
BLUEPRINT FOR GORDAN’S LEMMA

Abstract. A blueprint for Gordan’s Lemma.

What we are going for is the following. Let Λ be a finite free Z-module, and
let Λ∗ := Hom(Λ,Z) be its dual. If S is a subset of Λ∗ (always finite, in practice,
I think) then its dual Z-cone S∨ consists of the t ∈ Λ such that 〈s, t〉 ≥ 0 for all
s ∈ S.

Note that the dual Z-cone is an additive submonoid of Λ, but it need not be a
Z-module: multiplying by negative integers will reverse all the inequalities implied
by being in the dual Z-cone! For instance N ⊂ Z is the dual Z-cone of {1} ⊂ Z,
viewing Z as its own dual, via multiplication.

Our goal is to prove the following result.

Theorem 1 (Gordan’s Lemma). If S ⊂ Λ∗ is finite, then S∨ ⊂ Λ is a finitely-
generated additive monoid.

1. Algebraic proof

We follow the algebraic proof in Wikipedia.

Theorem 2. If M is an additive abelian monoid and R is a nonzero commutative
ring, then M is finitely-generated as a monoid iff the monoid algebra R[M ] is
finitely-generated as an R-algebra.

Proof. Because R is nonzero, we can think of M as a subset of R[M ]: even more,
we can think of M as a multiplicative submonoid of R[M ].

First, say M is finitely generated by S ⊆M . The R-subalgebra of R[M ] gener-
ated by S contains all of M , and is an R-module so it’s all of R[M ].

Conversely, say R[M ] is finitely-generated. If f ∈ R[M ] then it has a support,
which is a finite subset of M . Now f is in the R-submodule generated by its
support, and hence is in the R-subalgebra generated by the support. So if we
have finitely many f ’s which generate R[M ] as an R-algebra then we can replace
each f by its support and get a finite subset of M which generates a subalgebra
of R[M ] which contains all the f ’s and hence is all of R[M ]. We deduce that a
finite subset S of M generates R[M ] as an R-algebra. We claim that S generates
M as an additive monoid. This follows because the R-algebra generated by S is
the R-module generated by the monoid generated by S, and the monoid generated
by S is a subset of M . �

We prove Gordan’s Lemma by two layers of induction. First, proceed by induc-
tion on the rank of Λ.
First induction on rk Λ: base case. The result is clear in the case in which the
rank of Λ is 0: in this case, Λ = 0 and the empty set generates the unique additive
submodule of Λ = 0.
First induction on rk Λ: inductive step. Assume that the rank of Λ is strictly
positive and that, for every free, finitely generated Z-module Λ′ of rank strictly
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smaller than the rank of Λ, the dual set of every finite subset of (Λ′)
∗

is a finitely
generated additive monoid.

Note for formalization. We really only need the case of rank one less. In fact,
we are going to apply the inductive hypothesis to a submodule of Λ obtained as
the kernel of a non-zero linear map Λ → Z.

Proceed by induction on (the size of) S (within the inductive step of the first
induction on rk Λ).

Note for formalization. In the second induction we play around with S. Note
that the set S∨ coincides with the dual Z-cone on the set of points of the N-
submodule spanned by S (or even its saturation). I, DT, do not know whether or
not this observation makes the formalization simpler.

Second induction on #S: base case. For S empty the result is clear: the dual
of the empty set is the whole Λ and if λ ⊂ Λ generates Λ as a Z-module, then
λ ∪ {−` : ` ∈ λ} generates Λ as an additive monoid.
Second induction on #S: induction step. For the inductive (in the size of
#S) step, it suffices to check that if S∨ is finitely-generated then so is (S ∪ ϕ)∨.
We use the equality

(S ∪ ϕ)∨ = S∨ ∩ {v ∈ Λ : ϕ(v) ≥ 0 },
which follows from the definitions.

The result is clear if ϕ = 0: in this case ϕ imposes no extra condition on S∨, the
equality

(S ∪ {0})∨ = S∨

holds, and we know the result for S∨.
Thus, assume that ϕ is non-zero. Choose any non-zero, commutative ring with

identity R. Set M = S∨ and write A = R[M ]; this is finitely-generated as an
R-algebra by Theorem 2. Define

degϕ : M → Z
by degϕ(v) = ϕ(v). Define An to be the R-module generated by the v ∈ M with
degϕ(v) = n; this determines a Z-grading on A. By Theorem 2, it suffices to prove
that the subring A≥0 := ⊕n≥0An is finitely-generated as an R-algebra.

First note that A0 = R[T ] where T = {v ∈M : deg(v) = 0} is a subalgebra, so
it suffices to prove that

• A0 is a finitely-generated R-algebra, and that
• A≥0 is a finitely-generated A0-algebra.

Lemma 3. The R-algebra A0 = R[T ] is finitely generated.

Proof. We use the equivalence of Theorem 2: it suffices to show that T is finitely
generated as a monoid. Recall that, by definition, T is the submonoid of Λ satisfying

T = {v ∈M : deg(v) = ϕ(v) = 0} ⊂ kerϕ.

Since we reduced to the case in which ϕ is non-zero, we know that kerϕ is a free,
finitely-generated Z-module of rank equal to rk Λ− 1.

To apply the induction hypothesis, we check that T ⊂ kerϕ is the dual of a
finite subset of (kerϕ)∗. Observe that the dual of kerϕ is the quotient of Λ∗ by the
saturation of the additive subgroup generated by ϕ. By construction, T is therefore
the dual set of the image of S under the projection

Λ∗ →
(
Λ∗/〈ϕ〉sat

)
' (kerϕ)

∗
.
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By the induction step of the first induction (on the number of generators of Λ), we
know that T is finitely generated, as needed. �

Note for formalization. The saturation can be avoided by working, more gen-
erally, not with the dual of Λ, but with a Z-module of linear functionals on Λ that
surjects onto the dual of Λ. Alternatively, it can also be avoided by replacing ϕ
by ϕ′ ∈ Λ∗, where ϕ = aϕ′, with a ∈ N chosen as the largest it can be for such an
identity to hold.

To prove the second, and final, step, we show the following more general result.

Lemma 4. Let A be a Noetherian Z-graded ring. Denote by A≥0 = ⊕n≥0An the
sub-algebra of A consisting of the elements of A of non-negative degree. The ring
A≥0 is finitely generated as an A0-algebra.

Proof. Let I be the ideal of A that is generated by all the homogeneous elements
of strictly positive degree. (Note that, since A might have elements of negative
degree, the ideal I might contain elements of negative degree as well.)

Since A is Noetherian, the ideal I admits a finite generating set: choose one and
denote its elements by f1, . . . , fn. Since each element of I is an A-linear combination
of homogeneous elements of strictly positive degree, we can replace each chosen
generator by the collection of all the elements of I that appear in such linear
combinations. Thus, we further assume that the chosen generators are

• homogeneous, and
• have strictly positive degree.

Let N ∈ N be the maximum of the degrees of the generators f1, . . . , fr:

N = max{deg f1, . . . ,deg fr}.

Let A0≤N ⊂ A≥0 be the subset consisting all the homogeneous elements of degree at
most N . Note that, in particular, all the chosen generators f1, . . . , fr are contained
in A0≤N . We show that A0≤N generates A≥0 as an A0-algebra.

More precisely, we show that, for all n ∈ N, every element f ∈ A≥0 of degree n in
the A0-algebra A≥0 is generated by A0≤N as an A0-algebra. (If this is any help, this
step is entirely analogous to the proof that the Weak Mordell-Weil Theorem im-
plies the Mordell-Weil Theorem: it is a relatively standard ”Noetherian induction”
argument.)

Proceed by induction on n, starting the induction at n = N . For the base case
there is nothing to prove: the result is true if n = N , by definition of A0≤N .

Suppose that A0≤N generates every element of A≥0 of degree at most n, for some
natural number n satisfying N ≤ n. Let f be an element of A≥0 of degree n + 1.
By homogeneity of the ideal, we can assume that f is homogeneous of degree n+1.

Since f1, . . . , fr generate I, the homogeneous element f admits a decomposition

f =

r∑
i=1

gifi

with g1, . . . , gr homogeneous elements. Since the degrees of the generators f1, . . . , fr
are strictly positive, the inequalities

deg g1 < deg f, . . . ,deg gr < deg f
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hold. Since the degree of f is n+1 and n satisfies N = max{deg f1, . . . ,deg fr} ≤ n,
the degrees of g1, . . . , gr satisfy

0 ≤ deg g1 < deg f, . . . , 0 ≤ deg gr < deg f.

By the inductive hypothesis, each one of the elements g1, . . . , gr is in the A0-algebra
generated by A0≤N , as stated.

Thus, it suffices to show that A0≤N is finitely generated as an A0-module. For
this, we show that, for each natural number n, the homogeneous degree piece An

is finitely generated as an A0-module.

Note for formalization. For the given proof, it seems important that we work
with a unique graded piece: I do not see right away how to make the argument
work with A0≤N directly.

This is again a consequence of Noetherianity of A. Suppose that

N1 ⊂ N2 ⊂ · · · ⊂ Ni ⊂ · · ·
is an increasing chain of A0-submodules of An, such that ∪iNi = An. The chain of
ideals

N1A ⊂ N2A ⊂ · · · ⊂ NiA ⊂ · · ·
stabilizes, since A is Noetherian. Intersecting with An, we find that the sequence

N1A ∩An ⊂ N2A ⊂ ∩An · · · ⊂ NiA ∩An ⊂ · · ·
also stabilizes. Finally, we observe that, for all indices i, the equality NiA∩An = Ni

holds: since all the elements of Ni are homogeneous of degree n, the only A-
multiples of the elements of Ni that have degree n are the multiples by homogeneous
elements of degree 0. Since Ni is an A0-module, we are done. �


