
Chapter 1

Intrigue

1.1 The ℎ-principle dichotomy
Gromov observed that it’s often fruitful to distinguish two kinds of geometric
construction problems. He says that a geometric construction problem satisfies
the ℎ-principle if the only obstructions to the existence of a solution come from
algebraic topology. In this case, the construction is called flexible, otherwise it
is called rigid. This definition is purposely vague. We will see a rather general
way to give it a precise meaning, but one must keep in mind that such a precise
meaning will fail to encompass a number of situations that can be illuminated
by the ℎ-principle dichotomy point of view. The goal of this course is to explain
several general techniques proving geometric construction flexibility results.

The easiest example of flexible construction problem which is not totally
trivial and is algebraically obstructed is the deformation of immersions of circles
into planes. Let 𝑓0 and 𝑓1 be two maps from 𝕊1 to ℝ2 that are immersions.
Since 𝕊1 has dimension one, this mean that both derivatives 𝑓 ′

0 and 𝑓 ′
1 are

nowhere vanishing maps from 𝕊1 to ℝ2. The geometric object we want to
construct is a (smooth) homotopy of immersions from 𝑓0 to 𝑓1, ie a smooth
map 𝐹 ∶ 𝕊1 × [0, 1] → ℝ2 such that 𝐹|𝕊1×{0} = 𝑓0, 𝐹|𝕊1×{1} = 𝑓1, and each
𝑓𝑝 ∶= 𝐹 |𝕊1×{𝑝} is an immersion. If such a homotopy exists then, (𝑡, 𝑝) ↦ 𝑓 ′

𝑝(𝑡)
is a homotopy from 𝑓 ′

0 to 𝑓 ′
1 among maps from 𝕊1 to ℝ2 ∖ {0}. Such maps have

a well defined winding number 𝑤(𝑓 ′
𝑖 ) ∈ ℤ around the origin, the degree of the

normalized map 𝑓 ′
𝑖 /‖𝑓 ′

𝑖 ‖ ∶ 𝕊1 → 𝕊1. So 𝑤(𝑓 ′
0) = 𝑤(𝑓 ′

1) is a necessary condition
for the existence of 𝐹 , which comes from algebraic topology. The Whitney-
Graustein theorem states that this necessary condition is also sufficient. Hence
this geometric construction problem is flexible. One can give a direct proof of
this result, but of course it will also follow from very general results proved in
this course.

An important lesson from the above example is that algebraic topology can
give us more than a necessary condition. Indeed the (one-dimensional) Hopf
degree theorem ensures that, provided 𝑤(𝑓 ′

0) = 𝑤(𝑓 ′
1), there exists a homotopy

𝑔𝑝 of nowhere vanishing maps relating 𝑓 ′
0 and 𝑓 ′

1. We also know from the topol-
ogy of ℝ2 that 𝑓0 and 𝑓1 are homotopic, say using the straight-line homotopy
𝑝 ↦ 𝑓𝑝 = (1 − 𝑝)𝑓0 + 𝑝𝑓0. But of course there is no a priori relation between
𝑔𝑝 and the derivative of 𝑓𝑝 for 𝑝 ∉ {0, 1}. So we can restate the crucial part of
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the Whitney-Graustein theorem as: there is a homotopy of immersion from 𝑓0
to 𝑓1 as soon as there is (a homotopy from 𝑓0 to 𝑓1) and a homotopy from 𝑓 ′

0
to 𝑓 ′

1 among nowhere vanishing maps. The parenthesis in the previous sentence
indicated that this condition is always satisfied, but it is important to keep in
mind for generalizations. Gromov says that such a homotopy of uncoupled pairs
(𝑓, 𝑔) is a formal solution of the original problem.

One can generalize this discussion of uncoupled maps replacing a map and
its derivative. This is pretty easy for maps from a manifold 𝑀 to a manifold
𝑁 . The so called 1-jet space 𝐽1(𝑀, 𝑁) is the space of triples (𝑚, 𝑛, 𝜑) with
𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 , and 𝜑 ∈ Hom(𝑇𝑚𝑀, 𝑇𝑛𝑁), the space of linear maps from
𝑇𝑚𝑀 to 𝑇𝑛𝑁 . One can define a smooth manifold structure on 𝐽1(𝑀, 𝑁), of
dimension dim(𝑀) + dim(𝑁) + dim(𝑀) dim(𝑁) which fibers over 𝑀 , 𝑁 and
their product 𝐽0(𝑀, 𝑁) ∶= 𝑀 × 𝑁 . Beware that the notation (𝑚, 𝑛, 𝜑) does
not mean that 𝐽1(𝑀, 𝑁) is a product of three manifolds, the space where 𝜑
lives depends on 𝑚 and 𝑛. Any smooth map 𝑓 ∶ 𝑀 → 𝑁 gives rise to a section
𝑗1𝑓 of 𝐽1(𝑀, 𝑁) → 𝑀 defined by 𝑗1𝑓(𝑚) = (𝑚, 𝑓(𝑚), 𝑇𝑚𝑓). Such a section is
called a holonomic section of 𝐽1(𝑀, 𝑁). In the Whitney Graustein example, we
use the canonical trivialization of 𝑇 𝕊1 and 𝑇 ℝ2 to represent 𝑗1𝑓 has a pair of
maps (𝑓, 𝑓 ′). The role played by (𝑓, 𝑔) in this example is played in general by
sections of 𝐽1(𝑀, 𝑁) → 𝑀 which are not necessarily holonomic.

One can generalize this discussion to 𝐽𝑟(𝑀, 𝑁) which remembers derivatives
of maps up to order 𝑟 for some give 𝑟 ≥ 0. One can also consider section of an
arbitrary bundle 𝐸 → 𝑀 instead of functions from 𝑀 to 𝑁 , which are sections
of the trivial bundle 𝑀 × 𝑁 → 𝑁 . The jet-space in this general bundle case is
denoted by 𝐸(𝑟). The case of 𝐽1(𝑀, 𝑁) will be sufficient for most of this course,
but we still use the more general case in the following definition:
Definition 1.1. A partial differential relation ℛ of order 𝑟 for sections of a
bundle 𝐸 → 𝑀 is a subset of 𝐸(𝑟). A solution of ℛ is a section 𝑓 of 𝐸 such
that 𝑗𝑟𝑓(𝑚) is in ℛ for all 𝑚. A formal solution of ℛ is a non-necessarily
holonomic section of 𝐸(𝑟) → 𝑀 which takes value in ℛ. The base section bs 𝐹
of a formal solution 𝐹 is the section 𝜋(𝑟) ∘ 𝐹 of 𝐸, where 𝜋(𝑟) is the projection
𝐸(𝑟) → 𝐸. The space of formal solutions is denoted by Sec(ℛ), and the subspace
of holonomic ones is denoted by Hol(ℛ).

The partial differential relation ℛ satisfies the ℎ-principle if any formal
solution 𝜎 of ℛ is homotopic, among formal solutions, to some holonomic one
𝑗𝑟𝑓.

For instance, an immersion of 𝑀 into 𝑁 is a solution of ℛ = {(𝑚, 𝑛, 𝜑) ∈
𝐽1(𝑀, 𝑁) | 𝜑 is injective}. As we saw with the Whitney-Graustein problem, we
are not only interested to individual solutions, but also in families of solutions.
Remember that, in differential topology, a smooth family of maps between man-
ifolds 𝑋 and 𝑌 is a smooth map ℎ ∶ 𝑃 × 𝑋 → 𝑌 seen as the collection of maps
ℎ𝑝 ∶ 𝑥 ↦ ℎ(𝑝, 𝑥). Here 𝑃 stands for “parameter space”. A smooth family of
sections of 𝐸 → 𝑋 is a smooth family of maps 𝜎 ∶ 𝑃 × 𝑋 → 𝐸 such that each
𝜎𝑝 is a section.

Note that, for every (𝑚, 𝑛, 𝜑) ∈ 𝐽1(𝑀, 𝑁), there is some 𝑓 ∶ Op(𝑚) → 𝑁
such that 𝑓(𝑚) = 𝑛 and 𝑇𝑚𝑓 = 𝜑. Here the used Gromov Op notation: Op(𝐴)
means “an unspecified open neighborhood of the subset 𝐴, which may change
from line to line”. We will also need to know a version of this observation for
families of sections. More precisely, what we need to know about the smooth
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structure on 𝐽1(𝑀, 𝑁) is first that a smooth 𝑓 ∶ 𝑀 → 𝑁 gives rise a smooth
𝑗1𝑓 . But we also need to know that, for every family of sections 𝜎 ∶ 𝑃 × 𝑀 →
𝐽1(𝑀, 𝑁), there is, at least locally on 𝑃 ×𝑀 , a family of maps 𝑓 ∶ (𝑃 ×𝑀)×𝑀 →
𝑁 such that 𝜎𝑝(𝑚) = 𝑗1𝑓𝑝,𝑚(𝑚). Of course 𝜎 is a family of holonomic section
if and only if one can choose 𝑓𝑝,𝑚 independent of 𝑚.

When the parameter space 𝑃 has boundary, we will typically assume that
formal solutions 𝜎𝑝 are holonomic for 𝑝 in Op(𝜕𝑃).

Definition 1.2. A partial differential relation ℛ ⊂ 𝐸(𝑟) satisfies the parametric
ℎ-principle if every family of formal solutions 𝜎 ∶ 𝑀 × 𝑃 → 𝐸(𝑟) which are
holonomic for 𝑝 near 𝜕𝑃 is homotopic, relative to Op(𝜕𝑃), to a family of
holonomic sections.

There are other variations on this definition. For instance a formal solution
could be holonomic on Op(𝐴) for some subset 𝐴 of 𝑀 , and we say that ℛ
satisfies the relative ℎ-principle if 𝜎 can be deformed to a holonomic solution
without changing it on Op(𝐴). Note a common instance of the Op(𝐴) notation
trick: the second neighbordhood in the previous sentence is typically smaller
than the first one.

One can also insist on the deformed solution to be 𝐶0-close to the original
one. In this case one talks about a 𝐶0-dense ℎ-principle. We are now ready to
state a first spectacular ℎ-principle result.

Theorem 1.3. The relation of immersions in positive codimension (ie immer-
sions of 𝑀 into 𝑁 with dim(𝑁) > dim(𝑀)) satisfies all forms of ℎ-principles.

Of course this theorem covers the Whitney-Graustein theorem (in its second
form, assuming the existence of a homotopy between derivatives). But there
are much less intuitive applications. The most famous one is the existence of
sphere eversions: one can “turn 𝕊2 inside-out among immersions of 𝕊2 into ℝ3).

Corollary 1.4 (Smale 1958). There is a homotopy of immersion of 𝕊2 into ℝ3

from the inclusion map to the antipodal map 𝑎 ∶ 𝑞 ↦ −𝑞.

The reason why this is turning the sphere inside-out is that 𝑎 extends as a
map from ℝ3 ∖ {0} → ℝ3 ∖ {0} by

̂𝑎 ∶ 𝑞 ↦ − 1
‖𝑞‖2 𝑞

which exchanges the interior and exterior of 𝕊2. More abstractly, one can say the
normal bundle of 𝕊2 is trivial, hence one can extend 𝑎 to a tubular neighborhood
of 𝕊2 as an orientation preserving map. Since 𝑎 is orientation reversing, any such
extension will be reversing coorientation.

Proof of the sphere eversion corollary. We denote by 𝜄 the inclusion of 𝕊2 into
ℝ3. We set 𝑗𝑡 = (1 − 𝑡)𝜄 + 𝑡𝑎. This is a homotopy from 𝜄 to 𝑎 (but not
an immersion for 𝑡 = 1/2). Using the canonical trivialization of the tangent
bundle of ℝ3, we can set, for (𝑞, 𝑣) ∈ 𝑇 𝕊2, 𝐺𝑡(𝑞, 𝑣) = Rot𝜋𝑡

𝑂𝑞(𝑣), the rotation
around axis 𝑂𝑞 with angle 𝜋𝑡. The family 𝜎 ∶ 𝑡 ↦ (𝑗𝑡, 𝐺𝑡) is a homotopy of
formal immersions relating 𝑗1𝜄 to 𝑗1𝑎. The above theorem ensures this family
is homotopic, relative to 𝑡 = 0 and 𝑡 = 1, to a family of holonomic formal
immersions, ie a family 𝑡 ↦ 𝑗1𝑓𝑡 with 𝑓0 = 𝜄, 𝑓1 = 𝑎, and each 𝑓𝑡 is an
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immersion. Stricto sensu, our family 𝜎 is not relative to Op(𝜕[0, 1]) but only to
𝜕[0, 1], but this easily fixed by using instead 𝑡 ↦ 𝜎𝜌(𝑡) for some cut-off function
𝜌 ∶ [0, 1] → [0, 1] which vanished near 0 and equals 1 near 1.

1.2 About the parametric ℎ-principle
1.2.1 Homotopy groups and homotopy equivalences
The parametric ℎ-principle for ℛ ⊂ 𝐸(𝑟), as defined in the previous section imply
in particular that, in any dimension 𝑘, every family of sections 𝜎 ∶ 𝑀 × 𝔹𝑘 → 𝐸
which are holonomic for parameters near 𝜕𝔹𝑘 is homotopic, relative to 𝜕𝔹𝑘, to a
family whose members are all holonomic. This is (almost) equivalent to saying
that the 𝑘-th relative homotopy group 𝜋𝑘(Sec(ℛ), Hol(ℛ)) vanishes. Geomet-
rically, it means that every ball of formal solution whose boundary lies in the
subspace of actual solutions can be pushed into the subspace of actual solutions
without moving its boundary. The only reason why the above reformulation is
not completely accurate is that we only consider smooth families, whereas ho-
motopy groups are defined in terms of continuous maps. If ℛ is an open subset
of 𝐸(𝑟) then this difference is not important, but in general it could matter.

Thanks to the long exact sequence for homotopy groups of pairs, vanishing of
all 𝜋𝑘(Sec(ℛ), Hol(ℛ)) is equivalent to the fact that the inclusion of Hol(ℛ) into
Sec(ℛ) induces isomorphisms 𝜋𝑘(Hol(ℛ)) → 𝜋𝑘(Sec(ℛ)) for all 𝑘: one says that
this inclusion is a weak homotopy equivalence. In this discussion, we discared
base points, but the ℎ-principle without parameter says that each connected
component of Sec(ℛ) contains a point of Hol(ℛ), and the parametric version
then gives homotopy equivalences for all connected components.

In the other direction, if we assume the parametric ℎ-principle only when
the parameter space is a ball (of any dimension), then we can deduce it for
every parameter space (which is a manifold with boundary). This holds because
manifolds can be orderly covered by balls, say using a triangulation or a handle
decomposition.

The vocabulary of homotopy theory will not be used in the remainder of
those notes. The geometric version with a manifold of parameters is what
will really be used. But we will indeed use the preceding paragraph whenever
assuming that the parameter space is a ball can make things easier.

1.2.2 Parametricity for free
In many cases, relative parametric ℎ-principles can be deduced from relative
non-parametric ones with a larger source manifold. We now explain this strategy
for the case of relations in 𝐽1(𝑋, 𝑌 ).

Let 𝑋, 𝑃 and 𝑌 be manifolds, with 𝑃 seen a parameter space. Denote by
Ψ the map from 𝐽1(𝑋 × 𝑃, 𝑌 ) to 𝐽1(𝑋, 𝑌 ) sending (𝑥, 𝑝, 𝑦, 𝜓) to (𝑥, 𝑦, 𝜓 ∘ 𝜄𝑥,𝑝)
where 𝜄𝑥,𝑝 ∶ 𝑇𝑥𝑋 → 𝑇𝑥𝑋 × 𝑇𝑝𝑃 sends 𝑣 to (𝑣, 0).

To any family of sections 𝐹𝑝 ∶ 𝑥 ↦ (𝑓𝑝(𝑥), 𝜑𝑝,𝑥) of 𝐽1(𝑋, 𝑌 ), we associate the
section ̄𝐹 of 𝐽1(𝑋×𝑃, 𝑌 ) sending (𝑥, 𝑝) to ̄𝐹 (𝑥, 𝑝) ∶= (𝑓𝑝(𝑥), 𝜑𝑝,𝑥⊕𝜕𝑓/𝜕𝑝(𝑥, 𝑝)).
Lemma 1.5. In the above setup, we have:

• ̄𝐹 is holonomic at (𝑥, 𝑝) if and only if 𝐹𝑝 is holonomic at 𝑥.
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• 𝐹 is a family of formal solutions of some ℛ ⊂ 𝐽1(𝑋, 𝑌 ) if and only if ̄𝐹
is a formal solution of ℛ𝑃 ∶= Ψ−1(ℛ).

In the above setup, let ℛ be a subset of 𝐽1(𝑋, 𝑌 ), 𝑃 ′ a subset of 𝑃 , and
𝑋′ a subset of 𝑋 such that 𝐹𝑝 is holonomic when 𝑝 belongs to a neighborhood
of 𝑃 ′, and every 𝐹𝑝 is holonomic on a neighborhood of 𝑋′ (note that both
𝑃 ′ and 𝑋′ could be empty). The goal is to construct a homotopy of such
families 𝐹 𝑡, starting at 𝐹 0 = 𝐹 , such that all 𝐹 1

𝑝 are everywhere holonomic,
and 𝐹 𝑡

𝑝(𝑥) = 𝐹𝑝(𝑥) whenever 𝑥 is near 𝑋′ or 𝑝 is near 𝑃 ′. The above lemma
ensures this is possible as soon as we have the relative ℎ-principle for ℛ𝑃 . Hence
the non-parametric relative ℎ-principle for ℛ𝑃 implies the parametric relative
ℎ-principle for ℛ.
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Chapter 2

Convex integration

2.1 Introduction
The goal of this chapter is to explain (Theillière’s implementation of) convex
integration, the next chapters will give applications. In this chapter 𝕊1 = ℝ/ℤ
and maps defined on 𝕊1 will also freely be seen as 1-periodic maps defined on
ℝ.

The elementary step of convex integration modifies the derivative of a map
in one direction. Let 𝑓 ∶ ℝ𝑚 → ℝ𝑛 be a smooth map with compact support.
Say we wish 𝜕𝑗𝑓(𝑥) could live in some open subset Ω𝑥 ⊂ ℝ𝑛. Assume there is a
smooth compactly supported family of loops 𝛾 ∶ ℝ𝑚 × 𝕊1 → ℝ𝑛 such that each
𝛾𝑥 takes values in Ω𝑥, and has average value ∫𝕊1 𝛾𝑥 = 𝜕𝑗𝑓(𝑥). Obviously such
loops can exist only if 𝜕𝑗𝑓(𝑥) is in the convex hull of Ω𝑥, and we will see this is
almost sufficient (hence the word convex in the title of this chapter). For some
large positive integer 𝑁 , we set

𝑓 ′(𝑥) = 𝑓(𝑥) + 1
𝑁 ∫

𝑁𝑥𝑗

0
[𝛾𝑥(𝑠) − 𝜕𝑗𝑓(𝑥)] 𝑑𝑠.

The next proposition implies that, provided 𝑁 is large enough, we have
achieved 𝜕𝑗𝑓 ′(𝑥) ∈ Ω𝑥, almost without modifying derivatives in the other di-
rections, and almost without moving 𝑓(𝑥). In addition, if we assume that 𝛾𝑥 is
constant (necessarily with value 𝜕𝑗𝑓(𝑥)) for 𝑥 in some closed subset 𝐾 where
𝜕𝑗𝑓 was already good, then the modification is relative to 𝐾.

Lemma 2.1 (Theillière 2018). The new function 𝑓 ′ satisfies, uniformly in 𝑥:

1. 𝜕𝑗𝑓 ′(𝑥) = 𝛾(𝑥, 𝑁𝑥𝑗) + 𝑂 ( 1
𝑁 )

2. 𝜕𝑖𝑓 ′(𝑥) = 𝜕𝑖𝑓 ′(𝑥) + 𝑂 ( 1
𝑁 ) for all 𝑖 ≠ 𝑗

3. 𝑓 ′(𝑥) = 𝑓(𝑥) + 𝑂 ( 1
𝑁 )

4. 𝑓 ′(𝑥) = 𝑓(𝑥) whenever 𝛾𝑥 is constant.

Proof. We set Γ𝑥(𝑡) = ∫𝑡
0 (𝛾𝑥(𝑠) − 𝜕𝑗𝑓(𝑥)) 𝑑𝑠, so that 𝑓 ′(𝑥) = 𝑓(𝑥)+Γ𝑥(𝑁𝑥𝑗)/𝑁 .

Because each Γ𝑥 is 1-periodic, and everything has compact support in ℝ𝑚, all
derivatives of Γ are uniformly bounded. Item 3 in the statement is then obvious.
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Item 2 also follows since 𝜕𝑖𝑓 ′(𝑥) = 𝜕𝑖𝑓(𝑥) + 𝜕𝑖Γ(𝑥, 𝑁𝑥𝑗)/𝑁 . In order to prove
Item 1, we compute:

𝜕𝑗𝑓 ′(𝑥) = 𝜕𝑗𝑓(𝑥) + 1
𝑁 𝜕𝑗Γ(𝑥, 𝑁𝑥𝑗) + 𝑁

𝑁 𝜕𝑡Γ(𝑥, 𝑁𝑥𝑗)

= 𝜕𝑗𝑓(𝑥) + 𝑂 ( 1
𝑁 ) + 𝛾(𝑥, 𝑁𝑥𝑗) − 𝜕𝑗𝑓(𝑥)

= 𝛾(𝑥, 𝑁𝑥𝑗) + 𝑂 ( 1
𝑁 ) .

Item 4 is obvious since Γ𝑥 vanishes identically when 𝛾𝑥 is constant.

Of course the above proposition can be usefull only if we have an efficient way
to build families of loops with prescribed average values. The key observation,
which will be subsumed by Proposition 2.5, is:

Lemma 2.2 (Gromov 1969). Let 𝑣 be a vector in some finite dimensional ℝ-
vector space 𝑉 . Let Ω be a connected open subset of 𝑉 . If 𝑣 is in IntConv Ω,
the interior of the convex hull of Ω, then there exists a loop 𝛾 ∶ 𝕊1 → Ω whose
average is 𝑣.

Sketch of proof. By assumption, there is a finite collection of points 𝑝𝑖 in Ω and
𝜆𝑖 ∈ [0, 1] such that 𝑣 is the barycenter ∑ 𝜆𝑖𝑝𝑖. Since Ω is open and connected,
there is a smooth loop 𝛾0 which goes through each 𝑝𝑖. The claim is that 𝑣 is the
average value of 𝛾 = 𝛾0 ∘ ℎ for some self-diffeomorphism ℎ of 𝕊1. The idea is of
course to choose ℎ such that 𝛾 rushes to 𝑝1, stays there during a time roughly
𝜆1, rushes to 𝑝2, etc. But, in order to achieve average exactly 𝑣, it seems like
ℎ needs to be a discontinuous piecewise constant map. The assumption that
𝑣 is in the interior of the convex hull gives enough slack to get away with a
smooth ℎ, see the proof of Proposition 2.5. Actually the conclusion would be
false without this interior assumption (exercise).

In the previous proof sketch, there is a lot of freedom in constructing 𝛾,
which is problematic when trying to do it in families, so we will need a more
specific construction. However those two lemmas still contain the essential ideas
of convex integration. We will now state precisely the geometric context we will
use, and the corresponding fundamental result.

In this chapter, 𝑋 and 𝑌 are smooth manifolds and ℛ is a first order differ-
ential relation on maps from 𝑋 to 𝑌 : ℛ ⊂ 𝐽1(𝑋, 𝑌 ). For any 𝜎 = (𝑥, 𝑦, 𝜑) in
ℛ and (𝜆, 𝑣) ∈ 𝑇 ∗

𝑥𝑉 × 𝑇𝑥𝑉 such that 𝜆(𝑣) = 1 (like (𝑑𝑥𝑗, 𝜕𝑗) in Lemma 2.1), we
set:

ℛ𝜎,𝜆,𝑣 = Conn𝜑(𝑣) {𝑤 ∈ 𝑇𝑦𝑌 ; (𝑥, 𝑦, 𝜑 + (𝑤 − 𝜑(𝑣)) ⊗ 𝜆) ∈ ℛ}

where Conn𝑎 𝐴 is the connected component of 𝐴 containing 𝑎. In order to
decipher this definition, it suffices to notice that 𝜑+(𝑤−𝜑(𝑣))⊗𝜆 is the unique
linear map from 𝑇𝑥𝑋 to 𝑇𝑦𝑌 which coincides with 𝜑 on ker 𝜆 and sends 𝑣 to 𝑤.
In particular, 𝑤 = 𝜑(𝑣) gives back 𝜑.

Of course we will want to deal with more that one point, so we will consider
a vector field 𝑉 and a 1–form 𝜆 such that 𝜆(𝑉 ) = 1 on some subset 𝑈 of 𝑋,
a formal solution 𝐹 (defined at least on 𝑈), and get the corresponding ℛ𝐹,𝜆,𝑣
over 𝑈 .
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Definition 2.3. A formal solution 𝐹 of ℛ over 𝑈 is (𝜆, 𝑉 )–short if 𝑇𝑥 bs 𝐹(𝑉𝑥) ∈
IntConv ℛ𝐹(𝑥),𝜆𝑥,𝑉𝑥

for all 𝑥. It is short if it is (𝜆, 𝑉 )–short for all (𝜆, 𝑉 ).
One easily checks that ℛ𝜎,𝜅−1𝜆,𝜅𝑣 = 𝜅ℛ𝜎,𝜆,𝑣 hence the above definition only

depends on ker 𝜆 and the direction ℝ𝑉 .
The context of the elementary step of convex integration is given by two

manifolds 𝑋 and 𝑌 , a function 𝜋 ∶ 𝑈 → ℝ on some open subset 𝑈 ⊂ 𝑋, a vector
field 𝑉 such that 𝑑𝜋(𝑉 ) = 1, and a sub-bundle 𝐻 ⊂ ker 𝑑𝜋 (which could be
{0}).

Lemma 2.4 (Fundamental lemma of convex integration). In the above context,
let ℛ ⊂ 𝐽1(𝑋, 𝑌 ) be an open differential relation. Let 𝐹 be a formal solution of
ℛ on 𝑋 which is (𝑑𝜋, 𝑉 )–short and 𝐻-holonomic on 𝑈 , and 𝑉 –holonomic near
some closed subset 𝐶. For any compact 𝐾 ⊂ 𝑈 and any positive 𝜀, there is a
homotopy of global formal solutions 𝐹 𝑡, starting at 𝐹 0 = 𝐹 , such that:

• 𝐹 𝑡(𝑥) = 𝐹(𝑥) for all 𝑡 whenever 𝑥 is outside 𝑈 or near 𝐶
• dC0(bs 𝐹 𝑡, bs 𝐹) ≤ 𝜀 for all 𝑡,
• 𝐹 1 is 𝐻 ⊕ ℝ𝑉 –holonomic near 𝐾
Everything until the end of this chapter is dedicated to the proof of the above

lemma, and historical remarks about it. Applications in the next chapters will
only use this statement.

2.2 Constructing loops
In this section, we explain how to construct families of loops to feed into the
corrugation process of Proposition 2.1. More precisely, all this section is devoted
to proving the following proposition.

Proposition 2.5. Let 𝑔 ∶ Op 𝐼𝑚 → ℝ𝑛 be a smooth map, and let Ω be an
open set in ℝ𝑚 × ℝ𝑛. For each 𝑥 in 𝐼𝑚, assume that Ω𝑥 ∶= Ω ∩ ({𝑥} × ℝ𝑛) is
connected. If, for each 𝑥 in 𝐼𝑚, 𝑔(𝑥) is in the convex hull of Ω𝑥, then there
exists a smooth family of loops 𝛾 ∶ Op 𝐼𝑚 × 𝕊1 → ℝ𝑛 such that 𝛾𝑥(𝑡) ∈ Ω𝑥 for
all 𝑡, and ̄𝛾𝑥 = 𝑔(𝑥).

Let 𝐾 be a closed subset of 𝐼𝑚. If 𝑔(𝑥) is in Ω𝑥 for 𝑥 in Op 𝐾, and 𝑔|𝐾
extends to a section of Ω → 𝐼𝑚, then one can additionally ensure that, for all
𝑥 ∈ Op 𝐾, 𝛾𝑥 is the constant loop 𝑡 ↦ 𝑔(𝑥).

Note that the extension condition is the second part is not automatic. For
instance, one could have 𝑛 = 𝑚, Ω𝑥 = {1/2 < ‖𝑦‖∞ < 2}, 𝐾 = 𝜕𝐼𝑚, 𝑔(𝑥) = 𝑥.

2.2.1 Surrounding families
It will be convenient to introduce some more vocabulary. We say a loop 𝛾
surrounds (resp. strictly surrounds) a vector 𝑣 if 𝑣 is in the convex hull of 𝛾(𝕊1)
(resp. the interior of this convex hull). Also, we fix a base point in 𝕊1 and say
a loop is based at some 𝑦 if the base point is sent to 𝑦.

The first main task in proving Proposition 2.5 is to construct suitable families
of loops 𝛾𝑥 surrounding 𝑔(𝑥), by assembling local families of loops. The key here
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is to look for loops that are concatenations of round-trips. A round-trip is a loop
𝛾 such that 𝛾(1 − 𝑡) = 𝛾(𝑡) for all 𝑡, so that 𝛾 follows some path until 𝑡 = 1/2
and then backtracks. We will see this conditions ensure a canonical contraction
to a constant loop. The goal of this subsection it to prove the following lemma.

Lemma 2.6. Under the assumptions of Proposition 2.5, let 𝛽 be a section of Ω
over 𝐼𝑚 extending 𝑔|𝐾. For any smooth family of concatenations of round-trip
loops 𝛾𝑥 based at 𝛽(𝑥), defined for 𝑥 in Op 𝐾, and strictly surrounding 𝑔(𝑥),
there exists such a family 𝛾′

𝑥 defined for all 𝑥, and satisfying 𝛾′
𝑥 = 𝛾𝑥 for 𝑥 in

Op 𝐾.

The crucial property of surrounding round-trips is that one can smoothly
interpolate between them in families.

Lemma 2.7. Let 𝑈 be an open subset of ℝ𝑚, Ω an open subset in 𝑈 × ℝ𝑛,
𝛽 ∶ 𝑈 → Ω a section, and 𝑔 ∶ 𝑈 → ℝ𝑛. Let 𝛾0, 𝛾1 ∶ 𝑈 × 𝕊1 → ℝ𝑛 be two
smooth families of concatenation of round-trips where each 𝛾𝑖

𝑥 is based at 𝛽(𝑥)
and strictly surrounds 𝑔(𝑥). There is a smooth map 𝛾 ∶ [0, 1] × 𝑈 × 𝕊1 → ℝ𝑛

such that 𝛾𝑡 ∶= 𝛾(𝑡, ·, ·) interpolates between 𝛾0 and 𝛾1, and each 𝛾𝑡
𝑥 is a loop

based at 𝛽(𝑥), with values in Ω𝑥, and strictly surrounding 𝑔(𝑥).
Proof. The key is that any round-trip 𝛾 can be canonically contracted to a con-
stant loop through the family 𝐻𝑢𝛾, 𝑢 ∈ [0, 1], whose image starts backtracking
at 𝑠 = 1/2 − 𝑢/2 instead of 𝑠 = 1/2. In formula:

𝐻𝑢𝛾(𝑠) = {𝛾(𝑠) if 𝑠 ≤ 1
2 − 𝑢

2 or 𝑠 ≥ 1
2 + 𝑢

2
𝛾( 1

2 − 𝑢
2 ) if 𝑠 ∈ [ 1

2 − 𝑢
2 , 1

2 + 𝑢
2 ]

The round-trip condition ensures each 𝐻𝑢𝛾 is a continuous loop (only continuity
at 𝑠 = 1/2 + 𝑢/2 needs some attention). This is not a family of smooth loops
but this can be corrected by reparametrization (without leaving the class of
round-trips). Note that reparametrization does not change the convex hull of
a loop (it does change its average though). By construction, im 𝐻𝑢𝛾 ⊂ im 𝛾
for all 𝑢, 𝐻0𝛾 = 𝛾 and 𝐻1𝛾 is constant. The same procedure can be used for
concatenation of round-trips, contracting all pieces at the same time. The result
is still a concatenation of round-trips for each 𝑢.

We now turn to our two families 𝛾0 and 𝛾1. After precomposition by a fixed
smooth map, we can assume all loops with a given base point can be smoothly
concatenated. Let 𝜌 ∶ [0, 1] → [0, 1] be a smooth cut-off function which vanishes
on [0, 1/2] and equals one near 𝑡 = 1. The symmetric function 𝑡 ↦ 𝜌(1 − 𝑡)
vanishes near 𝑡 = 0 and equals one on [1/2, 1]. We set

𝛿𝑡 = (𝐻𝜌(𝑡)𝛾0) # (𝐻𝜌(1−𝑡)𝛾1) .

Note that the convex hull of 𝛿𝑡 contains the convex hull of 𝛾0 (resp. 𝛾1) when
𝑡 is less (resp. more) than 1/2. Hence each 𝛿𝑡

𝑥 strictly surrounds 𝑔(𝑥). In
addition, for 𝑖 = 0, 1, 𝛿𝑖 is 𝛾𝑖 up to reparametrization. We don’t get exactly
𝛾𝑖 because we needed to reparametrize in order to smoothly concatenate, and
because 𝛿𝑖 spends half its time at the base point. Nothing about this depends
on 𝑥, and everything can be fixed by some initial and final deformations of 𝛾0

and 𝛾1 respectively, in order to get our final interpolation 𝛾.

9



Corollary 2.8. Under the assumption of the preceding lemma, if 𝛾0
𝑥 and 𝛾1

𝑥
are defined for 𝑥 in neighborhoods of compact subsets 𝐾0 and 𝐾1 respectively,
based at 𝛽 and strictly surrounding 𝑔, there is a family 𝛾 of concatenation of
round-trips defined on Op (𝐾0 ∪ 𝐾1), based at 𝛽 and strictly surrounding 𝑔, such
that 𝛾 = 𝛾0 on Op 𝐾0.

Proof. For 𝑖 = 0, 1, let 𝑈𝑖 be an open neighborhood of 𝐾𝑖 where 𝛾𝑖 is defined.
Let 𝑈 ′

0 be another open neighborhood of 𝐾0 whose closure ̄𝑈 ′
0 is compact in 𝑈0.

Since ̄𝑈 ′
0 and 𝐾′

1 ∶= 𝐾1 ∖ (𝐾1 ∩ 𝑈0) are disjoint compact subsets of ℝ𝑚, there
is some smooth cut-off 𝜌 ∶ ℝ𝑚 → [0, 1] which vanishes on 𝑈 ′

0 and equals one on
some neighborhood 𝑈 ′

1 of 𝐾′
1.

Lemma 2.7 gives a homotopy of loops 𝛾𝑡 from 𝛾0 to 𝛾1 on 𝑈0 ∩ 𝑈1. On
𝑈 ′

0 ∪ (𝑈0 ∩ 𝑈1) ∪ 𝑈 ′
1, which is a neighborhood of 𝐾0 ∪ 𝐾1, we set

𝛾𝑥 =
⎧{
⎨{⎩

𝛾0
𝑥 for 𝑥 ∈ 𝑈 ′

0
𝛾𝜌(𝑥)

𝑥 for 𝑥 ∈ 𝑈0 ∩ 𝑈1
𝛾1

𝑥 for 𝑥 ∈ 𝑈 ′
1

which has the required properties.

Proof of Lemma 2.6. We begin with two general observations, and then prove
the lemma. First observe that for each 𝑥 there is a round-trip 𝛾 based at 𝛽(𝑥)
and strictly surrounding 𝑔(𝑥). Indeed, by assumption, 𝑔(𝑥) is a strict convex
combination of points 𝑝𝑖 all in the connected component of Ω𝑥 containing 𝛽(𝑥).
Then we chose any path 𝜆 ∶ [0, 1] → Ω𝑥 going through these points and form
the corresponding round-trip by smooth reparametrization of the concatenation
𝜆#𝜆−1, say 𝛾(𝑠) = 𝜆((1 − cos 2𝜋𝑠)/2).

Next observation is that 𝑠 ↦ 𝛽(𝑥′) + (𝛾(𝑠) − 𝛽(𝑥)) is a round-trip based at
𝛽(𝑥′) which strictly surrounds 𝑔(𝑥′) for 𝑥′ in Op {𝑥} because Ω is open and 𝑔(𝑥)
is in the interior of the convex hull of im 𝛾.

In the setup of the lemma, let 𝑈0 be an open set containing 𝐾 and contained
in the domain of 𝛾. Let 𝑈 ′

0 be an open neighborhood of 𝐾 with compact closure
in 𝑈0. Let 𝑈𝑖, 1 ≤ 𝑖 ≤ 𝑁 be a covering of 𝐼𝑚 ∖ 𝑈 ′

0 by open subsets not
intersecting 𝐾 and where the preceding observations gives families of loops 𝛾𝑖.
We also set 𝛾0 = 𝛾|𝑈0

. In particular the open sets 𝑈𝑖, 𝑖 ≥ 0 cover the whole
of 𝐼𝑚, and only 𝑈0 intersects 𝐾. Let 𝐾𝑖, 0 ≤ 𝑖 ≤ 𝑁 , be a family of compact
sets with 𝐾𝑖 ⊂ 𝑈𝑖 which covers 𝐼𝑚. We repeatedly apply Corollary 2.8 to 𝐾𝑖
and 𝐾𝑖+1, in this order, to get a family 𝛾′ defined over all 𝐼𝑚. Since each step
preserves the family on Op 𝐾𝑖 and only 𝑈0 intersects (in fact contains) 𝐾, we
do have 𝛾′ = 𝛾 on Op 𝐾.

2.2.2 The reparametrization lemma
The second ingredient needed to prove Proposition 2.5 is a parametric version
of Lemma 1.5.

Lemma 2.9. Let 𝛾 ∶ 𝑋 ×𝕊1 → 𝐸 be a family of loops in a vector bundle 𝐸 → 𝑋
(ie. each 𝛾𝑥 is a loop in 𝐸𝑥) and let 𝑔 be a section of 𝐸. If 𝛾𝑥 strictly surrounds
𝑔(𝑥) for all 𝑥, and 𝛾𝑥 has average 𝑔(𝑥) when 𝑥 is outside some compact subset
of 𝑋, then there is a family of circle diffeomorphisms ℎ ∶ 𝑋 ×𝕊1 → 𝕊1 such that
each 𝛾𝑥 ∘ ℎ𝑥 has average 𝑔(𝑥).
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Proof. For any fixed 𝑥, since 𝛾𝑥 strictly surrounds 𝑔(𝑥), there are points 𝑠1, …, 𝑠𝑛+1
in 𝕊1 such that 𝑔(𝑥) is in the interior of the simplex spanned by the correspond-
ing points 𝛾𝑥(𝑠𝑗). The fact that 𝑛 + 1 points are enough is the statement of
Caratheodory’s theorem in convex geometry. Let 𝜇1, …, 𝜇𝑛+1 be smooth posi-
tive probability measures very close to the Dirac measures on 𝑠𝑗 (ie. 𝜇𝑗 = 𝑓𝑗 𝑑𝑠
for some smooth positive function 𝑓𝑗 and, for any function ℎ, ∫ ℎ 𝑑𝜇𝑗 is almost
ℎ(𝑠𝑗)). We set 𝑝𝑗 = ∫ 𝛾𝑥 𝑑𝜇𝑗, which is almost 𝛾𝑥(𝑠𝑗) so that 𝑔(𝑥) = ∑ 𝑤𝑗𝑝𝑗 for
some weights 𝑤𝑗 in the open interval (0, 1) (this is where we crucially use that
𝑔(𝑥) was strictly surrounded by 𝛾𝑥).

If 𝑥′ is in a sufficiently small neighborhood of 𝑥, 𝑔(𝑥′) is in the interior of
the simplex spanned by 𝑝𝑗(𝑥′) ∶= ∫ 𝛾𝑥′ 𝑑𝜇𝑗. In such a neighborhood 𝑈 , we
then have smooth weight functions 𝑤𝑗 such that 𝑔(𝑥′) = ∑ 𝑤𝑗(𝑥′)𝑝𝑗(𝑥′). By
compactness of 𝐼𝑚, we extract a finite cover by such open sets 𝑈 𝑖, 1 ≤ 𝑖 ≤ 𝑁 ,
with corresponding measures 𝜇𝑖

𝑗, moving points 𝑝𝑖
𝑗 and weight functions 𝑤𝑖

𝑗. Let
(𝜌𝑖) be a partition of unity associated to this covering. For every 𝑥, we set

𝜇𝑥 =
𝑁

∑
𝑖=1

𝑛+1
∑
𝑗=1

𝜌𝑖(𝑥)𝑤𝑖
𝑗(𝑥) 𝜇𝑖

𝑗

so that:

∫ 𝛾𝑥 𝑑𝜇𝑥 =
𝑁

∑
𝑖=1

𝜌𝑖(𝑥)
𝑛+1
∑
𝑗=1

𝑤𝑖
𝑗(𝑥) ∫ 𝛾𝑥 𝑑𝜇𝑖

𝑗

=
𝑁

∑
𝑖=1

𝜌𝑖(𝑥)
𝑛+1
∑
𝑗=1

𝑤𝑖
𝑗(𝑥)𝑝𝑖

𝑗(𝑥)

=
𝑁

∑
𝑖=1

𝜌𝑖(𝑥)𝑔(𝑥) = 𝑔(𝑥).

We now set ℎ−1
𝑥 (𝑡) = ∫𝑡

0 𝑑𝜇𝑥 so that 𝑔(𝑥) = 𝛾𝑥 ∘ ℎ𝑥 for all 𝑥.

2.2.3 Proof of the loop construction proposition
We finally assemble the ingredient from the previous two sections.

Proof of Proposition 2.5. Let 𝛽 be a section of Ω extending 𝑔|Op 𝐾. If 𝐾 is not
empty, existence of 𝛽 is part of the assumptions, otherwise use contractibility of
𝐼𝑚 and openness of Ω to construct it (note that Ω intersects each fiber because
the convex hull of Ω𝑥 contains 𝑔(𝑥)).

Let 𝛾∗ be a round-trip loop strictly surrounding the origin in ℝ𝑛. For 𝑥 in
some neighborhood 𝑈∗ of 𝐾 where 𝑔 = 𝛽, we set 𝛾𝑥 = 𝑔(𝑥) + 𝜀𝛾∗ where 𝜀 > 0
is sufficiently small to ensure the image of 𝛾𝑥 and its convex hull are contained
in Ω𝑥 (recall Ω is open and 𝐾 is compact). Lemma 2.6 extends this family to
a family of strictly surrounding loops 𝛾𝑥 for all 𝑥 (this is not yet our final 𝛾).
Then Lemma 2.9 gives a family of circle diffeomorphisms ℎ𝑥 such that 𝛾𝑥 ∘ ℎ𝑥
has average 𝑔(𝑥).

Finally we choose a cut-off function function 𝜒 which vanishes on Op 𝐾
and equals one on Op 𝐼𝑚 ∖ 𝑈 ∗. In 𝑈∗, we replace 𝛾𝑥 ∘ ℎ𝑥 = 𝑔(𝑥) + 𝛾∗ ∘ ℎ𝑥 by
𝑔(𝑥) + 𝜒(𝑥)𝛾∗ ∘ ℎ𝑥. This operation does not change the average values of these
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loops, because it rescales them around their average value, but makes them
constant on Op 𝐾. Also those loops stay in Ω thanks to our choice of 𝜀. Note
that one could easily arrange for ℎ𝑥 to be independent of 𝑥 on Op 𝐾, but this
is not necessary in this proof.

To be continued... The proof of Lemma 2.4 is coming soon (all important
pieces are already in the preceding pages).

12


