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Limits
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Stick to f : R — R, source and target could be +00, z, 2, plus
variations where x # z,. Also x could be constrained to be
rational.

That's 13 x 13 = 169 definitions.

Limits compose. Eg. lim,_,, f(z) =y, and lim,_,, g(z) = 2,
implies lim,,_,,, g o f(z) = 2.
That's 13 x 13 x 13 = 2197 lemmas.



Filters

A filter on X is a collection F' of subsets of X such that
s XecF
e Jec Fand U CV impliesV € F
e UceFandV € FimpliesUNV e F
Examples:
® N, = nhds of
* N, ={U:setR|3A,[A +o0) CU}
® +ooy ={U :setN | IN,, [Ny, +o0) C U}

e given A:set X, P(A) ={U:set X | ACU}
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Bourbaki : given a filter F' on X, and a point y € Y, say
f+ X — Y converges to y along F if:

YV eN, [[IVeF.



Filters and limits

Bourbaki : given a filter F' on X, and a point y € Y, say
f:+ X — Y converges to y along F' if:

YV eN, [[IVeF.

This is not general enough. Replace V, by any filter on Y. Say
that f converges to a filter G on Y along F if

YV ed, fflVEF.



Compositions

Order filters by (reverse) inclusion, and define the push-forward
filter f,F by:
VefFef'VeF.

So f converges to G on Y along F iff f, FF < G.
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Compositions

Order filters by (reverse) inclusion, and define the push-forward
filter f,F by:
VefFef'VeF.

So f converges to G on Y along F iff f, FF < G.
Trivial facts: (go f),F' = g, f.F and each f, is monotone.

Limits compose: Assume f . F' < G and ¢,G < H, then:

(go f).F =g.[.F
<4.G
<H



What did we gain?

1. This was 100% mathematics, no computer science
2. This doesn't exist in the real world
3. This is everywhere in proof assistants

4. There is no going back
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® For N large enough, P(N)
® For x close enough to y, P(x)

® For almost every z, P(x)
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Properties holding eventually

® For N large enough, P(N)
® For z close enough to y, P(x)

® For almost every x, P(x)

They all mean: {z | P(z)} € F for some filter F.
Notation: V/z in F, P(z)

Example: ¢ : X — Y, F' non-trivial filter on X

Vizin F,p(z) € V and ¢, F < N, imply y € closureV.



Pulling-back filters

Given f: X — Y and a filter G on Y:
ffG={U|3VeqG fvCU}
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Example: given top spaces ’J{ and y, Y,
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Pulling-back filters

Given f: X — Y and a filter G on Y:
ffG={U|3VeqG fvCU}

x 1,z

Example: given top spaces ’J; and y, Y,
Y
lim f(z) =z & fii*"N, <N,

Yo
reX

f* is monotone and (f,, f*) form a Galois connection:
[ F<G<& F< G,
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Lattice structure
Filters on X form a complete lattice. F' G : filter X, U : set X
UcFUG<UeceFANUE€EdG
UceFNGesdVeF,aW e G, VNW CU
Uel

UeT<wU=X

Example:
®in X xY, Ny, =pry N, MNpry N, =: N, x N,

e j: A X,
x € closureA < N, MP(A) # L

SN, # L
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Bases
B:i—set X, F:filter X
F has basis Bif VU, Ue€F & 3i, B, CU

structure has basis (1 : filter X)
(p : v> Prop) (B: 1 - set X) :=
(mem iff : VU, t€le3 1 (hi: p i), B1icU)
If F" has basis S : I — set X and G has basis T': J — set Y then
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Extension by continuity

XY topological spaces, Y regular, A C X dense subspace
ALy ifVa,3y fi*N, <N, then Jp, por = f.
A
zj o Choose ¢ such that Vi, fi*" N, <N .

-,

X Let's prove ¢ is continuous at x.

By regularity, suffices to prove YV’ € N, closed, o'V’ € N,.
Since f,i* N, < N, 3V € N, open, i 'V C f~1V’

Suffices to prove V C o 'V’. Fix y € V. Since V is open,
V € N,,. In particular i "'V € i* N, hence [V € i*N,,.

Hence V72 in i'N,, f(z) € V', fi*N, < Ny, and N, # L by
density so ¢ y € closureV’' = V.
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XY topological spaces, Y regular, A C X dense subspace

A%Y

{ /:' vV, fi" N, <Ny Let's prove poi = f.

X



Extension by continuity (continued)

XY topological spaces, Y regular, A C X dense subspace

A%Y

{ /:' vV, fi" N, <Ny Let's prove poi = f.

X

Fixae€ A [N, = [ Nia) < Nygiay

(2

But we also know f, N, < Ny, and Y is Hausdorff so
fla) = ¢(i(a)).



Extension by continuity (continued)

XY topological spaces, Y regular, A C X dense subspace

A%Y

{ /:' vV, fi" N, <Ny Let's prove poi = f.

-,

X

FiX a € A f*Na = f*Z*NZ(a) S N@ﬁ(a))'
But we also know f, N, < Ny, and Y is Hausdorff so
fla) = ¢(i(a)).

Note how injectivity of 7 is used nowhere!
We use image(i) is dense and T 4 = i*T x (to get N, = i"N;,).

dense _inducing i



