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Abstract

We investigate the problem of constructing a dynamics on edge–spin configurations

which realizes a coupling between a Glauber dynamics of the Ising model and a dynamical

evolution of the percolation configurations. We dream of constructing a Markov process

on edge–spin configurations which is reversible with respect to the Ising–FK coupling

measure, and such that the marginal on the spins is a Glauber dynamics, while the

marginal on the edges is a Markovian evolution. We present two local dynamics, one

which fulfills only the first condition and one which fulfills the first two conditions. We

show next that our dream process is not feasible in general. We present a third dynamics,

which is non local and fulfills the first and the third conditions. We finally present a

localized version of this third dynamics, which can be seen as a contraction of the first

dynamics.

1 Introduction

The Ising model, invented almost a century ago, is one of the most studied model of

statistical mechanics. A fundamental tool to analyze the Ising model is the random

cluster model, or FK model, invented by Fortuin and Kasteleyn around 1969 (see the

reference book [4]). Results on this dependent percolation model can be transferred

towards the Ising model via a coupling construction due to Edwards and Sokal [2]. This

machinery works extremely well, but so far, it has essentially been employed to study the

systems at equilibrium. Yet another rich facet of the Ising model is the dynamics. There

exist several microscopic dynamics on spin configurations, which give rise to the so–called

stochastic Ising model, and whose equilibrium are described by the Ising Gibbs measure:

the Metropolis dynamics, the heat–bath dynamics, the Kawasaki dynamics, to name a

few of them. On one hand, these dynamics provide a basic model to study fundamental
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questions on dynamics, for instance to model the metastability phenomenon [7]. On the

other hand, there is a hope that the understanding of the dynamics will shed light on the

equilibrium measure.

Percolation models possess also a natural dynamics. For the Bernoulli percolation

model, it consists in updating independently the edges, and it leads to beautiful difficult

problems [5, 9]. For the FK model, the construction of a dynamics is more subtle and

it involves typically non–local computations [3]. One naturally wonders whether the

stochastic Ising model and dynamical percolation could help to understand each other.

Our note is a little investigation into the possibility of building a coupling for the dynamics

on Ising and percolation models, which could help to understand the dynamics of the Ising

model. We focus here on the case of a Glauber type dynamics, that is a local dynamics

which modifies at most one spin at a time. The precise definition of such dynamics,

together with several examples, are given in section 3. We dream of building a coupling

dynamics on edge–spins configurations such that:

• The marginal on the spins is a Glauber dynamics.

• The marginal on the edges is a simple Markovian evolution.

• The coupling dynamics on edge–spins configurations is reversible with respect to the

coupling measure between the Ising and the FK models.

Notice that if we drop the first constraint, then we could simply consider a time continuous

Markov process on the edge–spins configurations which, after an exponential time of

parameter one, jumps on a new independent edge–spins configuration, drawn according

to the Ising–FK coupling measure. However the first constraint is essential for us, indeed

our hope is to build a dynamical coupling which would help to study a Glauber dynamics

of the Ising model.

The definition of the Ising–FK coupling measure is recalled in section 2. The stochastic

Ising model is defined in section 3. The FK dynamics is defined in section 4. The above

conditions are precisely stated in section 5. Unfortunately, we did not succeed in building

a dynamics which fulfill these three conditions, even if we weaken partially the last one.

However, we manage to build couplings which satisfy the third condition. The most basic

coupling is a dynamics which changes at most one object at each step, i.e., either one

spin or one edge is modified at a time. We prove that, for this type of coupling, the first

condition can never be satisfied. We build such a coupling dynamics in section 6. Another

natural dynamics consists in changing simultaneously the spin at one vertex, together with

the edges incident to this vertex. Such a dynamics is presented in section 7. The good

news is that the marginal of this dynamics on the spins is a Glauber dynamics. However

the marginal of this type of dynamics on the edges is not Markovian. In section 8, we

show that our dream process is not feasible in general. We present a third dynamics in

section 9, which is non local and fulfills the first and the third conditions. We finally

present in section 10 a localized version of this third dynamics, which can be seen as a

contraction of the first dynamics.
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2 Ising–FK coupling measure

In this section, we recall some classical notation and we define the Ising–FK coupling

measure IP . We consider a finite graph (V,E), where V is the set of the vertices and E

the set of the edges. The edges are unoriented, and E is a subset of the set of pairs of

points of V . Throughout the paper, we suppose that the set of edges E is not empty. An

edge configuration η is an element of {0, 1}E (where 0 stands for closed and 1 for open).

A spin configuration σ is an element of {−1, 1}V . An edge e with endvertices x and y is

written as e = 〈x, y〉 or e = 〈y, x〉. We define

∀σ ∈ {−1, 1}V ∀e = 〈x, y〉 ∈ E δσ(e) = 1Iσ(x)=σ(y) .

An edge configuration η and a spin configuration σ are said to be compatible if we have

∀e ∈ E η(e) ≤ δσ(e) ,

i.e., if the endvertices of any open edge in η have the same spins in σ. We denote by C

the set of the pairs of compatible configurations:

C =
{
(η, σ) ∈ {0, 1}E × {−1, 1}V : η(e) ≤ δσ(e) for any e ∈ E

}
.

Let p be a fixed number in [0, 1]. The Ising-Percolation measure IP is the probability

measure on the product space {0, 1}E × {−1,+1}V defined as follows. For any (η, σ) in

{0, 1}E × {−1,+1}V , we set

IP (η, σ) =
1

Z

∏

e∈E

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
,

where Z is the partition function, i.e., the normalising constant that makes IP a proba-

bility measure on {0, 1}E × {−1,+1}V , given by

Z =
∑

(η,σ)∈{0,1}E×{−1,+1}V

∏

e∈E

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
.

The Ising-Percolation measure can also be written as

IP (η, σ) =
1

Z
p|{e∈E: η(e)=1}|(1− p)|{e∈E: η(e)=0}|1I(η,σ)∈C , (1)

where the absolute value of a set denotes its cardinality. In fact, the measure IP is the

Bernoulli product measure on edge-spin configurations with parameters (p, 1/2) condi-

tioned to the set C of the compatible configurations. It is well–known that the probability

measure IP is a coupling of the Ising measure µβ defined on {−1,+1}V , together with

the random-cluster measure φp,2 defined on {0, 1}E , with the relation p = 1 − e−β . In

fact, the first marginal measure φp,2 on {0, 1}E is given by

∀ η ∈ {0, 1}E φp,2(η) =
∑

σ∈{−1,+1}V

IP (η, σ) =
1

ZRC

(
∏

e∈E

pη(e)(1− p)1−η(e)

)
2k(η).

(2)
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Here k(η) denotes the number of connected components (or open clusters) of the graph

having for vertices V and for edges the open edges in the configuration η (recall that an

edge e is said to be open in η if η(e) = 1 and closed if η(e) = 0). Naturally, ZRC is the

partition function that makes φp,2 a probability measure on {0, 1}E . The second marginal

measure is given by

∀ σ ∈ {−1,+1}V
∑

η∈{0,1}E

IP (η, σ) =
1

Z
(1− p)|{ e∈E:δσ(e)=0 }| . (3)

Notice that

|{ e ∈ E : δσ(e) = 0 }| =
∑

e∈E

(
1− δσ(e)

)
= |E| −

∑

e∈E

δσ(e) .

Let β > 0 be such that p = 1 − e−β . Rewriting the formula (3) with these notations, we

see that the second marginal is the measure µβ on {−1,+1}V given by

∀ σ ∈ {−1,+1}V µβ(σ) =
1

ZI
exp

(
β
∑

e∈E

δσ(e)

)
, (4)

where the partition function ZI is

ZI = Z exp(β|E|) .

Let us rewrite the Hamiltonian in a more classical way. For an edge e with endpoints x, y,

we have

δσ(e) =
1

2

(
1 + σ(x)σ(y)

)
. (5)

Summing over e ∈ E, we get

∑

e∈E

δσ(e) =
∑

x,y∈V
{x,y}∈E

1

2

(
1 + σ(x)σ(y)

)
=

1

2
|E|+

1

2

∑

x,y∈V
{x,y}∈E

σ(x)σ(y) .

The standard Hamiltonian of the Ising model is defined as

∀σ ∈ {−1,+1}V H(σ) = −
1

2

∑

x,y∈V
{x,y}∈E

σ(x)σ(y) . (6)

In the end, we have

∀ σ ∈ {−1,+1}V µβ(σ) =
1

Zβ
exp (−βH(σ)) , (7)

where the partition function Zβ is given by

Zβ =
∑

σ∈{−1,+1}V

exp (−βH(σ)) = ZI exp
(
−

1

2
β|E|

)
.

We refer to the book of Grimmett [4] and the references therein for more details about

the coupling measure IP between random-cluster and Ising measures, its history and

usefulness. We refer to the paper of Schonmann [8] for a nice presentation of the Gibbs

measure of the Ising model and the associated dynamics.
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3 The stochastic Ising model

In this section, we define Glauber type dynamics for the Ising model. Each of these

dynamics defines a Markov process (σt)t≥0 on the spin configurations which is called a

stochastic Ising model. A Markov process (σt)t≥0 on the spin configurations is classically

defined through its infinitesimal generator L (see [6]). This generator L acts on functions f

of the spin configuration and it is of the following form. For any function f : {−1,+1}V →

IR, we have

∀ σ ∈ {−1,+1}V Lf(σ) =
∑

σ′∈{−1,+1}V

c(σ, σ′)(f(σ′)− f(σ)) .

The quantity c(σ, σ′) is the rate at which the configuration σ is transformed into σ′ when

the system is in the state σ. We are usually interested in local dynamics which modify

at most one spin at a time. We call this type of dynamics Glauber type dynamics. For

a configuration σ and a vertex x, we denote by σx the configuration obtained from σ by

flipping the spin at the site x. So we require that c(σ, σ′) vanishes when σ and σ′ differ in

more than one spin and the quantity c(σ, σx), sometimes denoted by c(x, σ), is the rate at

which the spin at the site x flips when the system is in the state σ. The transition rates

c(·, ·) are defined on {−1, 1}V × {−1, 1}V and have thus the following properties: for any

σ ∈ {−1,+1}V and x ∈ V ,

c(σ, σ′) = 0 if |{x ∈ V, σ(x) 6= σ′(x)}| ≥ 2,

c(σ, σx) > 0 for any x ∈ V, (8)

c(σ, σ) = −
∑

y∈V

c(σ, σy).

We say that the transition rates c(·, ·) satisfy the detailed balance condition with respect

to the Ising measure µβ if

∀σ ∈ {−1, 1}V ∀x ∈ V µβ(σ)c(σ, σ
x) = µβ(σ

x)c(σx, σ) . (9)

When this detailed balance condition holds, the associated dynamics is reversible with

respect to the Ising measure µβ. Several rates satisfy the conditions (8) and the detailed

balance condition (9). These dynamics and their fundamental properties are presented

in the paper of Schonmann [8]. In the same paper appears the graphical construction of

these dynamics, which provides a natural and intuitive picture of the associated Markov

processes. Let us present some classical choices. Recalling the definition of the Ising

Hamiltonian (6), we define further, for σ ∈ {−1,+1}V and x ∈ V ,

∆xH(σ) = H(σx)−H(σ) . (10)

For dynamics which modify at most one spin at a time, we set

c(x, σ) = c(σ, σx) .
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Here are some possible choices for the rates:

The Metropolis dynamics:

c(x, σ) = exp
(
− βmax

(
∆xH(σ), 0

))
.

The Heat bath dynamics:

c(x, σ) =
1

1 + exp
(
βmax

(
∆xH(σ), 0)

)) .

Unnamed dynamics:

c(x, σ) = exp
(
−

β

2
∆xH(σ)

)
.

These three choices satisfy the detailed balance condition (9) and correspond to one spin

flip dynamics. We call them Glauber type dynamics. Let us try to express the rates with

the help of the functions δσ on the edges. Using the identity (5), we have, for any x ∈ V ,

∆xH(σ) =
∑

y∈V :{x,y}∈E

σ(x)σ(y) =
∑

e∈Ex

(
2δσ(e)− 1

)

where the set Ex is the set of the edges e ∈ E having x as endvertex, i.e.,

Ex =
{
e = 〈x, y〉 ∈ E : y ∈ V

}
.

For the unnamed dynamics, we obtain

c(x, σ) = exp

(
−β

∑

e∈Ex

δσ(e) +
β

2
|Ex|

)
.

On the lattice Z
d, we have |Ex| = 2d for any x ∈ Z

d. Up to a constant multiplicative

factor, the previous rates are equal to

c(x, σ) = exp

(
−β

∑

e∈Ex

δσ(e)

)
. (11)

We will mostly use this choice when trying to build a dynamical coupling between the

Ising model and the FK model.

4 FK dynamics

In this section, we define the counterpart of a Glauber type dynamics for the FK model.

We are interested in dynamics which modify at most one edge at a time. We build a

Markov process on percolation configurations, which is defined through its infinitesimal

generator L (see [6]). This generator L acts on functions g of the percolation configuration

and it is of the following form. For any function g : {0, 1}E → IR, we have

∀η ∈ {0, 1}E Lg(η) =
∑

e∈E

c(η, ηe)(g(ηe)− g(η)) ,
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where ηe is the configuration obtained from η by changing the state of the edge e and

the quantity c(η, ηe) is the rate at which the edge e changes its state when the system is

in the state η. The transition rates c(·, ·) are defined on {0, 1}E × {0, 1}E and have the

following properties: for any η ∈ {0, 1}E and e ∈ E,

c(η, η′) = 0 if |{e ∈ E, η(x) 6= η′(e)}| ≥ 2,

c(η, ηe) > 0 for any e ∈ E, (12)

c(η, η) = −
∑

e∈E

c(η, ηe).

We say that the transition rates c(·, ·) satisfy the detailed balance condition with respect

to the FK measure φp,2 if

∀η ∈ {0, 1}E ∀ e ∈ E φp,2(η)c(η, η
e) = φp,2(η

e)c(ηe, η) . (13)

When this detailed balance condition holds, the associated dynamics is reversible with

respect to the FK measure φp,2. Several rates satisfy the conditions (12) and the detailed

balance condition (13). A natural choice is the following. For an edge e = 〈x, y〉 ∈ E

and a configuration η ∈ {0, 1}E , we set γη(e) = 1 if the endpoints x, y of e are connected

by a path of open edges in η which does not use the edge e itself, and we set γη(e) = 0

otherwise. We define then

c(e, η) := c(η, ηe) =





1− p if η(e) = 1 ,

p if η(e) = 0 and γη(e) = 1 ,

p/2 if η(e) = 0 and γη(e) = 0 .

One can check that these rates satisfy (12) and (13).

5 Our dream process

The main purpose of this paper is to construct a Markov process on the space {0, 1}E ×

{−1,+1}V whose marginal on the spins is a Glauber dynamics and which is reversible with

respect to the coupling measure IP . Suppose that (ηt, σt)t≥0 is such a Markov process

and let q((η, σ), (η′ , σ′)) be its transition rates. These transition rates satisfy the following

usual conditions:

(η, σ) 6= (η′, σ′) =⇒ q((η, σ), (η′ , σ′)) ≥ 0, (14)

and for any (η, σ) ∈ {0, 1}E × {−1,+1}V ,
∑

(η′,σ′)∈{0,1}E×{−1,+1}V

q((η, σ), (η′, σ′)) = 0 . (15)

The reversibility property with respect to the coupling measure IP is equivalent to the

following detailed balance equation:

∀(η, σ), (η′, σ′) ∈ {0, 1}E × {−1, 1}V

IP (η, σ) q((η, σ), (η′ , σ′)) = IP (η′, σ′) q((η′, σ′), (η, σ)). (16)
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In general, the marginals of a Markov process are not themselves Markov processes. Now,

we know from Ball and Yeo [1] (see theorem 10.4 of the appendix) that the second marginal

(σt)t≥0 of the dynamics is a Markov jump process with rates c(σ, σ′) if and only if for any

η ∈ {0, 1}E , σ, σ′ ∈ {−1, 1}V , the sum
∑

η′∈{0,1}E q((η, σ), (η′, σ′)) does not depend on η.

We have then

∀η ∈ {0, 1}E ∀σ, σ′ ∈ {−1, 1}V
∑

η′∈{0,1}E

q((η, σ), (η′, σ′)) = c(σ, σ′) . (17)

Suppose that this is the case. The second marginal (σt)t≥0 will then be the Glauber

dynamics with the transition rates (11) as soon as the sum in (17) is equal, up to some

positive constant, to the transitions rates given in (11). More precisely, we should have,

up to some positive multiplicative constant,

c(σ, σ′) =





(1− p)|{e∈Ex, δσ(e)=1}| if σ′ = σx ,

−
∑

x∈V (1− p)|{e∈Ex, δσ(e)=1}| if σ′ = σ ,

0 otherwise,

(18)

where Ex denotes the set of the edges e in E having x as endvertex. Ideally, we would

also wish that the first marginal (ηt)t≥0 is a Markov jump process with rates c̃(η, η′). This

will be the case if and only if, for any η ∈ {0, 1}E , η′ ∈ {0, 1}E , σ ∈ {−1, 1}V , the sum∑
σ′∈{−1,1}V q((η, σ), (η′ , σ′)) does not depend on σ. We would have then

∀η, η′ ∈ {0, 1}E ∀σ ∈ {−1, 1}V
∑

σ′∈{−1,1}V

q((η, σ), (η′, σ′)) = c̃(η, η′) . (19)

So, to sum up, we dream of constructing a Markov process on {0, 1}E × {−1, 1}V with

transition rates satisfying (14), (15), (16), (17), (18) and (19), that is a Markov jump

process (ηt, σt)t≥0 which is reversible with respect to the IP measure, whose marginal on

the spins is a Glauber dynamics, and whose marginal on the edges is Markovian.

6 One change at a time

We present here our first try. We build a simple dynamics which updates at most one

site or one edge at each time, which is reversible with respect to the coupling measure IP

and whose marginal on the spins has the same rates as a Glauber dynamics, although it

is not Markovian. Recall that, for x ∈ V , Ex is the set of the edges e in E having x as

endvertex, i.e.,

Ex =
{
e = 〈x, y〉 ∈ E : y ∈ V

}
.

For σ ∈ {−1, 1}V and x ∈ V , σx is the element of {−1, 1}V obtained from σ by reversing

the spin at x, i.e.,

σx(x) = −σ(x) , ∀ y ∈ V \ {x} σx(y) = σ(y) .

8



For η ∈ {0, 1}E and e ∈ E, we denote by ηe the element of {0, 1}E obtained from η by

changing the value of η(e), i.e.,

ηe(e) = 1− η(e) , ∀f ∈ E \ { e } η′(f) = η(f) .

Before introducing the transition rates of the one change dynamics, we give a condition

that the transition rates have to fulfill in order to have the properties announced at the

beginning of the section.

Lemma 6.1. Let (ηt, σt)t≥0 be a Markov jump process, which updates at most one site

or one edge at each time and which is reversible with respect to the coupling measure IP.

Let us denote by q((η, σ), (η′, σ′)) the transition rates of (ηt, σt)t≥0. Let (η, σ) be a pair of

compatible configurations. If there exists x ∈ V such that q((η, σ), (η, σx)) 6= 0, then all

the edges of Ex are closed in η.

Proof. The detailed balance equation (16) yields that, for any η ∈ {0, 1}, σ ∈ {−1, 1}V

and any x ∈ V ,

IP (η, σ)q((η, σ), (η, σx)) = IP (η, σx)q((η, σx), (η, σ)),

which gives, thanks to (1),

1I(η,σ)∈C q((η, σ), (η, σ
x)) = 1I(η,σx)∈C q((η, σ

x), (η, σ)).

Since (η, σ) are supposed to be compatible, the last equality implies that

q((η, σ), (η, σx)) = q((η, σx), (η, σ))
∏

e∈Ex

1Iη(e)≤1−δσ (e) .

Consequently, if q((η, σ), (η, σx)) 6= 0 then necessarily η(e) ≤ 1 − δσ(e) for any e ∈ Ex.

Since the configurations η and σ are compatible, necessarily η(e) = 0 for any e ∈ Ex.

We define next the transition rates of our dynamics.

Definition 6.2. Let (η, σ), (η′, σ′) be two elements of {0, 1}E × {−1, 1}V . We consider

several cases:

• If η′ = η and there exists x ∈ V such that σ′ = σx, η(e) = 0 for any e ∈ Ex, then we

define c((η, σ), (η′ , σ′)) = 1 .

• If σ′ = σ and there exists e ∈ E such that η′ = ηe, then we set

c((η, σ), (η′ , σ′)) = p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1 .

• Otherwise, if (η, σ) 6= (η′, σ′), then we set c((η, σ), (η′, σ′)) = 0.

• Finally, if (η, σ) = (η′, σ′), then we set

c((η, σ), (η, σ)) = −
∑

(η′,σ′), (η′,σ′)6=(η,σ)

c((η, σ), (η′ , σ′)) .
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Proposition 6.3. The transition rates introduced in definition 6.2 satisfy the detailed

balance equation (16).

Proof. We check first that, for any (η, σ) in {0, 1}E × {−1, 1}V and e ∈ E,

IP (η, σ)c((η, σ), (ηe , σ)) = IP (ηe, σ)c((ηe, σ), (η, σ)) (20)

Let (η, σ) in {0, 1}E × {−1, 1}V and e ∈ E be fixed. We have, since η(e) = 1− ηe(e),

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
×
(
p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1

)

=
(
p1Iηe(e)=1δσ(e) + (1− p)1Iηe(e)=0

)
×
(
p1Iηe(e)=0δσ(e) + (1− p)1Iηe(e)=1

)
. (21)

We also have, since ηe = η on E \ {e},

∏

f∈E\{e}

(
p1Iη(f)=1δσ(f) + (1− p)1Iη(f)=0

)

=
∏

f∈E\{e}

(
p1Iηe(f)=1δσ(f) + (1− p)1Iηe(f)=0

)
. (22)

Noting that

IP (η, σ) =
1

Z

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

) ∏

f∈E\{e}

(
p1Iη(f)=1δσ(f) + (1− p)1Iη(f)=0

)
,

we get (20) by multiplying each side of (22) by (21). We now prove that, for any (η, σ)

in {0, 1}E × {−1, 1}V and any x ∈ V ,

IP (η, σ)c((η, σ), (η, σx)) = IP (η, σx)c((η, σx), (η, σ)). (23)

Noting that

c((η, σ), (η, σx)) =
∏

e∈Ex

1Iη(e)=0,

and that δσ(e) = δσx(e) for any e ∈ E \ Ex, we deduce that

c((η, σ), (η, σx))IP (η, σ) =

=
1

Z

(
∏

e∈Ex

1Iη(e)=0

)(
∏

e∈E

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
)

=
1

Z

(
∏

e∈Ex

((1 − p)1Iη(e)=0)

)
 ∏

e∈E\Ex

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)



=
1

Z

(
∏

e∈Ex

((1 − p)1Iη(e)=0)

)
 ∏

e∈E\Ex

(
p1Iη(e)=1δσx(e) + (1− p)1Iη(e)=0

)



=
1

Z

(
∏

e∈Ex

1Iη(e)=0

)(
∏

e∈E

(
p1Iη(e)=1δσx(e) + (1− p)1Iη(e)=0

)
)

= c((η, σx), (η, σ))IP (η, σx).
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This finishes the proof of condition (23). Since the transition rates c((η, σ), (η′ , σ′)) given

in definition 6.2 allow to perform at most one change at a time, the reversibility condition

reduces to the two conditions (20) and (23), so the proof of Proposition 6.3 is complete.

The following proposition shows that, if the initial condition (η0, σ0) is distributed as IP ,

then the infinitesimal behavior of the marginal on the spins of the process (ηt, σt)t≥0,

whose rates are introduced in definition 6.2, is the same as the transition rates given in

(18).

Proposition 6.4. Let (ηt, σt)t≥0 be a Markov jump process with the transition rates in-

troduced in definition 6.2. Suppose that the pair (η0, σ0) is distributed according to IP .

Then, for any x ∈ V , for any σ ∈ {−1, 1}V and any s ≥ 0,

lim
t→0

1

t
IP(σt+s = σx|σs = σ) = (1− p)|{e∈Ex, δσ(e)=1}|. (24)

Proof. We have, for any σ ∈ {−1, 1}V , x ∈ V and s ≥ 0,

IP(σt+s = σx|σs = σ) =
∑

η∈{0,1}E

∑

η′∈{0,1}E

IP(σt+s = σx, ηt+s = η′, ηs = η|σs = σ)

=
∑

η∈{0,1}E

∑

η′∈{0,1}E

IP(σt+s = σx, ηt+s = η′|σs = σ, ηs = η)IP(ηs = η|σs = σ). (25)

Since (ηt, σt)t≥0 is a Markov jump process with the transition rates c((η, σ), (η′ , σ′)) in-

troduced in definition 6.2, then

lim
t→0

1

t
IP(σt+s = σx, ηt+s = η′|σs = σ, ηs = η) = c((η, σ), (η′ , σx)) = 1Iη′=η

∏

e∈Ex

1Iη(e)=0. (26)

Hence we get, combining (25) and (26), for any s ≥ 0,

lim
t→0

1

t
IP(σt+s = σx|σs = σ) =

∑

η∈{0,1}E

(
∏

e∈Ex

1Iη(e)=0

)
IP(ηs = η|σs = σ).

The measure IP is, by proposition 6.3, a reversible and a stationary measure for the

process (ηt, σt)t≥0. Hence, if (η0, σ0) is distributed as IP , then, for any s ≥ 0, (ηs, σs) is

also distributed as IP . Consequently, under the hypothesis of proposition 6.4, we have

IP(ηs = η|σs = σ) =
IP(ηs = η, σs = σ)

IP(σs = σ)
=

IP (η, σ)∑
η′∈{0,1}E IP (η′, σ)

.

We conclude that

lim
t→0

1

t
IP(σt+s = σx|σs = σ) =

∑
η∈{0,1}E , η≡0 onEx

IP (η, σ)
∑

η′∈{0,1}E IP (η′, σ)
. (27)

We compute these sums, starting with the very definition of the coupling measure IP .

We have
∑

η∈{0,1}E , η≡0 onEx

IP (η, σ) =
1

Z
(1− p)|{ e∈E:δσ(e)=0 }|(1− p)|{ e∈Ex:δσ(e)=1 }| . (28)
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The sum in the denominator has already been computed in equation (3). Equations (3),

(27) and (28) together yield the desired result (24).

We consider next the marginal on the edges and we obtain a similar result.

Proposition 6.5. Let (ηt, σt)t≥0 be a Markov jump process with the transition rates in-

troduced in definition 6.2. Suppose that the pair (η0, σ0) is distributed according to IP .

Then, for any e ∈ E, for any η ∈ {0, 1}E and any s ≥ 0,

lim
t→0

1

t
IP(ηt+s = ηe|ηs = η) = (1− p)1Iη(e)=1 + p1Iη(e)=0, γη(e)=1 +

p

2
1Iη(e)=0, γη(e)=0 . (29)

Proof. We have, for any η ∈ {0, 1}E , e ∈ E and s ≥ 0,

IP(ηt+s = ηe|ηs = η) =
∑

σ∈{−1,1}V

∑

σ′∈{−1,1}V

IP(σt+s = σ′, ηt+s = ηe, σs = σ|ηs = η)

=
∑

σ∈{−1,1}V

∑

σ′∈{−1,1}V

IP(σt+s = σ′, ηt+s = ηe|σs = σ, ηs = η)IP(σs = σ|ηs = η). (30)

Since (ηt, σt)t≥0 is a Markov jump process with the transition rates c((η, σ), (η′ , σ′)) in-

troduced in definition 6.2, then

lim
t→0

1

t
IP(σt+s = σ′, ηt+s = ηe|σs = σ, ηs = η) = c((η, σ), (ηe, σ′))

= 1Iσ′=σ

(
p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1

)
. (31)

Combining (30) and (31), we get, for any s ≥ 0,

lim
t→0

1

t
IP(ηt+s = ηe|ηs = η) =

∑

σ∈{−1,1}V

(
p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1

)
IP(σs = σ|ηs = η).

The measure IP is, by proposition 6.3, a reversible and a stationary measure for the

process (ηt, σt)t≥0. Hence, if (η0, σ0) is distributed as IP , then, for any s ≥ 0, (ηs, σs) is

also distributed as IP . Consequently, under the hypothesis of proposition 6.5, we have

IP(σs = σ|ηs = η) =
IP(ηs = η, σs = σ)

IP(ηs = η)
=

IP (η, σ)∑
σ′∈{−1,1}V IP (η, σ′)

.

We conclude that

lim
t→0

1

t
IP(ηt+s = ηe|ηs = η) =

∑
σ∈{−1,1}V

(
p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1

)
IP (η, σ)

∑
σ′∈{−1,1}V IP (η, σ′)

.

(32)

We compute these sums, starting with the very definition of the coupling measure IP .

We have

∑

σ∈{−1,1}V

(
p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1

)
IP (η, σ) =

(
p1Iη(e)=0, γη(e)=1 +

p

2
1Iη(e)=0, γη(e)=0 + (1− p)1Iη(e)=1

)
Φp,2(η) . (33)
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The sum in the denominator has already been computed in equation (2), it is equal to

Φp,2(η). Equations (2), (32) and (33) together yield the desired result (29).

Although the infinitesimal behavior of the marginal on the spins of (ηt, σt)t≥0 is the same

as for the Glauber dynamics with the transition rates given in (18), the process (σt)t≥0

does not evolve according to a Glauber dynamics, because it is not a Markovian process.

Similarly, the marginal on the edges is not a Markovian process. We summarize these

results in the following theorem.

Theorem 6.6. We suppose that the set of edges E is not empty. Let (ηt, σt)t≥0 be a

Markov jump process with the transition rates introduced in definition 6.2. Then (ηt, σt)t≥0

is reversible with respect to the coupling measure IP. However its two marginal processes

(ηt)t≥0 and (σt)t≥0 are not Markovian jump processes.

Proof. The reversibility property has been proved in proposition 6.3. Yet the sum
∑

η′∈{0,1}E

c((η, σ), (η′ , σx))

depends on η for some σ ∈ {−1, 1}V and x ∈ V . In fact, we have, for any σ ∈ {−1, 1}V

and x ∈ V ,
∑

η′∈{0,1}E

c((η, σ), (η′ , σx)) = c((η, σ), (η, σx)) =
∏

e∈Ex

1Iη(e)=0.

Similarly, the sum ∑

σ′∈{−1,1}V

c((η, σ), (ηe, σ′))

depends on σ for some η ∈ {0, 1}E and e ∈ E. In fact, we have, for any η ∈ {0, 1}E and

e ∈ E,
∑

σ′∈{−1,1}V

c((η, σ), (ηe, σ′)) = c((η, σ), (ηe , σ)) = p1Iη(e)=0δσ(e) + (1− p)1Iη(e)=1.

The proof of Theorem 6.6 is complete thanks to Theorem 3.1 in Ball and Yeo [1] (see

theorem 10.4 in the appendix).

Theorem 6.6 shows that the Markov jump process with the transition rates given in

definition 6.2 does not fulfill our dream, which was to build a Markov jump process on

{0, 1}E × {−1, 1}V , reversible with respect to the IP measure, with a Glauber dynamics

as the marginal on the spins and such that the marginal on the edges is Markovian. The

following theorem shows that there is no hope to realize this dream with a Markov jump

process (ηt, σt)t≥0 which updates at most one site or one edge at each time.

Theorem 6.7. Let (ηt, σt)t≥0 be a Markov jump process which updates at most one site

or one edge at each time and whose marginal on the spins is a Markov jump process with

transition rates satisfying (8). Then (ηt, σt)t≥0 cannot be reversible with respect to the

coupling measure IP .
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Proof. Let (ηt, σt)t≥0 be a Markov jump process satisfying the hypothesis of theorem 6.7

and let q((η, σ), (η′ , σ′)) be its transition rates. Since this Markov process updates at most

one site or one edge at each time, then

∑

η′∈{0,1}E

q((η, σ), (η′, σx)) = q((η, σ), (η, σx)). (34)

Since the marginal on the spins of (ηt, σt)t≥0 is a Markov process with transition rates

c(σ, σ′) satisfying (8), Theorem 3.1 in Ball and Yeo [1] gives that

∀η ∈ {0, 1}E
∑

η′∈{0,1}E

q((η, σ), (η′, σx))) = c(σ, σx) .

Hence, for any η ∈ {0, 1}E , any σ ∈ {−1, 1}V and any x ∈ V

q((η, σ), (η, σx)) = c(σ, σx).

Suppose now that the detailed balance equation (16) is satisfied. We deduce then from

(8) and lemma 6.1 that necessarily η(e) = 0 for e ∈ Ex. We conclude that the detailed

balance equation (16) is not satisfied for every η ∈ {0, 1}E and every σ ∈ {−1, 1}V . The

proof of Theorem 6.7 is complete.

Theorem 3.2 in [1] (see theorem 10.5 in the appendix) implies that, for a process like the

above one, in which at most one marginal process moves at each time step, the marginal

processes are Markovian if and only if they are independent. If that were the case, then

the equilibrium measure would be a product measure. Therefore it is impossible to realize

our dream with a process which changes only one edge or one spin at a time. In the next

section, we construct a process which can change simultaneously one spin and its incident

edges.

7 One site and the incident edges

We build here a dynamics which updates at most one site and its incident edges at each

time, which is reversible with respect to the coupling measure IP and whose marginal on

the spins is a Glauber dynamics. For x ∈ V , recall that Ex is the set of the edges e in E

having x as endvertex, i.e.,

Ex = {e ∈ E, e = 〈x, y〉, y ∈ V },

and define

Cx =
{
(η, σ) ∈ {0, 1}E × {−1, 1}V : η(e) ≤ δσ(e) for any e ∈ Ex

}
.

The following definition gives the transition rates of the dynamics.
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Definition 7.1. Let (η, σ), (η′, σ′) be two elements of {0, 1}E × {−1, 1}V . We consider

several cases:

• If there exists x ∈ V such that σ′ = σx and η′(e) = η(e) for any e ∈ E \ Ex, then we

define

c((η, σ), (η′ , σ′)) = (1− p)|{e∈Ex, η
′(e)=0}|p|{e∈Ex, η′(e)=1}|1I(η′,σ′)∈Cx .

• Otherwise, if (η, σ) 6= (η′, σ′), then we set c((η, σ), (η′, σ′)) = 0.

• Finally, if (η, σ) = (η′, σ′), then we set

c((η, σ), (η, σ)) = −
∑

(η′,σ′), (η′,σ′)6=(η,σ)

c((η, σ), (η′ , σ′)) .

Proposition 7.2. The transition rates introduced in definition 7.1 satisfy the detailed

balance equation (16).

Proof. Let (η, σ) and (η′, σ′) be fixed in {0, 1}E × {−1, 1}V . We have to prove (16) only

in the case where there exists x ∈ V for which

σ′ = σx , ∀e ∈ E \Ex η′(e) = η(e) , (35)

because in all the other cases, the detailed balance equation (16) is trivially satisfied. Let

us fix x ∈ V . Suppose first that (η, σ) and (η′, σ′) are two elements of Cx satisfying (35).

We get then, for e ∈ Ex,

1Iη(e)=1δσ(e) = 1Iη(e)=1 , 1Iη′(e)=1δσx(e) = 1Iη′(e)=1 ,

therefore
(
∏

e∈Ex

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
)
c((η, σ), (η′ , σx))

= p|{e∈Ex, η(e)=1}|(1− p)|{e∈Ex, η(e)=0}|(1− p)|{e∈Ex, η
′(e)=0}|p|{e∈Ex, η′(e)=1}|

=

(
∏

e∈Ex

(
p1Iη′(e)=1δσx(e) + (1− p)1Iη′(e)=0

)
)
c((η′, σx), (η, σ)).

Now we multiply each member of the last equality by
∏

e∈E\Ex

(
p1Iη(e)=1δσ(e) + (1− p)1Iη(e)=0

)
=

∏

e∈E\Ex

(
p1Iη′(e)=1δσx(e) + (1− p)1Iη′(e)=0

)

and we obtain the detailed balance equation (16). Suppose now that (η, σ) ∈ Cx and

(η′, σx) /∈ Cx. We have then, by the definition of the transition rates,

IP (η, σ)c((η, σ), (η′ , σx)) = 0 .

Moreover IP (η′, σx) = 0 because (η′, σx) /∈ C, therefore IP (η′, σx)c((η′, σx), (η, σ)) = 0.

So here again equation (16) is satisfied. Finally suppose that (η, σ) /∈ Cx. Then IP (η, σ) =

0 and so IP (η, σ)c((η, σ), (η′ , σx)) = 0 which is equal to IP (η′, σx)c((η′, σx), (η, σ)), since

the transition rates c((η′, σx), (η, σ)) vanish as soon as (η, σ) /∈ Cx. We conclude that the

detailed balance equation (16) is always satisfied.
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We compute next the marginal dynamics on the spins.

Proposition 7.3. For any η in {0, 1}E and any σ, σ′ in {−1, 1}V , the sum

∑

η′∈{0,1}E

c((η, σ), (η′ , σ′))

does not depend on η and it is equal to

c(σ, σ′) =





(1− p)|{e∈Ex, δσ(e)=1}| if σ′ = σx ,

−
∑

x∈V (1− p)|{e∈Ex, δσ(e)=1}| if σ′ = σ ,

0 otherwise .

Proof. Let η ∈ {0, 1}E be fixed. If |{y ∈ V, σ(y) 6= σ′(y)}| ≥ 2 then, by definition 7.1,

∑

η′∈{0,1}E

c((η, σ), (η′, σ′)) = 0. (36)

Suppose now that there exists x ∈ V such that σ′ = σx. Then, by definition 7.1,

∑

η′∈{0,1}E

c((η, σ), (η′ , σ′)) =

∑

η′∈{0,1}E , η′≡η onE\Ex

(1− p)|{e∈Ex, η
′(e)=0}|p|{e∈Ex, η′(e)=1}|1I(η′,σx)∈Cx .

Our next task is to calculate the last sum. To this end, we use the same proof as for (3)

(recall that IP (η, σ) is also given by (1)). We get

∑

η′∈{0,1}E

c((η, σ), (η′ , σx)) = (1− p)|{e∈Ex, δσ(e)=1}|. (37)

Finally, we have to calculate
∑

η′∈{0,1}E c((η, σ), (η′ , σ)). We have, from definition 7.1,

∑

η′∈{0,1}E

c((η, σ),(η′, σ)) = c((η, σ), (η, σ))

= −
∑

(η′,σ′), (η′,σ′)6=(η,σ)

c((η, σ), (η′ , σ′))

= −
∑

η′∈{0,1}E

∑

x∈V

c((η, σ), (η′ , σx))

= −
∑

x∈V

∑

η′∈{0,1}E

c((η, σ), (η′ , σx))

= −
∑

x∈V

(1− p)|{e∈Ex, δσ(e)=1}|. (38)

Equalities (36), (37) and (38) yield the statement of proposition 7.3.
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We compute next the marginal dynamics on the edges.

Proposition 7.4. Let η and η′ be two different elements of {0, 1}E .

• If there exists e = 〈x, y〉 ∈ E such that η′(e) 6= η(e) and η′ ≡ η on E \ {e}, then

∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) =
∑

z∈{x,y}

(1− p)|{e∈Ez, η
′(e)=0}|p|{e∈Ez, η

′(e)=1}|1I(η′,σz)∈Cz .

• If there exists x ∈ V such that η′ ≡ η on E \ Ex and the configurations η, η′ differ in

more than one edge, then

∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) = (1− p)|{e∈Ex, η
′(e)=0}|p|{e∈Ex, η

′(e)=1}|1I(η′,σx)∈Cx .

• If for any x ∈ V , η′ 6= η on E \ Ex, then

∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) = 0 .

Proof. Let η and η′ be two fixed different elements of {0, 1}E . If for any x ∈ V , η and η′

are different on E \ Ex then we get, by definition 7.1,

∀ σ′ ∈ {−1, 1}V c((η, σ), (η′ , σ′)) = 0 .

Consequently, ∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) = 0. (39)

Suppose now that there exists x ∈ V such that η ≡ η′ on E \ Ex. Let us define the set

V =
{
y ∈ V, η ≡ η′ on E \ Ey

}
.

We have ∑

σ′∈{−1,1}V

c((η, σ), (η′, σ′)) =
∑

y∈V

c((η, σ), (η′ , σy)). (40)

Let us set

E =
{
f ∈ E, η(f) 6= η′(f)

}
.

By hypothesis, this set is not empty and it is a subset of Ex because η 6= η′ while η ≡ η′

on E \ Ex. Suppose first that E contains only one element, say E = {e}. Necessarily one

endvertex of e is x. Let y be the other endvertex of e, so that e = 〈x, y〉. We have then

V = {x, y}. Indeed, if there exists a vertex z in V such that

z 6= x and η ≡ η′ on E \ Ez ,

then, since e ∈ Ex and η(e) 6= η′(e), we have also e ∈ Ez, whence e = 〈x, z〉 and z = y.

Equation (40) can now be rewritten as

∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) = c((η, σ), (η′ , σx)) + c((η, σ), (η′ , σy)) . (41)
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Suppose that E contains more than one element. We claim that, in this case, the set V is

reduced to {x}. Indeed, let e1 and e2 be two different elements of E . Let y ∈ V. Since

η ≡ η′ on E \ Ey, necessarily both e1 and e2 belong to Ey. We know also that both e1
and e2 belong to Ex. Consequently e1 ∈ Ex ∩Ey and e2 ∈ Ex ∩Ey. It follows that y = x

since e1 and e2 are different. From (40), we deduce that, whenever E contains more than

one element, ∑

σ′∈{−1,1}V

c((η, σ), (η′ , σ′)) = c((η, σ), (η′ , σx)) . (42)

Definition 7.1 and the three cases of equations (39), (41) and (42) complete the proof of

Proposition 7.4.

From propositions 7.2, 7.3 and 7.4, we deduce the following theorem.

Theorem 7.5. Let (ηt, σt)t≥0 be a Markov jump process with the transition rates intro-

duced in definition 7.1. Then (ηt, σt)t≥0 is reversible with respect to the coupling measure

IP. Its second marginal process (σt)t≥0 is a Markov process evolving according to a Glauber

dynamics while its first marginal (ηt)t≥0 is a non-Markovian jump process.

Proof. The reversibility property is deduced from Proposition 7.2. Proposition 7.3 shows

that the sum ∑

η′∈{0,1}E

c((η, σ), (η′ , σ′))

does not depend on η for any σ, σ′ ∈ {−1, 1}V , moreover this sum is equal to the transition

rates given in (18). The presence of the indicator function 1I(η′,σx)∈Cx in the formula of

proposition 7.4 shows that the sum
∑

σ′∈{−1,1}V c((η, σ), (η′ , σ′)) depends on σ for some

η, η′ ∈ {0, 1}E . The proof of Theorem 7.5 is complete thanks to Ball and Yeo [1].

So this second dynamics does not fulfill our dream.

8 The dream is not feasible

A Markov process on {0, 1}E × {−1, 1}V is said to be a Markovian coupling if both its

marginals are Markov processes. In this section, we will work with the following additional

hypothesis on the graph (V,E).

Hypothesis 8.1. We suppose that there exists a vertex x ∈ V which belongs to at least

four edges. We suppose that there exists a spin configuration σ such that δσ(e) = 0 for

any e ∈ E.

For instance, when the graph is bipartite, the spin configuration σ can be obtained by

setting minuses on one part of the graph and pluses on the other part. Theorem 8.2

below shows that, under hypothesis 8.1, we cannot build a Markovian coupling which is

reversible with respect to the IP measure and whose marginal on the spins is a one spin

flip Markov jump process, i.e., with transition rates satisfying (8).
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Theorem 8.2. Suppose that hypothesis 8.1 holds. Let (ηt, σt)t≥0 be a Markovian jump

process with rates q((η, σ), (η′, σ′)) satisfying (14), (15) and the detailed balance equa-

tion (16). If the second marginal (σt)t≥0 is a Markov jump process with transition rates

satisfying (8), then the first marginal (ηt)t≥0 is a continuous-time non-Markovian jump

process.

Proof. Let (ηt, σt)t≥0 be a Markovian jump process with transition rates q((η, σ), (η′, σ′))

satisfying (14), (15) and the detailed balance equation (16). Suppose also that the first

marginal (ηt)t≥0 is a Markov jump process with transition rates c̃(η, η′). Suppose also

that the second marginal (σt)t≥0 is a Markov jump process with transition rates c(σ, σ′)

satisfying (8). From Ball and Yeo [1] (see theorem 10.4 of the appendix), we have

∀η, η′ ∈ {0, 1}E ∀σ ∈ {−1, 1}V
∑

σ′∈{−1,1}V

q((η, σ), (η′ , σ′)) = c̃(η, η′) , (43)

∀σ, σ′ ∈ {−1, 1}V ∀η ∈ {0, 1}E
∑

η′∈{0,1}E

q((η, σ), (η′ , σ′)) = c(σ, σ′) . (44)

Let σ be a configuration as in hypothesis 8.1 and let x be a vertex of E belonging to at

least four distinct edges. Let η be the configuration where all the edges are closed and

let ηx be the configuration where the edges exiting from x are opened, while all the other

edges are closed. From formula (44) applied to η, σ and σx, we have

∑

η′∈{0,1}E

q((ηx, σx), (η′, σ)) = c(σx, σ) .

The only configuration η′ compatible with σ is η, thus the above identity reduces to

q((ηx, σx), (η, σ)) = c(σx, σ) .

The conditions (8) implies that c(σx, σ) is positive, therefore q((ηx, σx), (η, σ)) is positive.

Since we assumed that the dynamics is reversible, then the rate q((η, σ), (ηx, σx)) is also

positive. From formula (43) applied to η, ηx and σ, we have

∑

σ′∈{−1,1}V

q((η, σ), (ηx, σ′)) = c̃(η, ηx) ,

therefore the rate c̃(η, ηx) is positive. Let now σ̂ be a spin configuration in which the spins

of the vertices connected to x contain at least two negative spins and at least two positive

spins. This is possible because we assumed that x is connected to at least four distinct

vertices. Applying again formula (43), this time to η, ηx and σ̂, we have

∑

σ′∈{−1,1}V

q((η, σ̂), (ηx, σ′)) = c̃(η, ηx) .

Since the rate c̃(η, ηx) is positive, then there exists a spin configuration σ′ such that

q((η, σ̂), (ηx, σ′)) > 0 .
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In the configuration ηx, all the edges emanating from x are opened, hence the neighbours

of x are connected. Since the configuration σ′ has to be compatible with ηx, then all the

neighbours of x have the same spin in σ′, hence the configuration σ′ has to differ from σ̂ in

at least two vertices. From the conditions (8), we should therefore have that c(σ̂, σ′) = 0.

Yet formula (44) applied to η, σ and σx yields

c(σ̂, σ′) =
∑

η′∈{0,1}E

q((η, σ̂), (η′, σ′)) ≥ q((η, σ̂), (ηx, σ′)) > 0 ,

which is contradictory.

Notice that hypothesis 8.1 holds for a cubic box on the d–dimensional lattice when d ≥ 2.

Thus our dream process is not realizable in the lattice Z
d for d ≥ 2.

9 One edge and one incident cluster

We drop here the requirement that the dynamics is local. We build a dynamics which

updates at each time at most one edge and the vertices belonging to the open cluster

of one of the endpoints of the edge. This dynamics will be reversible with respect to

the coupling measure IP and its marginal on the edges is the FK dynamics described in

section 4. For x ∈ V , recall that Ex is the set of the edges e in E having x as endvertex,

i.e.,

Ex = {e ∈ E, e = 〈x, y〉, y ∈ V } .

The following definition gives the transition rates of the dynamics.

Definition 9.1. Let (η, σ), (η′, σ′) be two elements of {0, 1}E × {−1, 1}V . We consider

several cases:

• If σ′ = σ and there exists e ∈ E such that η′ = ηe and γη(e) = 1, then we set

c((η, σ), (η′, σ′)) =
(
(1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C .

• If σ′ = σ and there exists e ∈ E such that η′ = ηe, γη(e) = 0 and δσ(e) = 1, then we set

c((η, σ), (η′ , σ′)) =
1

2

(
(1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C .

• If there exists x ∈ V and e ∈ Ex such that η′ = ηe, γη(e) = 0, η(e) = δσ(e) and σ′ is

given by

∀y ∈ V σ′(y) =




σ(y) if y is not connected to x in η \ {e} ,

−σ(y) if y is connected to x in η \ {e} ,

then we set

c((η, σ), (η′ , σ′)) =
1

4

(
(1− p)1Iη(e)=11I(η,σ)∈C + p1Iη(e)=01I(η′,σ′)∈C

)
.
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• Otherwise, if (η, σ) 6= (η′, σ′), then we set c((η, σ), (η′, σ′)) = 0.

• Finally, if (η, σ) = (η′, σ′), then we set

c((η, σ), (η, σ)) = −
∑

(η′,σ′), (η′,σ′)6=(η,σ)

c((η, σ), (η′ , σ′)) .

We first check that the dynamics associated to these rates is reversible with respect to

the measure IP .

Proposition 9.2. The transition rates introduced in definition 9.1 satisfy the detailed

balance equation (16).

Proof. Let (η, σ) and (η′, σ′) be fixed in {0, 1}E × {−1, 1}V . We have to prove (16). We

consider several cases, as in definition 9.1. Suppose first that σ′ = σ and there exists

e ∈ E such that η′ = ηe and γη(e) = 1. We have then

IP (η, σ)c((η, σ), (η′ , σ)) =

1

Z


∏

f∈E

(
p1Iη(f)=1δσ(f) + (1− p)1Iη(f)=0

)

((1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C

=
1

Z




∏

f∈E\{e}

(
p1Iη(f)=1 + (1− p)1Iη(f)=0

)

 (1− p)p 1I(η,σ)∈C .

Since η′ = ηe and γη(e) = 1, then (η, σ) ∈ C if and only if (η′, σ) ∈ C. Also, the product

in the last formula is the same for η and η′, thus we obtain the detailed balance equation

(16). Suppose next that σ′ = σ and there exists e ∈ E such that η′ = ηe, γη(e) = 0 and

δσ(e) = 1. We have then

IP (η, σ)c((η, σ), (η′ , σ)) =

1

Z


∏

f∈E

(
p1Iη(f)=1δσ(f) + (1− p)1Iη(f)=0

)

 1

2

(
(1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C

=
1

Z


 ∏

f∈E\{e}

(
p1Iη(f)=1 + (1− p)1Iη(f)=0

)

 1

2
(1− p)p 1I(η,σ)∈C .

Since η′ = ηe and δσ(e) = 1, then (η, σ) ∈ C if and only if (η′, σ) ∈ C. Also, the product

in the last formula is the same for η and η′, thus we obtain the detailed balance equation

(16). Suppose finally that there exists x ∈ V and e ∈ Ex such that η′ = ηe, γη(e) = 0,

η(e) = δσ(e) and σ′ is obtained from σ by reversing all the spins of the sites which are
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connected to x by an open path in η \ {e}. We have then

IP (η, σ)c((η, σ), (η′ , σ′)) =

1

Z


∏

f∈E

(
p1Iη(f)=1δσ(f) + (1− p)1Iη(f)=0

)

 1

4

(
(1− p)1Iη(e)=11I(η,σ)∈C + p1Iη(e)=01I(η′,σ′)∈C

)

=
1

Z


 ∏

f∈E\{e}

(
p1Iη(f)=1 + (1− p)1Iη(f)=0

)

 1

4
(1−p)p

(
1Iη(e)=11I(η,σ)∈C+1Iη(e)=01I(η′,σ′)∈C

)
.

To remove the symbol δσ(f) in the last line, we have used the fact that, if η(e) = 0 and

(η′, σ′) ∈ C, then (η, σ) ∈ C. Since we have

1Iη(e)=11I(η,σ)∈C + 1Iη(e)=01I(η′,σ′)∈C = 1Iη′(e)=11I(η′,σ′)∈C + 1Iη′(e)=01I(η,σ)∈C ,

then we can conclude that

IP (η, σ)c((η, σ), (η′ , σ′)) = IP (η′, σ′)c((η′, σ′), (η, σ))

and the detailed balance equation holds also in this case. We conclude that the detailed

balance equation (16) is always satisfied.

We compute next the marginal dynamics on the edges.

Proposition 9.3. Let η be an element of {0, 1}E and let e ∈ E. Let also σ be an element

of {−1, 1}V such that (η, σ) ∈ C.

• If γη(e) = 1, then

∑

σ′∈{−1,1}V

c((η, σ), (ηe , σ′)) = p1Iη(e)=0 + (1− p)1Iη(e)=1 .

• If γη(e) = 0 and η(e) = 0, then

∑

σ′∈{−1,1}V

c((η, σ), (ηe , σ′)) =
p

2
.

• If γη(e) = 0 and η(e) = 1, then

∑

σ′∈{−1,1}V

c((η, σ), (ηe, σ′)) = 1− p .

Proof. Let η, e, σ be as in the statement of the proposition. We use the expression for

the rates given in the definition 9.1. If γη(e) = 1, then c((η, σ), (ηe , σ′)) is null unless

σ′ = σ. Thus the sum reduces to c((η, σ), (ηe, σ)), which is equal to p if η(e) = 0 and

to 1 − p if η(e) = 1. Suppose next that γη(e) = 0 and η(e) = 0. We consider two

further cases. If δσ(e) = 1, then the sum reduces again to c((η, σ), (ηe , σ)), which in

this case is equal to p/2. If δσ(e) = 0, then the sum contains two terms, corresponding

to the two spin configurations σ′ obtained from σ by reversing all the spins of the sites
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which are connected to one extremity of e by an open path in η \ {e}. These two rates

c((η, σ), (ηe, σ′)) are both equal to p/4, and their sum is again equal to p/2. Suppose

finally that γη(e) = 0 and η(e) = 1. The sum contains three terms, one corresponding

to σ′ = σ and two corresponding to the two spin configurations σ′ obtained from σ by

reversing all the spins of the sites which are connected to one extremity of e by an open

path in η \ {e}. The rate c((η, σ), (ηe, σ)) is equal to (1 − p)/2. The two other rates

c((η, σ), (ηe, σ′)) are equal to (1− p)/4. In total, the sum is equal to 1− p.

The marginal dynamics on the spins is quite complicated, but it is not a Markov process.

Let us consider an edge configuration η and a spin configuration σ such that there exist

x ∈ V and e ∈ Ex such that γη(e) = η(e) = δσ(e) = 0. Let σ′ be the spin configuration

defined by

∀y ∈ V σ′(y) =




σ(y) if y is not connected to x in η \ {e} ,

−σ(y) if y is connected to x in η \ {e} .

We have then ∑

η′∈{0,1}E

c((η, σ), (η′ , σ′)) = c((η, σ), (ηe , σ′)) =
p

4
.

However the configuration σ′ depends on η. Indeed, if we change the status of some edges

f in Ex \ {e}, we will change the set of the vertices which are connected to x in η \ {e},

and we will obtain an edge configuration η for which

∑

η′∈{0,1}E

c((η, σ), (η′, σ′)) = c((η, σ), (ηe, σ′)) = 0 .

Thus the above sum depends on the configuration η and the marginal process on the

spin configurations is not a Markov process. This remark, together with propositions 9.2

and 9.3, yield the following theorem.

Theorem 9.4. Let (ηt, σt)t≥0 be a Markov jump process on C with the transition rates

introduced in definition 7.1. Then (ηt, σt)t≥0 is reversible with respect to the coupling

measure IP. Its first marginal (ηt)t≥0 is a Markov process evolving according to the FK

dynamics while its second marginal process (σt)t≥0 is a non-Markovian jump process.

Proof. The reversibility property is deduced from Proposition 9.2. Proposition 9.3 shows

that the sum
∑

σ′∈{−1,1}V c((η, σ), (η′ , σ′)) does not depend on σ for any η, η′ ∈ {0, 1}E ,

moreover this sum is equal to the transition rates given in (18). The proof of Theorem

9.4 is complete thanks to the remark before the theorem and the result of Ball and Yeo

[1].

So this third dynamics does not fulfill our dream, although it is not even local.
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10 One edge and one spin

A notable inconvenient of the previous dynamics is that it might reverse simultaneously

all the spins associated to an open cluster of the edge configuration. We introduce here a

slight modification of this dynamics to ensure that at most one spin is changed at a time.

For x ∈ V , recall that Ex is the set of the edges e in E having x as endvertex, i.e.,

Ex = {e ∈ E, e = 〈x, y〉, y ∈ V } .

The following definition gives the transition rates of the dynamics.

Definition 10.1. Let (η, σ), (η′, σ′) be two elements of {0, 1}E × {−1, 1}V . We consider

several cases:

• If σ′ = σ and there exists e ∈ E such that η′ = ηe and γη(e) = 1, then we set

c((η, σ), (η′, σ′)) =
(
(1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C .

• If σ′ = σ and there exists e ∈ E such that η′ = ηe, γη(e) = 0 and δσ(e) = 1, then we set

c((η, σ), (η′ , σ′)) =
1

2

(
(1− p)1Iη(e)=1 + p1Iη(e)=0

)
1I(η,σ)∈C .

• If there exists x ∈ V and e ∈ Ex such that σ′ = σx, η′ = ηe, γη(e) = 0, η(e) = δσ(e)

and η(f) = 0 for f ∈ Ex \ {e}, then we set

c((η, σ), (η′ , σ′)) =
1

4

(
(1− p)1Iη(e)=11I(η,σ)∈C + p1Iη(e)=01I(η′,σ′)∈C

)
.

• Otherwise, if (η, σ) 6= (η′, σ′), then we set c((η, σ), (η′, σ′)) = 0.

• Finally, if (η, σ) = (η′, σ′), then we set

c((η, σ), (η, σ)) = −
∑

(η′,σ′), (η′,σ′)6=(η,σ)

c((η, σ), (η′ , σ′)) .

The difference compared to the rates of definition 9.1 is that, in definition 10.1, we allow

to reverse the spins of a cluster only when it is reduced to a single vertex. This dynamics

possesses the same properties as the dynamics of the previous section, namely, it is re-

versible with respect to the coupling measure IP, its first marginal process on the edges

is a Markov process while its second marginal process on the spins is a non-Markovian

jump process. The marginal dynamics on the edges differs from the FK dynamics in the

following way. An edge can be opened between two different clusters only if one the two

clusters is reduced to a single vertex. More precisely, the corresponding rates are the

following. For x ∈ V and e ∈ Ex, for any configuration η,

c(η, ηe) =





1− p if η(e) = 1 ,

p if η(e) = 0 and γη(e) = 1 ,

p/2 if η(f) = 0 for f ∈ Ex .
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Funnily enough, this fourth dynamics can be seen as a contraction of the first dynamics,

which could make only one change at a time. The following proposition shows that, if

the initial condition (η0, σ0) is distributed as IP , then the infinitesimal behavior of the

marginal on the spins of the process (ηt, σt)t≥0, whose rates are introduced in definition

10.1, is quite similar to the transition rates of the Glauber dynamics as given in (18). The

difference lies in the factor |Ex|. On the cubic lattice Z
d, the factor |Ex| is equal to 2d

and it is independent of x.

Proposition 10.2. Let (ηt, σt)t≥0 be a Markov jump process with the transition rates

introduced in definition 10.1. Suppose that the pair (η0, σ0) is distributed according to IP .

Then, for any x ∈ V , for any σ ∈ {−1, 1}V and any s ≥ 0,

lim
t→0

1

t
IP(σt+s = σx|σs = σ) =

1

4
|Ex|p(1− p)|{ e∈Ex:δσ(e)=1 }| . (45)

Proof. We have, for any σ ∈ {−1, 1}V , x ∈ V and s ≥ 0,

IP(σt+s = σx|σs = σ) =
∑

η∈{0,1}E

∑

η′∈{0,1}E

IP(σt+s = σx, ηt+s = η′, ηs = η|σs = σ)

=
∑

η∈{0,1}E

∑

η′∈{0,1}E

IP(σt+s = σx, ηt+s = η′|σs = σ, ηs = η)IP(ηs = η|σs = σ). (46)

Recall that (ηt, σt)t≥0 is a Markov jump process with transition rates c((η, σ), (η′ , σ′)),

thus

lim
t→0

1

t
IP(σt+s = σx, ηt+s = η′|σs = σ, ηs = η) = c((η, σ), (η′ , σx)) . (47)

Using the expression of the rates c((η, σ), (η′ , σ′)) given in definition 10.1, together with

formulas (46) and (47), we obtain that, for any s ≥ 0,

lim
t→0

1

t
IP(σt+s = σx|σs = σ) =

∑

η∈{0,1}E

∑

e∈Ex


 ∏

f∈Ex\{e}

1Iη(f)=0




×
1

4

(
(1− p)1Iη(e)=11I(η,σ)∈C + p1Iη(e)=01I(ηe,σx)∈C

)
IP(ηs = η|σs = σ) . (48)

The measure IP is, by proposition 6.3, a reversible and a stationary measure for the

process (ηt, σt)t≥0. Hence, if (η0, σ0) is distributed as IP , then, for any s ≥ 0, (ηs, σs) is

also distributed as IP . Consequently, under the hypothesis of proposition 10.2, we have

IP(ηs = η|σs = σ) =
IP(ηs = η, σs = σ)

IP(σs = σ)
=

IP (η, σ)∑
η′∈{0,1}E IP (η′, σ)

. (49)

Equation (3) yields that

∑

η′∈{0,1}E

IP (η′, σ) =
1

Z
(1− p)|{ e∈E:δσ(e)=0 }| . (50)
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Reporting (49) and (50) in (48), we conclude that

lim
t→0

1

t
IP(σt+s = σx|σs = σ) = Z(1− p)−|{ e∈E:δσ(e)=0 }|×

∑

η∈{0,1}E

∑

e∈Ex


 ∏

f∈Ex\{e}

1Iη(f)=0


 1

4

(
(1− p)1Iη(e)=11I(η,σ)∈C + p1Iη(e)=01I(ηe,σx)∈C

)
IP (η, σ) .

(51)

We compute these sums as follows. We have, for e ∈ Ex,

∑

η∈{0,1}E


 ∏

f∈Ex\{e}

1Iη(f)=0


 1Iη(e)=11I(η,σ)∈CIP (η, σ) =

1

Z
(1− p)|Ex|−1+|{ e∈E\Ex:δσ(e)=0 }|p δσ(e) ,

∑

η∈{0,1}E


 ∏

f∈Ex\{e}

1Iη(f)=0


 1Iη(e)=01I(ηe,σx)∈CIP (η, σ) =

1

Z
(1− p)|Ex|+|{ e∈E\Ex:δσ(e)=0 }|

(
1− δσ(e)

)
.

Reporting the values of these sums in formula (51), we obtain

lim
t→0

1

t
IP(σt+s = σx|σs = σ) =

1

4
(1− p)−|{ e∈E:δσ(e)=0 }|×

∑

e∈Ex

(
(1− p)|Ex|+|{ e∈E\Ex:δσ(e)=0 }|p δσ(e) + p(1− p)|Ex|+|{ e∈E\Ex:δσ(e)=0 }|

(
1− δσ(e)

))

=
1

4
(1− p)−|{ e∈E:δσ(e)=0 }|

∑

e∈Ex

p(1− p)|Ex|+|{ e∈E\Ex:δσ(e)=0 }|

=
1

4

∑

e∈Ex

p(1− p)|{ e∈Ex:δσ(e)=1 }| =
1

4
|Ex|p(1− p)|{ e∈Ex:δσ(e)=1 }| . (52)

This yields the desired result (45).

Appendix

Let (V,E) be a finite graph and let (Xt)t≥0 = ((ηt, σt))t≥0 be a time–homogeneous

continuous–time Markov process with state space Ω = {0, 1}E × {−1, 1}V and with in-

finitesimal generator Q defined as follows. For any function f defined on Ω with values in

R, we have

Qf(η, σ) =
∑

(η′,σ′)∈Ω

q((η, σ), (η′, σ′))
(
f(η′, σ′)− f(η, σ)

)
,

where q((η, σ), (η′, σ′)) are the transition rates defined by, for (η, σ) 6= (η′, σ′),

q((η, σ), (η′, σ′)) = lim
t→0+

1

t
IP
(
Xt = (η′, σ′)|X0 = (η, σ)

)
) ,
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and for (η, σ) = (η′, σ′),

q((η, σ), (η, σ)) = −
∑

(η′,σ′): (η,σ)6=(η′ ,σ′)

q((η, σ), (η′ , σ′)). (53)

Our goal is to present some conditions on the transition rates q((η, σ), (η′, σ′)) under which

(σt)t≥0 or (ηt)t≥0 are Markov processes. This is a lumpability problem discussed in Ball

and Yao (1993). We first recall the following definition of lumpability.

Definition 10.3. Let Ω be a countable set, {Ω1, · · · ,Ωr} be a partition of Ω and h the

function from Ω to {1, · · · , r} defined by h(x) = j if x ∈ Ωj . An homogeneous Markov

chain (Xt)t≥0 with state space Ω is lumpable with respect to the partition Ω1, · · · ,Ωr if

(h(Xt))t≥0 is an homogeneous Markov chain for every initial distribution y0 on {1, · · · , r}

and its transition rates do not depend on the choice of the initial distribution y0.

Let us take the following partition of Ω:

Ω =
⋃

σ∈{−1,1}V

Ωσ , Ωσ =
{
(η, σ) ∈ Ω : η ∈ {0, 1}E

}
.

In this case, the function h is the projection from Ω to {−1, 1}V defined by h((η, σ)) = σ.

Our purpose is to obtain necessary and sufficient conditions under which the Markov pro-

cess ((ηt, σt))t≥0 is lumpable with respect to the partition (Ωσ)σ∈{−1,1}V .

It is well known (see for instance Theorem 3.1 in Ball and Yao (1993)1) that a Markov pro-

cess is lumpable with respect to the partition (Ωj)1≤j≤r if and only if there exist positive

real numbers λi,j, 1 ≤ i, j ≤ r, such that

∀i 6= j , ∀x ∈ Ωi ,
∑

y∈Ωj

qx,y = λi,j .

In order to simplify the reading of this paper, we adapt this criterion of lumpability to the

case of the partition (Ωσ)σ∈{−1,1}V and the Markov process ((ηt, σt))t≥0. We summarize

it in the following theorem.

Theorem 10.4. Let ((ηt, σt))t≥0 be a continuous-time Markov process with finite state

space {0, 1}E × {−1, 1}V and transition rates q((η, σ), (η′ , σ′)). Then the following state-

ments are equivalent:

(i) For any σ 6= σ′, there exist positive numbers c(σ, σ′) such that

∀ η ∈ {0, 1}E ,
∑

η′∈{0,1}E

q((η, σ), (η′, σ′)) = c(σ, σ′) .

(ii) The spin marginal (σt)t≥0 of the Markov process ((ηt, σt))t≥0 is a Markov process

for every initial distribution σ0 on {−1, 1}V and its transition rates c(σ, σ′) do not

depend on the choice of the initial distribution of σ0.

1Ball and Yao’s result is stated under their condition 2.2 which is satisfied in the actual context.
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The analog of Theorem 10.4 holds for the edge marginal process of ((ηt, σt))t≥0. For a

proof, we refer to Theorem 3.1 in Ball and Yeo [1]. We also recall Theorem 3.2 of Ball

and Yeo [1], that we adapt to our context.

Theorem 10.5. Suppose that the transition rates q((η, σ), (η′, σ′)) of the Markov process

(ηt, σt)t≥0 satisfy

q((η, σ), (η′ , σ′)) 6= 0 =⇒ (η, σ) = (η′, σ′) or (η = η′ and σ 6= σ′) or (η 6= η′ and σ = σ′).

Then (ηt)t≥0 and (σt)t≥0 are both Markov processes if and only if they are mutually inde-

pendent.
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28


	1 Introduction
	2 Ising–FK coupling measure
	3 The stochastic Ising model
	4 FK dynamics
	5 Our dream process
	6 One change at a time
	7 One site and the incident edges
	8 The dream is not feasible
	9 One edge and one incident cluster
	10 One edge and one spin

