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Abstract. This paper summarizes the results of an investigation into single axioms for groups, both ordinary 
and Abelian, with each of following six sets of operations: {product, inverse}, {division}, {double division, 
identity}, {double division, inverse}, {division, identity}, and {division, inverse}. In all but two of the twelve 
corresponding theories, we present either the first single axioms known to us or single axioms shorter than 
those previously known to us. The automated theorem-proving program OTTER was used extensively to 
construct sets of candidate axioms and to search for and find proofs that given candidate axioms are in fact 
single axioms. 
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1. Introduction 

A single axiom for an equational theory is an equality from which the entire theory 
can be derived. For example, each of the equalities 

( x f ( ( ( ( x / x ) / y ) / z ) / ( ( ( x / x ) / x ) / z ) ) )  = y ,  (11) 
(x" (((y I.  (x- '  • z)) -l • u)" ( y "  b/) - 1 )  I)  = Z (1.2) 

is a single axiom for (ordinary) groups. Equation (1.1), in terms of division, 7/fi = 

7 • d - l ,  was shown to be a single axiom by G. Higman and B.  H .  Neumann in [1], and 
(1.2) was given by Neumann in [13]. Each of (1.1) and (1.2) axiomatizes groups in the 
sense that each generates a theory definitionally equivalent to standard axiomatiz- 
ations, for example, the triple 

( e ' x )  = x ,  

( x - '  " x )  = e, 

( ( x  . y )  . z )  = ( x  . ( y . z ) ) ,  

where e is the identity. 
The investigation summarized in this paper focused on searching for simple single 

axioms for groups and for Abelian groups, each in terms of each of the six sets of 
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operations {product, inverse}, {division}, {double division, identity}, {double division, 
inverse}, {division, identity}, and {division, inverse}. (There is no single axiom in 
terms of {product, inverse, identity} [17, 13].) New single axioms were found for each 
of the twelve corresponding theories. In seven of  the theories, no single axioms were 
previously known to us; in three of the theories, the new single axioms are shorter than 
those previously known to us; and in the remaining two cases, the new single axioms 
are the same size as the ones previously known. 

Operations. Throughout  the paper, we use c~ • fl for product, ~-~ for inverse, e for 
the identity element, 0~/fi for division e • fi-1, and e I] fi for double division c~ -I • fi i. 
Given a single axiom in one set of  operations, it may seem trivial to obtain a single 
axiom in other operations by applying a simple transformation. For  example, given 
(x/(y/(z/(x/y)))) = z, which is a single axiom for Abelian groups, and making the 

obvious transformation, say e/fl ~ f ( e ,  g(fl)), one obtains a single axiom in the sense 
that it is definitionally equivalent to all other axiomatizations; however, f is not 
product, and g is not inverse. 

Mirror Images. The mirror image of an equality with respect to a binary operator 
is obtained by reversing the arguments of  all occurrences of  the operator. The mirror 
image of a single axiom in terms of product and inverse or in terms of double division 
is also a single axiom, and the mirror image of a single axiom in terms of (right) 

division is a single axiom in terms of left division ~-~ • ft. 
Axiom Type. We considered length, number of variable occurrences, and number 

of distinct variables as measures when searching for simple single axioms. It is known 
that in a single axiom, say a = fi, for any variety of groups, either ~ or fi must be a 
variable [13]. Assuming fl is the variable, we say that a single axiom c~ = fl has type 
(L,  N, D) ,  if L is the number of  variable and operator occurrences in ~, N is the 
number of variable occurrences in ~, and D is the number of distinct variables in ~. 

(Kunen [6] classifies axioms by just (N, D).)  
The OTTER  [8] automated theorem-proving program was used extensively in two 

distinct ways (Section 4) during the investigation: (1) as a symbolic calculator, to 
construct sets of candidate axioms, and (2) to search for proofs that given candidates 
are single axioms. Theorem-proving programs have been used in the past to verify 
known single axioms for groups [3] and to search for and find new single axioms for 
nonequality theories of groups [10, 12]. Kunen's goal, in his recent study of single 
axioms for groups [6], was to find precisely how small a single axiom for (ordinary) 
groups, in terms of product and inverse, can be. By giving nongroup models of all 
candidates, he showed that no single axiom of type (x,  5, 3) exists. When trying to 
show that there are no single axioms of type (18, 7, 3), he found (with help from 
OTTER) several of that type (e.g., (2.1) below). 

2. Previously Known Single Axioms 

As far as we know, the following are the simplest previously known single axioms for 
groups and Abelian groups. The type and reference are given for each. 



SINGLE AXIOMS FOR GROUPS AND ABELIAN GROUPS 

Ordinary Groups: 

( x / ( ( ( ( x / x ) / y ) / z ) / ( ( ( x / x ) / x ) / z ) ) )  = y 

(((Z'(X . y ) - l ) - I ,  (Z "y 1)). ( y -1 ,  y)- l )  = X 

(((x 11 (Y I1 e)) II ((z 11 (u H (u I1 e))) II (x II e))) Ih y) = z 

Abelian Groups: 

( x / ( y / ( z / ( x / y ) ) ) )  = z (9 ,  5, 3 )  

((((x" y ) - l "  ( y .  x))-I 

(17, 9, 3> [1] (1.1) 

(18, 7, 3> [6] (2.1) 

(19, 7, 4) [14] (2.2) 

[161 (2.3) 

• ( ( 2 . ,  ~ / ) - 1 o  ( z ,  ( ( v  ° w - l )  • L/ 1 ) - [ ) ) ) - 1 o  w )  = v 

(28, 11, 5) [13] (2.4) 

The preceding equalities, except (2.4), can be shown to be single axioms by the 
methods presented in Section 4.1. Kunen verified (2.4) by using OTTER with a 
nonstandard strategy [5]. 

Neumann claims in [14] that 

((x IF ((y II z)II (y  II (~/--1 [I Z I ) ) - I ) ) I [  X) - !  = /X (2.5) 

is a single axiom for ordinary groups, but a two-element model of (2.5), a I] a = a, 
b II b = a, a/I b = b, b II a = b, a -1 = b, b -1 = a, shows that it is not, because there 
is no element e for which e-L = e. The counterexample was found by J. Slaney's 
program FINDER [15]. 

Prior to the investigation, we did not know of any single axioms for the remaining 
theories. Tarski states in [17, p. 278] that single axioms exist for {division, identity} 
and {division, inverse}, but none is given there. Neumann states [14, p. 300] that it 
should be 'quite feasible' to find single axioms for ordinary groups in terms of 
{division, identity} and in terms of {division, inverse}, and for Abelian groups in 
terms of {double division, identity}. 

Neumann also conjectured [13] that the simplest single axiom for ordinary groups 
in terms of prodffct and inverse has type (18, 7, 4). However, Kunen's axiom 
(2.1) has type (18, 7, 3), and we present one of type (16, 7, 4) in the following 
section. 

3. New Single Axioms 

Tables I and II contain representatives of the single axioms that were found by the 
methods summarized in Section 4. Proofs for axioms (3.1) and (3.7) are given in 
Section 5. Proofs for the other single axioms listed in this section can be found in 
[9]. 

The axioms in division alone, (3.2) and (3.8), are the same type as those previously 
known. The remaining axioms in Tables I and II are either the first known to us or 
simpler than those previously known to us. 
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Table I. New single axioms for ordinary groups 

Operators Axiom Type Ref. 

• and --1 (X* (y" (((Z" Z--l) " (U "y) l). X))--)) = U (16, 7, 4) (3.1) 
/ ( x / ( ( ( ( y / y ) / y ) / z ) / ( ( ( y / y ) / x ) / z ) ) )  = y (17, 9, 3) (3.2) 
/ and e ( ( e / ( x / ( y / ( ( ( x / x ) / x ) / z ) ) ) ) / z )  = y (15, 7, 3) (3.3) 
/ and - 1 ( ( x / x ) / ( y / ( ( z / ( u / y ) ) / u  1 ))) = z ( 14, 7, 4) (3.4) 
LI and e ((x II (((x II Y) II z) II (Y II e)))I/(e II e)) - z (15, 5, 3) (3.5) 
1[ and -1 (x -I II ((x I1 (Y II z)) -l[I (u 1[ (y II u))) -)) = z (16, 7, 4> (3.6) 

4. M e t h o d o l o g y  

O T T E R  [8] is a compu te r  p r o g r a m  that  searches for  proofs  of  conjectures stated in 
first-order logic with equality, The  user specifies inference rules, search strategies, and 

the way  that  derived formulas  are to be processed. Inference rules are of  two types: 
resolut ion rules, which are based on a general izat ion of  modus  ponens,  and  para-  
modu la t ion  rules, which generalize equali ty substi tution.  Search strategies include 
restricting appl icat ion of  the inference rules and  methods  for  selecting the next 

fo rmula  on which to focus. Processing of  derived formulas  includes methods  for  

discarding them and methods  for  turning derived equalities into simplification rules 
to be applied to subsequent ly  and /or  previously derived formulas.  

4.I. T R Y I N G  TO PROVE THAT A C A N D I D A T E  IS A SINGLE AXIOM 

O T T E R  can be directed to pe r fo rm a search based on the Knuth-Bendix  comple t ion  
procedure  for  equat ional  theories [4]. (Briefly, the Knuth-Bendix  procedure  a t tempts  
to conver t  a set o f  equalities into a terminat ing and confluent  set o f  rewrite rules which 

is a decision procedure  for  the word  p rob lem for  the theory• The  procedure  derives 
new equalities by a restricted fo rm of  pa ramodu la t ion ,  using a user-supplied ordering 
on terms to orient  new equalities into rewrite rules, and keeps everything fully 

simplified with respect  to the set o f  rewrite rules. Success occurs if  every derived 
equali ty can be oriented and the procedure  terminates•) We  used two wel l -known 
extensions to the procedure  [7, 2]: (1) turning it into a p r o o f  (refutat ion) search by 

including denials o f  known axiomatizat ions in the input, and (2) allowing nonorientable  

equalities to enter  the search• The  extended procedure  is useful even in cases when it 

does not  terminate.  

Table II. New single axioms for Abelian groups 

Operators Axiom Type Ref. 

• and - i  ( ( ( x ' y ) .  z) -  (x" z) - l )  = y (10, 5, 3) (3.7) 
/ ( x / ( ( x / y ) / ( z / y ) ) )  = z (9, 5, 3) (3.8) 
/ and e ( (e / ( ( (x /y ) / z ) / x ) ) / z )  = y (11, 5, 3) (3.9) 
/ and - '  ( ( x / ( y / ( x / z ) ) - ~ ) / z )  = y (10, 5, 3) (3.10) 
1] and e ((x 11 ((z H (x II y)) ]] (e II y))) II (e Ik e)) = z (15, 5, 3) (3.11) 
[I and - 1  Of II (((X IIY)II Z--~) -t IIY) t) = Z (12, 5, 3> (3.12) 
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We typically started searches with a candidate and with denials of all single axioms 
known to us. In addition, we input denials of other properties such as associativity 

of product and the existence of an identity. OTTER was directed to output all proofs 
that it found within a specified time. Although the precise settings of the OTTER 
parameters varied for the different theories we explored, we remark on the general 

OTTER 2.2 [8, 11] strategies we used. 

(1) We set the k n u t h _ b e n d i x  flag which automatically sets several paramodu- 
lation, demodulation, and ordering parameterS. 

(2) We use the lexicographic recursive path ordemng; the ordering on operators 
was typically ( 1 5_ .), (/ ~ e), (/ >- -~), (H ~ e), and (-~ >- ]J), with • and 1] 
having left-to-right status. 

(3) We set an initial maximum of 50 or 60 on the weight (symbol count) of  inferred 
clauses, then reduced the limit to 25 after 25 given clauses. 

(4) When more than one property was required to show that a candidate is a single 
axiom, we input the denials as unit clauses rather than as a multiliteral clause 
and marked success with multiple proofs rather than with a single proof  (the 
reasons are fairly technical). It is sound to do so in this case, because paramodu- 
lation and demodulation alone will not cause the unit denials to interact with 
one another. 

4.2. CONSTRUCTING AND TESTING SETS OF CANDIDATES 

Aside from automated theorem proving, OTTER can also serve as a symbolic 
calculator, for which the user 'programs' his or her task with formulas and equalities 
that have a procedural rather than a declarative interpretation. Examples of  four 
types of task are (1) given a set of equalities, decide which are true in all groups, 
(2) given a string of  symbols, generate all binary associations of the symbols, (3) given 
a set of equalities, insert (in a well-formed way) specified terms into each, and (4) given 
a set of equalities, apply paramodulation with specified equalities in a very con- 
strained way. OTTER was used in this 'programmed' mode to construct sets of 
prospective single axioms. 

The practical limit on the size of candidate sets was about 1O000 members, and 
most candidate sets we used had fewer than 5000 members. (That way we could run 
a set overnight or over a long weekend and allow 20-30 seconds for each candidate.) 
Given a set of candidates, we ran a simple program that initiates a separate OTTER 
search with each candidate. The search strategy and the list of denials (of known 
single axioms and other key properties) were fixed for the sequence of runs. The time 
limit for each search varied from 10 to 60 seconds, depending on the size of the set. 
Any proofs that were found were collected in a file. 

Groups in terms of product and inverse Neumann's axiom (1.2) has type (18, 7, 45. 
We built the set of identities of  type (x, 7, 45, for x = 14, 15, 16, 17 (corresponding 
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to 1, 2, 3, 4 occurrences of inverse). (At that time we were not aware of Neumann's 
theorem that all single axioms have an odd number of occurrences of inverse [13], 
which eliminates lengths 15 and 17.) The set has 120736 members. Looking to 
Neumann's single axioms [13] for guidance, we decided to consider candidates without 
inverse at the outermost level and with inverse applied to product in at least two 
places. No single axioms were found for length 17, but many were found for length 
16. We later found others of the same type with inverse at the outermost level. A total 
of 107 single axioms of type (16, 7, 4), excluding mirror images, were found. We list 
here five representatives: 

(x .  ( y -  (((z. z- l )  • (u . y ) - ' ) .  x)) -1) = u, (3.1) 

(((((x " y) " z) l . x ) . y ) . ( u . u  1))-1 = z, 

(x .  ( y .  (z- ((z i .  (u- y ) - l ) -  x)))-l)  = u, 

(x- ( y .  ( ( y - ' .  z) .  (u.  (x .  z)) 1)))-1 = u, 

(x .  ( y .  ((z. z 1). (u- (x .  y))-l)))-I : u. 

We then tried, without success, to find axioms of type (16, 7, 3>, by taking instances 
of the 107 axioms. All other attempts at finding simpler axioms failed. Kunen [6] later 
showed that the only possibility for a simpler axiom is (16, 7, 3>. 

Abelian groups in terms of product and inverse. Neumann's axiom (2.4) has type 
(28, 11, 5>. The first approach was to take axioms of type (16, 7, 4> for ordinary 
groups and commute products in all possible ways. This led to many single axioms 
of type (16, 7, 4). (Of the 26 : 64 commuted variants of just the first of the 107 
axioms, 28 were found to be single axioms for Abelian groups.) To search for simpler 
axioms, we extracted the identities of type (x, 5, 3>, for x = 10, 11, 12, 13, 14, from 
the 120736-member set mentioned in the preceding paragraph, and obtained all 
commuted variants of those. This approach led to three single axioms, excluding 
mirror images, of type (10, 5, 3>: 

( ( ( x . y ) - z ) "  (x- z)- ' )  = y, (3.7) 

(X ° ( (y"  Z)" (X" Z) 1)) = y, 

(x- (((x . y ) - l -  z)- y)) = z. 

Note that simpler single axioms are impossible, because three variables [5, 6] and at 
least one occurrence of inverse are required. 

Groups in terms of division. Higman and Neumann's axiom (1.1) has type ( 17, 9, 3). 
We first considered identities of types (9, 5, 3), (13, 7, 4), and (17, 9, 5) and found 
29 single axioms of type (17, 9, 5). We then examined three-variable instances of the 
29 axioms, and found the following two new axioms of type (17, 9, 3): 

(x/((((y/y)/y)/z)/(((y/y)/x)/z))) -- y, (3.2) 

( ( ( x / x ) / ( x / ( y / ( ( ( x / x ) / x ) / z ) ) ) ) / z )  = y .  
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Abel ian  groups  in t erms  o f  division. Two single axioms of type (9, 5, 3), were pre- 
viously known to us: Tarski's (2.3), and Higman and Neumann's ( x / ( ( y / z ) / ( y / x ) ) )  = z 

[1]. No simpler axiom is possible, because three variables are required. We examined 
identities of the same type and found the following four additional single axioms: 

( x l ( ( x l y ) / ( ~ / y ) ) )  = z, (3.8) 

( ( x / ( y / z ) ) / ( x / y ) )  = z, 

( ( x l ( ( x / y ) / z ) ) / y )  = ~, 

( ( x / y ) / ( ( x / z ) / y ) )  = ~. 

Groups  in terms  o f  division and identi ty.  No single axioms were previously known to 
us. We first considered, without success, identities of type ( 15, 5, 3) (three occurrences 
of identity). We then took the single axioms in division alone (type (17, 9, 3)); each 
has two occurrences of a/a, for variable a. Considering the six candidates of type 
(15, 7, 3) obtained from those by replacing one occurrence of a/a, with the identity, 
we found the following four single axioms: 

( ( e / ( x / ( y / ( ( ( x / x ) / x ) / z ) ) ) ) / z )  = y ,  

( ( ( x / x ) / ( x / ( y / ( ( e / x ) / z ) ) ) ) / z )  = y ,  

( x / ( ( ( e / y ) / z ) / ( ( ( x / x ) / x ) / z ) ) )  = y ,  

( x / ( ( ( ( x / x ) / y ) / z ) / ( ( e / x ) / z ) ) )  = y .  

(3.3) 

We note that by replacing ( x / x )  with e in (3.3), a single axiom for groups is obtained, 
with (e/e) as the identity (shown by OTTER), but e is not  the identity (shown by 
FINDER). 

Abel ian  groups  in t erms  o f  division and identi ty.  No single axioms were previously 
known to us. We started with the four single axioms for ordinary groups in terms of 
division and identity, and applied limited paramodulation with the Abelian identities 
x / ( x / y )  = y and ( x / y ) / z  = ( x / z ) / y  to obtain a set of 48 candidates of various types. 
Several single axioms were found, the simplest being the following three of type 
(I1, 5, 35: 

( ( e / ( ( ( x / y ) / z ) / x ) ) / z )  = y ,  (3.9) 

( ( e / ( x / y ) ) / ( ( y / ~ ) / x ) )  = z,  

( ( e / x ) / ( ( ( y / x ) / z ) / y ) )  = z.  

Groups in t erms  o f  division and inverse. No single axioms were previously known to 
us. We took the 29 + 3 single axioms in division alone, and applied paramodulation 
from the definition of inverse, ( y / y ) / x  = x -~, one time at each possible position, 
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obtaining 200 candidates of various type. The simplest single axioms discovered were 
fifteen of type <14, 7, 4>. We list five representatives here: 

( ( x / x ) / ( y l ( ( z l (u ly ) ) lu  '))) = z, (3.4) 

( ( x l ( y l ( z lu ) ) ) - l l ( (u l z ) l x ) )  = y, 

( ( ( x l y ) - ' l ( ( z lu ) l x ) ) l (u# ) )  = y, 

((((x/y)/z)/(U/Z))-I/(y/x)) = U, 

( ( ( ( x l x ) l y ) / ( z / ( y /u ) ) ) - ' l u )  = z. 

Abelian groups in terms of  division and inverse. No single axioms were previously 
known to us. We first took the 15 single axioms from the preceding paragraph and 
applied paramodulation with the Abelian identity x/(x/y)  = y, obtaining 106 can- 
didates. In that set, fourteen single axioms were found, all of  type (14, 7, 4>. We then 
turned to an exhaustive search of the (10, 5, 3 > candidates. The following three single 
axioms of that type were found. 

( ( x l ( y l ( x l z ) ) - ' ) l z )  = y,  (3 .10)  

( x l ( ( y / z ) / ( x / z ) )  ' )  = y, 

( ( ( x / y - ' ) / z ) / ( x / z ) )  = y .  

Groups in terms o f  double division and identity. The only single axiom known to us 
was Neumann's (2.2) of  type (19, 7, 4>. We tried all candidates of type (15, 5, 3> 
(three occurrences of identity) and discovered 208 single axioms. These axioms are 
noteworthy because they are the simplest, in terms of variable occurrences and 
distinct variables, of all known single axioms for ordinary groups. We list here five 
representatives: 

((x I] (((x N y) }l z) N ( y I[e))) N (e II e)) 

(x tl (((e]l ((x 11 e) I1 (Y 11 z))) N y) 11 e)) 

((e II x) II (e II (((x II Y) II e) N (z l] Y)))) 

((e H x)I] ((( Y ]1 z)][ (e II e))]t (x II z))) 

: Z, 

: y, 

(3.5) 

( (e l l (xH(y e))) l[ (( y [] (z ll x)) ][ e)) = z. 

Abelian groups m terms of  double division and identity. No single axioms were 
previously known to us. We took the single axiom (3.5) for ordinary groups, applied 
commutativity of I[ in all combinations, and deleted mirror images, obtaining 32 
candidates. Eleven of those, also of type <15, 5, 3>, were found to be single axioms. 
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We list here five representatives: 

((x 11 ((y II (x II z))/I (e II z)))11 (e ]1 e)) = y, 

((x II ( (y II (x IF z)) II (z II e)))II (e I] e)) = y, 

((x II ( (y Ir (z II x)) II (z Ii e)))I[ (e II e)) = y, 

((x [I (((y Ir x) IJ z)11 (y  II e)))II (e Ir e)) = z, 

((x II ((e Ir y) II (z II (y  II x)))) If (e H e)) = z. 

(3.11) 

This case, double division and identity, is noteworthy because it is the only case in 
which the currently known single axioms for Abelian groups are not simpler than the 
single axioms for ordinary groups. 

Groups in terms of double division and inverse. No single axioms were previously 
known to us. We first considered, without success, all identities of type (x, 5, 3), for 
x = 12, 13, 14 (corresponding to three, four, and five occurrences of inverse). We 
then considered identities of type (16, 7, 4), without occurrences of (~ [1 c~ -~) or 
(~ ~11 ~), for variable ~, and discovered two single axioms: 

ix 'll ((x 11 (y  lr z))- '  II (u FI (y  I1 u)))- ')  = z, (3.6) 

((X 11 (Y H Z) -1 ) ]l ( y - I  It (b/ II (X II U))-I))  = Z. 

Abelian groups in terms of double division and inverse. No single axioms were 
previously known to us. We first took the first single axiom for ordinary groups and 
applied commutativity of [I in all combinations. Six of the resulting 32 candidates 
(type (16, 7, 4)), were found to be single axioms. We then considered all identities of 
types (10, 5, 3) and (12, 5, 3) (one and three occurrences of inverse) and found the 
following eight single axioms of type (12, 5, 3): 

(x (((xlly) llz-~) -~lly) ~) 

(((x 11 y) II (x [I z - ' )  ~)-' II y) 

((x II Y) II (x II (z II y)-l)-~)-~ 

((x[ly) ll(xll(z ~lly) ~)-~) 

((x II(y II (x I[ Z)) -1 ) 1[] Z) 1 

((x ]r (y-~ II (x II z)) ~)-~ II z) 

((ix l¢ Y)-' II Z) -1 II (x II z)) -t 

(((x ]1 y ' )  ' H z) ' IJ (x II z)) 

~- Z, 

Z, 

y, 

(3.12) 
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5. Proofs for Profluet/Inverse Axioms (3.1) and (3.7) 

This section contains O T T E R ' s  proofs  that  (3.1) and (3.7) are single axioms, in terms 
of  product  and inverse, for groups and Abelian groups, respectively. Proofs  found by 
our  most  successful O T T E R  strategies usually are more  complex than necessary, and 
the following proofs  are the result o f  several tricks to coerce O T T E R  into finding 
shorter  proofs.  

The justification m ~ n indicates paramodula t ion  f rom m into n (substitution of  an 
instance of  the left side of  m for an instance of  a term in the left side of  n), and 
:i, j ,  . . . indicates simplification with i, j ,  . ,  . . The numbering o f  the equalities 
reflects the sequence of  equalities retained by the program.  

T H E O R E M  1. The theory o f  groups can be defined by the single axiom 

( x .  ( y -  (((z- z - l )  • (u .  y ) - l ) ,  x))-~) = u. (3.1) 

Proof. First, Equa t ion  (3.1) holds in groups,  a fact that  can be checked by straight- 
forward calculation. Next ,  consider the following derivation, starting with (3.1). 

5 (x .  ( y .  (((z.  z-1 ) .  (u .  y) -1 ) .  x))-I  ) = u 
7 (x"  (((( y= y - I  ) .  (z o /~) 1) .  (v o "o-1 ) ) .  (z"  x ) ) - l )  = u 

9 (x"  ( ( y "  (z" z - l ) ) "  (u-  x ) ) - ' )  = ( ( ( v ' v  ' ) "  ( y "  u ) - l ) "  (w" w 1)) 
10 ( ( ( y . y - 1 ) . ( ( ( z .  z l ) . ( u . x ) - l ) . u ) - l ) . ( v ,  v 1 ) ) _ - x  

12 ( ( ( x ' x - l )  " y - I  , ) . ( z . z - l ) )  = y 
14 ((x"  x - l )  • ( y "  z) -1) = ((u" u - l )  • ( y ' z )  ' )  

15 ( (x"  x l) . y , ) =  ((z" z l ) . y  ,) 

17 (u" u - ' )  = (v-  v - ' )  
19 (x"  x 1) = ( ( y . y - 1 ) .  ( z ' z  ' ) - ' )  
20 ( ( ( x ' x - ' ) ' ( ( y ' y - 1 ) ' z ) - l ) ' ( u ' u  1)) = z - '  

22 (x"  ( y - ' '  ((z" z - l )  • x)) - I )  = y 
25 ( x ' ( ( u ' u - ' )  - 1 - ' ' ( w ' x ) )  l) = w-I 

32 ((x"  x - ' ) - ' '  ( y - ' '  ( z ' z  1))- ,)  = y 
34 (x-1 . ( ( y . y - 1 )  l - , . ( z . z - 1 ) ) - ~  ) = x - '  
36 ( ( y ' y - ' ) ' ( x ' ( z ' z  1)-1-1)-1)-1 = x 

44 ( x ' ( ( y ' y - l )  -1 - '  " ( z ' z - ' ) )  -1) = x 
48 ( ( x - x - l )  -1 - '  " ( y ' y - ' ) )  = ( z ' z  1) 

52 (x -  ( y - y - ' ) - 1 )  = x 

57 ((z" z - ' ) - '  • u ) - ' - '  = u 
62 ( x - '  • ( y ' y  ' ) ) - '  = x -1 ' 
65 ( y ' ( ( z ' z  ' ) ' ( x ' y ) - ' ) )  ' = x ,-1 
76 ( x ' ( y ' y - ' ) )  -1 = x 1 
88 ((X.X--1)--I .y--1 1) = y 

92 ((u" u - 1 ) ' y  1)-~ = y 
116 ( y - ( u . u  1)) = y 
126 ( ( y - z ) -  z -1) = y 
201 (x" y -1 1) = (x " y) 

[(3 1)] 
[5 ~ 5] 

[5 -~ 71 
[7 -,, 91 

[10 ~ 10] 
[10 - ,  5] 

[12 ~ 14: 12] 
[15 ~ 5 : 5 ]  

[17 ~ 15] 
[17 ~ 10] 

[17 > 5] 
[19 ~ 7:20]  

[17 --, 22] 
[17 -~ 25] 

[5 -~ 251 
[36 -~ 34: 36] 

[44 -~ 17] 
[48 ~ 44] 

[52 --+ 10 : 20] 
[32 ~ 57] 

[5 ~ 57 : 52] 
[57 ~ 62:57] 

[65 ~ 32] 
[65 --* 20:12,  76] 
[76 ~ 32:76,  88] 

[76 --* 5:92] 
[126 --+ 126] 
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((X ° x - l ) "  Z) = Z 

(X" (y "  ((X- y ) - ' -  U))) = U 
y - l - I  = y 

( z ' x )  l = ( x  ~ ' ~ - ' )  
(x" ((x ~" u)- y)) = (u- y) 
((x" y ) ' z )  = (x" ( y "  z)) 

II  

[19 ~ 126: 52, 201] 

[5 ~ 126 : 207, 20 !] 

[126 ~ 36:207,  52] 

[126 --+ 25:227,  207] 
[126 -* 5:207,  229, 229, 227, 227] 

[215 -~ 215:229,  229, 229, 227, 227, 239] 

By 17, there exists a unique element e such that  for  all x, (x • x -  ~) = e; it follows f rom 

116 that  e is a right identity; and 260 shows the associativity of  product .  [ ]  

T H E O R E M  2. The theory  o f  Abe l ian  groups  can be def ined by  the single a x i o m  

(((x " y) " z) " (x " z) -1) = y. (3.7) 

Proof .  First, Equa t ion  (3.7) holds in Abelian groups,  a fact that  can be checked by 
s traightforward calculation. Next,  consider the following derivation, starting with (3.7). 

8 ( ( (x .  y ) .  z ) .  ( x .  z) -1) = y [(3.7)] 
lo ( (x-  y ) -  (((_,, • x ) .  u) .  y ) -  l) = (~. ,~) i [8 -,. 8] 
12 (x"  ( ( y "  x ) "  ( y "  z)-~) - ' )  = z [8 -', 8] 
16 ( ( x ' ( y ' z )  l ) . x  1) = ( y . z ) - ~  [ 8 - ,  10] 

18 ( y .  ( z - ( ( y -  z ) .  x ) - ' ) )  - '  = x [12 --, lO] 
23 ( ( x . y ) . ( x . ( y . z ) ) - ' )  -~ = z [10 --, 18] 
37 ( ( x ' y ) ' x  -~) = y [23 ~ 16:23] 
39 ((z . y) . (z - x) -~) ~ = ( x . y - l )  [12 ~ 16] 
41 ( x - ( ( y - x ) - z )  ~) = ( y . z ) - I  [8 ~ 16] 
43 ( x ' ( z "  x - 1 ) )  = z [12:39] 
51 ( x . ( x . z ) - 1 )  1 = z [18:41] 

53 ( x .  ( y -  x ) - ' )  = y - '  [37 --r 37] 

55 ( Y ' Z )  - l  = ( y  l " z - ~ )  [37 ~ 10:53] 

58 ( ( ( ( x - y ) - z ) .  x - ~ ) - y - ~ )  = z [37 ---, 8] 

60 (x -  ( y  i . y  ~-~)) = x [37 -~ 8: 55] 
64 (x - t - ( x  t - t . y - t - ~ ) )  = y [51:55,  55, 55] 

85 x - I - I  = x [43 ~ 64] 

92 (x - t  • (x"  y)) = y [64 : 85, 85] 
94 (x"  ( y - i  .y ) )  = x [60:85] 

101 (x  . (x-~ . y ) )  = y [85 --, 92] 

108 ( x . y )  = ( y . x )  [92 ~ 37:85] 
114 ( x . ( y . y - ' ) )  = x [85 ~ 9 4 ]  

136 ( x . x - ' )  = ( y . y  ~) [114 ~ t01] 
172 ( ( ( z .  x )  . y )  . z -1)  = (x  . y )  [58 --+ 43] 

184 ( ( x - y ) - z )  = ((z-  x ) . y )  [92 ~ 172:85] 
244 ( (x -  y ) "  z) = ( x -  ( y "  z)) [184 --,- 108] 

By 136, there exists a unique element e tha t  for  all x, (x • x -~ ) = e; it follows f rom 
114 that  e is a right identity; and 108 and 244, respectively, show the commuta t iv i ty  
and associativity of  product .  [ ]  
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6. Conclusion 

The remaining question is whether there exist single axioms simpler than the ones 
listed in Tables I and II. Our focus has been on finding short axioms rather than on 
finding ones with few variables. The two cases that currently use four variables are 
{division, inverse} and {double division, inverse} for ordinary groups ((3.4) and (3.6) 
in Table I). Are there single axioms for these cases with just three variables? 

With our type criteria, there is currently no simplest-known single axiom for groups 
in terms of product and inverse; the ones given here have type ( 16, 7, 4), and Kunen's 
[6] have type (18, 7, 3). The only possibility for a simpler single axiom is (16, 7, 3), 
because a single axiom must have an odd number >~ 3 of occurrences of inverse, at 
least seven variable occurrences, and at least three variables [6]. 

The goal of the work reported here was to find simple single axioms. We made 
occasional use of F INDER [15] to search for small counterexamples when we had a 
promising candidate that OTTER could not prove to be a single axiom. However, 
further work in this area will most likely benefit from extensive model searches, for 
both simple models with a program like FINDER, and for more complex models as 
in Kunen's methods [6]. 
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