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Abstract. We prove a large deviation principle for Minkowski sums of i.i.d. random compact

sets in a Banach space, that is the analog of Cramér theorem for random compact sets.

Several works have been devoted to deriving limit theorems for random sets. For i.i.d.
random compact sets in Rp, the law of large numbers was initially proved by Artstein
and Vitale [1] and the central limit theorem by Cressie [3], Lyashenko [10] and Weil [16].
For generalizations to non compact sets, see also Hess [8]. These limit theorems were
generalized to the case of random compact sets in a Banach space by Giné, Hahn and
Zinn [7] and Puri and Ralescu [11]. Our aim is to prove a large deviation principle for
Minkowski sums of i.i.d. random compact sets in a Banach space, that is, to prove the
analog of the Cramér theorem.

We consider a separable Banach space F with norm || ||. We denote by K(F ) the
collection of all non empty compact subsets of F . For an element A of K(F ), we denote by
coA the closed convex hull of A. Mazur’s theorem [5, p 416] implies that, for A in K(F ),
coA belongs to coK(F ), the collection of the non empty compact convex subsets of F .
The space K(F ) is equipped with the Minkowski addition and the scalar multiplication:
for A1, A2 in K(F ) and λ a real number,

A1 +A2 = { a1 + a2 : a1 ∈ A1, a2 ∈ A2 } , λA1 = {λa1 : a1 ∈ A1 } .
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The Hausdorff distance

d(A1, A2) = max
{

sup
a1∈A1

inf
a2∈A2

||a1 − a2||, sup
a2∈A2

inf
a1∈A1

||a2 − a1||
}

makes (K(F ), d) a complete separable metric space (i.e. a Polish space). We endow K(F )
with the Borel σ–field associated to the Hausdorff topology.

We denote by F ∗ the topological dual of F and by B∗ the unit ball of F ∗. The Banach–
Alaoglu theorem asserts that B∗ endowed with the weak∗ topology w∗ is compact [13].
Moreover the space (B∗, w∗) is separable and metrizable. We denote by M(B∗) the set of
Borel signed measures on B∗ (the σ–field being the σ–field generated by the weak∗ topol-
ogy). Let (Ω,F , P ) be a probability space. A random compact set of F is a measurable
function from Ω to K(F ) i.e. a random variable with values in K(F ).

We suppose that F is of type p > 1 i.e. there exists a constant c such that

E||
n∑
i=1

fi||p ≤ c
n∑
i=1

E||fi||p

for any independent random variables f1, · · · , fn with values in F and mean zero. Every
Hilbert space is of type 2, the spaces Lp with 1 < p < ∞ are of type min(p, 2). However
the space of continuous functions on [0, 1] equipped with the supremum norm is of type 1
and not of type p for any p > 1.

We denote by N∗ the set of positive integers.

Theorem 1. Let (An)n∈N∗ be a sequence of i.i.d. random compact sets of F such that

∀α ∈ R+ E(exp(α sup
a∈A1

||a||)) < +∞ .

For a measure λ of M(B∗) we set

Λ(λ) = lnE exp
(∫

B∗
sup
a∈A1

x∗(a) dλ(x∗)
)

and for a set U belonging to coK(F ),

Λ∗(U) = sup
λ∈M(B∗)

(∫
B∗

sup
x∈U

x∗(x) dλ(x∗) − Λ(λ)
)
.

For a non convex set U in K(F ) we set Λ∗(U) = +∞.
Then the law of the random set Sn = (A1 + · · ·+An)/n satisfies a large deviation principle
with rate function Λ∗ i.e. for any subset U of K(F )

− inf
U∈ interior(U)

Λ∗(U) ≤ lim inf
n→∞

1
n

lnP (Sn ∈ U)

≤ lim sup
n→∞

1
n

lnP (Sn ∈ U) ≤ − inf
U∈ closure(U)

Λ∗(U)
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(where interior(U) and closure(U) are the interior and the closure of U with respect to the
Hausdorff topology).

Remark. The rate function Λ∗ is a “good” rate function i.e. it is lower semicontinuous and
its level sets {U ∈ K(F ) : Λ∗(U) ≤ λ }, λ ∈ R+, are compact.

We first collect several results which are the main ingredients to prove theorem 1.

An embedding theorem. To a compact convex subset A of F we associate its support
function sA : B∗ → R defined by

∀x∗ ∈ B∗ sA(x∗) = sup {x∗(x) : x ∈ A } .

We denote by C(B∗, w∗) the set of continuous functions from B∗ endowed with the weak∗
topology to R. With the uniform norm || ||∞, C(B∗, w∗) is a separable Banach space
(for f in C(B∗, w∗), ||f ||∞ = supx∗∈B∗ |f(x∗)|). Whenever A is compact, its support
function sA belongs to C(B∗, w∗). The map s : coK(F ) → C(B∗, w∗) has the following
properties. For any A1, A2 in coK(F ) and t in R+,

sA1 = sA2 ⇐⇒ A1 = A2, A1 ⊂ A2 ⇐⇒ sA1 ≤ sA2 ,

sA1+A2 = sA1 + sA2 , stA1 = tsA1 ,

and finally d(A1, A2) = ||sA1 − sA2 ||∞. Hence coK(F ) is algebraically and topologically
isomorphic to its image under s, s(coK(F )), which is a subset of the separable Banach
space C(B∗, w∗). This embedding theorem was used in [1] and [7] to prove limit theorems
for random sets. In the context of normed spaces, this theorem is due to R̊adström [12]
and Hörmander [9].

A general Cramér theorem. We state here a slightly weakened version of the general
Cramér theorem (see either [4, theorem 3.1.6 and corollary 3.1.7] or [6, theorem 6.1.3]).

Let E be a separable Banach space and let E1 be a closed convex subset of E. Let
(Xn)n∈N∗ be a sequence of i.i.d. random variables defined on (Ω,F , P ) with values in E1

and set Sn = (X1 + · · ·+Xn)/n. Suppose that for any λ in the dual E∗

ΛE(λ) = lnE exp(λ(X1)) < +∞

and that the laws of (Sn)n∈N∗ are exponentially tight i.e. for any positive L there exists a
compact subset KL of E1 such that lim supn→∞(1/n) lnP (Sn 6∈ KL) ≤ −L.
Then the law of Sn satisfies a large deviation principle with rate function

Λ∗E(x) = sup
λ∈E∗

(
λ(x)− ΛE(λ)

)
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i.e. for any subset U of E

− inf
x∈ interior(U)

Λ∗E(x) ≤ lim inf
n→∞

1
n

lnP (Sn ∈ U)

≤ lim sup
n→∞

1
n

lnP (Sn ∈ U) ≤ − inf
x∈ closure(U)

Λ∗E(x)

Moreover the condition

∀α ∈ R+ E(exp(α||X1||)) < +∞

automatically ensures that the laws of (Sn)n∈N∗ are exponentially tight and that Λ∗E is a
“good” rate function (it is lower semicontinuous and its level sets are compact, see either
[4, theorem 3.3.11] or [6, exercise 6.2.21]).

Distance to the convex hull. We introduce next a quantity which measures the non–
convexity of a set. Let A belong to K(F ), its inner radius is [15]

r(A) = sup
a∈ coA

inf {R : ∃a1, · · · , as ∈ A, a ∈ co { a1, · · · , as }, ||a− ai|| ≤ R, 1 ≤ i ≤ s} .

Obviously, r(A) is zero if and only if A is convex. For any A, r(A) ≤ 2||A|| = 2 supa∈A ||a||.
In [11], Puri and Ralescu extended a result of Cassels [2] and proved the following

inequality: for any A1, · · · , An in K(F )

d(A1 + · · ·+An, coA1 + · · ·+ coAn) ≤ c1/p
(
r(A1)p + · · ·+ r(An)p

)1/p
.

Of course, the exponent p is related to the fact that F is a Banach space of type p and the
constant c is the one appearing in the functional inequality (see the definition just before
theorem 1).

Proof of theorem 1. We suppose first that the sets (An)n∈N∗ are convex. We apply
the general Cramér theorem with E = C(B∗, w∗), E1 = s(coK(F )) and the sequence of
random functions (sAn

)n∈N∗ . By the Riesz representation theorem [14], the topological
dual of E is the set M(B∗) of the signed Borel measures on (B∗, w∗). By the hypothesis
of theorem 1,

∀α ∈ R+ E(expα||sA1 ||∞) = E(exp(α sup
a∈A1

||a||)) < +∞

so that the law of (sA1 + · · ·+sAn)/n satisfies a large deviation principle with rate function
Λ∗E (defined on E). We push back this large deviation principle to the space coK(F ) with
the help of the homeomorphism s. Since for any U in coK(F ), Λ∗(U) = Λ∗E(sU ) (where
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Λ∗ is the rate function on K(F ) defined in theorem 1), we obtain that for any U included
in coK(F )

− inf
U∈ interiorco (U)

Λ∗(U) ≤ lim inf
n→∞

1
n

lnP (Sn ∈ U)

≤ lim sup
n→∞

1
n

lnP (Sn ∈ U) ≤ − inf
U∈ closureco (U)

Λ∗(U) ,

where interiorco (U) and closureco (U) are the interior and the closure of U for the topology
induced by the Hausdorff metric on coK(F ).

In the general case, where the sets (An)n∈N∗ are not necessarily convex, we set Sn =
(A1 + · · ·+An)/n and Sco

n = (coA1 + · · ·+ coAn)/n. We will use the following lemma.

Lemma 2. For any δ > 0

lim
n→∞

1
n

lnP (d(Sn, Sco
n ) ≥ δ) = −∞ .

Proof. We apply first the inequality of Puri and Ralescu:

P (d(Sn, Sco
n ) > δ) ≤ P (c1/p(r(A1)p + · · ·+ r(An)p)1/p ≥ nδ) .

Notice that this inequality requires the assumption that the space F is of type p.
Let α be a positive real number. We have

P (c1/p(r(A1)p+ · · ·+ r(An)p)1/p ≥ nδ) = P (r(A1)p + · · ·+ r(An)p) ≥ (nδ)p/c)

≤ P ((r(A1) + · · ·+ r(An))/n ∗ max
1≤k≤n

r(Ak)p−1/np−1 ≥ δp/c)

≤ P ( max
1≤k≤n

r(Ak)p−1 > αnp−1) + P (r(A1) + · · ·+ r(An) ≥ nδp/(αc))

≤ nP (r(A1) > α1/(p−1)n) + P (r(A1) + · · ·+ r(An) ≥ nδp/(αc)) .

Since r(A1) ≤ 2||A1|| = 2 supa∈A1
||a||, then Λr(t) = lnE exp tr(A1) is finite for any t in R.

By the classical Cramér theorem in R, the sequence (r(A1)+ · · ·+r(An))/n satisfies a large
deviation principle with rate function Λ∗r(u) = supt(ut − Λr(t)). In addition for any u, t
in R, P (r(A1) ≥ u) ≤ exp−(ut− Λr(t)) whence P (r(A1) ≥ u) ≤ exp−Λ∗r(u). Thus

P (d(Sn, Sco
n ) ≥ δ) ≤ n exp−Λ∗r(α

1/(p−1)n) + exp−nΛ∗r(δ
p/(αc)) .

Because Λr is finite everywhere we have that limu→+∞ Λ∗r(u)/u = +∞ (see [4] or [6]). It
follows that

lim sup
n→∞

1
n

lnP (d(Sn, Sco
n ) ≥ δ) ≤ −Λ∗r(δ

p/(αc)) ,
5



and this is true for any α > 0. Letting α go to zero, we obtain the claim. �

We now prove the lower bound for the large deviation principle of theorem 1. Let U be
a subset of K(F ). Let U belong to interior(U) (if interior(U) ∩ coK(F ) is empty, there is
nothing to prove). Then there exists δ > 0 such that {V ∈ K(F ) : d(U, V ) < δ } ⊂ U . We
have then

P (Sn ∈ U) ≥ P (d(Sn, U) < δ) ≥ P (d(Sco
n , U) < δ/2, d(Sn, Sco

n ) < δ/2)

≥ P (d(Sco
n , U) < δ/2) − P (d(Sn, Sco

n ) ≥ δ/2) .

Applying lemma 2 and the large deviation principle for (Sco
n )n∈N∗ we get

lim inf
n→∞

1
n

lnP (Sn ∈ U) ≥ −Λ∗(U) .

Taking the supremum over all sets U in interior(U) yields the desired lower bound.
We finally prove the upper bound. Let U be a subset of K(F ). For any δ > 0 we set

Uδ = {A ∈ K(F ) : d(A,U) ≤ δ }. We write then

P (Sn ∈ U) ≤ P (Sco
n ∈ Uδ) + P (d(Sn, Sco

n ) > δ) .

Applying lemma 2 and the large deviation principle for (Sco
n )n∈N∗ we get

lim sup
n→∞

1
n

lnP (Sn ∈ Uδ) ≤ − inf {Λ∗(U) : U ∈ closureco (Uδ) } .

However closureco (Uδ) = Uδ ∩ coK(F ) and in addition
⋂
δ>0 closureco (Uδ) = closure(U)∩

coK(F ). Since Λ∗ is a “good” rate function we have that

lim
δ→0

inf {Λ∗(U) : U ∈ closureco (Uδ) } = inf {Λ∗(U) : U ∈ closure(U) ∩ coK(F ) } .

The righthandside is clearly larger than the lefthand side; let (Un)n∈N∗ be a sequence such
that Un belongs to closureco (U1/n) for all n and Λ∗(Un) converges to the lefthandside. The
level sets of Λ∗ being compact, we can extract from (Un)n∈N∗ a subsequence converging
to a set U which necessarily belongs to closure(U)∩ coK(F ). By the lower semicontinuity
of Λ∗, Λ∗(U) is smaller than the lefthand side.

Thus letting δ go to zero in the previous inequality gives the desired upper bound. �
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