BLUEPRINT FOR GORDAN’S LEMMA

ABSTRACT. A blueprint for Gordan’s Lemma.

What we are going for is the following. Let A be a finite free Z-module, and
let A* := Hom(A,Z) be its dual. If S is a subset of A* (always finite, in practice,
I think) then its dual Z-cone SV consists of the ¢t € A such that (s,t) > 0 for all
seSs.

Note that the dual Z-cone is an additive submonoid of A, but it need not be a
Z-module: multiplying by negative integers will reverse all the inequalities implied
by being in the dual Z-cone! For instance N C Z is the dual Z-cone of {1} C Z,
viewing Z as its own dual, via multiplication.

Our goal is to prove the following result.

Theorem 1 (Gordan’s Lemma). If S C A* is finite, then S¥Y C A is a finitely-
generated additive monoid.

1. ALGEBRAIC PROOF
We follow the algebraic proof in Wikipedia.

Theorem 2. If M is an additive abelian monoid and R is a nonzero commutative
ring, then M is finitely-generated as a monoid iff the monoid algebra R[M] is
finitely-generated as an R-algebra.

Proof. Because R is nonzero, we can think of M as a subset of R[M]: even more,
we can think of M as a multiplicative submonoid of R[M].

First, say M is finitely generated by S C M. The R-subalgebra of R[M] gener-
ated by S contains all of M, and is an R-module so it’s all of R[M].

Conversely, say R[M] is finitely-generated. If f € R[M] then it has a support,
which is a finite subset of M. Now f is in the R-submodule generated by its
support, and hence is in the R-subalgebra generated by the support. So if we
have finitely many f’s which generate R[M] as an R-algebra then we can replace
each f by its support and get a finite subset of M which generates a subalgebra
of R[M] which contains all the f’s and hence is all of R[M]. We deduce that a
finite subset S of M generates R[M] as an R-algebra. We claim that S generates
M as an additive monoid. This follows because the R-algebra generated by S is
the R-module generated by the monoid generated by S, and the monoid generated
by S is a subset of M. O

We prove Gordan’s Lemma by two layers of induction. First, proceed by induc-
tion on the rank of A.
First induction on rk A: base case. The result is clear in the case in which the
rank of A is 0: in this case, A = 0 and the empty set generates the unique additive
submodule of A = 0.
First induction on rk A: inductive step. Assume that the rank of A is strictly
positive and that, for every free, finitely generated Z-module A’ of rank strictly
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smaller than the rank of A, the dual set of every finite subset of (A’)" is a finitely
generated additive monoid.

Note for formalization. We really only need the case of rank one less. In fact,

we are going to apply the inductive hypothesis to a submodule of A obtained as

the kernel of a non-zero linear map A — Z.

Proceed by induction on (the size of) S (within the inductive step of the first
induction on rk A).

Note for formalization. In the second induction we play around with S. Note

that the set SV coincides with the dual Z-cone on the set of points of the N-

submodule spanned by S (or even its saturation). I, DT, do not know whether or

not this observation makes the formalization simpler.
Second induction on #5S: base case. For S empty the result is clear: the dual
of the empty set is the whole A and if A C A generates A as a Z-module, then
AU{—{ : £ € \} generates A as an additive monoid.
Second induction on #S5: induction step. For the inductive (in the size of
#S) step, it suffices to check that if SV is finitely-generated then so is (S U p)Y.
We use the equality

(SUp)=8"N{veA: o) >0},

which follows from the definitions.

The result is clear if ¢ = 0: in this case ¢ imposes no extra condition on SV, the
equality

(Su{o})¥ =5"

holds, and we know the result for SV.

Thus, assume that ¢ is non-zero. Choose any non-zero, commutative ring with
identity R. Set M = SV and write A = R[M]; this is finitely-generated as an
R-algebra by Theorem 2. Define

deg,: M — Z

by deg,(v) = ¢(v). Define A, to be the R-module generated by the v € M with
deg,,(v) = n; this determines a Z-grading on A. By Theorem 2, it suffices to prove
that the subring A>g := ®p>0A4, is finitely-generated as an R-algebra.
First note that Ay = R[T| where T = {v € M : deg(v) = 0} is a subalgebra, so
it suffices to prove that
e Ay is a finitely-generated R-algebra, and that
o Ay is a finitely-generated Ap-algebra.

Lemma 3. The R-algebra Ay = R[T] is finitely generated.

Proof. We use the equivalence of Theorem 2: it suffices to show that T is finitely
generated as a monoid. Recall that, by definition, T is the submonoid of A satisfying

T={veM: deg(v) =¢(v) =0} C ker.
Since we reduced to the case in which ¢ is non-zero, we know that ker ¢ is a free,
finitely-generated Z-module of rank equal to tk A — 1.
To apply the induction hypothesis, we check that T' C ker is the dual of a
finite subset of (ker ¢)*. Observe that the dual of ker ¢ is the quotient of A* by the

saturation of the additive subgroup generated by ¢. By construction, T is therefore
the dual set of the image of S under the projection

A — (A*/{p)™) ~ (ker )" .



By the induction step of the first induction (on the number of generators of A), we
know that T is finitely generated, as needed. ([

Note for formalization. The saturation can be avoided by working, more gen-
erally, not with the dual of A, but with a Z-module of linear functionals on A that
surjects onto the dual of A. Alternatively, it can also be avoided by replacing ¢
by ¢’ € A*, where ¢ = ayp’, with a € N chosen as the largest it can be for such an
identity to hold.

To prove the second, and final, step, we show the following more general result.

Lemma 4. Let A be a Noetherian Z-graded ring. Denote by A>o = ®p>0A4y the
sub-algebra of A consisting of the elements of A of non-negative degree. The ring
Asq is finitely generated as an Ag-algebra.

Proof. Let I be the ideal of A that is generated by all the homogeneous elements
of strictly positive degree. (Note that, since A might have elements of negative
degree, the ideal I might contain elements of negative degree as well.)

Since A is Noetherian, the ideal I admits a finite generating set: choose one and
denote its elements by f1,..., fn. Since each element of I is an A-linear combination
of homogeneous elements of strictly positive degree, we can replace each chosen
generator by the collection of all the elements of I that appear in such linear
combinations. Thus, we further assume that the chosen generators are

e homogeneous, and
e have strictly positive degree.

Let N € N be the maximum of the degrees of the generators f1,..., f.:
N = max{deg f1,...,deg f-}.

Let Agp<n C A be the subset consisting all the homogeneous elements of degree at
most V. Note that, in particular, all the chosen generators f1,..., f are contained
in Ap<n. We show that Apg<n generates A>( as an Ap-algebra.

More precisely, we show that, for all n € N, every element f € A>( of degree n in
the Ap-algebra A is generated by Ag<n as an Ag-algebra. (If this is any help, this
step is entirely analogous to the proof that the Weak Mordell-Weil Theorem im-
plies the Mordell-Weil Theorem: it is a relatively standard ”"Noetherian induction”
argument.)

Proceed by induction on n, starting the induction at n = N. For the base case
there is nothing to prove: the result is true if n = IV, by definition of Ap<n.

Suppose that Ao<n generates every element of A>q of degree at most n, for some
natural number n satisfying N < n. Let f be an element of A>( of degree n + 1.
By homogeneity of the ideal, we can assume that f is homogeneous of degree n+ 1.

Since f1, ..., f, generate I, the homogeneous element f admits a decomposition
r
F=Y gf:
i=1
with g1, ..., g, homogeneous elements. Since the degrees of the generators f1,..., f.

are strictly positive, the inequalities

deg gy < degf,...,degg, < deg f



hold. Since the degree of f is n+1 and n satisfies N = max{deg fi,...,deg f.} < n,
the degrees of g1, ..., g, satisfy

0<degg;s <degf,...,0<degg, < deg f.

By the inductive hypothesis, each one of the elements g1, ..., g, is in the Ap-algebra
generated by Ao<n, as stated.

Thus, it suffices to show that Ag<y is finitely generated as an Ap-module. For
this, we show that, for each natural number n, the homogeneous degree piece A,
is finitely generated as an Agp-module.

Note for formalization. For the given proof, it seems important that we work

with a unique graded piece: I do not see right away how to make the argument

work with Ao<n directly.

This is again a consequence of Noetherianity of A. Suppose that
NiCNyC---CN; C---

is an increasing chain of Ag-submodules of A,,, such that U;N; = A,,. The chain of
ideals
NiACNAC---CNAC---
stabilizes, since A is Noetherian. Intersecting with A,,, we find that the sequence
NiANA, C N, ACNA,---CNANA, C---

also stabilizes. Finally, we observe that, for all indices i, the equality N;ANA,, = N;
holds: since all the elements of N; are homogeneous of degree n, the only A-
multiples of the elements of N; that have degree n are the multiples by homogeneous
elements of degree 0. Since N; is an Ag-module, we are done. O



