nat
| succ (n : nat) : nat
```

```
inductive or (a b : Prop) : Prop
| inl (h : a) : or
| inr (h : b) : or
```

```
inductive Exists {\alpha : Sort u} (p : \alpha \rightarrow Prop) : Prop | intro (w : \alpha) (h : p w) : Exists
```

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣A(?)

Elaboration

theorem infinitude_of_primes : \forall N, \exists p \geq N, nat.prime p

Lean needs the types of \boldsymbol{N} and \boldsymbol{p} and an order relation.

Elaboration

theorem infinitude_of_primes : $\forall N, \exists p \ge N$, nat.prime p

Lean needs the types of N and p and an order relation.

It goes from left to right, inserting holes (meta-variables) when needed.

- $N:?m_1$
- $\bullet \ p:?m_2$
- see $p\geq N,$ deduce $?m_1=?m_2,$ take note we'll need an order relation on $?m_1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- see nat.prime p which makes sense only if $p:\mathbb{N}$
- look up a database of order relation to get one for $\mathbb N$

Coercion

During elaboration, when cornered, Lean will try to find a *coercion*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For instance, in $\forall x : \mathbb{R}, \forall \varepsilon > 0, \exists n : \mathbb{N}, x \le n^* \varepsilon$

Coercion

During elaboration, when cornered, Lean will try to find a coercion.

For instance, in $\forall x : \mathbb{R}, \forall \varepsilon > 0, \exists n : \mathbb{N}, x \le n^* \varepsilon$

One can encourage Lean to insert coercion by writing *type* ascriptions, as in $1/(n+1 : \mathbb{R})$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ